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A B S T R A C T   

The ability to predict the geometry of the weld bead plays a key role in accurate path planning and determination 
of welding parameters in wire arc additive manufacturing. However, little attention has been paid to the weld 
bead geometry and its prediction when the deposition path is not straight. Thus, this work focuses on the 3D 
reconstruction of the weld bead based on the deposition path. One of the main findings of this paper is that the 
weld bead shape changes from a symmetrical cross-section in straight portions of the path to an asymmetrical 
shape in non-straight regions. To predict the 3D geometry of the weld bead, an AI-based architecture called 
AIBead was developed. A suitable parametrization of the deposition path is proposed that is a key to train the 
AIBead properly and to outperform currently used parabolic models.   

1. Introduction 

Wire arc additive manufacturing (WAAM) is directed energy depo-
sition (DED) process that utilizes arc welding to manufacture metal 
parts. The welding torch is guided along a deposition path using either a 
CNC machine or an industrial robot, so that 3D shapes can be manu-
factured. Compared to other additive manufacturing technologies, the 
WAAM technology has a bigger build envelope, higher production rates 
and higher material utilization (Karunakaran et al., 2010). Furthermore, 
the metal parts fabricated using WAAM have favorable mechanical 
properties such as high density and strength comparable to those man-
ufactured with traditional manufacturing methods (Mughal et al., 
2006). Finally, WAAM is considered to have lower process chain costs 
and lower environmental impact than other additive manufacturing 
technologies (Cunningham et al., 2017; Priarone et al., 2020). 

As visualized in Fig. 1, predicting the weld bead geometry plays a 
crucial role in path planning as well as in the determination of welding 
parameters such as wire-feed rate, travel speed, and stick-out length. 
Thus, error-free welding is conditioned by the exact model of the weld 
bead shape including the prediction of the geometry within radii. The 
importance of addressing the forecast of the weld bead geometry in the 
radius is demonstrated in Fig. 2. Here Fig. 2(c) and (d) visualizes the 
cross-sections of the radii R0.001 mm and R16 mm (see Fig. 2(a) and 

(b)). It can be seen that radius R0.001 mm, unlike R16 mm, exhibits a 
wavy surface, which is caused by the asymmetry of the weld bead ge-
ometry inside the radius. This geometric asymmetry affects the calcu-
lation and value of ideal weld bead overlaps, which is not taken into 
account by current methods assuming a parabolic shape. In addition, the 
changing orientation of the individual weld beads after each layer 
shown in Fig. 2(c) is caused by a change in the welding direction. 

Scientific works dealing with weld bead geometry prediction can be 
divided into two categories according to the used method: classical, 
using mainly regression analysis, and artificial intelligence approaches 
utilizing MLP (multilayer perceptron). 

Suryakumar et al. (2011) uses second-order regression analysis to 
determine the weld bead height as a function of wire feed rate and torch 
speed. The weld bead width is obtained analytically using the assump-
tion that the shape of the weld bead corresponds to a parabola. The 
regression model is fitted and tested on 42 cross-sections and the 
resulting accuracy is determined as a comparison between the real and 
calculated area of the parabola. The mean error and its standard devi-
ation between the ground truth and predicted area is 0.5 ± 5.9%. 
Another work published by Xiong et al. (2014) utilizes also second-order 
regression analysis, where the authors use wire feed rate, welding speed, 
arc voltage, and nozzle-to-plate distance as model input parameters. The 
output of their model is the width and height of the weld bead. The 
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model is trained via 31 cross-sections and tested on a separate test set 
consisting of 12 samples. The average error between the real and pre-
dicted bead width, height is 2.6 ± 1.8% and 2.3 ± 1.8%, respectively. In 
addition, Mollayi and Eidi (2018) design a support vector regression 
(SVR) algorithm that, based on process parameters such as wire feed 
rate, welding speed, arc voltage, and nozzle-to-plate distance, computes 
the weld bead height and width. The authors use the same training and 
testing data like those presented by Xiong et al. (2014) and obtain a 
testing error of 5.52% for both, weld bead height and width. 

One of the first models predicting weld bead geometry using artificial 
intelligence is described by Nagesh and Datta (2002). The goal of this 
work is to predict the height, width, depth of penetration, and area of 
penetration of the weld bead produced via shielded metal arc welding 
(SMAW). For this purpose, a neural network is trained, which uses 
electrode feed rate, arc power, arc voltage, arc current, arc length, and 
arc travel rate as input. The network is trained via 15 samples and tested 
with 3 others. Furthermore, the mean output errors for all the predicted 
variables are 1 ± 8.3%, 3 ± 5.2% and 5.8 ± 4.1%. Xiong et al. (2014) 
focus on predicting the width and height of the weld bead in gas metal 

