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Abstract
The calculation of relative free-energy differences between different compounds plays an important role in drug design to 
identify potent binders for a given protein target. Most rigorous methods based on molecular dynamics simulations estimate 
the free-energy difference between pairs of ligands. Thus, the comparison of multiple ligands requires the construction 
of a “state graph”, in which the compounds are connected by alchemical transformations. The computational cost can be 
optimized by reducing the state graph to a minimal set of transformations. However, this may require individual adaptation 
of the sampling strategy if a transformation process does not converge in a given simulation time. In contrast, path-free 
methods like replica-exchange enveloping distribution sampling (RE-EDS) allow the sampling of multiple states within a 
single simulation without the pre-definition of alchemical transition paths. To optimize sampling and convergence, a set 
of RE-EDS parameters needs to be estimated in a pre-processing step. Here, we present an automated procedure for this 
step that determines all required parameters, improving the robustness and ease of use of the methodology. To illustrate the 
performance, the relative binding free energies are calculated for a series of checkpoint kinase 1 inhibitors containing chal-
lenging transformations in ring size, opening/closing, and extension, which reflect changes observed in scaffold hopping. 
The simulation of such transformations with RE-EDS can be conducted with conventional force fields and, in particular, 
without soft bond-stretching terms.

Keywords Molecular dynamics · Free energy calculation · Protein-ligand binding · Replica exchange · Enveloping 
distribution sampling

Introduction

Rigorous free-energy calculations using molecular dynamics 
(MD) simulations have become an important tool to estimate 
binding free energies of novel compounds for lead optimi-
zation in drug discovery [1–3]. Although computationally 
relatively expensive, these methods are needed to properly 
account for entropic contributions introduced by protein/
ligand conformational changes, entropy–enthalpy compen-
sation, and desolvation of the ligand [4].

Computational free energy calculations typically make 
use of thermodynamic cycles. For instance, to estimate the 
binding free energy of five compounds, a “state graph” can 

be constructed (Fig. 1), where the nodes represent the end 
states and the edges the free-energy differences between 
them. Although not impossible [5], the direct calculation of 
(absolute) binding free-energies ( �Gbind

i
 ) is generally very 

challenging to achieve computationally [1]. A simpler alter-
native is to calculate the alchemical free-energy differences 
between two compounds i and j in a given environment 
( �Genv

ji
 ) and then compare the relative binding free energy 

��Gbind
ji

 with the difference of the �Gbind
i

 obtained from 
experiment [6, 7],

Conventional free-energy methods such as thermodynamic 
integration (TI) [8] and free-energy perturbation (FEP) 
[9] introduce a coupling parameter � to define a pathway 
from end state i ( � = 0 ) to end state j ( � = 1 ). In practice, 

(1)��Gbind
ji

= �G
protein

ji
− �Gwater

ji
= �Gbind

j
− �Gbind

i
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simulations at discrete intermediate �-points are performed 
to obtain converged free-energy differences.

If a (large) series of N compounds is investigated, the 
free-energy difference for all (N(N − 1))∕2 pairs of ligands 
would in principle have to be calculated. To reduce the 
computational cost, automatic schemes have been devel-
oped to identify the edges in the state graph (Fig. 1) with 
the smallest perturbations such that all nodes (for a given 
environment) are connected [10–12]. It is thereby impor-
tant to include some cycles as cycle closure is a frequently 
used measure to assess convergence. Nevertheless, manual 
optimizations may sometimes be required to determine the 
best sampling strategy [13]. Furthermore, calculating only 
a subset of the edges leads to a larger uncertainty in the 
estimated free-energy difference for pairs that are no 
longer directly connected. As ��Gbind

ji
 values are often 

relatively small, the increased uncertainty may negatively 

impact the usefulness of such calculations in practical 
applications.

An attractive and more efficient alternative to path-
dependent methods is to simulate a reference state, which 
includes all N end states simultaneously, without the speci-
fication of pathways (green rings in Fig. 1). Such a refer-
ence state is provided by the enveloping distribution sam-
pling (EDS) [14–17] method. The EDS reference state can 
be tuned for optimal sampling with parameters. Note that 
cycle closure is guaranteed by definition in this approach. 
In order to enhance sampling further, combinations of EDS 
with enhanced sampling methods were developed such as 
replica-exchange EDS (RE-EDS) [18–20] and accelerated 
EDS [21, 22].

In this study, we present an improved automated work-
flow for RE-EDS simulations that was restructured into 
two phases. The first phase aims to automatically estimate 
method parameters that otherwise had to be provided by 

Fig. 1  State graph to calculate relative binding free energies, where 
the nodes represent specific compounds A–E in a particular environ-
ment (water/protein). The connecting (directed) edges describe the 
transformations from one end state to another. The dashed-dotted 
arrows denote the (absolute) binding free energy of compound i to 
the protein, �Gbind

i
 , whereas solid arrows indicate alchemical transfor-

mations between compound i to compound j in a given environment. 

From the resulting �Genv

ji
 , ��Gbind

ji
 can be calculated (gray dashed 

arrows) and compared with the value obtained from the difference of 
the experimentally determined �Gbind

i
 . In pathway-dependent meth-

ods, each edge between two end states is calculated separately. With 
(RE-)EDS, all end states in a given environment can be considered 
simultaneously in a single simulation of a reference state (green cir-
cles)
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the user. The second phase automatically optimizes the esti-
mates from the first phase to retrieve a robust parameter set. 
The final production phase calculates the relative binding 
free energies of multiple ligands from a single simulation 
per environment. The robustness and versatility of the RE-
EDS workflow are demonstrated on a series of five inhibitors 
of human checkpoint kinase 1 (CHK1) [23]. These ligands 
were selected by Wang et al. [24] as a challenging bench-
marking set for FEP calculations since the changes between 
these ligands exemplify different types of core-hopping 
transformations (i.e. ring size change, ring opening/clos-
ing, and ring extension). Special soft bond-stretching terms 
were developed to be able to handle these transformations 
[24]. In contrast to other methods, no such special soft bonds 
are required with RE-EDS as we can use a “dual topology” 
approach [17] in a straightforward manner.

Theory

Enveloping distribution sampling (EDS)

In EDS, free-energy differences between multiple end states 
are obtained by sampling a reference-state Hamiltonian, i.e. 
without the definition of specific alchemical paths [14, 15, 
17]. Given N end states, the potential energy function V of 
the EDS reference state R is defined as,

where � = (kBT)
−1 with kB being the Boltzmann constant 

and T the absolute temperature. The smoothing parameter s 
and the energy offsets �R were introduced to enable tuning 
of the reference state for optimal sampling of all end states 
[14, 15].

A smoothness parameter s = 1.0 gives a reference poten-
tial-energy landscape that contains all the relevant minima 
of the end states. However, these might be separated by 
high barriers. For s < 1 , the energy barriers between dif-
ferent end states Vi are smoothed in the reference state VR , 
increasing the transition rates between the different minima 
(Fig. 2a) [15]. However, if s is chosen too small, VR consists 
of a global unphysical minimum, which does not correspond 
to any of the end states. In the limit of s → 0 , all end states 
contribute equally to the potential-energy function of the 
reference state [25], which can lead to unphysical configu-
rations. The situation with a too small s has been termed 
“undersampling” [17].

