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Abstract

Humans rely on head and facial movements for numerous tasks, espe-

cially in relation to communication. From speech to facial expressions,

from nods to the subtlest non-verbal cues, our heads produce a great

amount of information which we effortlessly read and transmit every

day. Accurate and robust algorithms for the analysis and synthesis of

both head and facial motions have therefore been actively advocated

in the computer vision, machine learning, and computer graphics re-

search communities. The driving force to these efforts is represented

by the countless possible applications of such automatic methods: From

security to health care, from human-computer interaction to intelligent

tutoring, just to name some.

This work presents new tools for the analysis of head and facial mo-

tion targeted at improving our experience in the interaction with ma-

chines, nowadays still performed mainly through unnatural devices like

keyboards and mice.

A first contribution is a method for robust mouth localization in videos

of talking people. The algorithm does not rely on specific features like

lip contours to be visible and we experimentally prove it accurate enough

for the speech recognition task, achieving results comparable to the ones

obtained from semi-automatically cropped mouth images.

We further describe a method for the automatic classification of facial

videos into a discrete set of expression labels which also localizes the

expression’s apex in time. Our voting approach achieves results com-

parable to the state of the art when applied to standard databases and

proves capable of handling a certain degree of occlusion.

A multimodal corpus of affective speech is presented next, together with

procedures for its acquisition and automatic labeling. The recordings
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include high quality facial scans of native English speakers engaged in

emotional speech. Though we used video clips to elicit the affective

states, thus trading naturalness for quality, an online evaluation showed

that the recorded data retained the expressivity of the inductive films.

The corpus is targeted to the research fields of realistic visual speech

modeling for animation and recognition, 3D facial features localization,

and view-independent expression recognition.

Finally, we present a framework for head pose estimation from depth

images and extend it to localize a set of facial features in 3D. Our algo-

rithm handles large rotations, partial occlusions, and noisy depth data.

Moreover, it works on each frame independently and in real time, thus

lending itself as a complement to tracking algorithms for their initializa-

tion and recovery. We thoroughly evaluate the system on challenging and

realistic datasets, among which stands out a new annotated head pose

database collected using a Microsoft Kinect, which we made available to

the community.



Sommario

I movimenti della testa e del volto sono parte fondamentale della comuni-

cazione tra esseri umani. Parlato, espressioni facciali, cenni del capo: la

testa ed il viso producono un gran numero di informazioni che ogni gior-

no trasmettiamo e decifriamo naturalmente. Innumerevoli applicazioni

pratiche beneficerebbero di algoritmi affidabili per l’analisi e la sintesi dei

movimenti del capo, ragione che ha spinto i recenti sforzi fatti nei campi

della visione artificiale, apprendimento automatico e computer grafica.

Questa tesi presenta nuovi metodi per l’analisi automatica dei movi-

menti della testa e del volto umani. Lo scopo principale è di migliorare

l’interazione uomo-macchina, oggi per la maggior parte ancora condotta

tramite dispositivi poco naturali come tastiera e mouse.

Un primo contributo è un metodo per localizzare la bocca in video raffi-

guranti persone che parlano. L’algoritmo non dipende da specifici tratti

facciali come il contorno delle labbra e quindi non è suscettibile della loro

parziale copertura. Gli esperimenti mostrano come il metodo suggerito

sia utilizzabile per il riconoscimento automatico del parlato, ottenendo

risultati simili a quelli ricavati da immagini della bocca estratte tramite

intervento manuale.

Descriviamo poi un metodo per il riconoscimento automatico delle espres-

sioni facciali da video e la localizzazione delle stesse nella dimensione

temporale. Il nostro approccio ottiene risultati simili allo stato dell’ar-

te quando applicato a delle basi di dati standard e si dimostra inoltre

capace di funzionare anche quando parti del volto non sono visibili.

Segue una raccolta di scansioni facciali 3D di alta qualità, con corri-

spettivo audio, di 14 madrelingua Inglesi impegnati nella produzione di

parlato emozionale. I dati sono presentati insieme alle procedure neces-

sarie per la loro acquisizione e annotazione automatica. L’uso di video
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per indurre gli stati affettivi è necessario per ottenere dati di alta qua-

lità, a scapito della loro naturalezza. Un sondaggio online dimostra che

i dati raccolti trasmettono emozioni simili a quelle provate guardando i

video originali. Il database può essere utile per la ricerca sulla modella-

zione delle deformazioni facciali associate al parlato per l’animazione e

il riconoscimento, oltre che sulla localizzazione di tratti facciali in 3D.

Infine, viene presentato un algoritmo per la stima della postura della

testa da immagini di profondità, esteso alla localizzazione di alcuni im-

portanti tratti facciali in 3D. Il metodo proposto riesce anche in presenza

di rotazioni notevoli, immagini parzialmente corrotte o di bassa qualità.

Il funzionamento in tempo reale e su ogni immagine indipendentemente

ne fanno un complemento ideale ad algoritmi di tracciamento esistenti

per la loro inizializzazione e recupero. Un’accurata valutazione dell’ap-

proccio proposto è eseguita su basi di dati impegnative e realistiche, tra

cui un nuovo database registrato con un Microsoft Kinect, annotato con

la postura delle teste e reso disponibile alla comunità scientifica.
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1
Introduction

“Ut imago est animi voltus sic indices oculi.” M. T. Cicero,

De oratore, 55 B.C.

“The face is a picture of the mind as the eyes are its interpreters”. Today

as centuries ago, the face remains one of the most interesting sights the

human eyes can come across.

Every day, we all read and convey thousands of vital information through

the face and its deformations. Already in its neutral configuration, it

reveals identity, gender, age, attractiveness, health, etc. But being a

marvelous engineering product of evolution, the human face can also

produce a great number of expressions. Such movements, though of-

ten very subtle, give us very important clues about someone’s emotional

state, focus of attention, attentiveness, sincerity, etc. Examples of situa-

tions when we use our innate face reading capabilities are countless, for

human communications rely on facial expressions and head movements

for a great part. Speech, our other fundamental mean of information

exchange, is also uttered by the mouth, conveniently located where it

can easily be read when the audio is of no use because of noise: on the

face.

For all the above reasons, the human face has been an important object

of study in many research fields, ranging from psychology to computer

science. It goes without saying that automatic methods for the analysis

of the face are of great importance for many useful application: From

security to human-computer interaction, from health care to intelligent

tutoring.
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Throughout evolution, mankind has seen trillions of faces in all their

deformations. This made us experts at reading facial images through

simple and robust algorithms, yet to be fully understood, implemented

in specially devoted areas of the brain [Tsao et al. 2006, Kanwisher

and Yovel 2006]. The way we produce and perceive the motions and

deformations on our faces is so complex that the field is still an open

ground for psychologists and anthropologists, let alone computer scien-

tists. Matching our brain’s outstanding face reading capabilities is one

of the goals of the computer vision and machine learning communities,

without having millions of years of evolution available for training.

1.1 Contributions

This work wants to bring new tools to the research in the fields of face and

head movements analysis, with a focus on human-computer interaction

applications. The main contributions of this thesis can be summarized

as follows.

• First, we propose a novel method for robustly localizing the mouth

region in videos of talking faces, with a direct application to audio-

visual speech recognition. The algorithm takes a voting approach,

where different image regions each suggest a possible location of

the mouth center, thus being less sensitive to partial occlusions.

• A second contribution is a fully automatic system for facial expres-

sion recognition from video. We extend a voting algorithm initially

designed for human action recognition to the task of classifying se-

quences of facial images into the discrete set of expressions of the

six basic emotions.

• Thirdly, we present a setup for the acquisition and automatic la-

beling of a large audio-visual corpus of emotional speech. The re-

sulting Biwi 3D Audiovisual Corpus of Affective Communication,

B3D(AC)2, is a high quality database, aimed at research fields like

the modeling, recognition, and synthesis of multimodal emotional

speech.
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• In the last part of this thesis, we present a framework for the

automatic, real time, frame based head pose estimation from depth

data of varying quality. We further extend the algorithm to localize

the 3D position of 14 facial feature points.

1.2 Organization

In Chapter 2, we describe a method for automatic real time mouth local-

ization from standard videos of a talking person. The automatic tracking

of the eye centers allows us to normalize the facial images with respect

to scale and orientation. We then take a voting approach for the actual

mouth localization, where different image patches are mapped to prob-

abilistic votes on a Hough image. The mapping itself is performed by a

random forest [Gall et al. 2011]. The proposed method does not rely on

the detection of mouth corners or lip contours, which could be occluded,

and proves successful when applied to the task of audio-visual speech

recognition. In this first chapter, beside the related works on mouth de-

tection and audio-visual speech recognition, we also give an introduction

to random forests, which are used in several other parts of the thesis.

The work presented in this chapter appeared in [Fanelli et al. 2009].

Chapter 3 presents a fully automatic system for the recognition of fa-

cial expressions from video. After eye tracking and image normalization,

here we extend the Hough forest algorithm, in its action recognition vari-

ant [Gall et al. 2011], to the task of facial expression classification. The

image normalization process and the more discriminative image features

allow us to recognize the subtler movements on the face. This part of

the thesis was previously presented in [Fanelli et al. 2010a].

In Chapter 4, we introduce the Biwi Audiovisual Corpus of Affective

Communication, B3D(AC)2, and the framework used for its collec-

tion and automatic annotation. The corpus contains a large number of

recordings of native English speakers engaged in emotional speech. Au-

dio and dense dynamic 3D facial scans were automatically annotated,

both in terms of phoneme segmentation and detailed tracking of the

facial deformations through a generic template. This chapter contains

work previously published in [Fanelli et al. 2010c] and [Fanelli et al.

2010b].
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Chapter 5 presents a random forest framework for solving the problems

of real time 3D head pose estimation and facial features detection. We

use depth images of various quality, acquired both with a high-resolution

scanner and an affordable Kinect camera. The proposed approach does

not rely on the detection of specific features like the nose, runs on a

frame-by-frame basis, and proves robust to rotations, facial expressions,

facial hair, and partial occlusions. Parts of this work were already pre-

sented in [Fanelli et al. 2011a], [Fanelli et al. 2011b], [Fanelli et al.

2012b], and [Fanelli et al. 2012a]. In [Dantone et al. 2012], the algo-

rithm is extended to jointly solve for head pose estimation and facial

features localization, in real time, from standard 2D images with arbi-

trary conditions.

In Chapter 6, we summarize the thesis, discuss results, and point out

future challenges in the discussed research topics.

Even if face analysis is the common denominator of this work, the single

chapters touch different areas of research and tackle rather independent

problems. For this reason, each chapter contains an overview of recent

works related to the topic at hand.



2
Hough Transform-based

Mouth Localization

Speech is among the most natural forms of human communication: We

use it every day to convey complex messages efficiently and reliably,

provided that a language is agreed upon. Clearly, this strongly motivates

the development of robust and reliable speech-driven interfaces for the

field of human computer interaction.

Even though recent Automatic Speech Recognition (ASR) systems have

become reliable and usable by the large audience [Schalkwyk et al. 2010],

they still suffer from noise on the audio channel, which is unavoidable in

many application-relevant environments (e.g ., a busy street).

Multimodal approaches try to circumvent the problem by augmenting

the audio stream with additional sensory information in order to im-

prove the recognition accuracy [Potamianos et al. 2004]. In particular,

the fusion of audio and visual cues is a popular choice [Petajan 1984]

motivated by human perception: We use both audio and visual informa-

tion when understanding speech [McGurk and MacDonald 1976]. There

are indeed sounds which are very similar in the audio modality, but eas-

ier to discriminate visually, and vice versa. The so-called Audio-Visual

Speech Recognition (AVSR) systems use both cues to recognize speech

uttered by a person recorded using a camera and a microphone, signif-

icantly increasing performance over audio-only setups, especially when

the auditory channel is corrupted by noise.

In order to extract visual features carrying information about the speech

being pronounced, the area of the picture containing the mouth must be
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(a) (b)

Figure 2.1: a) Facial points like mouth corners (blue dots) are sensitive

to occlusions [Vukadinovic and Pantic 2005]. b) Our Hough transform-

based approach localizes the center of the mouth (red dot) even in the

case of partial occlusions. The ellipse indicates the region of interest

used for visual speech recognition.

localized as a region-of-interest [Patterson et al. 2002], a set of fea-

ture points [Vukadinovic and Pantic 2005, Valstar et al. 2010], or lip

contours [Luettin and Thacker 1997, Liu et al. 2010, Li et al. 2012].

Although the lip contours appear to contain more information about

the mouth shape than the appearance inside a bounding box, they do

not necessarily encode more information valuable for speech recognition,

as demonstrated in [Potamianos et al. 1998]. In addition, extracting a

bounding box is usually more robust and efficient than lip contour ex-

traction approaches, most of which anyway need such a bounding box

for initialization, as for example in [Liu et al. 2010].

In this chapter, we propose a method for localizing the mouth region in

images of faces in a near-frontal view. Contrary to the many standard

approaches which seek to extract its corners to estimate scale, position,

and orientation of the mouth, we propose an algorithm based on the gen-

eralized Hough transform which lets different image patches cast votes

for the mouth location. The rationale behind this choice is that a cer-

tain feature point might be difficult to detect due to occlusions, lighting

conditions, or facial hair, as exemplified by Figure 2.1 a), where one of

the mouth corners is occluded. For this reason, instead of detecting spe-

cific fiducials, our method maps the appearance of small image patches
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into probabilistic votes which accumulate in a Hough image, the peak

of which is considered to be the mouth center. This approach allows for

the localization of the mouth even in difficult situations when parts of it

are covered, as shown in Figure 2.1 b).

In order to make the process faster and usable for real time applications,

we exploit the shape of the iris, whose rotation invariance is unique

among the other facial features and allows for very efficient localization

using isophote curvature [Valenti and Gevers 2011]. Knowing the ap-

proximate in-plane rotation and scale of the face from the eye centers, the

lower face region is normalized with respect to scale and orientation. We

thus reduce the great appearance variations which a highly deformable

object like the mouth is capable of. The actual learning of the mapping is

performed by a random forest, or Hough forest [Gall and Lempitsky 2009,

Gall et al. 2011].

2.1 Related Work

Rather than recognizing speech from the audio signal alone [Schalkwyk

et al. 2010, Rabiner and Juang 1993, Jiang 2010], AVSR methods fuse

features extracted from both the auditory and the visual channel to

better recognize the words being pronounced by a speaker.

Pioneered by [Petajan 1984], AVSR is still an active area of research

today [Galatas et al. 2011, Gurban and Thiran 2009, Cooke et al. 2006,

Livescu et al. 2007, Lucey et al. 2002, Potamianos et al. 2004]. Several

approaches have been proposed for combining audio and visual cues,

based for example on artificial neural networks [Heckmann et al. 2001],

support vector machines [Gordan et al. 2002], or AdaBoost [Yin et al.

2004]. In this work, we employ the commonly used multi-stream hidden

Markov models (MSHMM) [Young et al. 1999]; however, since we focus

on the visual part of the pipeline, i.e., mouth localization within the

image frame, any other standard recognition method could have been

used.

For visual features, lip contours [Luettin and Thacker 1997] and opti-

cal flow [Gray et al. 1996] share the popularity with image compres-

sion techniques such as Linear Discriminant Analysis (LDA), Princi-

pal Component Analysis (PCA), Discrete Cosine Transform (DCT), or
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Discrete Wavelet Transform (DWT) [Potamianos et al. 2004]. Within

monomodal visual speech recognition (lip reading), snakes [Bregler and

Omohundro 1995] and Active Shape Models (ASM) [Kaucic et al. 1996,

Matthews et al. 1998] have been intensively studied for lip tracking.

Lip contours-based methods do not encode all possible geometric infor-

mation (like the tongue), therefore space-time volume features have been

proposed for lip-reading in [Pachoud et al. 2008].

Most of the listed approaches assume that a bounding box can be reliably

extracted around the mouth in the image, which is the contribution of

this chapter.

2.1.1 Hough Forests

Here we introduce the concepts of Hough transform, random forests, and

their combination [Gall et al. 2011].

The Hough transform, originally designed to detect straight lines [Duda

and Hart 1972] and successively extended to localize generic paramet-

ric shapes [Ballard 1981], is an established method in computer vi-

sion, especially for the task of object detection [Leibe et al. 2008,

Maji and Malik 2009, Bourdev and Malik 2009, Opelt et al. 2008, Om-

mer and Malik 2009, Gall and Lempitsky 2009, Okada 2009, Lehmann

et al. 2011]. The process involves splitting the image into small ap-

pearance patches, each of which can vote for the hypotheses about the

object’s configuration which might have generated it. Such votes are

accumulated into a Hough image, living within a parametric domain

called Hough space. A point in such a space corresponds to a particular

configuration of an object, e.g ., its location on the image plane, and

the detection task boils down to locating the highest peaks of accumu-

lated votes. The height of a peak additionally provides a measure of the

detection’s confidence.

Hough transform-based detection methods model the shape of the object

implicitly, gathering the spatial information from a large set of different

object patches annotated with the location of objects of interest. Learn-

ing involves the construction of the appearance codebook and, for each

codebook entry, the distribution of object parameters which generated
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it. Thanks to its additive nature, the generalized Hough transform can

handle noisy measurements, partial occlusions, and large variations in

shape and appearance. This is the case for the mouth, capable of great

appearance changes through its many possible configurations (e.g ., open

and closed).

Decision trees [Breiman et al. 1984] split a hard problem into easier ones,

solvable using simple rules. As such, a tree can perform highly non-

linear mappings from complex input spaces to simpler output spaces.

All non-leaf nodes in a tree contain a binary test, which guides a data

sample towards the left or the right child. The tests are chosen in a

supervised learning framework and building a tree boils down to selecting

the tests which cluster the annotated training samples such as to allow

good predictions using simple models. The leaves store such models,

constructed using the annotated samples left at train time. Random

forests are collections of trees [Amit and Geman 1997], each trained on a

randomly selected subset of the available data; this reduces over-fitting in

comparison to trees trained on the whole dataset, as shown by [Breiman

2001]. Randomness can be introduced also in the pool of binary tests

available for optimization at each node.

At run time, a test sample visits all the trees, ending up in a leaf in

each of them. The final output of the forest is computed by averaging

the results of all trees, according to the models stored at the leaves.

Figure 2.2 shows a toy example of random forest: A data sample is

guided through the trees until a leaf; there, actions are taken depending

on the retrieved models.

Random forests have become a popular method in computer vision; they

have been successful in semantic segmentation [Shotton et al. 2008], key-

point recognition [Lepetit et al. 2005], object detection [Gall and Lem-

pitsky 2009, Gall et al. 2011], action recognition [Yao et al. 2010, Gall

et al. 2011], or real-time human pose estimation [Shotton et al. 2011,

Girshick et al. 2011]. They are well suited for time-critical applications,

since they are very fast at both training and testing, lend themselves

to parallelization [Sharp 2008], and are inherently multi-class. For the

interested reader, the tutorial of [Criminisi et al. 2011] offers a detailed

introduction to the use of decision forests in computer vision.

Hough forests [Gall et al. 2011] combine the benefits of random forests

with those of the generalized Hough transform. Successful applications of
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Vote 
discarded

Figure 2.2: Example of a random forest. The binary tests at the nodes

guide a sample down the trees. At the leaves, further actions are taken

depending on the model stored at train time.

Figure 2.3: Overview of our AVSR system. The visual pipeline is

shown at the top: The detected face bounding box is used to define

search regions for tracking the eyes. The mouth detector is applied to

images of the lower part of the face, scaled and rotated according to

the eye positions. At the bottom right, the features extracted from the

stream of normalized mouth images and from the audio signal are fused

allowing for the actual speech recognition to take place.
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Hough forests include class-specific object detection [Gall and Lempitsky

2009, Okada 2009] and action recognition [Yao et al. 2010].

2.2 System Overview

The pipeline of our audio-visual speech recognition system is depicted

in Figure 2.3. Our work focuses on the visual pipeline, expanded in the

upper region of the image.

The first necessary step for any AVSR algorithm is face detection, for

which we use the popular method of [Viola and Jones 2004]. To cope with

appearance changes, partial occlusions, and multiple faces, we employ

the online-boosting tracker of [Grabner et al. 2006] to follow the head

across consequent frames. The algorithm uses the current bounding

box (containing the target face) and its surroundings as positive and

respectively negative samples for updating the internal classifier.

Assuming the face to be pictured in a near-frontal view, the bounding

box returned by the tracker allows us to estimate the rough positions of

the eyes thanks to anthropometric relations. We then estimate scale and

in-plane rotation of the face by filtering the positions of the irises, which

we detect leveraging their circular shape as explained in Section 2.3.

With this information at hand, we crop the lower part of the face and

normalize it. In this way, the resulting picture contains a mouth which

is horizontal and has a specific size. This normalization step allows us

to run the mouth detection algorithm at only one scale and rotation,

drastically reducing computation time. The actual method for mouth

localization using a Hough forest is presented in Section 2.4. Finally,

features are extracted from the stream of normalized mouth images and

from the audio signal and fused in order to recognize the spoken words,

as described in Section 2.5. A thorough set of experiments is presented

Section 2.6.

2.3 Face Normalization

We use the method of [Valenti and Gevers 2011] for accurate eye cen-

ter localization, based on isophote curvature. The main idea relies on



14 2. Hough Transform-based Mouth Localization

the radial symmetry and high curvature of the eyes’ brightness patterns.

An isophote is a curve going through points of equal intensity, its shape

being invariant to rotations and linear changes in the lighting condi-

tions [Lichtenauer et al. 2005]. Because isophotes never intersect each

other, they can be used to fully describe a picture.

For each pixel p in an image, a displacement vector is computed as:

{Dx, Dy} = −
{Lx, Ly}

(
Lx

2 + Ly
2
)

Ly
2Lxx − 2LxLxyLy + Lx

2Lyy
(2.1)

where Lx and Ly are the image derivatives along the x, respectively y

axis. The value of an accumulator image at the candidate center c =

p+D is incremented by the curvedness of the original image measured

at p, computed as: √
Lxx

2 + 2Lxy
2 + Lyy

2, (2.2)

thus giving higher weights to center candidates coming from highly

curved isophotes.