arc welding (GMAW) using a neural network trained with wire feed rate, 
welding speed, arc voltage, and nozzle-to-plate distance. The data used 
in this publication are already described in the preceding paragraph. The 
network reaches a mean bead width and height error of 1.9 ± 1.2%, 
2.1 ± 1.5%. The same goal and welding process have also been modeled 
using a neural network described by Ding et al. (2016), with the dif-
ference that the input data is given by the wire feed rate, travel speed, 
and stick-out length. Moreover, the model is trained and tested via 16 
and 7 samples, respectively. There are no quantitative results listed. 
Kumar et al. (2017) examine the weld bead shape prediction in cold 
metal transfer welding. To predict the width, height, and depth of 
penetration, a neural network is trained, which uses welding current, 
speed, voltage, and shielding gas flow rate as input parameters. The 
numbers of the cross-sections used for training and testing are 27 and 6, 
respectively. Afterwards, the resulting mean errors are 2.1 ± 1% for the 
width, 1 ± 0.3% for the height, and 8.1 ± 1.2% for the depth of pene-
tration. Weld bead height and width manufactured via wire arc additive 
manufacturing (WAAM) process were predicted using a neural network 
outlined by Karmuhilan et al. (2018), which was trained on voltage, 

Fig. 1. WAAM process chain (Karmuhilan et al., 2018).  

Fig. 2. Difference in surface waviness for radius R0.001 mm and R16 mm.  
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wire feed rate, and welding speed. The authors use 14 samples for 
training and the other 4 for testing purposes. The resulting percentage 
errors for the test data are not listed. Ahmed et al. (2018) predict SMAW 
bead geometry, more precisely the width, height and depth of pene-
tration, with the help of a radial basis function network (RBFN). This 
architecture was trained using the SMAW parameters as welding cur-
rent, arc length, welding speed, electrode diameter, and welding gap. 
The created dataset consists of 33 samples where 80% were used for 
training and the rest for testing. The mean error is 10% for all predicted 
variables. 

All the above-mentioned publications are summarized in Table 1. 
There are three main shortcomings of the above-cited literature. The 

first one is that all publications focus on the reconstruction of the weld 
bead geometry along straight deposition paths. Thus, there is no sys-
tematic analysis of the shape of weld beads deposited along curved paths 
such as radii. The second drawback is that no attempt was made to 
reconstruct the weld bead cross-section shape in a non-straight section 
of the deposition path. The third is the absence of a ready-to-go solution 
where the developed algorithm would reconstruct a 3D model of the 
weld bead based on the deposition path. 

Therefore, the aim of this work is to find a solution to the above 
mentioned knowledge gaps by answering the following research 
questions:  

• How is the weld bead geometry affected by curvature changes in the 
deposition path?  

• What is the course of geometric characteristics of the weld bead 
geometry along the curvature, i.e., are there steady-state and tran-
sient regions?  

• Are classical regression models sufficient to predict the weld bead 
geometry in the case of curvature changes or are more sophisticated 
models based on artificial intelligence necessary? 

• What is a suitable deposition path parameterization to train a ge-
ometry prediction model?  

• If transient behavior occurs when the curvature of the deposition 
path changes, is an MLP sufficient to reconstruct the weld bead ge-
ometry or is a more complex AI architecture (e.g., GRU, see Section 
2.2) required? 

Moreover, the solution to these gaps should allow for a 3D recon-
struction model that takes a predefined deposition path (e.g., a G-code 
path) as input and outputs a 3D weld bead geometry. 

Section 2 presents the developed AIBead. It consists of subsections 
clarifying the experimental data, GRU theory, AIBead input preparation, 
AIBead architecture, and finally, its training settings. The used dataset is 
available on demand. Afterwards, the developed machine learning 
model is tested and the results are presented in Section 3. Furthermore, 
the results of the chosen approach, its advantages in comparison with 
the current literature and its shortcomings are discussed in Section 4. 
Finally, the publication is concluded in Section 5 including hints on 
possible future work. 

2. Machine learning model 

2.1. Experimental data 

The first objective of this work was to create a dataset that would 
allow for a comparison of different techniques in the field of weld bead 
reconstruction. Therefore, weld beads were produced using a GEFER-
TEC 3D metal printer (see Table 2) and then scanned with an ATOS 3D 
scanner to obtain 3D models. 

Although this work deals only with the reconstruction of single weld 
beads the general dataset containing multi-layer and multi-bead welds 
was created so that it can be used in the development of future models 
aiming at reconstruction that takes into account multiple weld beads. An 
overview of the dataset is detailed in Table 3. 

From Table 3 it can be seen that the smallest radius is 0.001 mm and 
the largest is 16 mm. The value R0.001 mm was chosen because of the 
later parameterization of the deposition path, where it is necessary to 
assign a value greater than zero to the radius. Moreover, the difference 
between R0.001 mm and R0 mm is negligible and the radius R0.001 mm 
can be considered as a sharp corner. 

Furthermore, examples of deposited and scanned weld beads are 
presented in Fig. 3. 

In order to perform the weld bead shape analysis and prepare the 
data for AIBead training, the weld beads were cut along their center lines 
in different positions and radii. The center line is defined as the midline 
between the lateral contours of the weld bead, which is calculated as the 

Table 1 
Review of the literature on weld bead geometry prediction. All abbreviations are 
explained in the table legend.   

Inputa Outputb Model Error [%] 

Suryakumar et al. 
(2011) 

WFR, WS BH 2nd 
Regres. 

0.5 ± 5.9 

Xiong et al. (2014) WFR, WS V, 
NTPD 

BH, BW 2nd 
Regres. 

