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Abstract

This dissertation is a compilation of four self-contained research papers that contribute to the literature of fi-

nancial economics. All papers are co-authored by Professor Didier Sornette, my thesis supervisor, and further,

depending on the project, by other authors. While three papers presented in this thesis were submitted to

leading, peer-reviewed journals and are either awaiting review or are on revise and resubmit status, one paper

is work in progress (the respective status is shown in the references as well as on the paper title page). The

papers as presented in the thesis can include additional material that goes beyond the versions submitted.

Understanding the formation and dynamics of asset prices is essential for many regulatory, policy and invest-

ment decisions. Chapter 2 and 3 of this dissertation aim to cast light into the dynamics of asset prices in the

presence of two feedback effects, option markets and circuit breakers, using relative pricing models. Chapter

4 presents an absolute asset pricing model that provides a framework on how to correctly value firms in the

presence of high clash flow growth.

First, chapter 2 presents the discussion of a feedback effect between markets, namely from the options mar-

ket onto the underlying’s market. We show that if the option market makers (OMM) hedge a larger share of their

position compared to option market takers (OMT), this leads to a net delta hedge demand in the spot market.

And due to liquidity effects (price impact), this mechanically leads to an increase or decrease in the underlying’s

price volatility and a distortion of the underlying’s drift, depending on the positioning of the option market. We

describe this dynamic with a relative pricing model, relative to the price without option hedging. Then we focus

on the impact of option hedging on the spot markets volatility in the foreign exchange (FX) market. We use

trade repository data to estimate the net positioning of the OMM in the FX options market and with it her delta

hedge demand in the spot market. We find the OMM to be short gamma on average (implying she has a short

option positioning on average) and thus the volatility to be increased by delta hedging of the OMM. Next, we an-

alyze the impact of option hedging on the price stability. Using theoretical arguments as well as simulations, we

show that the probability for drift bursts, i.e. explosive directional price moves, can be increased or decreased

due to option positioning, depending on the option parameters and delta of the OMM. Using option position-

ing data for the GameStock stock, we document that there are indeed instances where explosive trends due to

hedging were more likely in the first quarter of 2021, during which the stock showed exceptional price instability.

Second, chapter 3 presents the discussion of a feedback effect that stems from the market architecture of
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exchanges, i.e. the price dynamics of so called circuit breakers (CB). A price-based CB for example is a trading

halt imposed by an exchange after the price drops below (or rises above) a pre-specified value within a trading

session. The rational behind a CB mechanism is that it gives traders time to calm down, interact with their

counterparts and rethink their trading decision. Given that investors are continuously forming anticipations,

their tactical positioning in the presence of the CB may lead to feedback of the CB on the price itself. We

model the price dynamic under a CB using a relative pricing model, relative to the price without a CB, in a

closed-form setup, in which the investors’ anticipation of the probability of a halt feedbacks on the price. In a

general stochastic financial framework, this leads to coupled integral and stochastic differential equations. Our

theory confirms two observations of this field for price-based CBs, namely an increased price volatility prior to

the trigger and a negative effect of attracting the price to the CB level (known as the magnet effect). As our

framework generalises to other CB mechanisms, we can then suggest a new CB design which minimises the

adverse effects of a price-based CB. We e.g. show that a trading halt that is conditioned on a pre-specified

volatility level, instead of a price level, mitigates the side effects.

Third, chapter 4 contributes to the discipline of absolute asset pricing. We aim to refocus the discussion

around what could be loosely referred to as an expected return factor. Motivated by economic intuition and

empirical insights from the consumption-based capital asset pricing model we show that the expected return on

a firm level has a linear relationship to the firm’s cash flow growth level. With that we argue that the discount rate

should reflect this linear relationship and should thus have the same term structure as the assumed cash flow

growth rate process. Based on that we first introduce a discounted cash flow (CDF) model with a time-varying

discount rate matching the assumed cash flow growth rate process. This important feature greatly enhances

the value of a DCF model, as the valuation is less sensitive to the cash flow growth rate process assumptions,

as the discount rate is proportional to the assumed cash flow growth rate term structure, such that these two

naturally complementary variables interact to massively reduce the range of reasonable valuation outcomes.

Second, using the same time-varying discount rate in an internal cost of capital (ICC) model, we elaborate that

the corresponding time-varying internal rate of return allows for a straightforward interpretation as investment

return of a buy and hold strategy, compared to e.g. a constant ICC model, which by construction is a constant

compound return. We show that our expected return proxy is superior in explaining realised returns compared

to a constant internal rate of return, and even renders well known linear factors, which can be motivated from

theory, insignificant. Last, the economic significance is confirmed in a trading strategy with yearly rebalancing.
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Zusammenfassung

Diese Dissertation ist eine Zusammenstellung von vier in sich abgeschlossenen Forschungsarbeiten, die einen

Beitrag zur Literatur der Finanzwirtschaft leisten. Alle Forschungspapiere wurden von Professor Didier Sor-

nette, meinem Doktorvater, und, je nach Projekt, von anderen Autoren mitverfasst. Drei der in dieser Arbeit

vorgestellten Forschungspapiere wurden bei führenden Fachzeitschriften eingereicht und befinden sich en-

tweder im Begutachtungsprozess oder sind im Status der Überarbeitung, während eines eine laufende Arbeit

ist (der jeweilige Status ist in den Referenzen sowie auf der Titelseite der Arbeit angegeben). Die in der Dis-

sertation vorgestellten Forschungspapiere können zusätzliches Material enthalten, das über die eingereichten

Versionen hinausgeht.

Das Verständnis der Bildung und Dynamik von Asset Preisen ist für viele regulatorische, politische und in-

vestitionsbezogene Entscheidungen von wesentlicher Bedeutung. In den Kapiteln 2 und 3 dieser Dissertation

wird die Dynamik von Vermögenspreisen bei Vorhandensein von zwei Rückkopplungseffekten, Optionsmärk-

ten und Circuit Breakern, mit Hilfe von relativen Asset-Pricing Modellen beleuchtet. In Kapitel 4 wird dann ein

Bewertungsmodell vorgestellt, das eine korrekte Bewertung von Unternehmen mit hohem Cashflow-Wachstum

zulässt.

Kapitel 2 widmet sich zunächst dem Rückkopplungseffekt zwischen dem Optionsmarkt und dem Preis des

Basiswerts. Wir zeigen, dass wenn der Options Market Maker (OMM) einen grösseren Anteil ihrer Position ab-

sichert im Vergleich zum Options Market Taker (OMT), dies zu einer Netto-Delta-Hedging Nachfrage auf dem

Kassamarkt führt. Aufgrund von Liquiditätseffekten führt dies mechanisch zu einer Erhöhung oder Verringerung

der Preisvolatilität des Basiswerts und zu einer Verzerrung des Drifts des Basiswerts, je nach Positionierung des

Optionsmarktes. Wir beschreiben diese Dynamik mit einem relativen Asset-Pricing Modell, bezogen auf den

Basispreis ohne Einfluss von Optionsmärkten. Anschliessend konzentrieren wir uns auf die Auswirkungen der

Optionsabsicherung auf die Volatilität der Preise am Devisenmarkt. Wir schätzen die Nettopositionierung der

OMM auf dem Devisenoptionsmarkt und damit ihre Delta-Hedging Nachfrage auf dem Kassamarkt anhand von

Transaktionsdaten ab. Wir stellen fest, dass der OMM im Durchschnitt eine Short-Gamma-Positionierung hat

(was bedeutet, dass sie im Durchschnitt eine Short-Optionspositionierung hat) und somit die Volatilität durch ihr

Delta-Hedging erhöht. Als nächstes analysieren wir die Auswirkungen der Optionsabsicherung auf die Preis-

stabilität. Wir zeigen anhand von theoretischen Argumenten und Simulationen, dass die Wahrscheinlichkeit

von Drift-Bursts, d.h. explosiven direktionalen Preisbewegungen, durch die Optionspositionierung erhöht oder
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verringert werden kann, abhängig von den Optionsparametern und dem Delta der Optionen des OMM. Zudem

belegen wir anhand von Optionspositionierungsdaten für die GameStock-Aktie, dass im ersten Quartal 2021,

in dem die Aktie eine aussergewöhnliche hohe Preisinstabilität aufwies, es tatsächlich einige Situationen gab,

in denen explosive Trends aufgrund von Delta-Hedging Aktivität sehr wahrscheinlich waren.

Kapitel 3 widmet sich einem Rückkopplungseffekt, der sich aus der Marktarchitektur von Börsen ergibt, näm-

lich die Preisdynamik unter sogenannten Circuit Breakers (CB). Ein preisbasierter CB zum Beispiel ist ein

Handelsstopp, der von einer Börse verhängt wird, nachdem der Preis innerhalb einer Handelssitzung unter

einen vorher festgelegten Wert fällt. Die Idee von CBs ist es den Händlern Zeit zu geben sich zu beruhigen,

sich mit anderen Marktteilnehmern auszutauschen und ihre Handelsentscheidung zu überdenken. Da Anleger

ständig versuchen die Zukunft zu antizipieren, kann ihre taktische Positionierung in Anwesenheit eines CB

zu einer Rückkopplung auf den Preis selbst führen. Wir modellieren die Preisdynamik mit Hilfe eines rela-

tiven Asset-Pricing Modell, relativ zum Preis ohne CB, in einer geschlossenen Form, in der die Antizipation

der Wahrscheinlichkeit eines Stopps auf den Preis zurückwirkt. In einem allgemeinen stochastischen Modell

führt dies zu gekoppelten Integralgleichungen und stochastischen Differentialgleichungen. In Bezug auf preis-

basierte CBs bestätigt unsere Theorie dabei zwei Beobachtungen aus diesem Bereich, erstens eine erhöhte

Preisvolatilität vor dem CB Auslösepunkt und zweitens einen Effekt, der den Preis auf das CB-Niveau run-

terzieht (bekannt als Magneteffekt). Da unser Modell sich einfach auf andere CB Mechanismen generalisieren

lÃ¤sst, schlagen wir dann ein neues CB-Design vor, das die negativen Effekte eines preisbasierten CBs min-

imiert. Wir zeigen z.B., dass ein Handelsstopp, der von einem vorher festgelegten Volatilitätsniveau ausgelöst

wird, statt von einem Preisniveau, die diskutierten Nebenwirkungen abschwächt.

Kapitel 4 leistet letztlich einen Beitrag zur Disziplin der absoluten Asset-Pricing Modelle. Unser Ziel ist es, die

unstrukturierte Faktormodell Diskussion auf einen einzigen simplen Faktor zurückzuführen, den man grob als

"erwartete Rendite" Faktor bezeichnen könnte. Auf der Grundlage von ökonomischer Intuition und empirischen

Erkenntnissen aus dem konsumbasierten Capital Asset-Pricing Modell zeigen wir, dass die erwartete Rendite

auf Unternehmensebene eine lineare Beziehung zum Cashflow-Wachstum des Unternehmens aufweist. Daher

argumentieren wir, dass der Diskontierungssatz diese lineare Beziehung stets widerspiegeln und somit die gle-

iche Laufzeitstruktur wie der angenommene Cashflow-Wachstumsprozess haben sollte. Auf dieser Grundlage

führen wir zunächst ein Discounted-Cashflow-Modell (DCF) mit einem zeitlich variablen Diskontierungssatz

ein, der die gleiche Laufzeitstruktur wie der angenommene Cashflow-Wachstumsprozess hat. Dieses wichtige

Merkmal erhöht den Wert eines DCF-Modells erheblich, da die Bewertung weniger empfindlich auf die Annah-

men des Cashflow-Wachstumsprozess reagiert, da der Diskontsatz proportional zur angenommenen Laufzeit-

struktur der Cashflow-Wachstumsrate ist, so dass diese beiden sich natürlich ergänzenden Variablen zusam-

menwirken und den Bereich der Bewertungsergebnisse auf ein vernünftiges Mass reduzieren. Weiter zeigen
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wir unter Verwendung desselben zeitvariablen Diskontsatzes in einem internen Kapitalkostenmodell (ICC) auf,

dass unsere zeitvariable ICC eine einfache Interpretation als Investitionsrendite einer "Buy and Hold"-Strategie

hat, verglichen z. B. mit einem konstanten ICC-Modell, das konstruktionsbedingt diese Interpretation verfehlt.

Wir zeigen, dass unser Proxy für die erwartete Rendite die realisierten Renditen besser erklärt als ein kon-

stantes ICC-Modell und sogar bekannte lineare Faktormodelle, die sich aus der Theorie ableiten lassen, unbe-

deutend macht. Schliesslich wird der Wert unserer Idee in einer Handelsstrategie mit jährlichem Rebalancing

bestätigt.
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1 Introduction and Motivation

Asset pricing is the science, or art, of valuing an asset under careful consideration of all internal and external

factors. Understanding asset price dynamics thereby is not only highly relevant for private and institutional

investors, to efficiently allocate capital, but also for policy makers, to regulate financial markets appropriately.

The 2013 Nobel price in economics, that was given to Eugene Fama, Lars Peter Hansen and Robert J. Shiller

for their research towards a better understanding of asset prices, confirmed this relevance.

Describing asset price dynamics is challenging by nature. Prices are influenced by countless exogenous

and endogenous interconnected variables. And the underlying complexity probably even increased throughout

the years, as the globalization of markets and the spill-over effects between these global markets additionally

complicates an accurate description of an asset value.

At intraday time scales, financial price properties have been documented to deviate significantly from what a

random walk hypothesis would predict. This disaccord suggests the presence of frictions, and naturally raises

the question of how such effects can be explained. This is where this thesis aims to contribute to. It discusses

asset price dynamics in the presence of three different effects. And even though the discussed effects are not

connected with each other in nature, all came to the centre of the attention in one or the other form over past

few years, as each is at the core of some of the most extreme price dynamics observed in recent years: The

first is the effect that option markets have on the price of the underlying. The second is the effect that circuit

breakers have on asset prices. And the third is the effect that cash flow growth has on the price of a stock.

Chapter 2 starts with the discussion of the impact of option hedging on the price dynamics of the underlying

asset price. This effect was powerfully displayed in the GameStop share price in the beginning of 2021. An

army of retail traders bought large amounts of options, for which the market makers had the other side of the

transaction. The delta hedging of the market maker then, among others, presumably contributed to extreme

volatility in the GameStop share price.

We present a theoretical framework that models this feedback effect. Based on an economy of two traders,

an option market maker (OMM) and an option market taker (OMT), which both have different delta hedge ratios,

we present a model that links option positioning to the underlying’s price dynamics via liquidity frictions from

the net delta hedging demand. Our model predicts that the spot market volatility is increased (decreased) by
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Chapter 1. Introduction and Motivation

a negative (positive) gamma exposure of the OMM, whereby the amount of the increase depends on the net

delta hedge amount executed in the market of the underlying asset. Further, it predicts that delta hedging can

even increase or decrease the probability for explosive directional price moves, so called drift bursts. While

Anderegg et al. (2021) discusses option positioning with a focus on the underlying’s volatility, validated in the

FX market, Sornette et al. (2021) focuses more on the impact of option positioning on the price stability (i.e.

directional price moves), validated in the GameStop stock market. In both markets we can validate our model

with very high confidence and find clear indication that the volatility is increased due to the short option posi-

tioning of the option market maker. And for the GameStop stock market we find that option positioning indeed

suggested explosive price behaviour in the first quarter of 2021.

Next, chapter 3 discusses the feedback effect of circuit breakers (CBs, i.e. trading halts a certain trigger

mechanism is activated). In early 2016, a new price-based CB rule was implemented on the CSI 300 financial

index which replicates the top 300 stocks traded in the Shanghai and Shenzhen stock exchanges. This new

design supposedly lead to a period of very high volatility. On the very first day at which the new CB design was

implemented, as well as two days later, the CB got triggered twice per day, as the price on those days dropped

-5% and -7% respectively. The Chinese authorities subsequently abandoned the CB mechanism from their

index, as it obviously did more harm than it helped. This regulatory nightmare motivated the work presented in

chapter 3 of this thesis. The aim was to understand how price barriers might influence the price dynamics and

to provide a framework that allows the study of different CB designs.

In Lera et al. (2021) we thus model the dynamics of an asset price in the presence of a CB. In short, using a

phenomenological approach, we model how the investors’ anticipation of the probability of a trading halt feed-

backs on the price process. In line with prior theoretical and empirical work for price-based CBs, our theory

predicts an increased price volatility prior to the trigger point and shows that the sole existence of a circuit

breaker leads to the negative effect of attracting the price to the circuit breaker level. But more importantly,

we show how our framework can be generalised to other CB trigger mechanisms and thus be used to design

more effective CBs without the described adverse side-effects of a price-based CBs, e.g. by basing the trigger

mechanism on a volatility level rather than on a price level.

Last, chapter 4 presents a valuation model ideally suited for high growth firms. Valuing high growth firms is

a difficult endeavour, as one can see in the high volatility of stock prices associated with high growth expec-

tations, e.g. technology stocks. This high volatility could be related to the hype surrounding these firms, but

also stems from the high sensitivity of standard valuation models to a change in the assumed cash flow growth

rate path. With the NASDAQ Composite at its all-time high, the question of how to properly value high growth

firms is a very relevant one to ask, as potential large-scale mispricing can have severe economic consequences.
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In Solo et al. (2021) we present a model that values high growth firms in a consistent manner which is less

sensitive to the cash flow growth rate assumptions. First we use economic intuition as well as the consumption

based asset pricing model to analyze how the expected return of a firm is related to the cash flow growth rate

level. Motivated by the clear linear relationship between the two variables, we suggest a time-varying expected

return process which has the same structural form as the assumed cash flow growth rate process. Based on

this we present a valuation model as well as an internal cost of capital model (ICC) that uses our time-varying

expected return structure, and therefore correct conceptual drawbacks that come along with constant discount

rate models and time-varying discount rate models not directly linked to the growth rate path. Specifically, our

valuation is less sensitive to the cash flow growth rate process assumptions, as the discount rate is proportional

to the assumed cash flow growth rate term structure, such that these two naturally complementary variables

interact to massively reduce the range of reasonable valuation outcomes. And the corresponding time-varying

ICC model allows for the interpretation as investment return of a buy and hold strategy, compared to e.g. a con-

stant ICC model, which by construction fails this interpretation, as it is a constant compound return. Empirically,

using the expected return proxy of our time-varying ICC model as control in a Fama-MacBeth regression of the

profitability, the investment and the value factor, both the profitability and the value factor become insignificant

in explaining future realised returns. The superiority and economic significance is also confirmed in a trading

strategy.

In summary, this thesis has the purpose to contribute to a better understanding of price dynamics under the

influence of options markets, circuit breakers and cash flow growth. While chapter 2 about the influence of

option positioning as well as chapter 3 about the influence of circuit breakers are probably of more interest to

policy makers, the third chapter about valuing stocks in the presence of high cash flow growth hopefully can

help private and institutional investors to make more efficient capital allocation decisions.

In the following three chapters the three self-contained research topics are presented. Each chapter covers

one of the above discussed effects. Each chapter is proceeded by a general introduction and then presents the

corresponding papers 1. Chapter 5 subsequently concludes, discusses the challenges and shortcomings of the

thesis from a broader perspective than adopted in each paper and gives direction of possible future research.

1All papers are co-authored by Professor Didier Sornette, my thesis supervisor, and further, depending on the project, by other authors
from ETH Zurich and the Swiss National Bank. Thereby the research question was formulated jointly, the articles were written jointly
and all authors were involved in theoretical formulation, data analysis, simulation studies as well as literature reviews.
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Chapter 1. Introduction and Motivation

Research Papers Presented in this Thesis

B. Anderegg, D. Sornette, and F. Ulmann. The Impact of Option Hedging on the Spot Market Volatility. Revise

and resubmit at the Journal of International Money and Finance, 2021

S. Lera, D. Sornette, and F. Ulmann. Price Dynamics with Circuit Breakers. Revise and resubmit at the Journal

of Banking and Finance, 2021

D. Solo, D. Sornette, and F. Ulmann. Internal Cost of Capital Driven by Dynamical Cash Flows. Reprint

submitted to the Journal of Financial Economics, 2021

D. Sornette, F. Ulmann, and A. Wehrli. On the Destabilizing Feedback Effects of Option Hedging. Working

Paper, 2021
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2 Implications of Option Hedging on Asset Prices

The effect of options markets on the price dynamics of the underlying asset was powerfully displayed in the

equity market in the beginning of 2021. The price of the shares of the company GameStop showed erratic price

moves and high volatility. The assumed reason was the positioning of the market makers in the options market

of the GameStop shares, which lead to extreme price dynamics due to their presumed hedging behaviour. Ac-

cording to the Financial Times (2021) "small investors can influence share prices by buying large amounts of

call options, [...]. Typically, this means that wholesale brokers such as banks need to purchase shares on the

open market to hedge themselves [...]. This hedging can have an outsized impact on prices [...].” This recent

extreme example of the implications of option hedging on price dynamics gives this chapter great relevance.

However, the effect is not new and has actually been observed in different markets at different times. Already

in 1993 the Group of Ten (1993) reported that "the existence of options and related dynamic hedging could

increase volatility especially in the smaller and less liquid currency segments, as the spot exchange rate ap-

proaches the strike price. When strike prices and or option maturities are highly concentrated, a large volume

of one-way hedging could occur in a short period. Market participants reported that sharp movements in spot

prices were frequently observed as a result of such concentrations." Thus, understanding price dynamics under

option hedging has been and still is of great interest and naturally also also lead to a vast body of academic

literature over the last years. While the two papers of this chapter each discuss the content-specific literature in

more detail, a high-level embedding of the topic is presented in the following paragraphs.

A crucial assumption of the Black-Scholes model is a frictionless and elastic market, i.e., a market in which

traders have no price impact (Gueant and Pu, 2015). However, research concerned with market microstructure

clearly shows that one can reject the assumption of a frictionless market (Farmer et al., 2006). In the context

of dynamic hedging strategies, this implies a feedback effect on market price dynamics: the dynamic hedging

strategy requires the investor who sells (buys) an option to sell (buy) the asset in the spot market when its

price declines and to buy (sell) it when its price goes up. From the nature of such a trading pattern, one can

expect an increase (decrease) in spot market volatility, given that these hedging trades have a price impact.

And indeed, spot market volatility has been reported to have changed due to the introduction of futures and

options (MacKenzie, 2008).

Among the first, Frey and Stremme (1997) and Sircar and Papanicolaou (1998) explain the increase in the
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volatility using a sample economy with two agents with different hedging behaviour in an equilibrium model.

The framework used in both papers presented in this chapter is similar to these models in nature. Neverthe-

less, these existing absolute pricing models are vastly complicated and due to their complicated setup, their

practical usability is limited and a proper empirical validation is prevented. Indeed, most empirical papers do

not present their results on theoretical grounds, but only look at empirical proxies like gamma imbalances when

discussing effects on price dynamics (Barbon and Buraschi, 2020). Further, prior models mostly only allow

for the discussion of the impact of option hedging on the price volatility, instead of the impact of option hedging

on the general price dynamics (i.e. on the volatility and the drift).

In a collaboration between ETH Zurich and the Swiss National Bank (Benjamin Anderegg, Head Foreign

Exchange and Alex Wehrli, Senior Quantitative Analyst) we thus aimed to propose a theory that not only accu-

rately accounts for the implications of option hedging on the general price dynamics, but which is also simple

enough to allow for straightforward empirical testing. We thus propose a relative pricing model motivated only

by basic (option) market properties. We thereby relate the net option hedging demand of the total market with

the price dynamics of the underlying through only observable or measurable quantities and without assuming

anything else but a linear price impact (in line with the seminal work of Kyle (1985), but also clearly supported

by modern dynamical theory of liquidity and price impact from Donier et al. (2015)).

Based on our model, we then present the following two main contributions: First, our model is simple and

general enough to allow for straightforward empirical testing, as only observable or measurable quantities are

used. Thus, we can actually statistically validate our theory for different markets, and thus empirically quantify

the effect on the grounds of a theoretical framework, which is a novel contribution (to the best of our knowl-

edge). Second, our model setup also allows us to go beyond the implications of option hedging on the price

volatility, to the implications of option hedging on price (in)stability, i.e. explosive directional price moves. To the

best of our knowledge, this has not been explored on theoretical grounds by prior research. In the following two

paragraphs I shortly discuss the key points of each paper.

In Anderegg et al. (2021) we focus on the impact of delta hedging on the underlying asset price volatility. We

show that the volatility can be significantly impacted by the position of the options market maker. Using options

trade repository data for both EURUSD and USDJPY we reconstruct the option market makers position and

with it validate our proposed volatility model with very high confidence for the period from 21st October 2017 to

30th June 2018 on daily as well as intraday data. We find the option market maker to have a net short position

and show that this leads to an absolute volatility increase of around 1% on average.

In addition, Sornette et al. (2021) theoretically discuss the potential of option positioning to generate direc-
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tional price moves. Using theoretical arguments as well as simulations, we show that the price can exhibit

unusual explosive or stable dynamics, depending on the parameters and the delta of the option positioning

of the option market maker. Our volatility model as well as the model predictions with respect to the price

(in)stability are then empirically validated for the GameStop stock market. Again, we validate our volatility

model with very high confidence. And we further find that in the first quarter of 2021 there indeed were times

when the option positioning suggested an explosive price behaviour of the GameStop stock market.

In summary, I hope to provide policy makers and investors with a framework on how option markets can

influence the prices of the respective assets.
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Abstract

We theoretically model and empirically quantify the feedback effect of delta hedging for the spot market volatility
of the forex market. We start from an economy with two types of traders, an aggregated option market maker
(OMM) and an aggregated option market taker (OMT), whose exposures reflect the total outstanding positions
of all option traders in the market. A different hedge ratio of the OMM and OMT leads to a net delta hedge
activity, which introduces market friction. We represent this friction by a simple linear permanent impact model.
This approach allows us to derive the dependence of the spot market volatility on the gamma exposure of the
traders. Our model shows that the spot market volatility is increased (decreased) by a negative (positive) gamma
exposure of the OMM, whereby the amount of the increase depends on the net delta hedge amount executed
in the spot market. To empirically test this model, we first reconstruct the aggregated OMM’s gamma exposure
using trade repository data and find that it is negative. The empirical analysis performed over the period from 21st
October 2017 to 30th June 2018 using our reconstructed OMM data then strongly supports our theoretical model:
The gamma exposure of the OMM turns out to be highly significant for the spot market volatility and, as expected,
the spot market volatility is increased with the OMM’s short gamma exposure. Quantitatively, a negative gamma
exposure of the OMM of -1000 billion USD (which is what we observe from our reconstructed OMM data) leads
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1. Introduction

This paper addresses the theoretical description and empirical quantification of the effect of delta hedging strategies on spot

market volatility. By accounting for a linear, permanent market impact of spot market trades, we show that, in theory, spot

market volatility is influenced by the net delta hedge demand arising from the options market. This theory is subsequently

empirically validated with the use of trade repository data.

1.1. Literature review

Option pricing theory has been studied extensively since the seminal works of Black and Scholes (1973) and Merton (1973).

Their theory is fundamentally based on an explicit trading strategy for the underlying asset and riskless bonds whose final

payoff is equal to the payoff of the derivative security at maturity. As this trading strategy provides an insurance against the

risk that comes with buying and selling the derivative, it is called a dynamic hedging strategy (dynamic, since the replication

should ideally be continuous) Sircar and Papanicolaou (1998).

A crucial assumption of the Black-Scholes model is a frictionless and elastic market, i.e., a market in which trades have

no price impact, neither temporary nor permanent Gueant and Pu (2015). However, a vast body of work concerned with

market microstructure clearly shows that one can reject the assumption of a frictionless market Farmer et al. (2006). In

the context of dynamic hedging strategies, this implies a feedback effect on market dynamic parameters such as the spot

price and volatility structure: the dynamic hedging strategy requires the investor who sells (buys) an option to sell (buy)

the asset in the spot market when its price declines and to buy (sell) it when its price goes up. From the nature of such

a trading pattern, one can expect an increase (decrease) in spot market volatility Frey and Stremme (1997) Sircar and

Papanicolaou (1998). Indeed, spot market volatility has been reported to have changed due to the introduction of futures

and options Miller (1997) MacKenzie (2008). Note that this feedback effect can even result in two extreme price dynamics,

market crashes and pinning. For example, Almgren (2015) attributes the Oct. 15, 2014, US Treasury price action, in which

the US Treasury market underwent the largest intraday move since 2009, to the hedging of short option positions held by

the dealer community. Avellaneda and Lipkin (2003), on the other hand, discuss the case where hedge funds, which have a

long option position, pin the spot price to the strike at expiration due to their hedging behaviour. Furthermore, since changes

in market dynamic parameters (e.g., spot market volatility) also change the derivative’s price and therefore its dynamic

hedging strategy, market dynamic parameters cannot be regarded as exogenous. In this context, Lions and Lasry (2006)

cite practitioners who observe that the future values of the parameters they use for the pricing of options might be modified

by their own activities (which is called a feedback effect).

Different work streams have emerged from the discussion of market frictions in the context of dynamic hedging strategies

of options. Some are more focused on accounting for market frictions in the pricing of options (and in deriving an optimal

hedging strategy), while others are more concerned by describing the actual feedback effect that dynamic hedging has on

market dynamics. Our paper contributes to the latter stream. More specifically, we focus on the effect that delta hedging has

on the spot market volatility. Nevertheless, we first present a brief literature review for both streams.

Accounting for feedback effects in the Black-Scholes pricing model has been the objective of a large body of academic
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literature. First, Brennan and Schwartz (1989) and Frey and Stremme (1997) focus on the derivation of the price dynamics

through a clearing condition. Sircar and Papanicolaou (1998) even goes a bit further and introduces an option pricing model

that accounts self-consistently for the effect of dynamic hedging on the volatility of the underlying asset. They find that spot

market volatility increases by approximately 10%-18% for traders who write options and hedge their delta in the spot market.

The other approach is to account for the price impact of hedging trades in the spot market directly. In this approach, the

price impact is often decomposed into temporary and permanent price impact components Almgren and Chriss (2000).

Temporary price impact considerations are mostly relevant in the context of optimal hedging strategies, as presented in

Rogers and Singh (2010) and Naujokat and Westray (2011). The basic problem is that continuous hedging is prohibitive due

to execution costs stemming from temporary market impact, whereas low-frequency hedging leads to large tracking error of

the frictionless Black-Scholes delta hedge Gueant and Pu (2015).

The consideration of a permanent market impact is dedicated to the hedging of derivatives in situations where the notional

of the option hedged is such that the delta-hedging is non-negligible compared to the average daily volume traded on the

spot market Bouchard et al. (2017). Note that this large position may be the position of a single large trader or may be

the aggregate position of a collection of traders, for example, the entire sell-side community, who all hold similar positions

and who all hedge while their counter-parties do not Li and Almgren (2016). Permanent price impact is e.g. considered by

Abergel and Loeper (2016), Loeper (2013) and Bouchard et al. (2016). All of their theoretical works reveal that the market

dynamics of the spot market are changed by dynamic hedging of derivatives. Thereby Lions and Lasry (2006), also using

a permanent market impact, find that the impact upon the volatility of the asset depends on the gamma of the option of

the dominant single large investor they model. Further, Li and Almgren (2016) then take both temporary (with quadratic

execution costs) and permanent price impacts into account (following Almgren and Chriss (2000)) and find that permanent

market impact causes an increase or decrease in the realised volatility of the market price, depending on whether the large

investor or the entire community of hedging traders is net long or short options.

1.2. Our contribution

We will focus on the theoretical and empirical discussion of the feedback effect of delta hedging strategies in the FX spot

market for the FX sport price volatility.

First, similar to the approach presented in Frey and Stremme (1997), we work in a model economy with only two agents. Our

agents are represented by two types of traders, namely, an aggregated option market maker (OMM), who provides liquidity

to the options market, and an aggregated option market taker (OMT), who consumes liquidity. As a consequence of this

setup, the OMM and the OMT always have exact opposite positions from one another, and each of their books represent the

total outstanding position on the options market.

We then assume that the two traders’ hedging trades in the spot market have a linear, permanent market impact and no

temporary market impact. This framework results in a simple volatility model that shows that the spot market volatility

increases above its fundamental value (which is the volatility in case of no market impact of delta hedging trades) if the
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hedge ratio of the trader, who is net short options (and therefore has a negative gamma exposure) is larger than the hedge

ratio of the trader who is net long options. Note that this model economy is motivated by the idea that typical OMMs, e.g.,

large banks, dynamically hedge their positions while OMTs, e.g., investors, do not. This would result in an asymmetric net

delta hedge demand, which will lead to an increase (if the OMM is short options) or decrease (if the OMM is long options) in

the spot market volatility. Thus, our model framework and our theoretical results are similar to those presented by Lions and

Lasry (2006) and Li and Almgren (2016). Nevertheless, nowhere in the paper do we a priori assume that the OMM hedges

a larger share of her exposure compared to the OMT.

Second, we want to validate this model empirically for the FX market. While much work has been done on the theoretical

side, empirical work on feedback effects arising from dynamic hedging has been limited. This gap exists because most

models complicated setup does not allow for straightforward empirical testing and because an empirical study of such

feedback effects often requires proprietary data, e.g., data that allow for the identification of the hedging demand. As our

model only incorporates measurable or observable quantities, empirical validation is straightforward, as we later show. And

we bypasses the need for proprietary data by reconstructing it from trade-repository data (see below).

So to validate our model, we first need to obtain the data of the aggregated OMM and OMT. The BIS triennial survey 2016

states that the FX market turnover is composed of 33% spot transactions and 67% derivatives such as FX swaps, outright

forwards and options BIS (2016). Since 2016, those 67% are subject to mandatory reporting in the US, for which our main

data source in this analysis, the Depository Trust and Clearing Corporation (DTCC) trade repository, is an authorised trade

repository covering approximately 20% of the worldwide options market transactions Shtauber and Marone (2014). These

transaction data allow for profound insights on the market positioning in terms of new and outstanding positions. DTCC

positioning data have been used previously to analyze spillover effects from the FX options market on the FX spot market

but mostly with a focus on the spillover effect on the spot price rather than its volatility Weng and Grover (2017) Shtauber

and Marone (2014) Winkler (2017). The downside of the DTCC data is that we do not know the side behind each trade, and

thus we do not know whether the transaction is buy or sell initiated. However, this information is necessary to reconstruct

the aggregated exposure of the OMT and OMM, as we assume that the OMM is always the liquidity provider and the OMT is

always the liquidity taker. We solve this problem by using a simple trade classification algorithm (the quote rule of Hasbrouck

(1988)) to classify the aggressor side behind each option trade stored in the DTCC repository. 2 Thus, we can identify

the OMM (liquidity provider) and OMT (liquidity taker) behind each trade and can therefore also calculate their aggregated

position at each point in time. This allows us to estimate our volatility model. 3

The remainder of this paper is structured as follows. The second section introduces our volatility model. The third section

briefly explains how we reconstruct the OMM’s position behind each transaction of the DTCC trade repository data. In the

fourth section, we show our empirical results, supporting our volatility model structure. In the fifth section, we discuss our

results and draw conclusions from our findings.

2See Frömmel et al. (2020) for an overview on trade classification algorithms and their quality.
3Note that we only examine vanilla options, as the details of exotic options in the DTCC trade repository are not sufficient.
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2. A model for the feedback effects of delta hedging

2.1. Derivation of the volatility model

In this section, we derive an expression for the spot market volatility that includes the price impact of the delta hedging

activity. First, we assume the observable exchange rate, denoted by 𝑆𝑡 , is given by a linear stochastic differential equation.

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑊𝑡 (2.1)

Further we first assume that the non-observable fundamental value of the exchange rate 𝐹𝑡 , which has the interpretation of

the market price unaffected by delta hedging (the friction in our model), follows a geometric Brownian motion.

𝑑𝐹𝑡 = 𝛼𝐹𝑡𝑑𝑡 + 𝜈𝐹𝑡𝑑𝑊 (2.2)

Applying Ito’s lemma to the log-price changes 𝑑𝑓𝑡 = 𝑑 (𝑙𝑛(𝐹𝑡 )) results in 𝑑𝑓𝑡 =
𝑑𝐹𝑡
𝐹𝑡

− 1
2𝜈

2𝑑𝑡. Using 𝑑𝐹𝑡 from equation 2.2

we can then write 𝑑𝑓𝑡 as

𝑑𝑓𝑡 = (𝛼 − 1
2
𝜈2)︸      ︷︷      ︸

𝛼
′

𝑑𝑡 + 𝜈𝑑𝑊 = 𝛼
′
𝑑𝑡 + 𝜈𝑑𝑊

(2.3)

Now we assume that there are only two market participants, the OMM and the OMT. Their net delta exposures are

𝑁𝑂𝑀𝑀𝑡 Δ𝑂𝑀𝑀𝑡 and 𝑁𝑂𝑀𝑇𝑡 Δ𝑂𝑀𝑇𝑡 , respectively, where 𝑁𝑡 is the notional (always positive) and Δ𝑡 is the option delta

(the delta is positive for a long call and a short put and negative for a short call and a long put). Both hedge their overall

delta exposure to a certain degree in the spot market, given by the hedge ratios ℎ𝑂𝑀𝑀 and ℎ𝑂𝑀𝑇 , which we assume

to stay constant in time. If the price changes by a certain percentage between time 𝑡 − Δ𝑡 and 𝑡, the net traded delta

hedging volume, executed in the spot market at time 𝑡, is given by the negative of the change in the delta exposure be-

tween 𝑡 − Δ𝑡 and 𝑡, multiplied by the hedge ratio, so 𝑉𝑂𝑀𝑀𝑡 = ℎ𝑂𝑀𝑀𝑁𝑂𝑀𝑀𝑡 (−(Δ𝑂𝑀𝑀𝑡 − Δ𝑂𝑀𝑀𝑡−Δ𝑡 )) for the OMM and

𝑉𝑂𝑀𝑇𝑡 = ℎ𝑂𝑀𝑇 𝑁𝑂𝑀𝑇𝑡 (−(Δ𝑂𝑀𝑇𝑡 − Δ𝑂𝑀𝑇𝑡−Δ𝑡 )) for the OMT. Note that in a market with two participants, the notional is the

same for both participants (𝑁𝑂𝑀𝑀𝑡 = 𝑁𝑂𝑀𝑇𝑡 = 𝑁𝑡 ), and the delta of the OMM is always equal to the negative delta of the

OMT (𝑁𝑡Δ𝑂𝑀𝑀𝑡 = −𝑁𝑡Δ𝑂𝑀𝑇𝑡 ). Furthermore, the positions of each trader represent the total outstanding position in the

market (which is why our two agents are the OMM and the OMT, as by definition the aggregated positions from all OMMs

sum up to the total outstanding positions in the market). Defining the asymmetry in the hedge ratio of the OMM and the

OMT from the OMM’s point of view as ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = ℎ𝑂𝑀𝑀 − ℎ𝑂𝑀𝑇 , the total net traded delta hedge volume between 𝑡 − Δ𝑡
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and 𝑡 is given by

𝑉𝑡 = 𝑉
𝑂𝑀𝑀
𝑡 +𝑉𝑂𝑀𝑇𝑡

= ℎ𝑂𝑀𝑀𝑁𝑂𝑀𝑀𝑡 (−(Δ𝑂𝑀𝑀𝑡 − Δ𝑂𝑀𝑀𝑡−Δ𝑡 )) + ℎ𝑂𝑀𝑇 𝑁𝑂𝑀𝑇𝑡 (−(Δ𝑂𝑀𝑇𝑡 − Δ𝑂𝑀𝑇𝑡−Δ𝑡 ))
= (ℎ𝑂𝑀𝑀 − ℎ𝑂𝑀𝑇 )𝑁𝑡 (−(Δ𝑂𝑀𝑀𝑡 − Δ𝑂𝑀𝑀𝑡−Δ𝑡 ))
= ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡 (−(Δ𝑂𝑀𝑀𝑡 − Δ𝑂𝑀𝑀𝑡−Δ𝑡 ))

(2.4a)

(2.4b)

(2.4c)

(2.4d)

In the continuous limit, when Δ𝑡 → 0, (2.4d) becomes

𝑑𝑉𝑡 = −ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑑Δ
𝑂𝑀𝑀
𝑡 (2.5)

Now we assume that the traded delta hedge volume executed in the spot market, 𝑑𝑉𝑡 , impacts the spot market price in a

linear and permanent fashion, with 𝛽 defined as the log-price change (market impact) per traded volume. This is the friction

that we introduce and which will, as we see later, result in the feedback effect discussed in this paper. Thus, the observed

log price change at time 𝑡, 𝑑𝑠𝑡 , is given by the log price change of the fundamental price at time 𝑡, 𝑑𝑓𝑡 , as well as the price

impact of the delta hedge volume executed in the spot market, 𝛽𝑑𝑉𝑡 . Equation 2.6 reflects this ansatz.

𝑑𝑠𝑡 = 𝑑𝑓𝑡 + 𝛽𝑑𝑉𝑡
= 𝑑𝑓𝑡 − 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑑Δ

𝑂𝑀𝑀
𝑡

(2.6a)

(2.6b)

We thereby assume that the price impact 𝛽 is a constant. This assumption basically reflects Kyle’s price impact model

(the price impact is permanent, linear and depends on the volume of the transaction only), presented in Kyle (1985). The

assumption that the permanent price impact scales linearly with the transaction volume is also in line with current price

impact theory Bouchaud (2010).