The energy offsets �R are used to ensure equal weight-
ing of all end states Vi in VR (Fig. 2b). Note that the optimal 
values of s and �R are not independent of each other (as 
can be seen in Eq. (2)) [15]. Different schemes have been 

(2)VR(�;s,�
R) = −

1

�s
ln

[
N∑

i=1

e−�s(Vi(�)−E
R
i )

]
,

proposed to determine optimal reference-state parameters 
[16, 17, 26], however, these are only applicable to systems 
with two end states.

The force on a particle k in the EDS reference state is 
calculated as [15],

For s-values close to one, the reference-state forces are dom-
inated by the one end state, for which the current coordinates 
are most favourable, while the other end states give high 
energies and therefore contribute little (i.e. “dummy states”). 
For small s-values (undersampling situation), all end states 
contribute effectively to the forces, resulting in the global 
unphysical minimum.

The free-energy difference between two end states A and 
B can be calculated by employing the Zwanzig equation 
twice forming a path via the reference state R [9, 14, 15],

Replica‑exchange EDS (RE‑EDS)

The recently introduced RE-EDS method [19, 20] is a 
type of Hamiltonian replica exchange [28, 29] with 
the smoothness parameter s as the exchange dimension 
( 1 ≥ s > 0 ), which was inspired from constant pH sim-
ulations by Lee et al. [18, 30]. The approach is shown 

(3)

�k(t) = −
�VR(�;s,�

R)

��k
=

N�

i=1

e−�s(Vi(�)−E
R
i
)

∑N

j=1
e
−�s(Vj(�)−E

R
j
)

�
−
�Vi(�)

��k

�
.

(4)
�GBA = �GBR + �GRA

= −
1

�

�
ln⟨e−�(VB−VR)⟩R − ln⟨e−�(VA−VR)⟩R

�

(5)= −
1

�
ln

⟨e−�(VB−VR)⟩R
⟨e−�(VA−VR)⟩R

.

(a) Effect of s on VR (b) Effect of ER
i on VR

Fig. 2  Schematic illustration of the effect of the two types of EDS 
reference-state parameters. a The smoothing parameter s decreases 
the barriers between the end states. If s is too small, an “undersam-
pling” situation occurs with a global unphysical minimum. b The 
energy offsets �R provide equal weighting to all end states in the EDS 
reference state. The figure was generated with Ensembler [27]
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schematically in Fig. 3. RE-EDS does not require a sin-
gle (optimal) s-value. Instead, enhanced sampling is 
achieved by exchanging between the replicas with dif-
ferent smoothness levels. This simplifies the parameter 
choice problem and thus, the method can be applied to 
systems with more than two end states [19, 20].

For the pairwise exchanges between neighboring rep-
licas k and l, a Metropolis-Hastings criterion [31] is used 
[19, 29],

where HRk
 and HRl

 are the reference-state Hamiltonians of 
the respective replicas, �k and �l are the current coordinates 
of the replicas.

Replicas are placed between s = 1.0 and a lower 
bound of s, where the reference state is in undersam-
pling. The replicas with low s-values facilitate the tran-
sitions between the low-energy regions of the different 
end states. Especially for systems with slowly adapting 
environments (e.g. protein binding pockets), regions in 
s-space with very low acceptance probability can occur. 
Thus, to ensure sufficient exchanges between all pairs 
of replicas, a local variant of the round-trip time opti-
mization algorithm [32, 33] was developed to optimally 
place the replicas in s-space [20]. It was found that a 
single set of energy offsets can be used for all replicas 
[19]. However, it is important that these energy offsets 
are chosen well to avoid “leakage” effects, resulting in 
one or more end states not being properly sampled [19]. 
The final free-energy differences are estimated from the 
replica at s = 1.0 , which represents the physical minima 
of the end states.

(6)
pk,l =min

(
1, exp

[
−�((HR(�k;sl) + HR(�l;sk))

−(HR(�l;sl) + HR(�k;sk))
])
,

Fig. 3  Schematic illustration of 
RE-EDS with three harmonic 
oscillators as end states (A, B, 
and C). Each replica differs 
by the s-parameter, generating 
reference states with a different 
degree of smoothness. Sampling 
of each replica is denoted with 
orange dots. Exchanges between 
the replicas are indicated with 
green arrows. The replica graph 
shows three regions: a “physi-
cal” region where s is close to 
1, a transition region, and the 
“undersampling” region when s 
approaches zero. The figure was 
generated with Ensembler [27]

Fig. 4  The RE-EDS workflow can be split into four steps: (1) Input 
stage with energy offsets set to ER

i
= 0 and a set of s-parameters log-

arithmically distributed between 1 and 10−5 ; (2) Parameter explora-
tion to determine the lower bound for s, to obtain equilibrated coor-
dinates for each end state, and to estimate initial energy offsets with 
the PEOE scheme [19]; (3) Parameter optimization to improve the 
s-distribution with the N-LRTO algorithm [20] and the state sampling 
with energy offset rebalancing; (4) Production run and calculation of 
the free-energy differences
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Automatic parameter optimization

To facilitate the determination of the energy offsets and 
s-parameter distribution, we have extended and further 
automated the previous [20] RE-EDS workflow (Fig. 4).

The initial input for a system with N end states con-
sists of a prepared EDS system (i.e. topology, perturbation 
topology, initial coordinates, and distance restraints), a list 
of energy offsets of length N with ER

i
= 0; ∀ i ∈ [1, ...,N] , 

and a list of s-parameters, which are logarithmically dis-
tributed in the range si ∈ [1, 10−5] . Typically, we use 21 
initial s-values.

The parameter exploration consists of three substeps: (i) 
determining the lower bound for the s-distribution (newly 
introduced), (ii) obtaining optimized coordinates within 
the EDS set-up for each end state (newly introduced), and 
(iii) estimation of an initial set of energy offsets (as done 
previously in Ref. [19]).

To enable sampling of all end states at s = 1.0 , some 
replicas have to be in undersampling to facilitate transi-
tions. However, for efficiency reasons (and numerical sta-
bility) the number of replicas M in undersampling should 
be small and the lowest s-value should be as high as possi-
ble. From a short simulation with the initial s-distribution 
between [1, 10−5] , the highest smoothing parameter sMus

 at 
which undersampling still occurs is determined and used 
in the following as a lower bound for the s-distribution. 
The s-distribution for the next step is then defined by loga-
rithmically distributed replicas between s = 1.0 and the 
automatically determined lower bound.

Optimized coordinates for each end state in the EDS 
setup can be obtained from short parallel simulations, 
where one end state in turn is favoured by setting an arbi-
trarily large energy offset for this state. The optimized 
coordinates allow the user to start RE-EDS simulations 
from different end states and are needed for the subsequent 
parameter optimization.

In the last substep, the ER
i

 estimation, the previously 
developed parallel energy offset estimation (PEOE) [19] 
scheme is used to estimate the initial set of energy off-
sets. This is done based on a short simulation with the 
initial parameters. For each replica k in the undersampling 
region, the energy offsets are extracted using [19],

The energy offsets that were extracted in parallel for the k 
replicas are subsequently averaged and used as initial set of 
energy offsets. These energy offsets should provide a first 
solution that is close to the optimal choice of energy offsets, 
which leads to an optimal state sampling of all end states 
in the RE-EDS simulation. As the initial energy offsets are 

(7)ER
i
(new) = −

1

�
ln
⟨
e
−�
(
Vi(�)−VR(�;sk ,�

R(old))
)⟩

R(sk ,�
R(old))

.

obtained from the replicas in undersampling, they may not 
be exactly optimal and require fine-tuning in the next phase.