2.6 ± 1.8, 
2.3 ± 1.8 

Mollayi and Eidi 
(2018) 

WFR, WS V, 
NTPD 

BH, BW SVR 5.52 

Nagesh and Datta 
(2002) 

WFR, V, P I, 
L, WS 

BH, BW 
DOP 

MLP 1 ± 8.3, 3 ± 5.2, 
5.8 ± 4.1 

Xiong et al. (2014) WFR, WS V, 
NTPD 

BH, BW MLP 1.9 ± 1.2, 
2.1 ± 1.5 

Ding et al. (2016) WFR, WS SL BH, BW MLP – 
Kumar et al. 

(2017) 
I, WS V, 
SGFR 

BH, BW 
DOP 

MLP 2.1 ± 1, 1 ± 0.3 
8.1 ± 1.2 

Karmuhilan et al. 
(2018) 

V, WS WFR BH, BW MLP – 

Ahmed et al. 
(2018) 

A, L, WS, 
ED, WG 

BH, BW 
DOP 

RBFN 10%  

a WFR = wire feed rate [m/min], WS = welding speed [m/min], V = arc 
voltage [V], NTPD = nozzle-to-plate distance [mm], I = arc current [A], L = arc 
length [mm], SL = stick-out length [mm], SGFR = shielding gas flow rate [lit/ 
min], ED = electrode diameter [mm], WG = welding gap [mm], P = arc power 
[W]. 

b BH = bead height [mm], BW = bead width [mm], DOP = depth of penetra-
tion [mm]. 

Table 2 
Welding parameters of GEFERTEC arc605 metal printer with Fronius TPS 400i 
welding source.  

Welding wire Wire diameter Shielding gas Stick-out length 

SG2 1.5125 1.2 mm 18% CO2, 72% Ar 10–15 mm  

Welding 
speed 

Wire 
feed 
speed 

Substrate Intermediate layer 
temperature 

Variable (see  
Table 3) 

5 m/min S235JR, 
250 mm × 125 mm × 5 mm 

max 120 ◦C  

Table 3 
Overview of performed welding experiments with respect to welded radii, 
number of beads and layers. Finally, the torch speeds with which the experi-
ments were carried out are given.   

Radii [mm] Number of 
multibeads 

Number of 
layers 

Torch speed 
[mm/min] 

Setup 
n.1 

R0.001, R05, R1, 
R2, R4, R8, R12, 
R16 

1 10 500 

Setup 
n.2 

R0.001, R1, R4, R12 1 10 250, 333 

Setup 
n.3 

R0.001, R1, R4, R8, 
R12, R16 

1 10 250, 333, 
500  
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average of their coordinates. These cross-sections are represented by 16 
2D points and they are used as ground truth training and testing data. 

2.2. Gated recurrent unit 

Gated recurrent unit (GRU) is a type of recurrent neural network 
introduced by Cho et al. (2014). The GRU unit is depicted in Fig. 4. 

It consists of four parts. The first two are vectors called update gate zt 
and reset gate rt. The update gate decides how much information from 
the previous step should be passed on to the future. Conversely, the reset 
gate determines how much information from the previous step is to be 
forgotten. The third part is called candidate hidden state ̃ht , which stores 
the relevant information determined by the reset gate. Finally, the last 
part is a vector named hidden state ht, current GRU unit information 
holder, which is passed to the next unit. 

The whole GRU workflow can be explained using the following 
equations. Firstly, the update gate zt is computed as 

zt = σ
(
W(xz)xt + W(hz)ht− 1 + b(z)) (1) 

Fig. 3. Visualization of the welded setups in different layers, which are closely described in Table 3.  

Fig. 4. Basic GRU cell architecture (Pan et al., 2018).  

Fig. 5. Comparison of cross-sections of a weld bead in brown point with respect 
to center line (green dashed line) and G-code path (pink dashed line). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. A fitting algorithm that transfers the G-code path to the center line. It 
works on the basis of Iterative Closest Point Algorithm, which finds the trans-
formation between the 3 correspondence points of the G-code path and the 
central line. Using these, the two curves are fitted to each other and the G-code 
path is replaced by the central line between the two extreme points. 

J. Petrik et al.                                                                                                                                                                                                                                    
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where the input vector xt is multiplied by its trained weight matrix W(xz) 

and is summed with the bias vector b(z) and the product of the output of 
the previous GRU cell ht− 1 with its trained weight matrix W(hz). Finally, 
the sigmoid activation function is applied to force the output to lie be-
tween 0 and 1. 

Afterwards, the reset gate rt is computed as follows: 

rt = σ
(
W(xr)xt + W(hr)ht− 1 + b(r)) (2) 

Eq. (2) is almost the same as the one used for the update gate. The 
only difference is the usage of its own trained weight matrices. 

The calculation of the candidate hidden state h̃t is given as 

Fig. 7. AIBead architecture consisting of either 
MLP or GRU. Each point of the central line of 
the weld bead is parameterized by 4 values: 
plane angle, Euler distance, radius and welding 
speed. These values are then used as input to 
GRU or MLP, which predict the 2D point cloud 
of the weld bead cross-section. This is compared 
with its ground truth using the MSE loss func-
tion, and the value is then backpropagated. In 
addition, the individual 2D pointclouds can be 
positioned back on the weld bead’s center line 
to obtain its 3D model.   