Applying Ito’s lemma to the log-price changes 𝑑𝑠𝑡 = 𝑑 (𝑙𝑛(𝑆𝑡 )) results in 𝑑𝑠𝑡 =
𝑑𝑆𝑡
𝑆𝑡

− 1
2𝜎

2
𝑡 𝑑𝑡. Using this, as well as 𝑑𝑠𝑡

from equation 2.6b, we can then write 𝑑𝑆𝑡 as

𝑑𝑆𝑡 = 𝑆𝑡𝑑𝑓𝑡 + 1
2
𝜎2
𝑡 𝑆𝑡𝑑𝑡 − 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝑑Δ

𝑂𝑀𝑀
𝑡 (2.7)

Applying Ito’s lemma to 𝑑Δ𝑂𝑀𝑀𝑡 with respect to 𝑑𝑆𝑡 leads to

𝑑Δ𝑂𝑀𝑀𝑡 = ( 𝜕Δ𝑂𝑀𝑀𝑡

𝜕𝑡︸     ︷︷     ︸
−𝐶ℎ𝑎𝑟𝑚𝑂𝑀𝑀

𝑡

+𝜇𝑡𝑆𝑡
𝜕Δ𝑂𝑀𝑀𝑡

𝜕𝑆︸     ︷︷     ︸
𝛾𝑂𝑀𝑀
𝑡

+1
2
𝜎2
𝑡 𝑆

2
𝑡

𝜕2Δ𝐻𝑡
𝜕𝑆2︸ ︷︷ ︸

𝑆𝑝𝑒𝑒𝑑𝑂𝑀𝑀

)

︸                                                              ︷︷                                                              ︸
𝛾
′
𝑡

𝑑𝑡 + 𝜎𝑡𝑆𝑡
𝜕Δ𝑂𝑀𝑀𝑡

𝜕𝑆︸     ︷︷     ︸
𝛾𝑂𝑀𝑀
𝑡

𝑑𝑊𝑡

(2.8)
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The option greeks are labeled with brackets. 𝛾𝑂𝑀𝑀𝑡 , which is important in our theory, is the option gamma of OMM at time

𝑡. Inserting 2.3 and 2.8 into 2.7 results in

𝑑𝑆𝑡 = (𝛼′
𝑆𝑡 + 1

2
𝜎2
𝑡 𝑆𝑡 − 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾

′
𝑡 )𝑑𝑡 + (𝜈𝑆𝑡 − 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆

2
𝑡𝜎𝑡𝛾

𝑂𝑀𝑀
𝑡 )𝑑𝑊𝑡 (2.9)

Comparing equation 2.9 with 2.1 results in

𝜎𝑡 =
𝜈

(1 + 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑂𝑀𝑀
𝑡 ) (2.10)

2.2. Discussion of the volatility model

We quickly discuss the intuition behind our presented model now. ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑆𝑡𝑁𝑡𝛾
𝑂𝑀𝑀
𝑡 is the change of the total mar-

ket’s hedged delta exposure in base currency in response to a relative change in 𝑆𝑡 . It is equal to ℎ𝑂𝑀𝑀 𝑆𝑡𝑁𝑡𝛾𝑂𝑀𝑀𝑡 +
ℎ𝑂𝑀𝑇 𝑆𝑡𝑁𝑡𝛾

𝑂𝑀𝑇
𝑡 = ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑆𝑡𝑁𝑡𝛾

𝑂𝑀𝑀
𝑡 by using the asymmetry in the hedge ratio of the OMM and the OMT from

the OMM’s point of view (ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = ℎ𝑂𝑀𝑀 − ℎ𝑂𝑀𝑇 ) as well as the fact that 𝛾𝑂𝑀𝑀𝑡 = −𝛾𝑂𝑀𝑇𝑡 . The negative of

ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑆𝑡𝑁𝑡𝛾
𝑂𝑀𝑀
𝑡 is then exactly the amount which has to be executed in the spot market in response to a relative change

in 𝑆𝑡 in order to keep the hedged delta exposure constant. And if there is price impact 𝛽, this execution influences the

volatility 𝜈 by the factor (1 + 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑆𝑡𝑁𝑡𝛾
𝑂𝑀𝑀
𝑡 )−1.

In order to simplify the notation, we now define the market’s delta-hedged gamma exposure Γ𝑀𝑡

Γ𝑀𝑡 = ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑆𝑡𝑁𝑡𝛾
𝑂𝑀𝑀
𝑡 (2.11)

Using the market’s delta-hedged gamma exposure, given by equation 2.11, we can then rewrite equation 2.10 as

𝜎𝑡 =
𝜈

(1 + 𝛽Γ𝑀𝑡 ) (2.12)

We see that the spot market volatility of a market unaffected by delta hedging, 𝜈, is rescaled by a factor (1 + 𝛽Γ𝑀𝑡 )−1. Thus

it is the Γ𝑀𝑡 that determines whether the volatility is scaled up or down. If Γ𝑀𝑡 is positive, the total market’s hedged delta

exposure increases in response to an increase in 𝑆𝑡 . The negative of this increase in the delta exposure is then executed in

the spot market, i.e. the market is selling the underlying if 𝑆𝑡 increases, which counteracts the increase in 𝑆𝑡 (if there is a

price impact) and thus lowers the fundamental volatility 𝜈. But if Γ𝑀𝑡 is negative, the total market’s hedged delta exposure

decreases in response to an increase in 𝑆𝑡 . The negative of this decrease in the delta exposure is then executed in the spot

market, i.e. the market is buying the underlying if 𝑆𝑡 increases, which supports the increase in 𝑆𝑡 (if there is a price impact)

and thus increases the fundamental volatility 𝜈.

So the intuition behind the above described dynamic stems from the fact that a short delta-hedged gamma exposure of the

7
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market is associated with a short position in the net hedged option contracts of the market, which then again implies a net

delta hedging strategy of the market in which she has to buy the asset if the spot price increases and sell the asset if the

spot price decreases. This trading behavior leads to an increase in the spot market volatility given that the hedging trades

are assumed to have a price impact (vice versa for the long delta-hedged gamma exposure of the market).

Whether Γ𝑀𝑡 is positive or negative thereby depends on the gamma of the OMM, 𝛾𝑂𝑀𝑀𝑡 (or the gamma of the OMT

as together they represent the full market), as well as on the asymmetry in the hedge ratio of the OMM and the OMT,

ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = ℎ𝑂𝑀𝑀 − ℎ𝑂𝑀𝑇 . In other words, to gauge the feedback of the option market on the spot market volatility, the

gamma exposure of the trader who hedges a larger part of her delta exposure compared to the other trader is relevant. As

described in equation 2.11, we call this the market’s delta-hedged gamma exposure. And while the direction of the feedback

effects depends on the sign of Γ𝑀𝑡 , the strength of the feedback effect depends on the absolute value of the market’s delta-

hedged gamma exposure |Γ𝑀𝑡 | and on the price impact 𝛽. Note that as the volatility cannot be below zero by definition, the

factor 𝛽Γ𝑀𝑡 must be in the open interval (−1, +∞).

Figure 1 displays the above discussed model dynamics and figure 2 presents a case study for the case where the OMM

holds a short call option and ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = 1.

8
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Figure 1: Discussion of our volatility model: This figure shows the dependence of 𝜎𝑡
𝜈 as a function of 𝑁𝑡𝛾𝑂𝑀𝑀𝑡 as predicted

by equation 2.10. On the vertical axis, we display the observable spot market volatility normalized by the volatility of a market
unaffected by delta hedging, so 𝜎𝑡

𝜈 . On the horizontal axis, we display the factor Γ𝑀𝑡 , where we fix the market impact to
𝛽 = 0.1 [𝑏𝑝𝑠/mn base currency], the exchange rate to 𝑆𝑡 = 1 and ℎ𝑂𝑀𝑀𝑛𝑒𝑡 to three different values. We thereby always
assume that the OMM hedges a larger part of its delta exposure, so ℎ𝑂𝑀𝑀𝑛𝑒𝑡 > 0, and thus the sign of her gamma exposure
is the relevant one for the discussed feedback effect. Thus Γ𝑀𝑡 reduces to 𝑁𝑡𝛾𝑂𝑀𝑀𝑡 , as all other variables are fixed. We
see that the volatility is scaled up or down depending on the sign of the delta-hedged gamma exposure of the market Γ𝑀𝑡
(or rather by the sign of the gamma exposure of the OMM, as we assumed ℎ𝑂𝑀𝑀𝑛𝑒𝑡 > 0). The strength of this effect thereby
depends non-linearly on the absolute value of the gamma exposure 𝑁𝑡𝛾𝑂𝑀𝑀𝑡 .
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Figure 2: Case study of our volatility model: We assume that the OMM has a short call position. The upper panel shows
the pay-off at maturity of the OMM’s short call position, with a strike price at 𝐾 = 1.10. The middle panel displays the
corresponding delta and gamma profile of the short call option with a volatility of 6% and a time-to-expiry of three months.
We thereby see that the delta is decreasing in the spot price, and thus the corresponding delta hedge profile (which is the
negative of the delta profile) is increasing in the spot price. This implies that the OMM needs to buy the underlying if the spot
price goes up and sell the underlying if the spot price goes down. The corresponding gamma profile is negative. Now we
assume that the notional behind the short call option is one billion (𝑁𝑡 = −1 bn) and that the OMM hedges her total position
in the spot market, while the OMT does not hedge her position at all (hedge ratio of ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = 1). Note that thus the OMM’s
gamma position is equal to the market’s delta-hedged gamma position. The resulting increase in the volatility ( 𝜎𝜈 , based
on equation 2.10 with a permanent market impact of 𝛽 = 0.1[𝑏𝑝𝑠/𝑚𝑛], a hedge ratio of ℎ𝑂𝑀𝑀𝑛𝑒𝑡 = 1 and a notional of
𝑁𝑡 = −1 bn) is displayed in the lower panel. We see that the volatility locally increases at spot prices for which the gamma
profile of the OMM is negative.
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3. Reconstruction of the OMM’s gamma exposure from trade repository data

In order to empirically validate equation 2.10, we need data on the gamma exposure of the OMM, 𝑆𝑡𝑁𝑡𝛾𝑂𝑀𝑀𝑡 (or, equiva-

lently, as we only have two traders in our model, the gamma exposure of the OMT, 𝑆𝑡𝑁𝑡𝛾𝑂𝑀𝑇𝑡 ). In this section we discuss

how we construct data on the gamma exposure of the OMM, 𝑆𝑡𝑁𝑡𝛾𝑂𝑀𝑀𝑡 . We thereby focus on the FX options market.

The Dodd-Frank Act, which was signed into law in July 2010, requires the reporting of all over-the-counter FX option trans-

actions that were traded in the US, or involve US persons, to a data repository. Note that there are several data repositories

that market participants can report to. We use the Depository Trust and Clearing Corporations repository (DTCC), which

covers approximately 20% of the worldwide options market transactions Shtauber and Marone (2014).

Option trades stored in the DTCC trade repository are the result of OTC transactions. Large banks mostly act as liquidity

providers for their clients, e.g., hedge funds, corporations, institutional investors, asset managers or private clients, which

then act as liquidity takers. The banks provide liquidity by constantly offering a bid and ask price (which is quoted in terms of

implied volatility) to their clients, and the clients then take the liquidity by either buying on the ask price, this deal is called a

paid, or selling on the bid price, this deal is called a given. The trade is then reported to the DTCC trade repository, but the

information on whether the deal happened on the bid or the ask price is not included.

As presented before, our model economy is motivated by this structure of the OTC option market, and models only two

traders, the option market maker (OMM) and the option market taker (OMT). The OMM represents the aggregate of the

liquidity providers (mostly banks) and the OMT represents the aggregate of the liquidity takers (hedge funds, corporations,

institutional investors, asset managers and private clients). All deals are attributable to the aggregated position of the OMT,

whereas the OMM then just has the exact opposite position.

The main problem is that the public DTCC data does not provide information on the type of deal that happened, so whether

a deal was a paid or a given. Thus, we need to reconstruct this information in order to quantify the OMT’s positioning in

the options market. We thus follow a trade classification procedure. In the first step, the implied volatility of each option

transaction stored in the DTCC trade repository is reconstructed by numerically minimizing the difference between the

premium that was paid (which is reported to the DTCC trade repository) and the premium that Black’s model suggests

for the trade (based on the specifications that are reported to the DTCC trade repository). 4 Next, this reconstructed

implied volatility, which was traded at a certain time (that is also reported to the DTCC trade repository), is matched onto

the simultaneous reference bid-ask price stream for that time, that we take from Bloomberg. Following the quote rule of

Hasbrouck (1988), we label the transaction a paid (buy order on the ask price) if the reconstructed implied volatility is closer

to the ask price compared to the bid price or a given (sell order on the bid price) if the reconstructed implied volatility is closer

to the bid price compared to the ask price. Those deals then reflect the OMT’s position. And as the OMM is always on the

other side of each deal, it follows that she has a short position if the transaction is labeled a paid and a long position if the

transaction is labeled a given. A discussion of the quality of our reconstruction proceedure is presented in Appendix B.3.

4For other asset classes, other option pricing models might be appropriate.
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As we now know the OMM’s position behind each transaction, we can calculate the delta and gamma exposure of the OMM

at any given point in time. We simply calculate the delta and gamma of the OMM’s open positions at any given point in time,

multiply it by the signed notional of the corresponding position (i.e., the negative notional if the OMM is short the option) and

take the corresponding sum over all open positions. This results in the aggregated delta and gamma exposure of the OMM’s

portfolio at any given point in time (𝑆𝑡𝑁𝑡𝛾𝑂𝑀𝑀𝑡 ), which we now can use to validate our volatility model.

A more detailed discussion on the underlying DTCC data quality and on how the OMM’s positioning is derived from the

DTCC data can be found in the appendix.

3.1. Discussion of the OMM’s gamma exposure reconstructed from DTCC data

For the reconstruction of the OMM’s gamma exposure from DTCC data we focused on the FX pairs EURUSD and USDJPY,

as for those two FX pairs the outstanding volume in the FX options market is large enough to expect significant feedback

effects on the FX spot market. As described before, we reconstructed the delta and gamma exposure of the OMM at all

points in time. The corresponding results are displayed in figure 3, where each trading day is split into 12 two-hour intervals.

5

As we see in figure 3, the OMM is short gamma at all times. This implies that the OMM is shorting put and call options (on a

net basis). This is in line with our expectation. First, most investors are purchasers of options rather than sellers. They use

options as a hedge or with consideration of the spot price and, therefore, mostly purchase options. Furthermore, they refrain

from going short an option contract (put or call), as the risk involved in doing so is too high. Those traders most certainly

trade as market takers in the market, e.g., as clients of banks. On the other side of each transaction of a market taker sits

a market maker, e.g., the banks; consequently, the market maker is expected to have a short option position and therefore

a short gamma position. Second, a short position in an option implies a short vega position, and as the implied volatility

usually trades with a premium to the realized volatility, this is one way for option market makers to make money. For those

two reasons, the OMM is expected to have a net short gamma position, which is exactly what we observe. As stated above,

we see from our data that the OMM is short 75% of all traded option contracts in EURUSD and 78% of all traded options in

USDJPY.

For the delta exposure, we have no a priori expectation of how it should look, since the delta exposure is not directly related

to the positioning (if the OMM is long or short options) but rather is a function of where the spot price trades relative to the

notional weighted strike price of the aggregated OMM’s positions.

If the OMM would hedge her total position in the spot market, her delta hedge strategy would be to trade the negative

difference of her delta exposure between two points in time in the spot market. The OMM would then be delta neutral by the

end of each time period. Note that, as gamma is the change in delta per unit change in the spot price (derivative of the delta

with respect to the spot price), gamma indicates how much delta would have to be hedged if the spot price moved one unit.

5UTC 00:00-02:00, 02:00-04:00, 04:00-06:00, 06:00-08:00, 08:00-10:00, 10:00-12:00, 12:00-14:00, 14:00-16:00, 16:00-18:00, 18:00-
20:00, 20:00-22:00, 22:00-24:00
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In that sense, gamma is a proxy for the intensity of the delta hedge activity.
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Figure 3: Reconstructed delta and gamma exposure of the OMM: The figure shows the evolution of the accumulated net
delta and gamma exposure of the OMM over the analysed time frame for EURUSD and USDJPY.
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4. Validation of the volatility model

As outlined in the previous sections, the market’s delta hedged gamma exposure is assumed to generate feedback effects:

a positive gamma exposure implies that the market sells the underlying asset in a rising market to hedge its delta exposure,

and as the executed hedging trades in the spot market have a market impact, this activity should have a negative effect

on the realised spot market volatility. Following the same line of argument, a negative gamma exposure should have a

positive effect on the realised volatility. Our volatility model reflects this logic. In this section, we will validate and quantify this

feedback effect empirically with the data on the gamma exposure of the OMM that we reconstructed from the DTCC data.

𝜎𝑡 =
𝜈

(1 + 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑂𝑀𝑀
𝑡 ) (4.1)

We validate the volatility model presented in equation 4.1 with the use of MATLAB’s nonlinear regression model Matlab

(2019). Thereby the data input is 𝜎𝑡 , the realised spot market volatility (annualised) for the time period between 𝑡 and 𝑡 + 1,

and 𝑁𝑡𝑆𝑡𝛾𝑀𝑡 , the reconstructed OMM’s gamma exposure at time 𝑡. The parameters that we estimate in the regression

model are 𝜈 and 𝛽 ∗ ℎ𝑂𝑀𝑀𝑛𝑒𝑡
6.. As the volatility strongly depends on the intraday liquidity cycle, we validate the model with

daily data. 7

Table 1 and figure (4) present the results of the nonlinear regression model.

EURUSD USDJPY

𝜈 (%) 7.2∗∗∗ 5∗∗∗

𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 ( %
bn ) 0.00009∗∗∗ 0.00015∗∗∗

RMSE (min. 𝜎, max 𝜎) 2.1 (3.8, 17.5) 1.7 (3.0, 14.6)

F-test vs. const. model 1430∗∗∗ 1280∗∗∗

Table 1: This table shows the least-square fit results of the nonlinear model fit for EURUSD and USDJPY. t-

statistics are presented in brackets. The stars ∗∗∗ denote significance at the 1% level.

The high values for the F-test strongly support our proposed model and thus the existence of the described feedback effect.

And we see highly significant parameter estimates for the factor 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 as well as for 𝜈, which tells us that the gamma

exposure of the OMM has high relevance for the spot market volatility.

The root mean squared error (RMSE)of the estimation is fairly low, given the high noise of daily volatility estimates and the

fact that we analyse the observed volatility only with respect to one isolated effect (the feedback effect) in our model.

6Starting values for 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 and 𝜈 are chosen as 0 and the convergence criteria is set at a tolerance of 1𝑒 − 8.
7For EURUSD, we look at the European trading session (UTC 09:00 to UTC 16:00), and for USDJPY, we look at the Asian trading

session (UTC 2:00 to UTC 9:00). So we e.g. regress the gamma position of the OMM in EURUSD at 09:00 UTC onto the realized spot
volatility between 09:00 and 16:00.
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Figure 4: In these panels, we show the nonlinear model fit for EURUSD and USDJPY (solid blue line) and the respective
95% confidence intervals (dashed black lines).

Appendix E.1 presents the analysis on intraday data in a random intercept linear mixed-effect model, for which we realise

very similar parameter estimates and a high goodness of fit in terms of R2 (a measure not valid for the here presented

nonlinear model fit).

The results are very robust against changes in the estimation period, i.e. the significance or parameter estimate change with

negligible amplitude upon a change in the estimation period.

The estimate of 𝜈 reflects the fundamental volatility, which can be interpreted as the spot market volatility in the absence of

any delta hedging activity. It is higher for EURUSD than for USDJPY. This difference stems from the fact that the volatility

data for the daily estimate for USDJPY originate from the Asian trading hours, in which the volatility is usually lower than

during the European or American trading hours.

The value of 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 is not further disentangled here, as we would need an estimate of one of them, which is empirically

difficult. But as the price impact 𝛽 for sure is positive, we can conclude from the parameter estimates that ℎ𝑂𝑀𝑀𝑛𝑒𝑡 is also

positive. This confirms that the OMM hedges a larger share of her delta exposure compared to the OMT, which is in line

with our expectation that the OMM hedges his positions as he provides liquidity to the market as a service and thus needs

to hedge his exposures.

The estimate of the parameter 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 can now be used to quantify the feedback effect of the OMM’s reconstructed gamma

exposure on the observed spot market volatility. This discussion is presented in figure 5, using the fitted parameter values.

In the upper panel, we present the fitted volatility model. The middle panel presents the absolute volatility increase due to

the feedback effect, and the lower figure presents the relative volatility increase. We see that a negative gamma exposure

of the OMM of approximately −1000 billion in the base currency (which is around what we observe in figure 3) leads to

an increase of the EURUSD volatility above the fundamental volatility level of 0.7% 8 and to an increase of the USDJPY

8𝜎 − 𝜈 = 𝜈
1−𝛽∗ℎ𝑂𝑀𝑀

𝑛𝑒𝑡 ∗𝑁𝑡𝑆𝑡𝛾
𝑂𝑀𝑀
𝑡

− 𝜈 = 7.2%
1−0.00009 %

𝑏𝑛 ∗1000𝑏𝑛 − 7.2% = 0.7%
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volatility above the fundamental volatility level of 0.9%. In the lower panel, we subsequently see that this gamma exposure

of approximately −1000 billion in the base currency amounts to a relative increase above the fundamental volatility level of

approximately 10% for EURUSD 9 and 18% for USDJPY. 10 This feedback effect stems from the fact that a short gamma

exposure of the OMM (who is found to hedge a larger share of her delta exposure than the OMT) is associated with a short

option position, which implies a delta hedging strategy in which the OMM has to buy the base currency if the spot price

increases and sell the base currency if the spot price decreases. This leads to an increase in the spot market volatility given

that the hedging trades have a price impact (vice versa for the long gamma exposure). 11

Apparently, the feedback effect is stronger (per billion gamma exposure of the OMM) in USDJPY than in EURUSD. As the

net hedge ratio ℎ𝑂𝑀𝑀𝑛𝑒𝑡 is probably of similar size in both currency markets, we can conclude that this higher effect can be

attributed to a higher 𝛽 in the USDJPY market (as then the higher estimate of 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 in USDJPY can only be explained

by a higher 𝛽). This can be explained by the higher liquidity of the EURUSD spot market and thus the lower market share of

the delta hedging strategy in EURUSD and the lower price impact of the traded volume BIS (2016).

Lastly, note that very similar results were found with other empirical approaches, as e.g. with a random intercept linear mixed-

effect model in which we used intraday data but accounted for the corresponding intraday time with a grouping variable. The

intraday results are are presented in the appendix Appendix E.

9 𝜎−𝜈
𝜈 = 0.7%

7.2% = 10%
10Note that the true effect per billion is probably a bit smaller when we adjust for the fact that our OMM positioning is only based on the

DTCC data, which represent only approximately 20% of the total options market Weng and Grover (2017). But as most relevant OMM
report to DTCC, we regard it as a good representation of the total options market.

11Even though in theory one could conclude that our model is tradable, this is not the case, as no risk-less profit could be made based
on our model if one takes transaction costs into account. A short discussion of that is presented in appendix Appendix D.
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Figure 5: In these panels, we discuss our volatility model with the fitted parameters for EURUSD and USDJPY. We present
the fitted volatility model in the upper panel, the absolute volatility increase due to delta hedging activity in the middle panel
and the relative volatility increase in the lower panel.
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5. Discussion and Conclusion

To model the feedback effect of delta hedging for spot market volatility, we have proposed a model economy of two types of

traders, an OMM and an OMT, whose exposures each reflect the total outstanding positions in the market. If the OMM and

the OMT have different hedge ratios, this will result in a net delta hedge activity that introduces market friction and feedback

effects. We conceptualise this friction by assuming a simple linear, permanent impact model for the net delta hedge volumes

that are executed in the spot market. From this framework we subsequently derive a spot market volatility model, given by

equation 2.12, that depends on the markets delta hedged gamma exposure as well as on the magnitude of the price friction

(i.e. the price impact of delta hedge transactions in the spot market). For example, if the OMM has a negative gamma

exposure and she hedges a higher degree of her delta exposure compared to the OMT (two of our empirical findings), the

spot market volatility is structurally high, as the net delta hedge amounts, executed in the sport market, would be positive if

the spot price moves up and negative if the spot price moves down (which results in an increase in the spot market volatility

if the transactions come with a price impact). The implications of this model are in line with the theoretical results of Lions

and Lasry (2006) and Li and Almgren (2016).

Feedback effects of this nature have not been empirically discussed, as prior models did not allow for straightforward empir-

ical testing, mainly due to their complicated setup or since data to do so is often not observable. In the case of our volatility

model, we only needed the aggregated OMM’s gamma exposure in order to empirically validate the model and therefore

quantify the feedback effect. We reconstructed this data by using the publicly available DTCC trade repository data. This

reconstructed net gamma exposure of the OMM was found to be negative, as expected: investors usually buy options with

either consideration of the spot price or with the desire to hedge other positions. As those traders usually act as OMTs in

the markets, we expect the OMT to be net long on options. As the OMM provides liquidity as a service to the market, his

position will be the reverse of the OMT. Therefore, a net short position makes sense from our point of view.

We then use this reconstructed gamma exposure of the OMM to validate our volatility model. A least-square fit thereby

shows a high goodness of fit, which strongly supports our model and the discussed feedback effect. The two main empirical

findings are first, that the OMM hedges a larger share of her delta exposure compared to the OMT and second, the validation

and quantification of the feedback effect. We will elaborate on the to findings here:

(1) We find that the OMM hedges a larger share of her delta exposure compared to the OMM. This, again, is in line with

our expectation and in accordance with the line of reasoning presented above: As OMTs are usually investors who buy

options with consideration of the spot price or to hedge other positions in their portfolio, they are expected to not hedge

their option’s delta. As the OMMs provide liquidity to the market as a service but usually without taking a view on the spot,

they are assumed to hedge their large portfolio in order to reduce the risk involved in their business model. Therefore, we

expected the hedge ratio of the OMM to be higher than that of the OMT, which is exactly what we found. Consequently, we

also observe that the volatility is increased by the OMM’s short gamma exposure.

(2) We find very strong statistical support of our volatility model structure and are able to use the model fit to quantify the

feedback effect of the OMM’s gamma exposure on the spot market volatility. A negative gamma exposure of the OMM of
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approximately -1000 billion in the base currency (which is around what we observe from our reconstructed OMM data) leads

to an absolute increase in volatility of 0.7% in EURUSD and 0.9% in USDJPY. If we assume that the hedge ratios in both

markets are the same, this difference can be directly explained by the higher market impact of a transaction in the USDJPY

spot market compared to the EURUSD spot market, which makes sense, since the liquidity of the EURUSD spot market is

higher than that of the USDJPY spot market. This absolute increase amounts to a relative increase in the volatility above its

fundamental level (volatility level in the absence of any delta hedging) of approximately 10% for EURUSD ( 0.7%
7.2 ) and 18%

for USDJPY ( 0.9%
5.0 ). Therefore, our results are in line with previous theoretical work on the feedback effect that delta hedging

strategies have on the spot market volatility, as e.g., Sircar and Papanicolaou (1998) suggest a relative increase in the spot

market volatility of approximately 18%.

Note that it would be wrong to conclude now that the options market introduces a destabilizing or stabilizing effect on the

spot market via the delta hedging strategies per se. Whether the effect of the option market on the spot market is stabilizing

or not only depends on the net gamma position of the OMM (as the OMM is found to hedge a higher share of her delta

exposure compared to the OMT). However, since the OMM is usually short gamma, as other market participants refrain from

selling options, the option market is found to lead to an increase in the spot market volatility. Moreover, while these effects

appear to exist, implied volatility is still trading at a premium to the realized volatility! One would assume that the OMM would

thus only stop selling options if her hedging strategy would drive the realized volatility above the implied volatility.

In future work, we intend to discuss how the persistence of the gamma exposure of the OMM could explain part of the

autocorrelation that is observed in the spot market volatility; we also intend to discuss the local volatility phenomena and to

examine the connection of an extreme gamma position in the context of market crashes.
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Appendix A. Data Specification

Appendix A.1. Depository Trust and Clearing Corporations repository (DTCC) data

The Dodd-Frank Act, which was signed into law in 2010, requires the reporting of all over-the-counter FX option transactions

that were traded in the US or involve US persons to a data repository. There are several data repositories to which market

participants can report. We use the largest one of those, the Depository Trust and Clearing Corporations repository (DTCC)

DTCC (2011).

The DTCC data are a representative source of the total options market. The share of the DTCC transactions among the

total turnover in the options market, as published by the BIS, is approximately 20%. Due to the large volumes traded in the

EURUSD and USDJPY options market, we focus on those two instruments.

Most relevant information of the options trade is included in the repository, such as the type of options traded, the notional

amount (volume), the strike price, the expiry date, the premium paid, the currency for quoting the notional and the premium

as well as the option trade timestamp. The missing information is the investor type (hedge fund, corporation, asset manager,

private client, etc.) and the side of the trade (if it was a paid or given); in addition, trades done outside the US are not repre-

sented. Our reconstruction logic fills one of the gaps, namely, the missing information about the side behind a transaction,

by reconstructing the implied volatility of each trade and subsequently matching it with the reference bid/ask price at the

time of the trade to check if the trade happened on the bid or the ask side (for more detail, see appendix Appendix B.1 and

Appendix B.2).

The key in this reconstruction and matching procedure therefore is to have accurate time stamps from the DTCC repository in

a sense that they need to be reported immediately to the repository. To get an indication if this immediate reporting is given,

we looked at the intraday turnover distribution of the DTCC data time stamps in order to check whether the distribution of the

time stamps follows the usual intraday turnover pattern observed in all financial markets, or if there is an unusual aggregation

of timestamps in the end of the day (due to delayed reporting). Figure reffig:intradayTurnover shows this analysis.

All of the above factors make the DTCC repository an ideal source for our analysis purposes.

Appendix A.2. General remarks on the data used in this paper

• The options price stream onto which the reconstructed implied volatilities are matched, comes from Bloomberg.

Those options price streams are quoted in terms of implied volatility for standardised contracts (standard tenor and

delta).

• The forward points and interest rates which we further used in the estimation of the implied volatility behind each

option trade, as well as for the calculation of the delta and gamma of the OMM at each point in time, are also from

Bloomberg.

• Only vanilla option contracts with a time to expiry below 600 days are taken into account.
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Figure A.6: This figure shows the intraday turnover of the data that underlie our analysis. The intraday turnover, measured
as the number of transactions per half hour, seems to follow a typical financial market turnover pattern and therefore serves
as a strong indication that the trades are reported in a timely manner to the DTCC trade repository. This is a crucial condition
for the analysis, as it means that the timestamps are reliable, which is a necessary precondition for the reconstruction of
the side (if it was traded on the bid or the ask price). Furthermore, the volumes traded for EURUSD and USDJPY are
comparable in size.

• The observed annualised spot market volatility is calculated based on mid-price data from the corresponding primary

FX market of the currency pairs (EBS).

• Analysis date range: 20.9.2017 to 30.6.2018.

• Intraday Bloomberg price streams are only available 60 days into the past. We thus cannot estimate the OMM’s

positions (from the DTCC data) for the period before the analysis period. Therefore, the estimated gamma exposure

of the OMM is inaccurate in the beginning of the analysis period, as only the "new" transactions contribute to our

estimate of the OMM exposure. However, the farther we go into the analysis period, the more accurately we can

know the OMM exposure. As the median time to expiry of the analysed option contracts turned out to be 30 days, we

leave out the first 30 days in our analysis to obtain a representative data set of the OMM positioning. All figures are

displayed accordingly.

Appendix B. Derivation of the OMM’s positioning behind each transaction

The DTCC repository provides useful information on each transaction but lacks one key point for our analysis: whether the

deal was a paid (buyer initiated) or given (seller initiated). We solve this question by using a trade classification algorithm.

First, we reconstruct the implied volatility of each trade by using the data from the DTCC trade repository. Second, using

a trade classification algorithm, we match the reconstructed implied volatility onto a reference bid/ask price stream from

Bloomberg and estimate whether it was traded on the bid or the ask price. By doing so, we estimate the side behind each

transaction, that is, if it was a paid (active buy transaction) or a given (active sell transaction). Third, we derive the OMM’s

position, as she is always liquidity provider by definition (i.e., if the transaction was identified as paid, we assume the OMM

is short the contract, as she provided liquidity on the ask).
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Appendix B.1. Reconstruct the implied volatility from the transaction data

Here, we outline Blacks model. These formulas are used in the determination of the implied volatility.

𝐶 (𝐹, 𝜏) = 𝐷 · (Φ(𝑑+)𝐹 −Φ(𝑑−)𝐾) (B.1)

𝑃(𝐹, 𝜏) = 𝐷 · (Φ(−𝑑−)𝐾 −Φ(−𝑑+)𝐹) (B.2)

𝑑± =
1

𝜎
√
𝜏
· (𝑙𝑛( 𝐹

𝐾
) ± 1

2
· 𝜎2𝜏) (B.3)

𝑑± = 𝑑∓ ± 𝜎√𝜏 (B.4)

𝜏 = 𝑇 − 𝑡 (B.5)

𝐷 = 𝑒−𝑟price ccy ·𝜏 (B.6)

𝐹 = 𝑆 · 𝑒 (𝑟price ccy−𝑟base ccy) ·𝜏 (B.7)

Now we briefly explain the variables and comment on where the information for each variable comes from.

• Φ: Cumulative distribution function of the standard normal distribution

• 𝑇 : Expiry date; from DTCC data

• 𝑡: Trade time stamp; from DTCC data

• 𝜏: Time-to-expiry (also called tenor); can be calculated with equation (B.5)

• 𝐾 : Strike price; from DTCC data

• 𝑟price ccy: Interest rate of the price currency for the tenor 𝜏; from Bloomberg; obtained by either looking at the bond

yield of the corresponding country with tenor 𝜏 or, if 𝜏 is in between two standard bond contracts, calculating an

interpolated yield from the two corresponding bond contracts (e.g., for a tenor of 𝜏 = 1.3 years, the bond yield of the

𝜏 = 1 year and 𝜏 = 2 years is interpolated)
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• 𝑟base ccy: Interest rate of the base currency for the tenor 𝜏; from Bloomberg; obtained by either looking at the bond

yield of the corresponding country with tenor 𝜏 or, if 𝜏 is in between two standard bond contracts, calculating an

interpolated yield from the two corresponding bond contracts.

• 𝐹 (𝜏): Forward price (amount of price currency per unit of base currency in time 𝜏); comes from Bloomberg; obtained

by either looking at the forward points of the corresponding currency with tenor 𝜏 or, if 𝜏 is in between two standard

contracts, calculating an interpolated forward point from the two corresponding contracts (Note: We can get the data

for the forward point from Bloomberg directly or calculate the forward with the interest rates 𝑟price ccy and 𝑟base ccy. We

prefer the first method, as it probably is a more realistic measure because it includes the cross-currency basis.).

• 𝑆: Spot price (amount of price currency per unit of base currency); from EBS

• 𝐶, 𝑃: Premium of the call (C) and put (P) option; from DTCC data

Using the above variables and formulas, we see that the only unknown quantity in equation (B.1), for a call option, or in

equation (B.2) for a put option, is the implied volatility 𝜎 (note that this is not the same sigma as in the main part of the

paper; here it is the implied volatility), which is our objective. Thus, we only need to numerically minimise the following

equation and estimate the implied volatility of each transaction.

min
𝜎

| |𝐶Black formula(𝜎) − 𝐶observed in DTCC | | → 𝜎𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 (B.8)

Appendix B.2. Determine the OMM’s side behind each transaction

Once we estimate the implied volatility behind a transaction, we can match the transaction time stamp (which is given by

the DTCC data) to a corresponding reference bid/ask price stream for the implied volatility (from Bloomberg). Note that it is

important that the reference price stream is adjusted to match the tenor and delta of the reconstructed implied volatility of

the transaction. Thus, the reference price stream onto which we match the reconstructed implied volatility of the transaction

results from spline interpolation of the volatility surface (from Bloomberg) at the time when the transaction occurred. If

the difference between the estimated implied volatility and the ask price of Bloomberg is smaller than the corresponding

difference between the estimated implied volatility and the bid price from Bloomberg, we label the transaction as a paid, as

the transaction probably occurred on the ask price. Conversely, if the difference between the estimated implied volatility and

the ask price from Bloomberg is larger than the corresponding difference between the estimated implied volatility and the

bid price from Bloomberg, we label the transaction as a given.

|𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝜎𝑎𝑠𝑘𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 | − |𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝜎𝑏𝑖𝑑𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 | →


< 0, paid

> 0, given
(B.9)

Then, as the OMM is always liquidity provider, she is short the position if the transaction is a paid and long if the transaction

is a given.
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Appendix B.3. Quality of the reconstruction

Frömmel et al. (2020) present a nice discussion of the quality of trade reconstruction algorithms. They conclude that the

modified EMO rule suggested by Chakrabarty et al. (2007) performs best, which works in the following manner: First, for

trades at the quote and up to 30% below the ask or above the bid, the quote rule of Hasbrouck (1988) should be applied

(quote rule: if price above (below) midpoint: buy (sell); Prices at midpoint unclassified; This method uses quote data.).

Then, for all trades in the inner 40% of the spread, the tick rule of Blume et al. (1989) should be applied (tick rule: if price

higher (lower) than previous: buy (sell); If no price change, same as previous. This method uses transaction data.). In our

reconstruction, we only use the quote rule. The rationale for this decision is discussed in this subsection.

While the modified EMO rule is straightforward to apply for a centralized market, the application to the FX option market is

a bit challenging, as the FX options market is a fragmented OTC market, so there is no one central exchange that records

everything. There are rather several repositories to which the transactions that occur on exchanges or between two counter-

parties (OTC) are reported to. This means there is not one trade data set to use for the tick rule and not one reference price

data set to use for the quote rule.

We take the Bloomberg best bid and ask price as reference quote price, which is an aggregated price from several market

places. And as it is an aggregated best bid and ask price stream, the corresponding spread is small. This helps for the

reconstruction, as most transactions have prices that lie outside of this tight spread (as most market participant cannot

access those best bid and ask prices) and thus can be clearly identified as paid or given, according to the quote rule. With

this reference price we apply the quote rule.

To discuss the quality of the reconstruction based on the quote rule, we calculate the difference of each trade price, 𝑝𝑖,𝑡 , from

the contemporaneous far touch reference price, 𝑝 𝑓 𝑎𝑟𝑡𝑜𝑢𝑐ℎ𝑡 and normalize it by the contemporaneous spread, 𝑝𝑎𝑠𝑘𝑡 − 𝑝𝑏𝑖𝑑𝑡 .

If the trade is a paid, the far touch is the offer and if the trade is a given, the far touch is the bid. 𝐷𝑖 is a +1 if the transaction

is a given and -1 if the transaction is a paid. Thus 𝑚𝑖 tells us how many spreads away the transaction occurred from the far

touch.

𝑚𝑖 = 𝐷𝑖
(𝑝𝑖,𝑡 − 𝑝 𝑓 𝑎𝑟𝑡𝑜𝑢𝑐ℎ𝑡 )

𝑝𝑎𝑠𝑘𝑡 − 𝑝𝑏𝑖𝑑𝑡
(B.10)

This is what we see in figure B.7. A positive value indicates that the trade occurred in the spread, while a negative value

indicates that the trade occurred outside of the spread. As expected, most trades occur outside of the tight Bloomberg

spread.

The modified EMO rule assigns all trades at and up to 30% below the ask or above the bid to the corresponding far touch

according to the quote rule (so it assigns a paid if the far touch is the ask and it assigns a given if the far touch is the bid).

Only the transactions that lie in the inner 40% of the spread need to be reassigned using the tick rule. In our case, this is

only amounts to 16% of all EURUSD transactions and 19% of all USDJPY transactions. Thus, for only a minor share of our

transactions the modified EMO rule actually requires further analysis.

And as discussed above, using the tick rule is now a bit more tricky, as we do not have a complete set of transactions, but

only the transactions reported to DTCC. And since applying the tick rule on an incomplete set of transactions is not ideal,
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Figure B.7: Cumulative distribution function (cdf) of the variable as defined equation B.10. 𝑚𝑖 tells us how many spreads
away the transaction occurred from the far touch. A positive value indicates that the trade occurred in the spread, while a
negative value indicates that the trade occurred outside of the spread.

we stick to the pure quote rule for our classification.

Nevertheless, for the sake of completeness we applied the tick rule (on the DTCC data set) to analyze how many trades

would be classified differently when applying the tick rule (instead of the quote rule) to the trades that occurred in the inner

40% of the spread, as suggested by the modified EMO rule. We find that for EURUSD only 6% and for USDJPY only 7% of

the trades in the inner 40% would actually be classified differently. In total, this means using the modified EMO rule vs. the

quote rule impacts less than 1% of all transaction of EURUSD and 1.3% of all transaction of USDJPY. In other words, the

quote rule and the modified EMO rule is identical for around 99% of all transactions in our data set.

Thus, as applying the tick rule on an incomplete set of transactions is not ideal and as it further does not even impact the

outcome, we use the quote rule for the reconstruction.

Appendix C. Determine the OMM’s delta and gamma exposure at each time step

Now that we have derived the OMM’s position behind each transaction, we can calculate her potential delta and gamma

exposure at each point in time using equations (C.1) and (C.2) for the delta and equation (C.3) for the gamma. 𝐾 is the strike

price, 𝑆 is the current spot price, 𝐹 is the forward price for the remaining time, 𝜎 is the implied volatility for the remaining

time, and 𝜏 is the remaining time.

Δ𝑐𝑎𝑙𝑙 =
𝜕𝐶 (𝐹, 𝐾, 𝑆, 𝜎, 𝜏)

𝜕𝑆
= Φ(𝑑+) (C.1)

Δ𝑝𝑢𝑡 =
𝜕𝑃(𝐹, 𝐾, 𝑆, 𝜎, 𝜏)

𝜕𝑆
= −Φ(−𝑑+) (C.2)
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Γ =
𝜙(𝑑1)
𝑆𝜎

√
𝜏

(C.3)

Note that 𝜙 is the standard normal probability density function and Φ is the cumulative distribution function of the standard

normal distribution. Both measures, gamma and delta, are subsequently multiplied by the signed notional of each position

(e.g., -1 million base currency if the OMM is short an option with a notional of 1 million and +1 million base currency if the

OMM is long an option with a notional of 1 million), resulting in the gamma and delta exposure of the OMM. Equation (C.4)

describes the delta exposure and equation (C.5) the gamma exposure, whereby 𝑁 is the notional of the option contract. If

we sum up the gamma exposures of all active (not yet expired) positions for a certain point in time, we end up with the net

gamma exposure of the OMM for this time.

𝛿𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = Δ ∗ 𝑁 (C.4)

𝛾𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = Γ ∗ 𝑁 (C.5)

𝑠𝑖𝑔𝑛(𝐷) =



1 if market maker is long

−1 if market maker is short
(C.6)

Appendix D. Is our model tradable?

Note that our non-linear regression used for the model estimation relates the OMM’s gamma exposure in the beginning of

the time period to the realised volatility during the time period. Thus, our regression suggests that based on the publicly

available trade repository data we use in this report (and the subsequent estimation of the OMM’s gamma exposure), a

good forecast of the realised spot market volatility is possible. As the realised volatility is strongly correlated with the implied

volatility, this could suggest a potential trading strategy. If we see that the OMM increased her short gamma exposure by

i.e., 10𝑏𝑛 EURUSD from time 𝑡 − 2 to time 𝑡 − 1 (so the net gamma exposure changes by −10𝑏𝑛), we know from our

model parameter estimates that the realised spot market volatility of EURUSD in the time period 𝑡 − 1 to 𝑡 will go up by

(−10𝑏𝑛) · (−0.0007 %
𝑏𝑛 ) = 0.007%. Furthermore, we know that the realised spot market volatility is correlated with the

implied volatility. If we therefore buy an option at 𝑡 − 1 and sell the option again at 𝑡, we sell 0.007% higher (option prices

are usually quoted in terms of volatility). The converse is true if we see that the OMM decreases her short gamma exposure

by 10𝑏𝑛. Of course, this trading strategy is based on an isolated view that only takes the observed feedback effect that

the OMM gamma exposure has on the spot market volatility into account. We empirically tested this trading strategy with

the data behind the results presented in table 1 and found that the observed effect has a Sharpe ratio close to zero, which

indicates efficient market behaviour. Additionally, the bid ask spreads in the option markets are usually wider than 0.007%

anyway, so taking transaction costs into account, the strategy would even be unprofitable.
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Appendix E. Estimation with intraday data

In this section we discuss the feedback effect on the spot market volatility independent of our model framework on an intraday

basis.