Knowing that the pupil and the iris are generally darker than the neigh-

boring region (sclera), only transitions from bright to dark areas are

considered, i.e., situations where the denominator of Equation (2.1) is

negative and the curvature agrees with the gradient’s direction. The

eye center is finally located by convolving the accumulator image with a

smoothing Gaussian kernel and selecting the peak location.

The above method fails when the irises are not visible, e.g ., due to

closed eyelids or strong reflections on the glasses. When tracking a video

sequence, this can lead to sudden jumps of the detections. Such errors

propagate through the whole pipeline, leading to wrong estimates of the

mouth scale and rotation, and thus of its bounding box location. To

mitigate the effects of these errors, we smooth the pupils’ trajectories

using Kalman filters [Welch and Bishop 2001], one for each eye center.
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2.4 Hough Transform-based Mouth Local-

ization

We use Hough forests [Gall et al. 2011] for the purposes of mouth local-

ization. The trees learn the discriminative appearance of image feature

patches and their corresponding mapping into votes in a Hough space

H ⊆ RH . For the task at hand, the Hough space encodes the hypothesis

h(c,x ) for class c (mouth versus rest of the face) and position on the

image plane, x .

The voting process is exemplified in Figure 2.4. (a) Probabilistic votes for

the mouth center are cast based on the appearance of example patches.

Note how the magenta patch is classified as negative, i.e., uninformative

about the mouth position, and thus not allowed to vote. (b) All votes

are summed up into a Hough image, where (c) the peak is taken as the

mouth center. The bounding box enclosing the mouth is finally scaled

and rotated according to the detected eye positions. The implicit shape

model (ISM) can be modeled by an explicit codebook as originally done

in [Leibe et al. 2008], but the construction of codebooks is expensive due

to the required clustering techniques and the linear matching complexity.

We therefore choose to follow a random forest framework, where both

learning and matching are less computationally demanding.

Following [Gall et al. 2011], we denote with I a mapping from the input

domain y ∈ Ω ⊆ R2 (the image plane) to the set of various feature

channels
(
I1(y), I2(y), ...IF (y),

)
∈ RF . After training, the leaves in the

forest {L} model the mapping from the appearance I(y) of an image

patch centered at y to the probabilistic Hough vote:

L : (y, I)→ p
(
h|L(y)

)
, (2.3)

where p
(
h|L(y)

)
is the distribution of Hough votes in the space H.

In the following, we describe how the mapping is learned and the forest

built from annotated training data (Sec. 2.4.1) and how it is used to

localize the mouth in a new image (Sec. 2.4.2).
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(a) (b) (c)

Figure 2.4: (a) For each of the emphasized patches (top), votes are

cast for the mouth center (bottom). While lips (yellow) and teeth (cyan)

provide valuable information, the skin patch (magenta) casts votes with

a very low probability. (b) Hough image after accumulating the votes of

all image patches. (c) The mouth is localized by the maximum in the

Hough image.

2.4.1 Learning

Building a forest is a supervised learning problem, i.e., training data

need to be annotated with labels on the desired output space. In our

case, we are given images of the lower part of the face, normalized with

respect to scale and orientation, and annotated with the mouth center

location (the bounding box enclosing the mouth has the same size for

all samples). The following procedure applies similarly to multi-class or

higher-dimensional problems.

Each tree in a forest is constructed based on a set of patches {Pi =

(Ii, ci,di)}, where Ii represents the appearance of patch i and ci its

class label. The 2D offset vector di represents the patch’s relative dis-

placement with respect to the object center. In our case, a patch can

belong to a mouth region (positive, ci = 1), or not (negative, ci = 0).

The feature channels Ifi include raw image intensities and derivative fil-

ter responses. We compute such features from fixed size image patches,

as the ones shown in Figure 2.4 (a). The training patches are randomly

sampled from mouth regions (positives) and non-mouth regions (nega-

tives).

Following the random forest framework [Breiman 2001], we build each

tree by recursively optimizing its nodes, starting from the root.
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For each non-leaf node we choose a binary test out of a set of randomly

generated tests
{
φk
}

, after having evaluated them on the set of training

patches S = {Pi = (Ii, ci,di)} available at that node. The chosen test

splits the patches into two new subsets which are passed to the children:

A patch which satisfies the test goes to the right, otherwise to the left.

Given the appearance I of a patch, a test φ(I) → {0, 1} compares the

difference of channel values If for a pair of locations p and q against a

threshold τ :

φf,p,q ,τ (I) =

{
0, if If (p)− If (q) < τ

1, otherwise.
(2.4)

The process iterates until a leaf is created when either the maximum

tree depth is reached (15), or less than a minimum number of training

samples are left (20). A leaf node L stores the following information,

according to the patches which are left at the time of its creation:

• The probability of belonging to a mouth p
(
c = 1

)
, approximated

by the proportion of positive samples reaching the leaf at train

time;

• The displacement vectors associated with all positive patches, i.e.,

DL
m = {di}ci=1.

The leaves build an implicit codebook and model the spatial probability

of the mouth center x given the appearance I(y) of a patch located

at position y on the image. Such probability is represented by a non-

parametric density estimator computed over the set of positive samples

DL
m and by the probability that the image patch belongs to the mouth

p
(
c = 1| I(y)

)
:

p
(
x | I

)
=

1

Z
p
(
c = 1| I

) 1

|DL
m|

∑
di∈DLm

1

2πσ2
exp

(
−||(y − x )− d i||2

2σ2I2×2

) .

(2.5)

In Equation (2.5), we omitted the dependence of I on y for simplicity,

σ2I2×2 is the covariance of the isotropic Gaussian Parzen window, and
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Z is a normalization constant. The probabilities for three patches are

illustrated in Figure 2.4 (a): only patches extracted from the mouth

region are actually casting votes.

Because the quantity in (2.5) is the product of a class and a spatial

probability, the optimization procedure at the nodes is designed to try

and form clusters of patches with increasingly lower class and spatial

uncertainty as the tree deepens. For this reason, the splits produced

by the tests
{
φk
}

, generated by randomly sampling f,p, q and τ , are

evaluated with respect to both a measure of the class uncertainty U1 and

of the spatial uncertainty U2 on all patches S available at that node. In

practice, at each node we randomly select one of the two measures with

equal probability and finally pick the test which minimizes the sum of

the chosen measure computed over the left and right clusters:

φ∗ = argmin
k

(
U?(Sl) + U?(Sr)

)
, (2.6)

where ? = 1 or 2 indicates the measure type. Sl = {Si|φk(Ii)=0} and

Sr = {Si|φk(Ii)=1} represent the clusters of patches sent to the left,

respectively right child.

We use the same measures proposed by [Gall et al. 2011], i.e., we define

the class uncertainty based on the entropy over the class labels:

U1(S) = −|S| ·
∑

c∈{0,1}

p
(
c|S
)

ln p
(
c|S
)
, (2.7)

where |S| is the number of patches at the current node and p
(
c|S
)

is

approximated by the ratio of patches with class label c in the set S.

For the spatial uncertainty measure U2, we use the impurity of the offset

vectors di:

U2(S) =
∑
i:ci=1

(di − d̄)2, (2.8)

where d̄ is the mean of the spatial vectors di computed over all positive

patches in the set.
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2.4.2 Localization

The detection process is illustrated in Figure 2.4. Given a face image,

normalized with respect to scale and orientation as explained in Sec-

tion 2.3, we densely extract feature patches. For each tree in the forest

{Tt}Tt=1, non-leaf nodes guide a test patch extracted at position y all the

way down to a leaf L. The path undertaken by a patch depends on the

results of the nodes’ binary tests applied to the appearance I(y). Based

on the models stored at the leaves, a vote is cast onto the Hough space

using Equation (2.5), averaged over the whole forest:

p
(
x | I(y)

)
=

1

T

T∑
t=1

p
(
x | I(y); Tt

)
, (2.9)

The probabilistic votes produced by the patches extracted at all possible

image locations y are then accumulated in the Hough image, see Fig-

ure 2.4 (b). In practice, we add the discrete votes p
(
c = 1| I

)
/|DL

m| to

the pixels {(y−d)|d ∈ DL
m} for each tree and apply the Gaussian kernel

after voting. The location where the generalized Hough transform gives

the strongest response is considered to be the center of the mouth, as

shown in Figure 2.4 (c). The value at the peak measures the confidence

of the detection. In a standard object detection framework, a threshold

on such confidence would define when to trigger the detection, but in

our case we assume a mouth to be always present in the image.

2.5 Audio-Visual Speech Recognition

Our work focuses on the mouth localization part of a AVSR system,

independently from the chosen approaches for the actual recognition

and feature fusion methods. In order to show the applicability of our

method, we resort to the widely used multi-stream hidden Markov mod-

els (MSHMM), a generalization of standard HMMs [Young et al. 1999].

HMMs are used to model the behavior of systems which stochastically

switch between discrete states. In a first order discrete Markov chain,

the probability of being in a specific state depends only on the state itself

and on the previous one. The term Hidden stands for the fact that states
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are not directly observable: What we can measure are some products of

the system’s states, called observations.

HMMs are commonly used in ASR as models of the temporal dynamics

of the speech signal. A state of a HMM can either represent a word

in the dictionary, or rather a single speech sound, also called phoneme,

i.e., “the smallest segmental unit of sound employed to form meaningful

contrasts between utterances” [Association and Corporate 1999]. Most

systems use left-right models [Bakis 1976], where states are only visited

from left to right, i.e., from an initial state to a final one. In an ASR

system, the observations are features extracted from the audio channel.

Given a sequence of observations, the goal is to recognize the most likely

word model which might have generated them, for which the Viterbi

algorithm is generally used [Rabiner 1990]. While typical HMMs use

one Gaussian mixture (GMM) to model the observation probabilities at

each state, a multi-stream HMM has several GMMs per state, e.g ., one

for each input modality s.

In our system, the joint probability of the multimodal observations O =

(o1, · · · , ot) and the states Q = (q1, · · · , qt), is given by:

p(O,Q) =
∏
qi

bqi(oi)
∏

(qi,qj)

aqiqj (2.10)

where the probability of a transition from qi to qj is given by aqiqj and

bj(o) =

2∏
s=1

(
Ms∑
m=1

cjs,mN(os;µjs,m ,Σjs,m)

)λs
. (2.11)

In the above equation, N(o;µ,Σ) are the multi-variate Gaussians with

mean µ and covariance Σ, weighted by cjs,m . We learn the model pa-

rameters independently for each modality. The weights λs ∈ [0, 1] steer

the influence of the modalities, with λ1 + λ2 = 1.

As observations, we extract features commonly employed in AVSR: Mel-

frequency cepstral coefficients from the audio stream and DCT features

from the normalized mouth images, where only the odd columns are

used due to symmetry [Potamianos et al. 2004, Potamianos and Scanlon

2005]. For both types of features, we add the first and second temporal

derivatives and normalize the sets as to have zero mean.
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2.6 Experiments

We evaluated our system testing each component separately, from the

eye detection part to the actual speech recognition performance.

In a first set of experiments, we initially assessed the quality of scale and

orientation estimation method which relies on the detection of the eyes,

then moved on to the mouth localization accuracy. We compared our

results with the methods of [Vukadinovic and Pantic 2005] and [Valstar

et al. 2010] for facial feature points detection, for which executables

are available. We used the publicly available BioID face database [Je-

sorsky et al. 2001], which is often employed for comparing eye detection

algorithms. The database is comprised of 1521 greyscale images of 23

individuals, acquired at different points in time under uncontrolled office

illumination, with a resolution of 384x288 pixels. Subjects often show

closed eyes, different facial expressions, and many of them wear glasses.

Manually annotated ground truth is provided for the pupils and for 18

other facial points. As ground truth mouth center, we take the centroid

of the 4 fiducial points on the mouth provided with the database (lip

corners and outer lips’ midpoints).

We then evaluated the system in terms of speech recognition perfor-

mance on the CUAVE database [Patterson et al. 2002]. This is a

standard database within the AVSR community, consisting of videos

recorded in controlled conditions, at 29.97fps interlaced, with a resolu-

tion of 740x480. Each of the 36 subjects repeats the digits from “zero”

to “nine” in American English.

2.6.1 Estimation of Scale and Orientation

Because the mouth localization performance directly depends on the

quality of the estimation of the face’s scale and orientation, as explained

in Section 2.3, we performed the following experiment on the full BioID

database. First we detected the face in each image (taking the largest

bounding box in case of multiple detections) and searched for the eye

centers within the two upper quarters of the face rectangle. Then, we

computed the errors with respect to scale (inter-ocular distance) and

in-plane rotation (angle formed by the line connecting the eyes and the

horizontal image axis).



22 2. Hough Transform-based Mouth Localization

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Scale error (% true eye dist)

A
c
c
u
ra

c
y
 %

0 1 2 3 4
0

20

40

60

80

100

Angle error (degrees)

A
c
c
u

ra
c
y
 %

(a) (b)

Figure 2.5: a) Accuracy vs. eye distance error (scale). b) Accuracy

vs. angle error (rotation). The plots show the percentage of correctly

estimated images as the threshold defining success increases.

Figure 2.5 shows the accuracy for the two measures, i.e., the percent-

age of correct estimations as the error thresholds defining success in-

crease. In Figure 2.5 (a) the accuracy is plotted against the error be-

tween the detected eye distance dEye and the ground truth dGT , as

err = abs(dEye−dGT )
dGT . In Figure 2.5 (b) instead, the accuracy is a func-

tion of the angle error in degrees. In 1.12% of the cases, no face was de-

tected at all, moreover, sometimes the face detector gave wrong results,

getting stuck on some clutter in the background. This partly explains

why the curves in Figure 2.5 never reach 100%.

2.6.2 Mouth Localization

To evaluate the goodness of the mouth detection pipeline, we ran a 4-

fold cross validation on the BioID database, i.e., training the mouth

detector on three quarters of the data, testing on the fourth, iterating,

and averaging the results. We compared our results to the output of the

facial feature detectors of [Vukadinovic and Pantic 2005] and [Valstar

et al. 2010], using the authors’ source code. As we localize the mouth

center rather than the corners, we considered the centroid of the four

mouth corners provided by the above detectors. For fairness to the

competing methods, we have to specify that, because the BioID database

does not contain labels of the subjects’ identity, our experiments are
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Figure 2.6: Accuracy vs. mouth center localization error (in pixels)

between the methods of [Vukadinovic and Pantic 2005] (blue), [Valstar

et al. 2010] (magenta), our full pipeline (red), and the mouth localization

given the eye position from ground truth (green).

Figure 2.7: Average mouth localization error in pixels plotted against

stride and number of trees in the forest. The error only increases notice-

ably when few trees are loaded and the stride parameter is large.
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not subject-independent. This means that test images could contain

subjects present in the set used to train the mouth detector. Moreover,

the competitor facial feature point detectors were trained on different

datasets altogether.

As already mentioned, face detection does not always succeed. Indeed,

the detector of [Vukadinovic and Pantic 2005] did not return results in

9.67% of the cases, while the detector of [Valstar et al. 2010] often

produced false positives. In order to remove the influence of errors orig-

inated in the face or eye detection parts of the pipeline, we performed

a second test concentrating on the mouth localization alone, using the

ground truth eye positions as initialization.

The curves in Figure 2.6 show the accuracy of the tested algorithms,

in percentage of the correctly localized mouths, as the error threshold

(in pixels) increases. Our method outperformed the competitor facial

feature point detectors for the mouth localization task, both in the “full

detection” (face, eyes, mouth), and “mouth only” type of experiment.

We additionally ran the “mouth only” test while varying two important

parameters of the Hough-based detector: The number of trees in the

forest and the stride controlling the density of the patches being sampled

from a test image. The results in Figure 2.7 show that the average

error remains low (around 2 pixels) even for a large stride and when

only a few trees are employed. Steering these intuitive parameters thus

allows the user to find a trade-off between accuracy of the detection and

computation demand.

Figure 2.8 shows some successfully processed frames out of the BioID

database. It can be seen that the full pipeline can cope with difficult

situations like the presence of glasses, facial hair, and head rotations.

On the other hand, Figure 2.9 shows some of the failure cases; in all the

examples shown, the source of error is to be found in either the face or

eye detection steps.

Table 2.10 summarizes the average errors and standard deviations pro-

duced by the tested methods, on the BioID dataset. For each method, we

only considered images where the face detector returned a bounding box,

i.e., the executables of [Vukadinovic and Pantic 2005] and [Valstar et al.

2010] produced a text file containing the results. However, some false

detections remained which increased the variance in the errors; this is
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Figure 2.8: Some example successes of the system. Difficult situations

like reflections on the glasses, facial hair and head pose changes are

handled.
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Figure 2.9: Some examples failures of the system on the BioID

database. Here the mouth detection is doomed to fail if the face de-

tection and/or the eye detection stages fail.

Full detection Mouth only
[Vukadinovic and

Pantic 2005]

[Valstar et al.

2010]

3.77± 6.88 2.10± 3.0 5.39± 4.35 11.65± 29.0

Figure 2.10: Mean and standard deviation of the errors (in pixels) for

the mouth localization task on the BioID database.
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particularly true for the face detector employed by [Valstar et al. 2010].

The “mouth only” error presents a low variance because of the use of

ground truth eye locations. Indeed, because it relies on the shape of the

irises, which are commonly occluded during blinking or by reflections on

the glasses, the employed eye detector is an important cause of failure

in a database like BioID.

2.6.3 Speech Recognition

As the goal of our system is to automatically provide normalized mouth

images for the purposes of audio-visual speech recognition, we tested it

on the CUAVE database [Patterson et al. 2002]. We concentrate on

the subset of the database where subjects appear alone, keeping the face

nearly frontal.

We use a mouth detector trained on the full BioID database. The videos

were de-interlaced and linearly interpolated in order to match the fre-

quency of the audio samples (100Hz).

The focus of this work is mouth localization, so we did not try to optimize

the speech recognition system. As our approach is independent of the

actual recognition system, it does not necessarily have to be coupled with

multi-stream hidden Markov models. In all of the following experiments,

we used the implementation of [Gurban and Thiran 2009], without the

automatic feature selection part.

Being the power of AVSR evident especially when the audio channel

is unreliable, we added white noise to the audio stream. We trained

on clean audio and tested at different levels of Signal to Noise Ratios

(SNRs). For the audio-visual fusion, we kept the audio and video weights

λ1 and λ2 fixed for each test, and ran several trials varying the weights

from 0.00 to 1.00 in 0.05 steps, finally picking the combination which

gave the best recognition rate at each SNR.

Following [Young et al. 1999], we defined the accuracy as the number of

correctly recognized words, C, minus the number of insertions, I (false

positives detected during silence), divided by the number of words, N :

Accuracy =
C − I
N

. (2.12)
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Figure 2.11: Word recognition rate for the audio-visual system using

80 visual features at different SNRs, for automatically and manually

extracted mouth images. AV results always outperform monomodal set-

tings.
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Figure 2.12: Influence of the number of features in video-only speech

recognition systems. The accuracy of the recognizer using automati-

cally extracted mouth images is only slightly lower than when manual

intervention is employed for the mouth ROI extraction task.
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We split the CUAVE sequences into 6, speaker-independent sets and

performed a cross-validation by training on five groups while testing on

the sixth and averaging the results of all combinations.

Figure 2.11 shows the performance of the system when we used a fixed

number of visual features (80), at several SNR levels. We compared to

the results obtained from semi-automatically extracted mouth-regions,

which give the upper bound for the accuracy obtained with our auto-

matic method. We also compared to the results of a audio-only (AO)

and video-only (VO) recognizer. It can be noted that the multimodal

approaches always outperform the monomodal ones. This is particularly

clear for the audio-only system, which presents a steep decrease in recog-

nition performance as the noise level increases. It is also interesting to

notice that our automatic method for mouth ROI extraction performed

only slightly worse than when manual intervention was used to annotate

the mouth positions.

In Figure 2.12, we show the accuracy of the recognizer when only video

features are used, as their number increases: Our approach performed

best with 80 visual features (58.85%), while for greater sets the perfor-

mance decreased slightly.

The images in 2.13 show some frames extracted from CUAVE videos

with audio corrupted by white noise at 0 SNR. The yellow ellipse repre-

sents the localized mouth region fed to the AVSR systems and subtitles

indicate the output words. In these examples, the multimodal recognizer

always gets the correct word (red, right), while the video-only system

gets confused or completely misses the utterance (yellow, left).

2.6.4 Processing Speed

When analyzing videos on a 2.8 GHz machine, the presented system

(implemented in C++ without particular optimization efforts or the use

of multi threading) runs at about 4fps. Most of the computation is

concentrated in the mouth localization part: The face plus eyes tracking

parts together run at 53fps.

A sensible decrease in processing time with a low price in accuracy can

easily be achieved by loading a smaller number of trees and introducing

a stride: For 10 trees and a stride of 4, the system runs at 15fps.
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Figure 2.13: Some example frames showing the recognition capability

of our system. The sequences were taken from the CUAVE database

and white noise added to the audio channel (0 SNR). The yellow ellipse

represents the localized mouth and the subtitles show the automatically

recognized words. In these examples, the audio-visual system (AV -

right) recognizes the word correctly, while the audio-only one (A0 - left)

makes mistakes or misses the utterance completely.
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2.7 Conclusion

In this chapter, we have presented a novel and robust method for mouth

localization which proved accurate enough for audio-visual speech recog-

nition purposes. Even though speech recognition software has greatly

improved in the last years, the visual modality will always be a valuable

addition in noisy environments. Using the Hough forest algorithm [Gall

et al. 2011], our method maps feature patches extracted from the lower

part of the face to probabilistic votes in a Hough image, the peak of

which is considered to be the mouth center. Compared to existing algo-

rithms which rely on the detection of specific facial feature points, most

notably mouth corners and lip contours, our voting approach is not jeop-

ardized by the occlusion of any such key points. The proposed method is

not only relevant for AVSR but also for lip reading and facial expression

recognition or identification, where a normalized region-of-interest of the

mouth can be required.

Our experiments show that our method outperforms recent facial fea-

ture detectors on near-frontal facial images and that the achieved word

recognition rate for ASVR is near to the boundary obtained by em-

ploying mouth regions cropped using manual intervention. The system

can achieve real time processing speed thanks to the estimation of scale

and in-plane orientation of the face from filtered irises’ detections. An

additional speed-up with a small price in accuracy can be achieved by re-

ducing the number of trees and the sampling rate of the mouth detector

by introducing a stride.