Table 4 
Optimization parameters and their boundaries of a genetic algorithm utilized to 
optimize both MLP and GRU architectures.   

Number of layers Number of neurons per layer Sequence length 

MLP [3, 8] [16, 32, …, 512] – 
GRU [1, 4] [20, 25, …, 70] [2, 4, 8]  

Table 5 
MLP parameters, where BS signifies the used batch size. In addition, the first 
layer input is [BS, 4].  

Layer Output Parameters 

LeakyReLU(Linear) [BS, 32] 128 
LeakyReLU(Linear) [BS, 256] 8192 
LeakyReLU(Linear) [BS, 256] 65,536 
LeakyReLU(Linear) [BS, 32] 8192 
Linear [BS, 32] 1024     

Table 6 
Parameters of the GRU unit utilized in the AIBead.   

Input size Hidden size Number of layers Dropout 

GRU 4 50 2 0.2   

Bidirectional Bias Sequence length Output size 

GRU True True 4 32  

Fig. 8. Polygon mesh reconstruction based on center line and AIBead architecture. This procedure is illustrated by two points on the central line, where the AIBead 
first predicts their 2D point clouds. Then the corresponding points between the two point clouds are marked and these are then rotated and translated to the central 
line using x, y, z coordinates and rotation angles. Finally they are connected to form a polygonal mesh. 

Table 7 
Training parameters of the AIBead.   

Optimizer Learning rate Beta 1 Beta 2 Batch size Epochs 

GRU Adam 0.01 0.9 0.99 32 250 
MLP Adam 0.01 0.9 0.99 32 250  

Table 8 
Number of cross-sections used to train and test AIBead from each experi-
mental setup presented in Fig. 3.   

Train Test 

Setup n.1 1002 – 
Setup n.2 1054 – 
Setup n.3 – 540     
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h̃t = tanh
(
W(xh)xt + (rt ⊙ ht− 1)W(hh) + b(h) ) (3) 

It consists of three steps. First, the weight matrix W(hh) is multiplied 
with the input xt. Secondly, the Hadamard (element-wise) product be-
tween the reset gate rt and W(hh)ht− 1 is used to determine what has to be 
removed from the previous time steps. Lastly, these two results are 
added together and the hyperbolic tangent function (tanh) activation 
function is applied. 

The last part of the architecture is the calculation of the final hidden 
state ht, which decides about which information should be collected 
from the current memory content h̃t and which from the previous step 
ht− 1 (see Eq. (4)): 

ht = (1 − zt) ⊙ ht− 1 + zt ⊙ h̃t (4) 

There are a couple of important parameters, which have to be 

defined to be able to train the GRU architecture. Besides the common 
ones such as input size, output size, bias utilization, or dropout rate are 
these given as follows:  

• Hidden size, which describes the number of neurons in the hidden 
state h, which is depicted in Fig. 4.  

• The number of layers determining the number of stacked GRUs, e.g., 
3 layers means that 3 stacked GRUs were used, where the second one 
takes as input the output from the first one and so on.  

• Bidirectionality. If a bidirectional GRU (BiGRU) is used, each GRU is 
composed of two GRU units, where one takes the input sequence in a 
forward direction and the second in a backward direction. After-
wards, both directions are considered for the output calculation.  

• Sequence length, that expresses the size of the input sequence. 

2.3. Models 

The aim of the developed machine learning model called AIBead (see 
Fig. 7) is to predict the 3D geometry of the weld bead based on the G- 
code path. A possible AI concept to achieve this goal is either a multi-
layer perceptron (MLP, see (Murphy, 2021)) or GRU (see Section 2.2). 
These types of architectures were chosen because of the possibility to 
learn non-linear relationships in the data so that the non-symmetrical 
weld bead shape can be plausibly modeled. In addition, the GRU can 
potentially benefit from being able to take into account information 
from the surrounding of the currently computed cross-section. Finally, 
GRU got priority over LSTM because it seems to be computationally 
more efficient and converges faster (Chung et al., 2014). 

AIBead is also compared with classical approaches such as second- 
order linear regression and Support Vector Regression (SVR, see 
(Awad and Khanna, 2015)). Both of these techniques are trained to 

Fig. 9. Training and evaluation curves for both MLP and GRU architectures.  

Table 9 
Geometric characteristics of the 10 cross-sections in the middle of each radius for 
v = 500 mm/min.   

Width 
[mm] 

Height 
[mm] 

Area 
[mm2] 

Circumference 
[mm] 

Inner 
toe 
angle 
[◦] 

Outer 
toe 
angle 
[◦] 

R0.001 6.1 2.6 10.6 8.7 45 84 
R1 5.7 2.5 10.5 8.5 52 86 
R2 5.5 2.3 9.3 8.1 50 89 
R4 4.9 2.4 8.7 7.7 58 85 
R8 4.7 2.3 7.9 7.2 62 75 
R16 4.7 2.2 7.8 7.2 68 66 
Straight 4.5 2.3 7.6 7.1 73 66  

Fig. 10. Radius sections as well as the examined geometric characteristics.  
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predict the coefficients a and b that affect the parabolic shape as 
described in Eq. (5): 

y = ax2 + b (5)  

2.4. AIBead input preprocessing 

In order to train AIBead, the input G-code path needs to be replaced 
by a center line, which is defined as the midline between the lateral 

contours of the weld bead calculated as the average of their coordinates. 
As shown in Fig. 5, these two paths are not identical for small radii. 