In the second step of the RE-EDS workflow, first the 
s-distribution is optimized and subsequently the energy 
offsets are fine tuned. The s-distribution is improved by 
minimizing the round-trip time � and increasing the num-
ber of round-trips with the multistate local round-trip time 
optimization (N-LRTO) algorithm [20]. The optimization 
is performed in an iterative manner with short simulations. 
This step is required as exchange bottlenecks between two 
replicas might occur leading to a very slow round trip time 
or to no round trips at all. In the N-LRTO algorithm, new 
replicas are inserted in each iteration by linear interpo-
lation in the s-regions with exchange bottlenecks, while 
the replica positions of the previous iteration are retained. 
Adding replicas theoretically increases the round-trip time 
due to a longer path between the top and bottom repli-
cas. However, the addition of intermediate replicas also 
increases the exchange probability between neighbor-
ing replicas, thus reducing the round-trip time. With the 
optimization algorithm, we aim to determine the balance 
between the length of the replica path and the likelihood 
of exchange between replicas for minimal round-trip time. 
The exchange bottlenecks are identified for each end state 
separately (i.e. multistate). The number of replicas added 
can be chosen by the user. The iteration is stopped when 
the average round-trip time �  converges. The N-LRTO var-
iant is needed for systems for which severe bottlenecks are 
observed with the initial logarithmic s-distribution (e.g. 
protein binding pockets). For systems with smaller per-
turbations, the global multistate variant (N-GRTO) [20] 
can be more efficient as this algorithm re-distributes the 
replicas in s-space according to the exchange statistics. In 
this study, we started with the same number of replicas as 
used for the PEOE scheme above and added four replica 
positions per iteration in the N-LRTO algorithm.

After optimizing the number of round trips and � , the 
distribution of the state sampling is improved. To reach the 
ideal situation that each end state is sampled to an equal 
amount, the initial energy offsets need to be fine tuned, 
while keeping the round trips approximately constant. 
For this, we introduce here the energy offset rebalancing 
scheme. To avoid overshooting, a correction factor is cal-
culated and applied iteratively,

where fmc
i

 is the current sampling fraction (or estimated 
probability) of an end state contributing to V

R
 , and fmc,ideal 

is the ideal sampling fraction (see “Analysis” section). To 

(8)�Ecorr
i

= −
1

�
ln

(
fmc
i

+ c

f
mc,ideal

i
+ c

)
,
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make the approach more robust, a pseudo count c is intro-
duced to avoid singularities with zero sampling, which is 
defined as,

with the intensity factor x. The default of the pseudo 
count was chosen to result in a maximal correction of 
�Ecorr

i
= 8.43  kJ   mol−1, corresponding to a minimum 

30-fold reduced sampling compared to the expected opti-
mal sampling.

After optimizing the RE-EDS parameters, the produc-
tion run is performed for a chosen length. The free-energy 
differences are subsequently calculated using the replica at 
s = 1.0 with Eq. (5).

Starting state mixing

The sampling in RE-EDS simulations can be further 
improved by using starting coordinates for the replicas cor-
responding to the different end states (i.e. replica 1 starts 
in a low-energy configuration for end state 1, replica 2 in a 
low-energy configuration for end state 2, etc.). This technical 
approach is called “starting state mixing” (SSM) in the fol-
lowing and is also used with Hamiltonian replica-exchange 
TI calculations (see e.g. [34, 35]). The optimized coordi-
nates obtained in the parameter exploration step can be used 
for SSM. We compare RE-EDS simulations with SSM and 
with a single set of starting coordinates (abbreviated as 1SS).

Analysis

Three types of metrics were used to quantify the sampling 
in RE-EDS simulations. The first metric determines for 
each end state i the sampling fraction where it is maximally 
contributing to the reference state, i.e. fmc

i
 . A maximally 

contributing state is defined as the end state with the lowest 
potential energy minus its energy offset in a frame. As can 
be seen in Eq. (3), maximally contributing end states have 
the largest impact on the reference-state sampling at a given 
time point.

Optimal sampling in a RE-EDS system is achieved when 
all end states are sampled as maximally contributing states 
to an equal extent at s = 1.0 , i.e.

The second metric is the estimated sampling fraction 
of “physical occurrence” of an end state i, i.e. f occur

i
 . As 

a result of phase-space overlap with the current maximal 
contributing end state, other end states in the EDS system 
might be sampled simultaneously. An end state is counted as 

(9)c =
fmc,ideal

x
,

(10)f
mc,ideal

i
=

1

N
, ∀ i ∈ {1, ...,N}

“occurred” when its potential energy is below the threshold 
Vi ≤ T

phys

i
 at a time point t. These thresholds are estimated 

during the second substep of the parameter exploration 
phase. If end states show no phase-space overlap, f occur

i
 will 

be (nearly) the same as fmc
i

.
Undersampling is detected with a third metric using the 

thresholds Tus
i

 . These thresholds are determined in the first 
substep of the parameter exploration phase from the simula-
tion with the lowest s-value. If all end states have a poten-
tial energy below their respective Vi − ER

i
≤ Tus

i
 , the current 

frame is characterized as undersampling [19].

Methods

Model system

To showcase the performance of RE-EDS, a system of five 
inhibitors (L1, L17, L19, L20 and L21) of checkpoint kinase 
1 (CHK1) taken from Ref. [23] was chosen (Fig. 5). The 
numbering of the compounds is according to Ref. [23]. The 
same system was studied in Ref. [24] as part of a series of 
scaffold hopping systems. Although the five ligands share 
a common substructure, they were considered to exemplify 
different types of core-hopping transformations (i.e. ring size 
change, ring opening/closing, ring extension) and R-group 
modifications [24].

For the protein, the GROMOS 54A7 force field [36] was 
used. For the ligands, topologies were generated using the 
parametrization by the ATB server [37] as an initial guess. 
The bonded terms were manually harmonized and adjusted 
to match the parameterization of similar functional groups in 
the GROMOS 54A7 force field. Partial charges were gener-
ated with our previous machine learning approach [38] ( � = 
4) and manually arranged into charge groups. The input files 
can be retrieved from: https:// github. com/ rinik erlab/ reeds/ 
tree/ main/ examp les/ syste ms.

System preparation

The crystal structure of CHK1 in complex with ligand L1 
(PDB ID:3U9N) was used as starting structure. The initial 
coordinates for ligands L17, L19, L20, L21 were generated 
with the ConstrainedEmbed() functionality in the 
RDKit [39], where the common substructure was kept fixed 
in the crystal conformation. The coordinates of each ligand 
and those of the protein were subsequently energy mini-
mized in vacuum using the steepest descent [40] approach 
implemented in the GROMOS software package [41].