The main shortcoming of the current system is its reliance on the detec-

tion of the eyes to make the mouth localization fast enough for interactive

scenarios. This means that the algorithm will likely fail when the irises

are not visible, because the eyes are closed or covered by sunglasses.

Large out of plane rotations also compromise the results of the system,

eventually because one of the eyes might become occluded.

Deaf people can achieve a reasonable speech perception using the visual

modality alone [Summerfield 1992]. This suggests that research in the

field of lip reading and AVSR has not completed its task and substantial

progress can be expected in the future.
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Figure 2.14: When will machines read lips using only visual informa-

tion, even from profile view, as the villain computer HAL9000 did in

Stanley Kubrick’s “2001: A Space Odyssey”?



3
Facial Expression Recognition

from Video Sequences

The large number of subtle movements our faces can perform is one of the

key components of human communication. Through facial expressions,

we continuously transmit and read feelings and intentions (whether real

or pretended) and support verbal communication. Moreover, facial de-

formations provide cues about a person’s alertness, personality, generic

health state, etc. The subject has fascinated many fields of research, last

but not least computer science. Especially in the computer vision and

machine learning communities, automatic facial expression recognition

has long been advocated as a key feature of any interface aiming to be

perceived as natural.

In his 1872’s book The Expression of the Emotions in Man and Ani-

mals [Darwin 1872], Charles Darwin wrote:

...the young and the old people of widely different races, both

with man and animals, express the same state of mind by the

same movements.

Darwin was a precursor of a trend in psychology and anthropology

started with Paul Ekmans’s studies conducted in the 1960’s. Against

the mainstream idea that facial expressions of emotions are fully learned

and can thus differ among cultures, Ekman found that isolated primi-

tive tribes perceive some facial expressions as connected with the same

prototypical emotional states [Ekman and Friesen 1971].

Ekman’s conclusion was that some particular facial movements corre-

spond to specific emotions, independently of cultural background. These
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“basic” emotions are anger, disgust, fear, happiness, sadness, and sur-

prise (none of them with a clear social component, such as shame, or

pride), exemplified in Figure 3.1. Such discrete and small set of emo-

tions, even though far from being complete or capable of describing every

day’s human feelings, has been an appealing choice for computer scien-

tists ever since they started trying to design automatic methods for facial

expression analysis.

Figure 3.1: Facial deformations corresponding to the six basic emo-

tions. (a-f): disgust, happiness, sadness, anger, fear and surprise. Figure

reproduced with permission from [Pantic 2009]. c©The Royal Society
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The ability for a computer to recognize the user’s facial expression opens

a wide range of applications in different research areas, including secu-

rity, marketing, medicine, education, telecommunications, and drowsy

driver detection. However, it is important not to confuse human emo-

tion recognition from facial expression recognition: The latter is merely

a classification of facial deformations into a set of abstract classes, solely

based on visual information. Instead, human emotions can only be in-

ferred from context, self-report, physiological indicators, and expressive

behavior which may or may not include facial expressions [Cohn 2006].

For example, a smile can appear both as an expression of joy and em-

barrassment [Ambadar et al. 2009].

According to the survey of [Fasel and Luettin 2003], there are two main

methodological approaches to the automatic analysis of facial expres-

sions in the literature. Judgment-based approaches attempt to directly

map visual inputs into one of a set of categories, while sign-based ap-

proaches describe facial expressions by means of coded facial actions,

e.g ., Ekman’s Facial Action Coding System [Ekman and Friesen 1978].

FACS represents face deformations by activations of a set of Action Units

corresponding to single facial muscles movements and it has inspired

the facial animation parameters of the MPEG-4 standard [Pandzic and

Forchheimer 2002].

This chapter presents a judgment-based method for the classification

of videos of expressive faces into one of the basic emotion labels. We

investigate the Hough transform voting approach of [Yao et al. 2010,

Gall et al. 2011], originally designed for human action recognition, ap-

plied to the task of facial expression recognition. After having localized

and normalized the faces with respect to the eyes’ centers, the image

sequences are arranged into cuboids, or, extending the notation of [Yao

et al. 2010], expression tracks. These are a representation of the face

which is invariant to location, scale, and in-plane rotation. On such

tracks, we perform classification by casting votes for the expression label

and the temporal location of the apex, i.e., the highest peak in the facial

expression intensity.

As in [Yao et al. 2010, Gall et al. 2011], the voting is performed by a

Hough forest (see Section 2.1.1), which learns a mapping from densely

sampled spatio-temporal features to the center (apex) of the expression

in the video sequence. The trees are trained in a multi-class fashion
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and can therefore discriminate between different classes simultaneously.

The leaf nodes can vote for each class and represent a discriminative

codebook sharing features across classes.

Compared to the task of action recognition from video, facial expressions

present subtler differences and are therefore more difficult to classify.

Contributions in additions to the work of [Yao et al. 2010] include the

normalization of the tracks with respect to rotation and the use of more

discriminative features.

In the experiment section, we evaluate our system on standard databases

of facial expressions. Our results are comparable to state-of-the-art

methods, supporting our idea that Hough-voting approaches are promis-

ing tools for advancing in the field of automatic facial expression recog-

nition.

3.1 Related work

Automatic facial expression recognition dates back to [Suwa et al. 1978].

Since then, the field of research has seen a steady growth, gaining mo-

mentum in the 1990’s, thanks to the advances in algorithms for face de-

tection and the availability of cheaper computing power, as the surveys

of [Fasel and Luettin 2003] and [Zeng et al. 2009] show. In this section we

review some of the works forming a context for our proposed approach,

pointing the interested reader to the recent publications of [De La Torre

and Cohn 2011], [Tian et al. 2011], and [Valstar et al. 2011] for more

information.

The initial face localization and normalization step, common to virtually

all facial expression recognition approaches, serves to achieve a represen-

tation of the face invariant to scale, translation, and in-plane rotation.

The literature is rich with approaches which normalize the images based

on the location of the face [Buenaposada et al. 2008], of the eyes [Bartlett

et al. 2005], or thanks to facial features tracking methods [Aleksic and

Katsaggelos 2006, Dornaika and Davoine 2008], among which Active Ap-

pearance Models [Cootes et al. 2001, Matthews and Baker 2003] and 3D

Morphable Models [Blanz and Vetter 1999] stand out.
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After the normalization stage, the remainder of an automatic facial ex-

pression recognizer consists of feature extraction, followed by the actual

classification. Features are designed to minimize variation within the ex-

pression classes while maximizing it between different classes. Geometric

measurements can be employed, e.g ., from the locations of specific points

tracked on the face throughout the sequence [Shang and Chan 2009,

Aleksic and Katsaggelos 2006]. Alternatively, image-based features can

be extracted from texture patches covering either the whole face (holis-

tic) or specific sub-regions of it (local). Commonly employed feature

extraction methods from facial textures and their temporal variations

include optical flow [Essa 1998, Yeasin et al. 2006], Gabor filter re-

sponses [Bartlett et al. 2005, Wu et al. 2010], and Linear Binary

Patterns [Shan et al. 2009, Zhao and Pietikäinen 2009]. For the ac-

tual classification, AdaBoost and its combination with Support Vector

Machines have recently gained a lot of attention [Bartlett et al. 2005,

Littlewort et al. 2006]. Other popular approaches include nearest-

neighbor searches [Buenaposada et al. 2008] and Hidden Markov Mod-

els [Cohen et al. 2003, Shang and Chan 2009, Zhao and Pietikäinen 2009,

Aleksic and Katsaggelos 2006].

Most of the work in the literature has been concentrating on the analysis

of posed expressions, usually classifying them into the six prototypical

emotions or single Action Units. This is a consequence of the inherent

difficulty of acquiring annotated databases of spontaneous facial expres-

sions. However, there is a recent trend of works focusing on naturalistic

expressions [Sebe et al. 2007], trying for example to discriminate au-

thentic versus posed emotions [Pantic 2009].

Decision trees and forests have been previously used for action recogni-

tion, but only as indexing structures for speeding up nearest neighbor

searches, as in [Lin et al. 2009, Reddy et al. 2009]. Works related to the

Hough forest algorithm were presented in Section 2.1.1.

Inspired by the approach of [Yao et al. 2010] for human action classi-

fication, we build a holistic, image-based method for recognizing facial

expressions which uses a random forest to learn the mapping between 3D

video patches and votes in a Hough space for the label and the temporal

location of the expression.
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3.2 Voting Framework

Having seen the successful application of Hough forests (Section 2.1.1)

to the task of human action recognition [Yao et al. 2010, Gall et al.

2011], we investigate their performance on facial expressions recognition.

We assume our data to be already arranged into expression tracks, i.e.,

the face images to be cropped and aligned as shown in Figure 3.2 (a).

Section 3.3 provides insights on how this normalization is performed.

3.2.1 Training

We start from the assumption of having a set of training expression tracks

available for each class c ∈ C, annotated with the expression label and

the temporal location of the apex. We want to learn a mapping between

3-dimensional patches extracted from the expression tracks and a voting

space for class label and time. To this end, we use the Hough forest

method, originally developed for 2D single-class object detection [Gall

and Lempitsky 2009], and later extended to handle multi-class detec-

tion in the spatio-temporal domain and applied to the task of action

recognition [Yao et al. 2010, Gall et al. 2011].

Having already covered the Hough forest learning in Section 2.4.1, we

now limit ourselves to the modifications needed in order to extend the

algorithm to handle multiple classes and higher-dimensional input and

output spaces.

We build a tree from a set of cuboids {Pi = (Ii, ci,di)}, randomly sam-

pled from the training sequences. Figure 3.2 shows an expression track (a)

and sample 3D patches extracted from it (b), with the corresponding

displacement vectors. The features Ii =
(
I1i , I

2
i , ..., I

F
i

)
∈ R4 are now

in space plus time, and the expression label (ci ∈ C = {0, 1, ..., 5}) can

represent one of the six basic emotions. Displacement vectors di are cor-

respondingly 3-dimensional, and stretch from the cuboid center to the

center of the expression (apex) in the sequence.

Training the forest follows the same procedure explained in Section 2.4.1.

The binary tests are still simple comparisons of two pixels, but this time

localized both in space and time, i.e., p ∈ R3 and q ∈ R3 in Eq. 2.4.
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(a) (b)

Figure 3.2: (a) Sample facial expression track. (b) Sample 3D patches

drawn from the track, voting for the expression label and its spatio-

temporal center.

The measures to minimize during training are readily modified for the

multi-class problem at hand. For a set of cuboids S available at a node,

the measure of class uncertainty equivalent to Equation 2.7 is

U1(S) = −|S| ·
∑
c∈C

p
(
c|S
)

ln p
(
c|S
)
, (3.1)

and the spatial uncertainty measure equivalent to Equation 2.8 becomes

U2(S) =
∑
c∈C

∑
i:ci=c

‖di − d̄c‖2, (3.2)

where d̄c is the average offset vector for class c.

When the training process is over, a leaf L stores a probability pc for

each expression class, approximated by the proportion of patches with

class label c which ended in L during training. Moreover, for each class

c, a leaf contains the training patches’ respective displacement vectors,

Dc = {di}i:ci=c. Patches extracted from different classes can end up

in the same leaf, thus sharing the same features; the probabilities pc
indicate the degree of sharing among classes.
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3.2.2 Facial Expression Classification

At test time, similarly to the mouth localization case (Section 2.4.2),

cuboids are densely extracted from the track being analyzed and sent

through all trees in the forest. When reaching a leaf L, a patch casts

votes in a 4D Hough accumulator (x and y location, time, and class

label), proportional to the probabilities pc stored at the leaf. For each

class c, the corresponding vote is directed towards the expression spatio-

temporal center, according to a 3D Gaussian Parzen window estimate of

the vectors Dc.

Figure 3.3 exemplifies the voting process for a sequence expressing anger.

The dark spots correspond to the probabilistic votes that have been cast

by the patches and accumulated in the four-dimensional space. Because

the track has already been localized in space, we marginalize the votes

into a 2D accumulator for only class label and time. The local max-

imum in the remaining Hough image finally leads to the classification

prediction, as displayed in Fig. 3.4. For a more formal description of the

voting process, we refer the reader to [Gall et al. 2011].

Time-scale invariance can theoretically be achieved by up-sampling or

down-sampling the tracks, and then applying the Hough forest to label

expressions displayed at different speeds. However, the system has some

tolerance built in through the variations in speed observed in the training

data and we therefore did not consider multiple time scales.

3.3 Building the Expression Tracks

In order to arrange the data in the required normalized expression tracks,

we align the faces based on the eye positions. Faces are rotated and

scaled so that the eyes lie on the same horizontal line and present the

same inter-ocular distance. The invariance to rotation, an addition to

the work of [Yao et al. 2010], is a necessary step for the recognition

of facial expressions, which are subtler and harder to recognize than

human actions. When ground truth annotation of the eye locations is not

available, we employ the automatic method described in Section 2.3. In

the following, we normalize the facial images to an inter-ocular distance

of 25 pixels, resulting in 55× 45 images.
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Figure 3.3: An example of the 4D Hough image (x, y, time, expression)

output of the voting process for a clip displaying anger. The dark dots

represent clusters of votes.

Time

Anger
Disgust
Fear
Happiness
Sadness
Surprise

Figure 3.4: Example Hough voting space reduced to the two dimen-

sions expression class and time. The maximum (in dark) is taken as the

expression label and temporal location.
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3.3.1 Feature Extraction

For the classification part of their work, [Yao et al. 2010] used simple

features such as color, greyscale intensity, spatial gradients along the x

and y axis, and frame to frame optical flow. In our approach, inspired by

the work of [Schindler and Van Gool 2008], we extract more sophisticated

features separately representing the shape and the motion of the face in

the expression track.

The information about shape comes from the responses of a bank of log-

Gabor filters. In comparison to standard (linear) filters, log-Gabor filters

show an improved spectrum coverage with fewer scales [Field 1987]. The

response g at position (x, y) and spatial frequency w is:

gw(x, y) =
1

µ
e−

log(w(x,y)/µ)
2 log σ , (3.3)

where µ is the preferred frequency and σ a constant used to achieve an

even coverage of the spectrum. We use a bank with 3 scales (µ ∈ {2, 4, 8}
pixels) and 6 orientations (φ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}), keeping

only the response’s magnitude ‖gw(x, y)‖ as descriptor. Example re-

sponses of the filters applied to one frame of an expression track are

shown in Figure 3.5.

For the information regarding motion, we compute dense optic flow at

every frame by template matching, using the L1-norm, considering 4 di-

rections. Assuming that our expression tracks always start with a neutral

face, we compute the optical flow with respect to both the previous frame

(frame2frame) and the first frame in the track (frame2first). Figure 3.6

shows examples of the two types of optical flow fields extracted from one

expression track.

In order to increase robustness to translation and reduce the dimen-

sionality of the feature space, both the shape and motion feature im-

ages are down-sampled by max-pooling, also known as winner-takes-

all [Fukushima 1980]:

h(x, y) = max
(i,j)∈G(x,y)

[
g(i, j)

]
, (3.4)

where G(x, y) denotes a 3× 3 neighborhood of pixel (x, y).
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Figure 3.5: Example log-Gabor responses extracted from a normalized

expressive face.
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  MMI − OFs

Frame to First−frame
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Figure 3.6: Example optical flow computed from an expression track.
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Figure 3.7: Sample frames extracted from sequences depicting surprise

in the Cohn-Kanade database (top) and MMI database (bottom). Note

how the MMI database contains not only the transition from the neutral

face to the apex of the expression, but also the offset leading back to the

neutral state at end of the sequence.

3.4 Experiments

We trained and tested our facial expression recognition system on the

Cohn-Kanade [Kanade et al. 2000] and the MMI [Pantic et al. 2005,

Valstar and Pantic 2010] databases. Both contain videos of posed facial

expressions, with subjects facing the camera under controlled lighting

conditions.

The Cohn-Kanade database consists of greyscale video sequences of 100

university students, 65% of which female. The videos always start with

a neutral face and end at the apex, i.e., the maximum intensity of the

expression. For our study, we selected sequences which can be labeled

as one of the basic emotions and which are longer than 13 frames, for

a total of 344 videos of 97 subjects, each performing 1 to 6 facial ex-

pressions. Recently, the same authors collected a new database, the

Extended Cohn-Kanade Dataset, containing more sequences and some

examples of genuine smiles [Lucey et al. 2010].

The MMI database [Pantic et al. 2005, Valstar and Pantic 2010] is a

constantly growing, web-searchable set of color videos containing both

posed and spontaneous emotions. We selected the subset of (posed)
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videos labeled as one of the six basic emotions, while discarding all oth-

ers labeled only in terms of Action Units. The resulting set is comprised

of 176 videos of 29 people displaying 1 to 6 expressions. The subjects dif-

fer in sex, age, and ethnic background; moreover, facial hair and glasses

are sometimes present. The main difference between the MMI and Cohn-

Kanade databases is that the MMI sequences do not end at the expres-

sion’s apex, but return to a neutral face. Example sequences of surprise

from both datasets are shown in Figure 3.7, with the Cohn-Kanade at

the top and MMI database at the bottom.

As explained in Section 3.3, both databases have been aligned to the eye

center locations. For the Cohn-Kanade database, ground truth manual

annotations are provided by [Lipori 2010], while no such labeling is avail-

able for the MMI database, on which we used the eye tracking method

described in Section 2.3.

Expression tracks need to be labeled with both spatial and temporal

center of the expression. The center in the image plane is assumed to

correspond to the center of the face. The temporal center should ideally

be located at the expression apex, therefore we took the last frame for

the Cohn-Kanade database and the middle frame in the case of the MMI

database. We trained and tested on all frames from the Cohn-Kanade

dataset, which has an average sequence length of 18 frames, while we

selected only 20 frames in the middle of each sequence for the MMI

database, which has an average length of 79 frames.

For all of the following experiments, we performed subject-independent

5-fold cross validations, i.e., making sure that the same subjects did

not occur in both training and test sets, and present here the results

averaged over all five iterations. Forests always contained only 5 trees;

indeed, adding more trees improved the results only slightly.

Among the parameters of the proposed method are the size and shape of

the 3D patches. We ran some experiments varying the patches’ spatial

size and shape, while keeping their number fixed to 100 and the tempo-

ral dimension to 2 frames. In Figure 3.8, the bars represent the recogni-

tion rate as a function of the size and shape of the sampled patches, as

achieved on the Cohn-Kanade database. Larger patches produced better

results than smaller ones. The best results (86.7%) were achieved with

20× 50 patches, i.e., vertical rectangles covering almost half of the face.
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Figure 3.8: Influence of the patch size on the overall recognition rate.

Larger, rectangular patches, give the best results.

Figure 3.9: Recognition accuracy as a function of the number of (20×
50× 2) patches sampled from each sequence during training.

Increasing the number of training patches per sequence did not influ-

ence much the recognition accuracy. Figure 3.9 shows that the accuracy

increased slightly only when moving from 100 to 200 patches, while it

actually decreased when more patches were used. We also tested the

influence of the temporal length of the patches, but did not experience

significant changes in the expression recognition accuracy. All results

shown in the rest of the section were achieved by sampling 200 patches

of size 20× 50× 2.

Figure 3.10 shows the confusion matrix obtained by our method when

applied to the Cohn-Kanade dataset. On average, we recognized the
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Figure 3.10: Confusion matrix for the Cohn-Kanade database, normal-

ized using the provided ground truth eye locations. Expressions such as

disgust and surprise are well recognized, while most of the confusion

arises from the anger/disgust and fear/happiness classes.

Figure 3.11: Recognition rate for the Cohn-Kanade database, as a

function of the percentage of occlusion. The images along the curve help

in understanding the amount of occlusion introduced. Even when 50% of

the face is deleted, the system still performs better than chance (16.7%),

close to 40% recognition rate.
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correct expression 87.1% of the time; in particular, disgust was always

correctly classified. Fear and anger were the most confused labels, mainly

mistaken for happiness, respectively disgust.

To assess the robustness of the method to corrupted test images, we

removed (set to zero) the information in each feature channel falling

under a cuboid. The cuboids were as long as the sequences, and covered

a specific percentage of the image plane. For each sequence, the cuboid

location on the 2D image plane was randomly chosen. We ran 5 trials

for each percentage of occlusion, and present the averaged results in

Figure 3.11. It can be noted how the performance decreases slowly as

the amount of missing data. At 15% occlusion, the accuracy is still

around 70%, falling below 50% only when more than 30% of the face

is removed. Sample frames help visualizing the amount of facial image

removed.

HF [Yeasin06] [Buenaposada08] [Aleksic05]

sur 97.3% 100% 100% 100%

hap 98.9% 96.6% 98.8% 98.4%

sad 92.4% 96.2% 82.0% 96.2%

ang 62.2% 100% 78.4% 70.6%

fea 71.7% 76.4% 73.9% 88.2%

dis 100% 62.5% 87.9% 97.3%

avg 87.1% 90.9% 89.1% 93.6%

Table 3.1: The results of our method (HF) are comparable with other

works on automatic expression recognition. The accuracy is given for

each expression class separately and on average.

Table 3.1 lists the results of our Hough forest-based algorithm (HF) next

the performance of other methods which used the Cohn-Kanade database

and which published their recognition rates for each label. Results are

comparable.

In an attempt to assess the contribution of each feature channel to the

recognition, Figure 3.12 plots the accuracy achieved on the Cohn-Kanade

database (using the ground truth annotations for alignment) when each

feature was used separately and in all their possible combinations. As can

be seen, frame to first optical flow alone gave the best results, followed by
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Figure 3.12: Average recognition accuracy on the Cohn-Kanade

database plotted against single features and their combinations. The

optical flow between the current and the first frame gave the best re-

sults, followed by Gabor filter responses and frame to frame optical flow.

Figure 3.13: Accuracy for each class label, as recognized from the

tracks created thanks to the ground truth annotation (cyan bars on the

left) and automatically extracted by the eye tracker (magenta, right).

Figure 3.14: Results obtained on the MMI database using the set of

features originally employed by [Yao et al. 2010] with the addition of

frame to frame and frame to first optical flow.
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log-Gabor responses and by optical flow computed between consecutive

frames. The combination of all three features led to the best results,

though for a small amount.

