Multi-messenger characterization of Mrk501 during historically low X-ray and gamma-ray activity

Conference Paper

Author(s): Multi-wavelength Collaborators; MAGIC Collaboration; Fermi-LAT Collaboration; Heckmann, Lea; Paneque, David; Gasparyan, Sargis; Cerruti, Matteo; Sahakyan, Narek; Arbet Engels, Axel; Biland, Adrian; et al.

Publication date: 2022

Permanent link: https://doi.org/10.3929/ethz-b-000524296

Rights / license: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Multi-messenger characterization of Mrk501 during historically low X-ray and gamma-ray activity

L. Heckmann, D. Paneque, S. Gasparyan, M. Cerruti, N. Sahakyan and A. Arbet-Engels on behalf of the Multi-wavelength collaborators and the MAGIC and Fermi-LAT Collaboration

Max-Planck-Institut für Physik, D-80805 München, Germany
ICRANet-Armenia, Marshall Baghramian Avenue 24a, Yerevan 0019, Armenia
Institut de Ciències del Cosmos (ICCCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona, Spain
ETH Zürich, CH-8093 Zürich, Switzerland
E-mail: heckmann@mpp.mpg.de

Blazars, together with other active galactic nuclei, are the most luminous persistent sources in our universe; and therefore a prime candidate for very-high-energy (>0.2 TeV, VHE) gamma-ray observations. For the two MAGIC telescopes, the Mrk501 galaxy is among the brightest observed blazars due to its proximity.

We report a multi-wavelength and multi-messenger study of Mrk501 with data from 2017 to 2020, when Mrk501 showed a VHE flux typically below 10% that of the Crab Nebula. During this time, we performed three long observations with NuSTAR, which characterized the hard X-ray emission during three different low-activity flux levels. This Mrk501 dataset provided the unprecedented opportunity to study multi-wavelength variability and correlations with sensitive instruments during historically low X-ray and VHE gamma-ray emission (below 5% of the Crab Nebula flux in the VHE range), which could be considered as the baseline emission of Mrk501. We complemented the broadband spectral energy distributions (SED) of the identified historically low X-ray and VHE gamma-ray flux with data published by IceCube, in order to evaluate the potential existence of a hadronic component that is stable (or slowly variable), and less visible than the leptonic component that may dominate the emission during typical and flaring activity. In this contribution, we will also describe the evolution of the broadband SED comparing different theoretical scenarios.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany
Due to its brightness Mrk501 can be studied in detail during both flaring and quiescent activity. To further improve our understanding of its behavior regular monitoring campaigns are organized each year including instruments ranging from radio to VHE. In this contribution, we present the multi-wavelength results of this monitoring campaign for a period of four years lasting from 2017 to 2020. The data set includes data from MAGIC, Fermi-LAT, NuSTAR and the Neil Gehrels Swift observatory alongside different optical R-band and radio results.

Both in the VHE as well as the X-ray energy range the source showed a historically low activity from mid-2017 to mid-2019. This is quantified by a constant flux hypothesis that is successfully applied to the MAGIC data of the identified low state period. An average flux of around 5% of the Crab Nebula flux above 0.2 TeV (Crab unit) fits the flux state of this period while the typical flux level of Mrk501 is around 30% that of the Crab unit [2]. In addition, the long-term X-ray lightcurve displayed on the XRT monitoring webpage\(^1\) [1] shows extremely low activity during this time interval in comparison to the overall behavior since 2005. Furthermore, three long exposure NuSTAR observations were conducted shortly before and during the low-state period.

This extensive data set is very well suited for investigating the multi-wavelength behavior around the low state including both variability and correlation studies alongside spectral studies. For the low state in particular a very detailed spectral evaluation is considered since it could be interpreted as the baseline emission of Mrk501. This baseline emission could be a stable and always present component of the blazar emission that is usually outshone by more variable and brighter components.

A very precise SED can be obtained by combining the monitoring data of this two year low activity data set with the NuSTAR observation conducted on the 20\(^{th}\) of April 2018. We modeled the low-state SED using different physical scenarios such as standard one-zone synchrotron self Compton scenarios [see e.g., 3, 4] applied by using two independent frameworks: a modified naima [6] framework and the public jetset framework\(^2\) [see 7–10]. Additionally, a standard hadronic scenario was investigated using the numerical code described in [11].

Moreover, the earlier two of the NuSTAR observations conducted around one and two months before the start of the low activity allow us to combine the multi-wavelength data with two additional comprehensive broadband SEDs. This allows us to investigate the evolution of the source before the low state. All three SEDs as well as earlier published data can be used to test our hypothesis of a stable baseline region with a more active zone dominating the blazar emission.

This first characterization of the low activity of Mrk501 suggests promising results. The baseline emission seems to be explicable both by standard leptonic as well as hadronic scenarios, which are compatible with the expected neutrino flux from ten years of IceCube data [5]. Furthermore, the hypothesis of this baseline emission being a constant component of the blazar emission holds under the first test. More detailed spectral studies together with variability and correlation analysis will be presented to further support the assumptions of this contribution. This could help to disentangle

\(^1\)https://www.swift.psu.edu/monitoring/source.php?source=Mrk501
\(^2\)https://github.com/andreatramacere/jetset/tree/1.2.0rc7, dev branch
the complex behavior of not only MrkUP1 but also a broader sample of blazars.