A “dual topology” approach was used for the RE-EDS 
simulations, i.e. each ligand is present in the system sepa-
rately [17]. Thus, each end state comprises of one active 
ligand and N − 1 inactive (dummy) ligands. To avoid spatial 

https://github.com/rinikerlab/reeds/tree/main/examples/systems
https://github.com/rinikerlab/reeds/tree/main/examples/systems
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drifting of the dummy ligands, eight distance restraints per 
ligand pair were defined within the common substructure 
(Fig. 5) to connect all ligands in a ring with the help of 
the RestraintMaker program (https:// github. com/ rinik erlab/ 
restr aintm aker) (order: -L1-L17-L19-L20-L21-). The refer-
ence distance was set to 0.0 nm and the force constant to 
1000 kJ mol−1 nm−2 . The combined topology file was gen-
erated with the program prep_eds in the GROMOS++ 
[42] package. The EDS system was solvated in a cubic box 
of simple-point-charge (SPC) [43] water (resulting in 1’848 
solvent molecules for the ligands in water and 15,639 solvent 
molecules for the protein-ligands complex). An energy mini-
mization was carried out with the steepest descent algorithm 
[40], where all solute atoms were position restrained with a 
force constant of 25,000 kJ mol−1 nm−2.

Simulation details

All simulations were performed with the GROMOS soft-
ware package [41] (freely available on http:// www. gromos. 
net). The equilibrations and production runs were carried 
out under isothermal-isobaric (NPT) conditions using the 
leap-frog integration algorithm [44] and a time step of 2 fs. 
Bond lengths were constrained with SHAKE [45] using a 
tolerance of 10−4 . The nonbonded contributions were calcu-
lated with a twin-range scheme using a short-range cutoff of 

0.8 nm and a long-range cutoff of 1.4 nm. The electrostatic 
nonbonded contributions beyond the long-range cutoff were 
calculated with the reaction-field [46] approach and a dielec-
tric permittivity of 66.7 [47] for water.

The temperature was kept constant at 300 K using the 
weak coupling scheme [48] and a coupling time of 0.1 ps−1 . 
The pressure was kept at 1.031 bar (1 atm) with the same 
type of algorithm and a coupling time of 0.5 ps and an iso-
thermal compressibility of 4.575 × 10−4 (kJ mol−1 nm−3)−1 . 
Rotation and translation of the center of mass of the simula-
tion box were removed every 2 ps. Energies were written 
to file every 20 steps and coordinates every 5000 steps. In 
the RE-EDS simulations, replica exchanges was attempted 
every 20 steps.

RE‑EDS workflow

The new Python code to manage the RE-EDS workflow, 
including the analysis steps, can be retrieved from: https:// 
github. com/ rinik erlab/ reeds. The workflow starts with the 
energy-minimized coordinates of the EDS system (all N 
ligands plus environment, maximally contributing end state 
is L20) into the parameter exploration step, which is used as 
equilibration phase. A RE-EDS simulation of 0.2 ns length 
was performed with 21 logarithmically distributed replicas 
between s = 1.0 and 10−5 and all energy offsets set to zero. 

Fig. 5  (Top): 3D depiction of the five CHK1 inhibitors L1, L17, L19, L20, and L21 (numbering according to Ref. [23]). The selected locations 
of the distance restraints are indicated by the silver spheres. (Bottom): CHK1 protein in complex with the ligand bundle (PDB ID:3U9N)

https://github.com/rinikerlab/restraintmaker
https://github.com/rinikerlab/restraintmaker
http://www.gromos.net
http://www.gromos.net
https://github.com/rinikerlab/reeds
https://github.com/rinikerlab/reeds
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The thresholds Tus
i

 were estimated from replicas with very 
low s-values. Undersampling was observed when each end 
state occurred with a fraction f occur,us

i
≥ 0.75 during the 

simulation period. To be conservative, the lower bound for 
the following steps was set to the s-value two levels below 
the highest replica with undersampling.

To optimize the coordinates of the system for each end 
state, an EDS simulation of 2 ns length was performed 
for each end state i with s = 1.0 and ER

i
= 500 kJ mol−1 

while the energy offsets of all other end states were set to 
−500 kJ mol−1 . L20 was the initial maximally contributing 
end state in the starting configuration. The coordinates were 
considered to be optimized when the desired end state was 
constantly sampled as the maximally contributing state in 
the last 30% of the simulation.

To determine the energy offsets, a 1.5 ns RE-EDS simula-
tion was carried out with 12 logarithmically distributed rep-
licas for the ligands in water and 17 for the protein-ligands 
complex between s = 1.0 and the lower bound (determined 
above). The first 0.4 ns of the simulation were discarded as 
equilibration. This simulation was performed in two man-
ners: (i) using the final coordinates from the lower-bound 
determination as starting configuration for all replicas (1SS 
approach), or (ii) using the different optimized coordinates 
from the previous substep for the replicas in an alternating 
manner (SSM approach). For the PEOE [19] scheme, the 
following parameters were used: fraction f us

i
≥ 0.9 and the 

potential thresholds determined in the lower bound explora-
tion Tus

i
.

The iterative optimization of the s-distribution with the 
N-LRTO [20] algorithm was started with the energy off-
sets and the final coordinates of the previous substep. Four 
replicas were added per iteration. The simulation length of 
the first iteration was 0.5 ns, and subsequently increased by 
0.5 ns at each iteration until a maximum length of 1.5 ns 
was reached.

The iterative optimization of the fmc
i

 distribution was car-
ried out with the described scheme. The scheme used short 
0.5 ns simulations, and adjusted in each step the energy off-
sets ER with a pseudo-count intensity factor x = 30.

The optimization was considered converged here when all 
end states were sampled as maximally contributing states at 
s = 1.0 , the number of round trips per ns was above zero, 
and the improvement of the round-trip time was below 
𝜏∕nRT < 0.5 ns.

The production run with constant reference-state param-
eters was performed for 3.5 ns.

Simulation of single states

The input coordinates for the simulations of the individ-
ual end states were extracted from the RE-EDS starting 

coordinates and subsequently energy minimized. Next, a 
production run of 4 ns was performed.

Analysis

Free-energy differences were calculated with the program 
dfmult from the GROMOS++ [42] package. Statistical 
analysis and handling of the workflow steps are based on the 
Python packages pandas [49], Matplotlib [50], NumPy [51], 
SciPy [52], and PyGromosTools [53].

Results and discussion

The chosen model system of five inhibitors of CHK1 kinase 
exemplifies different core-hopping transformations (i.e. 
ring size change, ring opening/closing, ring extension) and 
R-group modifications [24], increasing the complexity com-
pared to the systems previously studied with RE-EDS. Fur-
thermore, the performance can be directly compared to the 
results obtained with FEP+ and OPLS3 in Ref. [24] as well 
as with QligFEP results in Ref. [13].

Parameter exploration and parameter optimization

The RE-EDS workflow was started by estimating the lower 
bound for the s-distribution. Using the above mentioned 
undersampling criterion (see “Methods” section), a lower 
bound of s = 0.01 was determined for the protein-ligands 
complex and s = 0.0056 for the ligands in water.