Figure 3.15: Confusion matrix for the MMI database. The higher rate

of confusion with respect to the results obtained on the Cohn-Kanade

database can be partly explained by the fact that manual annotations

of the eye locations were not available.

In Figure 3.13, the performance for each class is plotted, depending

on whether the tracks were extracted using the manual ground truth

annotations of the eye locations (cyan bars on the left) or automatically,

using the eye tracker described in Section 2.3 (magenta, on the right).

Results clearly worsened when the fully automatic method was employed,

but not in the same extent for each class. Surprise, happiness, and

sadness were less affected by errors in the tracking than the other classes.

When training and testing on the MMI database, again in a 5-fold cross-

validation fashion and with 200 patches of size 20× 50× 2, we obtained

the confusion matrix shown in Figure 3.15. We notice a higher rate of

misclassification compared to the results achieved on the Cohn-Kanade

database, especially for fear. This could be partly explained by the fact

that manual annotations of the eye centers were not available, but also by

the lack of a precise annotation of the expression center in the sequences.

Also, the expressions in the MMI database are subtler than in the Cohn-

Kanade dataset. On average, our method achieved a recognition rate of

76% on the MMI database and, to the best of our knowledge, we are the
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first ones to attempt at classifying the expressions directly (rather than

Action Units) on this dataset.

Figure 3.14 shows the average results obtained on the MMI sequences

when using the features originally proposed by [Yao et al. 2010], with

the addition of the two kinds of optical flow. The poor results of the

original feature set serves as convincing support for the introduction of

the log-Gabor filter responses, as explained in section 3.3.1

3.5 Conclusion

In this chapter, we investigated the use of a Hough voting method for

facial expression recognition. Our system extends previous work aimed

at human action classification [Gall et al. 2011] to the task of discrim-

inating facial expressions from video sequences, which are subtler and

harder to classify.

We chose features which separately encode the form and motion of the

face, allowing us to capture the subtle differences in the facial expressions

which the original action recognition system could not. We evaluated the

system on two standard databases achieving results comparable to the

state of the art. A valuable feature of Hough voting methods is their ro-

bustness to occlusions, property which we experimentally demonstrated

by synthetically removing parts of the image from the testing sequences.

As for the mouth localization method of Chapter 2, the main limitation

of the proposed system is its current dependence on eye tracking for the

normalization of the expression tracks. This makes our system unusable

when the eyes are not visible. However, robust tracking of a larger

number of facial features might be possible, reducing the sensitivity of

the algorithm to partial occlusions of the face. Such improved tracking

would also allow the application of our Hough voting method to the

recognition of the expression from non frontal facial videos.

Future work includes the investigation of additional image features and

the application of the method to the recognition of more naturalistic

facial expressions or of Action Units activation. Because the system

appears to perform better when using large patches (see Figure 3.8), it

would be interesting to try and directly define the binary tests of the
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forest over the whole normalized face region. In order to be able to

produce a large number of votes, forests would have to contain more

trees. Even though this should not hinder processing time, memory

requirements would be higher.
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Acquisition of a Multimodal

Corpus of Affective

Communication

As computers become ever more ubiquitous tools in our everyday lives,

increasing efforts go into technologies aiming to improve our experience

of the interaction with them. Emotions play a crucial role in human

cognition [Damasio 1995] and artificial agents will never be perceived

as fair interlocutors unless they can read and express feelings, similarly

to how we do it. For these reasons, the field of affective computing

has seen a boost in recent years [Zeng et al. 2009]. Algorithms for

both recognition and synthesis of emotional states are being designed

and developed; however, what is often missing are annotated corpora

displaying affective communication, needed for training and evaluating

such systems. Acquiring such datasets is challenging, as human affective

displays are multimodal, rare, often masked in real life interactions, and

highly context- and culture-related.

When designing the acquisition of a new corpus, a first question to be

addressed is which modalities should be captured. The research commu-

nity has converged towards the idea that affect-aware interfaces should

use several modalities, in a way imitating humans [Jaimes and Sebe 2007,

Sebe et al. 2006, Sebe 2009, Zeng et al. 2007]. Even though emotional

cues can be rather reliably extracted from physiological measurements

(e.g. [Picard 2000]), the invasiveness of these methods can influence the

subject’s state and rule out most application scenarios. Humans, on the

other hand, can easily guess someone’s affective state only from cues
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such as facial expressions, voice modulation, and body pose. Speech and

facial expression, in particular, appear to encode most of the information

used by humans to communicate emotions [Mehrabian 1968] and there-

fore have been often preferred in the computer science community [Zeng

et al. 2009, Sebe et al. 2006].

Another important aspect to be taken into consideration when acquir-

ing affective data is the desired degree of naturalness. A good trade-off

between quality and naturalness needs to be found: Corpora collected in

controlled environments are by definition unnatural, but moving towards

unconstrained settings increases the amount of noise, making the data

unusable for many applications such as visual speech synthesis [Mueller

et al. 2005, Zhang et al. 2004, Edge et al. 2009, Deng and Neumann

2007]. Many studies on affective computing concentrated so far on posed

data, which is proven to differ from spontaneous behavior [Whissell 1972,

Frigo 2006, Valstar et al. 2007]. An affective-aware agent will be of no

use, or even harm, if it can recognize uninteresting expressions but fails

to identify key emotions which we instead can easily spot. In cases

where the accuracy of the data is crucial, e.g ., for computer graphics

purposes, induction methods represent a good compromise, and the lit-

erature is rich of examples where videos [Gross and Levenson 1995],

still photographs [Bradley et al. 1996], music [Clark 1983], or manip-

ulated games [Scherer et al. 1998] have been used to elicit emotions.

These methods are far from being a replacement of pure naturalism, but

they are well established and have shown to evoke a range of authentic

emotions in a laboratory environment [Cowie and Cornelius 2003], in

particular the use of videos [Westrmann et al. 1996].

The evaluation and annotation of the recorded data requires a definition

of emotion, which is still an open issue in itself. Quoting from [Izard

2009]:

The term “emotion” has defied definition mainly because it is

multifaceted and not a unitary phenomenon or process. Use

of the unqualified term “emotion” makes for misunderstand-

ings, contradictions, and confusions in theory and research.
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Many of the works on affective computing so far are limited to the six

basic emotions of Ekman [Ekman 1971]. These few discrete categories

actually stand for a family of emotions, bounded to Ekman’s stringent

criteria [Cowie et al. 2002]. Moreover, everyday experience suggests that

emotions do come in combinations, common examples being a sad versus

a joyful surprise. A popular alternative are continuous representations

where affective states are mapped onto a low-dimensional space, e.g .,

a 2D space based on activation or arousal (strength) and evaluation or

valence (positive vs. negative) [Russell 1980, Craggs and Wood 2004].

A more complex wheel of emotions was suggested in [Plutchik 2001],

which consisted of 8 basic bipolar emotions (joy versus sorrow, anger

versus fear, acceptance versus disgust and surprise versus expectancy)

and 8 advanced emotions each composed of 2 basic ones. In general,

collapsing the multidimensional space of possible emotional states onto

a homogeneous, low-dimensional space inevitably incurs in information

loss, and different ways of performing the collapse lead to different re-

sults. Such representations are also not intuitive and difficult to use for

inexperienced users.

In this chapter, we present a framework for collecting and annotating

a novel multimodal corpus aimed at the research fields of automatic

synthesis and recognition of expressive verbal communication. Together

with speech, we acquire high-quality dense dynamic 3D facial geometries.

The 3D information is highly desirable in the mentioned research fields

for its informative power, allowing to extract features more easily and

reliably than 2D video.

Because of the necessary recording setup, we settle for elicited emotions

and resort to video clips to induce affective states, as it was done, among

others, in [Sebe et al. 2007]. While the video clips provide a context in

the spirit of film-based induction methods, the repetition of the emo-

tional sentences serves in itself as an eliciting method [Velten 1968]. We

also introduce a consistency check by asking our speakers to evaluate

the emotion in the video clip. Similarly to [Morlec et al. 2001], we label

the corpus using a list of affective adjectives to be weighted according to

their perceived strength, allowing multiple labels for each sentence. Both

the eliciting videos and the recorded data were evaluated by independent

online surveys.
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The resulting BIWI 3D Audiovisual Corpus of Affective Communica-

tion, B3D(AC)2, is valuable for applications like emotional visual speech

modeling, but also for view-independent facial expression recognition, or

audio-visual emotion recognition. The corpus is made available to the

community for research purposes 1.

4.1 Related Work

One way to categorize databases for training and evaluating affection-

aware systems is based on whether the recorded emotions are natural-

istic, artificially induced, or fully posed. A comprehensive overview of

the existing audio-visual corpora can be obtained from [Cowie et al.

2005], [Douglas-Cowie et al. 2007], and [Zeng et al. 2009]. In this sec-

tion, we list some of the available datasets which can be related to ours,

with a specific focus on affective communication.

The HUMAINE Network of Excellence has produced important steps

forward in the field of affective computing, gathering a collection of

databases [Douglas-Cowie et al. 2007] containing a large number of

audio-visual recordings, divided into naturalistic and elicited.

Among the naturalistic databases, the Vera am Mittag dataset [Grimm

et al. 2008] consists of recordings from a German TV talk show, contain-

ing spontaneous emotional speech coming from authentic discussions.

Most of the data was labeled by a large number of human evaluators us-

ing a continuous scale for three emotion primitives: valence, activation,

and dominance. The Belfast naturalistic database [Douglas-Cowie et al.

2003] contains TV recordings and interviews judged relatively emotional,

annotated using the FEELTRACE [Cowie and Cornelius 2003] system.

The EmoTV corpus [Martin et al. 2009] contains interactions extracted

from French TV interviews, both outdoor and indoor, with a wide range

of body postures.

Moving on to elicited datasets, the Sensitive Artificial Listener (SAL)

database [Douglas-Cowie et al. 2007] contains audio-visual recordings of

humans conversing with a computer. The SAL interface is designed to

let the user work through a range of emotional states. The SmartKom

1www.vision.ee.ethz.ch/datasets/
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database [Türk 2001], comprises recordings of people interacting with a

machine asking them to solve specific tasks provoking different affective

states. In the Activity Data and Spaghetti Data sets [Douglas-Cowie et

al. 2007], volunteers were recorded while respectively engaging in out-

door activities and feeling inside boxes containing various objects (e.g .,

spaghetti or buzzers going off when touched). The subjects recorded the

emotions they felt during the activities. The eWiz database [Morlec et

al. 2001] contains 322 sentences pronounced by the same speaker with

varying prosodic attitudes suggested by reading a text specifying the

affective context. In [Zara et al. 2007], the EmoTaboo protocol is in-

troduced, consisting in letting pairs of people (one being a confederate)

play the game “Taboo” while their faces, upper bodies, and voices are

recorded.

The work of [Sun et al. 2011] recently introduced a multimodal database

focused on mimicry and its relationship with human affect. The 40 par-

ticipants were recorded with 18 synchronized audio and video sensors

while engaging in a political discussion and in a role-playing game, al-

ways in pair with a confederate. The corpus is annotated with dia-

logue acts, turn-takings, affect, body movements and facial expressions;

additionally, the participants self-reported their felt experiences. The

MAHNOB-HCI database [Soleymani et al. 2012] was recorded in re-

sponse to affective stimuli. The database contains synchronized record-

ings of face videos, audio, and physiological signals coming from the pe-

ripheral and central nervous system (ECG, GSR, respiration amplitude

and skin temperature). The 27 participants watched eliciting emotional

videos, self-reporting their emotions using arousal, valence, dominance,

predictability, as well as affective keywords.

Going towards acted corpora, the GEMEP corpus [Bänziger and Scherer

2007] comprises recordings of the voices, faces, and full bodies of profes-

sional stage actors uttering meaningless sentences, following the method

of [Banse and Scherer 1996]. The set of displayed emotions is an ex-

tension of the six basic ones, and the actors were guided by reading

introductory scenarios for each emotion. In [Chen 2000], students were

filmed while pronouncing a set of sentences, each representing one of

eleven affective states, once again an extension of the six basic emotions.

Annotating video recordings is difficult and time consuming. For ex-

ample, the popular Facial Action Coding System (FACS) labeling [Ek-
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man and Friesen 1978] takes a trained expert about two hours for one

minute of video footage. An alternative are marker-based motion cap-

ture systems, used to obtain 3D information. An example use of mo-

tion capture is the IEMOCAP database [Busso et al. 2008], where ac-

tors were recorded in dyadic sessions with markers on the face, head,

and hands while performing affective communication scenarios. Motion

capture techniques were also employed to record actors engaged in af-

fective speech for corpora aimed at visual speech modeling for synthe-

sis purposes, as in [Cao et al. 2005], [Beskow and Nordenberg 2005],

and [Wampler et al. 2007]. Despite the accuracy and robustness of such

methods, placing markers on someone’s face is error prone and might

influence the subject’s emotional state like other invasive physiological

measurements.

When dense 3D face geometry data is desired, most of the available

datasets only target face recognition and therefore contain only still

scans of neutral faces. Exceptions are the databases of [Yin et al.

2006] and [Yin et al. 2008], where a large number of subjects were

recorded by a 3D scanner while posing the six basic emotions (with-

out speech), only the latter containing dynamics. The Bosphorus 3D

face database [Savran et al. 2008] also includes facial expressions, com-

posed of selected subsets of Action Units and the six basic emotions.

The recently proposed 3D Relightable Facial Expression (ICT-3DRFE)

database of [Stratou et al. 2011] focuses on illumination invariance: 3D

models of 23 subjects performing 15 different expressions (FACS anno-

tated) come together with photometric information allowing for photo

realistic rendering. Also the database of [Cosker et al. 2011] is FACS

annotated and contains dynamic 3D facial expressions of 10 subjects

performing between 19 and 97 different AUs, both individually and in

combination.

To the best of our knowledge, our corpus represents the first dataset

combining audio and dense, dynamic 3D facial deformations of affective

communication.
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4.2 Data Acquisition

In order to simultaneously record audio-visual speech data, we employed

the real-time 3D scanner described in [Weise et al. 2007] and a studio

condenser microphone. To keep the noise level as low as possible, we

acquired the data in an anechoic room, with walls covered by sound

wave-absorbing materials. Figure 4.1 shows the setup, with a speaker

being scanned while watching an eliciting video on the screen.

4.2.1 Corpus Definition

Our database consists of 40 short English sentences extracted from fea-

ture films. The clips were selected by the authors, trying to cover a

wide range of emotions and ensuring that the speech was clear, without

music or other voices in the background. The movie clips do not just

contain the sentence to be pronounced, but are longer (about 30 seconds

on average) and are supposed to build the emotional state in the viewer.

Our volunteers satisfied the sole requirement of being native English

speakers: a total of 14 subjects, 8 females and 6 males, aged between

21 and 53 (average 33.5); example identities are shown in Figure 4.2.

Each sentence was recorded twice: with and without emotion. After

removing some wrong recordings, we got 1109 sequences, 4.67 seconds

long on average.

4.2.2 Recording Protocol

Each speaker sat alone in the anechoic chamber, in front of the scan-

ner and the microphone, while the authors could give instructions and

control the recordings from a separate room.

For the first part of the corpus, the speaker was asked to read the sen-

tences from text displayed on a computer screen, keeping a neutral tone.

In a second stage, the speaker watched the eliciting video and was asked

to rate its emotional content by means of a paper questionnaire, as ex-

plained in Section 4.3.1. The videos could be seen more than once if

requested. In order to capture the emotional version of each sentence,
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Figure 4.1: Recording setup: one speaker sits in front of the 3D scanner

in the anechoic room while watching one of the eliciting videos clips.

Figure 4.2: Examples of the different identities present in the corpus.
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the speaker was finally asked to repeat the sentence using the emotional

tone perceived from the video.

4.2.3 Video Processing

The real-time 3D scanner was employed to capture detailed 3D geometry

and texture of the performances of each speaker, as shown by the first

two images in figure 4.3. Facial expression analysis, however, requires

full spatial and temporal correspondences of the 3D data. To achieve

this goal, we used the two-step procedure introduced in [Weise et al.

2009a]: First, a generic template mesh is warped to the reconstructed

3D model of the neutral facial expression of a speaker. Second, the

resulting personalized template is automatically tracked throughout all

facial expression sequences.

Figure 4.3: From left to right, the image shows the 3D reconstruction

of a person’s face, the corresponding texture mapped on it, and the

personalized face template deformed to fit the specific frame.

Personalized Face Template

In order to build a person-specific face template, each speaker was asked

to turn the head with a neutral expression and as rigidly as possible in

front of the real time 3D scanner. The sequence of scans was registered

and integrated into one 3D model using the online modeling algorithm

proposed in [Weise et al. 2009b]. Small deformations arising during head



62
4. Acquisition of a Multimodal Corpus of Affective

Communication

motion violate the rigidity assumption, but in practice do not pose prob-

lems for the rigid reconstruction. Instead of using the 3D model directly

as a personalized face template, a generic face template was warped to

fit the reconstructed model. Besides enabling a hole-free reconstruction

and a consistent parametrization, using the same generic template has

the additional benefit of providing full spatial correspondence between

different speakers.

Warping the template to the reconstructed 3D models was achieved by

means of non-rigid registration, where for each mesh vertex vi of the

generic template a deformation vector di is determined in addition to a

global rigid alignment. This is formulated as an optimization problem,

consisting of a smoothness term minimizing bending of the underlying

deformation [Botsch and Sorkine 2008], and a set of data constraints min-

imizing the distance between the warped template and the reconstructed

model. As the vertex correspondences between generic template and re-

constructed model are unknown, closest point correspondences are used

as approximation similarly to standard rigid ICP registration. A set of

manually labeled correspondences were used for the initial global align-

ment and to start the warping procedure. The landmarks were mostly

concentrated around the eyes and mouth, but a few correspondences

were selected on the chin and forehead to match the global shape. The

manual labeling was necessary only once per speaker and took at most a

couple of minutes. The resulting personalized template accurately cap-

tures the facial 3D geometry of the corresponding person.

The diffuse texture map of the personalized template was automatically

extracted from the rigid registration scans by averaging the input tex-

tures. The face was primarily illuminated by the 3D scanner, and we

could therefore compensate for lighting variations using the calibrated

position of the projection. Surface parts likely to be specular were re-

moved based on the half angle. The reconstructed texture map is typi-

cally over smoothed, but sufficient for the tracking stage.

Facial Expression Tracking

The personalized face templates were used to track the facial deforma-

tions of each performance. For this purpose, non-rigid registration was
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Figure 4.4: Example frames from the database, with and without tex-

ture. The recorded data is shown on the right, while the deformed generic

templates are rendered on the left.
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employed, in a similar manner as during the template creation, minimiz-

ing the distances between the template vertices and the 3D scans. To

ensure temporal continuity, optical flow constraints were also included in

the optimization as the motion of each vertex from frame to frame should

coincide with the optical flow constraints. During speaking, the mouth

region deforms particularly quickly, and non-rigid registration may drift

and ultimately fail. This was compensated for by employing additional

face-specific constraints such as explicitly tracking the chin and mouth

regions, making the whole process more accurate and robust to fast de-

formations. Figure 4.4 shows visual examples of the corpus where the

personalized models are adapted to specific frames.

4.2.4 Audio Processing

Different affective states are manifested in speech by changes in the

prosody, see [Schröder 2008] for an overview. As certain prosodic dif-

ferences are small but still audible, a careful setup of an audio-visual

corpus requires accurate extraction of prosodic parameters from the au-

dio signal.

Speech prosody can be described at the perceptual level in terms of pitch,

sentence melody, speech rhythm, and loudness. The physically measur-

able quantities of a speech signal are the following acoustic parameters:

fundamental frequency (F0), segment duration, and signal intensity. F0

correlates with pitch and sentence melody, segment duration correlates

with speech rhythm, and signal intensity with loudness.

The annotation process necessary for obtaining the physical prosodic

parameters of the utterances in the corpus included a number of steps:

First, the sentence’s text was transcribed into the phonological rep-

resentation of the utterance. Then accurate phoneme segmentation,

fundamental frequency extraction, and signal intensity estimation were

achieved by analyzing the speech data. In the following, we give an

overview of the extraction of fundamental frequency, signal intensity,

and segment duration, for which we used the automatic procedures pro-

vided by SYNVO Ltd [Synvo 2012].
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Figure 4.5: A sentence of the corpus (“Come smartly now”), neutrally

pronounced. Phoneme segmentation, spectrogram, signal intensity con-

tour, fundamental frequency contour of the speech signal, and sample

faces are shown from bottom to top.
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Figure 4.6: Same sentence as Figure 4.5, pronounced by the same

speaker, but after having seen the eliciting video. The emotional utter-

ance clearly shows higher signal intensity and a high rising fundamental

frequency contour at the second syllable, in contrast to the low falling

one of the neutral utterance shown in Figure 4.5. Syllable nucleus dura-

tions also appear longer in the emotional version of the sentence. Also

the 3D faces at the top suggest higher emotional content.



4.2. Data Acquisition 67

Transcription

The phonological representation contains the sequence of phonemes for

the sentences in the corpus, the syllables’ stress level, the position and

strength of phrase boundaries, plus the indicators of phrase types. Initial

phonological representations of the sentences were obtained from the

text version of the corpus, thanks to the transcription component of

the text-to-speech system described in [Romsdorfer and Pfister 2007].

These initial phonological representations contain the standard phonetic

transcription of the sentences, or canonical phonetic transcription.

The phonological part (phrase type, phrase boundary, and sentence ac-

centuation) of the automatically generated representations was then

adapted to the speech signals. Neural network-based algorithms were

employed for automatic phrase type, phrase boundary, and syllable ac-

cent identification [Romsdorfer 2009].

i: I U u:

e

vowels @

q 3 3: V O:

A A: Q

diphthongs @ U a I a U e I E @ I @ O I o U U @

p p h b t t h d k k h g

m n N

consonants r

f v T D s z S Z x h

j w

l

affricates t S d Z

pauses c u c v /

Table 4.1: Segment types of English phonemes and speech pauses used

for transcription of the speech data of the audio-visual corpus.
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Fundamental Frequency Extraction

Fundamental frequency (F0) values of the speech data were computed

every 10 ms using a pitch detection algorithm based on combined infor-

mation taken from the cepstrogram, the spectrogram, and the autocor-

relation function of the speech signal [Romsdorfer 2009]. Signal sections

judged as unvoiced by the algorithm were assigned no F0 values. Fig-

ures 4.5 and 4.6 show examples of such fundamental frequency contours.