Furthermore, the specific reasons for this step are as follows:  

• The cross-sections, which serve as training data, have to be cut along 
the center line in order to obtain real shape of the weld beads. This is 
illustrated in Fig. 5, where the cross-sections in the brown point 
perpendicular to the G-code path and the central line are shown as an 
example. Here it can be seen that only the green cross-section, which 
is perpendicular to the tangent in the brown point, captures the 
actual weld bead shape.  

• AIBead is trained via cross-sections, which have been obtained as 
perpendicular to the tangent of the central line at each point. Thus, in 
order to be able to assemble a 3D model from the individual pre-
dicted cross-sections, it is necessary to place them on the central line 
and not on the G-code path. 

Fig. 6 outlines how the G-code path is replaced by a central line using 
fitting method called Iterative Closest Point algorithm (ICP, see (Besl 
and McKay, 1992)). 

For the most accurate fit, only three points are taken into account: 
two points that bound the radius and the center of the radius. Then the 
radius of the G-code path is replaced by the radius of the center line, as 
shown on the right side of Fig. 6. 

Fig. 11. Course of geometric characteristics of cross-sections cut along middle 
line containing R0.001 (smooth line), R8 mm (dashed line) and v = 500 m/min. 

Fig. 12. Difference in the center line and the G-code planning line of the weld bead. Approximately the same difference can be observed for all the examined 
welding velocities. 
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2.5. Architecture 

The overview of the AIBead architecture is presented in Fig. 7. 
The deposition path shown in Fig. 7 is parametrized using the 

following variables:  

• Plane angle: the angle between the tangent at the point at which the 
shape of the weld bead is calculated and a randomly oriented plane. 
Thus, this input allows to distinguish between a straight region and 
other radii, and also where exactly a point on a given radius lies. 
Furthermore, the random rotation during the training ensures, that 
the AIBead architecture does not overfit on specific plane rotation 
and therefore, is rotation invariant.  

• Euler distance: the distance between the inspected cross-section and 
the middle of its closest radius. This input provides the architecture 
with information about where the examined cross-section is located 
within the radius. For example, whether the cross-section is in the 
part before or after the center of the radius. This information allows 
to model the delayed return of the cross-section to the shape before 
the radius.  

• Radius: the curvature of the deposition path on which the point is 
located. This makes it possible to distinguish different radii, whose 
resulting geometry is different.  

• Torch speed: the input allowing the capture of geometry changes 
depending on the welding speed. 

These parameters serve as the input of the AIBead and form the input 
feature vector x, where 

x ∈ R4 (6) 

Moreover, the output of the used AI unit, i.e., either MLP or GRU, is 
16 points of the weld bead cross-section. Thus, the representation of 
each weld bead cross-section is a 2D point cloud. 

Both MLP and GRU architectures were optimized using a genetic 
algorithm (see Sivanandam and Deepa, 2008), where the settings 
described in Table 4. 

Furthermore, the resulting architectures were chosen so that the 
difference in the number of parameters between them does not exceed 
30%. This enables their objective comparison. Specifically, MLP con-
tains 83,680 parameters, while GRU has 65,632 parameters. 

The final MLP architecture is described in Table 5. 
In addition, the GRU unit settings are outlined in Table 6. Sequence 

length in this context means that in order to calculate the weld bead 
geometry at point x, it is necessary to use as input four 4D feature vectors 
at position x − 2, x − 1 and x + 1, x + 2. 

2.6. 3D Reconstruction 

To transform the individual 2D points to a polygon mesh, a 3D 
Reconstructor was developed (see Fig. 8). 

It accepts the following inputs:  

• XYZ coordinates of the weld bead center line.  
• Binary variable expressing whether the machine was welding on a 

particular point of the center line.  
• Tangent angle of each point creating the center line to a predefined 

plane. 

Afterwards, it is iterated through the points of the center line and all 
the cross-sections are positioned to their appropriate position as well as 
rotated using the calculated points of the central line and their corre-
sponding angles. Finally, the close-lying points are interconnected to 
create a polygon mesh. 

2.7. Training 

The AIBead architecture was trained with the parameters shown in 
Table 7. 

The used loss function is defined as: 

Fig. 13. Dependency of bead height on the layer number for R2 and R8 mm.  

Fig. 14. Dependency of bead height and width on the velocity for R4 mm.  

Fig. 15. Result of fitting algorithm that transfers a G-code path to weld bead 
center line. 
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MSE =

∑n

i=1
(yi − ŷi)

2

n
(7)  

where yi is the ground truth vector with X, Y coordinates and ŷi is the 
corresponding prediction. 

In addition, the data presented in Table 3 were split into training and 
testing sets to be able to examine the network performance (see Table 8). 
Finally, the train set is internally split into a final training set and a 
validation set in the ratio of 9:1. 