Appendix E.1. Estimation of a random intercept linear mixed-effect model

As we can reconstruct the gamma exposure of the OMM on an intraday frequency, we can also quantify the effect with this

intraday data. One difficulty of this intraday estimation is that the fundamental volatility (the constant of the linear regression

model) depends on the intraday time, as it is influenced by the intraday liquidity cycle (trades influence prices and therefore

also the volatility). We therefore cannot just mix the data from different intraday times and estimate the linear regression

model. Thus, we use a mixed-effect model, namely, a random intercept linear mixed-effect model, as presented in equation

E.1. As when we presented the gamma exposure, each trading day is split into 12 two-hour intervals. 12 We define a dummy

variable for the corresponding intraday time stamp, 𝐼𝑚 (where 𝑚 = {1, ..., 12}), that indicates the corresponding intraday

interval. 𝐼𝑚 then is our grouping variable for the constant 𝛼1 [%], as the fundamental volatility depends on the intraday time

stamp. This construct, the constant conditional on the grouping variable, (𝛼1 [%] |𝐼𝑚), is called the random effect, while the

fixed effect is given by 𝛼1 [%] and 𝛼2 [ %
bn ]. As the volatility can have extreme values on an intraday level, due to e.g., data

releases, we remove outliers from the intraday data set. 13

𝜎𝑡 ,𝑚 [%] = 𝛼1 [%] + (𝛼1 [%] |𝐼𝑚) + 𝛼2 [ %
bn

] · 𝑁𝑡𝑆𝑡 ,𝑚𝛾𝑀𝑡,𝑚 [bn] + 𝜖𝑡 ,𝑚 (E.1)

Table E.2 displays the results of the estimation of equation E.1. Looking at the fixed effect, we see that the results confirm

those obtained with the daily data. Note that now the fundamental volatility is nearly equal between EURUSD and USDJPY,

as we account for the different intraday volatility regimes.

Appendix E.2. Relation to the volatility model

Note that the regression model presented in the previous section is just the linear approximation of equation 2.10. Equa-

tion E.2 shows the derivation of the linear regression model, where we first write the series expansion and then a linear

approximation of it (the last step in the derivation is justified by |𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡 | <= 1).

12UTC 00:00-02:00, 02:00-04:00, 04:00-06:00, 06:00-08:00, 08:00-10:00, 10:00-12:00, 12:00-14:00, 14:00-16:00, 16:00-18:00, 18:00-
20:00, 20:00-22:00, 22:00-24:00

13We remove the highest and lowest 2.5 percentiles.
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EURUSD USDJPY

𝛼1 (%) 5.7∗∗∗ 6.2∗∗∗

(10.8) (11.1)

𝛼2 ( %
bn ) -0.0007∗∗∗ -0.0008∗∗∗

(-8.6) (-3.3)

R-squared 0.34 0.17

F-test vs. const. model 74.5∗∗∗ 10.8∗∗∗

Table E.2: This table shows the regression results of the random intercept linear mixed-effect model presented in

equation E.1 for EURUSD and USDJPY. t-statistics are presented in brackets. The stars ∗∗∗ denote significance

at the 1% level.

𝜎𝑡 =
𝜈

(1 + 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡 )

= 𝜈
∞∑︁
𝑘=0

(−𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡 )𝑘

= 𝜈(1 − 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡 +𝑂 (2))

≈ 𝜈︸︷︷︸
=𝛼1

+ (−𝜈𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 )︸          ︷︷          ︸
=𝛼2

𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡

(E.2a)

(E.2b)

(E.2c)

(E.2d)

Therefore, the estimations presented above provide support for our volatility model or, rather, its linear approximation.

𝑁𝑡𝑆𝑡𝛾
𝑀
𝑡 is the gamma exposure of the OMM. As 𝛼2 = −𝜈𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 , where ℎ𝑂𝑀𝑀𝑛𝑒𝑡 can be positive or negative (depending

on whether the OMM or the OMT hedges a larger share of their exposure), 𝜈 > 0 (fundamental volatility) and 𝛽 > 0 (market

impact), the sign of 𝛼2 tells us whether the OMM hedges a larger share of her delta exposure compared to the OMT (as

explained before). We estimate 𝛼2 to be negative, so we can conclude that ℎ𝑂𝑀𝑀𝑛𝑒𝑡 > 0 and therefore that the OMM hedges

a higher share of her delta exposure compared to the OMT. The value of 𝛼2 quantifies the percentage increase in spot

market volatility per gamma exposure of the OMM.

As we estimate 𝛼1 = 𝜈 separately, we could calculate 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 from 𝛼2 = −𝜈𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 . Nevertheless, we cannot further

dissect 𝛽ℎ𝑂𝑀𝑀𝑛𝑒𝑡 in its parts, as 𝛽 and ℎ𝑂𝑀𝑀𝑛𝑒𝑡 are not further specified.

Appendix E.3. What can we learn from the intraday estimation

First, we want to highlight that the results presented above are very much in line withe the model validation results presented

in section 4. This is further strong evidence that the quantification of the feedback effect works well with our reconstructed

OMM data set.
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So the quantification of the feedback effect of the OMM’s gamma exposure onto the spot market volatility is given by the

parameter 𝛼2 of the intraday estimation (equation E.1).

The significance of 𝛼2 tells us that the gamma exposure of the OMM actually has relevance for the spot market volatility, and

its value tells us what the corresponding linear effect is per billion gamma exposure of the OMM. Concretely, we see that the

overall feedback effect stemming from the OMM’s gamma exposure, which is given by the value of 𝛼2, suggests that a short

gamma exposure of the OMM of -1 billion in the base currency results in an increase of the realised spot market volatility of

approximately 0.001% for both EURUSD and USDJPY. This does not look like a large effect, but as we see from the data

displayed in figure 3, the gamma exposure of the OMM is of order −103 billion in both EURUSD and USDJPY. Consequently,

the resulting effect is actually an increase in the spot market volatility of approximately 1% (−0.001[ %
bn ] ·−103 [𝑏𝑛] = 1[%]).

Note that the feedback effect of the gamma exposure on the spot market volatility is (most probably) not linear, as we know

from our volatility model. Therefore, the quantification of the feedback effect presented in this section is only a linear

approximation.

The constant 𝛼1 is also found to be highly significant. 𝛼1 can be interpreted as the spot market volatility in the absence of

any delta hedging activity, the fundamental volatility. Note that for USDJPY, we find a strong difference in the estimate of

𝜈 from the model validation section 4, in which we used daily data, compared to the intraday USDJPY estimate presented

above. The spot market volatility in the absence of any delta hedging activity is found to be lower for the daily estimate

(5.0%) compared to the intraday estimate (6.2%). This difference stems from the fact that the volatility data for the daily

estimate for USDJPY from the model validation section 4 originate from the Asian trading hours, in which the volatility is

usually lower than during the European or American trading hours. As the intraday model takes the intraday time explicitly

into account (and therefore also the intraday volatility regime), and corrects for it with a random effect, we obtain a more

meaningful estimate of 𝛼1 for USDJPY in the intraday estimation.
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1. Introduction

At intraday time scales, financial price properties have been documented to deviate significantly from what a random walk

hypothesis would predict. This disaccord suggests the presence of frictions, and naturally raises the question whether such

frictions are owed to particular structural aspects of financial markets. Three main categories of explanations have been

proposed to answer this question. The first category explains such effects with economic frictions, stemming from capital

constraints and margin requirements (Brunnermeier and Pedersen, 2008). The second category argues with the specifics

of how information gets incorporated into asset prices (Easley et al., 1998). The third one finally draws from the pool of

discovered behavioural biases of investors (Ben-David and Hirshleifer, 2012).

Complementary to these explanations, this paper focuses on a liquidity friction that is introduced in the market of the un-

derlying (the spot market) by a feedback mechanism from the corresponding derivatives market. Derivatives markets, and

in particular options markets, have obtained significant importance due to risk management practices, as well as regulatory

constraints. As a consequence, potential feedback effects stemming from options markets also present natural candidates

to explain the type of frictions we are interested in. As a recent example, hedging demand from options markets was a

frequently cited explanation for the erratic price fluctuations observed in the GameStock (GME) stock price at the beginning

of 2021. The Financial Times (FT) for example explained the GME price moves with:

“Small investors can influence share prices by buying large amounts of call options, [...]. Typically, this means that wholesale

brokers such as banks need to purchase shares on the open market to hedge themselves [...]. This hedging can have an

outsized impact on prices [...].” (FT, 2021)

Motivated by these recent events, we formalise this discussion in an attempt to answer the question whether the options

market indeed has a measurable and relevant effect on the stability of the spot price.

Our work builds on the idea first discussed in Sircar and Papanicolaou (1998) and on the respective formalism presented by

Anderegg et al. (2019) and Ni et al. (2020), which all investigate the relation between option hedging and the volatility of the

spot price. We go beyond these contributions and also take into account the effect of option hedging on the drift of the spot

price. From there, we discuss the potential for directional price instabilities to arise due to feedback from option markets. Our

work is also related to research into the feedback effects of derivatives markets on the price of the underlying in the context

of exchange traded funds (ETF) (Shum Nolan et al., 2015; Ben-David et al., 2018).

The two main questions addressed in this paper are first, whether option positioning can lead to price instabilities, which

are quantified using drift bursts as introduced by Christensen et al. (2020). Both our theoretical discussion as well as our

simulation studies clearly show that the hedging of options with high notional and a low time to expiry can lead to either

unusually stable or unusually explosive prices, depending on the delta of the option(s). A key insight of our findings is that

the effect of option hedging is strongly asymmetric for when the option market maker is short the option, compared to when

she is long. Since the regime where the market maker is short is the predominant one empirically, this suggests that option

hedging indeed can be expected to have a strong impact on prices.
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The second question we address is whether option positioning was a potential contributor to the observed price distortion in

the GME stock price during the first quarter of 2021. Calibrating our model to price and position data for GME, we indeed

find that there were instances where our model predicts an increased option-induced instability in the GME price during the

period in question. However, with our limited resolution price data, only a circumstantial link between the predicted drift burst

intensity and the realized dynamics can be established.

The rest of the paper is structured as follows. Section 2 introduces the model of feedback effects from the derivative markets

onto the price dynamics of the underlying. Section 3 discusses how option positioning can lead to price instabilities in the

underlying price and section 4 applies our framework to the GME stock price. Section 5 concludes.

2. A model for the feedback effect of option hedging

Note that up to equation 2.10, the following derivation is identical to the one presented in Anderegg et al. (2019), but still

repeated here for coherence. Everything after equation 2.10 are novel contributions to the literature.

2.1. Derivation of the spot price dynamics in the presence of option hedging

Our goal is to derive the dynamics of the spot market price that includes the price impact of option hedging activity – in

particular delta hedging. To this end, we assume the observable price, denoted by 𝑆𝑡 , to follow a linear stochastic differential

equation

d𝑆𝑡 = 𝜇𝑡𝑆𝑡d𝑡 + 𝜎𝑡𝑆𝑡d𝑊𝑡 . (2.1)

Furthermore, we assume that the unobservable fundamental value of the asset 𝐹𝑡 , which has the interpretation of the market

price unaffected by delta hedging (the friction in our model), follows the dynamics

d𝐹𝑡 = 𝛼𝐹𝑡d𝑡 + 𝜈𝐹𝑡d𝑊𝑡 . (2.2)

Applying Itô’s lemma to the log-price changes d 𝑓𝑡 = d(log(𝐹𝑡 )) results in d 𝑓𝑡 = d𝐹𝑡
𝐹𝑡

− 1
2𝜈

2d𝑡. Using d𝐹𝑡 from (2.2) we can

then write d 𝑓𝑡 as

d 𝑓𝑡 = (𝛼 − 1
2
𝜈2)︸      ︷︷      ︸

𝛼
′

d𝑡 + 𝜈d𝑊𝑡 = 𝛼′
d𝑡 + 𝜈d𝑊𝑡 .

(2.3)

We assume that there are only two market participants, an option market maker (OMM) and an option market taker (OMT).

Their net delta exposures are respectively 𝑁𝑀𝑡 Δ𝑀𝑡 and 𝑁𝑇𝑡 Δ
𝑇
𝑡 , respectively, where 𝑁 is the notional (always positive) and

Δ is the option delta (being the derivative of the option value with respect to 𝑆, it is positive for a long call and a short put,

and negative for a short call and a long put). Both market participants hedge their overall delta exposure to a certain degree

in the spot market, given by the hedge ratios ℎ𝑀 and ℎ𝑇 , which we assume to stay constant over time. Assume that the

market participants hedge their risk at discrete intervals of length Δ𝑡. If the price changes by a certain percentage between

time 𝑡 − Δ𝑡 and 𝑡, the net traded delta hedging volume, executed in the spot market at time 𝑡, is given by the negative of the

change in the delta exposure between 𝑡 − Δ𝑡 and 𝑡, multiplied by the hedge ratio, so 𝑉𝑀𝑡 = ℎ𝑀𝑁𝑀𝑡 (−(Δ𝑀𝑡 − Δ𝑀𝑡−Δ𝑡 )) for
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the OMM and 𝑉𝑇𝑡 = ℎ𝑇 𝑁𝑇𝑡 (−(Δ𝑇𝑡 − Δ𝑇𝑡−Δ𝑡 )) for the OMT. Note that, in a market with two participants, the notional is the

same for both participants (𝑁𝑀𝑡 = 𝑁𝑇𝑡 = 𝑁𝑡 ), and the delta of the OMM is always equal to the negative of the delta of the

OMT (𝑁𝑡Δ𝑀𝑡 = −𝑁𝑡Δ𝑇𝑡 ). Furthermore, the position of each trader represents the total outstanding position in the market

(which is why our two agents are the OMM and the OMT, as by definition the aggregated positions from all OMMs sum up

to the total outstanding positions in the market). Defining the difference in the hedge ratio between the OMM and the OMT

from the OMM’s point of view as ℎ = ℎ𝑀 − ℎ𝑇 , the total net traded delta hedging volume between 𝑡 − Δ𝑡 and 𝑡 is given by

𝑉𝑡 = 𝑉
𝑀
𝑡 +𝑉𝑇𝑡

= ℎ𝑀𝑁𝑀𝑡 (−(Δ𝑀𝑡 − Δ𝑀𝑡−Δ𝑡 )) + ℎ𝑇 𝑁𝑇𝑡 (−(Δ𝑇𝑡 − Δ𝑇𝑡−Δ𝑡 ))
= (ℎ𝑀 − ℎ𝑇 )𝑁𝑡 (−(Δ𝑀𝑡 − Δ𝑀𝑡−Δ𝑡 ))
= ℎ𝑁𝑡 (−(Δ𝑀𝑡 − Δ𝑀𝑡−Δ𝑡 )).

(2.4a)

(2.4b)

(2.4c)

(2.4d)

In the continuous limit, when Δ𝑡 → 0, (2.4d) becomes

𝑉𝑡 = −ℎ𝑁𝑡dΔ𝑀𝑡 . (2.5)

Next, we assume that the delta hedging volume executed in the spot market, 𝑉𝑡 , impacts the spot market price in a linear

and permanent fashion, with 𝛽 defined as the log-price change (market impact) per traded volume. This is the friction that we

introduce and which will, as we see later, result in the feedback effect discussed in this paper. Thus, the observed log-price

change, d𝑠𝑡 , is given by the log-price change of the fundamental price, d 𝑓𝑡 , as well as the price impact of the delta hedging

volume, 𝛽𝑉𝑡 , as

d𝑠𝑡 = d 𝑓𝑡 + 𝛽𝑉𝑡
= d 𝑓𝑡 − 𝛽ℎ𝑁𝑡dΔ𝑀𝑡 ,

(2.6a)

(2.6b)

assuming that the price impact coefficient 𝛽 is constant. This specification reflects a price impact model in the spirit of Kyle

(1985), where the price impact is permanent, linear and depends only on the volume of the transaction. The assumption

that permanent price impact is proportional to the transaction volume is however also in line with modern dynamical theory

of liquidity and price impact (Donier et al., 2015).

Applying Itô’s lemma to the log-price changes d𝑠𝑡 = d(log(𝑆𝑡 )) results in d𝑠𝑡 = d𝑆𝑡
𝑆𝑡

− 1
2𝜎

2
𝑡 d𝑡. In combination with d𝑠𝑡 from

(2.6b), we can write d𝑆𝑡 as

d𝑆𝑡 = 𝑆𝑡d 𝑓𝑡 + 1
2
𝜎2
𝑡 𝑆𝑡d𝑡 − 𝛽ℎ𝑁𝑡𝑆𝑡dΔ𝑀𝑡 . (2.7)
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Applying Itô’s lemma to dΔ𝑀𝑡 with respect to d𝑆𝑡 leads to

dΔ𝑀𝑡 =

©­­­­­«
𝜕Δ𝑀𝑡
𝜕𝑡︸︷︷︸

−Charm𝑀
𝑡 :=𝜒𝑡

+𝜇𝑡𝑆𝑡
𝜕Δ𝑀𝑡
𝜕𝑆︸︷︷︸
𝛾𝑡

+1
2
𝜎2
𝑡 𝑆

2
𝑡

𝜕2Δ𝑀𝑡
𝜕𝑆2︸ ︷︷ ︸

Speed𝑀𝑡 :=𝜓𝑡

ª®®®®®¬︸                                                      ︷︷                                                      ︸
:=𝛾′𝑡

d𝑡 + 𝜎𝑡𝑆𝑡
𝜕Δ𝑀𝑡
𝜕𝑆︸︷︷︸
𝛾𝑡

𝑑𝑊𝑡 .
(2.8)

The option greeks are labeled with brackets and we suppress the superscript 𝑀 in the sequel, as all the greeks express the

sensitivities regarding the OMM’s exposure. 𝛾𝑡 , which is central in our theory, is the option gamma of the OMM at time 𝑡.

Inserting (2.3) and (2.8) into (2.7) results in

d𝑆𝑡 = (𝛼′
𝑆𝑡 + 1

2
𝜎2
𝑡 𝑆𝑡 − 𝛽ℎ𝑁𝑡𝑆𝑡𝛾

′
𝑡 )d𝑡 + (𝜈𝑆𝑡 − 𝛽ℎ𝑁𝑡𝑆2

𝑡𝜎𝑡𝛾𝑡 )d𝑊𝑡 (2.9)

Comparing (2.9) with (2.1) results in

𝜎𝑡 =
𝜈

1 + 𝛽ℎ𝑁𝑡𝑆𝑡𝛾𝑡 (2.10)

and

𝜇𝑡 =
𝛼

′ + 1
2𝜎

2
𝑡 (1 − 𝛽ℎ𝑁𝑡𝑆2

𝑡𝜓𝑡 ) − 𝛽ℎ𝑁𝑡 𝜒𝑡
1 + 𝛽ℎ𝑁𝑡𝑆𝑡𝛾𝑡 . (2.11)

Using (2.10) and the definition of 𝛼
′

from (2.3) finally leads to

𝜇𝑡 =
𝛼 − 1

2𝜈
2
(
1 − 1−𝛽ℎ𝑁𝑡𝑆

2
𝑡 𝜓𝑡

(1+𝛽ℎ𝑁𝑡𝑆𝑡𝛾𝑡 )2

)
− 𝛽ℎ𝑁𝑡 𝜒𝑡

1 + 𝛽ℎ𝑁𝑡𝑆𝑡𝛾𝑡 . (2.12)

An illustration of the dynamics of 𝜎(𝑆𝑡 ) and 𝜇(𝑆𝑡 ) from (2.10) and (2.12) is given in Figure 1 for the case of a call option

position of the OMM (assuming the OMM hedges a larger share of her delta compared to the OMT). As documented in

Anderegg et al. (2019), the gamma exposure of the trader who hedges a larger part of the delta exposure, in this example

the OMM, determines how the volatility of the affected price 𝑆 is scaled away from its fundamental level 𝜈. Additionally

however, we see that the drift of the asset price is also affected by the option hedging activity. If the OMM for example has

a short call option position (left column), the drift is negative for prices larger than the strike price (𝑆𝑡 > 𝐾). Intuitively, the

reason for this behaviour can most easily be inferred from the delta exposure of the OMM, which follows a sigmoid shape.

The negative of this delta exposure is the OMM’s hedging demand, i.e. the amount of the underlying she needs to hold

given a spot price level in order to be delta neutral. The corresponding change of these holdings determines the amount of

the underlying she needs to buy/sell in order to maintain delta neutrality. Thus in the region 𝑆𝑡 > 𝐾 , a negative unit change

in the price, d𝑆𝑡 < 0, forces the OMM to sell a larger quantity of the underlying to stay delta neutral compared to what the

OMM has to buy in case of a positive unit change in the price, d𝑆𝑡 > 0. In other words, the sigmoid shape of Δ𝑀 leads to

an asymmetry in the hedging demand, and if those traded quantities have a price impact, then 𝜇𝑡 < 𝛼 in the region 𝑆𝑡 > 𝐾 ,

and the effect is reversed for 𝑆𝑡 < 𝐾 . These dynamics are reproduced with opposite signs in case of a long option position
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(right column), but the effect is less pronounced for both the volatility as well as the drift.
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Figure 1: Model dynamics when the OMM has a short call position (left column) or a long call position (right column). The top
row shows the payoff at maturity, with a strike price at 𝐾 = 1. The second row displays the corresponding delta and gamma
profile with a volatility of 3% and a time-to-expiry of 1 day. We assume that the notional behind the option is 𝑁𝑡 = 104

shares and 𝛽ℎ are motivated from empirical results for GME (where we find ℎ = 0.63). The third row then shows the
resulting volatility 𝜎(𝑆), based on (2.10). The corresponding drift 𝜇(𝑆), of (2.12) is displayed in the bottom row. Horizontal
dashed lines indicate the fundamental values of the respective quantities, 𝜈 = 0.03 and 𝛼 = 0. Note that for a put option
position rows two to four are identical, only the payoff in row one would change accordingly.
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2.2. Stochastic processes of 𝜇

Due to the dependence on 𝑆𝑡 , both 𝜇𝑡 and 𝜎2
𝑡 are stochastic processes themselves. Using equations (2.12) and (2.10), we

can solve for the dynamics of d𝜇𝑡 using Itô’s Lemma to obtain

d𝜇𝑡 = 𝑎𝜇,𝑡d𝑡 + 𝑏𝜇,𝑡d𝑊𝑡 . (2.13)

The coefficient 𝑎𝜇,𝑡 is illustrated in Figure 2. Several observations can be made for the case of a short call option:

• d𝜇𝑡 is mean-reverting around the strike (𝐾 = 1). This can be seen by noticing that the deterministic part of the

differential equation has the opposite sign of 𝜇𝑡 around 𝐾 . This indicates mild behaviour of 𝜇𝑡 close to the strike, or

a certain “stabilisation” of the price through option hedging.

• Going further away from the strike, 𝑎𝜇,𝑡 has the same sign as 𝜇𝑡 at those prices, hinting towards a clear directional

behaviour of 𝜇𝑡 , or a certain “explosiveness” of the price.

• Lastly, we note that the “stabilisation” effect very close to the strike is in fact stronger than the “explosiveness” induced

further away from it, which gets obvious if one compares the respective magnitude of the amplitudes.
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Figure 2: Illustration of the deterministic part of the drift 𝜇 for the two cases discussed in Figure 1. The dynamics of the
process is given by (2.13) and we solve numerically for the relevant coefficient displayed here. Note that for a put option
position the picture is identical.
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The observations we can make from the case of a net long positioning of the OMM are clearly very different from the case

of a short position:

• In contrast to the short case, d𝜇𝑡 is not mean-reverting around the strike price (𝐾 = 1), but it is further away from the

strike. This can be seen by noticing that the deterministic part 𝑎𝜇,𝑡 of the differential equation d𝜇𝑡 has the same sign

like 𝜇𝑡 around 𝐾 , while it is opposite further away from the strike. This indicates “explosiveness” of 𝜇𝑡 close to the

strike, and a “stabilisation” effect further away from the strike. This is opposite from what we observed for the short

case.

• More importantly however, the magnitude of the effects are much less pronounced than when the OMM is short.

Comparing the left and right column on Figure 2 reveals that the effects of option hedging are something like three

orders of magnitude larger when the OMM is short. Already 𝜇 itself is less disturbed if the OMM has a long call po-

sition, as gets obvious from the first row. A comparison of the deterministic part reveals the same. The deterministic

part of 𝜇 changes in a range of [-0.5, +0.5] when the OMM is long. When she is short on the other hand, the deter-

ministic part of 𝜇 ranges from approx -100 to 100 for the same option parameters. This observation has particular

relevance since the OMM being short is the predominant regime in practice. This significant asymmetry between

the two regimes can already be seen when comparing the left and right column of Figure 1 and analytically can be

explained with the structure of the denominator in equations (2.12) and (2.10). A short OMM position increases the

effect of option hedging on the spot price by forcing the denominator (quickly) to zero, whereas a long position (slowly)

forces the denominator to infinity, decreasing the effect of option hedging.

In summary, our model predicts that, whenever the OMM is net short in her option positioning, the price is unusually stable

very close to the strike and unusually unstable further away from the it. And whenever the OMM is net long in her option

positioning, the price is not affected too much, but get slightly more unstable close to the strike and slightly more stable

further away from it. We test these predictions with a specific measure of instability in the following section. But before going

there, we want to shortly discuss the intuition behind our model.

2.3. Intuition for the asymmetry in the effect

The net delta hedge volume of the option market acts linearly on prices. As shown in the previous section, according to our

model, we expect an asymmetric effect on the spot price when the OMM is net short, compared to when she is long. What is

the intuition behind this asymmetry? If the net delta hedge volume is dominated by a short (long) option positioning, option

hedging implies buying (selling) in a rising market and selling (buying) in a falling market. Buying in a rising market thus

leads to a positive feedback due to price impact: price rise, the OMM needs to buy the asset to stay delta neutral, and by

doing so pushes the price even higher, requiring more buying2. In contrast, selling in a rising market does not result in such

2This positive feedback loop is in fact not too different from the portfolio insurance strategy that was at least in part responsible
for the 1987 stock market crash. Portfolio insurance strategies would sell futures contracts when prices declined, the buyers of these
futures would in turn sell the underlying to hedge their derivatives position, driving down prices even further, triggering portfolio insurance
strategies to sell even more futures contracts.
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a positive feedback effect. This fundamental difference between the hedging strategies in the two cases, i.e. the absence of

a second order feedback effect in the case of a long position, explains the asymmetric effect that option hedging has on the

directional stability of the underlying.

3. Option hedging and price (in)stability

3.1. Motivations

In our setup, both the observable volatility and drift, 𝜎𝑡 and 𝜇𝑡 , are functions of the delta exposure of the OMM (or derivatives

of it). In particular, the drift and the volatility of the observed price are nonlinear functions of 𝑆𝑡 and the feedback from option

hedging to expected returns can be both positive or negative, depending on the position of the OMM/OMT and their hedge

ratio. Models of nonlinear feedback 𝜇(𝑆𝑡 ) have been widely considered as models for financial bubbles and crashes (e.g.

Johansen et al. (1999, 2000)). In the same spirit, previous contributions have used the insight that hedging strategies of

general Black-Scholes option models lead to a positive feedback on the volatility, to propose nonlinear price models with

multiplicative noise, see e.g. Sornette and Andersen (2002); Li and Sornette (2013); Li et al. (2014); Schatz and Sornette

(2020). In these constructions, the particular form of the dependencies 𝜇(𝑆𝑡 ) and 𝜎(𝑆𝑡 ) are postulated to be a nonlinear

increasing power law of 𝑆𝑡 . Crucially, such power law feedback to expected return and volatility can lead to finite time

(stochastic) singularities in the price process, which represent times of system instability or regime change (Corsi and

Sornette, 2014). The general mathematical conditions for a stochastic finite time singularity to occur in nonlinear stochastic

dynamics are given in Cherny and Engelbert (2005) and summarized in Li et al. (2019).

In our setup here, the feedback mechanisms are endogenously derived from a specific generating mechanism (option

hedging), but their resulting dynamics are potentially more intricate than power laws, because they additionally also depend

on the option positioning and hedging behavior of market participants. These quantities are a priori exogenous to the model,

but can naturally be envisaged to themselves depend on the asset price in practice, leading to complex interactions. Our

goal is to determine whether the presence of these option-induced feedback mechanisms increases the susceptibility of the

asset price to instabilities. One way to nonparametrically test for the presence of directional instabilities – so called drift

bursts – has recently been proposed by Christensen et al. (2020). Specifically, this procedure allows one to test for short-

lived explosive drift dynamics, while being robust to the simultaneous presence of volatility bursts, which makes it particularly

attractive for our purposes.

Our strategy will be to use the drift burst test as a measure for the instability of the price process and analyze how changes

in the option positioning affect this measure according to our model. For this purpose, we first give a high-level introduction

to the drift burst methodology and then apply the procedure to synthetic realizations from our model.

3.2. Drift bursts

Standard formulations for continuous-time arbitrage-free price processes are typically cast in the form of Itô semimartin-

gales, such as (2.1). From the additional typical assumption of local boundedness of drift and volatility coefficients of these

processes, it follows that, on vanishingly small time intervals, contributions of volatility dominate contributions of the drift. In
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this case, Christensen et al. (2020) show that suitably scaled ratios of nonparametric, kernel-based estimates of the drift

(𝜇̂𝑡 ) and volatility (𝜎̂𝑡 ) coefficients, are asymptotically normally distributed. The proposal is thus to consider a test statistic

𝑇𝑡 ∝ 𝜇̂𝑡
𝜎̂𝑡
, (3.1)

which under the null of no drift burst has a limiting normal distribution. If however the drift term locally explodes fast enough

relative to the volatility, then this statistic can grow arbitrarily large, providing the grounds to perform a statistical test for the

presence of a bursting drift coefficient. The detection strategy is thus to compute the test statistic progressively over time

and reject the null of a non-explosive drift coefficient when |𝑇𝑡 | gets significantly large.

3.3. Types of singularities covered by drift burst tests

Before applying the drift burst test to our specific problem, it is useful to illustrate in more detail what type of divergences the

test will identify. To be precise, the test identifies times 𝑡 as drift bursts, where over some time interval 𝛿 → 0 we have

∫ 𝑡+𝛿

𝑡−𝛿
𝜇𝑠d𝑠 = 𝑂 𝑝 (𝛿𝛾𝜇 ) for 1/2 > 𝛾𝜇 > 0 (3.2)

and ∫ 𝑡+𝛿

𝑡−𝛿
𝜎𝑠d𝑊𝑠 = 𝑂 𝑝 (𝛿𝛾𝜎 ) for 𝛾𝜎 > 𝛾𝜇 . (3.3)

Thus the assumption is that, for any 𝜖 , there exists a 𝐶 > 0, so that the probability of
���∫ 𝑡+𝛿
𝑡−𝛿 𝜇𝑠d𝑠

��� exceeding 𝐶 · |𝛿𝛾𝜇 | is

small, i.e. the probability of exceeding is stochastically bounded by 𝜖 , as 𝛿 → 0. It turns out that this condition covers a

wide range of (very) different types of singularities. To motivate our thinking, consider first the simple case where 𝜇 is locally

deterministic and differentiable. In this case, condition (3.2) implies that 𝜇 is of the form

𝜇𝑡 (𝑠) ∼ 1
|𝑡 − 𝑠 |ℎ (3.4)

with 0 < ℎ < 1, so that 𝜇 diverges locally (at 𝑡) with exponent ℎ, while remaining integrable. By integration in (3.2), we

furthermore see that the exponent 𝛾𝜇 = 1 − ℎ, so in fact we must have 1/2 < ℎ < 1 to satisfy (3.2).

A second case to consider are functions that are locally deterministic, but non-differentiable. Let us assume for example that

𝜇 is given by the measure defined as the local derivative of the Weierstrass function 𝑓𝛼 (𝑡) with parameters 𝑎 and 𝑏. By

construction, this measure is almost everywhere singular, but obeys the Lipschitz condition
∫ 𝑡+𝛿
𝑡−𝛿 𝑓𝛼 (𝑠)d𝑠 = | 𝑓𝛼 (𝑡 + 𝛿) −

𝑓𝛼 (𝑡 − 𝛿) | ∼ |𝛿 |𝛼 for the exponent 𝛼 = − ln(𝑎)/ln(𝑏) (Gluzman and Sornette, 2002). Thus in this case, we have the

correspondence 𝛾𝜇 = 𝛼.

Finally, we can also envisage the singularity in 𝜇 to be stochastic. For example, if the measure defining 𝜇 was derived from

a geometric Brownian motion, we would find 𝛾𝜇 = 1/2, which is however excluded by the condition 𝛾𝜇 < 1/2 from (3.2).

While these differences between the three types of singularities might appear to be mathematical niceties, it is impor-

tant to stress that they also differ notably in both their amplitude and financial interpretation. For locally deterministic and
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differentiable bursts, there are local, super-exponential dynamics, similar to bubble regimes at longer time scales. For

non-differentiable dynamics, as illustrated with the Weierstrass construction, there is a complex and subtle hierarchy of

trend-changes at all scales. Finally, for stochastic singularities, there is again a complex but random set of trend-changes

at all scales. Commensurate with these differences, one should also assume that the underlying generating mechanisms of

the various singularity types are not the same. Since all of the singularity types satisfy the condition (3.2) posed by the drift

burst statistic, the resulting test is also incapable of distinguishing the different types of singularities and their origin.

For the present study, we are mainly interested in having a general measure of the instability of the price process, as

characterized by divergences in 𝜇. As such, the drift burst statistic is a useful tool despite its general condition of divergence.

To make progress on distinguishing different types of divergences, the so-obtained identification of singularities could be

complemented with estimates of the (local) Hölder exponent, e.g. using tools from signal processing, which can be used

to tell apart differentiable from non-differentiable singularities. To also distinguish deterministic from stochastic singularities,

additional diagnostics are required. We leave this study for future work.

3.4. Drift bursts induced by option hedging in synthetic data

In order to evaluate how the presence of option hedging affects the probability of drift bursts being realized in our model, we

implement the following simulation study. We assume that there is only one call option contract outstanding in the market,

with strike 𝐾 = 1, and fix 𝛽 = 3.4 × 10−7, ℎ = 0.64, 𝜈 = 0.03 and 𝛼 = 0 (these parameters are motivated by empirical

results presented later). On this baseline, we vary the remaining parameters of the option contract (again, motivated by

empirical numbers) as

• 𝑁 ∈ {8000, 10′000, 12′000, 14′000}

• 𝜏 ∈ {1, 2, 3, 5}

• sign(Δ) ∈ {−1, +1}

where 𝜏 is the time-to-maturity of the option in days. The parameters of the asset price process, i.e. 𝑆0, are varied so that

we cover the full range of the option delta

• |Δ| ∈ [0, 1],

which results in 𝑃=672 different parameterizations for the simulation. For each possible parametrization, we draw 𝐿=20’000

independent realizations of our model. We then use the Euler discretization scheme to approximate the continuous-time

stochastic processes on intervals of 100 milliseconds.

As with any statistical test, the drift burst test will be subject to some type I error. Since we are interested in drift bursts

that are induced into 𝑆 through option hedging, we want to correct for the false positive rate of the test on the null model,

i.e. the fundamental price 𝐹. For this purpose, for every parameter combination 𝑘 = 1, ..., 𝑃 and realization 𝑛 = 1, ..., 𝐿,
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we record the values of 𝑆𝑡 and 𝐹𝑡 . On each of these time series separately, we compute the drift burst test statistic on

a regular one-second grid3. Additionally, we compute and record critical values for the test statistic that are adjusted for

the autocorrelation of the test statistic on a given realization (see Appendix B of Christensen et al. (2020)). To account for

the rolling calculation of the test statistic and avoid double counting of events, we allow for at most one drift burst to be

established over any 30 second window (i.e. the bandwidth of 𝜇) at which the test statistic attains a local extremum and

exceeds a critical value corresponding to the 90% quantile of the reference distribution. This procedure will yield, for a given

parameter combination 𝑘 and realization 𝑛, sets of drift burst times and their associated test statistic for the affected price

𝑆, {(𝑡𝑛,𝑘,𝑆𝑖 , 𝑇𝑡𝑛,𝑘,𝑆𝑖
)}𝑖=1,...,𝐶𝑛,𝑘,𝑆 , and the fundamental price 𝐹, {(𝑡𝑛,𝑘,𝐹𝑖 , 𝑇𝑡𝑛,𝑘,𝐹𝑖

)}𝑖=1,...,𝐶𝑛,𝑘,𝐹 . Thus, 𝐶𝑛,𝑘,𝑋 is the total

number of drift bursts registered for parameter combination 𝑘 , realization 𝑛 and price 𝑋 .

As an estimator for the count of drift bursts that are the result of option hedging dynamics in our model and not due to false

positives of the test procedure, we compute the difference in the mean number of drift bursts (across the 𝐿 realizations)

between 𝑆 and 𝐹, i.e

𝐵̄𝑘 = 𝐿
−1

𝐿∑︁
𝑛=1

(
𝐶𝑛,𝑘,𝑆 − 𝐶𝑛,𝑘,𝐹

)
. (3.5)

Each 𝐶𝑛,𝑘,𝐹 hereby corrects for the type I error the test incurs on the same realization 𝑛, without the presence of option

hedging4. To make estimates for 𝐵̄ comparable, here and subsequently in the paper, we always express it as an intensity

per trading day of 6.5 hours.

If 𝐵̄ is positive, this means that there is a measurable increase in the intensity of instabilities arising from option hedging in

our model. Thus for 𝐵̄ > 0 we speak of an explosive price process. Conversely, if 𝐵̄ is negative, the number of drift bursts in

the affected price is below the null level of the unaffected price. Thus in this case, option hedging has a stabilizing effect on

the asset price according to our model. It is important to note that the sign of 𝐵̄ does not make a statement about the sign of

the price divergences, they can be both positive or negative, depending on option positioning, but their intensity is increased

significantly.

Figure 3 presents estimates of 𝐵̄𝑘 for the various simulation parameterizations. We first notice that 27% of the parameter

combinations result in a statistically significant (see caption of Figure 3 for a description of the significance test applied)

non-zero 𝐵̄𝑘 . So option positioning has a measurable effect on the stability of the asset price. Moreover, if 𝐵̄𝑘 is statistically

significantly different from zero, it is positive in around 48% of the parameter combinations, indicating that, as suggested

by the elaborations in section 2.2, option hedging can result in both unusually explosive, as well as unusually stable price

dynamics.

The drift burst statistic furthermore identifies instabilities in line with what the dynamics of our model would suggest: First,

the effect of option hedging is more strongly visible for short positions. Second, for short positions, the stabilization (𝐵̄𝑘 < 0)

3We use a 30 second bandwidth for the drift estimate, so that the kernel estimate for 𝜇 contains 300 observations, and base the
volatility estimates on a 2.5-minute bandwidth as suggested by Christensen et al. (2020).

4We provide some sanity checks for the drift burst test in Appendix C (robustness to vanishing volatility) and Appendix D (size of the
test and sensitivity to level of volatility).

12

On the Directional Destabilizing Feedback Effects of Option Hedging

55



is more pronounced than instability (𝐵̄𝑘 > 0), as can be inferred from the left skewed nature of the distribution of 𝐵̄𝑘 . The

dependence of 𝐵̄𝑘 on the options parameters and the price are discussed in the following subsection.

3.5. Dependence on option characteristics

In order to assess the dependence of 𝐵̄𝑘 to the characteristics of the option being hedged, we bin the simulations according

to their parameter values, and look at differences in the corresponding values of 𝐵̄𝑘 , see Figure 4. For parameter combina-

tions, where 𝐵̄𝑘 is not statistically significantly different from zero, we set 𝐵̄𝑘 = 0. The conclusion from this analysis is that

𝐵̄𝑘 is different from zero in situations where

1. the notional is high

2. the time to expiry of the option is short

3. the OMM holds a short position in the option

Looking at the dependence of 𝐵̄𝑘 to the delta of the option (to aggregate different option positions we have to use their delta,

not the price 𝑆, because we want to aggregate along the dimension where hedging demand materializes, irrespective of

the particular set of parameters), we see that our model prediction is confirmed. For short positions, 𝐵̄𝑘 is negative around

the strike (|Δ| = 0.5), indicating that the price is stable, while further away from the strike 𝐵̄𝑘 is positive, indicating that the

price is unstable. For long positions, 𝐵̄𝑘 is rarely statistically different from zero, and if it is, it is very small in absolute terms

compared to the case of short positions. Only if the notional gets very high and the time to expiry very low, we see that the

price get slightly more unstable close to the strike, as expected.

3.6. Dependence on time scale of the drift estimate

A key parameter in computing the drift burst test statistic is the time scale of the kernel used to estimate the drift 𝜇̂𝑡 in (3.1),

because it also controls the time scale over which an identified singularity/divergence developed.

As Figure 5 shows, 𝐵̄𝑘 has non-zero entries on all time scales, indicating that option positioning has an impact on the price

stability across various time scales. Obviously, as we present 𝐵̄𝑘 on a per hour basis, the level of 𝐵̄𝑘 in absolute terms gets

smaller for large scales. In addition we see that the dependence on the option delta is very similar on all time scales. Also,

the dependence on the delta is weaker for larger time scales, which is a consequence of the simulation setup, as the price

first has to diffuse over a time corresponding to the bandwidth over which 𝜎2 is estimated, which is 5 times as long as for 𝜇

(so e.g. around 4 hours for the largest scale), before a first bursts can even be registered.

In summary, option positioning can lead to price instability on various time scales in our setting, and specific points of

instability are identified by the test statistic where our model predicts them. For empirical applications, it is important to

note that any estimate of 𝐵̄ must always be interpreted in conjunction with the time scale over which the test statistic was

computed (i.e. the time scale of the relevant kernel estimates of 𝜇 and 𝜎2).
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Figure 3: Shows a histogram of 𝐵̄𝑘 , the difference in the average number of drift bursts per trading day of 6.5 hours
across 20’000 realizations of the model, cf. (3.5). Each observation corresponds to one parameter combination (see main
text). The histogram only counts parameter combinations where the intensity of drift bursts in the affected price (across
the 𝐿 = 20′000 realizations) is statistically significantly different from the intensity of drift bursts in the unaffected price, i.e.
when 𝐵̄𝑘 is statistically significantly different from zero. This is determined by bootstrapping the 95% confidence intervals for
𝐵̄𝑘 . If this interval includes the value of zero, we exclude the parameter combination from the histogram. The red bars only
count parameterizations where the OMM is short (138/672 significant parameter combinations), the blue ones when she is
long (49/672 significant parameter combinations). All simulations were discretized on intervals of 0.1 seconds and the drift
burst test applied with a kernel size of 30 seconds for 𝜇.