Signal Intensity Extraction

Signal intensity values of the speech are computed every 1 ms. We used

the root mean square value of the signal amplitude calculated over a

window of 30 ms duration. Signal intensity contours of the same sentence

pronounced by the same speaker in neutral and emotional mode are

displayed in figures 4.5, respectively 4.6. The intensity contours of the

two utterances suggest the difference in their emotional content.

Segment Duration Extraction

An accurate extraction of phoneme and speech pause durations requires

an exact segmentation of the speech into adjacent, non-overlapping seg-

ments, and a correct assignment of labels to these segments indicating

the segment type. This assignment is commonly termed “labeling”.

Because the phonological representation contains the standard phonetic

transcription of an utterance, it is convenient to use this standard tran-

scription for automatic segmentation and labeling. However, a close

phonetic transcription, also referred to as matched phonetic transcrip-

tion, indicating pronunciation variants made by the speaker, results in a

much better segmentation and labeling.

Segment Types

Segment types correspond to the phoneme types determined in the tran-

scription. Plosives were additionally segmented into their hold and burst

parts, which were labeled separately. While the burst part of a plosive
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was denoted by the same symbol used for the plosive phoneme type, a

“c” denoted the hold part, also called closure or preplosive pause. Speech

pauses corresponding to phrase boundaries were labeled with the sym-

bol “/”. For a plosive following a speech pause, no preplosive pause was

segmented. Table 4.1 lists all segment types used for the transcription.

Automatic Segmentation Procedure

Manual transcription and segmentation of the speech would have taken

too much time. We applied a segmentation procedure first presented

in [Romsdorfer 2004], which simultaneously delivers a highly accurate

phonetic segmentation and a close phonetic transcription.

This segmentation procedure relies on iterative Viterbi search for best-

matching pronunciation variants and on iterative retraining of phoneme

hidden Markov models (HMMs). This procedure does not require elabo-

rate features, just standard mel-frequency cepstral coefficients (MFCCs)

and voicing information.

The segmentation was performed in two steps:

1. Context-independent, three-state, left-to-right, phoneme HMMs

with 8 Gaussian mixtures per state were trained on the speech

data of the corpus using the standard phonetic transcription of the

utterances by applying a so-called “flat start” initialization [Young

et al. 1999].

2. A small set of language- and speaker-dependent pronunciation vari-

ation rules was applied to the canonical transcriptions and a recog-

nition network generated for each utterance. Such a network in-

cluded all pronunciations allowed by the rules.

A Viterbi search then determined the most likely path through the net-

works and thus delivered an adapted phonetic transcription of each ut-

terance. These new transcriptions were used to retrain the HMMs that

were in turn used in the next iteration for the Viterbi search. The proce-

dure stopped when the number of insertions, deletions, and replacements
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of phonemes between the current and the previously adapted transcrip-

tions fell below some predefined threshold. Details on this segmentation

procedure can be found in [Romsdorfer and Pfister 2005].

Because the length of the analysis window restricts the accuracy of

boundary detection of certain segments, e.g ., preplosive pauses, an ad-

ditional post-processing step was added to the second stage, correcting

segment boundary placement of specific segment classes based on the

speech signal amplitude and voicing information.

4.3 Evaluation

In order to assess the quality of the corpus, we resorted to human ob-

servers for evaluating both the eliciting movie clips (4.3.1), and the ac-

quired data in the form of videos containing renderings of the 3D tem-

plate tracking coupled with the original audio signal (4.3.2). In Sec-

tion 4.3.3, a preliminary analysis of the data is presented.

4.3.1 Eliciting Videos Evaluation

The speakers themselves were asked to rate the induction videos, just

after having watched them and before pronouncing the emotional ver-

sion of the sentences. A paper form was filled out, allowing grades be-

tween 0 and 5 to a set of 11 suggested emotional labels (“Negative”,

“Anger”, “Sadness”, “Stress”, “Contempt”, “Fear”, “Surprise”, “Ex-

citement”, “Confidence”, “Happiness”, and “Positive”), where 0 means

“I don’t know”, 1 corresponds to “Not at all”, and 5 to “Very”. An

additional field was provided, allowing the suggestion of new labels con-

sidered appropriate for the clip. The original list of labels was built

starting from the six basic emotions and adding/removing labels by a

preliminary screening of the eliciting videos (e.g ., “Disgust” was never

observed and thus removed). We do not claim that these labels repre-

sent the space of emotions in general, only that they are adequate for

describing the selected video clips.

The eliciting videos were also shown to a larger audience, by means of

an online survey, presenting the same structure of the paper form given
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to the speakers. The order was randomized, allowing the user to quit

the evaluation at any time. In total, 122 people took part in the survey

(20.5% of which were native English speakers), labeling over 8 video

clips each on average. The mean inter-rater correlation was 0.622 for the

speakers and 0.646 for the online survey. We use the Pearson product-

moment correlation coefficient throughout the chapter: ρxy = cov(X,Y )
σxσy

.

Figs. 4.7 and 4.8 compare the results of the two separate evaluations of

the eliciting clips: the cyan bars (left) correspond to the answers given

by the speakers, while the magenta bars (right) are the results of the

online survey. In Figure 4.7, the histograms show how many times (in

percentages of all movie clips) a label was given the grade on the x-

axis. The distributions of the grades are very similar, indicating that

the laboratory environment had only a minor impact on the perception

of affective states.

In Figure 4.8(a), for each emotional label, mean and standard deviation

of its perceived strength are plotted over all sentences. Figure 4.8(b)

compares the number of sentences labeled as the corresponding emotion

on the x-axis (i.e., with an average grade > 3), giving an idea of the

affective content of the eliciting videos. In general, we note a predom-

inance of negative labels, and, for the online survey, a slightly higher

standard deviation and a tendency to give higher grades to negative

emotions. Fear and contempt were the least perceived affective states

from our eliciting videos. The most suggested additional labels were

“Nervousness”, “Disappointment”, and “Frustration”.

Some of the labels naturally depend on each others, as can be seen in

Figure 4.9, plotting the correlation between the evaluations of the online

survey, where the brighter upper-left and lower-right corners indicate a

high correlation among positive and negative states. Correlation exists

between some of the basic emotions (e.g., “Sadness” and “Fear”, or

“Surprise” and “Happiness”), indicating that a single label procedure

based on the basic emotions would have been insufficient to describe the

affective states present in our eliciting videos, and thus supporting our

choice of an expanded label set.

Figure 4.10 tries to judge the suggested affective states: For each label,

the bar represents how many times (in percentage of all evaluations) it

was given the value 0 (“I don’t know”). “Contempt” and “Confidence”
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Figure 4.7: The histograms show the contents of the eliciting videos,

each graph corresponds to one of the allowed eliciting adjectives. The

bars show how many times (in percentage) the label was given the cor-

responding grade (0 to 5, on the x-axis) by the speakers (left, cyan),

respectively by the online survey users (right, magenta)

(a)

(b)

Figure 4.8: The eliciting videos evaluated by the speakers (cyan-left)

and by users of the online survey (magenta-right); for each emotional

label, (a) shows mean and standard deviation of the received grades,

while (b) represents the number of sentences given an average grade > 3

for that label.
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Figure 4.9: Correlations between the affective adjectives, given the

evaluations of the eliciting videos in the online survey. There is a high

correlation (bright fields) among positive and negative emotions.

Figure 4.10: For each label (on the x-axis) the number of times it was

rated 0 (“I don’t know”) is shown in percentage of all the evaluations of

the eliciting videos by the online survey. “Contempt” and “Confidence”

were the labels of which people were least certain.

were given zeros most often, possibly being the states which the observers

of the online survey were least certain of.

4.3.2 Corpus Evaluation

In order to assess the quality of the acquired data, videos were created

containing renderings of the tracked 3D faces and the original audio

signals. A new survey was designed, where the suggested emotional

label set was enriched by the three states most commonly suggested

during the evaluations of the eliciting videos (“Nervousness”, “Disap-

pointment”, “Frustration”), and by the additional label “Emotional”.
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Figure 4.11: Screenshot of the anonymous online survey set up for

evaluating the contents of the corpus.
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(a)

(b)

Figure 4.12: Evaluations of the neutral (blue-left, read from text) and

emotional (green-right, pronounced after having watched the eliciting

video) sentences of the corpus. For each label, mean and standard de-

viation of the received grades are plotted in (a), while (b) shows the

percentage of sentences given an average grade > 3 for that label. The

plots show that the emotional part of the corpus was indeed evaluated

as such by the anonymous observers.

The anonymous users of the survey were presented with the sentences

in a randomized order; Figure 4.11 shows a screen shot of the survey

page, with the video and the available annotations. In the following, we

present results related to sentences which were rated at least 3 times.

The plots in Figure 4.12 compare how the users of the survey (over

800 people) perceived the two parts of the corpus, i.e., the sentences

read from text (blue-left) and pronounced after watching the eliciting

video (green-right). In (a), average grade and standard deviation over all

sentences are given for each label, while in (b) the percentage of sentences

which were given an average grade greater than 3 for the label on x-axis is

shown. There is evidence of a general increase in the grades given to the
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Figure 4.13: Correlations between the evaluations of the eliciting videos

(y-axis) and of the videos containing the renderings of the emotional

sentences of the corpus (x-axis). The correlation (bright fields) among

positive and negative emotions is visible.

Figure 4.14: For each corpus sentence, the correlation is shown between

the average evaluation of the corresponding eliciting video and the aver-

age evaluation of the sentence pronounced by the speakers after watching

the video. High values correspond to agreement in the evaluations.

Figure 4.15: Number of “I don’t know” (in percentage) received by all

emotional sentences pronounced by the speaker specified on the x-axis
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emotional labels for the sentences pronounced after watching the eliciting

videos, showing the effectiveness of the induction method; however, the

result is unclear for labels like “Contempt” and “Confidence”, supporting

the intuition of Figure 4.10.

Figure 4.13 compares the sentences uttered after watching the eliciting

videos and the videos themselves by plotting the correlation between the

subset of labels shared by the two surveys. Correlation is still noticeable

among positive and negative emotions, but not as much as in Figure 4.9,

e.g ., for “Confidence”. Figure 4.14 shows the correlation between the

evaluations of an eliciting video and the evaluations of the corresponding

sentence as pronounced by the speakers after watching the video. Most

of the 40 utterances show high correlation (1 means full agreement),

but some specific sentences show lower agreement, notably number 27,

where apparently the emotional state perceived from the video was not

similar to the one conveyed by the speakers’ performance. This is not

surprising since the eliciting videos are longer than the sentences in the

corpus and thus can more easily build the emotional states in the viewer.

Also the absence of eyes, facial texture, and rest of the body, makes the

renderings of the tracked faces less effective in conveying the emotions.

Figure 4.15 shows the number of times (in percentage) “I don’t know”

was chosen when evaluating the emotional sentences pronounced by the

speaker specified on the x-axis. Speaker number 8 was given zeros about

10% of the time, appearing to be the least effective in conveying the

affective states.

4.3.3 Data Analysis

In order to perform some preliminary studies on the acquired data and

demonstrate possible uses of it, we proceeded by selecting as neutral the

utterances with an average grade smaller than 3 for the label “Emo-

tional”. For each other affective label, we considered sequences which

were given a mean grade greater than 3 for that label. The plots in

Figure 4.16 show the relations of the affective adjectives and simple au-

dio and video features, averaged over all sequences labeled according to

the above rule. In particular, Figure 4.16 (a) refers to the fundamen-

tal frequency, suggesting that positive emotions manifest themselves in



78
4. Acquisition of a Multimodal Corpus of Affective

Communication

higher values of F0. Figure 4.16 (b) shows the mean first derivatives

computed over the magnitude of the rigid translations of the heads, i.e.,

average head velocity. Emotional sentences present on average higher

velocities, especially for affective states like “Anger” and “Frustration“.

These plots indicate that a single feature is not enough to recognize the

affective state but that already several low-level audio-visual cues can

give some evidence for the emotion.

Figure 4.17 demonstrates that some correlation exists between auditory

and visual channel of our corpus. The plots show the correlation (over all

acquired frames) between F0, first 12 mel frequency cepstral coefficients

(m0 - m11), and mean Gaussian curvature calculated over the facial

surfaces at the cheeks, mouth, and eyebrows regions (c c, c m, and c b),

for the sentences labeled as ”Sad“ (a), and ”Happy“ (b). As expected,

there is strong correlation (bright areas) within features extracted from

the same modality (especially for some of the audio features). How-

ever, correlation is also present between features extracted from different

modalities. Note that the strength of the correlation between audio and

visual features differs for the two labels.

Thanks to the accurate phoneme segmentation and spatio-temporal cor-

respondences among all facial scans, we arranged the 3D face scans into

groups corresponding to particular phonemes, and thus built a statis-

tical model of the phonemes’ visual appearance (visemes). Figure 4.18

shows the result of applying Principal Component Analysis to the scans

corresponding to the phoneme “I”, as uttered by the same subject. The

three rows show the three main modes of variation observed in the data,

with the average in the middle and the faces generated by setting the

corresponding weights to −3 std. on the left, and respectively +3 std.

on the right. The example suggests that most of the variation spanned

by the first modes corresponds to changes in the expressiveness of the

speech (coarticulation effects are reduced to a minimum by selecting the

central frame for each phoneme segment). This simple example shows

the power of our facial representation, which paves the way for automatic

visual speech synthesis and recognition.
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(a)

(b)

Figure 4.16: (a) F0 averaged over each adjective (x-axis), i.e., over

the sentences with a mean grade > 3 for that label. (b) Mean head

translation velocity for sequences labeled as the adjectives on the x-axis.

(a)

(b)

Figure 4.17: Correlation between audio (F0, m0 - m11) and geometric

features (c c, c m, and c b) for (a) “sad”, and (b) “happy” sentences.

Correlation is present both within and across the two modalities.
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Figure 4.18: First three modes of the PCA model of the phoneme

“I”. The middle column shows the average face, while the left and right

columns represent the result of setting the mode’s weight to −3 std. and

+3 std., respectively.
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4.4 Conclusion

This chapter presented an audio-visual corpus comprised of affective

speech and corresponding dense dynamic 3D face geometries. We also

explained in details the system which we employed for the corpus’ ac-

quisition and automatic annotation. The setup was designed for the

recording of high quality data, targeting applications like visual speech

modeling for synthesis and recognition purposes.

The recordings of naturalistic emotions being unfeasible in the required

studio environment, we resorted to eliciting videos to induce the affective

states in the speakers. Our corpus stands out from all currently available

datasets, which are either completely posed, limited to dynamic facial

expressions without speech, or lacking 3D information.

The corpus comprises 1109 sentences uttered by 14 native English speak-

ers, in the form of audio plus dense dynamic face depth data. For the

speech signal, a phonological representation of the utterances, phoneme

segmentation, fundamental frequency, and signal intensity are provided.

The depth signal is converted into a sequence of 3D meshes, provid-

ing full spatial and temporal correspondences across all sequences and

speakers, a vital requirement for generating advanced statistical models

which can be used for animation or recognition applications.

Current time-consuming steps of our setup are the recording of the raw

data, which takes about 1.5 hours for 80 short sentences spoken by one

person, and the evaluation of the affective states in the processed data.

While the recording process cannot be speeded up, the evaluation was

widely spread using a web-based survey.

Although the evaluation shows that similar affective states are perceived

by human observers when watching the eliciting videos and the processed

data from the corpus, the used induction method is not a replacement

of naturalism. This is the price to pay for high quality data. Another

limitation is the fact that the 3D visual modality does not include eyes,

eyelids, inner mouth, and other body parts beside the face. The raw 3D

data being part of the corpus, better templates could be used to track

the faces and fill some of the above gaps.





5
Random Forests for Real

Time 3D Face Analysis

Despite recent advances, people still interact with machines through de-

vices like keyboards and mice, which are not part of natural human-

human communication. As people interact by means of many channels,

including body posture and facial expressions, an important step towards

more natural interfaces is the visual analysis of the user’s movements by

the machine. Besides the interpretation of full body movements, as done

by systems like the Kinect for gaming, new interfaces would highly ben-

efit from automatic analysis of facial movements.

Recent work has mainly focused on the analysis of standard images or

videos; see the survey of [Murphy-Chutorian and Trivedi 2009] for an

overview of head pose estimation from video. The use of 2D imagery is

very challenging though, not least because of the lack of texture in some

facial regions. On the other hand, depth-sensing devices have recently

become affordable (e.g ., Microsoft Kinect or Asus Xtion) and in some

cases also accurate (e.g ., [Weise et al. 2007]).

The newly available depth cue is key for solving many of the problems

inherent to 2D video data. Yet, 3D imagery has mainly been leveraged

for face tracking [Weise et al. 2009a, Weise et al. 2011, Breidt et al. 2011,

Cai et al. 2010], often leaving open issues of drift and (re-)initialization.

Tracking-by-detection, on the other hand, detects the face or its features

in each frame, thereby providing increased robustness.

The definition of 3D head pose estimation generally means localizing

a specific facial feature point (e.g ., the nose) and determining the head
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orientation (e.g ., as Euler angles). When 3D data is used, most methods

rely on geometry to localize prominent facial points like the nose tip [Lu

and Jain 2006, Chang et al. 2006, Sun and Yin 2008, Breitenstein et

al. 2008, Breitenstein et al. 2009] and thus becoming sensitive to its

occlusion. Moreover, most of the available algorithms are either not

real time, rely on some assumption for initialization like starting with a

frontal pose, or cannot handle large rotations.

We propose to use random regression forests for real time head pose esti-

mation and facial feature localization from depth images. We introduce

a voting framework where patches extracted from the whole depth image

can contribute to the estimation task, similarly to what was presented

in chapters 2 and 3. The proposed method does not rely on specific

hardware and can easily trade-off accuracy for speed. We estimate the

desired, continuous parameters directly from the depth data, through a

learnt mapping from depth to parameter values. Our system works in

real time, without manual initialization. In our experiments, we show

that it also works for unseen faces and that it can handle large pose

changes, variations in facial hair, and partial occlusions due to glasses,

hands, or missing parts in the 3D reconstruction. It does not rely on

specific features like the nose tip.

Random forests show their power when using large datasets, on which

they can be trained efficiently. Because the accuracy of a regressor de-

pends on the amount of annotated training data, the acquisition and

labeling of a training set are key issues. Depending on the expected

scenario, we either synthetically generate annotated depth images by

rendering a face model undergoing large rotations, or record real se-

quences using a consumer depth sensor, automatically annotating them

using state-of-the-art tracking methods.

A preliminary version of this chapter was published in [Fanelli et al.

2011a], where we introduced the use of random regression forests for real-

time head pose estimation from high quality range scans. In [Fanelli et

al. 2011b], we extended the forest to cope with depth images where the

whole body can be visible, i.e., discriminating depth patches that belong

to a head and only using those to predict the pose, jointly solving the

classification and regression problems involved. In this chapter we pro-

vide a thorough experimental evaluation and extend the random forest
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framework with the important localization of several facial landmarks

on the range scans.

5.1 Related work

Here we present existing works related to head pose estimation and facial

features detection. Methods related to random forests were listed in

Sec. 2.1.1.

5.1.1 Head pose estimation

With application ranging from image normalization for recognition to

driver drowsiness detection, automatic head pose estimation is an im-

portant problem. Several approaches have been proposed in the lit-

erature [Murphy-Chutorian and Trivedi 2009]; before introducing 3D

approaches, which are more relevant for our work, we present a brief

overview of algorithms that take 2D images as input. Methods based on

2D images can be subdivided into appearance-based and feature-based

classes, depending on whether they analyze the face as a whole or instead

rely on the localization of some specific facial features.

2D Appearance-based methods. Such methods usually discretize

the head pose space and learn separate detectors for subsets of poses [Jones

and Viola 2003]. The works of [Chen et al. 2003] and [Balasubramanian

et al. 2007] present head pose estimation systems with a specific focus

on the mapping from the high-dimensional space of facial appearance to

the lower-dimensional manifold of head poses. The latter paper consid-

ers face images with varying poses as lying on a smooth low-dimensional

manifold in a high-dimensional feature space. The proposed Biased Man-

ifold Embedding uses the pose angle information of the face images to

compute a biased neighborhood of each point in the feature space, prior

to determining the low-dimensional embedding. In the same vein, [Os-

adchy et al. 2005] instead use a convolutional network to learn the map-

ping, achieving real time performance for the face detection problem,

while also providing an estimate of the head pose. A very popular fam-

ily of methods use statistical models of the face shape and appearance,
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like Active Appearance Models (AAMs) [Cootes et al. 2001], multi-view

AAMs [Ramnath et al. 2008], and 3D Morphable Models [Blanz and

Vetter 1999, Storer et al. 2009]. Such methods usually focus on tracking

facial features rather than estimating the head pose, however. In this

context, the authors of [Martins and Batista 2008] coupled an Active

Appearance Model with the POSIT algorithm for head pose tracking.

2D Feature-based methods. These methods rely on some specific

facial features to be visible, and therefore are sensitive to occlusions and

to large head rotations. The authors of [Vatahska et al. 2007] use a face

detector to roughly classify the pose as frontal, left, or right profile. After

this, they detect the eyes and nose tip using AdaBoost classifiers, and the

detections are fed into a neural network which estimates the head orien-

tation. Similarly, the authors of [Whitehill and Movellan 2008] present a

discriminative approach to frame-by-frame head pose estimation. Their

algorithm relies on the detection of the nose tip and both eyes, thereby

limiting the recognizable poses to the ones where both eyes are visi-

ble. In [Morency et al. 2008], a probabilistic framework is proposed,

called Generalized Adaptive View-based Appearance Model, which in-

tegrates frame-by-frame head pose estimation, differential registration,

and keyframe tracking.

3D methods. In general, approaches relying solely on 2D images are

sensitive to illumination changes and lack of distinctive features. More-

over, the annotation of head poses from 2D images is intrinsically prob-

lematic. Since 3D sensing devices have become available, computer vi-

sion researchers have started to leverage the additional depth informa-

tion for solving some of the inherent limitations of image-based meth-

ods. Some of the recent works thus use depth as primary cue [Bre-

itenstein et al. 2008] or in addition to 2D images [Cai et al. 2010,

Morency et al. 2003, Seemann et al. 2004].