The training and evaluation curves for MLP and GRU are shown in 
Fig. 9. 

3. Results 

3.1. Data analysis 

First, the results of the data analysis of weld beads with various radii 
are presented. Table 9 reveals the mean geometric characteristics of 10 
cross-sections in the middle of each radius. 

Based on Table 9, a general rule can be observed: the smaller the 
radius, the greater the width, height, area and circumference of its cross- 
section. These geometrical properties, visualized in Fig. 10(b), are 
plotted along the center line for R0.001 and R8 mm in Fig. 11. Moreover, 
Fig. 10(a) shows the sections into which the radius is divided and where 
the start and end of the radius is. 

Thanks to Fig. 11, two phenomena can be noticed. First, the change 
of geometric characteristics based on the radius change is observable 
only in R0.001 mm. Second, the weld bead does not return to its original 
shape immediately after completion of the radius, but there is a 
noticeable transient period. 

Another of the discovered changes while welding a radius is the 
offset between the center line of the weld bead and the G-code path (see 
Fig. 12). 

The trend is the same as in Fig. 11, namely that the difference be-
tween the two lines increases with smaller radius. Moreover, the dif-
ference is no longer noticeable for R8 mm. To take this behavior into 
account, a fitting algorithm was programmed as described in Section 

2.4. 
The weld bead behavior in respect to other beads is examined as well. 

Fig. 13 shows the dependency of weld bead height on the welded layer. 
It reveals a non-linear growth in height along the build direction, 

where the weld bead height does not remain constant, but firstly drops 
and afterwards, grows progressively. 

Finally, as shown in Fig. 14, the velocity also has a significant in-
fluence on the final shape of the weld bead. Generally speaking, the 
higher the velocity, the smaller the height and the width of a weld bead. 

3.2. AIBead 

The AIBead architecture is tested with setup n.3 presented in Fig. 3 
(c). As shown in Fig. 15, the developed fitting algorithm is first executed 
on the G-code path to obtain the center line of the weld bead, which 
serves as the AIBead input. 

Second, the AIBead architecture reconstructs a 3D model based on 
the center line. The results for a speed of 250 mm/min and the ground 
truth are shown in Fig. 16. 

Figs. 17–20 show the course of the geometric characteristics along 
the deposition path for 4 different radii. Furthermore, the geometric 
characteristics plotted on these figures are explained in Fig. 10(b). 

The geometric characteristics course visualized via the last 4 figures 
can be summarized using Fig. 21. The general rule that applies here is 
that the smaller the radius, the smaller the central stable section, which 
for example at R0.001 mm almost disappears. On the other hand, with 
R8 mm it can be seen that the transient sections have vanished. 

Fig. 22 shows the cross-sections for the velocity of 250 mm/min in 
the middle of four different radii where the weld geometry is most 
deformed and therefore most difficult to predict (see Fig. 10(a)). In 
addition, the results for the cross-section before and after the radius are 
shown in Figs. 23 and 24 . The ground truth cross-sections are compared 
here with MLP, GRU, and also with second-order regression and SVR. 

The quantitative results based on MSE are listed in Table 10. The 
results are obtained for three different regions of all radii that form the 
test setup. The first two regions are located before the beginning and 
after the end of the radius, where the shape is affected by a radius, and 

Fig. 16. Qualitative result and ground truth comparison of a weld bead S3V250 from test setup n.3 shown in Fig. 3.  
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the middle of a radius, where the weld bead shape experiences the 
maximum deformation (see Figs. 10(a) and 22). In addition, each of 
these regions consists of 10 cross sections, and the results are given as 
their mean and standard deviation. Finally, to compare the AIBead with 
the state-of-the-art, the same cross sections were also predicted using 
second-order regression and SVR. 

4. Discussion 

The results of this publication first show the steady state and tran-
sient shapes of the weld bead when the deposition path changes its 

curvature. The differences between straight and curved sections is 
smaller the larger the radius and is no longer noticeable for R8 mm and 
for the material and welding settings used in this work (see Fig. 11). In 
addition, this publication justified the choice of data-driven method in 
predicting the shape of the weld bead in the radius. The reason is that the 
process of welding and deposition of metal via a liquid droplet on the 
surface is a very complex multi-physical process, which contains various 
phenomena such as the Lorenz force, the pressure of the electric arc, 
gravity, the movement of the melted pool, all of which affect the ge-
ometry of the weld bead. The combined effect of these phenomena 
causes, e.g., the waviness of the surface shown in Fig. 2(a) and the 

Fig. 17. The course of geometric characteristics of the weld cross-sections at a radius of 0.001 mm. X-axis expresses the normalized Euclidean distance from the 
center of the radius. 
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deviation from the shape of the parabola at the small radii shown, for 
example, in Figs. 2(c) and 22. However, it is not yet possible to predict 
such complex behavior accurately enough via physically based simula-
tion. Finally, it is demonstrated that this shape is more accurately pre-
dicted using the developed AIBead than the state-of-the-art methods 
utilizing a parabola for weld bead shape approximation. 

