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Und jedem Anfang wohnt ein Zauber inne,
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Stufen, Hermann Hesse (1877–1962)



Abstract

The heating and cooling of buildings are responsible for a significant share of the global
final energy consumption and CO2 emissions. At the same time, buildings and districts
with electric heating and cooling systems can facilitate the integration of volatile re-
newable energy sources in the electricity grid by providing reserves on the demand side.
By shifting their demand in time depending on the availability of renewable electricity,
they can contribute to stabilizing the grid. A suitable control approach to minimize the
energy consumption of buildings and districts, and to provide electric reserves with them
is Model Predictive Control (MPC), where control inputs are periodically optimized over
a prediction horizon, given a model of the system dynamics, measurements, disturbance
forecasts, constraints, and a cost function. However, as buildings are individual, de-
veloping and maintaining models based on physics for building dynamics and demand
forecasting, which serve as inputs to the controllers, are often considered tedious and as a
result cost-prohibitive for industrial application. This thesis, therefore, aims to find scal-
able, data-driven methods that simplify the modeling process, and which combined with
the concept of predictive control, yield viable controllers for practical building energy
and district energy applications.

First, we present online correction methods for forecasting the heating demand of
buildings with Artificial Neural Networks (ANN), based on the autocorrelation of the
forecasting error and online learning. We show that these significantly increase the fore-
casting accuracy in case studies based on measurement data of four buildings. Moreover,
they reduce the variance between the forecasts of different networks trained on the same
data, caused by the non-convex training process of ANN. Furthermore, two Machine
Learning methods, based on Random Forests and Input Convex Neural Networks, for
data-driven modeling of building thermal dynamics are presented, as well as a method
based on physics-informed Autoregressive Moving Average with Extra Input (ARMAX)
models. The methods, which lead to convex MPC formulations, are compared in a series
of experiments in an occupied apartment. Here, it is found that data-driven MPC reduces
the heating and cooling energy consumption by 26% to 49% compared to an industry-
standard hysteresis controller in the given case. The physics-informed ARMAX model
shows better accuracy and sample efficiency compared to the Machine Learning methods.

These modeling methods are then combined with a Robust MPC scheme to provide
day-ahead electrical reserves with a district system comprising a central heat pump and
buffer storage. Here, we distinguish between connected buildings that participate in the
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reserve scheme, which means that their thermal inertia can be exploited by the central
controller, and buildings that do not participate due to privacy concerns or hardware lim-
itations. The dynamics of the former are modeled with the presented ARMAX method,
whereas the thermal demands of the latter are treated as an aggregated disturbance
that is forecast with the presented data-driven demand forecasting method. Only indus-
trial components are modeled with first principles in the MPC scheme. We use affine
policies on uncertain disturbances such as the regulation signal to mitigate the effect of
uncertainty accumulation in the controlled state. As a result, the reserves offered are
increased significantly. We demonstrate that even in a system configuration where all
connected buildings do not actively participate in the scheme, considerable amounts of
reserves can be offered. However, we also show that by exploiting the thermal inertia of a
subset of the connected buildings, the reserves offered can be increased by a factor of 2.7.
Both cases, with buildings being actively controlled and not being actively controlled,
are validated in experiments, where it is demonstrated that the comfort in the connected
building is ensured, while reserves are being provided and the heat pump is tracking a
regulation signal with high accuracy.

In conclusion, it is experimentally demonstrated that data-driven methods can lead
to viable, reliable and scalable controllers that facilitate energy savings and electrical
reserve provision in buildings and districts. We find that physics-based priors enforced
in a linear regression process, can lead to higher model accuracy compared to more
flexible but system-agnostic Machine Learning methods, even if abundant training data
is available. By combining data-driven methods with Robust MPC using affine policies
and physics-based models of some industrial components, even complex control tasks,
such as day-ahead reserves provision in buildings and districts can be addressed.
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Zusammenfassung