3.7. Direction and magnitude of drift bursts

Last, we discuss the direction of the option induced drift bursts in Figure 6. We take a closer look at the simulation results

presented in the second column of Figure 5 and for each delta compare the probability density functions (pdf) of the returns

of the bursts stemming from 𝑆 and the returns of the bursts stemming from 𝐹. The returns of the bursts are called 𝜇𝑘𝑒𝑟𝑛𝑒𝑙 ,

which are annualised and have units of %. We only display the deltas for which we registered a 𝐵̄𝑘 that is statistically

significantly different from zero.

The following observations can be made:

1. The direction of the bursts are in line with the dynamics of 𝜇 for a short call position displayed in Figure 1. For delta

values below the strike (i.e. −0.25, −0.3, −0.35, −0.4, −0.45), the pdf mass is shifted towards large positive returns.

This is in line with the positive deviation of 𝜇 for prices below the strike in Figure 1. For delta values above the strike

(i.e. −0.55, −0.6, −0.65, −0.7, −0.75, −0.8), the pdf is shifted towards large negative returns. Again, this is in line

with the negative deviation of 𝜇 for prices above the strike in Figure 1, confirming the predictions of our model.

2. Looking at the delta values for which the shift in probability mass is most extreme (−0.55 and −0.45), we see that
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Figure 4: Shows heatmaps of 𝐵̄𝑘 across simulation parameterizations. All simulations were discretized on intervals of 0.1
seconds and the drift burst test applied with a kernel size of 30 seconds for 𝜇. The parameterizations are binned according
to three characteristics – the notional 𝑁 , the time to expiry 𝜏 and the absolute value of the delta |Δ|. The heatmaps then
show the average within each bin of the corresponding 𝐵̄𝑘 . The left columns is for when the OMM is long the contract, the
right column for when she is short.
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Figure 5: Shows 𝐵̄𝑘 per trading day of 6.5 hours, for one particular short option parameterization {𝑁 = 14′000, 𝜏 =
1, sign(Δ) = −1}, depending on the time scale of the kernel estimate for 𝜇 that enters the drift burst statistic, and the
absolute value of the delta (|Δ|) of the option. The simulations are performed 20’000 times for each combination. The
time scale of the kernel estimate for 𝜎2 is chosen to be five times the one for 𝜇 and we scale the time intervals for the
discretization in the simulations, so that one kernel estimate for 𝜇 always contains 300 observations of the process (both
points are suggested by Christensen et al. (2020)). The drift burst test is applied every ten time steps of the simulation. Note
that the colorbar is cut at minus one and plus one, in order to better display the stable and unstable areas.
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Figure 6: Shows the probability density function of 𝜇𝑘𝑒𝑟𝑛𝑒𝑙 (which is annualised and has units of %) for the bursts stemming
from 𝑆 (red lines) and the bursts stemming from 𝐹 (blue lines), for a 𝜇 bandwidth of 30 seconds (second column of Figure 5)
and for all delta which have a 𝐵̄𝑘 that is statistically significantly different from zero. The probability density functions are
calculated using a kernel fit with a bandwidth of 0.05.

the mean of the absolute value of the bursts in 𝑆 is shifted to around 1.5% (annualised), compared to the mean for

the bursts in 𝐹 of 0%. Thus, the directional effect is in fact rather large and given that, e.g. the average annual return
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on the S&P 500 is of the order of 10%, economically significant.

4. Application to the GameStop stock price

As motivated in the introduction, we turn to the GameStop (GME) stock price for an empirical application of the proposed

approach. GME experienced highly elevated volatility and erratic price moves in the first quarter of 2021, as displayed in

Figure 7. As option hedging activity was a frequently cited explanation for the unusual price dynamics, we investigate this

hypothesis through the lens of the approach from section 3.
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Figure 7: Candle daily price chart of the GME stock traded on the NYSE. If the closing price is greater than the opening
price, the body of the candle (indicating the region between the open and close price) is unfilled, otherwise it is filled.

4.1. Model calibration for GME

In a first step, we calibrate our model to price and option position data for GME. A first quantity to estimate is the price impact

coefficient 𝛽. As this is not central to the ideas presented in this paper, we defer details of the calibration of 𝛽 to Appendix

A. We estimate the price impact to be 𝛽 ≈ 0.0034 bps per share.

4.1.1. Estimation of fundamental volatility 𝜈 and net hedge ratio ℎ

The next step is to obtain estimates for the fundamental volatility 𝜈 and the net hedge ratio ℎ from relation (2.10). To do this,

we estimate the nonlinear regression model

𝜎𝑡 =
𝜈

1 + 𝛽ℎ𝑆𝑡
∑
𝑗 𝑁𝑡 , 𝑗𝛾𝑡 , 𝑗

(4.1)
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using daily volatilities 𝜎𝑡 , the underlying price 𝑆𝑡 and the total gamma exposure Γ𝑡 :=
∑
𝑗 𝑁𝑡 , 𝑗𝛾𝑡 , 𝑗 . The total gamma

exposure is the composite of all outstanding positions 𝑗 , each of which is specified by a combination of {𝐾 𝑗 , 𝜏𝑗 , 𝑐 𝑗 }, where

𝐾 𝑗 is the strike price, 𝜏𝑗 the time-to-maturity and 𝑐 𝑗 indicating whether the contract is a call or a put. 𝑁𝑡 , 𝑗 is the signed5

open interest of the OMM behind position 𝑗 . Open interest hereby represents the total number of contracts, either long or

short, that have been entered into and not yet offset by delivery for one position 𝑗 , see CBOE (2021) for details. Each open

position has a buyer and seller, but for calculation of open interest, only one side of the contract is counted. 𝛾𝑡 , 𝑗 is the

gamma of the option behind an individual position 𝑗 .

We use open interest data of Trade Alert6 from January 4, 2021 to March 15, 2021 to calculate 𝑁𝑡 , 𝑗 . This data set covers

the total market for GME options and includes the information on which side of the market the open interest was traded

(bid or offer price). Using this information, we compute the signed open interest of the OMM behind position 𝑗 as 𝑁𝑡 , 𝑗 =

𝑂𝐼𝑏𝑡, 𝑗 − 𝑂𝐼𝑜𝑡, 𝑗 , where 𝑂𝐼𝑏𝑡, 𝑗 is the open interest traded on the bid price and 𝑂𝐼𝑜𝑡, 𝑗 is the open interest traded on the offer

price. The assumption here is that the OMM is always liquidity provider, i.e. she is willing to buy the stock at the bid price,

and willing to sell the stock at a slightly higher offer price, earning the spread between the two as a compensation for the

inventory risk arising from liquidity takers matching with these prices. Under this assumption, the OMM is long if the trade

occurred on the bid and short if the trade occurred on the offer.

The price data for 𝑆𝑡 is taken from Bloomberg7 and since we use option positioning at the start of the trading day, we use

the opening price for 𝑆𝑡 when computing the gamma of each option.

Finally, to compute 𝛾𝑡 , 𝑗 , we rely on the Black-Scholes model, i.e.

𝑑1 =
1

𝜎𝑡 , 𝑗
√
𝜏𝑡 , 𝑗

·
[
log( 𝑆𝑡

𝐾 𝑗
) + (𝑟𝑡 , 𝑗 − 𝑞𝑡 +

𝜎2
𝑡 , 𝑗

2
)𝜏𝑡 , 𝑗)

]

𝑑2 = 𝑑1 − 𝜎𝑡 , 𝑗√𝜏𝑡 , 𝑗

𝛾𝑡 , 𝑗 = 𝑒
−𝑞𝑡 𝜏𝑡, 𝑗 𝜙(𝑑1)

𝑆𝑡𝜎𝑡 , 𝑗
√
𝜏𝑡 , 𝑗

,

(4.2)

where 𝜙 is the standard normal probability density function and we set the dividend yield 𝑞𝑡 ≡ 0 and also fix the risk-free

interest rate to 𝑟𝑡 , 𝑗 ≡ 0. Calculation of the 𝛾𝑡 , 𝑗 requires calculation of the implied volatility of each position 𝑗 . To calculate

the implied volatility 𝜎𝑡 , 𝑗 behind each position 𝑗 , we use daily volatility surface data from the CBOE data shop8 and linearly

interpolate it to the corresponding strike 𝐾 𝑗 and time-to-expiry 𝜏𝑡 , 𝑗 of position 𝑗 . Having computed 𝛾𝑡 , 𝑗 for each position,

we can calculate the gamma exposure of the OMM as Γ𝑡 =
∑
𝑗 𝑁𝑡 , 𝑗𝛾𝑡 , 𝑗 .

Using Γ𝑡 , the spot price 𝑆𝑡 and the at-the-money implied volatility as a proxy for 𝜎𝑡 , finally allows estimation of 𝜈 and ℎ by

performing a nonlinear regression according to (4.1). The results of this procedure are presented in Figure 8 and Table 1.

5The sign is negative if the position is a short position and positive if the position is a long position.
6Top Open Interest product from Trade Alert LLC: https://www.trade-alert.com
7We obtain minute-by-minute sampled prices.
8CBOE data shop: https://datashop.cboe.com/end-of-day-volatility-skew
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Figure 8: Estimation of equation (2.10) from the nonlinear
regression (4.1). The dashed lines indicate nonsimultaneous
95% confidence bounds for the fitted mean values.

𝜎𝑡 = 𝜈/(1 + ℎ · 𝛽𝑆𝑡Γ𝑡) + 𝑒𝑡
𝜈 (%) 2.97 ∗∗∗

(t-statistic) (18.3)

ℎ (%) 63.6 ∗∗∗

(t-statistic) (4.3)

F-test vs. const. model 172 ∗∗∗

Table 1: Estimates for 𝜈 and ℎ. The ∗∗∗ de-
note significance at the 1% level.

Our estimates suggest that the model is highly significant vs. a constant model and can explain a large part of the variance

in the data (𝑅2 = 27%). Also, the estimates for 𝜈 and ℎ are highly significant and in an economically sensible range. We

estimate 𝜈 to be around 3% and ℎ around 64%. The fact that ℎ < 1 makes sense given that we can expect the OMT to also

hedge her position to some extent and that the OMM also has alternatives to hedging than directly buying the underlying.

4.1.2. Estimation of the fundamental drift 𝛼

Using the estimated 𝜈 and ℎ now allows us to estimate 𝛼 from the relation (2.12). To this end, we again translate this into a

nonlinear regression model

𝜇𝑡 =

𝛼 − 1
2𝜈

2
(
1 − 1−𝛽ℎ𝑆2

𝑡

∑
𝑗 𝜓𝑡, 𝑗𝑁𝑡, 𝑗

(1+𝛽ℎ𝑆𝑡 ∑ 𝑗 𝛾𝑡, 𝑗𝑁𝑡, 𝑗)2

)
− 𝛽ℎ∑

𝑗 𝜒𝑡 , 𝑗𝑁𝑡 , 𝑗

1 + 𝛽ℎ𝑆𝑡
∑
𝑗 𝛾𝑡 , 𝑗𝑁𝑡 , 𝑗

,
(4.3)

where similar to before, 𝛾𝑡 , 𝑗 , 𝜒𝑡 , 𝑗 and 𝜓𝑡 , 𝑗 are calculated for each position 𝑗 on day 𝑡 using equations (4.4) and (4.5)

respectively as

𝜒𝑡 , 𝑗 = 𝑞𝑡𝑒
−𝑞𝑡 𝜏𝑡, 𝑗Φ(𝑑1) − 𝑒−𝑞𝑡 𝜏𝑡, 𝑗𝜙(𝑑1)

2(𝑟𝑡 , 𝑗 − 𝑞𝑡 )𝜏𝑡 , 𝑗 − 𝑑2𝜎𝑡 , 𝑗
√
𝜏𝑡 , 𝑗

2𝜏𝑡 , 𝑗𝜎𝑡 , 𝑗
√
𝜏𝑡 , 𝑗

. (4.4)

𝜓𝑡 , 𝑗 = −𝛾𝑡 , 𝑗
𝑆𝑡

(
𝑑1

𝜎𝑡 , 𝑗
√
𝜏𝑡 , 𝑗

+ 1
)

(4.5)

Φ denotes the standard normal cumulative distribution function. The corresponding overall charm (speed) exposure is then

given by the sum over the product of 𝑁𝑡 , 𝑗 and 𝜒𝑡 , 𝑗 (𝜓𝑡 , 𝑗 ), i.e. X𝑡 :=
∑
𝑗 𝑁𝑡 , 𝑗 𝜒𝑡 , 𝑗 (Ψ𝑡 :=

∑
𝑗 𝑁𝑡 , 𝑗𝜓𝑡 , 𝑗 ).

Estimating this model using realized log-price returns for the first four hours of each trading day 𝑡 as 𝜇𝑡 results in no

significance for the model (F-statistc vs. constant model of 0.37) and its parameters (𝑝-value for 𝛼 of 0.85)9. Thus we

conclude that 𝛼 = 0, i.e. there is no fundamental drift.

9As a robustness check we have also estimated a model where the fundamental drift is allowed to have a monthly seasonality. Also
in this extended specification, neither the constant, nor the respective monthly dummies are significant.
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In summary, the calibrated model parameters are

𝛽 = 0.0034 bps per share, 𝜈 = 2.97%, ℎ = 63.6%, 𝛼 = 0%. (4.6)

Statistics of the main variables used in the calibration are additionally presented in Table B.3.

4.2. Option-induced price instability for GME

As a first sanity check, we evaluate whether the model-implied drift from option positions at the start of a trading day is

correlated with the subsequent daily returns. The analysis deferred to Appendix E shows that there is a positive and signif-

icant correlation between the two, confirming the basic adequacy of our model’s predictions. Turning to price instabilities, a

principled way to assess the potential for drift bursts to occur in the GME stock price based on the approach so far in this

paper, would be to take the open option positions at the start of each trading day and perform simulations of 𝑆𝑡 , conditional

on these positions and the day’s opening price 𝑆0 and then infer the option-induced drift burst intensity similar to how this

was done in section 3. In order to alleviate the computational burden associated with this procedure, we instead resort to an

approximation scheme based on the synthetic data already generated in section 3. Since these simulations were based on

parameter values that correspond to the ones we have calibrated empirically, they can be used to construct a function10

E[𝐵̄ 𝑗 | 𝑆𝑡 ] = 𝐹 (𝑁 𝑗 , 𝜏𝑗 ,Δ 𝑗 , sign(Δ 𝑗)), (4.7)

which for a given option position 𝑗 with parameters {𝑁 𝑗 , 𝜏𝑗 , Δ 𝑗 , sign(Δ 𝑗 )} and a prevalent spot price 𝑆𝑡 approximates the

expected number of drift bursts (on a time scale of 30 seconds, over a time horizon of 6.5 hours) induced by hedging this

position11.

Our specific empirical procedure consists in taking the open option positions and the opening price on a given day, and then

fitting this function for a range of 𝑆𝑡 around the opening price of the particular day. The overall predicted option-induced drift

burst intensity at each spot price 𝑆𝑡 is then just the sum of the intensities predicted for each individual position

E[𝐵̄|𝑆𝑡 ] =
∑︁
𝑗

E[𝐵̄ 𝑗 |𝑆𝑡 ] =
∑︁
𝑗

𝐹 (𝑁 𝑗 , 𝜏𝑗 ,Δ 𝑗 , sign(Δ 𝑗)). (4.8)

In Figure 9, we evaluate this prediction using the open option positions of a given day, and minute-by-minute prices 𝑆𝑡 . The

predictions are made for each minute of each trading day and summarized as violin plots per trading day in the upper panel

of the Figure.

According to this analysis, the predicted option-induced drift burst intensity is on average very close to zero for most trading

days. We however see that there are a number of days where the predicted drift burst intensity is clearly positively and/or

10We use a simple nonparametric interpolation on a grid of the parameter values.
11To validate the approximation, we have performed the full daily simulation mentioned in the beginning for some exemplary days and

checked that the approximation and full simulation yield comparable results.
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Figure 9: Shows the total option-induced drift burst intensity E[𝐵̄|𝑆𝑡 ] (upper panel) for the GME stock price (lower panel,
in the form of a candle chart). E[𝐵̄|𝑆𝑡 ] is defined by expression (4.8) and 𝐵̄ 𝑗 is given by expression (3.5). Positive values
indicate instability in the price due to hedging, negative values suggest a stabilizing effect of option hedging. The predictions
are made for each minute of each trading day and summarized as violin plots per trading day. The kernel density estimates
used to construct the violin plots span the entire range of the predicted values. The y-axis is limited to the range [−20, 20].
For days with observations outside this range, the arrows indicate the number of observations truncated, with the value of
the maximum observation in parentheses.

negatively elevated. These days appear to coincide with periods of erratic price moves, whereas e.g. during the first week of

January, or the week of February 8𝑡ℎ, where prices evolved smoothly, the predicted drift burst intensity also appears rather

stable.

Nevertheless, linking the predictions of our model to the observed massive price moves is difficult. It is important to realise

that E[𝐵̄| 𝑆𝑡 ] predicts the probability/intensity of drift bursts at time scales of 30 seconds occurring over the subsequent

6.5 hours. Our approach makes no prediction of the exact timing of the burst. Furthermore, assessing this prediction by

comparing it to drift burst estimates on empirical prices with our granular minute-by-minute price data is not possible, as
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higher resolution data would be needed to determine empirical drift bursts at 30 second time scales12.

Instead, we present a simple correlation analysis and focus on whether we actually see stable or unstable price behaviour

after points with significant (positive or negative) spikes in 𝐵̄𝑘 . To do this, we select times where the predicted drift burst

intensity is above an absolute level of 10 and then evaluate how the maximum absolute return of the subsequent five minutes

𝑟𝑚𝑎𝑥,𝑡 B max{|𝑟𝑡+1 |, |𝑟𝑡+2 |, |𝑟𝑡+3 |, |𝑟𝑡+4 |, |𝑟𝑡+5 |}, ranks among the absolute (minute) returns of the first two hours of the

day 𝑟𝑑𝑎𝑦 B {|𝑟0 |, ..., |𝑟2ℎ |}. So every time we find a value E[𝐵̄ 𝑗 | 𝑆𝑡 ] > 10 or E[𝐵̄ 𝑗 | 𝑆𝑡 ] < −10 we look at the next

five returns, take their maximum absolute value, 𝑟𝑚𝑎𝑥,𝑡 , and calculate the percentile rank 𝑃𝑅𝑟𝑚𝑎𝑥,𝑡 B 𝑃𝑅(𝑟𝑚𝑎𝑥,𝑡 , 𝑟𝑑𝑎𝑦)
against all absolute minute returns of the first two hours of the trading day, 𝑟𝑑𝑎𝑦 (we choose the first two hours to have a

conservative benchmark, as the returns in the morning are structurally more volatile than the returns of the afternoon).

The hypothesis is that a strong negative option-induced drift burst intensity E[𝐵̄ 𝑗 | 𝑆𝑡 ] << −1 is indicative of a stabilizing

price effect, so 𝑃𝑅𝑟𝑚𝑎𝑥,𝑡 should be low. In contrast, a positive option-induced drift burst intensity E[𝐵̄ 𝑗 | 𝑆𝑡 ] >> +1

is indicative of an explosive price, so 𝑃𝑅𝑟𝑚𝑎𝑥,𝑡 should be high. We then calculate the probability density function (pdf)

of the percentile ranks of 𝑃𝑅𝑟𝑚𝑎𝑥,𝑡 given E[𝐵̄ 𝑗 | 𝑆𝑡 ] > 10 as well as the pdf of the percentile ranks of 𝑃𝑅𝑟𝑚𝑎𝑥,𝑡 given

E[𝐵̄ 𝑗 | 𝑆𝑡 ] < −10 and compare them to a benchmark pdf which consist of the percentile rank from 10’000 random draws

of 𝑃𝑅𝑟𝑚𝑎𝑥,𝑟𝑎𝑛𝑑𝑜𝑚 (the percentile ranks of randomly selected times within the first two hours of the day). This is displayed in

Figure 10. We clearly see that the pdf for the positive option-induced drift burst intensities is shifted towards high percentile

ranks, compared to the pdf of the random benchmark, which we take as indication that the option positioning at those points

indeed leads to explosive price moves. On the other hand, the expected negative shift in the pdf of negative predicted

drift bursts is absent. One potential explanation for this could be due to the stabilizing effect of option hedging being most

pronounced very close to the strike (which is where the predicted drift burst intensity will be most negative). With closer

distance to the strike, also the probability of open option positions to exercise is elevated. If options are exercised, the OMM

will not need to hedge the related exposure anymore and thus the stabilizing effect from hedging might not materialize.

5. Conclusion

We have provided a framework to study the impact of option hedging on the stability of the underlying asset price. Our

model suggests that the friction introduced by option hedging not only affects the volatility of the asset price, but also its

expected return. In particular, we found evidence that the presence of feedback effects from option hedging can increase or

decrease the intensity of so-called drift bursts – local divergences in the drift – depending on the option’s parameters and its

delta. Our model predicts that the effect of option hedging is asymmetric in the sense that a short position of the OMM has a

significant impact on the price stability, whereas a long position only impacts the prices slightly. Since the OMM being short

is the predominant regime in practice, this suggests that empirically, we can expect the effect of option hedging to be strong.

Investigating the option positioning during the erratic developments in the GME stock price during the first quarter of 2021

12Note that the drift burst method recommends to use a rolling window of 1500 data points for the estimate of 𝜎, which would
correspond to 25 hours when using minute-by-minute data. This significantly exceeds the duration of a 6.5 hour trading day, over which
we make our predictions.
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Figure 10: PDF estimates for the percentile rank (against the distribution of returns in the first two hours of the trading day) of
the maximum absolute returns within 5 minutes after a predicted drift burst intensity above a level of +10 (black) and below
-10 (green). Also shown as a reference is a distribution obtained when using randomly sampled times within the first two
hours of the day (blue).

using our framework, we found that option positioning on some days indeed predicts an increased intensity of option-induced

drift bursts, but due to limitations in our data, we can only establish a circumstantial link between our model predictions and

the actually observed price dynamics.

24

On the Directional Destabilizing Feedback Effects of Option Hedging

67



Acknowledgements

The authors thank Kim Christensen for very helpful comments on the application of his paper Christensen et al. (2020).

25

Chapter 2. Implications of Option Hedging on Asset Prices

68



References

B. Anderegg, D. Sornette, and F. Ulmann. Quantification of feedback effects in FX options markets. SNB Working Paper
Series, 2019-03:1–27, 2019.

I. Ben-David and D. Hirshleifer. Are Investors Really Reluctant to Realize Their Losses? Trading Responses to Past Returns
and the Disposition Effect. The Review of Financial Studies, 25(8):2485–2532, 08 2012. ISSN 0893-9454. doi: 10.1093/
rfs/hhs077. URL https://doi.org/10.1093/rfs/hhs077.

I. Ben-David, F. Franzoni, and R. Moussawi. Do ETFs Increase Volatility? The Journal of Finance, 73(6):2471–2535, 2018.
doi: https://doi.org/10.1111/jofi.12727. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.
12727.

J. P. Bouchaud. Price Impact. In Encyclopedia of Quantitative Finance. Wiley, 2010.

M. K. Brunnermeier and L. H. Pedersen. Market Liquidity and Funding Liquidity. The Review of Financial Studies, 22(6):
2201–2238, 11 2008. ISSN 0893-9454. doi: 10.1093/rfs/hhn098. URL https://doi.org/10.1093/rfs/hhn098.

CBOE. CBOE glossary. https://www.cmegroup.com/trading/about-volume.html, 2021. Accessed: 2021-04-
22.

A. Cherny and H.-J. Engelbert. Singular Stochastic Differential Equations, volume 1858 of Lecture Notes in Mathematics.
Springer Verlag, Heidelberg, 2005.

K. Christensen, R. Oomen, and R. Reno. The drift burst hypothesis. Journal of Econometrics, in press, 2020. ISSN 0304–
4076. doi: https://doi.org/10.1016/j.jeconom.2020.11.004. URL https://www.sciencedirect.com/science/
article/pii/S0304407620303912.

F. Corsi and D. Sornette. Follow the money: The monetary roots of bubbles and crashes. International Review of Financial
Analysis, 32:47–59, 2014.

J. Donier, J. Bonart, I. Mastromatteo, and J.-P. Bouchaud. A fully consistent, minimal model for non-linear market impact.
Quantitative Finance, 15(7):1109–1121, 2015.

D. Easley, M. O’Hara, and P. Srinivas. Option volume and stock prices: Evidence on where informed traders trade.
The Journal of Finance, 53(2):431–465, 1998. doi: https://doi.org/10.1111/0022-1082.194060. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.194060.

FT. GameStop and BlackBerry shares soar on amateur traders’ fervour. https://on.ft.com/3oipqrG, 2021. Ac-
cessed: 2021-04-23.

S. Gluzman and D. Sornette. Log-periodic route to fractal functions. Phys. Rev. E, 65:036142, Mar 2002. doi: 10.1103/
PhysRevE.65.036142. URL https://link.aps.org/doi/10.1103/PhysRevE.65.036142.

A. Johansen, O. Ledoit, and D. Sornette. Predicting financial crashes using discrete scale invariance. Journal of Risk, 1(4):
5–32, 1999.

A. Johansen, O. Ledoit, and D. Sornette. Crashes as critical points. International Journal of Theoretical and Applied Finance,
3(2):219–255, 2000.

A. S. Kyle. Continuous Auctions and Insider Trading. Econometrica, 53(6):1315–1335, 1985. ISSN 00129682, 14680262.
URL http://www.jstor.org/stable/1913210.

L. Li and D. Sornette. Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times.
The European Journal of Finance, 19(5-6):344–365, 2013.

26

On the Directional Destabilizing Feedback Effects of Option Hedging

69



L. Li, R. Ren, and D. Sornette. The volatility-confined lppl model: A consistent model of ‘explosive’ financial bubbles with
mean-reversing residuals. International Review of Financial Analysis, 33:210–225, 2014.

L. Li, M. Schatz, and D. Sornette. A simple mechanism for financial bubbles: time-varying momentum horizon. Quantitative
Finance, 19(6):937–959, 2019.

S. X. Ni, N. D. Pearson, A. M. Poteshman, and J. S. White. Does Option Trading Have a Pervasive Impact on Underlying
Stock Prices? SSRN, 2020.

M. Schatz and D. Sornette. Inefficient bubbles and efficient drawdowns in financial markets. International Journal of Theo-
retical and Applied Finance, 23(7):2050047, 2020.

P. Shum Nolan, W. Hejazi, E. Haryanto, and A. Rodier. Intraday Share Price Volatility and Leveraged ETF Rebalancing.
SSRN, 2015.

K. R. Sircar and G. Papanicolaou. General black-scholes models accounting for increased market volatility from hedging
strategies. Applied Mathematical Finance, 5(1):45–82, 1998. doi: 10.1080/135048698334727. URL https://doi.
org/10.1080/135048698334727.

D. Sornette. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools.
Springer Series in Synergetics. Springer Verlag, Heidelberg, 2nd edition, 2004.

D. Sornette and J. V. Andersen. A nonlinear super-exponential rational model of speculative financial bubbles. International
Journal of Modern Physics C, 13(02):171–187, 2002. doi: 10.1142/S0129183102003085.

27

Chapter 2. Implications of Option Hedging on Asset Prices

70



Appendix A. Estimation of the market impact coefficient 𝜷

In order to have an estimate for the linear, permanent market impact per share, 𝛽, which is introduced in equation (2.6),

we assume following Bouchaud (2010) that spot market liquidity providers quote bid and offer prices, and adopt the basic

strategy of requiring a compensation for the adverse impact of the option-hedging trader hitting one of their quotes. Because

the liquidity providers do not know which of their quotes are taken at any given point in time, they will post bid and offer prices,

which ensure no ex-post regret for the liquidity provider. Thus the bid and offer quotes are posted around the mid-price 𝑚𝑡

as

𝑏𝑡 = 𝑚𝑡 − 𝛽𝑣𝜙 (1 + 𝑥𝑡 ) and 𝑜𝑡 = 𝑚𝑡 + 𝛽𝑣𝜙 (1 − 𝑥𝑡 ), (A.1)

where 𝑥𝑡 is the conditional forecast of the sign (buy or sell) of the next trade, 𝑣 its random volume and 𝜙 = 1 since we

postulate linear volume-dependence. This implies that the bid-offer spread 𝑠𝑡 is given as

𝑠𝑡 = 𝑜𝑡 − 𝑏𝑡 = 2𝛽𝑣. (A.2)

Relation (A.2) suggests that 𝛽 can be estimated from a simple linear regression of the spread on the volume of liquidity

taking trades. For this purpose we use GME trade and price data from the NYSE exchange13 of January 2021. Summary

statistics of the data are presented in Table A.2.

Using this approach, we find

𝛽 ≈ 0.0034 bps per share. (A.3)

We have validated the magnitude of 𝛽 using alternative approaches and data sets.

mean std skewness kurtosis min 5th quantile 25th quantile median 75th quantile 95th quantile max N

spreads [bps] 30.5 34.3 0.2 91.1 -1060.4 2.6 10.3 21.1 39.7 90.9 839.2 178001

shares per trade 249.5 961.2 43.7 3188.9 100 100 100 100 200 634.4 102500 178001

Table A.2: Summary statistics of the spread and trade size (shares per trade) data used to estimate the price

impact coefficient 𝛽.

Appendix B. Summary statistics of the variables used in the model calibration for GME

Appendix C. Robustness against zero-volatility estimates

One concern could be that the drift burst test statistic is spuriously identified to be large at times where the kernel estimator

of the volatility is very small14. As we can see from Figure C.11, the times where the test statistic identifies a burst is

characterized by drift estimates that are in the tail of the distribution, whereas the corresponding volatility estimates are

13CBOE data shop: https://datashop.cboe.com/equity-trades
14This effect is in fact at the origin of the Student-t distribution, see Sornette (2004), section 14.2.1.
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mean std skewness kurtosis min 5th quantile 25th quantile median 75th quantile 95th quantile max N

gamma exposure 46000 140000 4.8 28 -14000 -6400 -55 1400 11000 300000 910000 48

charm exposure -21000 240000 -2.6 17 -1200000 -280000 -38000 -1.4e-33 26000 370000 590000 48

speed exposure 67000 1000000 2.2 13 -2700000 -1500000 -8900 1.4e-34 13000 1700000 4300000 48

ATM vol [%] 2.7 1.2 0.15 2.3 0 1.2 1.8 2.6 3.6 4.9 5.3 48

daily mu realized [%] -0.46 15 0.038 4.7 -40 -31 -6.8 -0.33 6.6 22 46 48

option implied mu (ann.) [%] -1.4 7 -3.9 20 -39 -12 -1.6 -3.1e-38 1.1 3.7 5.9 48

Table B.3: Summary statistics for the variables used in the model calibration for GME.

concentrated in the center of the distribution. There is thus no evidence for false positives due to locally vanishing volatility

estimates.

Figure C.11: Histogram of test times, for when no burst was identified (blue) and for times where a drift burst was identified
at the 90% confidence level. Top: for the fundamental price 𝐹, bottom: for the affected price 𝑆.
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Appendix D. Size of the drift burst test

In Table D.4, we present how often the drift burst test leads to the rejection of the null of no drift burst on a simple Brownian

motion (our fundamental price 𝐹), for different values of the fundamental volatility 𝜈 and different confidence levels. We can

see that the test is conservative compared to the nominal level15 and exhibits no sensitivity to the level of volatility.

𝜈 90% 95% 99%

0.03 0.055 0.029 0.005

0.06 0.052 0.017 0.001

0.09 0.048 0.025 0.002

0.12 0.062 0.032 0.002

0.15 0.059 0.025 0.003

0.18 0.054 0.022 0.003

0.21 0.06 0.023 0.007

0.24 0.05 0.021 0.004

0.27 0.062 0.024 0.004

0.3 0.056 0.025 0.003

Table D.4: Size of the drift burst test on 1000 realizations per value of the fundamental volatility 𝜈. The simulated

process is driftless (𝛼 = 0). The rejection rate is computed across Monte Carlo realizations.

Appendix E. Correlation between hedging-implied drift and daily realized returns

Using the estimated parameters from (4.6) also allows us to compute the drift implied by hedging 𝜇𝑖𝑚𝑝𝑙,𝑡 for day 𝑡 as

𝜇𝑖𝑚𝑝𝑙,𝑡 =
𝛼 − 1

2𝜈
2
(
1 − 1−𝛽ℎ𝑆2

𝑡Ψ𝑡

(1+𝛽ℎ𝑆𝑡Γ𝑡 )2

)
− 𝛽ℎX𝑡

1 + 𝛽ℎ𝑆𝑡Γ𝑡 . (E.1)

In particular, we are interested in whether the sign of the realized log-price return for day 𝑡 is actually correlated with the drift

implied by hedging 𝜇𝑖𝑚𝑝𝑙,𝑡 for day 𝑡. Estimating this using the realized log-price returns for the first four hours of trading day

𝑡 as 𝜇𝑡 , we find a statistically significant (𝑝-value of 0.01) positive correlation of 0.66, which we take as additional support

for the utility of our model16.

15Christensen et al. (2020) shows that the test statistic becomes less conservative with larger bandwidths of the kernels used to
compute the drift and volatility estimates. Our levels of the rejection rates are comparable to what they report on a more complicated
process with jumps.

16We only consider absolute 𝜇𝑖𝑚𝑝𝑙,𝑡 values above 2.5%, as lower 𝜇𝑖𝑚𝑝𝑙,𝑡 values indicate no directional impact on the price from the
option hedging, and thus are not relevant for a correlation analysis of the return sign.
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3 Price Dynamics under a Circuit Breaker

In early 2016, a new circuit breaker (CB) rule was implemented on the CSI 300 financial index which replicates

the top 300 stocks traded in the Shanghai and Shenzhen stock exchanges. The exchange specified that, if the

price drops below (or rises above) a pre-specified threshold within a trading session, then trading is halted for

a pre-specified amount of time, until regular trading resumes. The rational behind a CB is to give traders time

to calm down, interact with their counterparts and rethink their trading decision. On January 4th 2016, the first

trading day of the year, the price movement in the CSI 300 was already sufficient to trigger the CB twice. Then,

in the very same week on January 7th, the mechanism was triggered twice again. The Chinese authorities

subsequently abandoned the CB mechanism from their index.

Thereby, such measures to intervene with the normal trading process during extreme times, with the hope to

stabilize prices and maintain proper functioning, have been around for years, and come in various forms. They

range from market-wide trading halts, price limits on the whole market or individual assets, to limits on order

flow, positions or margins and even transaction taxes. These measures have grown to be an important part of

the broad market architecture. Yet, their effect still is rather unclear (Grossman, 1990), as can e.g. be inferred

from China’s recent struggles discussed above. This is a problem, especially as in today’s highly automated

markets, in which turbulences stemming from erroneous algorithms or fake news seem to occur with growing

frequency, such stabilising measures become more and more important.

The most prominent of these measures is the price-based market-wide CB (like the one introduced in the

CSI 300 in China) which was first advocated by the Brady Commission (Presidential Task Force on Market

Mechanisms, 1988) after the Black Monday of 1987 and subsequently implemented in 1988. All stocks and

related derivatives are temporarily halted when a market index drops by a certain amount. Following this lead,

price-based market-wide CBs have been widely adopted by exchanges around the globe.

And naturally, this adoption lead to a vast body of academic research on CBs by both theorists and empiri-

cists in the past 30 years. However, the regulatory nightmare of China in 2016, described above, revived the

discussion around the effects of CBs and gave it new relevance. And thereby especially the question of how to

design a CB came to the center of the attention, as apparently the implementation of the price-based CB on

the CSI 300 lead to strong adverse effects. The paper presented in this chapter contributes to this CB design

question. While the paper discusses relevant literature at the corresponding places in detail, the following para-
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graphs give a brief overview of the most important academic work done on the topic of CBs and embeds our

contribution on a high level.

Early proponents of CBs are Greenwald and Stein (1991) and Lee et al. (1994). Greenwald and Stein

(1991) argues that, in a market with limited participation and thus execution risk, CBs can help to better syn-

chronize trading for market participants and improve the efficiency of allocations. Similar, Lee et al. (1994)

argue that by lowering informational asymmetries between traders, halts could permit the orderly emergence

of a new consensus price. And in line with that, Hautsch and Horvath (2019) recently showed that the mere

presence of CBs limits adverse selection risk for liquidity providers and that CBs enhance price discovery dur-

ing the break.

On the other side stands the seminal work of Subrahmanyam (1994). Focused on price-based CBs, he

presents an inter-temporal equilibrium model with three agents, two types of traders with asymmetric informa-

tion and a risk-averse market maker. He shows that price-based CBs can increase price volatility as well as

the probability that the price crosses the CB bound (which is called the magnet effect) by causing investors to

shift their trades to earlier periods with lower liquidity supply (see also Subrahmanyam (1995)). Chen et al.

(2018) slightly extend this work by developing a similar intertemporal equilibrium model in which investors trade

for risk sharing. They also find that a CB tends to lower the stock price and increase its ex ante price volatility.

The work of Arak and Cook (1997) and Kim and Rhee (1997) further contribute to a better understanding of

the magnet effect.

While there is a lot of theoretical work around for the effect of price-based CBs, empirical work is rather

scarce due to the fact that the likelihood of CBs to be approached, or even triggered, is very small by design.

Harris (1997) even argues that it is perhaps impossible to reliably estimate the net effect of a CB on markets,

because of a contrafactual problem: without making strong assumptions about what the price dynamics would

have been had the CB not been imposed, it is impossible to make reliable inferences about the specific effects

of the CB. Our paper focuses on theory only.

Nevertheless, there is some empirical work around. Goldstein and Kavajecz (2004) provide a detailed anal-

ysis on the behaviour of market participants in the period around October 27, 1997 and find that leading up to

the trading halt, market participants accelerated their trades, which is consistent with the mechanism described

by Subrahmanyam (1994). In the same spirit, a recent experimental study of Magani and Munro (2020) ob-

serves that in some, particularly noisy, environments, market participants tend to liquidate their assets earlier

than in markets where there are no CBs. However, there are also several empirical papers that do not find

evidence of such trading patterns and thus of a magnet effect, like for example Huang et al. (2001) and Abad
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and Pascual (2007).

The paper presented in this chapter proposes a new theoretical point of view, as our model is fundamentally

different from the ones currently existing in the CB literature. Our model does not incorporate any microstructure

assumptions like in Subrahmanyam (1994), where asymmetric information between traders and a risk-averse

market maker is assumed. Neither does our model make any assumptions about the fundamental price dy-

namics like in Subrahmanyam (1994), where the informed trader can anticipate the price drift. Instead, our

phenomenological model is a discontinuous generalisation of Krugman (1991)’s seminal work on target zones,

which couples the probably of a future price change, in our case during the trading halt if a CB mechanism is

triggered, back into the price itself. We show that this framework in essence is a linear factor model, where the

risk factor is the expected price change occurring over the trading halt.

More specifically, in the paper presented in this chapter, Lera et al. (2021), we present a general CB equation

that describes the price dynamics in presence of a CB. Since the CB trigger mechanism is often pre-specified by

the exchange, market participants are aware of its existence. Anticipation of a potential trading halt is additional

information that is fed back into the current price via tactical trading (usually by advancing trade in time). This

gives rise to a non-linear coupling between the observed price and CB trigger point. And while we introduce

our theory on a price-based circuit breaker, our framework is readily generalisable to other trigger mechanisms.

This framework is our main contribution.

In the context of price-level based CBs, our theory confirms the two main effects that have been reported,

i.e. an increased price volatility prior to the lower price level, and that the sole existence of a CB leads to the

negative effect of attracting the price to the CB level. This gives our model a certain validity.

But more importantly, we believe that our model provides an ideal starting point to answer CB design ques-

tions. An ill-constructed design renders the CB either ineffective or even counter-productive, as discussed

above. Thus, modelling of CBs should ideally be done with the aim to solve the question of how to optimally de-

sign a CB. Our model serves this exact purpose. In our models phenomenological structure only the investors’

anticipation of the probability of a CB trigger feedbacks on the price process. Thus, the framework is a priori

independent of the trigger mechanism. Therefore different trigger mechanism can be specified and studied,

which makes our model a powerful tool for the discussion of CB design questions. Our main contribution is

thus to suggest a framework that is flexible enough to study the effects of different CB design parameters and

trigger mechanisms in a general way. And to the best of our knowledge, there is no other framework that allows

for such general CB design discussions.
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This is especially relevant as various CB design questions are unanswered. One example of such a design

question is whether the trading halt should be rule-based (e.g. that the market will stop when a certain pre

announced trigger point is reached) or if it should occur at the discretion of exchanges. The general debate

over rule-based versus discretionary policies thereby goes back to Kydland and Prescott (1977), who show

that in the context of macroeconomic planning, rule-based policies generally dominate discretionary policies.

Applied to CBs, Telser (1981) then suggests that rule-based price limits in futures markets are superior to the

discretionary trading halts, simply because of their predictability. Similar, Mann and Sofianos (1990) also ad-

vocate rule-based trigger mechanisms. Subrahmanyam (1995) presents counterarguments to these opinions.

He shows that discretionary, or even randomised, trading halts may be less susceptible than rule-based halts to

magnet effects. Another example of a design question is the impact of the duration of the trading halt. Clapham

et al. (2017) points towards the relevance of this question and shows that shorter interruptions have less neg-

ative impact and lead to more effective CBs. In contrast to that, Hautsch and Horvath (2019) document that it

is the mere presence of trading pauses, rather than their actual length, which makes them effective. And in the

context of price-level CBs, the design question could e.g. concern the width to the pre announced price level.

If the level is chosen too low, the CB is de facto ineffective, and if it is chosen too high, it is overly sensitive to

ordinary intraday price movements (Berkman and Lee, 2002).

In a more general sense, we just ask which CB trigger mechanism is most effective. And while we introduce

our model on a price-level based CB mechanism, we also show how our main CB formula can be generalised

to different trigger mechanisms and how it thus can be used to study different CB designs. Specifically, we hint

at a more robust CB design, i.e. a volatility-based CB trigger mechanism, which does not lead to a magnet

effect.

In summary, we hope to provide exchanges and policy makers with a framework on how to think about CBs,

and hope it will serve as starting point for the design of more resilient CB mechanisms.
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Abstract

We model the dynamics of an asset price in the presence of a circuit breaker. A price-based circuit breaker for
example is a trading halt imposed by the exchange after the price drops below (or rises above) a pre-specified
level within a trading session. The investors’ anticipation of the probability of a halt feedbacks on the price process.
In a general stochastic financial framework, this leads to coupled integral and stochastic differential equations.
In the context of price-based circuit breakers, our theory predicts an increased price volatility prior to the trigger
point and that the sole existence of a circuit breaker leads to the adverse effect of attracting the price to the circuit
breaker level (magnet effect), as has been reported in the literature. As our model is not a priori dependent on a
specific circuit breaker trigger mechanism, we show how it can be used to study different circuit breaker designs.
We propose first steps towards a more robust design of circuit breakers, i.e. that a trading halt that is conditioned
on a pre-specified volatility level, instead of price level, mitigates the negative side effects of increased volatility.
The methodology proposed in this article serves as starting point for the design of more resilient circuit breaker
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1. Introduction

1.1. Motivation

In a perfectly efficient market, prices are thought to reflect the fundamental value of their underlying assets at all times.