The current literature uses either classical methods such as second- 
order regression, SVR presented in Suryakumar et al. (2011), Xiong 
et al. (2014) and Mollayi and Eidi (2018) or a machine learning re-
gressor summarized by Barrionuevo et al. (2021) to predict the parabola 
parameters that approximate the weld bead. However, all these 

procedures use only process parameters such as current, voltage, torch 
speed, or wire feed rate as input and specify the parameters of the 
parabola as output. Thus, they do not take into account the deposition 
path and are not directly usable for the planning algorithm. In contrast, 
AIBead solves this shortcoming by parameterizing the deposition path, 
which serves as input together with the welding speed. Therefore, this 
solution is able to accurately model the geometry of the weld bead 
cross-section depending on its position. Finally, this approach allows the 
output not only to predict the shape of the individual cross-sections but 
also to stack them together and create the final 3D model (see Fig. 16). 
Thus, AIBead can be used as a building block for developing an 

Fig. 18. The course of geometric characteristics of the weld cross-sections at a radius of 1 mm. X-axis expresses the normalized Euclidean distance from the center of 
the radius. 
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algorithm for planning the deposition path using, for example, volume 
optimization. 

In Figs. 17–20, which show the course of geometric characteristics of 
the cross-sections along the central line of the weld bead, it is possible to 
notice three facts. First, these results correspond to the data shown in 
Table 10, namely that AIBead beats the previously used methods in the 
accuracy of weld bead reconstruction. The second observation is the 
difference between the training and testing data. It can be seen here, as 
already mentioned, that welding, as a nonlinear multi-physics process, 
does not lead to the same weld bead shape with the same process pa-
rameters and deposition path, but there is an observable deviation. 

Therefore, it is essential to train AIBead on more data so that the 
developed model does not suffer from overfitting to a certain type of 
deviation, but rather is able to reconstruct a model that will correspond 
to the average of these geometric deviations. The third finding is the 
detection of the transient behavior of the geometry within the radius. As 
can be seen in Fig. 21, before the beginning, after the end, and in the 
middle of the radius the change of the weld bead geometry is stable, so 
there is no or only a very slight change in the geometry of the weld 
geometry. However, between these parts, there are sections where the 
weld bead geometry changes transiently. The size of these sections is 
larger the smaller the radius. This is well demonstrated by two different 

Fig. 19. The course of geometric characteristics of the weld cross-sections at a radius of 4 mm. X-axis expresses the normalized Euclidean distance from the center of 
the radius. 
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radii, namely R0.001 mm and R8 mm. While in R0.001 mm the steady 
state middle part almost disappears and the whole change of the weld 
bead geometry within the radius is transient, in R8 mm, on the contrary, 
there are no observable transient sections and thus the geometry of the 
weld bead does not change or only very slightly within the common 
variations. 

This work also allowed the comparison of two techniques in the field 
of artificial intelligence, namely the classical MLP approach and the 
more complex GRU approach. At the beginning, it was assumed that 
GRU would achieve better results because this architecture is able to 
take into account the surroundings of the cross-section and not only the 

individual cross-sections separately. This fact was considered to play an 
important role because of the observed transient behavior within the 
radius. Nonetheless, the results of both approaches turned out to be 
almost identical. This statement can be supported for example by the 
results in Table 10, Figs. 17–20 and 22 –24 . This can be also assumed on 
the basis of the training and validation curve shown in Fig. 9. Here it can 
be seen that both architectures converged to the same value of 0.002 in 
approximately 250 epochs. Moreover, considering the course of the 
training and the convergence to such a small mean squared error value, 
it can also be said that the training of both networks was successful, 
there is only negligible room for improvement and the training does not 

Fig. 20. The course of geometric characteristics of the weld cross-sections at a radius of 8 mm. X-axis expresses the normalized Euclidean distance from the center of 
the radius. 
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suffer from overfitting. Finally, the answer why MLP is able to achieve 
the same results as GRU lies in the parameterization of the deposition 
path, i.e., the 4D input feature vector. This 4D vector itself contains 
information about the position of the cross-section within the deposition 

path and therefore it is redundant to use information from its sur-
roundings as input to the AIBead. 

Another discovery worth mentioning is the importance of the central 
line for the final 3D reconstruction. As shown in Table 10 and Fig. 22, 
the cross-sections are accurately predicted, but this is only a first step. 
Then these cross-sections are placed relative to each other on the center 
line in 3D space (see Fig. 16). It can be observed that there is a noticeable 
difference in the 3D geometry of the ground truth and reconstructed 
weld beads at radii R8 mm and R4 mm, even though the 2D shapes 
themselves are accurately predicted. This shows that the central line of 
these two radii is slightly different for the training and testing datasets. 

The chosen approach has a couple of limitations. First, the AIBead is 
trained with only one weld bead per radius, which may not be sufficient 
to produce a sufficiently robust model. Second, it would be useful to 
include other process parameters as model input, such as wire feed rate 
or weld bead surface temperature, all of which affect the resulting weld 
geometry. In addition, another limitation is that the fitting algorithm 

Fig. 21. Transient and stable sections of geometric characteristics of weld bead 
cross-sections in radii smaller than R8 mm. 

Fig. 22. Cross-section shapes in the middle of various radii obtained from AIBead, second-order regression and SVR for the welding velocity of 250 mm/min. In 
addition, both axes are in millimeters. 