The auhtors of [Seemann et al. 2004] presented a neural network-based

system fusing skin color histograms and depth information. It tracks at

10 fps but requires the face to be detected in a frontal pose in the first

frame of the sequence. The approach of [Mian et al. 2006] uses head pose

estimation only as a pre-processing step to face recognition, and the low

reported average errors are only calculated on subjects present in the

training set. Still in a tracking framework, the authors of [Morency et

al. 2003] use instead a intensity and depth input image to build a prior
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model of the face using 3D view-based eigenspaces. Then, they use this

model to compute the absolute difference in pose for each new frame.

The pose range is limited and manual cropping is necessary. In [Cai et

al. 2010], a 3D face model is aligned to an RGB-depth input stream

for tracking features across frames, taking into account the very noisy

nature of depth measurements coming from commercial sensors.

Considering instead pure detectors on a frame-by-frame basis, the au-

thors of [Lu and Jain 2006] create hypotheses for the nose position in

range images based on directional maxima. For verification, they com-

pute the nose profile using PCA and a curvature-based shape index.

In [Breitenstein et al. 2008], a real time system working on range scans

provided by the scanner of [Weise et al. 2007] is presented. Their system

can handle large pose variations, facial expressions, and partial occlu-

sions, as long as the nose remains visible. The method relies on several

candidate nose positions, suggested by a geometric descriptor. Such hy-

potheses are all evaluated in parallel on a GPU, which compares them

to renderings of a generic template with different orientations, finally se-

lecting the orientation which minimizes a predefined cost function. Real

time performance is only met thanks to the parallel GPU computations.

Unfortunately, GPUs are power-hungry and might not be available in

many scenarios where portability is important, e.g ., for mobile robots.

Breitenstein et al . also collected a dataset of over 10K annotated range

scans of heads. The subjects, both male and female, with and without

glasses, were recorded using the scanner of [Weise et al. 2007] while turn-

ing their heads around, trying to span all possible yaw and pitch rotation

angles they could. The scans were automatically annotated, tracking

each sequence using ICP in combination with a personalized face tem-

plate. The same authors also extended their system to use lower quality

depth images from a stereo system [Breitenstein et al. 2009]. Yet, the

main shortcomings of the original method remain.

5.1.2 Facial features localization

2D Facial Features. Facial feature detection from standard images is

a well studied problem, often performed as preprocessing for face recog-

nition. Previous contributions can be classified into two categories, de-

pending on whether they use global or local features. Holistic methods,
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e.g ., Active Appearance Models [Cootes et al. 2001, Cootes et al. 2002,

Matthews and Baker 2003], use the entire facial texture to fit a genera-

tive model to a test image. They are usually affected by lighting changes

and a bias towards the average face. The complexity of the modeling is

an additional issue. Moreover, these methods perform poorly on unseen

identities [Gross et al. 2005] and cannot handle low-resolution images

well.

In recent years, there has been a shift towards methods based on indepen-

dent local feature detectors [Valstar et al. 2010, Amberg and Vetter 2011,

Belhumeur et al. 2011]. Such detectors are discriminative models of

image patches centered around the facial landmarks, often ambiguous

because the limited support region cannot cope with the large appear-

ance variations present in the training samples. To improve accuracy

and reduce the influence of wrong detections, global models of the facial

features configuration like pictorial structures [Felzenszwalb and Hutten-

locher 2005, Everingham et al. 2006] or Active Shape Models [Cristinacce

and Cootes 2008] are needed.

3D Facial Features. Similar to the 2D case, methods focusing on facial

feature localization from range data can be subdivided into categories

using global or local information. Among the former class, the authors

of [Mpiperis et al. 2008] deform a bi-linear face model to match a scan of

an unseen face in different expressions. Yet, the paper’s focus is not on

the localization of facial feature points and real time performance is not

achieved. Also the authors of [Kakadiaris et al. 2007] non-rigidly align

an annotated model to face meshes. Constraints need to be imposed on

the initial face orientation, however. Using high quality range scans, the

work of [Weise et al. 2009a] presented a real time system, capable of

tracking facial motion in detail, but using personalized templates. The

same approach has been extended to robustly track head pose and facial

deformations using RGB-depth streams provided by commercial sensors

like the Kinect [Weise et al. 2011].

Most works that try to directly localize specific feature points from 3D

data take advantage of surface curvatures. For example, the authors

of [Sun and Yin 2008, Segundo et al. 2010, Chang et al. 2006] all use

curvature to roughly localize the inner corners of the eyes. Such an ap-

proach is very sensitive to missing depth data, particularly for the regions

around the inner eye corners, frequently occluded by shadows. Surface
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curvatures are also used in [Mehryar et al. 2010], first by extracting ridge

and valley points, which are then clustered. The clusters are refined us-

ing a geometric model imposing a set of distance and angle constraints

on the arrangement of candidate landmarks. In [Colbry et al. 2005], cur-

vature is used in conjunction with the Shape Index proposed by [Dorai

and Jain 1997] to locate facial feature points from range scans of faces.

The reported execution time of this anchor point detector is 15 sec per

frame. The authors of [Wang et al. 2002] use point signatures [Chua

and Jarvis 1997] and Gabor filters to detect some facial feature points

from 3D and 2D data. The method needs all desired landmarks to be

visible, thus restricting the range of head poses while being sensitive

to occlusions. Genetic algorithms are used in [Yu and Moon 2008] to

combine several weak classifiers into a 3D facial landmark detector. The

authors of [Ju et al. 2009] detect the nose tip and the eyes using binary

neural networks, and propose a 3D shape descriptor invariant to pose

and expression.

The authors of [Zhao et al. 2011] propose a 3D Statistical Facial Feature

Model (SFAM), which models both the global variations in the morphol-

ogy of the face and the local structures around the landmarks. The low

reported errors for the localization of 15 points in scans of neutral faces

come at the expense of processing time: over 10 minutes are needed to

process one facial scan. In [Nair and Cavallaro 2009], fitting the pro-

posed PCA shape model containing only the upper facial features, i.e.,

without the mouth, takes on average 2 minutes per face.

In general, prior work on facial feature localization from 3D data is either

sensitive to occlusions, especially of the nose, requires prior knowledge of

feature map thresholds, cannot handle large rotations, or does not run

in real time.

5.2 Random forests for 3D face analysis

In Section 5.2.1 we first summarize a general random forest frame-

work [Breiman 2001], then give specific details for face analysis based

on depth data in Sections 5.2.2 and 5.2.3.
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5.2.1 Random forest

Random forests were already introduced in Chapter 2 for the task of

mouth localization and in Chapter 3 for facial expression recognition.

Fig. 5.1 illustrates a random regression forest mapping feature patches

extracted from a depth image to a distribution stored at each leaf. In

our framework, these distributions model the head orientation or loca-

tions of facial features. In the following, we outline the general training

approach of a random forest and give the application specific details in

Sections 5.2.2 and 5.2.3.

A tree T in a forest T = {Tt} is built from a set of annotated patches,

randomly extracted from the training images: P = {Pi}, where Ii is

the appearance of the patch. Starting from the root, each tree is built

recursively by assigning a binary test φ(I) → {0, 1} to each non-leaf

node. Such test sends each patch (according to its appearance) either

to the left or right child, in this way, the training patches P arriving at

the node are split into two sets, PL(φ) and PR(φ).

The best test φ∗ is chosen from a pool of randomly generated ones ({φ}):
all patches arriving at the node are evaluated by all tests in the pool and

a predefined information gain of the split IG (φ) is maximized:

φ∗ = arg max
φ

IG (φ) (5.1)

IG (φ) = H (P)−
∑

i∈{L,R}

wiH (Pi (φ)) , (5.2)

where wi = |Pi(φ)|
|P| is the ratio of patches sent to each child node and

H (P) is a measure of the patch cluster P, usually related to the entropy

of the clusters’ labels. The measure H (P) can have different forms,

depending on whether the goal of the forest is regression, classification, or

rather a combination of the two. The measures that are relevant for face

analysis are discussed in Sections 5.2.2 and 5.2.3. The process continues

with the left and the right child using the corresponding training sets

PL(φ∗) and PR(φ∗) until a leaf is created when either the maximum tree

depth is reached, or less than a minimum number of training samples

are left.

In order to employ such a random forest framework for face analysis

from depth data, we have to



5.2. Random forests for 3D face analysis 91

• acquire annotated training data P,

• define binary tests φ,

• define a measure H (P),

• define a distribution model to be stored at the leaves.

These issues are discussed in the following sections.

5.2.2 Head pose estimation

Training data

Building a forest is a supervised learning problem, i.e., training data

needs to be annotated with labels on the desired output space. In our

head pose estimation setup, a training sample is a depth image contain-

ing a head, annotated with the 3D locations of a specific point, i.e.,

the tip of the nose, and the head orientation. Fix-sized patches are

extracted from a training image, each annotated with two real-valued

vectors: While θ1 = {θx, θy, θz} is the offset computed between the 3D

point falling at the patch center and the nose tip, the head orientation

is encoded as Euler angles, θ2 = {θya, θpi, θro}. In order for the forest to

be more scale-invariant, the size of the patches can be made dependent

on the depth (e.g ., at its center), however, in this work we assume the

faces to be within a relatively narrow range of distances from the sensor.

In order to deal with background like hair and other body parts, fixed-

sized patches are not only sampled from faces but also from regions

around them. A class label ci is thus assigned to each patch Pi, where

ci = 1 if it is sampled from the face and 0 otherwise. The set of training

patches is therefore given by P = {Pi = (Ii, ci,θi)}, where θ = (θ1,θ2).

Ii represents the image features Ifi computed from a patch Pi. Such

features include the original depth values plus, optionally, the geometric

normals, i.e., for a depth pixel d(u, v), the average of the normals of the

planes passing through d(u, v) and pairs of its 4-connected neighbors.

The x, y, and z coordinates of the normals are treated as separate feature

channels.
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Figure 5.1: Example of regression forest for head pose estimation. For

each tree, the tests at the non-leaf nodes direct an input sample to-

wards a leaf, where a real-valued, multivariate distribution of the output

parameters is stored. The forest combines the results of all leaves to

produce a probabilistic prediction in the real-valued output space.

Figure 5.2: Example of a training patch (larger, red rectangle), offset

vector (arrow) between the 3D point at the patch’s center (red dot) and

the ground truth nose location (green). F1 and F2 represent a possible

choice for the regions over which to compute a binary test.
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Binary tests

Our binary tests φf,F1,F2,τ (I) are defined as:

|F1|−1
∑
q∈F1

If (q)− |F2|−1
∑
q∈F2

If (q) > τ, (5.3)

where f is the feature channel’s index, F1 and F2 are two asymmetric

rectangles defined within the patch, and τ is a threshold. We use the dif-

ference between the average values of two rectangular areas as in [Fanelli

et al. 2011a, Criminisi et al. 2010], rather than single pixel differences

as in [Gall et al. 2011] in order to be less sensitive to noise; the addi-

tional computation is negligible when integral images are used. Tests

defined as Equation (5.3) represent a generalization of the widely-used

Haar-like features [Papageorgiou et al. 1998]. An example test is shown

in Figure 5.2: A patch is marked in red, containing the two regions F1

and F2 defining the test (in black); the arrow represents the 3D offset

vector (θ1) between the 3D patch center (in red) and the ground truth

location of a feature point, the nose tip in this case (green).

Goodness of split

A regression forest can be applied to head pose estimation from depth im-

ages containing only faces [Fanelli et al. 2011a]; in this case, all training

patches are positive (ci = 1 ∀i) and the measure H (P) is defined as the

entropy of the continuous patch labels. Assuming θn, where n ∈ {1, 2},
to be realizations of 3-variate Gaussians, we can represent the labels in

a set P as p(θn) = N (θn;θn,Σn), and thus compute the differential

entropy H(P)n for n:

H(P)n =
1

2
log
(

(2πe)
3 |Σn|

)
. (5.4)

We thus define the regression measure:

Hr (P) =
∑
n

log (|Σn|) ∝
∑
n

H(P)n. (5.5)

Substituting Equation (5.5) into Equation (5.2) and maximizing it actu-

ally favors splits which minimize the covariances of the Gaussian distri-

butions computed over all label vectors θn at the children nodes, thus

intuitively decreasing the regression uncertainty.
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Goal of the forest, however, is not only to map image patches into prob-

abilistic votes in a continuous space, but, as in [Fanelli et al. 2011b],

also to decide which patches are actually allowed to cast such votes. In

order to include a measure of the classification uncertainty in the infor-

mation gain defined by Equation (5.2), we use the measure Hc (P) of

the cluster’s class uncertainty, defined as the entropy:

Hc (P) = −
K∑
k=0

p (c = k|P) log (p (c = k|P)) , (5.6)

where K = 1. The class probability p (c = k|P) is approximated by the

ratio of patches with class label k in the set P.

The two measures (5.5) and (5.6) can be combined in different ways.

One approach, used in the previous chapters 2 and 3, is to randomly

select one or the other at each node of the trees, denoted in the following

as the interleaved method.

A second approach (linear) was proposed by [Okada 2009], i.e., a weighted

sum of the two measures:

Hc (P) + αmax
(
p
(
c = 1| P

)
− tp, 0

)
Hr (P) . (5.7)

When minimizing (5.7), the optimization is steered by the classification

term alone until the purity of positive patches reaches the activation

threshold tp. From that point on, the regression term starts to play an

ever important role, weighted by the constant α, until the purity reaches

1. In this case, Hc = 0 and the optimization is driven only by the

regression measure Hr.

In [Fanelli et al. 2011b], we proposed a third approach, where the two

measures are weighted by an exponential function of the depth:

Hc (P) + (1− e− dλ )Hr (P) , (5.8)

where d is the depth of the node in the tree. In this way, the regression

measure is given increasingly higher weight as we descend deeper in the

tree towards the leaves, with the parameter λ specifying the steepness

of the change.

Note that, when only positive patches are available, Hc = 0, i.e., Equa-

tions (5.7) and (5.8) are both proportional to the regression measure Hr
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alone, and both lead to the same selected test φ∗, according to Equa-

tion (5.1).

In our experiments (see Section 5.3.2), we evaluate the three possibilities

for combining the classification measure Hc and the regression measure

Hr for training.

Leaves

For each leaf, the class probabilities p
(
c = k| P

)
and the distributions

of the continuous head pose parameters p(θ1) = N (θ1;θ1,Σ1) and

p(θ2) = N (θ2;θ2,Σ2) are stored. The distributions are estimated from

the training patches that arrive at the leaf and are used for estimating

the head pose as explained in the following section.

Testing

When presented with a test depth image, patches are densely sampled

from the whole image and sent down through all trees in the forest. Each

patch is guided by the binary tests stored at the nodes, as illustrated in

Fig. 5.1. A stride parameter controls how densely patches are extracted,

thus easily steering speed and accuracy of the regression.

The probability p
(
c = k| P

)
stored at the leaf judges how informative the

test patch is for class k. This probability value tells whether the patch

belongs to the head or other body parts. Since collecting all relevant

negative examples is harder than collecting many positive examples, we

only consider leaves with p
(
c = k| P

)
= 1. For efficiency and accuracy

reasons, we also filter out leaves with a high variance, which are less

informative for the regression, i.e., all leaves with tr
(
Σ1
)

greater than

a threshold maxv. The currently employed threshold (maxv = 400) has

been set based on a validation set. Although the two criteria seem to

be very restrictive, the amount of sampled patches and leaves is large

enough to obtain reliable estimates.

The remaining distributions are used to estimate θ1 by adding the mean

offsets θ1 to the patch center θ1(P):

N (θ1;θ1(P) + θ1,Σ1). (5.9)
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(a) (b)

Figure 5.3: (a) Example votes, casted by different patches extracted

from a Kinect depth image. The green, red, and blue patch are clas-

sified as positives and therefore cast votes for the nose position (corre-

spondingly colored spheres). On the other hand, the black patch at the

shoulder is classified as negative and does not vote. (b) Example (high

resolution) test image: the green spheres represent the votes selected

after outliers (blue spheres) are filtered out by mean shift. The large

green cylinder stretches from the final estimate of the nose center in the

estimated face direction.

The corresponding means for the position of the nose tip are illustrated

in Fig. 5.3. The votes are then clustered, and the clusters are further

refined by mean shift in order to remove additional outliers. As kernel

for the mean shift, we use a sphere with a radius defined as one sixth

of the radius of the average face in the model of [Paysan et al. 2009].

A cluster is declared as a head if it contains a large enough number

of votes. Because the number of votes is directly proportional to the

number of trees in the forest (a tree can contribute up to one vote for

each test patch), and because the number of patches sampled is inversely

proportional to the square of the stride, we use the following threshold:

β
#trees

stride2
. (5.10)

For our experiments, we use β = 300.
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For each cluster left, i.e., each head detected, the distributions in the

clusters are averaged, where the mean gives an estimate for the posi-

tion of the nose tip θ1 and the head orientation θ2 and the covariance

measures the uncertainty of the estimates.

5.2.3 Facial features localization

Since the framework for head pose estimation is very general and can be

used in principle for predicting any continuous parameter of the face, the

modifications for localizing facial features are straightforward. Instead of

having only two classes as in Section 5.2.2, we have K+ 1 classes, where

K is the number of facial feature points we wish to localize. The set

of training patches is therefore given by P = {Pi = (Ii, ci,θi)}, where

θi = {θ1i ,θ
2
i , . . .θ

K
i } are the offsets between the patch center and the 3D

locations of each of the K feature points. Accordingly, (5.5) is computed

for the K fiducials and (5.6) is computed for the K + 1 classes, where

c = 0 is the label for the background patches.

The testing, however, slightly differs. In Section 5.2.2, all patches are

allowed to predict the location of the nose tip and the head orientation.

While this works for nearly rigid transformations of the head, the loca-

tion of the facial features depends also on local deformations of the face,

e.g ., the mouth shape. In order to avoid a bias towards the average face

due to long distance votes that do not capture local deformations, we

reduce the influence of patches that are more distant to the fiducial. We

measure the confidence of a patch P for the location of a feature point

n by

exp

(
−‖θ

n‖2

γ

)
, (5.11)

where γ = 0.2 and θn is the average offset relative to point n, stored at

the leaf where the patch P ends. Allowing a patch to vote only for feature

points with a high confidence, i.e., above a feature-specific threshold, our

algorithm can handle local deformations better, as our experiments show.

The final 3D facial feature points’ locations are obtained by performing

mean-shift for each point n.
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5.3 Evaluation

In this section, we thoroughly evaluate the proposed random forest

framework for the tasks of head pose estimation from high quality range

scans (Section 5.3.1), head pose estimation from low quality depth im-

ages (Section 5.3.2), and 3D facial features localization from high reso-

lution scans (Section 5.3.3). Since the acquisition of annotated training

data is an important step and a challenge task itself, we first present the

used databases1 in each subsection.

5.3.1 Head pose estimation - high resolution

Dataset

The easiest way to generate an abundance of training data with perfect

ground truth is to synthesize head poses. To this end, we synthetically

generated a very large training set of 640x480 range images of faces by

rendering the 3D morphable model of [Paysan et al. 2009]. We made

such model undergo 50K different rotations, uniformly sampled from

±95 ◦ yaw, ±50 ◦ pitch, and ±20 ◦ roll. We also randomly varied the

model’s distance from the camera and further perturbed the first 30

modes of the PCA shape model sampling uniformly within ±2 standard

deviation, thus introducing variations also in identity2.

Such a dataset was automatically annotated with the 3D coordinates

of the nose tip and the applied rotations, represented as Euler angles.

Figure 5.4 shows a few of the training faces, with the cylinder pointing

out from the nose indicating the annotation in terms of nose position

and head direction. Note that the shape model captures only faces with

neutral expression and closed mouth. Furthermore, important parts of

the head like hair or the full neck are missing. This will be an issue

in Section 5.3.2, where we discuss the limitations of synthetic training

data.

1Most of the datasets are publicly available at http://www.vision.ee.ethz.ch/

datasets.
2Because of the proprietary license for [Paysan et al. 2009], we cannot share the

above database. The PCA model, however, can be obtained from the University of
Basel.

http://www.vision.ee.ethz.ch/datasets
http://www.vision.ee.ethz.ch/datasets
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Figure 5.4: Sample images from our synthetically generated training

set. The heads show large 3D rotations and variations in the distance

to the camera and also in identity. The cylinder attached to the nose

represents the ground truth face orientation.

For testing, we use the real sequences of the ETH Face Pose Range

Image Data Set [Breitenstein et al. 2008]. The database contains over

10K range images of 20 people (3 females, 6 subjects recorded twice,

with and without glasses) recorded using the scanner of [Weise et al.

2007] while turning their head around, trying to cover all pitch and yaw

rotations. The images have a resolution of 640x480 pixels, and a face

typically consists of around 150x200 pixels. The heads undergo rotations

of about ±90 ◦ yaw and ±45 ◦ pitch, while no roll is present. The data

was annotated using person-specific templates and ICP tracking, in a

similar fashion as what will be later described in 5.3.2 and shown in

Figure 5.15. The provided ground truth contains the 3D coordinates of

the nose tip and the vector pointing from the nose towards the facing

direction.
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Experiments

In this section, we assume a face to be the prominent object in the image.

That means that all leaves in a tree contain a probability p (c = 1|P) = 1

and thus all patches extracted from the depth image will be allowed to

vote, no matter their appearance.

Training a forest involves the choice of several parameters. In the follow-

ing, we always stop growing a tree when the depth reaches 15, or if there

are less than 20 patches left for training. Moreover, we randomly gener-

ate 20K tests for optimization at each node, i.e., 2K different combina-

tions of f , F1, and F2 in Equation (5.3), each with 10 different thresholds

τ . Other parameters include the number of randomly selected training

images, the number of patches extracted from each image (fixed to 20),

the patch size, and the maximum size of the sub-patches defining the

areas F1 and F2 in the tests (set to be half the size of the patch). Also

the number of feature channels available is an important parameter; in

the following, we use all features (depth plus normals) unless otherwise

specified.