While this may be a reasonable approximation of real markets over horizons of weeks or months for most of the time, except

during financial bubbles and crashes, it is well known that, on shorter time-scales, prices can deviate as a result of herding

behaviours created either by social interactions and/or machine trading. For instance, overly-optimistic trend-following, when

adopted by a sufficiently large minority, may lead to the formation of financial bubbles (Lin et al., 2018). Panic sell-offs

based on over-reaction to negative news can trigger further sell-offs and self-accelerate into an endogenous market crash.

In addition, market turbulences stemming from erroneous algorithms, fake news or macroeconomic events seem to occur

with growing frequency in today’s highly automated markets. Thus, it is common that exchanges employ so-called market

circuit breakers (from hereon CBs). The exchange specifies that if a trigger mechanism is activated, for price-based CBs

e.g. if the price drops below (or rises above) a pre-specified threshold value within a trading session, then trading is halted

for a pre-specified amount of time, until regular trading resumes. The rational behind this CB mechanism is that it gives

traders time to calm down, interact with their counterparts, rethink their trading decision, and/or adjust their algorithms. Note

that also other form of CBs exist. Yong and Yang (2004) provide a detailed overview. While we introduce our theory with

a focus on the most prominent CB, which is the price-based trading halt just described, it is generalisable to other trigger

mechanisms as we show.

In a recent survey, Gomber et al. (2017) report that the popularity of circuit breakers on trading venues has risen from 60%

in 2008 to 86% in 2016. The implementation of a CB leaves exchanges with the question of how to best design them. In

the context of price-barriers, this e.g. means how to choose the pre-defined threshold and halting time. But the design

questions can also be more general in nature. For example if the trigger mechanism should be based on a price level or a

volatility level, or if the trigger level should be completely rule-based or discretionary. Given that investors are continuously

forming anticipations, their tactical positioning in the presence of a CB may lead to a feedback of the CB on the price itself.

We start with carefully accounting for such anticipations and feedbacks in a rigorous formalism. Our motivation is that a

lack of understanding of the intricate price dynamics resulting from the interaction with the CB mechanism may lead to an

ill-constructed design and thereby renders it either ineffective or counter-productive.

More specifically, we present a circuit breaker equation that describes the price dynamics in presence of a price-based

circuit breaker. In a first simplifying view, the price follows a geometrical Brownian motion, and the CB acts as an absorbing

boundary. But as we describe below, this simplifying assumption is inaccurate. Since the CB trigger point is often pre-

specified by the exchange, market participants are aware of its existence. Anticipation of a potential trading halt is additional

information that is fed back into the current price via tactical trading (usually by advancing trade in time). This gives rise to a

non-linear coupling between the observed price and CB trigger point. And while we introduce our theory on a price-based

circuit breaker, our framework is generalisable to other trigger mechanisms, as we show in section 5. This general framework

is our main contribution. Our theory is flexible enough to study the effects of different CB trigger mechanisms as well as CB

design parameters. Since in our model only the investors’ anticipation of the probability of a CB trigger feedbacks on the
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price process, the framework is a priori independent of the specific trigger mechanism. Thus, different trigger mechanisms

can be specified and studied, which makes the discussion of the effect of different CB designs straightforward. To the best

of our knowledge, there is no other framework that allows for such a general CB design discussion.

1.2. Circuit Breaker Events

Figure 1 shows three examples of price dynamics that triggered a price-based CB. In early 2016, a price-based CB was

implemented on the CSI300 financial index which replicates the top 300 stocks traded in the Shanghai and Shenzhen stock

exchanges. On January 4th 2016, the first trading day of the year, the price movement was already sufficient to trigger

the CB twice. In the very same week, on January 7th, the mechanism was triggered twice again. The Chinese authorities

subsequently abandoned the CB mechanism from their index. Another CB event happened on Chicago’s Cboe Futures

Exchange, offering bitcoin futures since December 10, 2017. On that first day of bitcoin trading, two CB got triggered on

their upper bounds at 10% and 20%, respectively (upper plot in Figure 1). More recently, amid uncertainty around the

COVID-19 crisis, the S&P 500 Index triggered a market wide price-based CB at the −7% level four times in March 2020.

These was the first time a CB was triggered on the S&P 500 since 1997. Unlike the CSI and BTC halts, here the opening

values were already close to the CB level, indicating that a lot of information must have been priced in from the oversight

gap

In the following section we summarize past and related work.

1.3. Related Literature

Market-wide price-based CBs rose to prominence in the aftermath of the October 1987 stock market crash, first advocated by

the Brady Commission (Presidential Task Force on Market Mechanisms (1988)). Ever since, several academic investigations

have been conducted. We refer to the work of Yong and Yang (2004), Abad and Pascual (2013) and Sifat and Mohamad

(2019) for in depths overviews of earlier work on price-based CBs, but nevertheless provide a summary of the most relevant

literature in the following paragraph.

As an early proponent of price-based CBs, Greenwald and Stein (1991) argues that, in a market with limited participation

and thus execution risk, CBs can help to better synchronize trading for market participants and improve the efficiency of

allocations. Similar, Lee et al. (1994) argue that by lowering informational asymmetries between traders, halts could permit

the orderly emergence of a new consensus price. And in line with that, Hautsch and Horvath (2019) recently showed that

the mere presence of CBs limits adverse selection risk for liquidity providers and that CBs enhance price discovery during

the break.

But there are also contrasting views to the ones above on the effect of price-based CBs. Corwin and Lipson (2000) empirically

find trading halts increase price volatility and report that the order book depth near the best bid and ask prices is unusually

low before, during, and after trading halts. However, the associated diverging bid-ask spread prior to the halt explains, at

best, a small portion of the increased volatility. They surmise that the remaining volatility may be the result of unmeasured

information effects or the market closure itself. On top of that Goldstein and Kavajecz (2004) additionally provide empirical

3
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Figure 1: The top plot shows the CSI300 index on January 4th, 2016 and January 7th, 2016. On both days, two price-based
CB were triggered. The price-based CB was defined in a symmetric way: If the Index moves by ±5% with respect to the last
day’s closing price, trading is stopped for 15 minutes and continued afterwards. If, subsequently, the index reaches changes
by a total of ±7%, trading is stopped for the remainder of the day. The middle plot shows the price trajectory of the bitcoin
future on the first trading day in December 10, 2017. The Cboe rule book specifies that a price-based CB is first triggered
for 2 minutes if the price falls below or rises above 10% with respect to 15′000 USD (or with respect to the previous day’s
closing price, if it is not the first day of trading). If it rises above 20%, it is halted for yet another 5 minutes. The first CB would
have been triggered already around 5 minutes after the opening at 17:00 UTC. However, the CFE Help Desk exercised
discretion under CFE rules not to halt trading in XBT futures at the 10% up level due to a fair and orderly market. At 19:31
UTC, the CFE halted XBT trading, in accordance with CFE Rule 1302(i)(ii). XBT re-opened for trading two minutes after the
time of the halt. At 21:05 UCT, the CFE halted XBT trading again in accordance with CFE Rule 1302(i)(ii), and re-opened
five minutes later. The bottom plot displays three out of four market wide halts triggered on the S&P 500 at the −7% level.
Already the open prices lie close to the CB boundary, indicating that a lot of (COVID-19 related) overnight information must
have been priced. Accordingly, the fourth trigger event on March 16 is not shown since it was triggered within the first minute
of trading.

Price Dynamics under a Circuit Breaker

85



evidence of a ‘magnet effect’, stating that the price level of the CB is reached faster than it would in absence thereof, because

traders want to make up for the looming halt ahead of time. This attraction towards the circuit break is confirmed by Cho

et al. (2003). And even in a recent experimental study, Magani and Munro (2020) observe that in some, particularly noisy

environments, market participants tend to liquidate their assets earlier than in markets where there are no circuit breakers.

Nevertheless, there is also empirical work that does not find any evidence for the existence of the magnet effect Abad and

Pascual (2007).

An early theoretical model on price-based CBs thereby stems from Subrahmanyam (1994), who presents an intertemporal

equilibrium model with three agents, two types of traders with asymmetric information and a risk-averse market maker. He

shows that price-based CBs can increase price volatility as well as the probability that the price crosses the CB bound (which

is called the magnet effect) by causing investors to shift their trades to earlier periods with lower liquidity supply (see also

Subrahmanyam (1995)). Chen et al. (2018) slightly extend this work by developing a similar intertemporal equilibrium model

in which investors trade for risk sharing. They also find that a price-based CB tends to lower the stock price and increase its

ex ante price volatility.

Our approach is different from the ones above in that we do not rely on any specifications of different types of traders

and their risk preferences. Instead, our phenomenological model can be seen as discontinuous generalization of Krugman

(1991)’s seminal work on target zones, which couples an expected (log) price change back into the (log) price itself. Lera

and Sornette (2018) have shown that Krugman’s phenomenological model is an approximation of the ‘exact’ representation

in terms of a portfolio of fundamental value and option prices. Depending on the question under scrutiny, one of these two

representations may be more convenient than the other. Similarly, here we prose a point of view that serves as alternative

to the ones rooted in microscopic assumptions cited above. In particular, we show in section 5 that this phenomenological

representation proofs useful when studying the design of circuit breakers.

As discussed above, one example of such a design question is whether the trading halt should be rule-based or if it should

occur at the discretion of exchanges. Telser (1981) suggests that rule-based price limits in futures markets are superior

to the discretionary trading halts, simply because of their predictability. Similar, Mann and Sofianos (1990) also advocate

price-triggered halts. Subrahmanyam (1995) presents counterarguments to these opinions. He shows that discretionary, or

even randomised, trading halts may be less susceptible than rule-based halts to magnet effects. Further, the impact of the

duration of the trading halt is also a point of discussion. Benjamin et al. (2017) e.g. shows that shorter interruptions have

less negative impact and lead to more effective CBs. Contrary, Hautsch and Horvath (2019) document that it is the mere

presence of trading pauses, rather than their actual length, which makes them effective. And in the context of price-based

CBs, design questions e.g. concern the width to a potential pre announced price level. If the level is chosen too low, the CB

is de facto ineffective, and if it is chosen too high, it is overly sensitive to ordinary intraday price movements Berkman and

Lee (2002). And besides these examples, one could also think about new CB designs in a more general way, e.g. to discuss

which CB trigger mechanism is most effective.

We believe that our model provides an ideal starting point to answer such CB design questions. Its phenomenological
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structure simply links the CB trigger anticipation with todays’s price, so that the effect of different CB trigger mechanisms

and CB design parameters on the price dynamics can be discussed in a general way. This makes our model a powerful tool

to discuss CB design questions.

The paper is organised as followed. In section 2 we thereby start by modelling a pre-defined price-based CB mechanism.

We present the equation embodying the effective attractive force exerted by the CB, which we then solve perturbatively in

section Appendix A. Examining the solution as a function of different parameters, we can explain the increased volatility

towards the CB boundary under a broad range of assumptions. Section 4 shows how the empirically observed magnet

effect can be accounted for naturally within our framework. We then show in section 5 how our main CB formula can be

generalised to different trigger mechanisms and how it can be used to study CB designs. And we also hint at more robust

circuit breaker designs, i.e. a volatility-based CB trigger mechanism. Last, we conclude in section 6.

2. The Circuit Breaker Equation

2.1. General Formulation

We denote by 𝑠 = 𝑠𝑡 the (logarithm of the) exchange quoted price of an asset or index at time 𝑡. Our model is focused on

the intraday dynamics of any given, specific day, and hence we denote by 𝑠0 the market opening price. The market closing

price is denoted by 𝑠𝑡𝑐 , i.e. the total trading time is equal to 𝑡𝑐 . Unless stated otherwise, we set 𝑡𝑐 = 1 from hereon. We

assume that the market has a circuit breaker implemented, which is triggered if 𝑠 drops below a predefined value 𝑠. 1 If the

price reaches 𝑠 at some time 𝑡𝑠 (the stopping time), i.e. if 𝑠𝑡𝑠 = 𝑠, then trading is halted for a predetermined time Δ𝑡ℎ during

which no trading can occur. The market reopens at time 𝑡𝑟 = 𝑡𝑠 + Δ𝑡ℎ and trading continues normally until the end of the

day, or until another CB is triggered.

We denote by 𝑓𝑡 the (logarithm of the) the asset price that would prevail on a perfectly efficient and rational market and in

absence of a CB. From hereon, we also refer to this quantity as the ‘fundamental’ value. 2 It is customary to assume that

the log-fundamental price dynamics obeys

d 𝑓𝑡 = 𝜇d𝑡 + 𝜎d𝑊𝑡 (2.1)

with drift 𝜇 and volatility 𝜎. Since there is a CB in place, the rational agent has to price in the possibility of a trading halt.

Similar to the rational expectation models, we write 𝑠𝑡 as a probabilistic linear combination of two outcomes: the CB is

triggered, or it is not triggered. Denoting by 𝑝trig = 𝑝trig(𝑠𝑡 , 𝑡; 𝑡𝑐) the probability at time 𝑡 that the CB is triggered at any time

between 𝑡 and 𝑡𝑐 given that the price is 𝑠𝑡 , we can write

𝑠𝑡 =
(
1 − 𝑝trig

) · 𝑠NT
𝑡 + 𝑝trig · 𝑠T

𝑡 (2.2a)

1In practice, the value of 𝑠 is usually specified in form of a percentage drop with respect to the closing price of the previous day. Hence,
it is a well-known, fixed quantity already before the market opening. The formulation in terms of an upper-boundary 𝑠 is analogous.

2This must not be understood as the fair, rational price predicted by a fully efficient market. Our theory does however not rely on this
assumption and 𝑓 can itself be inefficient, or show irrational herding behaviour. The deviation of 𝑠 from 𝑓 just measures the additional
effect of the CB.
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where the superscript ‘T’ and ‘NT’ stand for ‘trigger’ and ‘not trigger’, respectively. This linear probability weighting is the

canonical, simplest starting point to model rational agents3. It is for instance used by Krugman (1991) in his forex target

zone model to account for the possibility that the target zone is not defended perfectly by the central bank with a probability

𝑝. This leads to considering a superposition of a free floating exchange rate and a bounded exchange rate, like the above

equation (2.2a) (cf. equation (14) in (Krugman, 1991)).

For 𝑝trig = 0 (or when there is no CB), it holds trivially that 𝑠NT
𝑡 = 𝑓𝑡 , as alluded above.

For 𝑝trig = 1, the asset price 𝑠T
𝑡 departs from 𝑓𝑡 as a result of the market impact of investment decisions of traders who

anticipate the occurrence of the trigger. The main concern of investors is the risk associated with the impossibility of trading

between the stopping time 𝑡𝑠 and the reopening time 𝑡𝑟 . During this time period, the underlying fundamental value 𝑓𝑡 is

likely to change but investors are unable to adjust continuously their allocation to the risky asset correlatively as would be

the case in absence of the circuit breaker. In order to remain invested in this risky asset, the investors thus require a risk

premium to compensate for the risks incurred by the possible occurrence of the trading halt. In a risk neutral world, this risk

premium should be proportional to the expected price change E𝑡
[
𝑠𝑡𝑟

] − E𝑡 [𝑠𝑡𝑠 ] occurring over the trading halt4, as this

price changes sets the size of the possible loss incurred by the investors during the trading halt. In other words, the expected

price change E𝑡
[
𝑠𝑡𝑟

] − E𝑡 [𝑠𝑡𝑠 ] acts as a market factor impacting all traders’ portfolios. We then capture the factor loading

or exposition to this factor in the usual way via a coefficient 𝛾. Since, by definition, E𝑡
[
𝑠𝑡𝑠

]
= 𝑠, since the circuit breaker

is triggered once the price 𝑠𝑡 reaches the level 𝑠 which happens at the stochastic stopping time 𝑡𝑠, we obtain the following

asset price equation

𝑠T
𝑡 = 𝑓𝑡 + 𝛾

(
E𝑡

[
𝑠𝑡𝑟

] − 𝑠) , (2.2b)

where E𝑡 denotes the expectation value with information up to time 𝑡 and we refer to E𝑡
[
𝑠𝑡𝑟

]− 𝑠 as the trading risk premium.

Extensions of model (2.2b) include going beyond risk-neutrality, which implies that the risk premium should include volatility

terms in addition to the expected price change E𝑡
[
𝑠𝑡𝑟

] − 𝑠.
The price equation (2.2b) is reminiscent of the forex target zone model of Krugman (1991), 𝑠𝑡 = 𝑓𝑡 + 𝛾E𝑡 [d𝑠/d𝑡], where

the trading risk premium term is replaced by the expected momentum E𝑡 [d𝑠/d𝑡]. In Krugman’s model, investors anticipate

the influence on the price of possible central bank interventions. These interventions can be also modelled as the provision

of an effective put option guaranteeing that the price will not fall below the lower target value (Lera and Sornette, 2018).

Another difference between equation (2.2b) and Krugman’s model is found in the different boundary conditions. Whereas

the forex target zone can be considered as a repelling boundary, we are dealing here with an absorbing boundary condition

at 𝑠. In other words, in a target zone regime, the market expects the central bank to step in and push the price back. In

3Within the framework of cumulative prospect theory and behavioral finance, one could adjust these weights, to take into account
non-linear or non-rational effects. This might complicate some of the equations shown below, but does not otherwise change the
presentation of our results.

4 Strictly speaking, we should write E𝑡
[
𝑠𝑡𝑟 | trig

]
instead of just E𝑡

[
𝑠𝑡𝑟

]
, i.e. we should make clear that the expectation value is

conditional on the fact that the CB is triggered. Indeed, this conditioning is important in our calculations below. For notational simplicity,
we consider this conditioning as implicit in the following.
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contrast, the circuit breaker just halts trading.

In summary, while they are not micro-founded, expressions (2.2a) and (2.2b) constitute reduced form equations that capture

in a concise and elegant way the impact of a circuit breaker. They should be considered at a similar level of reduced form

abstraction as Krugman (1991)’s forex target zone model. And similarly to Krugman (1991)’s model5, the price dynamics

solution of (2.2a) and (2.2b) is not exactly a martingale, which seems in contradiction with textbook asset pricing theory

that arbitrage opportunities cannot exist in a competitive markets because they would be instantly exploited, and thereby

eliminated, by arbitrageurs. But with constrained arbitrageurs with limited capital and subjected to solvency requirements

and in the presence of transaction costs and other frictions, the arbitrage opportunities become risky and, in practice, often

cannot be exploited. In Krugman (1991)’s model, we observe that the arbitrage opportunity vanishes linearly in time and

shrinks exponentially fast as 𝑓𝑡 moves away from the target zone. In our model (2.2a) and (2.2b), the price dynamics does

not have a simple analytical form as for Krugman (1991)’s model, but similar considerations are expected to hold.

2.2. The Assumption of One Circuit Breaker

By definition, it holds that E𝑡
[
𝑠𝑡𝑠

]
= 𝑠𝑡𝑠 = 𝑠, as stated in equation (2.2b). On the other hand, the price at the reopening

𝑠𝑡𝑟 is not known in advance and depends on the stochastic stopping time 𝑡𝑠 via 𝑡𝑟 = 𝑡𝑠 + Δ𝑡ℎ. This is why the exact price

𝑠𝑡𝑟 has to be replaced by its expectation value. Once the circuit breaker mechanism was triggered, and after the market

reopens at time 𝑡𝑟 , the observable price is back at its fundamental value, i.e. 𝑠𝑡𝑟 = 𝑓𝑡𝑟 . This assumption is reasonable

whenever there is either only one CB a day, or when the triggering of a second CB is relatively unlikely within the same day

(𝑝trig(𝑡𝑟 ) � 1). Recall that 𝑓𝑡 is the price in absence of a circuit breaker which can, but must not necessarily be identified

with the fundamental value of the asset in a market efficiency type of sense. Further, a no-arbitrage argument is embodied in

the fact that there is no aftermath effect of the circuit breaker. A distortion of the price process only arises due to the trading

risk premium, which by construction is zero upon market reopening. From 𝑠𝑡𝑟 = 𝑓𝑡𝑟 follows trivially E𝑡
[
𝑠𝑡𝑟

]
= E𝑡

[
𝑓𝑡𝑟

]
.

Plugging this into (2.2b) and then into (2.2a) yields

𝑠𝑡 = 𝑓𝑡 + 𝛾𝑝trig
(
E𝑡

[
𝑓𝑡𝑟

] − 𝑠) . (2.3)

In the remainder of this article, we are concerned with finding a solution 𝑠 = 𝜙( 𝑓 , 𝑡) that satisfies (2.3). Note that this is

a deterministic relationship that holds for any value 𝑓 . Stochasticity arises by plugging the realized fundamental trajectory

𝑓𝑡 into this deterministic relationship, such that 𝑠𝑡 = 𝜙( 𝑓𝑡 , 𝑡). 6 In practice, only the process 𝑠𝑡 can be observed. We

can make inferences about the price trajectory in absence of the circuit breaker by considering the functional inverse, i.e.

5The Martingale condition reads E𝑡 [𝑠𝑡′] = 𝑠𝑡 , ∀𝑡 ′ ≥ 𝑡. In Krugman (1991)’s model, the log-exchange rate is given by 𝑠𝑡 = 𝑓𝑡 +
1
𝜌 𝑒
𝜌( 𝑓 − 𝑓𝑡 ) where 𝜌 =

√︃
2
𝛾𝜎2 , with 𝜎 being the volatility of the fundamental term 𝑓𝑡 . We thus obtain E𝑡 [𝑠𝑡′] = 𝑠𝑡 + (𝑠𝑡 − 𝑓𝑡 )

(
𝑒

𝑡′−𝑡
𝛾 − 1

)
,

using standard Gaussian integration. In the limit 𝛾 = 0, 𝑠𝑡 = 𝑓𝑡 and the Martingale condition holds. But when 𝛾 > 0, there is an

apparent arbitrage opportunity E𝑡 [𝑠𝑡′] − 𝑠𝑡 = (𝑠𝑡 − 𝑓𝑡 )
(
𝑒

𝑡′−𝑡
𝛾 − 1

)
≈ 1
𝛾 (𝑠𝑡 − 𝑓𝑡 ) (𝑡 ′ − 𝑡) for small 𝑡 ′ − 𝑡.

6We will use the notation 𝑠 = 𝜙( 𝑓 , 𝑡) and 𝑠𝑡 = 𝜙( 𝑓𝑡 , 𝑡) interchangeably, as they are synonymous. The function 𝜙 maps a given
fundamental value 𝑥 at time 𝑡 onto an observable price 𝑠, 𝑠 = 𝜙(𝑥, 𝑡). Usually, the value of 𝑥 we are most interest about is 𝑓𝑡 , i.e. the
value of the fundamental at time 𝑡.
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𝑓𝑡 = 𝜙−1(𝑠𝑡 , 𝑡). 7 8

In the limit 𝑝trig → 0, we recover 𝑠𝑡 = 𝑓𝑡 , as it should. The probability 𝑝trig is itself a function of 𝑠𝑡 and 𝑡. The closer 𝑠𝑡 is to

the barrier 𝑠, and the more time until the closing time 𝑡𝑐 there is, the larger 𝑝trig is. Similarly, the stopping time 𝑡𝑠 depends

non-linearly on the position of 𝑠𝑡 , as is explained in more detail below. We can thus see that 𝑠𝑡 is coupled to its expected

future trajectory, making equation (2.3) non-trivial. In the limit case where 𝑝trig → 1, we arrive at 𝑠𝑡 = 𝑓𝑡 + 𝛾
(
E𝑡

[
𝑓𝑡𝑟

] − 𝑠) ,
which enjoys an evident interpretation: If the CB is triggered with certainty, then the market immediately prices in the

expected difference between the value at the trigger point 𝑠 and the reopening price 𝑓𝑡𝑟 .

2.3. Illustrative Numerical Solutions of the CB Equation
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9%

6%

3%

s0

°3%

s = °7%

°10%

(c)

CB is triggered

ft st(∞ = 1.6)

Figure 2: The grey dashed lines in all three plots show two independent stochastic realizations of the fundamental process
(2.1). The parameters of the fundamental price are 𝜇 = −5% and 𝜎 = 10%. We have used two random number seeds, one
to generate the realized trajectory in plot (a) and one to generate two identical realizations in (b) and (c). The blue lines in (a)
and (b) are the associated observed, tradable asset price 𝑠𝑡 related to 𝑓𝑡 via (2.3) with 𝛾 = 1.2 and Δ𝑡ℎ = 0.3. While for the
trajectory 𝑓𝑡 in (a) the CB at −7% level is not triggered, for the one in (b) it is. We also observe a magnet effect (inside red
ellipsis), meaning that 𝑠𝑡 reaches that level earlier than 𝑓𝑡 . This is accentuated in the green line of plot (c), which depicts the
same 𝑓𝑡 trajectory as in (b), but 𝑠𝑡 is linked to 𝑓𝑡 with a larger coupling strength (𝛾 = 1.6). This leads to a price dynamics
that reaches the −7% level about half a day earlier (around 𝑡 = 0.3) than it would in absence thereof (around 𝑡 = 0.8).

To gain some intuition for the subsequent quantitative discussion, we present two illustrative solutions of equation (2.3). We

assume that the underlying fundamental value 𝑓𝑡 governed by (2.1) has a drift of 𝜇 = −5% and volatility of 𝜎 = 10%,

in units of days. In annual terms, this amounts to a whopping drift of more than −1′000% and an annual volatility around

150%. While this seems a lot, such high drifts and volatility are actually very common during tumultuous trading days. In

the remainder of this article, we work in units of days. Time runs continuously from 𝑡 = 0 (market opening) to 𝑡 = 1 (market

closing). As the total duration of one day is normalized to 1, this means that the fundamental price 𝑓𝑡 is expected to drop by

−5% over the full day of trading, on average. The large value of the standard deviation 𝜎 means 𝑓𝑡 can be found anywhere

between +5% and −15% at a ±𝜎 probability level. Thus, the two price trajectories presented here are typical.

7Here, 𝜙−1 denotes the functional inverse in the first argument. This function is well-defined since d𝑠/d 𝑓 > 0 is required for stability
and consistency.

8A similar method has been applied to estimate the fundamental value of the Swiss Franc/Euro exchange rate (Hanke et al., 2019)
and the USD/HKD exchange rate (Lera et al., 2019) in presence of target zones.
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The dashed, grey lines in all three plots of Figure 2 show two stochastic realizations of such a process (2.1). Both are

generated with 𝜇 = −5% and 𝜎 = 10%, but with different random number seeds. We have used two random number

seeds, one to generate the realized trajectory in plot (a) and one to generate two identical realizations in (b) and (c). After a

strong initial down-trend, the realization in plot (a) moves mostly side-ways for the remainder of the day. The realized path

for 𝑓𝑡 in plot (b) and (c) is punctuated by three intraday drops, of which the last one falls almost below 10% of its opening

level.

We now assume that a CB is employed, to be triggered once the log difference between opening price 𝑠0 and current price 𝑠𝑡

falls below −7%. Here, we have picked 𝑠 = 𝑠0 − 𝑠𝑡trig = −7% because it is the CB level that is imposed on the S&P500 index

by the New York Stock Exchange (NYSE). As a consequence of this installation, the observed price 𝑠𝑡 is now distinct from

the unobservable fundamental value 𝑓𝑡 that would prevail in absence of the CB. However, their relationship is deterministic,

given by 𝑠𝑡 = 𝜙( 𝑓𝑡 , 𝑡) where 𝜙( 𝑓 , 𝑡) is a solution of equation (2.3). The associated observable price trajectories 𝑠𝑡 are

shown as the blue lines in (a) and (b) with 𝛾 = 1.2 and as green line in (c) with 𝛾 = 1.6.

In (a), no CB is triggered, although 𝑠𝑡 approaches the lower boundary closely around 𝑡 = 0.05 (i.e. about 20 minutes

after opening if we assume trading hours from 9:30am to 4pm). The price 𝑠𝑡 is observed to both under- and overshoot

its underlying fundamental value. However, when 𝑓𝑡 approaches 𝑠, the observable price is pushed below the fundamental

one. As the fundamental price 𝑓𝑡 moves away from 𝑠, we encounter a regime where 𝑠𝑡 is above 𝑓𝑡 . As the day goes on,

𝑠𝑡 converges to 𝑓𝑡 , since the closer to the end of the day 𝑡 = 1, the less likely a CB will be triggered when the price is

sufficiently far from it; hence 𝑝trig → 0, and thus 𝑠𝑡 → 𝑓𝑡 at 𝑡 → 1.

The process in plot (b) is similar to the the left one. However, here the circuit breaker is actually triggered, and then stopped

out for the rest of the day (as we have set Δ𝑡ℎ = 0.3 in this example). As in the left plot, one can observe a “magnet effect”

where 𝑠𝑡 is pushed below 𝑓𝑡 towards 𝑠, thus advancing the stopping time by the circuit breaker. This is even more apparent

in plot (c), which is exactly the same as (𝑏) just with a larger 𝛾 parameter. This leads to a price dynamics that reaches

the −7% level about half a day earlier (around 𝑡 = 0.3) than it would in absence thereof (around 𝑡 = 0.8). We refrain from

showing the continued process upon reopening at time 𝑡𝑟 = 𝑡𝑠 + Δ𝑡ℎ, in line with our assumption of considering only one

CB. We will expand on these qualitative observations in the following.

3. Discussion of the Circuit Breaker Equation

The solution of the CB equation (2.3) is presented in Appendix A. The presence of a circuit breaker turns out to modify price

trajectories in a very non-trivial manner, as shown in Figure 3. One can observe that the non-linear deviation of 𝑠 from 𝑓 is

governed by the non-linear decay of 𝑝trig. As anticipated, 𝑠 → 𝑓 is recovered far away from 𝑠, where the presence of the

CB is not felt, and correspondingly 𝛼 → 𝜇 and 𝜈 → 𝜎. The other end of the curves is more interesting. Depending on the

parameter settings, the CB pushes observed prices 𝑠 either above or below its fundamental value 𝑓 . This is rationalized by

plugging (A.4) into (2.3) which yields

𝑠𝑡 = 𝑓𝑡 + 𝑝trig𝛾( 𝑓𝑡 − 𝑠) + 𝑝trig𝛾𝜇 (E𝑡 [𝑡𝑠 − 𝑡] + Δ𝑡ℎ) (3.1)
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Figure 3: The top panel shows the first order solution to equation (2.3) for different sets of parameters, with CB location at
𝑠 = 0, as a function of the distance of the fundamental price 𝑓𝑡 from the CB boundary (0.1 means a distance of 10%). The
volatility 𝜎 of the underlying fundamental (2.1) is held fixed, whereas two values of 𝜇 are shown: no drift (𝜇 = 0), and strong
negative drift (𝜇 = −4%). Note that we are working in daily units, such that a volatility of 𝜎 = 2% amounts to an annualized
volatility of roughly 30%. Correspondingly, a drift of 𝜇 = −4% would correspond to an extremely high annualized drift of
−1′000%. While this seems extreme, we shall see in the empirical section below that, during market crashes, such a range
of values is realistic. The inset panel is the hitting probability, which is independent of 𝛾 and Δ𝑡ℎ by construction. Drift 𝛼 and
volatility 𝜈 are shown in the bottom two panels. See text for an interpretation of these functional shapes.

and reveals a competition between the second and third term in the right hand side. In the case where |𝜇 | is small, the

second term dominates and pushes 𝑠 above 𝑓 , as the potential downshift in 𝑓 between halting- and reopening-time is

negligible. The larger the halting time Δ𝑡ℎ and the more negative 𝜇, the more important is the downward correction induced

by the third term. In turn, this pushes 𝑠 below its value in absence of a CB, contrary to its desired effect. As the CB trigger

point 𝑠 is approached, the drift 𝛼 first enters a regime of increased negative downwards acceleration with 𝛼 much more

negative than 𝜇, which is then later dampened out, or even reverted. Interestingly, the dependence of the stopping time

Δ𝑡ℎ factors out, and does not have an influence on the drift. As the distance from the CB boundary decreases, the volatility

first also decreases and then steeply increases compared to the constant volatility 𝜎 in absence of a CB. This explains the

increased price volatility observed by Lee et al. (1994), and confirms the hypothesis of Corwin and Lipson (2000) that this

volatility increase is not (only) the result of a decreasing liquidity, but derives from the anticipation of the price disturbance

induced by the CB itself. For negative drifts of the fundamental price, volatility is then again decreased closed to the trigger

point. A discussion of the implications regarding the effectiveness of CBs is postponed to section 5, where we will examine

the prevalence of the ‘magnet effect’.
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3.1. The Case of an Unknown Drift

Throughout this article, we work under the assumption that the underlying drift 𝜇 and volatility 𝜎 are known. But since we

consider intraday dynamics, and in particular tumultuous trading days, one may cast reasonable doubt on this assumption.

More generally, we can assume that there is a prevailing belief 𝜇̂ of what the value of 𝜇 is (and analogously for 𝜎). This is

similar in spirit to the approach of Chen et al. (2018) who assume that there are two types of traders with different perceptions

of the underlying drift 𝜇. Starting from 𝜇̂ ≠ 𝜇, we consider the arrival of fundamental news at a rate 𝜂, that ultimately makes

𝜇̂ converge exponentially to the true 𝜇 over a time-scale 𝜏 ∼ 𝜂−1. We have run numerical calculations over a reasonable

large range of values for 𝜂 and have found no qualitative change in our results. A more detailed account of unknown

fundamental parameters under various assumptions is part of future research.

4. The Magnet Effect

In this section, we pick up a question previously discussed in the literature: Is there a magnet effect? The magnet effect, as

observed empirically by Goldstein and Kavajecz (2004) and subsequently confirmed by others (see (Yong and Yang, 2004;

Abad and Pascual, 2013) for reviews), claims that the very existence of a CB pushes the prices to lower levels than what

would be observed if there was no CB in place. To assess the existence of such a magnet effect, we consider the difference

in hitting probabilities. Starting from some opening price level 𝑠0 > 0 at time 𝑡 = 0, we ask what is the probability that some

lower threshold 𝑠 = 0, the (hypothetical) location of the circuit breaker, is reached within a day (up to 𝑡 = 1). In absence of

a circuit breaker, the market follows the process (2.1) with constant drift 𝜇 and volatility 𝜎. Then, we denote by 𝑝trig(𝜇, 𝜎)
the probability that the lower threshold 𝑠 = 0 is reached in absence of circuit breaker. This expression is known analytically

and equal to expression (A.9). If a circuit breaker is introduced, with halting time Δ𝑡ℎ, the drift and volatility are modified into

non-linear functions 𝛼 and 𝜈, respectively (Figure 3). We denote by 𝑝trig(𝛼, 𝜈) the associated probability to hit this boundary

within a day. We then calculate the magnet effect (ME) as

ME(𝜇, 𝜎, 𝑠0, 𝑡ℎ, 𝛾) = 𝑝trig(𝛼, 𝜈) − 𝑝trig(𝜇, 𝜎), (4.1)

i.e. as the difference of hitting probabilities with and without a circuit breaker. 9 A detailed description of how these quantities

are determined numerically is found in Appendix C. If ME is positive, then the hitting probability is larger with than without

a circuit breaker, i.e. the magnet effect occurs. Conversely, if the quantity is negative, the magnet effect does not exist, and

the CB has a repulsive effect. As is visible from Figure 4, the ME holds for all type of realistic market configurations. This

shows that the very existence of a CB tends to push the price to the CB level, when the drift 𝜇 is sufficiently negative and

the price approaches the circuit breaker. The intuition behind this effect is clear and have already been hinted in previous

sections: if the market drops as the result of a negative drift 𝜇, the market prices the additional movement of 𝜇Δ𝑡ℎ during

9There are other quantifications of the magnet effect that appear reasonable. For instance, we have applied the same analysis by
comparing expected hitting times under (𝜇, 𝜎) and (𝛼, 𝜈). The conclusions are essentially the same as with measure (4.1). We have
decided to show here on the hitting probability because 𝑝trig is naturally bounded between 0 and 1 and can be calculated by considering
time just from 𝑡 = 0 up to 𝑡 = 1.
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Figure 4: Dependence of the magnet effect (4.1) as a function of the distance of the opening price to the circuit breaker
level 𝑠. The magnet effect, as quantified by expression (4.1), is seen to hold for all parameter configurations. Since 𝑝trig is
independent of Δ𝑡ℎ, only Δ𝑡ℎ = 0.1 is shown.

market closure as well as the drift until the halting time, already prior to the halt.

5. Towards a More Robust Circuit Breaker Design

The previous section confirms the existence of a magnet effect for a price-based CB. This can be attributed to the fact that

the market knows exactly about the trigger point 𝑠 and the halting time Δ𝑡ℎ and account for a looming trading halt ex-ante.

So is there a better CB design (i.e. a better trigger mechanism)? To answer this question, we consider a generalisation of

our initial equation (2.3) in the form

𝑠𝑡 = 𝑓𝑡 + 𝛾𝑝trig
(
E𝑡

[
𝑓𝑡𝑟

] − E𝑡 [𝑠𝑡𝑠 ] ) (5.1)

where we still assume that E𝑡
[
𝑠𝑡𝑟

]
= E𝑡

[
𝑓𝑡𝑟

]
, i.e. that there is no aftermath effect or second circuit breaker. Different from

equation (2.3), here we refrain from replacing E𝑡
[
𝑠𝑡𝑠

]
by the fixed trigger threshold 𝑠. After all, exchanges have the flexibility

to define the trigger condition differently. In this section, we outline how this degree of freedom may be used to implement

circuit breaker structures that may alleviate negative side effects such as increased volatility or magnet effect. Equation

(5.1) in combination with the perturbative solution approach (A.7) provides a good starting point to examine different CB

design. This section illustrates the generality and value of our proposed framework. An in-depth examination of different CB

mechanisms is for future research.

A relatively straightforward way to avoid the negative side effects of increased volatility and magnet effect is by imposing

a trading halt not based on a price level but based on a volatility level 𝜈. Beyond its technical benefits, we propose that

a volatility-based trading halt is also conceptually more relevant insofar as volatility is a measure of risks (and to some

extent also of uncertainty), whereas a rapid price increases or decay may also be the result of a well-informed reaction to

news. Moreover, as reported by Figlewski and Wang (2000), a large price drop usually triggers a sharp volatility increase, a

phenomenon known as the leverage affect. Therefore, a volatility based CB is a priori more adapted to address price drops

13

Chapter 3. Price Dynamics under a Circuit Breaker

94



that are significant and abrupt.

To see further the technical benefits of a volatility based circuit breaker as can be examined with our framework, we first

express the expectation values in (5.1) explicitly:

E𝑡
[
𝑓𝑡𝑟

]
= 𝑓𝑡 + 𝜇E𝑡 [𝑡𝑠 + Δ𝑡ℎ − 𝑡] (5.2a)

E𝑡
[
𝑠𝑡𝑠

]
= 𝑠𝑡 + E𝑡


𝑡𝑠∫
𝑡

d𝜏 𝛼(𝑠𝜏)

+ E𝑡


𝑡𝑠∫
𝑡

d𝑊𝜏 𝜈(𝑠𝜏)

= 𝑠𝑡 + E𝑡


𝑡𝑠∫
𝑡

d𝜏 𝛼(𝑠𝜏)


(5.2b)

Plugging (5.2a) and (5.2b) into (5.1) and grouping some terms yields

𝑠𝑡 = 𝑓𝑡 + 𝛾𝑝trig (𝑠𝑡 − 𝑓𝑡 ) + 𝛾𝑝trig
©­«
𝜇E 𝑓 [𝑡𝑠 − 𝑡] − E𝑡


𝑡𝑠∫
𝑡

d𝜏 𝛼(𝑠𝜏)

ª®¬
+ 𝛾𝑝trig𝜇E𝑡 [Δ𝑡ℎ] . (5.3)

A general treatment of expression (5.3) will require a perturbative analysis along the lines of (A.7). Here, we show the

effects of a first order treatment. Assuming on the right-hand-side of (5.3) that 𝑠 = 𝑓 (minimal perturbation of the price by

the presence of the CB) and hence E𝑡

[
𝑡𝑠∫
𝑡

d𝜏 𝛼(𝑠𝜏)
]
= 𝜇E 𝑓 [𝑡𝑠 − 𝑡], we find that, to first order

𝑠 (1)𝑡 = 𝑓𝑡 + 𝛾𝑝trig𝜇E𝑡 [Δ𝑡ℎ] . (5.4)

The volatility 𝜈 is related to 𝜎 via Itô’s lemma, 𝜈 = 𝜎𝜕𝑠𝑡/𝜕 𝑓𝑡 .6 Within the price-based circuit breaker discussed so far, 𝑝trig

has an explicit dependence on the level of the fundamental 𝑓 . The lower 𝑓 , the more likely a CB is triggered. Therefore,

𝜕𝑝trig/𝜕 𝑓 < 0 (cf. Figure 3 (b)) and

𝜈 (1) = 𝜎
𝜕𝑠 (1)

𝜕 𝑓
= 𝜎

©­­«
1 + 𝛾E𝑡 [Δ𝑡ℎ]︸     ︷︷     ︸

>0

𝜇
𝜕𝑝trig

𝜕 𝑓

ª®®¬
> 𝜎 (5.5)

for 𝜇 < 0, which is the relevant case for a circuit breaker at a lower boundary. This explains the increased volatility prior

to a trading halt. By contrast, a volatility based CB does not depend explicitly on the level of 𝑓 . This is intuitive: the level

of the fundamental does not directly influence its volatility and is hence not predictive of the trigger probability or expected

stopping time. Therefore, 𝜕𝑝trig/𝜕 𝑓 = 0 to a first-order approximation and it follows from (5.5) that 𝜈 (1) = 𝜎. At least to first

order, the volatility-based circuit breaker thus avoids increased volatility levels, in stark contrast to price level based ones.

Similarly, one can show that 𝛼 (1) ≈ 𝜇 up to an additional explicit time-dependence of 𝑝hit (suggesting a decreased magnet

effect). There may be, however, higher-order effects via
𝜕𝑝trig

𝜕 𝑓 =
𝜕𝑝trig

𝜕𝑠
𝜕𝑠
𝜕 𝑓 and the leverage effect. The iterative framework

(A.7) allows one to take such dependencies into consideration.

In addition to stopping mechanisms, the construction of CBs has another degree of freedom: the stopping time. In this article,

we have kept Δ𝑡ℎ as a fixed constant variable, as is the case for the vanilla CB mechanism. But this is not a requirement, and
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the exchange might also impose stochastic, event-dependent criteria. Studying the implications of such rules is relatively

straightforward within the framework presented in this article. We leave this for future research.