Fig. 23. Cross-section shapes before the beginning of various radii obtained from AIBead, second-order regression and SVR for the welding velocity of 250 mm/min. 
In addition, both axes are in millimeters. 
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only works with radii that are available in the training dataset. The 
solution would be to develop a model that would be able to interpolate 
between the center lines of the above-mentioned radii. Moreover, it is 
necessary to extract the multiple center lines within each radius and use 
the averaged one to get more robust results. Finally, the AIBead focuses 
only on the single weld bead, which is not sufficient to simulate real 
word objects. In other words, the interaction behavior between weld 
beads that are either on top of each other or next to each other has yet to 
be developed. 

5. Summary and conclusions 

First of all, it was demonstrated that the geometry of the weld bead 
produced in the experiments is subject to deformation at radii smaller 
than 8 mm, which reaches its maximum in the center of the radius. 
Moreover, these radii are characterized by transient phases, where the 
geometry of the weld bead changes the most. The smaller the radius, the 
more these transient sections increase towards the center of the radius. 

On the other hand, these transient sections disappear for large radii and 
therefore their geometry does not change along the deposition path. For 
these reasons, it is not possible to approximate the geometry of the weld 
bead at small radii accurately enough using the parabola, which is uti-
lized by traditional regression models. As a solution, the data-driven 
architecture AIBead was developed, which shows better results than 
the regression models. The parameterization of the deposition path, 
where the developed 4D feature vector was used, proved to be the key 
for the successful training of this architecture. First, it consists a plane 
angle, defining the angle between the tangent at the point for which the 
weld shape is calculated and a randomly rotated plane. Furthermore, it 
contains the Euler distance between the calculated cross-section and the 
center of its nearest radius, and the radius at which the point is located. 
Finally, it incorporates the welding speed. In the end, it turned out that 
thanks to the above-mentioned parameterization it was not necessary to 
use more complicated GRU, but MLP was enough to get the same results. 

To summarize, a data-driven model called AIBead has been devel-
oped that is able, based on G-code path, to calculate a 3D model of a 
weld bead radius that undergoes transient behavior. 

In future work, the authors plan to focus on the following points:  

• Train AIBead with more data. This means with more radii, welding 
velocities and also add weld beads with various wire feed rates.  

• Develop an interpolation model for the center lines of different radii.  
• Incorporate the surface temperature of the weld bead as an input to 

the model.  
• Extend the existing model with the possibility of multi-layer and 

multi-bead reconstruction. 
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Fig. 24. Cross-section shapes after the end of various radii obtained from AIBead, second-order regression and SVR for the welding velocity of 250 mm/min. In 
addition, both axes are in millimeters. 

Table 10 
Results in the form of MSE and their standard deviations for the part before the 
beginning, in the center and after the end of each radius in the test setup n.3. 
Moreover, the results are averaged for all three velocities and given in milli-
meters. Finally, the minimum MSE value for each examined part is given in bold.    

GRU MLP SVR 2nd Regres. 

R0.001 Before 0.2 ± 0.07 0.2 ± 0.02 1.2 ± 0.03 1.5 ± 0.08  
Middle 0.1 ± 0.06 0.2 ± 0.06 4.1 ± 0.3 2.2 ± 0.2  
After 0.6 ± 0.1 0.6 ± 0.1 1.9 ± 0.2 2 ± 0.4 

R1 Before 0.2 ± 0.04 0.2 ± 0.07 1.4 ± 0.05 1.8 ± 0.02  
Middle 0.1 ± 0.01 0.1 ± 0.01 3.3 ± 0.08 2.3 ± 0.02  
After 0.2 ± 0.02 0.2 ± 0.01 1.1 ± 0.06 1.2 ± 0.02 

R4 Before 0.4 ± 0.02 0.4 ± 0.02 0.8 ± 0.1 0.6 ± 0.01  
Middle 0.2 ± 0.01 0.3 ± 0.01 1.4 ± 0.03 1 ± 0.02  
After 0.3 ± 0.01 0.4 ± 0.01 0.8 ± 0.02 0.6 ± 0.01 

R8 Before 0.3 ± 0.08 0.2 ± 0.06 0.8 ± 0.05 0.9 ± 0.09  
Middle 0.3 ± 0.02 0.3 ± 0.02 1.1 ± 0.02 0.7 ± 0.02  
After 0.4 ± 0.02 0.4 ± 0.04 1.1 ± 0.03 0.8 ± 0.07 

R12 Before 0.08 ± 0.03 0.08 ± 0.03 1 ± 0.06 1.2 ± 0.04  
Middle 0.05 ± 0.01 0.05 ± 0.01 1.3 ± 0.02 1.2 ± 0.03  
After 0.1 ± 0.01 0.09 ± 0.01 1.3 ± 0.04 1.5 ± 0.01 

R16 Before 0.1 ± 0.01 0.1 ± 0.01 1 ± 0.04 1 ± 0.04  
Middle 0.07 ± 0.01 0.06 ± 0.01 1 ± 0.02 1 ± 0.02  
After 0.1 ± 0.01 0.1 ± 0.01 1.2 ± 0.03 1.3 ± 0.1  
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