Optimized coordinates were obtained for all five ligands, 
as verified by comparing the potential-energy distribution 
from the EDS simulation with the one extracted from a 
standard MD simulation of the respective ligand (Fig. S1 in 
Supporting Information). From these same steps, the poten-
tial-energy thresholds for the occurrence sampling ( Tphys

i
 ) 

and undersampling ( Tus
i

 ) were determined.
The energy offsets �R were estimated from a short RE-

EDS simulation with the PEOE [19] scheme and are listed 
in Table 1. For s = 1.0 , the energy offsets should ideally be 
equal to the free energy of the corresponding state (i.e. 
�ER

ji
= �Gji ) such that the partition function of the reference 

state is the sum of the partition functions of the end states 
[15]. Therefore, the comparison between the relative esti-
mated energy offsets in water and in complex 
( ��ER

ji
= �ER

ji,complex
− �ER

ji,water
 ) and the relative binding free 

energy ��Gbind
ji

 can be used to (roughly) assess the quality 
of the estimated energy offsets. As shown in Fig. S2 in Sup-
porting Information, the energy offsets estimated from the 
SSM simulations are in better agreement with the experi-
mental relative binding free energies than those estimated 
from the 1SS simulations.
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The optimization of the s-distribution was performed 
with the N-LRTO [20] algorithm, thereby minimizing the 
average round-trip time �  in the replica graph. For the 
1SS approach in the complex, four optimization iterations 
were used. For the other systems, three iterations were 
used.

In the first iteration, the total number of observed round 
trips was very low or zero for all approaches. In the fol-
lowing iterations, this quantity increased, and the average 
round-trip time decreased for all simulations (Fig. 6). The 
number of round trips was generally smaller in the com-
plex than in water due to a more pronounced gap region 
[20]. Already after the second iteration, the round-trip 
time was reduced in all approaches. The improvement of 
the �  over the iterations can also be seen in Fig. S3 in 
Supporting Information. As can be seen in the third row 
of Fig. 6, the optimization algorithm increases the den-
sity of the replicas around s = 0.041 , where the major gap 
region lies.

The s-optimization was stopped after a sufficiently 
high number of round trips and low round-trip time was 
reached. This resulted in 20 replicas for the ligands in 
water after three s-optimization iterations. For the protein-
ligands complex, the fourth s-optimization iteration was 
chosen for the 1SS approach, and the third iteration for 
the SSM approach, resulting in 29 and 25 replicas, respec-
tively. The average round-trip time after convergence was 
� = 0.4 ± 0.2 ns for all simulations.

After the s-optimization, the energy offset rebalancing 
scheme was applied to improve the state sampling.

During the rebalancing steps, no further replicas were 
added to the s-distribution. It is essential for the success 
of the rebalancing scheme that round trips occur. There-
fore, the number of round trips and average round-trip time 
were monitored. In all systems, the number of round trips 
and �  remained relatively stable over the four rebalancing 
steps. For the RE-EDS 1SS approach in water, the number 
of round trips slightly decreased but never dropped to zero.

Across the optimization steps, also the sampling of the 
end states as maximally contributing states at s = 1.0 was 
monitored. During the s-optimization, some end states 
“vanish” and are no longer sampled as maximal contribut-
ing states. This leakage effect can occur when the initially 
estimated ER are not exactly optimal [19]. With energy offset 
rebalancing, the sampling of each end state can be recov-
ered, and the sampling distribution approaches the ideal 
case. After rebalancing, all end states showed a fmc

i
> 0 

and the mean absolute deviation of the sampling distribu-
tion from ideal decreased from 20–25% to approximately 
7–12% (Fig. S4 in Supporting Information).

Free‑energy calculation

After successfully optimizing the RE-EDS parameters, the 
production runs were performed for 3.5 ns.

Both in water and in complex, the potential-energy distri-
butions of the end states generally agree well with the cor-
responding distributions from the standard MD simulations 
of the single end states (Fig. 7). Only for the 1SS approach in 
the complex, a deviation can be seen for L17, with a slight 
shift to higher potential energies. This is due to insufficient 
sampling of L17 in this case (see below). The analysis of 
the maximally contributing end states at s = 1.0 shows that 
in water all end states were sampled close to the ideal equal 
distribution (Fig. S5 in Supporting Information). In the sim-
ulation of the protein-ligands complex, there are still differ-
ences in sampling. Especially with the 1SS approach, L19 
is generally sampled too often, while L17 is not sampled 
enough. The situation is improved with the SSM approach. 
Comparing f occur

i
 and fmc

i
 in Fig. S5 indicates that the end 

states in the CHK1 system are clearly separated (i.e. no 
phase-space overlap).

From the replica at s = 1.0 , the free-energy differences 
were calculated using Eq. (5) and the resulting ��Gbind

ji
 

were compared with the experimental results taken from 

Table 1  Energy offsets �� 
estimated from a short RE-EDS 
simulation using the PEOE [19] 
scheme

The errors indicate the standard deviation over the different replicas in undersampling. All energy offsets 
were calculated relative to ligand L1. The starting coordinates were selected following the 1SS or the SSM 
approach (see “Theory” and “Methods” sections)

Ligand Water Complex

RE-EDS 1SS [kJ mol−1] RE-EDS SSM [kJ mol−1] RE-EDS 1SS [kJ mol−1] RE-EDS 
SSM 
[kJ mol−1]

L1 0.0 0.0 0.0 0.0
L17 11.07 ± 7.61 17.81 ± 0.69 20.03 ± 5.04 18.19 ± 3.43

L19 −9.38 ± 6.85 −12.37 ± 5.23 −2.09 ± 1.56 2.4 ± 1.56

L20 −53.15 ± 2.95 −56.01 ± 13.67 −58.73 ± 4.87 −52.2 ± 2.6

L21 −76.75 ± 5.79 −69.15 ± 3.74 −77.29 ± 3.12 −77.9 ± 3.4
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Ref. [23]. The results are shown graphically in Fig. 8 and 
numerically in Table 2. The individual free-energy differ-
ences are given in Table S3 in the Supporting Information. 
The RMSE with RE-EDS 1SS is 4.8 kJ mol−1 and the 
MAE is 3.9 ± 2.8 kJ mol−1 . The main deviations stem from 
ligand L17 in the RE-EDS 1SS approach, which can be 
explained by the insufficient sampling of this ligand in the 
complex (see Figs. 7 and S5 in Supporting Information).

The performance was substantially improved using 
the SSM approach with RE-EDS, giving an RMSE of 
3.3  kJ  mol−1 and an MAE of 2.8 ± 1.7  kJ  mol−1 . Only 
two values (L21–L11) and (L21–L19) deviate more than 
4.184 kJ mol−1 (i.e. 1 kcal mol−1 ) from experiment. The 
Spearman correlation coefficient for RE-EDS 1SS is 
r
Spearman

= −0.01 and for RE-EDS SSM r
Spearman

= 0.69.
Next, we assessed the convergence of the �Gji values as 

a function of simulation time (Fig. S6 in Supporting Infor-
mation). For the RE-EDS 1SS approach, all free-energy 

Fig. 6  Optimization steps of the s-distribution with the N-LRTO [20] 
algorithm followed by the energy offset rebalancing scheme (start 
indicated by the red horizontal line). The measured quality criteria 
were the number of round trips (1. row), the average round-trip time 

� (2. row), the placement of the replicas in s-space (3. row), and the 
sampling fractions of maximally contributing states fmc

i
 (4. row). The 

light colored bars of fmc

i
 indicate s-optimization iterations, whereas 

the fully colored bars indicate energy offset rebalancing steps

Fig. 7  Comparison of the Boltzmann reweighted potential-energy 
distributions obtained from standard MD simulations of a given end 
state (black) and from the RE-EDS production runs with the 1SS 
(green) and SSM (turquoise, dashed) approaches
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differences appeared converged after 2.5  ns in water 
and after 2.7 ns in the complex. For the RE-EDS SSM 
approach, convergence was observed after 2.5 ns in water 
and after 2.9 ns in the complex.