6. Conclusions

We have studied the dynamics of an asset price in the presence of a circuit breaker (imposed trading halt). We have

considered the customary form of a price-based circuit breaker (CB) whereby trading is halted for a time Δ𝑡ℎ after the price

drops below an upper threshold 𝑠 or lower threshold 𝑠. At its starting point is a stochastic process specifying the dynamics of

the (log) ‘fundamental’ value that would prevail if no circuit breaker was installed. Throughout this article, we have assumed

that this stochastic process is a continuous random walk with constant drift 𝜇 and constant volatility 𝜎. This assumption

could be relaxed, and would generally not alter the main conclusions, however at the cost of analytical intractability.

The effect of the CB was then imposed on top of the dynamics of the fundamental 𝑓 . We have proposed to describe the

difference between the observed price 𝑠 and the fundamental value 𝑓 by a term that embodies the pricing of the expected

evolution of 𝑓 during the halting time when no trading occurs. This correction term was weighted by a term proportional

to the probability that the CB is triggered. Since that probability depends itself on the realized price trajectory, a coupled

McKean-Vlaslov equation was obtained in Section 2. Its solution was provided in section Appendix A, both numerically and

analytically to first order. We found a modified, non-constant drift 𝛼(𝑠) and volatility of 𝜈(𝑠) that differ from their constant

counterparts 𝜇 and 𝜎 of the fundamental value. Most notably, for the price-based CB, we found an increased volatility 𝜈 as

the price approaches the CB boundary, in agreement with previous empirical observations for this trigger mechanism.

In section 4, we then showed how the magnet effect can be accounted for naturally within our framework. The magnet effect

expresses the fact that the sole presence of a price-based CB tends to push the price towards the trigger level faster than

in its absence. We have shown that, within our theory, this magnet effect occurs for all parameter combinations that are

realistic, and hence confirms previous studies for price-based CBs.

In section 5 we then showed how our framework can be easily generalised to other trigger mechanisms. And based on

that, we then suggested an alternative circuit breaker design that aim at avoiding perturbing too much the price dynamics

due to the presence of the circuit breaker. We have shown that a volatility-based CB e.g. mitigates negative side effects

of price-based CBs, at least to first order, and argued that it is also more suitable conceptually, as volatility represents

risk perceptions and some level of market uncertainty. The framework presented in this article provides a starting point to

develop better CB designs.
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Appendix A. Solution of the Circuit Breaker Equation

In this section, we present the solution of equation (2.3), which requires the determination of 𝑝trig and E𝑡 [𝑡𝑠] with respect

to two distinct probability measures, as we will now elaborate. We will find that the constant drift 𝜇 and volatility 𝜎 of the

fundamental 𝑓 are altered into non-trivial functional shapes 𝛼(𝑠) and 𝜈(𝑠) for the observed price 𝑠. Readers who are

interested only in a qualitative discussion of our results may skip the following subsections and continue with subsection 3.

Appendix A.1. Calculation of the Trigger Probability

Denote by 𝛼(𝑥, 𝑡) and 𝜈(𝑥, 𝑡) the drift and volatility of 𝑠𝑡 = 𝑠( 𝑓𝑡 , 𝑡), respectively, i.e. d𝑠 = 𝛼d𝑡 + 𝜈d𝑊𝑡 . This drift and

volatility functions are related to the constant drift 𝜇 and volatility 𝜎 of 𝑓𝑡 through Itô’s lemma:

d𝑠 =
(
𝜕𝜙

𝜕𝑡
+ 𝜇 𝜕𝜙

𝜕 𝑓
+ 1

2
𝜎2 𝜕

2𝜙

𝜕 𝑓 2

)
︸                           ︷︷                           ︸

≡𝛼

d𝑡 + 𝜎 𝜕𝜙
𝜕 𝑓︸︷︷︸
≡𝜈

d𝑊𝑡 . (A.1)

Let us further denote by 𝜌(𝑥, 𝜏; 𝑠𝑡 , 𝑠) the probability density of the price 𝑥 at time 𝜏 > 𝑡 given that the price was 𝑠𝑡 at time

𝑡, and in presence of an absorbing boundary at 𝑠. Generally, this probability density 𝜌 is the solution to the Fokker-Planck

equation
𝜕𝜌

𝜕𝜏
= − 𝜕

𝜕𝑥
[𝛼(𝑥) 𝜌(𝑥)] + 1

2
𝜕2

𝜕𝑥2

[
𝜈(𝑥)2 𝜌(𝑥)] (A.2)

with the Dirac-Delta initial condition 𝜌(𝑥, 𝑡) = 𝛿(𝑥 − 𝑠𝑡 ). Given the 𝜌 that solves (A.2), the survival probability 𝑆(𝑡) that the

process has not yet hit the boundary from time 0 up to time 𝑡 > 0 calculates as 𝑆(𝑡; 𝑠0) =
∞∫
𝑠

d𝑠 𝜌(𝑠, 𝑡; 𝑠0, 𝑠). At time 𝑡,

when the price is at 𝑠𝑡 , we are interested in the probability that the CB is triggered before the end of the day𝑡𝑐 . Hence,

𝑝trig(𝑡) = 1 − 𝑆(𝑡𝑐 − 𝑡; 𝑠𝑡 ) = 1 −
∞∫
𝑠

d𝑠 𝜌(𝑠, 𝑡𝑐 − 𝑡; 𝑠𝑡 , 𝑠) . (A.3)

Appendix A.2. Calculation of the Expected Reopening Time

With 𝑓𝑡 following (2.1), the expected value taken at time 𝑡 of 𝑓𝜏 with 𝜏 > 𝑡 is given by E𝑡 [ 𝑓𝜏] = 𝑓𝑡 + 𝜇(𝜏 − 𝑡). Conditional

on a CB being triggered and, if the time 𝑡𝑟 of reopening was known, we would thus have E𝑡
[
𝑓𝑡𝑟 |𝑡𝑟

]
= 𝑓𝑡 + 𝜇(𝑡𝑟 − 𝑡). But 𝑡𝑟

is itself a random time since 𝑡𝑟 = 𝑡𝑠 + Δ𝑡ℎ, where 𝑡𝑠 is the random first-passage hit time of the barrier. Taking the additional

expectation over all possible 0 < 𝑡𝑟 < 1 yields the expected value of the fundamental upon market reopening as a function

of the expected stopping time

E𝑡
[
𝑓𝑡𝑟

]
= 𝑓𝑡 + 𝜇 (E𝑡 [𝑡𝑠] + Δ𝑡ℎ − 𝑡) . (A.4)

In order to calculate the expected stopping time E𝑡 [𝑡𝑠], we should not work directly with the density 𝜌 from (A.2). As

mentioned in the previous section, we have to condition all events on a CB being triggered before the end of the trading day.

By contrast, equation (A.2) is the solution for the unconditional density in the presence of the absorbing boundary. To arrive
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at the conditional density 𝜌ℎ, we have to replace 𝜌 by 10

𝜌ℎ ≡ 𝜌(𝑠, 𝑡; 𝑠0, 𝑠 | trig) = 𝑝trig(𝑠, 𝑡𝑐 − 𝑡) 𝜌(𝑠, 𝑡; 𝑠0, 𝑠)
𝑝trig(𝑠0, 𝑡𝑐) (A.5)

where 𝑝trig is derived from the unconditional density 𝜌 as explained above. 11 In the remainder of this article, we will

be calculating the expected hitting probability with respect to the unconditional measure 𝜌 and the expected stopping with

respect to the conditional measure 𝜌ℎ. As we show in Appendix B, this distinction is particularly relevant in the case where

the impact of the fundamental volatility 𝜎 dominates over that of the fundamental drift 𝜇. For notational convenience, we

refrain from writing 𝑝𝜌trig and E𝜌
ℎ

𝑡 [𝑡𝑠].

Given density 𝜌ℎ, the first passage probability density FPD(𝜏) of the process first hitting 𝑠 at time 𝜏 is determined from

FPD(𝜏) = −𝜕𝑆ℎ (𝜏)/𝜕𝜏, where 𝑆ℎ is just the survival probability associated with 𝜌ℎ. The expected hitting time then

calculates via

E𝑡 [𝑡𝑠 − 𝑡] =
𝑡𝑐−𝑡∫
0

d𝜏 𝜏 FPD(𝜏) . (A.6)

Appendix A.3. General Scheme Using Recurrence Equations

The value of 𝑝trig depends on the current position 𝑠𝑡 in the form of an initial value of the Fokker-Planck equation (A.2). The

solution 𝜌(𝑥; 𝜏) then characterizes probabilistically the future trajectories of 𝑠𝑡 . This is intuitively reasonable: the realized

market price 𝑠𝑡 is observed in real-time, and its probabilistic properties are inferred in order to anticipate its future value,

which is then fed back onto the price. Dynamics where drift or volatility are functions of the process distribution are known

as McKean-Vlasov processes, first studied by McKean (1966). Analytical solutions to this type of problem are rare. We thus

turn to an iterative solution instead using the framework of perturbation theory (Bender and Orszag, 1999). Specifically, we

treat the deviation of 𝑠 from 𝑓 as a perturbation, 12 such that we can replace equation (2.3) by the recurrence equation

𝑠 (𝑛+1)
𝑡 = 𝑓𝑡 + 𝑝 (𝑛)trig 𝛾

[
𝑓𝑡 + 𝜇

(
E
(𝑛)
𝑡 [𝑡𝑠 − 𝑡] + Δ𝑡ℎ

)
− 𝑠

]
(A.7)

10A ‘back of the envelope’-derivation of this results follows from Bayes’ theorem, 𝜌(𝐴|𝐵) = 𝜌(𝐵 |𝐴) 𝜌(𝐴)/𝜌(𝐵), where, ‘A = being
at position 𝑠 at time 𝑡 ’ and ‘B = hitting the barrier’.

11 Conditional on 𝑠𝑡 triggering a CB, we know that 𝑠 will be at 𝑠 at time 𝑡𝑠 . Therefore, the fundamental value 𝑓𝑡 will be at 𝑓𝑡𝑠 =
𝜙−1 (𝑠, 𝑡𝑠) with 𝑡𝑠 unknown. Thus, we can also write E𝑡

[
𝑓𝑡𝑟

]
= E𝑡

[
𝜙−1 (𝑠, 𝑡𝑠)

] + 𝜇Δ𝑡ℎ with the expectation over the first-passage
density of 𝑡𝑠 . But 𝜙 needed to calculate E𝑡

[
𝑓𝑡𝑟

]
is itself the solution of (2.3). Below, we will present a perturbative solution which has, to

first order, no explicit dependence on 𝑡𝑠 . Working with 𝜙−1 thereby renders our perturbative approach infeasible. In line with our overall
approach, we thus stick to the phenomenological equation (A.4).

12 Within intraday dynamics for the log prices considered in this article, it is reasonable to assume that | 𝑓 − 𝑠 | � 1 at all times.
Naturally, 𝑝trig is bounded between 0 and 1. We derive an approximate upper bound estimate for 𝛾 by realizing that d𝑠/d 𝑓 > 0 is
required for consistency and stability. Replacing 𝑠 by its first-order approximation (A.10), we can solve the inequality d𝑠 (2)/d 𝑓 > 0

analytically, to find that 𝛾 <
(
Erf(1) + 2√

𝜋𝑒
− 1

)−1
≈ 3.87. This might change somewhat by the presence of a drift, but we can at least

conclude that 𝛾 is of order 1.
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where the hitting probability 𝑝trig and expectation value E(𝑛)𝑡 [·] are calculated from the 𝑛-th order approximation of 𝜌 and

𝜌ℎ, respectively. Applying Itô’s lemma (A.1) to 𝑠 (𝑛) , we obtain the drift 𝛼 (𝑛) and volatility 𝜈 (𝑛) at 𝑛-th order. These are then

plugged into a numerical solver of the Fokker-Planck equation (A.2) to obtain 𝜌 (𝑛) and from there the hitting probability and

expected hitting time at order 𝑛. This is finally plugged into (A.7) for the next iteration. The fixed point of the recurrence

equation (A.7) then provides the solution of equation (2.3).

Appendix A.4. First Order Solution

In this section, we show explicitly the first order solution 𝑠 (1)𝑡 = 𝜙 (1) ( 𝑓𝑡 , 𝑡). Drift 𝛼 (1) and volatility 𝜈 (1) are then obtained

by taking numerical derivatives of 𝜙 (1) . Starting from 𝑠 (0)𝑡 = 𝑓𝑡 such hat 𝜙 (0) is the identify function, we find from (2.1)

that 𝛼 (0) = 𝜇 and 𝜈 (0) = 𝜎. For constant drift and volatility, there is an explicit solution of equation (A.2) with absorbing

boundary condition. Setting for notational convenience, and without loss of generality 𝑠 = 0, the solution reads

𝜌 (0) (𝑠, 𝑡) = 1√
2𝜋𝜎2𝑡

[
exp

(
− (𝑠0 − 𝑠 + 𝜇𝑡)2

2𝜎2𝑡

)
− exp

(
−2𝑠0𝜇
𝜎2

)
exp

(
− (𝑠0 + 𝑠 + 𝜇𝑡)2

2𝜎2𝑡

)]
(A.8)

from which we obtain

𝑝 (0)trig (𝑠, 𝑡) =
1
2

exp
(
−2𝑠𝜇 /𝜎2

)
Erfc

(
𝑠 − 𝜇𝑡√

2𝑡𝜎

)
+ 1

2
Erfc

(
𝑠 + 𝜇𝑡√

2𝑡𝜎

)
(A.9)

where Erfc is the complementary error function. 13 For the special case where 𝜇 = 0, the term E𝑡 [𝑡𝑠] drops out and we

can write the first-order approximation of (A.7) explicitly as

𝑠 (1)𝑡 = 𝜙 (1) ( 𝑓𝑡 , 𝑡) = 𝑓𝑡 + 𝛾 · ( 𝑓𝑡 − 𝑠) · Erfc

[
𝑓𝑡 − 𝑠√︁

2(𝑡𝑐 − 𝑡)𝜎

]
, (A.10)

from which we derive

𝛼 (1) = −
√︂

2
𝜋

𝛾𝜎√
𝑡𝑐 − 𝑡

exp
( ( 𝑓 − 𝑠)2

2(𝑡𝑐 − 𝑡)𝜎2

)

𝜈 (1) = 𝜎 +
√︂

2
𝜋

𝛾√
𝑡𝑐 − 𝑡

(𝑠 − 𝑓 ) exp
(
− ( 𝑓 − 𝑠)2

2(𝑡𝑐 − 𝑡)𝜎2

)
+ 𝜎 𝛾 Erfc

[
𝑓 − 𝑠√︁

2(𝑡𝑐 − 𝑡)𝜎

]
,

(A.11a)

(A.11b)

via Itô’s lemma (A.1). We have compared analytical and numerical form of 𝛼 (1) and 𝜈 (1) and found an excellent match. 14

Similarly, for 𝜇 ≠ 0, we can write 𝜙 (1) analytically up to quadrature of the term E(1)𝑡 [𝑡𝑠 − 𝑡] =
𝑡𝑐−𝑡∫
0

d𝜏 𝜏 FPD(1) (𝜏). Drift

𝛼 (1) and volatility 𝜈 (1) are then obtained by taking numerical derivatives of 𝜙 (1) . The results are shown in Figure 3.

Higher order iterations, 𝑛 = 2, 3, . . . can only be performed numerically. This is evident already from the case 𝜇 = 0, as

no closed-form solution of the Fokker-Planck equation (A.2) can be found for drift and volatility (A.11). For the remainder of

13 See for instance Molini et al. (2011) for a derivation of the probability distribution in presence of an absorbing boundary.
14 Details on how to solve this iteration numerically, as well as numerical evidence that 𝑠 (1) ≈ 𝑠 (∞) is available from the authors upon

request.
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this article, we thus work with the first order approximation, which already presents a fairly good approximation of the limit

𝑛→ ∞.14 For notational simplicity, we shall denote 𝛼 (1) , 𝜈 (1) by 𝛼, 𝜈, respectively.

Appendix B. Comparing Conditional with Unconditional Density

Given conditional density 𝜌ℎ, one then derives the first-passage-density and the expected stopping time as explained in

section Appendix A. The necessity to replace the unconditional density 𝜌 by its conditional counter-part 𝜌ℎ is visualized in

Figure B.5. s If 𝜇 is strongly negative (𝜇 < −6% daily change), it holds that 𝑝trig . 1 and hence 𝜌 ≈ 𝜌ℎ, such that one can

Figure B.5: In the left plot, we compare the conditional and unconditional densities, 𝜌ℎ ≡ 𝜌(𝑠, 𝑡; 𝑠0, 𝑠 | trig) and 𝜌(𝑠, 𝑡; 𝑠0, 𝑠)
respectively. The continuous line denotes the probability density 𝜌(𝑠, 𝑡) of a random walk with constant drift 𝜇 = −4% and
constant volatility 2%, in presence of an absorbing boundary at 𝑠 = 0 and a starting position at 0.03. The dashed line
shows the associated conditional density 𝜌ℎ (𝑠, 𝑡) that corresponds to realizations such that 𝑠 = 0 is reached within a day,
i.e. before 𝑡 = 1. The plot on the right hand side depicts a systematic classification of the difference in expected hitting time
based on 𝜌 vs. 𝜌ℎ. For small drifts but still negative drifts, the difference is off by up to half a trading day.

work with the unconditional density. For less extreme cases, the difference between unconditional and conditional density

leads to differences in expected hitting times reaching levels of up to 0.5, i.e. a miss-calculation of up to half a trading day.

In this article, we have worked with 𝜌ℎ.

Appendix C. Calculation of Trigger Probability and Expected Hitting Time

Consider a general, stationary stochastic process d𝑠 = 𝛼d𝑡 + 𝜈d𝑊𝑡 for some drift function 𝛼, volatility function 𝜈, initial

position 𝑠 = 𝑠0 > 𝑠 at time 𝑡 = 0 and absorbing boundary condition at 𝑠 = 𝑠. The probability density 𝜌(𝑠, 𝑡) of the process

at position 𝑠 at time 𝑡 is determined by the solution of the Fokker-Planck equation (A.2), which, in general, must be solved

numerically. We are not aware of any readily usable numerical solver of the Fokker-Planck equation (for Python). While

there exist numerical solvers of partial differential equations, it is often not trivial to adjust for absorbing boundary conditions,
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and Dirac-Delta initial distributions. We have thus written our own solver. 15 The hitting probability, and expected hitting time

is then determined as follows:

1. The numerical solver takes as input two functions 𝛼 and 𝜈, a starting point 𝑠0 and an end-time 𝑇 (= 1), and returns

the functional object 𝑝(𝑠, 𝑡) = 𝑝(𝑠, 𝑡; 𝑠0) which can be evaluated for 𝑠 ∈ [𝑠,∞) and 𝑡 ∈ [0, 𝑇].
2. Using Simpson’s numerical integration rule, this density is numerically integrated along 𝑠 to yield the survival proba-

bility 𝑆(𝑡).
3. Thee probability to hit 𝑠 from time 𝑡 = 0 to time 𝑡 = 𝑇 is given by 𝑝trig(𝑇) = 1 − 𝑆(𝑇).
4. Taking the negative derivative with respect to time, approximated through numerical first differences, we obtain the

first-passage density FPD(t).

5. Numerical integration of
𝑡𝑐∫
0

d𝑡 𝑡 FPD(𝑡) up to 𝑡𝑐 = 1, again with Simpson’s rule, results in the expected hitting time.

15The code is available here: https://github.com/slera90/.
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4 Dynamical Cost of Capital Driven by Dynamical Cash Flows

Valuing a firm with high expected cash flow growth is a difficult task. This can be seen in the high price volatility

of firms for which the market has high cash flow growth expectations. This price volatility can stem from the

hype surrounding these firms, but also is a consequence of the high sensitivity of standard valuation models to

small changes in the expected growth rate path. Discounted cash flow (DCF) models are fundamentally driven

by the assumed future path of cash flow growth and the discount rate used to value these uncertain future

cashflows, with variations in either of these key assumptions producing enormous variability in the models’

determination of fair value, thereby limiting their practical utility. With the NASDAQ Composite at its all-time

high, the limited use of these standart DCF models when applied to high growth firms is a problem of great

relevance, as large-scale mispricing can have sever economic consequences. This chapter is devoted to this

problem by providing a better understanding of the often neglected relationship between the expected return

(i.e. the discount rate) and cash flow growth and with it to propose a new valuation model.

While relevant literature is discussed at different places throughout the paper, I want to give a brief overview

of the (vast) literature concerned with the estimation of the expected return of a stock in the next few paragraphs.

The most common approach to estimate the expected return is to employ a linear factor model, as sug-

gested by the arbitrage pricing theory of Ross (1976). The most prominent examples thereby are the Fama

and French (1992) three-factor model or the Fama and French (2015) five factor model. However, such linear

factor models are not very accurate in estimating the cost of capital at the firm level (Fama and French, 1997).

In addition, these linear factor models often completely lack theoretical motivation.

Common alternatives are implied cost of capital (ICC) models, pioneered by Gebhardt et al. (2001), which

are more theoretically anchored, as a (valuation) model structure is necessary. Such ICC models often assume

a cost of capital with a flat term structure. But besides various technical problems of such flat term structure

ICC models, well documented by Magni (2010), the major drawback of these models is that they do not allow

for the interpretation of an expected return process that can be realised by investing in the company today and

holding it for a long time (Fama and French, 1996).

Lately, Fama and French (2015) started to redirect the "factor model community" onto more theoretical

grounds. Using clean surplus accounting (Miller, M. and Modigliani (1961)) and some minor manipulation,
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they argue that the expected return of each stock is only determined by its price-to-book ratio and by expecta-

tions of its future profitability and investment. Variables not explicitly linked to this decomposition, such as size

and momentum, that are found to help forecast returns, must only do so by implicitly improving forecasts of

profitability and investment or by capturing horizon effects in the term structure of expected returns. Thus, only

the so called "profitability", "investment" and "value" factors can be motivated from theory.

In the spirit of this argument, and based on solid theoretical developments from investment theory, Hou et al.

(2020) then suggest an expected investment growth factor that is shown to forecast future investment and thus

returns. While our paper has the same spirit, we suggest to go a slightly different route. Profitability, invest-

ment and profit growth form a triangle, i.e. profit growth is mechanically the result of invested capital and its

corresponding profitability. And while Hou et al. (2020) focus on forecasting investment and, assuming con-

stant profitability, thus implicitly capture the future profit growth dynamics, we suggest that it is more natural to

focus on profit growth directly. Rather than forecasting investment, an investor would directly think about the

future cash flow growth structure (also e.g. under the assumption of constant profitability). Thus, rather than

concentrating on future investment, the paper presented in this chapter, Solo et al. (2021), brings future cash

flow growth to the center of the attention. We briefly present the key ideas in the following paragraphs.

We start by analysing the risk exposure of a firm with regard to its cash flow growth rate level, using the

consumption based asset pricing model, and find that those two variables are in good approximation linearly

related to each other. We further show that this result can also be derived from basic economic intuition. Mo-

tivated by these insights, we then propose a time-varying discount rate which has the same structural form as

the assumed cash flow growth rate process. This is our main contribution.

Using our time-varying discount rate in a DCF model, we present a valuation model that is less sensitive to

the cash flow growth rate process assumptions. As our time-varying discount rate is proportional to the as-

sumed cash flow growth rate term structure, these two naturally complementary variables interact to massively

reduce the range of reasonable valuation outcomes of the model. This important feature greatly enhances the

practical utility of a DCF model using our time-varying discount rate versus models that use either a constant

discount rate or even a time-varying discount rate that is not explicitly proportional to the modelled path of future

cash flow growth.

In addition, we elaborate a time-varying internal cost of capital (ICC) model that reflects the expected return

implied by the assumed term-structure of the growth rate. This time-varying expected return process allows for

a straightforward interpretation as investment return of a buy and hold strategy, compared to e.g. a constant

ICC model, which by construction is a constant compound return. The predictive power of our time-varying ICC
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model for future returns is thereby confirmed in a Fama MacBeth regression model and the economic signifi-

cance is confirmed in a trading strategy with yearly rebalancing.

In short, we show first that a time-varying discount rate, that borrows its structural form from the assumed

cash flow growth rate process, aligns with economic intuition and empirical evidence. Second, we show this idea

conceptually improves standard valuation models, as they get less sensitive to cash flow growth assumptions.

And third, we show that it also corrects conceptual shortcoming of flat-term structure ICCs, as our proposed

time-varying ICC does have the interpretation of an investment return of a buy and hold strategy, and thus is a

valid proxy for the expected return (i.e. cost of capital). Our empirical results strongly support these statements.

In the end, I hope this chapter contributes towards a better understanding of the often neglected, but incred-

ibly relevant relationship between the expected return and cash flow growth, and thus, helps investors make

improved capital allocation decisions, especially when considering an investment in high growth firms. Further,

I also hope to contribute to the literature stream that aims at refocusing the academic discussion around the

expected return factor zoo. All kind of equity return factor are constantly suggested in the financial economics

literature, without any theoretical justification. I suggest to go back to the essence of what an equity investors

should think about, which only should be the expected return stemming from a discounted cash flow model, i.e.

our proposed time-varying ICC.

References

E. Fama and K. French. The cross-section of expected stock returns. The Journal of Finance, 47(2):427–465,

1992

E. Fama and K. French. Multifactor explanations of asset pricing anomalies. Journal of Finance, 51(1):55–84,

1996

E. Fama and K. French. Industry costs of equity. Journal of Financial Economics, 43(2):153–193, 1997

E. Fama and K. French. A five-factor asset pricing model. Journal of Financial Economics, 116(1):1–22, 2015

W. Gebhardt, C. Lee, and B. Swaminathan. Industry costs of equity. Journal of Accounting Research, 39(1):

135–176, 2001

K. Hou, H. Mo, C. Xue, and L. Zhang. An Augmented q-Factor Model with Expected Growth. Review of

Finance, 25(1):1–41, 02 2020

C. Magni. Average internal rate of return and investment decisions: A new perspective. The Engineering

Economist, 55(2):150–180, 2010

S. Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341–360, 1976

109



Chapter 4. Dynamical Cost of Capital Driven by Dynamical Cash Flows

D. Solo, D. Sornette, and F. Ulmann. Internal Cost of Capital Driven by Dynamical Cash Flows. Reprint

submitted to the Journal of Financial Economics, 2021

110





Dynamical Internal Cost of Capital Driven by Cash Flow Growth

David Soloa, Didier Sornette*b,c, Florian Ulmann*b

aDiversified Credit Investments, LLC, San Francisco, California, USA

bETH Zurich, Department of Management, Technology, and Economics, Switzerland

cInstitute of Risk Analysis, Prediction and Management, Academy for Advanced Interdisciplinary Studies
Southern University of Science and Technology (SUSTech), Shenzhen, China

Abstract

Based on economic intuition and empirical evidence from the CCAPM, we argue that the term structure of ex-
pected returns should be identical to that of the cash flow growth rates. We introduce a discounted cash flow
model with a time-varying expected return process matching the assumed cash flow growth rate process, which
reduces the range of reasonable valuations outcomes to useful levels. In the same manner, we elaborate a
time-varying internal cost of capital (ICC) model that reflects the expected return implied by growth rate process
assumptions at each future point in time. In contrast to flat term structure ICCs, our time-varying ICC can be
conceptually interpreted as an investment return process and thus can serve as valid proxy for the cost of capital.
We show that our time-varying ICC model is indeed superior to the constant ICC models in a Fama-MacBeth re-
gression setting to predict future realised returns. And using the expected return of the time-varying ICC model as
control in a Fama-MacBeth regression of the profitability, the investment and the value factor, both the profitability
and the value factor become insignificant in explaining future realised returns. The superiority and economic
significance of the time-varying ICC model is further confirmed in a trading strategy with yearly rebalancing.

JEL: C20, C53, G11, G12, O16

Keywords: Internal Cost of Capital, consumption based asset pricing model, cash flow growth, equity risk premium, implied

risk, Fama-MacBeth regression, time-varying risk premium, trading strategy, discounted cash flow model

∗corresponding authors
Email addresses: davidmsolo@outlook.com (David Solo), dsornette@ethz.ch (Didier Sornette*), fulmann@ethz.ch

(Florian Ulmann*)

Reprint submitted to the Journal of Financial Economics

Chapter 4. Dynamical Cost of Capital Driven by Dynamical Cash Flows

112



1. Introduction

A solid theoretical foundation of the cost of capital is essential in accounting and finance research dealing with asset pricing

and investigating market anomalies. And accurate estimates of the cost of capital are crucial for practitioners for optimal

fund allocation. Nevertheless, academics as well as practitioners find it still challenging to estimate firms’ costs of capital.

The most common approach used to estimate the cost of capital in the financial economics literature is to employ a linear

factor model, such as e.g. the Fama and French (1992) three-factor model or the Fama and French (2015) five factor model.

However, the very same authors have warned about the difficulties encountered in accurately estimating the cost of capital

with linear factor models at the firm level (Fama and French, 1997).

Building on these concerns, Gebhardt et al. (2001) pioneered the implied cost of capital (ICC) approach, which is more

theoretically anchored. The ICC approach begins by assuming a valuation model based on discounted cash flows, e.g. the

dividend discount model. Next, some assumption about future cash flows are made, with which one can then solve for the

ICC (also called the implied expected return or implied discount rate) that equates the present value of the expected future

cash flows to the current stock price.

Such ICCs are often assumed to have a flat term structure (we refer to such a flat term structure ICC as “cICC", constant

ICC, from now on; the model is discussed in Appendix A). cICCs are often used as a proxy for the next period expected

return or the cost of capital. And the quality of those estimates are then examined with regard to their association to future

realised returns. Botosan et al. (2011) discuss the empirical work done in this field, and they document mixed results. Some

cICC measures show a positive association to future realised returns, but most of them show no significance.

Besides various technical problems of cICC models, well documented by Magni (2010), there is basically one major drawback

in using cICC models as proxy for the next period expected return for stocks. Whenever one assumes a time-varying cash

flow growth rate process in a valuation model, the expected return process should also be assumed to be time-varying, as

growth and expected return are naturally proportional variables. So any constant compound expected return structure fails

to appropriately reflect the expected return stemming from the assumed growth path at each future point in time. Thus, a

cICC cannot have the interpretation of an expected return process that can be realised by investing in the company today

and holding for a long time. And therefore cICCs are also not good proxies for the cost of capital (Botosan et al., 2011),

whenever the growth rate process is assumed to be time-varying.

This argument is in the spirit of Fama and French (1996), who also emphasise that already by construction the constant

ICC is a (constant) compound return, and not an expected one period simple return of the investment. In other words, the

constant ICC is not the return that can be expected from investing a dollar in a firm at the beginning of the ICC estimation

period (Fama and French, 1999). Hughes et al. (2009) formalise this and show that the constant ICC measure differs from

the expected return on average if the expected return is stochastic in nature, based on which they call empirical findings

from the ICC literature into question. In the fixed income literature for example, the insight that the constant ICC for bonds

(called the bond yield) may differ from the bond’s expected returns on average has been long recognised (Vasicek, 1977;

Cox et al., 1985).
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We take this point as motivation to introduce an ICC framework that conceptually has the interpretation of an investment

return process since it properly reflects the term structure of the risk exposure implicitly assumed in the valuation model.

Specifically, our main contribution is to introduce a time-varying expected return structure matching the term structure of

the assumed cash flow growth rate process. One can motivate this term-structure either from an empirical argument or by

intuition.

We then use the concept of a discount rate with the same term structure as the cash flow growth rate in a discounted cash

flow (DCF) model as well as an ICC model. To test the quality of our idea, we execute standard factor regression analysis

with the expected next period return suggested by our time-varying ICC measure. We find that it performs significantly better

than the expected return obtained under a flat term structure ICC measure for explaining future realised returns. Using the

expected return of the time-varying ICC model as control in a Fama-MacBeth regression of the profitability, investment and

value factors of Fama and French (2015), both the profitability and the value factor become insignificant in explaining future

realised returns.

A trading strategy using our time-varying measure shows a significant improvement of the information ratio with respect to

the constant ICC model, especially if one focuses on the fastest growing firms for which the growth path becomes more

relevant. This confirms the economic significance of our time-varying ICC framework.

Our work can find some underpinning in the discussion presented by Fama and French (2015), i.e. that only the profitability,

investment and value factor can be motivated from theory. In their approach, the expected return of each stock is determined

by its price-to-book ratio and by expectations of its future profitability and investment. Variables not explicitly linked to this

decomposition, such as size and momentum, that are found to help forecast returns, must only do so by implicitly improving

forecasts of profitability and investment or by capturing horizon effects in the term structure of expected returns. With this

reasoning, Fama and French (2015) conclude that their three-factor model (Fama and French, 1992) should be extended to

five factors (including profitability and investment). In the spirit of this argument, and based on solid theoretical developments

from investment theory, Hou et al. (2020) then suggest an expected (investment) growth factor that is shown to forecast future

investment and thus returns. Their basic intuition is that firms with high expected investment growth earn higher expected

returns than firms with low expected investment growth, holding investment and expected profitability constant. They thus

suggest to extend the 𝑞 factor model of Hou et al. (2014) into an expected (investment) growth factor to form the 𝑞5 factor

model.

It is important to realise that profitability, investment and profit growth form a triangle: profit growth from 𝑡 to 𝑡 + 1 is

mechanically a function of (a) new invested capital at time 𝑡 multiplied by the profitability from this new invested capital

between 𝑡 ant 𝑡 + 1 plus (b) previous (before t) invested capital multiplied by the change in profitability between 𝑡 and 𝑡 + 1.

Hou et al. (2020) focus on forecasting investment and assume constant profitability, and thus implicitly capture the future profit

growth dynamics. We suggest that it is more natural to focus on profit growth directly. Inspiration from practice 1 suggests

1This paper is motivated by the model developed by the first author for actual market investment purposes when he was working with
portfolio investors in high growth companies while based in Palo Alto, California.

3

Chapter 4. Dynamical Cost of Capital Driven by Dynamical Cash Flows

114



that, rather than forecasting investment, an investor would directly think about the future cash flow growth structure. Thus,

rather than concentrating on future investment, our approach focuses on future cash flow growth, also holding expected

profitability constant.

Further, instead of using a factor approach, we stay in the structural form of a classical discounted cash flow model and

calculate the expected return as the time-varying internal cost of capital that equates our future cash flow projections to the

current market price. Hou et al. (2020) interpret their 𝑞5 model as a linear approximation to the firm-level cost of capital

(given the nonlinear dynamics involved). We actually do capture the nonlinear dynamics, by using the structural form of a

classical discounted cash flow model directly.

In summary, our contribution to this literature stream is to refocus the discussion around what could be loosely referred to as

an expected return factor. We suggest to go back to the essence of what equity investors are obsessed with, which is the

expected return coming from a discounted cash flow model given current prices, current profitability and their assumption of

future cash flows.

The next section expands on the motivation for our model in terms of an expected return process with the same term structure

as the cash flow growth rate process. Section 3 then presents our model in the context of stock valuation models. Section

4 presents our empirical results in terms of standard Fama-Macbeth factor regressions of future realised returns. We also

show the strong economic significance of our framework when applied to trading high growth firms. Section 5 concludes.

2. Motivation for a Cost of Capital Model Driven by Cash Flow Growth

As mentioned before, we motivate our expected return term structure from economic intuition and from an empirical argu-

ment, which are successively presented in the next subsections.

2.1. Economic Intuition for a Cost of Capital Model Driven by Cash Flow Growth

Here, we present the economic intuition for our idea. In the long run, the return from any stock investment must be close to

the performance of the underlying business, i.e. to its cash flow growth. And as cash flow growth rates usually are expected

to decrease with firm age to the industry average, the expected return’s term structure should have a similar structural form.

Of course, changes in the valuation multiple can dilute or increase this price return.

Let us assume a firm has a high cash flow growth and a high valuation multiple. This firm’s cash flow growth rate most prob-

ably will decrease to the industry average over the years, while the valuation multiple at the same time will be compressed.

Thus, the price return will be a function of both the cash flow growth and the multiple compression. The multiple compression

does not usually dilute all of the return stemming from the cash flow growth because, otherwise, there would be no incentive

to invest in these inherent riskier high growth firms. This dynamic suggests that the expected return is always proportional

to the cash flow growth rate, but not necessarily equal to it, due to dilution stemming from multiple compression. And this

proportionality is maintained across the future time-horizon. In this picture, the expected return is assumed to have the same

term-structure as the cash flow growth rate.
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2.2. Empirical Motivation from the Consumption based Asset Pricing Model

The similarity of the term-structure of expected return and cash flow growth rate is additionally motivated with well established

empirical measures of risk exposure. The empirical motivation stems from the insight that the risk exposure of a firm is found

to be linearly proportional to its cash flow growth rate. Thus, the expected return, which itself is linearly proportional to

the risk exposure, should be assumed to have the same term structure as the cash-flow growth rate. Such a time-varying

expected return ensures that the risk exposure is appropriately reflected at each future point in time, which is why the

expected return then also has a proper interpretation as the investment return that can be expected at each future point in

time. This empirical argument is now presented in more details.

2.2.1. Revival of the CCAPM

In asset pricing models, expected returns are determined by the exposure of the return innovation to a source of risk. In the

consumption based asset pricing model (CCAPM) of Rubinstein (1976), Lucas (1978) and Breeden (1979), risk exposure

of a firm is measured by the consumption beta, the slope coefficient from regressing return innovations onto consumption

innovations. The CCAPM states that differences in expected return across assets are determined by differences in the

assets exposure to consumption risk (the systematic risk of the CCAPM). Similarly to the CAPM with the market beta, the

CCAPM’s consumption beta, a measure of the co-movement between asset return and aggregate consumption, determines

the expected returns of the assets. More specifically, the covariance of the asset returns with the stochastic discount factor,

the relevant measure of risk premium (also called price of risk), is proportional to the covariance of the asset returns with

aggregate consumption growth in the CCAPM. The intuition is that the risk premium of an asset is determined by its ability

to insure against consumption fluctuations.

This key financial economic insight has for long been discarded, as early empirical tests did not support the theory (Breeden

et al., 1989; Hansen and Singleton, 1982). But recently the CCAPM was revived due to improved empirical treatment of

the model 2. We build on this revival of the CCAPM and now use two established measures of risk exposure and analyse

them with respect to their relationship to cash flow growth rates. One is from Dittmar and Lundblad (2017), a measure of

2First, empirical results improved by using longer time horizons. Bansal et al. (2005) first recognised that the systematic consumption
risk, if measured over longer time horizons, is able to explain a large part of the cross-sectional variation in expected returns. This
is because measuring earnings and consumption over the long run alleviates problems caused by short-term earnings management
(Jones, 1991; Teoh et al., 1998), short-term consumption commitment, or delayed response (Parker and Julliard, 2005; Jagannathan
and Wang, 2007). Similar to Bansal et al. (2005), Dittmar and Lundblad (2017) recently showed that, by measuring the consumption
risk factor as the sum of lagged consumption innovations, the risk premia across assets are largely explained. This measure of Dittmar
and Lundblad (2017) is the consumption risk exposure measure (consumption beta) that we use in this paper. An alternative proxy of
the consumption risk exposure of a firm is the cash flow beta introduced by Bansal et al. (2005), which is also used in this paper. A
second reason why the consumption beta failed to capture cross-sectional differences in risk premia could be due to the error in the
measurement of consumption and of the consumption beta (Daniel and Marshall, 2005). In the presence of significant measurement
error, estimated covariances between returns and consumption shocks would be contaminated and shifted downwards. This is called
the error-in-variables problem. Under the classical measurement error model, the coefficient estimates are biased toward zero, which
is known as the attenuation bias (Collot and Hemauer, 2020). However, besides the coefficient of the imprecisely measured variable,
the coefficients of the other variables are also biased - known as contamination bias - and the direction of this bias is in general
unknown (Collot and Hemauer, 2020). As the effect of measurement error may be less pronounced when one uses several lags of the
consumption growth, the first point of using longer time horizons comes back into play.
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consumption risk exposure, i.e. the consumption beta. The other is from Bansal et al. (2005), a proxy for consumption risk

exposure, i.e. the cash flow beta.

2.2.2. The Consumption Beta and Cash Flow Growth

The consumption beta 𝛽 suggested by Dittmar and Lundblad (2017) is a measure of the exposure of asset returns to

consumption risk and is defined by
𝐾−1∏
𝑗=0

𝑅𝑖,𝑡− 𝑗 = 𝑎𝑖 + 𝛽𝑖
𝐾−1∑︁
𝑗=0

𝜂𝑡− 𝑗 + 𝑒𝑖,𝑡 (2.1)

Dittmar and Lundblad (2017) estimate the consumption beta by regressing cumulated gross real excess returns 𝑅 over 𝐾

windows on cumulated innovations of log consumption growth 𝜂 (the theoretical motivation for this regression model can be

found in Appendix G). The innovation in log consumption growth 𝜂𝑡− 𝑗 is the difference in log consumption growth in quarter

𝑡 − 𝑗 (real, seasonally-adjusted, per capita) and its unconditional mean. An estimate of the univariate regression model

presented in equation (2.1) for firm 𝑖 then gives us the risk exposure or consumption beta 𝛽𝑖 . As both Bansal et al. (2005)

and Daniel and Marshall (2005) find that the relation between the market return and consumption at eight quarters is best

for interpreting the market risk premium, we use 𝐾 = 8.3

Cash flows are calculated using data from the merged CRSP/Compustat database 4 and consumption data is taken from

National Income and Product Account tables at the Bureau of Economic Analysis (see Appendix B for more details on the

data).

We calculate the consumption 𝛽, our measure of risk exposure, by estimating the time-series regression of equation (2.1)

on a firm level at each quarter. 5 We then fit and plot those estimated risk exposure 𝛽 against the corresponding contempo-

raneous cash flow cumulative average growth rate (cagr over the total estimation period). 6 Figure 1 presents these results.

We observe a statistically significant positive, linear dependence between the consumption beta and the cash flow growth

rate level.

2.2.3. Implications for the Expected Return Term Structure

In the CCAPM, the expected excess return is given by

E𝑡
[
𝑟 𝑖𝜏

] − 𝑟 𝑓𝜏 = 𝛽𝑖𝜏𝜆𝜏 . (2.2)

where 𝑟 𝑖𝜏 is the return of asset 𝑖 between time 𝑡 and time 𝜏 > 𝑡, 𝑟 𝑓𝜏 is the risk-free return between time 𝑡 and time 𝜏, 𝛽𝑖𝜏 is

the exposure of asset 𝑖 between time 𝑡 and time 𝜏, and 𝜆𝜏 is the risk premium between time 𝑡 and time 𝜏.