Das Heizen und Kühlen von Gebäuden ist für einen erheblichen Anteil des globalen
Endenergieverbrauchs und der CO2-Emissionen verantwortlich. Gleichzeitig können
Gebäude und Quartiere mit elektrischen Heiz- und Kühlsystemen die Integration von
volatilen erneuerbaren Energiequellen in das Stromnetz erleichtern, indem sie auf der
Verbraucherseite elektrische Reserven bereitstellen. Indem sie ihre Nachfrage in Ab-
hängigkeit von der Verfügbarkeit erneuerbarer Energie zeitlich verschieben, können sie
zur Stabilisierung des Netzes beitragen. Ein geeigneter Regelansatz zur Minimierung des
Energieverbrauchs von Gebäuden und Quartieren und zur Bereitstellung elektrischer Re-
serven ist die modellprädiktive Regelung (engl. Model Predictive Control, MPC). Hier
werden die Stellgrössen periodisch bezüglich eines Vorhersagehorizonts, eines Modells
der Systemdynamik, bezüglich Messungen, Vorhersagen von Störgrössen, Bedingungen
und einer Kostenfunktion optimiert. Da jedes Gebäude individuell ist, ist die Entwick-
lung und Erhaltung von physikalischen Modellen, sowohl für die Gebäudedynamik als
auch für Wärmebedarfsvohersagen, welche häufig als Störgrössen auf höheren Regelebe-
nen dienen, jedoch oft mühsam und deshalb für kommerzielle Anwendungen unrentabel.
Ziel dieser Arbeit ist es daher, skalierbare datengetriebene Methoden zu finden, die den
Modellierungsprozess vereinfachen und in Kombination mit dem Konzept der prädiktiven
Regelung praktikable Regler für Gebäude- und Quartierenergie Anwendungen liefern.

Zunächst stellen wir Online-Korrekturmethoden für die Vorhersage des Wärmebe-
darfs von Gebäuden mit Künstlichen Neuronalen Netzen (ANN) vor, die auf der Au-
tokorrelation des Vorhersagefehlers und Online-Learning basieren. Wir zeigen, dass diese
Methoden in Fallstudien, welche auf Messdaten von vier Gebäuden basieren, die Vorher-
sagegenauigkeit deutlich erhöhen. Außerdem verringern sie die Varianz zwischen den
Prognosen verschiedener Netzwerke, die auf denselben Daten trainiert wurden - ein Ef-
fekt, der auf den nicht-konvexen Trainingsprozess von ANN zurückzuführen ist. Darüber
hinaus werden zwei Methoden des maschinellen Lernens, auf der Grundlage von Ran-
dom Forests und Input Convex Neural Networks, für die datengetriebene Modellierung
der thermischen Dynamik von Gebäuden, sowie eine Methode auf der Grundlage von
Physik-inspirierten Autoregressive Moving Average with Extra Input (ARMAX) Mod-
ellen vorgestellt. Alle Methoden führen zu konvexen MPC-Formulierungen und werden
in einer Reihe von Experimenten in einem bewohnten Apartment getestet und verglichen.
Dabei wird gezeigt, dass die datengetriebenen MPC Ansätze den Heiz- und Kühlenergie-
verbrauch im Vergleich zu einem Standard-Hystereseregler im vorliegenden Fall um 26%
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bis 49% reduzieren. Das Physik-inspirierte ARMAX Modell zeigt im Vergleich zu den
Methoden des maschinellen Lernens eine bessere Genauigkeit und Dateneffizienz.