Acknowledgments

We acknowledge the support from the agencies and organizations listed here: https://magic.mpp.mpg.de/acknowledgments_ICRC2/zero.alt321

References

The MAGIC Collaboration

PoS(ICRC2021)844

MWL characterization - Mrk501 historically low activity
L. Heckmann

1 Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
2 Università di Udine and INFN Trieste, I-33100 Udine, Italy
3 National Institute for Astrophysics (INAF), I-00136 Rome, Italy
4 ETH Zürich, CH-8093 Zürich, Switzerland
5 Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, Japan
6 Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, 277-8522 Chiba, Japan
7 Technische Universität Dortmund, D-44221 Dortmund, Germany
8 Croatian MAGIC Group: University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia
9 IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
10 Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brazil
11 Università di Padova and INFN, I-35131 Padova, Italy
12 University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland
13 Università di Siena and INFN Pisa, I-53100 Siena, Italy
14 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
15 Max-Planck-Institut für Physik, D-80805 München, Germany
16 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain
17 Università di Pisa and INFN Pisa, I-56126 Pisa, Italy
18 Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, Spain
19 Armenian MAGIC Group: Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia
20 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
21 INFN MAGIC Group: INFN Sezione di Torino and Università degli Studi di Torino, I-10125 Torino, Italy
22 INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, I-70125 Bari, Italy
23 Croatian MAGIC Group: University of Rijeka, Department of Physics, 51000 Rijeka, Croatia
24 Universität Würzburg, D-97074 Würzburg, Germany
25 Finnish MAGIC Group: Finnish Centre for Astronomy with ESO, University of Turku, FI-20014 Turku, Finland
26 Departamento de Física y CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
27 Japanese MAGIC Group: Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526
28 Hiroshima University, Faculty of Engineering, Mechanical Engineering and Naval Architecture (FESB), 21000 Split, Croatia
29 Croatian MAGIC Group: Josip Juraj Strossmayer University of Osijek, Department of Physics, 31000 Osijek, Croatia
30 Japanese MAGIC Group: Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
31 Japanese MAGIC Group: Department of Physics, Tokai University, Hiratsuka, 259-1292 Kanagawa, Japan
32 Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India
33 Institute for Nuclear Research and Reactor, Nuclear and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
34 Japanese MAGIC Group: Department of Physics, Yamagata University, Yamagata 990-8560, Japan
35 Finnish MAGIC Group: Astronomy Research Unit, University of Oulu, FI-90014 Oulu, Finland
36 Croatian MAGIC Group: Rudjer Bošković Institute, 10000 Zagreb, Croatia
37 INFN MAGIC Group: INFN Sezione di Perugia, I-06123 Perugia, Italy
38 INFN MAGIC Group: INFN Sezione di Padova, I-35131 Padova, Italy
39 INFN MAGIC Group: INFN Sezione di Torino, I-10125 Torino, Italy
40 Indian MAGIC Group: University of Hyderabad, Hyderabad, Telangana, India
41 INFN MAGIC Group: INFN Sezione di Bologna, I-40127 Bologna, Italy
42 INFN MAGIC Group: INFN Sezione di Pisa, I-56127 Pisa, Italy
43 INFN MAGIC Group: INFN Sezione di Roma, I-00133 Roma, Italy
44 INFN MAGIC Group: INFN Sezione di Siena, I-53100 Siena, Italy
45 INFN MAGIC Group: INFN Sezione di Trieste, I-34127 Trieste, Italy
46 INFN MAGIC Group: INFN Sezione di Torino, I-10125 Torino, Italy
47 INFN MAGIC Group: INFN Sezione di Venezia, I-30127 Venezia, Italy
48 INFN MAGIC Group: INFN Sezione di Padova, I-35131 Padova, Italy
49 INFN MAGIC Group: INFN Sezione di Torino, I-10125 Torino, Italy
50 INFN MAGIC Group: INFN Sezione di Pisa, I-56127 Pisa, Italy
51 INFN MAGIC Group: INFN Sezione di Roma, I-00133 Roma, Italy
52 INFN MAGIC Group: INFN Sezione di Siena, I-53100 Siena, Italy
53 INFN MAGIC Group: INFN Sezione di Trieste, I-34127 Trieste, Italy
54 INFN MAGIC Group: INFN Sezione di Venezia, I-30127 Venezia, Italy
55 INFN MAGIC Group: INFN Sezione di Padova, I-35131 Padova, Italy
56 INFN MAGIC Group: INFN Sezione di Torino, I-10125 Torino, Italy
57 INFN MAGIC Group: INFN Sezione di Pisa, I-56127 Pisa, Italy
58 INFN MAGIC Group: INFN Sezione di Roma, I-00133 Roma, Italy
59 INFN MAGIC Group: INFN Sezione di Siena, I-53100 Siena, Italy
60 INFN MAGIC Group: INFN Sezione di Trieste, I-34127 Trieste, Italy