3Note that Dittmar and Lundblad (2017) themselves find that 𝐾 = 4 is optimal, but the difference to 𝐾 = 8 is negligible.
4Using the indirect cash flow method: free cash flow = net income + accounting costs - changes in operating working capital - capital

expenditures; Note that Bansal et al. (2005) find that risk exposure estimates are reasonably insensitive to how cash flows are measured.
5We follow the beta estimation regression approach suggested in chapter 8 of Bali et al. (2017). As we have quarterly data, we use

a total time horizon for each estimation of 10 years, if available, and require a minimum of 20 valid data points (5 years).
6We make the fit in a quantile regression model to the median, as the consumption beta estimation is prone to generate positive

outliers and as estimating the median relationship is more relevant for a per firm statement than an estimate based on the mean.
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Figure 1: Consumption beta plotted against the cash flow growth rate. The risk exposure (consumption beta) increases with
the absolute level of the cash flow growth rate in a linear fashion. The green line is the regression fit, the black lines are
the 95% confidence intervals and the blue crosses display the aggregated data points (note that the regression is based on
unaggregated data, but in order not to overload the figure, we aggregated the data points into quantile bins of the cash flow
growth rate). The sample size behind the regression is large (𝑁 ≈ 274, 000), which naturally leads to high confidence. The
results are focused on positive growth rates only, as for negative growth other dynamics come into play, which are not of
interest here.

If we ignore the term structure of the risk premium 𝜆𝜏 , as it is not firm specific, the linearity behind the risk exposure 𝛽𝑖𝜏

and the growth rate level suggests that the expected return process for firm 𝑖 should just be given by a scaled version of the

term structure of the growth rate process. As the risk exposure 𝛽𝑖𝜏 is found to have a positive linear relationship to the cash

flow growth rate, 𝛽𝑖𝜏 ∝ 𝑔𝑖𝜏 , it should be that 𝛽𝑖 has the same term structure as 𝑔𝑖 over all future times. And since the risk

exposure 𝛽𝑖𝜏 is linearly proportional to the expected return 𝑟 𝑖𝜏 ∝ 𝛽𝑖𝜏 , 𝑟 𝑖 should be assumed to have the term same structure

as 𝑔𝑖 too, in order to represent the risk exposure appropriately at each future point in time. Thus, the expected return can

and should be assumed to have the same term structure as the cash flow growth rate. 7 This is in line with Beaver et al.

(1970), who show that abnormal earnings arising from growth opportunities are inherently more risky, leading to a positive

association between the expected return and growth.

2.2.4. Cash Flow Beta and Cash Flow Growth

The cash flow beta provides an alternative solid proxy of the consumption risk exposure of a firm. Abel (1999) and Bansal

and Yaron (2005) present a consumption-based model that shows that the differences in risk premia among assets mirror

differences in the exposure of the asset’s cash flows to consumption news8. Their theoretical and empirical work indicate

that the covariance of the growth rates of firm cash flow with several lags of aggregate consumption growth rates identifies

7Note that we can neglect the intercept from figure 1, as it does not have a term structure by definition and also is not firm specific.
8Bansal et al. (2005) argue that, if asset returns have a multi-factor structure, then consumption betas, in the presence of cash flow

and discount rate risks, may fail to account for the differences in the risk premia across assets, while both betas individually could explain
it. This explains the failure of some tests of the CCAPM that measured and use the consumption beta directly.
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such a risk factor exposure of the firm. This risk factor exposure is called the cash flow risk exposure (or cash flow beta),

and it measures differences in risk premia attributable to cash flow risk. They show that their measure of cash flow risk,

the degree of co-movement of cash flow growth with consumption growth, is positively related to the risk premium of the

corresponding firm (higher cash flow beta leads to a higher risk premium). They also show that it can explain a large part of

the cross-sectional variation of risk premia across assets. Thus, we also present empirical results for the cash flow beta of

Bansal et al. (2005).

The cash flow beta measures the cash flow risk exposure 𝛾𝑖 (cash flow beta) as the covariance of demeaned real cash flow

growth rates with the sum of several lags of demeaned real aggregate consumption growth rates:

𝑔𝑖,𝑡 = 𝑎𝑖 + 𝛾𝑖
(

1
𝐾

𝐾∑︁
𝑘=1

𝑔𝑐,𝑡−𝑘

)
+ 𝑢𝑖,𝑡 (2.3)

𝑔𝑖,𝑡 represents the demeaned log real cash flow growth rate and 𝑔𝑐,𝑡 the demeaned log real growth rate in aggregate

consumption (real, seasonally-adjusted, per capita). 𝑡 is indicating years. We use 𝐾 = 2 9. We calculate the cash flow 𝛾𝑖

by estimating the time-series regression of equation (2.3) on a firm level. We then plot these estimated risk exposure 𝛾𝑖

against the corresponding contemporaneous cumulative average cash flow growth rate (cagr over the total estimation period

10). Figure 2 presents the respective regression results 11.

Cash flows are calculated using data from the merged CRSP/Compustat database 12 and consumption data is taken from

National Income and Product Account tables at the Bureau of Economic Analysis (see Appendix B for more details on the

data).

Also for the cash flow beta, another measure of risk exposure, we observe a statistically significant, positive linear relationship

between the beta and the cash flow growth rate level.

Note that, for the definition of the cash flow beta 𝛾𝑖 , one already sees the linearity of the risk exposure to the cash flow

growth rate level directly from equation (2.3), as the slope estimation in a univariate regression model is by definition linearly

proportional to the dependent variable, which is the cash flow growth rate level in this case.

These results strengthen the motivation behind the framework of an expected return process that borrows its term structure

from the assumed cash flow growth rate process. We build this logic into a DCF model in the next section.

9Same period as 𝐾 = 8 in equation (2.1), when the regression was based on quarterly data
10Note that the cagr range is smaller than in figure 1. As we use yearly data in regression model (2.3), we estimate the time-

series model over the total sample for each firm. Thus, the total estimation period is longer than for model (2.1), so naturally high
contemporaneous cash flow cagr’s are less frequently observed.

11We make the fit in a quantile regression model to the median, as the consumption beta estimation is prone to generate positive
outliers and as estimating the median relationship is more relevant for a per firm statement than an estimate based on the mean.

12Using the indirect cash flow method: free cash flow = net income + accounting costs - changes in operating working capital - capital
expenditures; Note that Bansal et al. (2005) find that risk exposure estimates is reasonably insensitive to how cash flows are measured.
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Figure 2: Cash flow beta plotted against the cash flow growth rate. The risk exposure increases with the absolute level of
the cash flow growth rate in a linear fashion. The green line is the regression fit, the black lines are the 95% confidence
intervals and the blue crosses display the aggregated data points (note that the regression is based on unaggregated data,
but in order not to overload the figure, we aggregated the data points into quantile bins of the cash flow growth rate). The
results are focused on positive growth rates only, as for negative growth, other dynamics come into play, which are not of
interest here.

3. Cost of Capital Model Driven by Cash Flow Growth

As discussed before, using the constant internal cost of capital (ICC) model as proxy for the expected return for the next

period has a major drawback. A constant ICC does not have the interpretation of an investment return, as its constant

term structure fails to reflect the time-varying risk exposure associated with time-varying growth rates. We correct for this

drawback by introducing an expected return process with the same term structure as the assumed growth rate process. This

section now uses this time varying expected return process in the context of a DCF model as well as in an ICC model.

Our approach is in spirit most similar to what is presented by Da (2009). Using a model of equity strips, he shows that a high

initial risk premium (stemming from consumption risk) decreases with time and the model choice of the cash flow process

thereby determines the expected risk premium.

3.1. A DCF Model with a Time-Varying Discount Rate

This section uses the idea of a time-varying discount rate with the same term structure as the growth rate in the context of a

DCF model. First we present the DCF equation in continuous form.

𝑃𝑉𝑡 =

∞∫
𝑡

d𝜏 𝑒
−

𝜏∫
𝑡

d𝑡′ 𝑟 (𝑡′)
E𝑡 [𝑐(𝜏)] (3.1)

The index 𝑡 represents the time, 𝑃𝑉𝑡 is the present value of all future expected cash flows: E𝑡 [𝑐𝜏] is the expected, at time

𝑡, cash flow 𝑐 at future time 𝜏 > 𝑡 . The term 𝑒
−

𝜏∫
𝑡

d𝑡′ 𝑟 (𝑡′)
is the time-varying discount factor using the time-varying expected
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return 𝑟 (𝑡 ′). We now impose a general structure for the evolution of the firm’s cash flows:

d𝑐(𝜏) = 𝑔(𝜏)𝑐(𝜏)d𝜏 + 𝜈(𝜏)𝑐(𝜏)d𝑊 ′
𝜏 , (3.2)

where 𝑔 is a growth rate that may change in time. Assuming that 𝑔 is deterministic, we may write

dE𝑡 [𝑐(𝜏)] = 𝑔(𝜏)E𝑡 [𝑐(𝜏)] d𝑡. (3.3)

We model cash flow growth rates as a deterministic mean reverting process (consistent with e.g. Nissim and Penman

(2001), Menzly et al. (2004), Santos and Veronesi (2004) and Da (2009)). Specifically, we make the assumption that the

convergence to the long-term growth rate 𝑔∞ is described by an hyperbolic power law with exponent one

𝑔(𝜏) = 𝑔𝑡 − 𝑔∞
1 + 𝛼(𝜏 − 𝑡) + 𝑔∞ (3.4)

where 𝛼 > 0. This expression (3.4) embodies the assumption that the growth rate of the cash flow converges to 𝑔∞ as

𝜏 → ∞.

As will become obvious later, the specific form of the cash flow growth rate process is not important for the resulting firm

valuation in our model13. In principle, we can choose any other deterministic process in equation (3.4).

Solving equation (3.3) with (3.4) and initial condition E𝑡 [𝑐(𝜏 = 𝑡)] = 𝑐𝑡 yields

E𝑡 [𝑐(𝜏)] = 𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞
𝛼 𝑒𝑔∞ (𝜏−𝑡) . (3.5)

Inserting equation (3.5) into (3.1), we get

𝑃𝑉𝑡 =

∞∫
𝑡

d𝜏 𝑒
−

𝜏∫
𝑡

d𝑡′ 𝑟 (𝑡′) [
𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞

𝛼 𝑒𝑔∞ (𝜏−𝑡)
]

(3.6)

Motivated by the findings presented in section 2, we now suggest to use a scaled version of the cash flow growth rate

process as time-varying discount rate14

𝑟 (𝑡 ′) = 𝑟 𝑓 ,𝑡′ + 𝑎
(

𝑔𝑡 − 𝑔∞
1 + 𝛼(𝑡 ′ − 𝑡) + 𝑔∞

)
. (3.7)

13In short, this is because of a compensation arising when the time-varying discount rate is proportional to the growth rate process,
whatever its shape. In other words, our valuation model is not sensitive to the form of the cash flow growth rate process.

14In the CCAPM, the excess return 𝑟𝑒𝑖,𝑡 of firm 𝑖 is a function of the risk exposure (𝛽𝑖,𝜏 , the consumption beta) scaled by the price of
risk (𝜆𝜏 , the consumption growth rate), so 𝑟𝑒𝑖,𝑡 = 𝛽𝑖,𝜏 · 𝜆𝜏 . From section 2, we know that 𝛽𝑖,𝜏 ∝ 𝑏 · 𝑔𝑖,𝜏 , with 𝑏 being the slope of figure
1 and 𝑔𝑖,𝜏 being the cash flow growth rate for firm 𝑖. Thus, 𝑟 ∝ 𝑏 · 𝑔𝑖,𝜏 · 𝜆𝜏 . Thus, 𝑎 = 𝑏 · 𝜆𝜏 , the slope of figure 1 scaled by the price
of consumption risk. Note that we neglect the intercept from figure 1 in this derivation, as it does not have a term structure by definition
and is not firm specific.
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The proposed time-varying discount rate properly reflects the assumed risk exposure at each future point in time stemming

from the assumed growth rate path. Here, 𝑎 is the scaled slope of figure 1, which we later estimate to be 𝑎 ≈ 0.64 (see

lower panel of figure 4 or Appendix I). Inserting this into a DCF model leads to

𝑃𝑉𝑡 =

∞∫
𝑡

d𝜏 𝑒
−

𝜏∫
𝑡

d𝑡′

=𝑟 (𝑡′) , the time-varying discount rate︷                                    ︸︸                                    ︷[
𝑟 𝑓 ,𝑡′ + 𝑎

(
𝑔𝑡 − 𝑔∞

1 + 𝛼(𝑡 ′ − 𝑡) + 𝑔∞
)] [

𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞
𝛼 𝑒𝑔∞ (𝜏−𝑡)

]
. (3.8)

This is a first important result of our paper.

DCF models are fundamentally driven by the assumed future path of cash flow growth and the discount rate used to value

these uncertain future cashflows, with variations in either of these key assumptions producing enormous variability in the

models’ determination of fair value, thereby limiting their practical utility. Our model solves this problem. By using a time-

varying discount rate that is proportional to the assumed growth rate process, our valuation model is less sensitive to the

cash flow growth rate process assumptions, as the discount rate is proportional to the assumed cash flow growth rate

term structure, such that these two naturally complementary variables interact to massively reduce the range of reasonable

valuation outcomes. This important feature greatly enhances the value of a DCF model using our time-varying discount rate

versus models that use either a constant discount rate or even a time-varying discount rate that is not explicitly proportional

to the modelled path of future cash flow growth.

The framework presented in this section is in contrast to most valuation models, which use constant discount rates, as

e.g. the CAPM or the Fama-French three and five factor models. Guo (2004) attributes the failure of the CAPM from being

empirically validated to precisely this static nature. Our idea is also supported by the work of Harvey (1989) and Jagannathan

and Wang (1996), who introduce a conditional CAPM using time-varying beta’s or risk premia, as well as Lyle and Wang

(2015), who argue that a constant discount rate might be appropriate for the long term, but not suitable to value start-up or

high growth firms. And even the (American Finance Association) presidential address of Cochrane (2011) highlighted the

importance of time-varying discount rates in contemporaneous finance research.

3.2. A time-varying internal cost of capital (ICC) model

Equating equation (3.6) with the observable market value 𝑀𝑡 , we get

𝑀𝑡 =

∞∫
𝑡

d𝜏 𝑒
−

𝜏∫
𝑡

d𝑡′ 𝑟 (𝑡′) [
𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞

𝛼 𝑒𝑔∞ (𝜏−𝑡)
]
. (3.9)

The only unknown now is the expected return term structure
𝜏∫
𝑡

d𝑡 ′ 𝑟 (𝑡 ′). If we assume 𝑟 (𝑡 ′) = 𝑟 is constant over time, we

get the cICC of this ICC model:

𝑟𝑐𝐼𝐶𝐶 ≡ min
𝑟

| |𝑀𝑡 −
∞∫
𝑡

d𝜏 𝑒−𝑟 (𝜏−𝑡)
[
𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞

𝛼 𝑒𝑔∞ (𝜏−𝑡)
]
| | . (3.10)
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We have discussed above the drawbacks of using the 𝑟𝑐𝐼𝐶𝐶 as proxy for the next period expected return. We now turn to a

more appropriate model choice for the expected return process than to assume that it has a flat term structure.

As before, we build on the insights of section 2 that the expected return’s term structure should be the same as the one of

the assumed cash flow growth rate. But now, in an ICC model, this expected return process is additionally a function of the

current price level 𝑀𝑡 , or put different, of the risk exposure to a value factor (e.g. the price to cash-flow ratio15). Thus, the

general form of the expected return process is not clear yet, as the process of the risk exposure to the value factor is not yet

defined.

As discussed in section 2.1, intuition suggests that a valuation multiple of a high growth firm is compressed while the growth

rate of the firm converges to the industry average. And while the valuation multiple is assumed to dilute some of the return

from cash flow growth, it should not dilute all of it, because who would otherwise invest in the inherent riskier high growth

firms. We thus assume that the price-to-cash flow ratio converges to an industry average with the same convergence process

as the cash flow growth rate (consistent with e.g. Nissim and Penman (2001)). Or, in more academic terms, we assume

that the risk exposure to a value factor follows a convergence process as given by equation (3.4) too, with the same 𝛼 (i.e.

it converges with the same time dynamics as the growth rate), but with other starting and end values.

Thus, the expected return process is a linear combination of two term structures, one stemming from the cash flow growth

rate process and the other from the simultaneous valuation multiple compression16. Due to the simultaneity, both term

structures are assumed to have the same 𝛼’s, but different starting and end values, which then again results in a convergence

process with the same 𝛼 17. Thus, the general form of the expected return process is given by

𝑟 (𝜏) = 𝑟𝑡 − 𝑟∞
1 + 𝛼(𝜏 − 𝑡) + 𝑟∞ . (3.11)

In this equation, the starting and end values of the total expected return process are denoted by 𝑟𝑡 and 𝑟∞ respectively.

The long-term value 𝑟∞ is thereby the constant ICC after convergence of the cash flow growth rate and the cash flow-to-

price ratio to the industry average. It is given by the ICC implied by the Gordon Growth model under the assumption of

convergence of the cash flow growth rate and cash flow-to-price ratio to the industry average, so 𝑔𝜏 = 𝑔∞ and 𝑐𝜏
𝑀𝜏

= 𝑟𝑐 𝑓 𝑦

(cfy for ‘cash flow yield’) respectively. If we define the time of convergence of the cash flow growth rate as 𝑡𝑐 , we can write

15We call the price-to-cash flow ratio the risk exposure to a value factor. If one divides both sides of equation (A.2) by book value, one
could also argue that the price-to-book ratio reflects the risk exposure to the value factor, and the cash flow-to-book ratio reflects the
risk exposure to the profitability factor. Nevertheless, the price-to-cash flow ratio reflects both those dynamics, so we do not differentiate
further here.

16This can easily be seen from the APT (presented in Appendix H), given that the price of risk does not have a firm specific term
structure.

17Equation (3.11) is a linear combination of a scaled version of the cash flow growth rate term structure and the price-to-cash flow
ratio term structure, both of which are given by equation (3.4), with different starting and end values, but the same 𝛼’s. And since they
have the same 𝛼’s for the convergence processes, it is a linear combination of the respective risk exposure to growth and value in each
point in time.
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𝑟∞ with the Gordon Growth model as

𝑟∞ = 𝑟𝜏≥𝑡𝑐 =
𝑐𝜏
𝑀𝜏

(1 + 𝑔𝜏) + 𝑔𝜏 = 𝑟𝑐 𝑓 𝑦 (1 + 𝑔∞) + 𝑔∞ , (3.12)

where 𝑟𝑐 𝑓 𝑦 is the cash flow yield of the industry and 𝑔∞ is the cash flow growth rate of the industry. In that sense, 𝑟∞ is the

industry ICC.

Inserting equation (3.11) into equation (3.6), we numerically solve for the only unknown 𝑟𝑡 which is solution of

min
𝑟𝑡

| |𝑀𝑡 −
∞∫
𝑡

d𝜏 𝑒
−

𝜏∫
𝑡

d𝑡′
(

𝑟𝑡−𝑟∞
1+𝛼(𝑡′−𝑡 ) +𝑟∞

) [
𝑐𝑡 (1 − 𝛼(𝜏 − 𝑡)) 𝑔𝑡−𝑔∞

𝛼 𝑒𝑔∞ (𝜏−𝑡)
]
| | . (3.13)

Last, we can obtain the next period expected return 𝑟 (𝑡 + 1) using equation (3.11) with e.g. 𝛼 = 1, 𝜏 = 𝑡 + 1, 𝑟∞ as well as

the estimated 𝑟𝑡 . We denote the resulting next period expected return from the time-varying ICC model by 𝑟 𝑡 𝑣 𝐼𝐶𝐶 .

𝑟 𝑡 𝑣 𝐼𝐶𝐶 ≡ 𝑟 (𝑡 + 1|𝛼, 𝑟𝑡 , 𝑟∞) . (3.14)

For the rest of the paper, we will use the notation 𝑟 𝑡 𝑣 𝐼𝐶𝐶 to indicate next period expected returns predicted by the time-

varying ICC model (tvICC for ‘time-varying ICC’), given by equation (3.14), and 𝑟𝑐𝐼𝐶𝐶 to indicate expected returns predicted

by the constant ICC model (cICC for ‘constant ICC’), given by equation (3.10).

Note that from a theoretical point of view, our 𝑟 𝑡 𝑣 𝐼𝐶𝐶 is in the spirit of the loglinearized identity of Campbell and Shiller

(1988). They generalize the Gordon growth model to the case in which the quantities are time-varying and relate the price-

dividend ratio of an asset to its expected future log dividend growth and expected log returns. Our model is based on the

same variables. But instead of using them in a two-period model based on loglinearization, which is shown to be problematic

by Gao and Martin (2021), we solve for the ICC structure directly and thus capture more complex dynamics.

3.3. Properties of the model

Salient properties of the time-varying ICC process are presented in figure 3 and the corresponding next period expected

return 𝑟 𝑡 𝑣 𝐼𝐶𝐶 is studied in figure 4.

In figure 3, the parameters have been chosen such that the price-to-cash-flow ratio is already at the industry average.

The time-varying ICC is thus just a scaled version of the cash flow growth rate process. And due to the empirically found

linearity between the risk exposure and the cash flow growth rate, the time-varying ICC properly reflects the risk exposure

at each future point in time. And since, in expectation, the future risk exposure is appropriately reflected, the time-varying

ICC process, also at each future point in time, has the interpretation of an investment return that in expectation should be

realised.

Let us give this point a bit more colour. The expected return process reflects the term structure of the risk exposure implied

by the assumed cash flow growth rate path. Thus, at each future point in time, the expected return appropriately reflects the
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assumed risk exposure. Even in the long run this is true, as we assume that the total expected return process converges

to the industry ICC given by the Gordon Growth model, so the expected return converges to a realistic, realisable long term

return. Thus, at each future point in time, our process reflects the return an investor should expect given current information,

which is in stark contrast to a flat term structure cICC model, as discussed before.

An investment today in the respective firm would result in the expected return process displayed by the time-varying ICC

process of figure 3, and not in the constant compound return displayed by the constant ICC. Thus, the drawback of using

a cICC model as proxy for the investment return is resolved by our time-varying ICC model, which can serve as accurate

proxy for the expected return and the cost of capital.
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Figure 3: Salient properties of the time-varying ICC process given by equation (3.11), with 𝑟∞ given by equation (3.12) and
𝑟𝑡 solved with our time-varying ICC model given by equation (3.14) with the input parameters {𝑀𝑡 = 100𝑚𝑛, 𝑔𝑡 = 0.2,
𝑔∞ = 0.01, 𝛼 = 1, 𝑐(𝑡) = 5𝑚𝑛, 𝑟∞ = 0.061} for 𝜏 = {1 : 15} years into the future. The horizontal dotted-dashed line
indicates the value given by equation (3.10) of the constant ICC model.

The salient properties of the next period expected return of the time-varying ICC model, 𝑟 𝑡 𝑣 𝐼𝐶𝐶 , are presented in figure 4.

One can observe slopes as well as non-linear dependences with regard to all input parameters, which are in general stronger

than for the cICC 𝑟𝑐𝐼𝐶𝐶 given by equation (3.10). The expected return decreases with higher initial market prices (upper

panel), increases with higher initial cash flow levels (middle panel) and increases with higher initial cash flow growth (lower

panel). The 𝑟𝑐𝐼𝐶𝐶 exhibits the same monotonic dependence as the 𝑟 𝑡 𝑣 𝐼𝐶𝐶 , but with smaller amplitudes. The 𝑟 𝑡 𝑣 𝐼𝐶𝐶

nicely recovers the empirically estimated linearity between the consumption beta (i.e. the scaled expected return) and the

cash-flow growth rate level, inherent to our model construction18.

18The value of the slopes between figure 1 and the lower panel of figure 4 are not comparable, since the former displays the return
and the latter the beta. But using the proportionality of the return to the beta, we present a comparison of the theoretically predicted and
the empirically estimated slope in Appendix I.

14

Dynamical Cost of Capital Driven by Dynamical Cash Flows

125



15

50 100 150 200 250

M t

0

0.2

0.4

0.6

re
tu

rn

rtvICC

rcICC

5 10 15 20

ct

0

0.2

0.4

0.6

re
tu

rn

rtvICC

rcICC

0 0.1 0.2 0.3 0.4

g t

0

0.2

0.4

0.6

re
tu

rn

rtvICC

rcICC

Figure 4: Properties of the next period expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶 of the time-varying ICC model, given by equation (3.13),
compared with the constant ICC 𝑟𝑐𝐼𝐶𝐶 given by equation (3.10), as a function of a single parameter, while the others are
fixed. The base values for the input parameters are: {𝑀𝑡 = 100𝑚𝑛, 𝑔𝑡 = 0.2, 𝑔∞ = 0.01, 𝛼 = 1, 𝑐(𝑡) = 5𝑚𝑛, 𝑟∞ = 0.061}.
𝑀𝑡 is the market price of the asset; 𝑐𝑡 is the cash flow per unit period; 𝛼 controls the rate of decay of the cash flow growth
to the long-term industry average according to equation (3.4); 𝑔𝑡 is the growth rate of the cash flows defined in expression
(3.2). The parameter set implicitly assumes that the price-to-cash flow ratios is already at its industry average, in order to
isolate the return contribution stemming from the assumed cash flow growth rate path.

Chapter 4. Dynamical Cost of Capital Driven by Dynamical Cash Flows

126



4. Statistical Significance for Future Realised Returns

4.1. Preliminaries

We now test the quality of the prediction of realised returns by the expected returns of the time-varying ICC model. We use

the merged compustat/CRSP database (see Appendix B for details on the data) to numerically estimate the next period

expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶 (expected return as predicted by our time-varying ICC model) given by equation (3.13) for each firm

𝑖 at each month 𝑡 and use a Fama MacBeth (FM) regression approach to test if it has statistical relevance for future equity

returns 19. The realised return from month 𝑡 to month 𝑡 + 1 is called 𝑅𝑖,𝑡+1.

In order to benchmark our results, we further provide the empirical results for the next period expected return of the constant

ICC model, 𝑟𝑐𝐼𝐶𝐶 . In addition, we also analyse the significance of our next period expected return proxy 𝑟𝑐𝐼𝐶𝐶 if we control

for well known factors. We choose the value factor 𝐵𝑀𝑖,𝑡 , the investment factor 𝐼𝑁𝑉𝑖,𝑡 and the profitability factor 𝑂𝑃𝑖,𝑡 as

only these factors can be motivated by theory (e.g. by the model presented in equation (A.1), as discussed in Fama and

French (2015) 20), and thus present the ideal benchmark for our also theoretically well founded 𝑟 𝑡 𝑣 𝐼𝐶𝐶 .

The summary statistics as well as correlations among all variables are presented in the Appendix C and Appendix D

respectively.

Note that we do the empirical analysis on a firm level basis, using a FM regression approach, because it is our goal to provide

an expected return proxy at the firm level. And since diversification into portfolios can mask cross-sectional phenomena in

individual stocks and the choice of firm characteristics to sort portfolios has an impact on the significance and magnitude of

risk premia, the portfolio approach is not appropriate for our purposes (Collot and Hemauer, 2020).

4.2. Fama MacBeth Regression Using the Expected Return

As described before, we want to analyse whether the calculated next period expected return 𝑟 (𝑡 + 1) has predictive power

for future equity returns, and how good its forecasts are relative to a constant ICC model and to those linear factor loading of

Fama and French (2015), which can be motivated from theory. We thus run the following four FM regressions (see appendix

Appendix E for more details on the FM regression approach):

𝑅𝑖,𝑡+1 − 𝑟 𝑓 ,𝑡 = 𝑎1,𝑡 + 𝛽𝑡 𝑣 𝐼𝐶𝐶𝑡 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 + 𝜖1,𝑖,𝑡 (4.1)

𝑅𝑖,𝑡+1 − 𝑟 𝑓 ,𝑡 = 𝑎2,𝑡 + 𝛽𝑐𝐼𝐶𝐶𝑡 𝑟𝑐𝐼𝐶𝐶𝑖,𝑡 + 𝜖2,𝑖,𝑡 (4.2)

19Appendix F discusses why empirical problems related to the FM regression approach are less pronounced for ICC expected return
proxies.

20Using clean surplus accounting and some minor manipulation, we can write cash flows (i.e. dividends) as 𝑐𝑡 = (𝑒𝑡 − Δ𝑏𝑣𝑡 ) (see
Miller and Modigliani (1961) for details). So the cash flow is given by the earnings 𝑒 and the change in book value of equity Δ𝑏𝑣.
Fama and French (2015) argue as followed. The decomposition of cash flows to 𝑐𝑡 = (𝑒𝑡 − Δ𝑏𝑣𝑡 ) in equation (A.1) implies that the
relevant expected return of each stock is determined by its price-to-book ratio and expectations of its future profitability and investment.
If variables not explicitly linked to this decomposition, such as the size factor of the Fama and French (1992) three factor model or the
momentum factor introduced in Carhart (1997), help forecast returns, they must do so by implicitly improving forecasts of profitability
and investment or by capturing horizon effects in the term structure of expected returns.
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𝑅𝑖,𝑡+1 − 𝑟 𝑓 ,𝑡 = 𝑎3,𝑡 + 𝛽𝐵𝑀𝑡 𝐵𝑀𝑖,𝑡 + 𝛽𝐼 𝑁𝑉𝑡 𝐼𝑁𝑉𝑖,𝑡 + 𝛽𝑂𝑃𝑡 𝑂𝑃𝑖,𝑡 + 𝜖3,𝑖,𝑡 (4.3)

𝑅𝑖,𝑡+1 − 𝑟 𝑓 ,𝑡 = 𝑎4,𝑡 + 𝛽𝑡 𝑣 𝐼𝐶𝐶𝑡 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 + 𝛽𝐵𝑀𝑡 𝐵𝑀𝑖,𝑡 + 𝛽𝐼 𝑁𝑉𝑡 𝐼𝑁𝑉𝑖,𝑡 + 𝛽𝑂𝑃𝑡 𝑂𝑃𝑖,𝑡 + 𝜖4,𝑖,𝑡 (4.4)

The idea of these four regression models is to first analyse 𝑟 𝑡 𝑣 𝐼𝐶𝐶 in a univariate FM regressions (equation (4.1)), then

compare it to 𝑟𝑐𝐼𝐶𝐶 as the benchmark model (equation (4.2)), then estimate the standard 𝐵𝑀𝑖,𝑡 (book-to-market factor

loading), 𝐼𝑁𝑉𝑖,𝑡 (investment factor loading), 𝑂𝑃𝑖,𝑡 (operating profitability factor loading) in the multivariate FM regression

(equation (4.4)) to then see if those estimates change once we control with our 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 measure (equation (4.4)).

The independent variables are the factor loadings 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 , 𝑟𝑐𝐼𝐶𝐶𝑖,𝑡 , 𝐵𝑀𝑖,𝑡 , 𝐼𝑁𝑉𝑖,𝑡 , 𝑂𝑃𝑖,𝑡 , which have been calculated for

each firm 𝑖 at each month 𝑡. The dependent variable is the realised monthly excess return (in excess of the risk-free rate

𝑟 𝑓 ,𝑡 ) of stock 𝑖 measured from month 𝑡 to month 𝑡 + 1. In order to have equal units, we also work with monthly returns for

𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 as well as for 𝑟𝑐𝐼𝐶𝐶𝑖,𝑡 .

Each month 𝑡, the cross-sectional linear regressions over all firms 𝑖 are estimated. Thus, the resulting estimates of {𝛽𝑡 𝑣 𝐼𝐶𝐶𝑡 ,

𝛽𝑐𝐼𝐶𝐶𝑡 , 𝛽𝐵𝑀𝑡 , 𝛽𝐼 𝑁𝑉𝑡 , 𝛽𝑂𝑃𝑡 } provide the estimated prices of risk or risk premia for all the factors at month 𝑡. The time

averages of these estimations of the monthly price of risk are then taken as the final estimates for the prices of risk for

all the factors. To examine whether these obtained prices of risks are statistically different from zero, we calculate the

standard errors and the associated p-values to test the null hypothesis that the average coefficients are equal to zero. The

standard errors are adjusted for heteroscedasticity and auto-correlation, following Newey and West (1987). Note that, in

a FM regression, a statistically significant average slope coefficient indicates a cross-sectional relation between the given

independent variable and the dependent variable in the average time period 21.

All results are presented in table 1.

21Appendix F discusses why empirical problems related to the FM regression approach are less pronounced for ICC expected return
proxies.
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model (4.1) model (4.2) model (4.3) model (4.4)

𝛽𝑡𝑣𝐼𝐶𝐶 0.072** - - 0.077***

𝛽𝑐𝐼𝐶𝐶 - 0.1 - -

𝛽𝐼𝑁𝑉 - - -0.01*** -0.0056***

𝛽𝑂𝑃 - - 0.0037*** -0.0001

𝛽𝐵𝑀 - - 0.0016** 0.0006
∗, ∗∗, ∗ ∗ ∗ indicates 𝑝 < 0.1, 𝑝 < 0.05, 𝑝 < 0.01 respectively.

Table 1: Fama MacBeth regression results and their respective p-values.

Two points deriving from those results are worth highlighting.

(1) Comparing the estimates of the two univariate models (4.1) and (4.2), 𝛽𝑡 𝑣 𝐼𝐶𝐶 is found significant, while 𝛽𝑐𝐼𝐶𝐶 is not. So

we find a cross-sectional relation between our 𝑟 𝑡 𝑣 𝐼𝐶𝐶 and the realised returns, while there is none for the 𝑟𝑐𝐼𝐶𝐶 . And the

parameter estimate of 𝛽𝑡 𝑣 𝐼𝐶𝐶 is positive, implying that a higher next period expected return is followed by a higher realised

return, which makes sense economically 22. The two models only differ in the assumptions with respect to the expected

return process, namely that (4.1) stems from a time-varying ICC process that properly reflects the risk exposure at each

future point in time, while (4.2) stems from the assumption that the expected return is constant over time. Thus, the model

with the time-varying expected return process has some value. Note that the insignificance of 𝛽𝑐𝐼𝐶𝐶 is consistent with the

results of Botosan et al. (2011).

(2) Comparing the estimates of the two multivariate models (4.3) and (4.4), adding the next period expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶 to

the regression strongly changes the estimates of the well known OP and BM factor loading. While BM and OP are significant

in model (4.3), they loose significance in (4.4) after controlling with the next period expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶 . Remarkably, the

estimate of 𝛽𝑡 𝑣 𝐼𝐶𝐶 has almost the same numerical value as in the univariate model 𝛽𝑡 𝑣 𝐼𝐶𝐶 and again is significant even

after controlling for all other factor loadings (i.e. 𝐵𝑀𝑖,𝑡 , 𝐼𝑁𝑉𝑖,𝑡 and 𝑂𝑃𝑖,𝑡 ). One can thus conclude that 𝑟 𝑡 𝑣 𝐼𝐶𝐶 captures

the dynamics intended to be reflected by OP and BM better than they do. As the model behind 𝑟 𝑡 𝑣 𝐼𝐶𝐶 is able to reflect

non-linear dynamics, this is not completely surprising. The estimate for INV on the other hand stays significant even after

controlling with 𝑟 𝑡 𝑣 𝐼𝐶𝐶 , while being reduced by almost half in numerical value.

4.3. Economic significance

Statistically significance is important but not sufficient and should be complemented by a test of the economic value of our

time-varying ICC model. For this, we use the expected return models 𝑟 𝑡 𝑣 𝐼𝐶𝐶 and 𝑟𝑐𝐼𝐶𝐶 to implement a straightforward

trading strategy. Each year by end of June, we perform our expected return forecasts for all firms, and group them in five

quintiles, with the first (resp. last) quintile corresponding to the 20% lowest (resp. highest) return forecasts. We then form five

22A change in the expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 of 1% on average (over all companies and times) results in a change in the observed return

of that company of 0.072% for the following month (0.01∗ 𝛽𝑡 𝑣 𝐼𝐶𝐶 ). We show that this can be translated into a valuable trading strategy
below.
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equally weighted portfolios respectively invested in the firms in each of the five quintiles. For instance, portfolio 5 is invested

in the firms making the fifth quintile of the distribution of expected return forecasts. Each portfolio is formed at the end of

June of each year and is held for one year. Then, the five quintiles are recalculated for the next year. The corresponding

portfolios sell their positions and then reinvest on the firms making the new quintiles. For instance, portfolio 5, which was

invested in the firms making the fifth quintile of the distribution of expected return forecasts of the previous time period, is

exiting all its positions and buying all the firms in the new calculated fifth quintile. The quality of this strategy is estimated by

calculating the information ratio against the benchmark portfolio consisting of all firms. The left panel on figure 5 plots the

information ratio of the five quintile portfolios for the 𝑟 𝑡 𝑣 𝐼𝐶𝐶 and 𝑟𝑐𝐼𝐶𝐶 models.

Since we claim that our model ideally discounts future risk exposure, stemming from the growth path, we additionally want to

gauge how good our model is in distinguishing between good and bad performing firms within a subset of firms with only high

cash flow growth. This is displayed on the right panel on figure 5. We first remove a fraction of the slowest growing firms from

the initial set of all firms. Second, we then construct the portfolio as the 5th quintile, i.e. the 20% highest return forecasts,

of the remaining fraction of fast growing firms. The remaining fraction of fast growing firms is given by the x-axis in figure 5.

The information ratio is thereby always calculated against the benchmark consisting of all firms in the corresponding fraction

of fast growing firms. The idea behind this approach is to analyse how the quality of our model to distinguish between the

good performing firms and the bad performing firms changes, if we apply it on a subset of firms characterized by high cash

flow growth, as those firms are usually more noisy by nature, and thus more difficult to value. And since we claim that our

model ideally discounts future risk exposure stemming from the growth path, we want to analyse how consistent our model

is in distinguishing the good performing firms from the bad performing ones within a subset of firms especially exposed to

this growth risk.
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Figure 5: Left panel: information ratio against the benchmark portfolio consisting of all firms plotted as a function of the
quintile order defined as follows. Using the expected return models 𝑟 𝑡 𝑣 𝐼𝐶𝐶 and 𝑟𝑐𝐼𝐶𝐶 in a trading setting, each year by
end of June, we perform our expected return forecasts for all firms, and group them in five quintiles, with the first (resp. last)
quintile corresponding to the 20% lowest (resp. highest) expected return forecasts. We then form five portfolios consisting
of the firms in each of the five quintiles. For instance, portfolio 5th is always made with firms found in the 5th quintile. Each
portfolio is formed at the end of June of each year and is held for one year. Then, each quintile portfolio is recalculated for the
next year and so on. Right panel: Information ratio of the 5th quintile among the fraction of faster growing firms given along
the x-axis. The information ratio is calculated against the benchmark consisting of all firms in the corresponding fraction of
faster growing firms. For instance, 70% means that we have removed the 30% slowest growth firms among the whole set
of firms and then constructed the 5th quintile (the 20% highest return forecasts) of the 70% faster growing firms. And the
information ratio is calculated against the benchmark consisting of all firms in the 70% faster growing firm set.

The following points are worth highlighting.

(1) Left panel: The time-varying ICC model shows an approximately smooth monotonic increase in the information ratio,

with the largest increase from the 4th to the 5th quintile. This suggests that 𝑟 𝑡 𝑣 𝐼𝐶𝐶 can distinguish between good and bad

performing firms. The constant ICC model on the other hand exhibits a noisy plateau for the three top quintiles, suggesting

that the model 𝑟𝑐𝐼𝐶𝐶 cannot distinguish between good and bad performing firms. This is in line with the results of table 1,

in which 𝑟 𝑡 𝑣 𝐼𝐶𝐶 is shown to have predictive power for future equity returns, while 𝑟𝑐𝐼𝐶𝐶 has none.

(2) Left panel: The 5th quintile, which is made of the firms that are expected to be the top 20% performers in each one

year investment period, is considerably better for the 𝑟 𝑡 𝑣 𝐼𝐶𝐶 than for the 𝑟𝑐𝐼𝐶𝐶 , again suggesting that 𝑟 𝑡 𝑣 𝐼𝐶𝐶 has value in

forming portfolios of good performing firms.

(3) Right panel: The more we focus on a subset of faster growing firms prior to constructing the 5th quintile portfolio with the

𝑟𝑐𝐼𝐶𝐶 and 𝑟 𝑡 𝑣 𝐼𝐶𝐶 models, the worse is the information ratio of the 𝑟𝑐𝐼𝐶𝐶 portfolio, while the performance of the 𝑟 𝑡 𝑣 𝐼𝐶𝐶

portfolio tends to increase even further. This clearly shows that our model is consistently good in distinguish the good

performing firms from the bad performing firms, even within a subset of fast growing, and thus rather noisy firms. This again

shows that it is key to reflect the future risk exposure stemming from the growth path with a time-varying expected return

structure.

20

Dynamical Cost of Capital Driven by Dynamical Cash Flows

131



(4) Last, the absolute level of the information ratio of the time-varying ICC model is also reasonably good. And focusing only

on the 50% fastest growing firms prior to choosing the 20% best expected performing firms (last data point on the right of

the right panel indicated as ‘50%’ on the abscissa), the over-performance of the 𝑟 𝑡 𝑣 𝐼𝐶𝐶 portfolio over the 𝑟𝑐𝐼𝐶𝐶 portfolio is

more than 0.3 as measured by their information ratios.

5. Conclusion

Based on economic intuition and empirical evidence from the CCAPM that risk exposure is linearly proportional to the growth

rate, we argue that the term structure of the expected return should be the same as the one of the cash flow growth rate.

Based on this insight, we motivate an asset pricing model with a time-varying discount rate that reflects the implicitly assumed

risk exposure stemming from the cash flow growth path of the valuation model at each future point in time. In contrast to DCFs

with an expected return with a flat term structure, our valuation model is less sensitive to the assumptions underlying the

cash flow growth rate process, as the discount rate is proportional to the assumed cash flow growth rate term structure, such

that these two naturally complementary variables interact to massively reduce the range of reasonable valuation outcomes.

Similar, we introduce an internal cost of capital model, in which the expected return has a time-varying structure that reflects

the term structure of the implicitly assumed risk exposure stemming from the assumed growth path, as well as the risk

exposure to a value factor at each future point in time. Our time-varying ICC model resolves the major drawback of flat term

structure ICC models when used as proxy for the next period expected return. Indeed, our time-varying ICC process can

be interpreted as an investment return process that can be realised in expectation at each future point in time, as the term

structure of the risk exposure is properly reflected over the future horizon.

We have shown that the time-varying ICC model is superior to the constant ICC model in a FM regression setting, as the

time-varying ICC model is significant in predicting future realised returns, while the constant ICC model is not. As both

models only differ with respect to the structural assumptions of the ICC process, we conclude that a time-varying ICC

process, which reflects the implicitly assumed risk exposure at each future point in time, is key in valuing firms and in

calculating their expected returns. Further, when we use the expected return of the time-varying ICC model as control in a

FM regression with the profitability factor, the investment factor and the book-to-market factor loading, both the profitability

and the value factor loading become insignificant in explaining future realised returns. This suggests that our time-varying

ICC model expected return proxy reflects these dynamics better.