Diese Modellierungsmethoden werden dann mit einem robusten MPC-Schema kom-
biniert, um mit einem Fernwärmesystem mit zentraler Wärmepumpe und einen Puffer-
speicher elektrische Day-Ahead-Reserven bereitzustellen. Bei den angeschlossenen
Gebäuden unterscheiden wir zwischen jenen, die am aktiv am Regelsystem zur Bere-
itstellung von Reserven teilnehmen, was bedeutet, dass ihre thermische Trägheit vom
zentralen Regler ausgenutzt werden kann, und anderen, die aufgrund von Daten-
schutzbedenken oder Hardwarebeschränkungen nicht teilnehmen. Die Dynamik ersterer
wird mit der zuvor eingeführten ARMAX-Methode modelliert, während der Wärmebe-
darf letzterer als eine aggregierte Störgrösse behandelt wird, die mit der vorgestell-
ten datengetriebenen Methode zur Wärmebedarfsvohersage prognostiziert wird. Auss-
chliesslich industrielle Komponenten werden in dem Schema auf Basis von White-Box
Modellen modelliert. Wir nutzen affine Policies um den Effekt von kummulierter Un-
sicherheit bezüglich der Zustandsvariablen aufgrund von stochastischen Störgrössen (wie
zum Beispiel das Regelsignal des Elektrizitätsanbieters zur Abfrage der Reserven) zu ver-
ringern. Dadurch können die angebotenen Reserven deutlich erhöht werden. Wir zeigen,
dass selbst in einer Systemkonfiguration, in der keines der angeschlossenen Gebäude seine
thermische Trägheit zur Verfügung stellt, beträchtliche Mengen an Reserven angeboten
werden können. Wir zeigen aber auch, dass durch Ausnutzung der thermischen Trägheit
einer Untergruppe der angeschlossenen Gebäude die angebotenen Reserven um den Fak-
tor 2,7 erhöht werden können. Beide Fälle werden in Experimenten validiert, in denen
gezeigt wird, dass der Komfort in allen Gebäuden stets gewährleistet ist, während Reser-
ven bereitgestellt werden und die Wärmepumpe einem Regelsignal mit hoher Genauigkeit
folgt.

Zusammenfassend wird experimentell nachgewiesen, dass datengetriebene Metho-
den zu praktikablen, zuverlässigen und skalierbaren Reglern führen können, welche En-
ergieeinsparungen und die Bereitstellung von elektrischen Reserven in Gebäuden und
Quartieren ermöglichen. Wir stellen fest, dass wenn physikalische Bedingungen in einem
linearen Regressionsprozess berücksichtigt werden, eine höhere Modellgenauigkeit er-
reicht werden kann im Vergleich zu flexibleren, aber systemagnostischen Methoden des
maschinellen Lernens. Dies ist selbst der Fall, wenn eine grosse Menge an Trainingsdaten
zur Verfügung steht. Durch die Kombination datengetriebener Modellierungsmethoden
mit einem robusten MPC-Schema und affine Policies, sowie White-Box Modellen einiger
weniger industrieller Komponenten können selbst komplexe Regelaufgaben wie die Bere-
itstellung von Day-Ahead-Reserven in Gebäuden und Quartieren gelöst werden.
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CHAPTER 1
Introduction

1.1 Motivation

The operation of buildings is responsible for 28% of the global energy-related CO2 emis-
sions (Abergel et al., 2019), of which a large fraction is caused by space heating and
cooling (Drgoňa et al., 2020a). In addition to retrofitting heating and cooling equipment
and the envelope of a building, advanced control methods can be used to reduce the
energy consumption of individual buildings (Široký et al., 2011; Yudong Ma et al., 2012;
Oldewurtel et al., 2010; Sturzenegger et al., 2016; Hameed Shaikh et al., 2014), district
heating and cooling systems (Bünning et al., 2018; Hohmann et al., 2019; van der Hei-
jde et al., 2019), and energy hubs (Geidl et al., 2007; Arnold et al., 2009; Arnold and
Andersson, 2011; Darivianakis et al., 2017).

While the operation of buildings contributes to climate change through direct and
indirect CO2 emissions, at the same time buildings can increase the potential to integrate
renewable energy sources into the electricity grid (Langevin et al., 2021). As many
of these sources are highly volatile, there is a growing need for frequency regulation
(Johnson et al., 2019). A common strategy for frequency regulation is the deployment of
fast-reacting power plants, for example gas or hydro-power; an emerging strategy is the
use of storage technologies. However, many storage technologies, such as batteries, are
still relatively cost intensive, and fossil fuel-based power plants will be phased out in the
future. Apart from such regulation on the supply side of the grid, frequency regulation
on the demand side is possible through the manipulation of controllable loads. This
concept falls under the category of demand-side management (Palensky and Dietrich,
2011; Gelazanskas and Gamage, 2014). Buildings equipped with electric heating or
cooling systems are possible candidates for demand-side management (Kim et al., 2016;
Blum et al., 2016). Due to their thermal inertia and the insensitivity of humans to
minor temperature fluctuations, buildings are flexible to some extent when it comes to
their heating and cooling requirements, hence their electricity consumption. By shifting
their consumption in time, they can therefore influence the grid frequency (Fischer and
Madani, 2017).