By applying the RE-EDS methodology to the same sys-
tem of five CHK1 inhibitors as studied by Wang et al. [24] 
and later on also Jespers et al. [13], a direct comparison with 
FEP+ and QligFEP is possible (Table 2). Note that the qual-
ity metrics were calculated over all possible pairs of ligands 
and in both directions, not only those directly calculated 
by FEP+ and QligFEP. For FEP+, we obtained an RMSE 
of 2.4 kJ mol−1 and an MAE of 1.8 ± 1.2 kJ mol−1 with a 
Spearman correlation coefficient of r

Spearman
= 0.67 . Includ-

ing cycle closure correction (CC) [24] reduced the RMSE to 
2.1 kJ mol−1 and the MAE to 1.9 ± 1.0 kJ mol−1 . The Spear-
man correlation coefficient increased to r

Spearman
= 0.73 . 

Jespers et al. [13] reported free-energy differences with 
QligFEP as an average over ten independent replicas, each 
with significantly less simulation time per �-window than 
in Ref. [24]. For QligFEP, an RMSE of 2.3 kJ mol−1 , an 

MAE of 2.0 ± 1.2 kJ mol−1 , and a Spearman coefficient of 
r
Spearman

= 0.61 was obtained.
Overall, the performance of RE-EDS SSM is compara-

ble with the pairwise methods. The results with FEP+ CC 
and QligFEP showed a slightly higher accuracy compared 
to experiment, likely due to the different force fields used. 
The Spearman correlation coefficient is comparable with the 
other methods for the RE-EDS SSM approach.

In terms of computational cost, the RE-EDS approach 
(with 3.5 ns per replica) resulted in about a quarter of the 
total simulation time (in ns) than reported for the FEP+ 
calculations in Ref. [24] (Table 2). Overall, the QligFEP 
approach is the one with the lowest simulation time con-
sumption. A major advantage of the simultaneous simulation 
of multiple ligands in a single RE-EDS simulation is that all 
N(N − 1)∕2 transformations are sampled directly, leading 
to low statistical errors and removing the need for a state 
graph. This advantage increases with increasing number of 
ligands. The current workflow of RE-EDS uses a relatively 
large amount of simulation time for parameter optimization. 
Future work will focus on further optimizing the workflow 
to reduce the pre-processing time.

From the calculated relative binding free energies, 
�Gbind

i
 can be obtained by using one experimental value as 

anchor point. This allows us to generate a ranking of the five 
ligands. To avoid any bias from the selected experimental 
anchor point, all possibilities were calculated and the result-
ing values averaged (Table 3). While the RMSE is generally 
low for all approaches (< 1 kcal mol−1 = 4.184 kJ mol−1 ), the 
ranking of the ligands as measured by r

Spearman
 is not very 

good. This observation is not uncommon for ligand series 
with small differences in binding free energy [11, 55]. Note 
that the uncertainties of the individual values have increased 
compared to the relative binding free energies due to the 
anchoring and averaging procedure.

Conclusion

This study reports the recent developments for the multi-
state free-energy method RE-EDS, which omits the defini-
tion of alchemical transition paths. The automated workflow 
for RE-EDS was improved in robustness, and was applied 
to estimate the relative binding free energies of five CHK1 
inhibitors containing typical core-hopping transforma-
tions. This system was investigated previously with FEP+ 
and QligFEP, allowing for a direct comparison of RE-EDS 
with state-of-the-art pairwise free-energy methods. Using 
different starting configurations representing all end states 
(SSM approach) in the parameter optimization of the RE-
EDS workflow improved the sampling, convergence, and 
the accuracy of the resulting free-energy differences. The 

Fig. 8  Free-energy differences estimated from the production run of 
3.5 ns length. (Top): Comparison between the experimental and cal-
culated ��Gbind

ji
 using RE-EDS 1SS and RE-EDS SSM. The results 

were calculated with all possible pairwise transformations (forward 
and backward). (Bottom): Graphical representation of the ��Gbind

ji
 

results with structures, inspired by the one in Ref. [24]
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performance of RE-EDS SSM was found to be comparable 
with FEP+ and QligFEP, and shows that RE-EDS with a 
“dual topology” approach can be readily applied to chal-
lenging ligand transformations like ring size change, ring 
opening/closing, and ring extension.

In terms of computational efficiency, the total production 
run time with RE-EDS (3.5 ns per replica) was about a quar-
ter of that reported for FEP+ with this system. As multiple 

ligands are simulated simultaneously in a single RE-EDS 
simulation, this sampling enhancement will increase with 
increasing number of ligands. However, the pre-processing 
phase in the RE-EDS workflow currently uses a relatively 
large amount of simulation time. Making these steps more 
efficient will be addressed in future work. In addition, fur-
ther automatization of the dual topology approach with dis-
tance restraints is ongoing.

Table 2  Relative binding 
free energies ��Gbind

ji
 from 

experiment and calculated with 
the RE-EDS 1SS and RE-EDS 
SSM approaches

For comparison, the results for FEP+ with and without cycle closure (CC) correction taken from Ref. [24] 
and the results for QligFEP taken from Ref. [13] are listed. The free-energy differences of directly simu-
lated paths were used to infer not directly simulated free-energy differences (marked in bold). If multiple 
indirect paths were possible, their average was used. The errors for QligFEP were determined in Ref. [13] 
by calculating the standard deviation over ten replicas. For FEP+, the error of the results was taken from 
the used BAR [54] method and the FEP+ CC errors were obtained from the cycle closure analysis. For the 
RE-EDS approaches, the reported error is based on the statistical uncertainties of the �Genv

ji
 values esti-

mated using Gaussian error approximation [15]. The uncertainty estimate of the RMSE was obtained by a 
100-fold bootstrapping approach

Ligands Exp. [23] FEP+ [24] FEP+ CC [24] QligFEP [13] RE-EDS 1SS RE-EDS SSM

i j [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1]

L17 L1 0.1 − 3.6 ± 0.4 − 2.9 ± 1.0 − 1.6 ± 1.7 5.1 ± 0.8 3.0 ± 2.0
L19 L1 − 4.8 − 3.9 ± 0.3 − 4.0 ± 0.6 − 1.7 ± 2.0 3.0 ± 1.0 − 5.0 ± 0.1
L20 L1 − 2.0 − 2.5 ± 0.1 − 3.1 ± 1.0 − 1.3 ± 1.3 0.2 ± 0.9 0.5 ± 0.1
L21 L1 − 2.3 − 3.4 ± 0.7 − 3.2 ± 1.3 − 0.1 ± 3.5 − 1.4 ± 0.8 3.2 ± 0.1
L19 L17 − 4.9 − 1.4 ± 0.3 − 1.1 ± 1.0 0.1 ± 2.6 − 2.1 ± 0.6 − 7.9 ± 1.9
L20 L17 − 2.1 0.3 ± 0.4 − 0.1 ± 0.8 − 1.3 ± 2.3 − 4.9 ± 0.1 − 2.5 ± 1.9
L21 L17 − 2.4 − 1.1 ± 0.4 − 0.9 ± 0.9 0.7 ± 2.6 − 6.5 ± 0.1 0.2 ± 1.9
L20 L19 2.8 0.8 ± 0.6 0.1 ± 1.3 − 0.4 ± 3.7 − 2.7 ± 0.6 5.4 ± 0.1
L21 L19 2.5 − 0.1 ± 0.6 0.6 ± 0.1 0.6 ± 4.9 − 4.4 ± 0.6 8.2 ± 0.1
L21 L20 − 0.3 − 0.3 ± 0.8 − 0.6 ± 0.8 0.6 ± 1.1 − 1.6 ± 0.1 − 2.7 ± 0.1
RMSE 2.4 ± 0.3 2.1 ± 0.2 2.3 ± 0.38 4.8 ± 0.6 3.3 ± 0.3
MAE 1.8 ± 1.2 1.9 ± 1.0 2.0 ± 1.2 3.9 ± 2.8 2.8 ± 1.7
r
Spearman