The superiority of the time-varying ICC model is also confirmed in a trading strategy with yearly rebalancing, especially when

focusing on high growth firms for which the time-varying structure does a better job in reflecting the risk exposure stemming

from cash flow growth.
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Appendix A. Constant ICC Model

Discount cash flow (DCF) models are equivalent to dividend discount models (DDMs), but are defined in a broader sense

as dividends are just one way of distributing earnings to shareholder.

The DCF has the following form (we use the letter 𝑐 for free cash flows):

𝑃𝑉𝑡 =
∞∑︁

𝜏=𝑡+1

E𝑡 [𝑐𝜏]∏𝜏
𝑘=𝑡+1(1 + 𝑟𝑡 ,𝑘) (A.1)

The time index 𝑡 represents the time, 𝑃𝑉𝑡 is the present value of all future expected cash flows, E𝑡 [𝑐𝜏] is the at time 𝑡

expected cash flow at a future time 𝜏 > 𝑡 and 𝑟𝑡 ,𝑘 is the discount rate used from time 𝑘 to time 𝑘 + 1.

To calculate the expected return of a stock investment, one can now calculate the ICC by equating equation (A.1) to the

currently observed market price 𝑀𝑡

𝑀𝑡 = 𝑃𝑉𝑡 =
∞∑︁

𝜏=𝑡+1

E𝑡 [𝑐𝜏]∏𝜏
𝑘=𝑡+1(1 + 𝑟𝑡 ,𝑘) . (A.2)

As the left hand side of the equation, 𝑀𝑡 , is observable, an assumption about the future cash flow process leaves the ICC

process
∏𝑇
𝜏=𝑡+1(1 + 𝑟𝜏) (or implied expected return process) as the only unknown.

If the expected return is assumed to have a flat term structure (i.e. constant over time), 𝑟𝜏 = 𝑟 , the rate that equates all

future expected cash flows to today’s price is the cICC.

min
𝑟

| |𝑀𝑡 −
∞∑︁

𝜏=𝑡+1

E𝑡 [𝑐𝜏]
(1 + 𝑟)𝜏 | | . (A.3)

Appendix B. Data Specification

Appendix B.1. Aggregate Consumption and Inflation Data

We use the per capita, seasonally adjusted, real personal consumption expenditures (PCE) on non-durable goods and

services as aggregate consumption, as suggested by Hansen and Singleton (1983). Throughout the paper, conversion to

real values is done by using the corresponding PCE deflator. All data is obtained from the National Income and Product

Account tables at the Bureau of Economic Analysis at the quarterly frequency.

Appendix B.2. Fundamental and Price Data

The fundamental and price data of this paper comes from the merged Compustat/CRSP database (North America and

annual for Compustat, monthly frequency for CRSP). Further we use Ken French’s data library (ken) for the risk-free rate.

The handling of the data, construction of factor loadings and the FM regression analysis is done as suggested by Bali et al.

(2017). As is standard, we exclude financial services firms (SIC codes 6000-6999) (Nallareddy et al., 2018). As the cash

flow is calculated using information from cash flow statements, the relevant period for those measures is 1989-2019, as

SFAS 95 required firms to present a statement of cash flows for fiscal years ending after July 15 1988 only (Nallareddy
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et al., 2018). So for our expected return proxies (𝑟 𝑡 𝑣 𝐼𝐶𝐶 and 𝑟𝑐𝐼𝐶𝐶 ), which are calculated based on cash flow statement

input, the relevant time period is 1989-2019. For the INV, OP and BM factor loading, the period is 1967-2019. Note that the

backfill bias brought up by Fama and French (1999) cannot be a driver of any presented results, as the backfill was 1973 for

Compustat, so the coverage is complete in the relevant time period of our study.

Appendix B.3. Specifics on the Estimation of the Next Period Expected Return

Our goal is to calculate for each company 𝑖 and each month 𝑡 (𝑡 is the time index, indicating the end of a month t) the

next period expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 as predicted by our time-varying ICC model (3.13). We fix the parameter 𝛼 defined in

expression (3.4) at 1 23. Thus, we need monthly data for each firm 𝑖 on {𝑀𝑡 , 𝑔𝑡 , 𝑔∞, 𝑐(𝑡), 𝑟∞}.

𝑀𝑡 is observable at a monthly frequency, so the information available at the end of each month 𝑡 is taken. 𝑔𝑡 is estimated as

the past 3 years cagr of the revenues for each month 24. 𝑐(𝑡) is the past 3 year average of the cash flows for each month.

Cash flows thereby are calculated using the indirect cash flow method 25. 𝑔∞ is calculated as the past 20 year cagr of the

industry revenues for each month, 𝑟∞ = 𝑟𝑐 𝑓 𝑦 (1+𝑔∞) +𝑔∞ where 𝑟𝑐 𝑓 𝑦 is the past 20 years average of the median industry

cash-flow yield for each month.

In order to make sure that the fundamental parameters used in our analysis {𝑔𝑡 , 𝑔∞, 𝑐(𝑡), 𝑟∞} are publicly available at time

𝑡, we follow the procedure described in Bali et al. (2017) in chapter 10. The fundamental data used in the calculation of

𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 of company 𝑖 for the months from July of year 𝑦 + 1 to June 𝑦 + 2 is taken to be the fundamental data from calendar

year 𝑦. The reason for this approach to the timing of the calculation of the 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 is that firms have 3 months from the end

of their fiscal year-ends to report the required data, but many firms fail to meet this deadline. Thus, one generally assumes at

least a six-month gap between the end of the fiscal year and the time at which the fiscal year-end data is publicly available.

For each firm 𝑖, we now have the parameter set {𝑀𝑡 , 𝑔𝑡 , 𝑔∞, 𝑐(𝑡), 𝑟∞} and can thus numerically estimate the expected

return 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 for firm 𝑖 at time 𝑡 using equation (3.13). The next period expected return calculated in this way, 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 , then

is used to explain the realised return of company 𝑖 in the proceeding month 𝑅𝑖,𝑡+1. Thus, the lag between the publication of

the fundamental data used to calculate the expected return 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 and the observed return 𝑅𝑖,𝑡+1 can potentially be larger

than one full year.

Due to other dynamics involved in firms with negative growth rates, we only consider cash flow growth rates larger than 0%

and smaller than 50%.

Note that 𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 and 𝑟𝑐𝐼𝐶𝐶𝑖,𝑡 have units of monthly returns in all empirical results presented in this paper.

Appendix C. Summary statistics

23Note that we find the dependence of the two ICC model’s next period expected return on 𝛼 to be very weak, suggesting that our
empirical results are robust to mis-specifications of the assumed rate of convergence to the long-term asymptotic.

24As usual, revenues are used as proxy for cash flows when calculating the growth rate, since they are less volatile.
25free cash flow = net income + accounting costs - changes in operating working capital - capital expenditures
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mean std skewness kurtosis min 5th quantile 25th quantile median 75th quantile 95th quantile max N

𝑟 𝑡𝑣𝐼𝐶𝐶 0.01 0.021 0.28 14 -0.11 -0.022 0.0012 0.011 0.021 0.039 0.16 1300

𝑟𝑐𝐼𝐶𝐶 0.013 0.011 9.6 160 0.00063 0.0053 0.0084 0.011 0.014 0.024 0.22 1600

INV 0.096 0.3 1.1 23 -2.4 -0.27 -0.021 0.068 0.18 0.57 3.2 3200

OP -0.14 16 -14 1400 -600 -0.9 -0.0077 0.17 0.29 0.54 270 3200

BM -0.54 0.91 -0.69 5.6 -6.6 -2.1 -1 -0.45 0.041 0.75 3.2 3200

𝑅 0.0073 0.17 3.4 76 -0.8 -0.21 -0.072 -0.0038 0.069 0.25 2.8 3800

Table C.2: This table presents summary statistics for our sample. Each month, the mean, standart deviation,

skewness, excess kurtosis, minimum, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile,

maximum and number of data points of the cross-sectional distribution of each variables (𝑟 𝑡𝑣𝐼𝐶𝐶 , 𝑟𝑐𝐼𝐶𝐶 , 𝐵𝑀 ,

𝐼𝑁𝑉 , 𝑂𝑃 and 𝑅) are calculated. The table presents the time-series means for each cross-sectional value.

Appendix D. Correlations

𝑟 𝑡𝑣𝐼𝐶𝐶 𝑟𝑐𝐼𝐶𝐶 INV OP BM 𝑅

𝑟 𝑡𝑣𝐼𝐶𝐶 1 0.882 -0.018 0.001 0.239 0

𝑟𝑐𝐼𝐶𝐶 0.755 1 0.047 0.016 0.178 -0.007

INV -0.007 0.021 1 0.27 -0.279 0.001

OP 0.015 0.008 0.083 1 -0.162 0.051

BM 0.246 0.232 -0.195 0.05 1 0.023

𝑅 0.009 0 -0.02 0.002 0.026 1

Table D.3: This table presents the time-series averages of the monthly cross-sectional Pearson product-moment

and Spearman rank correlations between pairs of 𝑟 𝑡𝑣𝐼𝐶𝐶 , 𝑟𝑐𝐼𝐶𝐶 , 𝐵𝑀 , 𝐼𝑁𝑉 , 𝑂𝑃 and 𝑅. Below-diagonal entries

present the average Pearson product-moment correlations. Above-diagonal entries present the average Spear-

man rank correlation.

Appendix E. Fama MacBeth (FM) regression approach

The regression analysis used to see if a certain factor loading is helpful in forecasting the realised return is the Fama

MacBeth (FM) regression approach (Fama and MacBeth, 1973). In short, it stems from the powerful insight that lack of

predictability, with constant expected returns over time, implies that stock returns are uncorrelated over time, even though

they are correlated across stocks at a given time (Fama and MacBeth, 1973).

We follow the Fama MacBeth (FM) regression approach described in chapter 6 of Bali et al. (2017).

Note that the literature often speaks about different steps in the FM regression, but often there is confusion about how many

steps in total there are, as some never mention the first step. The first step of the FM regression is the time-series regression

to estimate the factor loading, e.g. to estimate the market beta of each firm at each point in time. But as the factor loading

not always has to be estimated, as e.g. for the profitability factor loading (𝑂𝑃𝑖,𝑡 ) of Fama and French (2015) or also our
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𝑟 𝑡 𝑣 𝐼𝐶𝐶𝑖,𝑡 (they can both just be calculated and do not have to be estimated by using a first stage time-series regression), this

step is often not mentioned.

The second step in the FM regression is then to use the factor loadings to run a cross-sectional regression of the dependent

variable 𝑌𝑖,𝑡 (realised returns) on the independent variables 𝑋1𝑖,𝑡 , 𝑋2𝑖,𝑡 , ... (factor loadings) and an intercept:

𝑌𝑖,𝑡 = 𝑎0,𝑡 + 𝛽1,𝑡𝑋1𝑖,𝑡 + 𝛽2,𝑡𝑋2𝑖,𝑡 + ... + 𝜖𝑖,𝑡 (E.1)

The cross-sectional regression used is a standard ordinary-least-squares (OLS) regression. The independent variables are

winsorised at the 0.5 and 99.5 percentiles. So at each time 𝑡, a cross-sectional regression is run. This results in a time-series

of estimated intercepts and slope coefficients 𝑎0,𝑡 , 𝛽1,𝑡 , 𝛽2,𝑡 for each regression model. The estimated slope coefficients

are the price of risk, or risk premium, stemming from the respective risk factor at time t.

The third step is then to compute the time-series averages of the estimated cross-sectional regression coefficients. To

examine whether the average coefficient is statistically different from zero, we then also calculate the standard errors and

the associated t-statistics and p-values to test the null hypothesis that the average coefficient is equal to zero. The standard

errors are adjusted for heteroscedasticity and auto-correlation, following Newey and West (1987).

Interpretation of the results of FM regressions is fairly straightforward. A statistically significant average slope coefficient

indicates a cross-sectional relation between the given independent variable X and the dependent variable Y in the average

time period (Bali et al., 2017). When the regression specification includes more than one independent variable, statistical

significance indicates that a relation between X and Y exists after controlling for the effects of the other independent variables

included in the regression specification (Bali et al., 2017). If the coefficient of interest is statistically significant in one

specification but insignificant when additional controls are added to the specification, then the relation between X and Y

appears to be explained by some linear combination of the added control variables (Bali et al., 2017).

Appendix F. ICCs and the Fama MacBeth regression approach

The Fama MacBeth regression approach is known to have three biases, which we discuss below. However, these biases

are less pronounced for ICC models, which makes the Fama MacBeth regression approach the ideal method to test them.

(1) The first bias is the error-in-variables bias. Under the classical measurement error model, the coefficient estimates are

biased toward zero, which is known as the attenuation bias (Collot and Hemauer, 2020). However, besides the coefficient

of the imprecisely measured variable, the coefficients of the other variables are also biased - known as contamination bias -

and the direction of this bias is in general unknown (Collot and Hemauer, 2020). The two-pass regression approach suffers

from the error-in-variables problem, because it uses the estimated coefficients from the first stage - which are by nature

measured imprecisely - as explanatory variables in the second stage, where they introduce an error-in-variables bias in the

price of risk estimates. Since ICC models are not estimated in a first stage, but can directly be calculated, this problem is

not of relevance here.
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(2) The second bias is the omitted-variable bias, which refers to the bias in the coefficient estimates obtained from regres-

sions when some important explanatory variables are omitted from the model (Collot and Hemauer, 2020). The two-pass

regression approach suffers from the omitted-variable bias in both stage one and two, as one in principle would have to

always include all relevant factors in each regression. The omitted-variable bias in stage one then leads to a measurement

error of the factor loading and thus even introduces an error-in-variables bias in the price of risk estimates. As in point (1),

since ICC measures are not estimated in a first-stage regression, there is no omitted-variable bias in the first stage. And the

omitted-variable bias in the second stage is also less pronounced, as an ICC by design captures all relevant factors which

can be motivated from a valuation model and thus summarises other factors in an efficient way.

(3) The third problem is that, in some cases, the standard error of the estimated average slope coefficient has been shown

to be biased downward, resulting in inflated statistical significance. Specifically, Shanken (1992) shows that an error-in-

variables problem (Point 1) can result in overestimation of the statistical significance of the price of risk, as standard errors

are shifted downwards when standard statistical methodologies are used (Bali et al., 2017). As our proxy is not estimated in

a first-stage time-series regression, but directly calculated, this problem is not of relevance here.

Points 1, 2 and 3 suggest that the three biases inherent to the FM approach are not a problem for ICC proxies.

In addition, the linearity assumption inherent to the FM regression approach is not a problem for ICCs, as one regress

expected return proxies on realised returns, a relationship which can be assumed to be linear.

Appendix G. Consumption Based Capital Asset Pricing Model

In this appendix, we summarise the derivation of the consumption based asset pricing model as presented in Cochrane

(2001), in order to show the motivation behind the regression model presented in (2.1).

Appendix G.1. Presentation of the model

The basic objective of asset pricing is to figure out the value of any stream of uncertain cash flows. We want to find the value

at time 𝑡 of a future payoff 𝑥𝑡+1. E.g. if you buy a stock at time 𝑡, what is the value of its payoff 𝑥𝑡+1 = 𝑝𝑡+1 + 𝑑𝑡+1, where

𝑝𝑡+1 is the price at 𝑡 + 1 and 𝑑𝑡+1 is the dividend at 𝑡 + 1. 𝑥𝑡+1 thereby is a random variable, as the investor does not know

the payoff (future price and future dividend) with certainty, but she can assess the probability of various outcomes.

What is this payoff worth for a typical investor? This depends on what the investor wants. A common approach is to model

the investor’s preferences with a utility function defined over current (𝑐𝑡 ) and future values of consumption (𝑢(𝑐𝑡+1)).

𝑈 (𝑐𝑡 , 𝑐𝑡+1) = 𝑢(𝑐𝑡 ) + 𝛽E𝑡 [𝑢(𝑐𝑡+1)] , (G.1)

where 𝛽 is the subjective discount factor of utilities. Note that consumption 𝑐𝑡+1 is random, as the investor does not know

his wealth tomorrow and hence what he will consume.

The period utility function 𝑢(.) is concave in the level of consumption, so it captures the fundamental desire for more

consumption, but with a declining marginal value of additional consumption. This assumption for 𝑢(.) makes investors
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impatient (𝛽 discounts the future and captures impatience) and averse to risk as well as to inter-temporal substitution (due

to the curvature of the utility function, the upside in value by additional consumption is lower than the downside in value of

decreasing consumption). Investors thus prefer a constant consumption stream over time and across states of nature.

Now we assume that the investor can freely buy and sell as much of the payoff 𝑥𝑡+1 as she wishes, at price 𝑝𝑡 . This allows

the investor to “transfer" consumption over time. Denote by 𝑒𝑡 the original consumption, i.e. the consumption if the investor

buys none of the assets, and by 𝜉 the amount of the asset she chooses to buy. How much of the asset would the investor

buy? This problem can be formalised as the following maximisation problem:

max
{𝜉 }

(𝑢(𝑐𝑡 ) + E𝑡 [𝛽𝑢(𝑐𝑡+1)]) , s.t.

𝑐𝑡 = 𝑒𝑡 − 𝑝𝑡𝜉
𝑐𝑡+1 = 𝑒𝑡+1 + 𝑥𝑡+1𝜉

(G.2)

Substituting the constraints into the objective, taking the derivative with respect to 𝜉 and equating it to zero, we get the

first-order condition for an optimal consumption and portfolio choice:

𝑝𝑡 = E𝑡

[
𝛽𝑢

′ (𝑐𝑡+1)
𝑢
′ (𝑐𝑡 )

𝑥𝑡+1

]
(G.3)

The investor buys more or less from the asset until this first-order condition holds 26. Equation (G.3) is the central asset

pricing equation. Given the payoff 𝑥𝑡+1 and given the investors consumption choice 𝑐𝑡 , 𝑐𝑡+1, it tells you what market price

𝑝𝑡 to expect.

By defining the stochastic discount factor as 𝑀𝑡+1 ≡ 𝛽𝑢
′ (𝑐𝑡+1)
𝑢
′ (𝑐𝑡 ) , we can rewrite equation (G.3) as

𝑝𝑡 = E𝑡 [𝑀𝑡+1𝑥𝑡+1] (G.4)

𝑀𝑡+1 discounts dollars, while 𝛽 discounts utilities. 𝑀𝑡+1 is stochastic in nature, because it is not known with certainty at time

𝑡.

Using the definition of the arithmetic average return of asset 𝑖, denoted by 𝑟 𝑖𝑡+1, we can write the payoff as 1 + 𝑟 𝑖𝑡+1 ≡ 𝑥𝑖
𝑡+1
𝑝𝑖𝑡

and thus rewrite the asset pricing equation (G.3) as

1 = E𝑡
[
𝑀𝑡+1(1 + 𝑟 𝑖𝑡+1)

]
(G.5)

For a riskless asset, we know the payoff 𝑥 𝑓𝑡+1 already at time 𝑡 and thus also know the assets return at time 𝑡 (1+𝑟 𝑓𝑡 ≡ 𝑥
𝑓
𝑡+1
𝑝
𝑓
𝑡

).

26Note that 𝑝𝑡𝑢
′ (𝑐𝑡 ) = E𝑡

[
𝛽𝑢

′ (𝑐𝑡+1)𝑥𝑡+1
]

shows the trade-off faced by the investor nicely. The investor looses the utility 𝑝𝑡𝑢
′ (𝑐𝑡 ) at

time 𝑡 if she buys another unit of the asset, while she gains the discounted, expected utility E𝑡
[
𝛽𝑢

′ (𝑐𝑡+1)𝑥𝑡+1
]

from the extra payoff of
the asset at time 𝑡 + 1.
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Thus we can take (1 + 𝑟 𝑓𝑡 ) out of the expectation in equation (G.5) to get the asset pricing equation for a risk-less asset

1 + 𝑟 𝑓𝑡 = E𝑡 [𝑀𝑡+1]−1 (G.6)

With the definition of the covariance 27 and equation (G.6), we can rewrite equation (G.5) as

1 = E𝑡
[
𝑀𝑡+1(1 + 𝑟 𝑖𝑡+1)

]
= 𝑐𝑜𝑣𝑡

[
𝑀𝑡+1, (1 + 𝑟 𝑖𝑡+1)

] + E𝑡 [𝑀𝑡+1] E𝑡
[(1 + 𝑟 𝑖𝑡+1)

]
= 𝑐𝑜𝑣𝑡

[
𝑀𝑡+1, (1 + 𝑟 𝑖𝑡+1)

] + E𝑡
[(1 + 𝑟 𝑖𝑡+1)

]
1 + 𝑟 𝑓𝑡

.

(G.7)

The risk premium of the risky asset 𝑖 then reads

E𝑡
[
𝑟 𝑖𝑡+1

] − 𝑟 𝑓𝑡 = −(1 + 𝑟 𝑓𝑡 )𝑐𝑜𝑣𝑡
[
𝑀𝑡+1, (1 + 𝑟 𝑖𝑡+1)

]
(G.8)

With (G.6), this can be rewritten as a beta pricing model

E𝑡
[
𝑟 𝑖𝑡+1

] − 𝑟 𝑓𝑡 =
𝑐𝑜𝑣𝑡

[
𝑀𝑡+1, (1 + 𝑟 𝑖𝑡+1)

]
𝑉𝑎𝑟 (𝑀𝑡+1)︸                        ︷︷                        ︸

=𝛽𝑖

(−𝑉𝑎𝑟 (𝑀𝑡+1)
E𝑡 [𝑀𝑡+1] )

︸             ︷︷             ︸
=𝜆𝑀

(G.9)

This is the beta pricing model, which says that each expected return is proportional to the risk exposure 𝛽𝑖 , i.e. the regression

coefficient in a regression of the gross return (1 + 𝑟 𝑖𝑡+1) on the discount factor 𝑀𝑡+1 (as 𝛽𝑖 has the form of a regression

coefficient in a regression of the gross return (1 + 𝑟 𝑖𝑡+1) on the discount factor 𝑀𝑡+1), and to the price of risk 𝜆𝑀 .

In order to express 𝛽𝑖 in terms of observables, one can e.g. use the CRRA utility function (constant relative risk aversion,

𝑢(𝑐) = 𝑐1−𝛾
1−𝛾 ), which leads to the stochastic discount factor 𝑀𝑡+1 = 𝛽( 𝑐𝑡+1

𝑐𝑡
)−𝛾 . To estimate 𝛽𝑖 , one would then regress the

gross return (1 + 𝑟 𝑖𝑡+1) as dependent variable on 𝑀𝑡+1 = 𝛽( 𝑐𝑡+1
𝑐𝑡

)−𝛾 as independent variable in a regression model with a

constant discount rate. This is the theory behind the empirical model presented in (2.1) and (2.3).

27cov(m,x) = E(mx) - E(m)E(x)

32

Dynamical Cost of Capital Driven by Dynamical Cash Flows

143



Appendix G.2. The Log Normal Case

Let us now assume that the vector {𝑀𝑡+1, (1 + 𝑟 𝑖𝑡+1)} is log-normally distributed and conditionally homoskedastic. Taking

logs of equation (G.5) and then using properties of the log-normal distribution 28 gives

0 = ln(E𝑡
[
𝑀𝑡+1(1 + 𝑟 𝑖𝑡+1)

])
= E𝑡

[
ln(𝑀𝑡+1(1 + 𝑟 𝑖𝑡+1))

] + 1
2
𝑉𝑎𝑟𝑡 (ln(𝑀𝑡+1(1 + 𝑟 𝑖𝑡+1)))

= E𝑡 [𝑚𝑡+1] + E𝑡
[
ln(1 + 𝑟 𝑖𝑡+1)

] + 1
2
(𝜎2
𝑡 (ln(1 + 𝑟 𝑖𝑡+1)) + 𝜎2

𝑡 (𝑚) + 2𝜎𝑡 (ln(1 + 𝑟 𝑖𝑡+1), 𝑚))

(G.10)

where ln(𝑀𝑡+1) = 𝑚𝑡+1, 𝜎2
𝑡 (ln(1 + 𝑟 𝑖𝑡+1)) = 𝑉𝑎𝑟𝑡 (ln(1 + 𝑟 𝑖𝑡+1)) and 𝜎𝑡 (𝑟𝑖 , 𝑚) = 𝑐𝑜𝑣𝑡 (𝑚𝑡+1, ln(1 + 𝑟 𝑖𝑡+1)). Assuming for

equation (G.6) that the vector {𝑀𝑡+1, (1 + 𝑟 𝑓𝑡 )} is also log-normally distributed, gives

0 = ln(E𝑡
[
𝑀𝑡+1(1 + 𝑟 𝑓𝑡 )

]
)

= E𝑡
[
ln(𝑀𝑡+1(1 + 𝑟 𝑓𝑡 ))

]
+ 1

2
𝑉𝑎𝑟𝑡 (ln(𝑀𝑡+1(1 + 𝑟 𝑓𝑡 )))

= E𝑡 [𝑚𝑡+1] + E𝑡
[
ln(1 + 𝑟 𝑓𝑡 )

]
+ 1

2
(𝜎2
𝑡 (𝑚) + 𝜎2

𝑡 (ln(1 + 𝑟 𝑓𝑡 )) + 2𝜎𝑡 (𝑚𝑡+1, ln(1 + 𝑟 𝑓𝑡 )))

= E𝑡 [𝑚𝑡+1] + ln(1 + 𝑟 𝑓𝑡 ) +
1
2
𝜎2
𝑡 (𝑚)

(G.11)

Note that 𝜎𝑡 (𝑚𝑡+1, ln(1 + 𝑟 𝑓𝑡 )) and 𝜎2
𝑡 (ln(1 + 𝑟 𝑓𝑡 )) are zero, as 𝑟 𝑓𝑡 is known at time 𝑡. Combining (G.10) with (G.11) leads

to

E𝑡
[
ln(1 + 𝑟 𝑖𝑡+1)

] + 1
2
𝜎2
𝑡 (ln(1 + 𝑟 𝑖𝑡+1)) − ln(1 + 𝑟 𝑓𝑡 ) = −𝜎𝑡 (ln(1 + 𝑟 𝑖𝑡+1), 𝑚𝑡+1) (G.12)

and if we assume that 𝑟 𝑖𝑡+1 ≈ ln(1 + 𝑟 𝑖𝑡+1) for 𝑟 𝑖𝑡+1 � 1 and that 𝑟 𝑓𝑡 ≈ ln(1 + 𝑟 𝑓𝑡 ) for 𝑟 𝑓𝑡 � 1 we get

E𝑡
[
𝑟𝑒𝑡+1

]
= −𝜎𝑡 (𝑟 𝑖𝑡+1, 𝑚𝑡+1) (G.13)

where E𝑡
[
𝑟𝑒𝑡+1

] ≡ E𝑡 [𝑟 𝑖𝑡+1
] − 𝑟 𝑓𝑡 + 1

2𝜎
2
𝑡 (𝑟 𝑖𝑡+1) is the expected geometric average excess return 29.

This can now be expressed in terms of observable variables again by using the log of the CRRA utility function 𝑚𝑡+1 =

ln(𝛽) − 𝛾Δ ln(𝑐𝑡+1) with which 𝜎𝑡 (𝑟 𝑖𝑡+1, 𝑚𝑡+1) = 𝑐𝑜𝑣𝑡 (𝑟 𝑖𝑡+1, ln(𝛽) − 𝛾Δ ln(𝑐𝑡+1)) = −𝛾 · 𝑐𝑜𝑣𝑡 (𝑟 𝑖𝑡+1,Δ ln(𝑐𝑡+1)), which we

can insert into equation (G.12) to get

E𝑡
[
𝑟𝑒𝑡+1

]
= 𝛾 · 𝑐𝑜𝑣𝑡 (𝑟 𝑖𝑡+1,Δ ln(𝑐𝑡+1)) . (G.14)

28If 𝑍 ∼ 𝑁 (𝜇, 𝜎2), then 𝑒𝑍 ∼ 𝑙𝑜𝑔𝑁 (𝑒𝜇+0.5𝜎2
, .); In our case 𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1) ∼ 𝑙𝑜𝑔𝑁 (𝑒𝜇+0.5𝜎2

, .), then ln(𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1)) ∼
𝑁 (𝜇, 𝜎2) with 𝜇 = E𝑡

[
ln(𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1))

]
and 𝜎2 = 𝑉𝑎𝑟𝑡 (ln(𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1))). Thus E𝑡

[
𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1)

]
= 𝑒𝜇+0.5𝜎2

=

𝑒E𝑡 [ln(𝑀𝑡+1 (1+𝑟 𝑖𝑡+1))]+0.5𝑉 𝑎𝑟𝑡 (ln(𝑀𝑡+1 (1+𝑟 𝑖𝑡+1))) and ln(E𝑡
[
𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1)

]) = E𝑡 [ln(𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1))
] + 0.5𝑉𝑎𝑟𝑡 (ln(𝑀𝑡+1 (1 + 𝑟 𝑖𝑡+1)))

29𝑟 𝑖𝑡+1 and 𝑟 𝑓𝑡 are arithmetic average returns (the drift of a price process which is log normally distributed), while 𝑟 𝑖𝑡+1 + 1
2𝜎

2
𝑡 (𝑟 𝑖𝑡+1)

and 𝑟 𝑓𝑡 + 1
2𝜎

2
𝑡 (ln(1 + 𝑟 𝑓𝑡 )) are the respective geometric average returns (the drift of the respective log price process, which is normally

distributed). And with 𝜎2
𝑡 (ln(1 + 𝑟 𝑓𝑡 )) = 0, E𝑡

[
𝑟𝑒𝑡+1

]
= E𝑡

[
𝑟 𝑖𝑡+1

] + 1
2𝜎

2
𝑡 (𝑟 𝑖𝑡+1) − 𝑟

𝑓
𝑡 .
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We can again write in terms of a beta pricing model as

E𝑡
[
𝑟𝑒𝑡+1

]
=
𝑐𝑜𝑣𝑡 (𝑟 𝑖𝑡+1,Δ ln(𝑐𝑡+1))
𝑉𝑎𝑟𝑡 (Δ ln(𝑐𝑡+1))︸                      ︷︷                      ︸

=𝛽𝑖

𝑉𝑎𝑟𝑡 (Δ ln(𝑐𝑡+1))𝛾︸                 ︷︷                 ︸
=𝜆𝑀

(G.15)

Now 𝛽𝑖 has the form of a regression coefficient in a regression of the arithmetic average returns on the log growth of

consumption (Δ ln(𝑐𝑡+1)), which can be estimated. This 𝛽𝑖 is exactly what is estimated by equation (2.1).

Appendix H. Arbitrage Pricing Theory

Multifactor asset pricing models like the arbitrage pricing theory (APT) of Ross (1976) are relating a stock’s expected excess

return to linear risk factors as follows

E𝑡
[
𝑅𝑖,𝑇

] − 𝑅 𝑓 ,𝑇 =
𝑘∑︁
𝑗=1

𝛽
𝑗
𝑖,𝑇 𝜆 𝑗 ,𝑇 (H.1)

where 𝑅𝑖,𝑇 is the return of asset 𝑖 at time 𝑇 , 𝑅 𝑓 ,𝑇 is the risk-free rate at time 𝑇 , 𝛽 𝑗𝑖,𝑇 is the risk exposure of asset 𝑖 on risk

factor 𝑗 at time 𝑇 , and 𝜆 𝑗 ,𝑇 is the risk premium (price of risk) associated with factor 𝑗 at time 𝑇 .

The theory behind equation (H.1) does not specify the identity of the k factors though.

Appendix I. Slope comparison

Note that there is a difference between the slope of the lower panel in figure 4 and the slope of figure 1.

In our time-varying ICC model, 𝑟 is a function of the risk exposure to the growth risk and of the risk exposure to the value

factor. If we condition for the return contribution from the value factor (i.e. assume the price-to-cash flow ratio is already at

its industry level), our model predicts 𝑟 ∝ 𝑎 · 𝑔, with 𝑎 as the slope of the lower panel in figure 4 and 𝑔 as the cash flow

growth rate. 𝑎 is found to be around 𝑎 = 0.64 in our theoretical framework.

In the CCAPM, 𝑟 is a function of the risk exposure 𝛽 (the consumption beta) scaled by the price of risk 𝜆 (the consumption

growth rate), so 𝑟 ∝ 𝛽 · 𝜆. Further, from section 3, we know that 𝛽 ∝ 𝑏 · 𝑔, with 𝑏 as the slope of figure 1 and 𝑔 again the

cash flow growth rate. Thus, 𝑟 ∝ 𝑏 · 𝑔 · 𝜆.

A comparison of 𝑟 ∝ 𝑏 · 𝑔 · 𝜆 and 𝑟 ∝ 𝑎 · 𝑔 implies 𝑎 = 𝑏 · 𝜆, which we can test by measuring 𝑏 · 𝜆.

With 𝜆 = 0.02 (using 𝜆 = 𝑉𝑎𝑟 (Δ𝑙𝑛(𝑐𝑡+1)) · 𝛾 from equation (G.15) with 𝑉𝑎𝑟 (Δ𝑙𝑛(𝑐𝑡+1)) = 0.001 and 𝛾 = 20 from

Campbell (2003)) and 𝑏 = 35.5 in figure 4, this empirically implies the value 𝑎 = 35.5 · 0.02 = 0.7, which is close to the

theoretical value 𝑎 = 0.64 quoted above.

The same calculation can be done for the slope between the cash flow beta and the cash flow growth rate level.
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5 Conclusion

The following paragraphs highlight the main contributions and some of the blank and blind spots of the con-

ducted research and proposes direction for future research.

The extreme price moves of the GameStop shares in Q1 2021 gives the topic of feedback effects from op-

tions market onto the underlying’s price dynamics a high relevance. Chapter 2 of this thesis contributes to

this discussion by proposing a general theoretical model that describes the isolated effect of option positioning

onto the dynamics of an underlying’s price, namely its volatility and drift. Our model shows how the option

positioning of market makers, or more precisely the price impact of the net delta hedge demand, can distort the

underlying’s price volatility and drift. With respect to the volatility, our model predicts that if the option market

maker has a short (long) option positioning, the implied delta hedging strategy leads to an increase (decrease)

of the underlying’s price volatility. Further, depending on the option specifications and delta, the price can get

unusually stable or explosive. This extensive theoretical discussion of the feedback effect from options markets

onto the the underlying’s price dynamics, especially with respect to the price (in)stability, is a first important

novel contribution of chapter 2. Our model is validated with high confidence with data from the two largest

foreign exchange markets, the EURUSD and USDJPY market, as well as the GameStop stock market. In both

markets we find that the volatility is increased due to short option positioning of the option market maker. And

we further show that there indeed were times where the option positioning suggested explosive behaviour of the

GameStop stock price. This empirical discussion on the basis of our model framework is a second important

contribution of chapter 2.

I see two limitations of the presented work. The first is on the theoretical side: We assume the price impact of

the delta hedge transactions, our friction, to be linear. While this is true on longer time horizons (i.e. hours), on

short time scales the price impact is known to scale with the square root of the traded volume. Thus, on short

time scales, the model dynamics might slightly deviate from what our model predicts. Extending our friction

to a square root form would thus be an interesting next step. The second limitation is on the empirical side:

The net hedge demand of the market maker is not directly observable in most transaction data sets. We thus

used transaction data in which we know (or reconstructed) the side of each transaction and then worked with

the assumption that the market maker is always liquidity provider behind each transaction. While this seems

reasonable, it is probably not always true. But on average the assumption should hold, and the fact that our

model fit based on data from three different markets always results in very high confidence, serves as strong
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support. Nevertheless, future research in this area could be based on data in which the entity behind each

trade as well as their hedging behaviour is known. This would allow for an even better estimation of the model

parameters.

The extreme price moves that could be observed in the aftermath of the introduction of a new price-based

circuit breaker mechanism in the CSI 300 in the beginning of 2016 motivated the work of chapter 3. We theo-

retically model the isolated effect of circuit breakers onto price dynamics and show that investors’ anticipation

of the probability of a halt feedbacks on the price process. We show that for price-based circuit breakers this

results in an increased price volatility and a magnet effect and thus explains the observations in the CSI 300.

But more importantly, as our model is a priori independent of the circuit breaker trigger mechanism, it can be

used as starting point to study different circuit breaker designs. This framework is the main contribution of

chapter 3. We thereby take first step towards a more resilient circuit breaker mechanism, e.g. a volatility based

trigger mechanism that minimises the side-effects discussed for price-based circuit breakers.

The limitations of the research of extreme price moves such as circuit breaker events is that there are natu-

rally not too many events which one can use for empirical studies. End even for the events that happened, the

data set is very noisy, since various effects come together in such extreme events. Future research could try

to focus more on the empirical side, i.e. find high frequency data around such events and try to validate our

proposed model with it. In addition, future research should continue the work started by us, namely to use our

model framework as starting point to answer the question of how to ideally design circuit breakers.

Last, the difficulty to value high growth firms and the resulting high volatility of such growth stocks is the mo-

tivation behind chapter 4 of this thesis. We present a model which allows investors to accurately estimate the

expected return from an investment in a high growth firm. Specifically, using economic intuition and empirical

evidence from the consumption based capital asset pricing model we argue that the expected return of a stock

is linearly proportional to the firm’s cash flow growth rate. Based on that, we suggest a time-varying discount

rate that reflects this linearity between the expected return and the cash flow growth in its term structure. This

idea is the main contribution of chapter 4. When used in a discounted cash flow model, the discount rate and

growth rate interact to reduce the range of possible valuation outcomes to useful levels. This makes firm val-

uation less sensitive to the cash flow growth rate assumptions and thus increases its practical utility. And the

time-varying internal rate of return of the corresponding internal cost of capital model (ICC) can conceptually

be interpreted as an investment return process, compared to e.g. a constant ICC model, and thus is a valid

proxy for the expected return (i.e. the cost of capital). We discuss the empirical quality of our cost of capital

proxy in a Fama MacBeth regression setting as well as in a trading strategy, and show its superiority, especially

if one focuses on high growth firms.
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The limitation of the work presented in chapter 4 is mostly on the empirical side. We show that the discount

rate of a valuation model should have the same structural form as the assumed cash flow growth rate process.

As a consequence of this, the focus of an investor should solely be on the future cash flow growth rate struc-

ture, which then naturally dictates the discount rate structure. Thus, the focus of future research could be on

empirically exploring cash flow growth rate structures. While we, motivated by prior research, used a generic

cash flow convergence process for all firms, where only the convergence levels are industry specific, this could

be refined by exploring structural similarities or differences in the cash flow growth rate process for different

industries and firm types.

In summary, I hope this thesis provides three solid frameworks that allow any investor and policy maker to

study the influence of option positioning, circuit breakers as well as cash flow growth onto an asset’s price

dynamics. Understanding asset price dynamics is complex, and probably a never ending quest, but I hope I

could bring light into three corners of this enormous space.

149



Florian Ulmann
Curriculum Vitae

Education
PhD

2017 – 2021 PhD Candidate in Finance, ETH Zurich
Chair of Entrepreneurial Risk (MTEC)

2018 – 2019 Swiss Program for Beginning Doctoral Students in Economics, Study Center Gerzensee
Econometrics and Macroeconomics sequence

2017 – 2018 PhD Exchange, INSEAD, Singapore
Visiting Phd Student

Master

2012 – 2014 Master of Science in Physics, University of Basel
Specialised in Theoretical Physics: Stochastic Processes & Quantum Field Theory

2014 – 2014 Master’s Thesis Exchange, Yale University, USA
Visiting student in computational biophysics: Machine Learning for Disease Prediction & Control

Bachelor

2013 – 2015 Bachelor of Arts in Business and Economics, University of Basel
Major in Business, Thesis: Predictive Force of Raw Accounting Data on Equity Returns

2009 – 2012 Bachelor of Science in Nanoscience, University of Basel
Biology, Chemistry and Physics with extra classes in Nanoscience

High School

2002 – 2008 Matura, Sport High School of the Gymnasium Baeumlihof, Basel
Specialised in Sport, Biology & Chemistry

Professional Experience

2021 – today Junior Consultant, BOSTON CONSULTING GROUP, Zurich
Generalist management consultant.

2019 – 2021 Co-Founder, QUANTAMENTAL AG, Zurich
Quantamental is a Swiss based value investing boutique that pursues an active value investment strategy and
thereby combines modern, quantitative methods with classical fundamental analysis to create a focused, global
public equity portfolio.

2015 – 2019 Quantitative Analyst, FX Unit, SWISS NATIONAL BANK, Zurich and Singapore
Involved in various quantitative analysis and development projects relevant for monetary policy decision-making
and implementation.

2015 – 2015 Intern, Monetary Policy Analysis Unit, SWISS NATIONAL BANK, Zurich
Worked on research projects with a focus on exchange rate equilibrium models.

Student Jobs

2015 – 2015 Teacher, ACADEMIA BASEL, Basel
Teacher for Business, Economics, Politics and Mathematics

2012 – 2014 Student Trainee, IBM GLOBAL TECHNOLOGY SERVICES, Basel
Executive Management Support within the IBM Strategic Outsourcing Organisation.

1/2



2010 – 2012 Communication Assistant, SWISS NANOSCIENCE INSTITUTE (SNI), Basel
Assistant to public relation & event management department.

Extracurricular Activities

2014 – 2015 Swiss Students and Affiliates at Yale (SSAY): Co-Founder, Yale University
Organisation of various social and academic events

2009 – 2012 Students of Nanoscience Association: board member, University of Basel
Organisation of various social and academic events

2006 – 2010 Jungwacht & Blauring St. Michael: board member
Organisation of numerous short- and longterm events for children and their families.

Research Projects

2021 – today On the Directional Destabilizing Feedback Effects of Option Hedging, ongoing,
Didier Sornette (ETH Zurich), Florian Ulmann (ETH Zurich), Alexander Wehrli (SNB)

2019 – today Dynamical Internal Cost of Capital Driven by Cash Flow Growth, Reprint submitted to JFE,
David Solo (DCI), Didier Sornette (ETH Zurich), Florian Ulmann

2017 – today The Impact of Option Hedging on the Spot Market Volatility, Revise and resubmit at JIMF,
Benjamin Anderegg (SNB), Didier Sornette (ETH Zurich), Florian Ulmann

2017 – today Price Dynamics with Circuit Breakers, Revise and resubmit at JBF,
Sandro Claudio Lera (MIT Media Lab), Didier Sornette (ETH Zurich), Florian Ulmann

Languages
German Mother tongue

English Fluent

French Conversational

Awards
2002 – 2006 Several top three placements at Swiss Championships in Track and Field

Hobbies
Sport Crossfit and mountaineering

Social Family and friends.

Travelling Discovering new cultures and countries.

Interests Various topics ranging from business and economics, to science and technology.

2/2





© 2021 Florian Ulmann

All rights reserved.


	Introduction and Motivation
	Implications of Option Hedging on Asset Prices
	The Impact of Option Hedging on the Spot Market Volatility
	On the Directional Destabilizing Feedback Effects of Option Hedging

	Price Dynamics under a Circuit Breaker
	Dynamical Cost of Capital Driven by Dynamical Cash Flows
	Conclusion