A pair of crucial test-time parameters are the number of trees loaded in

the forest and the stride controlling the spatial sampling of the patches

from an input image. Such values can be intuitively tuned to find the

desired trade-off between accuracy and temporal efficiency of the es-

timation process, making the algorithm adaptive to the constraints of

different applications.

In all the following experiments, we use the Euclidean distance in mil-

limeters as the nose localization error. For what concerns the orientation

estimation, the ETH database does not contain large roll variations, and

in fact these rotations are not encoded in the directional vector provided

as ground truth. We therefore evaluated our orientation estimation per-

formance computing the head direction vector from our estimates of the

yaw and pitch angles and report the angular error in degrees with the

ground truth vector.

Figure 5.5 describes the performance of the algorithm when we varied the

size of the training patches and the number of samples used for training

each tree. In Figure 5.5(a), the blue, continuous line shows the percent-

age of correctly classified images as a function of the patch size, when
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Figure 5.5: (a) Success rate of the system depending on the patch size

(when using 1000 training samples), overlaid to the missed detection

rate. (b) Success and missed detection rate depending on the number of

training data (for 100x100 patches). Success is defined for a nose error

below 20 mm and angular error below 15 degrees.
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Figure 5.6: Processing time: a) Regression time as a function of the

number of trees in the forest when the stride is fixed to 10 pixels. b)

Run time for a forest of 20 trees as a function of the stride parameter.
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1000 training images are used. Success is declared if the nose error is

smaller than 20 mm and the angular error is below 15 degrees. Although

this measure might be too generous for some applications, it reflects the

relative estimation performance of the approach and is therefore a use-

ful measure for comparing different settings of the proposed approach.

The red, dashed line shows instead the percentage of false positives, i.e.,

missed detections, again varying with the size of the patch. The plot

shows that a minimum size for the patches is critical since small patches

can not capture enough information to reliably predict the head pose.

However, there is also a slight performance loss for large patches. In

this case, the trees become more sensitive to occlusions and strong arti-

facts like holes since the patches cover a larger region and overlap more.

Having a patch size between 80x80 and 100x100 pixels seems to be a

good choice where the patches are discriminative enough to estimate the

head pose, but they are still small enough such that an occlusion affects

only a subset of patches. Figure 5.5(b) also shows accuracy and missed

detections rate, this time for 100x100 patches, as a function of the num-

ber of training images. It can be noted that the performance increases

with more training data, but it also saturates for training sets containing

more than 2K images. For the following experiments, we trained on 3000

images, extracting 20 patches of size 100x100 pixels from each of them.

In all the following graphs, red circular markers consistently represent

the performance of the system when all available feature channels are

used (i.e., depth plus geometric normals), while the blue crosses refer to

the results achieved employing only the depth channel.

The plots in Figure 5.6 show the time in milliseconds needed to process

one frame, once loaded in the RAM. The values are reported as a function

of the number of trees used and of the stride parameter. The numbers

were computed over the whole ETH database, using an Intel Core i7 CPU

@ 2.67GHz processor, without resorting to multithreading. Figure 5.6(a)

plots the average run time for a stride fixed to 10 pixels, as a function of

the number of trees, while in Figure 5.6(b) 20 trees are loaded and the

stride parameter changes instead. For strides equal to 10 and greater,

the system always performs in real time. Unless otherwise specified, we

use these settings in all the following experiments. Obviously, having

to compute the normals (done on the CPU using a 4-neighborhood)

increases processing time, but, for the high-quality scans we are dealing
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Figure 5.7: Mean errors (in millimeters) for the nose localization task,

as a function of the number of trees (a) and of the stride (b).
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Figure 5.8: Mean errors (degrees) for the orientation estimation task,

as a function of the number of trees (a) and of the stride (b).



104 5. Random Forests for Real Time 3D Face Analysis

with, the boost in accuracy justifies the loss in terms of speed, as can be

seen in the next plots.

Figure 5.7(a) shows the average errors in the nose localization task, plot-

ted as a function of the number of trees when the stride is fixed to 10,

while in Figure 5.7(b) 20 trees are loaded and the stride is changed. Sim-

ilarly, the plots in Figures 5.8(a) and 5.8(b) present the average errors

in the estimation of the head orientation. When comparing Figures 5.6,

5.7, and 5.8, we can conclude that it is better to increase the stride

than reducing the number of trees when the processing time needs to be

reduced. Using normals in addition also improves the detection perfor-

mance more than increasing the number of trees. In particular, using

depth and normals with a stride of 10 gives a good trade-off between

accuracy and processing time for our experimental settings.
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Figure 5.9: Accuracy: (a) Percentage of correctly estimated poses as

a function of the nose error threshold. (b) Accuracy plotted against

the angle error threshold. The additional information coming from the

normals (red curves) consistently boosts the performance. The black

curve represents the accuracy of [Breitenstein et al. 2008] on the same

dataset.

In Figure 5.9, the plots show the accuracy of the system computed

over the whole ETH database, when both depth and geometric normals

are used as features. Specifically, the curves in Figure 5.9(a) and Fig-

ure 5.9(b) represent the percentage of correctly estimated depth images

as functions of the success threshold set for the nose localization error,

respectively for the angular error. Using all the available feature channels
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performs consistently better than relying only on the depth information.

The plots show also the success rate of the method of [Breitenstein et al.

2008], applied to the same data3; their algorithm uses information about

the normals to generate nose candidates, but not for refining the pose

estimation on the GPU, where a measure based on the normalized sum

of squared depth differences between reference and input range image is

used.

Our approach proves better at both the tasks of nose tip detection and

head orientation estimation. We improve over the state-of-the-art espe-

cially at low thresholds, which are also the most relevant. In particular,

for a threshold of 10 mm on the nose localization error, our improvement

is of about 10% (from 63.2% to 73.0%), and even better for a thresh-

old of 10 degrees on the angular error: Our system succeded in 94.7%,

compared to 76.3% of Breitenstein et al .

[Breitenstein et al. 2008] Random Forests

Nose error (mm) 10.3± 17.5 9.6± 13.4

Direction error ( ◦) 9.1± 12.6 5.7± 8.6

Yaw error ( ◦) 7.0± 13.4 4.4± 2.7

Pitch error ( ◦) 4.8± 4.9 3.2± 2.7

Dir. acc. (≤ 10 ◦) 76.3% 94.7%

Nose acc.(≤ 10 mm) 63.2% 73.0%

Table 5.1: Comparison of our results with the ones of [Breitenstein

et al. 2008]. Mean and standard deviation are given for the errors on

nose localization, direction estimation, and singularly for yaw and pitch

angles. The values in the last two rows are the percentages of correctly

estimated images for a threshold on the angular error of 10 degrees, and

on the nose localization error of 10 millimeters. We used a forest with

20 trees, leveraging both depth and normals as features, testing with a

stride of 10 pixels.

3We used the source code provided by the authors.
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Figure 5.10: Normalized success rates of the estimation, equivalent of

Figure 10 in [Breitenstein et al. 2008]. The database was discretized

in 15 ◦ × 15 ◦ areas and the accuracy computed for each range of angles

separately. The color encodes the number of images falling in each region,

as explained by the side bar. Success is declared when the nose error is

below 20 mm and the angular error is below 15 degrees.

Table 5.1 reports mean and standard deviation of the errors, compared

to the ones of [Breitenstein et al. 2008]. The first rows show mean and

standard deviation for the Euclidean error in the nose tip localization

task, the orientation estimation task, and for the yaw and pitch estima-

tion errors taken singularly. The last two rows give the percentages of

correctly estimated images for a threshold on the angular error of 10 de-

grees, and on the nose localization error of 10 millimeters. The average

errors were computed from the ETH database, where our system did not

return (i.e., no cluster of votes large enough was found) an estimate in

0.4% of the cases, while the approach of Breitenstein failed 1.6% of the

time; only faces where both the systems returned an estimate were used

to compute the average and standard deviation values.

Figure 5.10 shows the success rate of the system applied to the ETH

database (using 20 trees and a stride of 10) for an angular error threshold
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Figure 5.11: Correctly estimated poses from the ETH database. Large

rotations, glasses, and facial hair do not pose major problems in most

of the cases. The green cylinder represents the estimated head rotation,

while the red ellipse is centered on the estimated 3D nose position and

scaled according to the covariance provided by the forest (scaled by a

factor of 10 to ease the visualization).

Figure 5.12: Example frames from a sequence acquired with the 3D

scanner of [Weise et al. 2007]. Occlusions (even of the nose) and facial

expressions can be handled by our system.
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Figure 5.13: Example failure images from the ETH database. The large

ellipse denotes a high variance for the estimate of the nose location.

of 15 ◦ and a nose error threshold of 20 mm. The heat map shows the

database divided in 15 ◦×15 ◦ bins depending on the head’s pitch and yaw

angles. The color encodes the amount of images in each bin, according

to the side color bar. The results are 100% or close to 100% for most

of the bins, especially in the central region of the map, which is where

most of the images fall. Our results are comparable or superior to the

equivalent plot in [Breitenstein et al. 2008].

Figure 5.11 shows some successfully processed frames from the ETH

database. The red ellipse is placed on the estimated nose tip location

and scaled according to the covariance output of the regression forest.

The green cylinder stretches from the nose tip along the estimated head

direction. Our system is robust to large rotations and partial facial oc-

clusions (note the girl at the bottom right, with most of the face covered

by hair, which is not reconstructed by the scanner). Additional results

are shown in Figure 5.12, demonstrating how the proposed algorithm can
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Figure 5.14: Example frames from the real time video, showing how

the regression works even in the presence of partial occlusions, notably

of the nose. Facial expressions also can be handled to a certain degree,

even though we trained only on neutral faces.
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handle a certain degree of facial expression and occlusion, maintaining

an acceptable accuracy of the estimate.

We ran our real time system on a Intel Core 2 Duo computer @ 2GHz,

equipped with 2GB of RAM, which was simultaneously used to acquire

the range data as explained in [Weise et al. 2007]. Figure 5.14 shows

some example frames from the video. Our method successfully estimates

the head pose even when the nose is totally occluded and thus most of

the other approaches based on 3D (e.g ., [Breitenstein et al. 2008])

would completely fail. Some degree of facial dynamics also does not

seem to cause problems to the regression in many cases, even though the

synthetic training dataset contains only neutral faces; only very large

mouth movements like yawning result in a loss of accuracy.

Some example failures are rendered in Figure 5.13. Note how the red

ellipse is usually large, indicating a high uncertainty of the estimate.

These kind of results are usually caused by a combination of large ro-

tations and missing parts in the reconstruction, e.g ., because of hair or

occlusions; in those circumstances, clusters of votes can appear in the

wrong locations and if the number of votes in them is high enough, they

might be erroneously selected as the nose tip.

5.3.2 Head pose estimation - low resolution

Dataset

To train and test our head pose estimation system on low quality depth

images coming from a commercial sensor like the Kinect, synthesizing

a database is not an easy task. First of all, such a consumer depth

camera is built specifically for being used in a living-room environment,

i.e., capturing humans with their full body. This means that heads are

always present in the image together with other body parts, usually the

torso and the arms. Because regions of the depth image different than

the head are not informative about the head pose, we need examples

of negative patches, e.g ., coming from the body, together with positive

patches extracted from the face region. Lacking the human body model

and MoCap trajectories employed by [Shotton et al. 2011], we resorted

to record a new database using a Kinect. The dataset comprises 24
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scan

integration �tting tracking

model

template

personalized template

Figure 5.15: Automatic pose labeling: A user turns the head in front

of the depth sensor, the scans are integrated into a point cloud model

and a generic template is fit to it. The personalized template is used for

accurate rigid tracking.

sequences of 20 different subjects (14 men and 6 women, 4 people with

glasses) recorded while sitting about a meter away from the sensor. All

subjects rotated their heads trying to span all possible ranges of yaw

and pitch angles, but also some roll is present in the data.

To label the sequences with the position of the head and its orienta-

tion, we processed the data off-line with a state-of-the-art template-

based head tracker [Weise et al. 2011]4, as illustrated in Figure 5.15.

A generic template was deformed to match each person’s identity as

follows. First, a sequence of scans of the users’ neutral face recorded

from different viewpoints were registered and fused into one 3D point

cloud as described by [Weise et al. 2009b]. Then, the 3D morphable

model of [Paysan et al. 2009] was used, together with graph-based non-

rigid ICP [Li et al. 2009], to adapt the generic face template to the point

cloud. Each sequence was thus tracked with the subject’s template using

ICP [Besl and McKay 1992], obtaining as output for each frame the 3D

location of the head (and thus of the nose tip) and the rotation angles.

Using such automatic method to acquire the ground truth for our database

allowed us to annotate over 15K frames in a matter of minutes. More-

over, we found that the mean translation and rotation errors were around

1 mm and 1 degree respectively. Please note that such personalized face

model is only needed for labeling the training data: Our head pose

4Commercially available: http://www.faceshift.com

http://www.faceshift.com
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estimation system does not assume any initialization phase nor person-

specific training, and works on a frame-by-frame basis.

The resulting Biwi Kinect Head Pose Database contains head rotations

in the range of around ±75 ◦ for yaw, ±60 ◦ for pitch, and ±50 ◦ for

roll. Faces are 90x110 pixels in size on average. Besides the depth data

which we used for our algorithm, the corresponding RGB images are also

available, as shown in Figure 5.16.

Experiments

Training patches must now be distinguished between positives (extracted

from the head region) and negatives (belonging to other body parts).

When we randomly extracted patches from the Biwi Kinect Head Pose

Database, we labeled them as positive only if the Euclidean distance

between the 3D point falling at the center of the patch and the closest

point on the face model used for annotation was below 10 millimeters.

In this way, negative patches were extracted not only from the torso and

the arms, but also from the hair. Figure 5.17 shows this process.

In the following experiments, unless explicitly mentioned otherwise, all

training and testing parameters are kept the same as in the previous

evaluation done on high resolution scans. We only reduce the size of

the patches to 80x80 because the heads are smaller in the Kinect images

than in the 3D scans. Furthermore, we extract 20 negative patches per

training image in addition to the 20 positive patches. For testing, patches

ending in a leaf with p
(
c| P

)
< 1 and tr

(
Σ1
)
≥ maxv are discarded.

Given the much lower quality of the depth reconstruction, using the

geometric normals as additional features does not bring any improvement

to the estimation, therefore we only use the depth channel in this section.

Because the database does not contain a uniform distribution of head

poses, but has a sharp peak around the frontal face configuration, as can

be noted from Figure 5.22, we bin the space of yaw and pitch angles and

cap the number of images for each bin.

In Section 5.2.2, we described different ways to train forests capable

of classifying depth patches into head or body and at the same time

estimating the head pose from the positive patches. In order to compare

the discussed training strategies (interleaved, linear, and exponential),
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Figure 5.16: Example frames from the Biwi Kinect Head Pose

Database. Both depth and RGB images are present in the dataset,

annotated with head poses. In this paper, we only use the depth images

for the head pose estimation algorithm.
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Figure 5.17: Training patches extracted from the annotated depth im-

ages of the Biwi Kinect Head Pose Database acquired with a Microsoft

Kinect. The green box represents a positive patch, while the red one is

an example of a negative patch. The dark dots on the face represent the

model’s vertices used to define the patch label: Only if the center of the

patch falls near such vertices, the patch is considered as positive.

we divided the database into a testing and training set of respectively 2

(persons number 1 and 12) and 18 subjects.

Depending on the method used to combine the classification and regres-

sion measures, additional parameters might be needed. In the interleaved

setting [Gall et al. 2011], each measure is chosen with uniform proba-

bility, except at the two deepest levels of the trees where the regression

measure is always used. For the linear weighting approach (cf. Equa-

tion 5.7), we set α and tp as suggested by [Okada 2009], namely to 1.0

and 0.8. For the exponential weighting function based on the tree depth

(cf. Equation 5.8), we used λ equal to 2, 5, and 10. All comparisons

were done with a forest of 20 trees and a stride of 10.

The success rate of the algorithm is shown in Figure 5.18(a), as the

maxv parameter increases, i.e., as more and more leaves are allowed to

vote. Success means that the detected nose tip is within 20mm from

the ground truth location, and that the angular error is below 15 ◦. Fig-
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Figure 5.18: Accuracy (a) of the tested methods as a function of the

maximum variance parameter, used to prune less informative leaves in

the forest. Success is defined when the nose estimation error is below

20mm and the thresholds for the orientation estimation error is set to

15 degrees. The plots in (b) show the percentage of images for which the

system did not return an estimate (false negatives), again as a function

of the maximum variance. It can be noted that the evaluated methods

perform rather similarly and the differences are small, except for the

interleaved scenario, which consistently performs worse.
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Figure 5.19: Accuracy for the nose tip estimation error (a), respec-

tively the angle error (b) of the tested methods. The curves are plotted

for different values of the threshold defining success.
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Stride 5 10 15

Nose (mm) 12.2± 22.8 12.6± 23.4 13.4± 26.9

Dir.( ◦) 5.9± 8.1 6.1± 8.8 6.4± 9.4

Yaw ( ◦) 3.8± 6.5 4.0± 7.1 4.2± 7.8

Pitch ( ◦) 3.5± 5.8 3.6± 6.0 3.8± 6.4

Roll ( ◦) 5.4± 6.0 5.5± 6.2 5.5± 6.2

Missed (%) 6.6 6.5 6.5

Time (ms) 44.7 17.8 10.7

Table 5.2: Mean and standard deviation of the errors for the nose

position and Euler angles estimation, together with rate of false negatives

and average runtime, as functions of the stride. The values are computed

by 4-fold, subject independent cross validation on the entire Biwi Kinect

Head Pose Database.

ure 5.18(b) shows, again as a function of the maximum leaves’ variance,

the percentage of missed detections. In general, low values of the param-

eter maxv have a negative impact on the performance, as the number

of votes left can become too small. However, reducing the maximum

variance makes only the most certain votes pass, producing better esti-

mates if there are many votes available, e.g ., when the face is covering

a large part of the image; moreover, reducing maxv can also be used

to speed up the estimation time. The parameter shows how well the

different schemes minimize the classification and regression uncertainty.

Because only the leaves with low uncertainties are used for voting, trees

with a large percentage of leaves with a high uncertainty will yield a

high missed detection rate, as shown in Figure 5.18(b). In this regards,

all tested methods appear to behave similarly, except for the interleaved

scenario, which consistently performs worse, indicating that the trees

produced using such method had leaves with higher uncertainty. We

also note that the exponential weighting scheme with λ = 5 returns the

lowest number of missed detections.

The plots in Figures 5.19(a) and 5.19(b) show the success rate as function

of a threshold on the nose error, respectively on the orientation error.
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We note again the lower accuracy achieved by the interleaving scheme,

while the other methods perform similarly.

Figure 5.20: Examples of successfully estimated depth images out of

our Kinect database. The green cylinder represents the estimated head

pose, while the red one encodes the ground truth.

Figure 5.21: Some typical failure cases of the algorithm, showing a

missed detection and two false positives. The estimated head pose is

shown in green, the ground truth is in red. The magenta cylinder indi-

cates a (wrong) second detection.

We performed a 4-fold, subject-independent cross-validation on the Biwi

Kinect Head Pose Database, using an exponential weighting scheme with

λ set to 5. All other parameters were kept as described earlier. The

results are given in Table 5.2, where mean and standard deviation of

the nose tip localization, face orientation estimation, yaw, pitch and

roll errors are shown together with the percentage of missed detections

and the average time necessary to process an image, depending on the

stride parameter. It can be noted that the system performs beyond real

time for strides greater than or equal to 10 (needing less than 20ms

to process a frame on a 2.67GHz Intel Core i7 CPU, i.e., running at

over 50 frames per second), still maintaining a small number of missed

detections and low errors. Some examples of successful estimations are



118 5. Random Forests for Real Time 3D Face Analysis

given in Figure 5.20, where the green cylinder encodes the estimated

head pose, while the red one represents the ground truth.

Some typical failure cases are shown in Figure 5.21, with examples of

missed detections, wrong detections, and a case of a false positive (the

magenta cylinder on the hand). Apart from very large rotations, com-

mon issues of the current system include long hair covering part of the

head, and distracting objects like hands or clothing. Adding more neg-

atives samples to the training set (e.g ., of hands) would alleviate some

of these problems.

Stride 5 10 15

Nose (mm) 19.7± 46.5 20.2± 47.3 21.7± 50.7

Dir.( ◦) 8.5± 12.9 8.7± 13.1 9.3± 14.0

Yaw ( ◦) 6.0± 11.5 6.2± 11.8 6.6± 12.6

Pitch ( ◦) 4.8± 7.1 4.9± 7.3 5.2± 7.7

Roll ( ◦) 5.8± 6.8 5.8± 6.8 6.0± 7.1

Missed (%) 9.3 9.2 8.7

Time (ms) 44.0 15.3 10.0

Table 5.3: Results of the cross-validation experiments, when synthetic

data was used to extract positive training patches.

Figure 5.22 is the equivalent of Figure 5.10, i.e., the results of the cross-

validation (stride 10) are given as ratios of successfully estimated frames

for each 15x15 degrees bin. Success is again declared for nose localization

errors ≤ 20mm and angular errors ≤ 15 ◦. The map is colored according

to the number of images present in each bin. It can be noted how the

central areas contain a lot more frames than the border ones, thus the

necessity of binning the database before random sampling for training.

As a last experiment, we rendered depth images of the face templates

which were used to annotate the database; see Figure 5.15. We simulated

a Kinect by using the same intrinsics camera matrix. In this way, we

created a dataset of synthetic depth images of heads, undergoing the
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≤ 15 ◦. The database was discretized in 15 ◦×15 ◦ areas and the accuracy
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Figure 5.23: Percentage of correctly estimated images (4-fold cross

validation) depending on the (a) head localization and (b) angular error

thresholds. The continuous lines represent the performance when real

data is used for training, while the dashed lines are the results of the

forests trained on positive patches extracted from synthetically generated

heads. The whole Kinect dataset is always used for testing.



120 5. Random Forests for Real Time 3D Face Analysis

same global movements as the original data. Also the identity of the

templates are consistent with the recorded dataset. We thus extracted

the positive patches from the synthetic data, while using the original

depth data to sample negatives. Using the same settings as for Table 5.2,

we achieved the results presented in Table 5.3. All errors are higher, in

particular the ones related to the nose tip.