0.67 0.73 0.61 − 0.01 0.69
t
simulation

[ns] 640 640 51 171.5 157.5

Table 3  Absolute binding free 
energies �Gbind

i
 and ranking of 

the ligands derived from the 
relative binding free energies

The values were calculated from the relative binding free energies using an experimental binding free 
energy as anchor point, and then averaged over the five possibilities. The errors are standard deviations 
over the possible outcomes. For comparison, the results for FEP+ with and without cycle closure (CC) 
correction taken from Ref. [24] and the results for QligFEP taken from Ref. [13] are shown (calculated 
with the same procedure). The uncertainty estimate of the RMSE was obtained by a 100-fold bootstrapping 
approach

Ligands Exp. [23] FEP+ [24] FEP+ CC [24] QligFEP [13] RE-EDS 1SS RE-EDS SSM
Molecule [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1] [kJ mol−1]

L1 − 40.7 − 41.7 ± 1.7 − 41.7 ± 0.9 − 38.5 ± 1.5 − 40.0 ± 3.4 − 38.0 ± 2.0
L17 − 40.8 − 38.0 ± 1.0 − 38.2 ± 1.1 − 38.6 ± 1.3 − 33.7 ± 1.3 − 41.7 ± 2.3
L19 − 35.9 − 38.1 ± 0.9 − 38.3 ± 1.8 − 38.3 ± 1.0 − 37.6 ± 3.3 − 33.0 ± 2.0
L20 − 38.6 − 38.6 ± 1.6 − 38.3 ± 1.4 − 39.2 ± 1.7 − 40.4 ± 3.3 − 39.1 ± 2.3
L21 − 38.4 − 37.7 ± 1.4 − 37.8 ± 1.3 − 39.4 ± 1.9 − 42.4 ± 2.9 − 42.5 ± 1.4
RMSE 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 3.8 ± 1.3 2.6 ± 0.6
MAE 1.3 ± 1.0 1.4 ± 0.9 1.4 ± 0.9 3.0 ± 2.3 2.2 ± 1.6
r
Spearman

0.20 0.10 − 0.21 − 0.40 0.30
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Acknowledgements  The authors thank David F. Hahn and Dominik 
Sidler for helpful discussions about the methodology and Kay Schaller 
for the help on the project and the code. The authors gratefully 
acknowledge financial support by the Swiss National Science Founda-
tion (Grant Number 200021-178762).

Funding Open access funding provided by Swiss Federal Institute of 
Technology Zurich.

Data availability The Python code for the RE-EDS workflow is pro-
vided on Github https:// github. com/ rinik erlab/ reeds and can be used 
with the current version of GROMOS, freely available from http:// 
www. gromos. net. The input files for the simulations can be retrieved 
from https:// github. com/ rinik erlab/ reeds/ tree/ main/ examp les/ syste ms.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Cournia Z, Allen B, Sherman W (2017) Relative binding free 
energy calculations in drug discovery: recent advances and 
practical considerations. J Chem Inf Model 57:2911

 2. Armacost KA, Riniker S, Cournia Z (2020) Novel directions in 
free energy methods and applications. J Chem Inf Model 60:1

 3. Cournia Z, Allen BK, Beuming T, Pearlman DA, Radak BK, 
Sherman W (2020) Rigorous free energy simulations in virtual 
screening. J Chem Inf Model

 4. Chodera JD, Mobley DL (2013) Entropy–enthalpy compensa-
tion: role and ramifications in biomolecular ligand recognition 
and design. Ann Rev Biophys 42:121

 5. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2016) 
Accurate calculation of the absolute free energy of binding for 
drug molecules. Chem Sci 7:207

 6. Jorgensen WL, Buckner JK, Boudon S, Tirado-Rives J (1988) 
Efficient computation of absolute free energies of binding by 
computer simulations. Application to the methane dimer in 
water. J Chem Phys 89(6):3742

 7. Merz KM (1991) Carbon dioxide binding to human carbonic 
anhydrase II. J Am Chem Soc 113:406

 8. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J 
Chem Phys 3:300

 9. Zwanzig RW (1954) High-temperature equation of state by a 
pertubation method. I. Nonpolar gases. J Chem Phys 22:1420

 10. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM, Jaber 
VR, Lim NM, Mobley DL (2013) Lead optimization mapper: 
automating free energy calculations for lead optimization. J 
Comput Aided Mol Des 27:755

 11. ...Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan 
D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, 
Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, 
Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, 
Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner 
RA, Abel R (2015) Accurate and reliable prediction of relative 
ligand binding potency in prospective drug discovery by way 
of a modern free-energy calculation protocol and force field. J 
Am Chem Soc 137:2695

 12. Yang Q, Burchett W, Steeno GS, Liu S, Yang M, Mobley DL, 
Hou X (2020) Optimal designs for pairwise calculation: an 
application to free energy perturbation in minimizing predic-
tion variability. J Comput Chem 41:247

 13. Jespers W, Esguerra M, Åqvist J, Gutiérrez-De-Terán H (2019) 
Qligfep: an automated workflow for small molecule free energy 
calculations in Q. J Cheminf 11:26

 14. Christ CD, van Gunsteren WF (2007) Enveloping distribution 
sampling: a method to calculate free energy differences from a 
single simulation. J Chem Phys 126:184110

 15. Christ CD, van Gunsteren WF (2008) Multiple free energies 
from a single simulation: extending enveloping distribution 
sampling to nonoverlapping phase-space distributions. J Chem 
Phys 128:174112

 16. Christ CD, van Gunsteren WF (2009) Simple, efficient, and 
reliable computation of multiple free energy differences from 
a single simulation: a reference Hamiltonian parameter update 
scheme for enveloping distribution sampling (EDS). J Chem 
Theory Comput 5(2):276

 17. Riniker S, Christ CD, Hansen N, Mark AE, Nair PC, van Gun-
steren WF (2011) Comparison of enveloping distribution sam-
pling and thermodynamic integration to calculate binding free 
energies of phenylethanolamine N-methyltransferase inhibitors. 
J Chem Phys 135:24105

 18. Lee J, Miller BT, Damjanović A, Brooks BR (2014) Constant 
pH molecular dynamics in explicit solvent with enveloping dis-
tribution sampling and Hamiltonian exchange. J Chem Theory 
Comput 10:2738

 19. Sidler D, Schwaninger A, Riniker S (2016) Replica exchange 
enveloping distribution sampling (RE-EDS): a robust method to 
estimate multiple free-energy differences from a single simula-
tion. J Chem Phys 145:154114

 20. Sidler D, Cristòfol-Clough M, Riniker S (2017) Efficient round-
trip time optimization for replica-exchange enveloping distribu-
tion sampling (RE-EDS). J Chem Theory Comput 13:3020