The plots in Figure 5.23 compare the accuracy of the system when

trained on real data and when using the synthesized heads as positive

samples. The continuous lines are the results obtained using real data,

while the dashed lines represent the accuracy of the system when trained

on synthetic positive samples (and tested on real data). Specifically,

Figure 5.23(a) plots the success rate as a function of the orientation

estimation error, while Figure 5.23(b) as a function of the nose error.

Using the synthetic heads decreased the performance, though not in a

very incisive manner. The loss in performance can be explained by the

incomplete head model, which does not include hair or anything below

the neck as shown in Figure 5.15. The incompleteness of models for

generating training data seems to be indeed a limitation of synthetic

training data. Another source for the performance loss is the missing

sensor noise in the synthetic data.

5.3.3 Facial features localization

Datasets

When extending the random forest framework for the purpose of facial

features localization, once again a large dataset of annotated range im-

ages of faces is needed.

As a first dataset, we chose B3D(AC)2, presented in Chapter 4. Depth

and RGB images come together with a template of over 23K vertices,

deformed to fit the specific expression. Thanks to such annotation, we

could select a set of 14 facial features on the generic template and auto-

matically extract their 3D locations from all frames in the dataset. In

our facial features detection algorithm, we only use the depth images

from the above database, i.e., we do not rely on the RGB data.
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As a second dataset, we used BU3DFE [Yin et al. 2006], which contains

a larger number of subjects (100, 56 females and 44 males), and stronger

facial deformations. Each subject performed the six basic expressions

plus neutral in front of a 3D face scanner. Each of the six prototypic

expressions (happiness, disgust, fear, angry, surprise and sadness) in-

cludes four levels of intensity, i.e., there are 25 static 3D expression

models for each subject, resulting in a total of 2500 faces. Because the

dataset comes in form of 2.5 face models, we could render them into

depth images, first without rotations, then with randomly varying the

pitch, yaw, and roll angles, sampling uniformly between ±20 degrees.

All models come with manually annotated 83 facial features locations in

3D, from which we extracted the 14 fiducial which interested us: Eye,

nose, and mouth corners, plus outer midpoints on the lips and the two

extremes of the eyebrows.

Experiments

When building a forest for localizing facial features from range scans,

we sample training patches both from the inside and the outside of the

face region. A patch is considered as a positive training sample for

facial feature k if the norm of the corresponding offset vector is below

a threshold, i.e., if ||θk|| ≤ 0.2r where r is the radius of the average

face. Since the definition of the class c = k already localizes patches in a

neighborhood of each feature, we use only the classification measure (5.6)

for training. Using an additional regression measure did not change the

performance in this setting.

Since facial features depend more on local deformations of the face com-

pared to the head pose, we use smaller patches of size 40x40 pixels. Since

we have also more classes, we increased the depth of the trees to 20 and

also the number of sampled patches for training. Each tree is built from

5000 randomly sampled images, each contributing with 50 patches, 30

extracted from within the face boundary (i.e., the bounding box defined

by the ground truth facial feature locations) and 20 from outside the

face. During testing, each patch reaching a leaf votes for feature point k

if P (c = k| P) ≥ 0.5, tr(Σk) < maxkv , and the confidence (5.11) is above

a threshold. The threshold and the values maxkv for each facial feature

point k are estimated by grid search over a validation set. In particu-
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lar, we extract patches from 2000 randomly selected training images out

of the BA3D(AC)2 database. We only use the depth channel, without

resorting to additional features like the geometric normals.

We experimentally evaluated the influence of the number of trees in the

random forest, the stride, and the maximum depth of the trees. For

these experiments, we trained on 12 of the subjects of the B3D(AC)2

database and tested on the remaining two subjects, one man and one

woman. As shown in Fig. 5.24, increasing the number of trees, letting

them grow deeper, and reducing the stride, all have positive effects on

the quality of the results. The plots show the mean Euclidean error, in

millimeters, averaged over all the feature points and all the frames in the

test set. For most of the configurations shown, the average error is below

5 millimeters. However, increased accuracy comes at the cost of a higher

computation time. Fig. 5.25 shows the time in milliseconds needed to

process a test image once loaded into memory (the values are averaged

over 500 randomly selected frames), as a function of the number of trees,

stride, and maximum depth of trees. As can be seen, for a stride of 10

pixels, we achieve real time performance, i.e., frame rates above 25 fps,

when loading up to 15 trees of depth 20. In all the following experiments,

we thus use a forest of 15 trees, each with a maximum depth of 20 and

set the stride to 10 pixels.

We further performed 5-fold, subject-independent cross validations on

the B3D(AC)2 database, and the BU3DFE database rendered both

in frontal pose and with random rotations added. Table 5.4 relates to

the B3D(AC)2 dataset, and shows mean and standard deviation of the

errors in millimeters for all the analyzed facial features. Moreover, the

success rates (for all feature points on the whole database) are given for

two conservative thresholds of 10 and 5 millimeters. The outer brow

corners are the points most often misplaced; this is not surprising, as

the brows present limited variation in the depth channel. Tables 5.5

and 5.6 show the results of the equivalent 5-fold, subject-independent

cross validation experiments on the BU3DFE database in its frontal

renderings, respectively on the same dataset with added rotations. We

note that, for the BU3DFE database, where the mouth deforms more,

the lower lip midpoint is also sometimes wrongly estimated.

The plot in Fig. 5.26 shows the percentage of correctly estimated points

for all the tested databases, as a function of the threshold defining suc-
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Figure 5.24: (a) Average Euclidean error for the localization of all

fiducials in mm depending on the number of trees, for a stride of to 10

and maximum depth of 20. (b) Error depending on the stride, with 15

trees of depth 20. (c) Error depending on the trees’ depth, with 15 trees

and stride 10. For most configurations, the average error is below 5 mm.
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Figure 5.25: Estimation time for all the 14 feature points, averaged

over 500 randomly selected frames. As can be noted, the values are low

and our system runs faster than 25 fps for most of the configurations.

(a) Processing time depending on the number of trees, for a stride of 10.

(b) Run time depending on the stride, with 15 trees. (c) Time to process

a frame, depending on the maximum tree depth.
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fiducial succ. % (5/10mm) mean ± std

outEyeL 85.37/98.67 3.29± 3.56

innEyeL 97.12/99.19 2.58± 2.94

innEyeR 95.20/98.83 3.41± 2.87

outEyeR 72.86/96.89 4.69± 6.42

noseL 96.80/99.88 2.41± 1.52

noseR 94.53/99.30 2.60± 2.47

mouthL 88.88/98.97 3.04± 2.15

mouthR 85.13/98.54 3.38± 3.38

upLip 94.55/99.85 2.95± 1.46

lowLip 86.17/98.34 3.38± 2.61

outBrowL 68.31/95.56 4.50± 3.66

innBrowL 93.95/98.39 2.86± 3.85

innBrowR 92.50/97.83 3.34± 4.16

outBrowR 77.01/94.66 4.99± 7.05

Table 5.4: Summary of the performance of our method, applied to

a 5-fold cross validation on the B3D(AC)2 dataset, for each fiducial.

Together with mean and standard deviation of the Euclidean errors, the

success rates for conservative thresholds of 5, respectively 10 millimeters

are shown.

cess. For the B3D(AC)2 dataset, we localized the feature points with an

error below or equal to 5 mm in 87.7% of the cases, which becomes 98.2%

for a threshold of 10 mm. For the BU3DFE database in its frontal ren-

derings, we correctly localized 76.8% of the points for a 5 mm threshold

and 96.9% for a 10 mm one; such accuracies are lower for the database

with synthetically introduced rotations, namely 62.4% and 92.2%.

Some examples of successful detections of the 14 facial feature points on

range images from the test datasets are shown in Figure 5.27 (B3D(AC)2),

and in Figure 5.28 (BU3DFE). Some failure examples, where not all

fiducials were correctly localized, are shown in Figure 5.29. Most errors

occur around the mouth regions due to the large deformations and the

noisy reconstruction of the teeth and oral cavity.

As a last experiment, in order to test the performance with regard to

partial occlusions and missing reconstructions, we tested our system on

synthetically corrupted range images. First, we randomly selected parts
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fiducial succ. % (5/10mm) mean ± std

outEyeL 81.20/99.35 3.36± 2.09

innEyeL 97.72/99.95 2.32± 1.28

innEyeR 97.68/99.95 2.44± 1.47

outEyeR 83.55/99.26 3.32± 2.32

noseL 88.34/99.87 3.11± 1.58

noseR 87.45/99.75 3.24± 1.67

mouthL 69.38/95.53 4.46± 3.25

mouthR 69.95/95.93 4.41± 3.21

upLip 87.33/99.30 3.10± 2.09

lowLip 75.76/95.41 4.52± 5.39

outBrowL 49.49/88.10 5.90± 3.64

innBrowL 71.29/98.45 4.42± 2.56

innBrowR 68.77/97.68 4.59± 2.74

outBrowR 47.86/88.46 6.10± 3.93

Table 5.5: Summary of the performance of our method, applied to

a 5-fold cross validation on the BU3DFE database, for each fiducial.

Together with mean and standard deviation of the Euclidean errors, the

success rates for conservative thresholds of 5, respectively 10 millimeters

are shown.

of the depth images in the B3D(AC)2 database and set them to zero,

then, we rendered a hand model in front of the faces from the BU3DFE

dataset, in order to simulate more realistic occlusions. In both cases, we

trained on the original data and tested on the corrupted images, in a

5-fold cross-validation experiment.

Figure 5.30 shows the mean error, averaged over all the facial feature

points, as a function of the amount of synthetically removed reconstruc-

tions on the B3D(AC)2 corpus. The extent of missing data is measured

as the percentage of the area covered by the face bounding box, i.e.,

the smallest rectangle enclosing all projections on the depth image of

the facial feature points ground truth locations, enlarged by the patch

size (40 pixels) on both dimensions. The occluding patches are required

to fall within the face bounding box and sample test faces are rendered

over the curve to ease visualization. As can be seen from the plot, the

proposed method is robust to such missing reconstructions: Even when
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fiducial succ. % (5/10mm) mean ±
outEyeL 66.01/95.93 4.66± 3.39

innEyeL 92.12/99.83 2.87± 1.71

innEyeR 91.43/99.83 2.94± 1.72

outEyeR 64.14/94.27 4.77± 4.69

noseL 81.03/99.55 3.48± 1.84

noseR 81.52/99.43 3.56± 1.92

mouthL 55.70/87.77 6.04± 5.44

mouthR 54.20/88.55 5.82± 4.77

upLip 73.04/98.05 4.05± 2.44

lowLip 49.61/89.52 6.45± 6.68

outBrowL 32.48/77.46 7.37± 4.22

innBrowL 51.23/92.89 5.42± 2.95

innBrowR 49.00/92.28 5.61± 3.08

outBrowR 32.19/75.39 7.71± 4.59

Table 5.6: Summary of the 5-fold cross validation on the BU3DFE

database with rotations, for each fiducial.
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Figure 5.26: Accuracy of the algorithm (percentage of correctly esti-

mated facial features) on all databases (5-fold cross validation), as the

threshold defining success changes.
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Figure 5.27: Successfully localized facial features localization on some

test scans from the B3D(AC)2 database.

Figure 5.28: Example of succesfully estimated depth images from the

BU3DFE dataset.
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Figure 5.29: Examples failure cases for the facial feature detector. The

mouth feature points and the brow’s endpoints are the fiducial most often

misplaced.
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Figure 5.30: Mean errors (averaged over all the feature points) as a

function of the amount of synthetically removed reconstruction from the

B3D(AC)2 database, measured as % of the bounding box enclosing the

ground truth locations of the fiducials. Example image are overlaid on

the plot, more examples are shown in Figure 5.32(a)
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Figure 5.31: (a) Success rate, for a threshold of 10, respectively 5

mm, for the facial features localization task, plotted as functions of the

percentage of face pixels occluded by the hand, in the renderings of the

BU3DFE dataset. (b) Average errors, functions of the percentage of

face pixels occluded by the hand. Examples are shown in Figure 5.32(b)

(a)

(b)

Figure 5.32: Some corruped test images where our algorithm still man-

ages to predict plausible locations of the feature points. (a) Missing

reconstructions in the B3D(AC)2 database. (b) Synthetically occluded

images from the BU3DFE dataset.
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50% of the data was missing, we still obtained an average error below 8

mm.

Figures 5.31(a) and 5.31(b) relate to the artificially occluded BU3DFE

data. In particular, in Figure 5.31(a), the success rate (averaged over all

feature points) is plotted against the percentage of occlusion. The blue,

continuous line, relates to a threshold of 10 mm, while the red, dashed

line correspond to a threshold of 5 mm. The amount of occlusion is

calculated as the ratio of pixels in the face which are covered by the hand.

Similarly, Figure 5.31(b) shows the average error in the localization, as

the occlusion increases. As our system was trained only on positive

patches coming from depth images of faces, this experiment proved more

challenging than the previous one, and the errors grow faster as the hand

occludes a higher percentage of the face surface.

Some examples of successful detections on corrupted images are shown in

Figure 5.32(a), depicting the missing reconstructions in the B3D(AC)2

database, and in Figure 5.32(b), with the hand-occluded renderings of

the BU3DFE dataset.

In order to qualitatively evaluate the performance of our algorithm, we

also tested it on new subjects, directly as they were scanned by the

structured light scanner of [Weise et al. 2007]. We used a forest trained

on the full B3D(AC)2 database. We asked the subjects to perform

different motions, also partly occluding their face with their hands or

sunglasses. As shown in Figure 5.33, the results are robust to such

occlusions. The video also shows how the algorithm is able to run in

real time, at around 15 frames per second on a computer equipped with

a 2GHz processor and 2GB of RAM, acquiring the range scans while

estimating the 3D locations of the facial features.

5.4 Conclusions

We have proposed a fast and robust framework based on random forests

for real time head movement analysis. Intuitive parameters like number

of trees and sampling stride provide straight-forward tools for adapt-

ing the system to different levels of computing power availability. We

described in details its application for head pose estimation using both
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Figure 5.33: Qualitative results, on subjects not present in the training

dataset, of the system running in real time.
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high quality range scans and low resolution depth images, and for 3D

facial features localization. Our method runs on a frame-to-frame basis

and therefore does not suffer from the usual shortcomings of tracking

approaches, lending itself as a valuable tool for (re-)initialization of such

methods.

We have demonstrated the accuracy and robustness of the proposed

method on challenging and realistic datasets which are available to the

community. Moreover, for our experiments on real time head pose esti-

mation from consumer depth cameras, we acquired and annotated a new

database containing different subjects rotating their heads, recorded us-

ing a Microsoft Kinect, which we made available for download.

Our framework relies on the abundance of annotated training depth data.

New and more realistic training databases are required, covering all the

scenarios which should be expected at test time. In our future work,

we intend to train on full upper body models instead of isolated faces

in order to better handle hair and other non-face body parts. Synthe-

sis of such databases is very challenging due to the need of generating

different hair styles, facial expressions, and head-wears. On the other

hand, acquiring and annotating real-life scenes, to be used for testing

new algorithms, would probably prove even more challenging.

The use of depth data solves many of the inherent problems of standard

images, however, is bounded by the availability of such sensors. Even

though prices have recently dropped, the distribution of depth cameras is

still limited compared to standard video recording devices and most have

problems in outdoor scenarios. Our recent work [Dantone et al. 2012]

shows how to join real time head pose estimation and facial features

localization for 2D images of faces acquired “in the wild”.





6
Conclusions and Outlook

In this thesis, we have presented new tools for the automatic analysis

of human behavior, with a clear focus on head and facial movements.

We have attacked problems such as robust mouth localization for audio-

visual speech recognition, automatic facial expression analysis, head pose

estimation, and 3D facial features localization. Moreover, we have col-

lected and annotated two new valuable datasets of affective multimodal

speech and head pose estimation, which are made available to the re-

search community.

6.1 Discussions

Here we summarize the contributions of the single chapters of thesis.

• Even though automatic speech recognition performance greatly im-

proved in recent years [Schalkwyk et al. 2010], ambient noise still

poses a problem in many application scenarios. The visual chan-

nel provides valuable additional cues in such cases, but at the price

of having to localize the mouth area from a video stream of the

speaker.

The method presented in Chapter 2 goes into this direction. Rather

than relying on the detection of specific landmarks, we use random

forests to map the appearance of small image patches into Hough

votes for the mouth location.

Real time processing is achieved thanks to the removal of variations

in scale and rotation based on the automatic detection of the irises.
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Our experiments showed the goodness of the method. In particu-

lar, our automatically extracted mouth images proved competitive

to those localized using manual intervention for the task of audio-

visual speech recognition.

• In Chapter 3, we proposed a fully automatic system for classifying

video sequences into one of the facial expressions of the six basic

emotions.

We extended the Hough forest of [Gall et al. 2011], initially de-

signed for human action recognition, to the harder task of recog-

nizing the subtler movements building up facial expressions.

Our approach reached results which are comparable to the state of

the art by using features separately encoding facial shape and mo-

tion, extracted from automatically normalized facial images thanks

to the automatically tracked eyes’ positions.

• The multimodal corpus presented in Chapter 4 is a valuable tool

for the research community, not only for the analysis, but also

synthesis of facial movement.

Being emotions crucial in human communication, we presented

a method for the acquisition and automatic annotation of a rich

multimodal database of emotional speech.

The Biwi 3D Audiovisual Corpus of Affective Communication is

made available to the community, with its over 120K frames of

high quality facial range scans. The faces are annotated by de-

forming a generic template to fit each frame: Such spatial and

temporal correspondences across all sequences and speakers rep-

resent an important tool for further analysis and modeling of the

face data. The audio channel is also provided, annotated with de-

tailed phoneme segmentation, a phonological representation of the

utterances, fundamental frequency, and signal intensity.

The emotional states were elicited through movie clips, which, far

from being a substitute of naturalistic emotions, proved a good

compromise when high-quality data are desired. The online survey

which we set up to evaluate the affective content of the database

confirmed the goodness our choice.
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Our corpus stands out from all currently available datasets, which

are either completely posed, limited to dynamic facial expressions

without speech, or lacking 3D information.

• In Chapter 5, we presented an approach to head pose estimation

and facial features detection from depth data.

Our algorithm is based on random forests and provides results

competitive or superior to the state of the art without the need of

special hardware or the visibility of specific facial features. Intu-

itive parameters like number of trees and sampling stride provide

straightforward tools for adapting the system to different levels of

computing power availability.

Real time performance and the capability of running on a frame-

by-frame basis make our method valuable for many important ap-

plications, where the depth data can be key to overcome the many

limitations of image-based approaches, like illumination changes or

textureless facial regions. Source code and a database of annotated

head poses were made available for download.

6.2 Future Work

Current automatic methods for the analysis of head and facial motions

still don’t stand a chance when compared to human performance. These

represent important steps for many applications, especially related to

human-computer interaction. Researchers in these fields face therefore

many challenges in the future, together with great opportunities for ad-

vancing in the way we interact with computers.

In the following, we present possible future work to be built upon the

proposed methods.

• Both automatic methods presented in Chapters 2 and 3 rely on

the detection of the irises for the normalization of the facial images

with respect to scale and orientation. This limits the application

of the proposed algorithms to scenarios where the user is facing

the camera and the eyes are visible. To limit the errors caused by

temporary failure of the eye detections, i.e., during blinking, a pair
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of Kalman filters was used. However, more advanced techniques

could be employed to better stabilize the results, e.g ., by tracking

larger parts of the face by means of a template.

• In the facial expression recognition field, the recent trend is to

recognize single muscles’ activations, rather than classifying the

whole face deformation into one of the six basic emotions. In fact,

such prototypical expressions are rarely encountered in our daily

lives. A natural extension to the work presented in Chapter 3

would thus be its application to the recognition of Action Units,

as defined in the Facial Action Coding System.

• The multimodal corpus presented in Chapter 4 is already being

used by several research groups around the world. Although the

evaluation of the database indicates that its contents convey sim-

ilar affective states to human observers as the eliciting video clips

did, the used induction method is far from being a replacement

of naturalism. Being the database targeted not only to the recog-

nition of affective states, but also to the synthesis of believable

emotional visual speech, the naturalness of the emotions had to be

sacrificed in exchange for high quality data.

The online survey which evaluated the affective contents of the

corpus was based on the original audio recordings and videos pro-

duced by rendering the tracked templates. This choice was meant

to assess the quality of the processed data (brought into temporal

and spatial correspondence), to be used for the training of systems

aimed both at recognition and synthesis of emotional visual speech.

However, the current lack of eyes, eyelids, and inner mouth in the

template used to track the 3D data is a serious limitation. Being

the original 3D recordings included, the corpus could serve as a

common test bed for new and better face tracking algorithms.

• The framework presented in Chapter 5 is an important step for-

ward in the fields of automatic head pose estimation and facial

features localization from 3D data. The use of depth data, how-

ever, is bounded by the availability of such sensors: Even though

prices have recently dropped, their distribution is still limited and

most have problems in outdoor scenarios.
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While our framework relies on the abundance of training data, the

experiments have also shown the limitations of synthesizing such

depth images using a model of the head alone. New and more

realistic training databases are required, covering all the scenarios

which should be expected at test time. Synthesis of such databases

is very challenging due to the need of generating different hair

styles, facial expressions, and head-wears. On the other hand,

acquiring and annotating real-life scenes to be used for testing new

algorithms would probably prove even more challenging.

Future extensions to the proposed head pose estimation system in-

clude training on full upper body models instead of isolated faces

and the use of additional feature channels extracted from the RGB

camera, available in most commercial devices like Kinect. More-

over, scaling the patches according to their 3D location would in-

crease the range of operation along the z-axis.

The extension of the algorithm to facial features detection cur-

rently only works on high quality depth scans. The additional

information coming from the RGB camera could prove decisive in

extending the method to handle lower quality data produced by

cheap sensors. Our recent publication [Dantone et al. 2012] shows

how to join head pose estimation and facial features localization

for 2D images of faces, acquired “in the wild”.

An eventual coupling of the proposed methods with tracking algo-

rithms taking also temporal information into account would further

push the state of the art in head and face motion analysis, paving

the road to better applications in recognition and human computer

interaction.
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