 21. Perthold JW, Oostenbrink C (2018) Accelerated enveloping dis-
tribution sampling: enabling sampling of multiple end states 
while preserving local energy minima. J Phys Chem B 122:5030

 22. Perthold JW, Petrov D, Oostenbrink C (2020) Toward automated 
free energy calculation with accelerated enveloping distribution 
sampling (A-EDS). J Chem Inf Model 60:5395

 23. Huang X, Cheng CC, Fischmann TO, Duca JS, Yang X, Rich-
ards M, Shipps GW (2012) Discovery of a novel series of CHK1 
kinase inhibitors with a distinctive hinge binding mode. ACS 
Med Chem Lett 3:123

 24. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider 
D, Beachy M, Friesner RA, Abel R (2017) Accurate modeling 
of scaffold hopping transformations in drug discovery. J Chem 
Theory Comput 13:42

 25. König G, Glaser N, Schroeder B, Hünenberger PH, Riniker S 
(2020) An alternative to conventional �-intermediate states in 
alchemical free energy calculations: �-enveloping distribution 
sampling. J Chem Inf Model 60:5407

 26. Hansen N, Dolenc J, Knecht M, Riniker S, van Gunsteren WF 
(2012) Assessment of enveloping distribution sampling to 

https://doi.org/10.1007/s10822-021-00436-z
https://github.com/rinikerlab/reeds
http://www.gromos.net
http://www.gromos.net
https://github.com/rinikerlab/reeds/tree/main/examples/systems
http://creativecommons.org/licenses/by/4.0/


130 Journal of Computer-Aided Molecular Design (2022) 36:117–130

1 3

calculate relative free enthalpies of binding for eight netropsin-
DNA duplex complexes in aqueous solution. J Comput Chem 
33:640

 27. Ries B, Linker SM, Hahn DF, König G, Riniker S (2021) Ensem-
bler: a simple package for fast prototyping and teaching molecular 
simulations. J Chem Inf Model 61:560

 28. Hansmann UHE (1997) Parallel tempering algorithm for confor-
mational studies of biological molecules. Chem Phys Lett 281:140

 29. Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-
exchange method for free-energy calculations. J Chem Phys 
113:6042

 30. Lee J, Miller BT, Damjanović A, Brooks BR (2015) Enhancing 
constant-pH simulation in explicit solvent with a two-dimensional 
replica exchange method. J Chem Theory Comput 11:2560

 31. Hastings WK (1970) Monte Carlo sampling methods using 
Markov chains and their applications. Biometrika 57:97

 32. Katzgraber HG, Trebst S, Huse DA, Troyer M (2006) Feedback-
optimized parallel tempering Monte Carlo. J Stat Mech P03018

 33. Nadler W, Meinke JH, Hansmann UH (2008) Folding proteins by 
first-passage-times-optimized replica. Exch Phys Rev 8:061905

 34. Graf MMH, Maurer M, Oostenbrink C (2016) Free-energy calcu-
lations of residue mutations in a tripeptide using various methods 
to overcome inefficient sampling. J Comp Chem 37:2597

 35. Hahn DF, König G, Hünenberger PH (2020) Overcoming orthogo-
nal barriers in Alchemical free energy calculations: on the rela-
tive merits of �-Variations, �-extrapolations, and biasing. J Chem 
Theory Comput 16:1630

 36. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, 
Mark AE, van Gunsteren WF (2011) Definition and testing of the 
GROMOS force-field versions: 54A7 and 54B7. Eur Biophys J 
40:843

 37. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oos-
tenbrink C, Mark AE (2011) An automated force field topology 
builder (ATB) and repository: version 1.0. J Chem Theory Com-
put 7:4026

 38. Bleiziffer P, Schaller K, Riniker S (2018) Machine learning of 
partial charges derived from high-quality quantum-mechanical 
calculations. J Chem Inf Model 58:579

 39. RDKit: Cheminformatics and machine learning software (2021). 
http:// www. rdkit. org. Accessed March 2021

 40. Ruder S (2016) An overview of gradient descent optimization 
algorithms. arXiv preprint. arXiv: 1609. 04747

 41. Schmid N, Christ CD, Christen M, Eichenberger AP, van Gun-
steren WF (2012) Architecture, implementation and paralleliza-
tion of the GROMOS software for biomolecular simulation. Comp 
Phys Commun 183:890

 42. Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, 
Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D, van Gun-
steren WF (2011) The GROMOS++ software for the analysis 
of biomolecular simulation trajectories. J Chem Theory Comput 
7:3379

 43. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J 
(1981) Interaction models for water in relation to protein hydra-
tion. Interaction models for water in relation to protein hydration 
(Reidel, 1981), pp 331–342

 44. Hockney RW (1970) The potential calculation and some applica-
tions. Methods Comput Phys 136–210

 45. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical inte-
gration of the Cartesian equations of motion of a system with 

constraints: molecular dynamics of n-alkanes. J Comput Phys 
23:327

 46. Tironi I, Sperb R, Smith PE, van Gunsteren WF (1995) A general-
ized reaction field method for molecular dynamics simulations. J 
Chem Phys 102:5451

 47. Glättli A, Daura X, van Gunsteren WF (2002) Derivation of an 
improved simple point charge model for liquid water: SPC/A and 
SPC/L. J Chem Phys 116:9811

 48. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak 
JR (1984) Molecular dynamics with coupling to an external bath. 
J Chem Phys 81:3684

 49. McKinney W (2010) Data structures for statistical computing in 
Python. In: Proceedings of the 9th Python in Science Conference 
445, 51

 50. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput 
Sci Eng 9:99

 51. Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy 
array: a structure for efficient numerical computation. Comput Sci 
Eng 13:22

 52. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, 
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, 
van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, 
Nelson AR, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng 
Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, 
Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro 
AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Bardelli AP, 
Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem 
A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, 
Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, 
Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, 
Ingold GL, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, 
Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, 
Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, 
Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma 
M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, 
Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, 
Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert 
S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, 
Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss 
T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y (2020) SciPy 
1.0: fundamental algorithms for scientific computing in Python. 
Nat Methods 17:261

 53. Ries B, Lehner MT (2021) rinikerlab/pygromostools: Pygromo-
stools\_v1 (2021). https:// doi. org/ 10. 5281/ zenodo. 46217 10

 54. Bennett CH (1976) Efficient estimation of free energy differences 
from Monte Carlo data. J Comput Phys 22:245

 55. Schindler CEM, Baumann H, Blum A, Böse D, Buchstaller HP, 
Burgdorf L, Cappel D, Chekler E, Czodrowski P, Dorsch D, 
Eguida MKI, Follows B, Fuchs T, Grädler U, Gunera J, Johnson 
T, Lebrun CJ, Karra S, Klein M, Knehans T, Koetzner L, Krier M, 
Leiendecker M, Leuthner B, Li L, Mochalkin I, Musil D, Neagu 
C, Rippmann F, Schiemann K, Schulz R, Steinbrecher T, Tanzer 
EM, Lopez AU, Follis AV, Wegener A, Kuhn D (2020) Large-
scale assessment of binding free energy calculations in active drug 
discovery projects. J Chem Inf Model 60:5457

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.rdkit.org
http://arxiv.org/abs/1609.04747
https://doi.org/10.5281/zenodo.4621710