1
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In both applications, i.e. reducing the energy consumption of buildings, and using
buildings to provide services to the electricity grid, the comfort of the occupants needs to
be ensured. For this, many control approaches in the literature (Zhang et al., 2017; Vret-
tos et al., 2016; Oldewurtel et al., 2012; Sturzenegger et al., 2016; Drgoňa et al., 2020a;
Henze, 2013; Hilliard et al., 2017) use Model Predictive Control (MPC) (Morari and H.
Lee, 1999; Kouvaritakis and Cannon, 2016), which allows to calculate optimal control
inputs over a receding horizon, given a cost function, a set of constraints, disturbance
measurements and forecasts, and a model of the dynamics of the considered system.
However, models in building MPC are conventionally based on physics (Picard et al.,
2015; Sturzenegger et al., 2014), which means that the model is built using principles
of heat transfer and thermodynamics, or based on expensive excitation experiments, or
a combination of both. As buildings differ from each other and thus need to be mod-
eled individually, manually developing and maintaining such models is often considered
too expensive to justify investment, an issue that potentially hinders the commercial
application of MPC in buildings (Sturzenegger et al., 2016). Similar issues arise for first-
principles-based heating and cooling demand forecasting methods (Wang and Xu, 2006),
which serve as disturbance forecasts for MPC on the district level.

As in many other domains (Silver et al., 2017; Wojna et al., 2018; Tobin et al., 2017),
Machine Learning based or data-driven methods have also received increasing attention
in the area of building control. Their application includes heating and cooling demand
forecasting (Mat Daut et al., 2017; Zhao and Magoulès, 2012; Harish and Kumar, 2016;
Wang and Srinivasan, 2017; Foucquier et al., 2013; Suganthi and Samuel, 2012; Amasyali
and El-Gohary, 2018; Ahmad et al., 2018), reinforcement learning for building energy
management (Mocanu et al., 2019; Pinto et al., 2021; Wang and Hong, 2020), and the
generation of dynamical models for building MPC (Wang et al., 2019; Chen et al., 2019;
Mugnini et al., 2020; Smarra et al., 2018). Similar to grey-box modeling approaches,
but often with greater flexibility on the parameterization, data-driven methods allow to
generate building models directly from measurement data - thus potentially decreasing
the cost of development and maintenance of predictive control and prediction methods
in buildings.

In this thesis, we aim to leverage data-driven methods to address the challenges
of demand forecasting, predictive building control, and electric reserve provision with
buildings and districts. Here, several gaps in literature are addressed, which are briefly
discussed for each individual field in the following. More detailed backgrounds are given
in the individual chapters.

1.1.1 Demand prediction in buildings and districts

Accurate heating and cooling demand predictions are essential inputs to predictive con-
trollers addressing problems such as energy-hub operation optimization (Darivianakis
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et al., 2017) or electric reserve provision with buildings and districts, as presented in this
thesis. With increasing availability of demand measurement data, data-driven forecast-
ing methods have received growing attention in the literature, for individual buildings
(Paudel et al., 2014; Mestekemper et al., 2013) and districts (Suryanarayana et al., 2018;
Saloux and Candanedo, 2018). Many of these studies report promising results, but none
of them communicates whether the achieved performance are average results or best case
results. This is problematic as Machine Learning methods often suffer from high vari-
ance due to the stochastic nature of the initialization and training processes. Ensemble
methods (Jovanović et al., 2015; Jetcheva et al., 2014) address the variance issue, but
through averaging can lead to sub-optimal prediction accuracy. More importantly they
are computationally expensive, which limits their suitability for the use in online control
applications.

1.1.2 Data-driven modeling for predictive building control

Obtaining first-principles based models for predictive building control is expensive be-
cause each building is individual. As a result, data-driven building modeling approaches
that rely purely on historical measurement data have emerged (Smarra et al., 2018).
While many of these methods applied to predictive control have been tested in sim-
ulation (Mugnini et al., 2020; Wang et al., 2019), the application and validation on
real systems have not been appropriately addressed in the literature so far (Kathirga-
manathan et al., 2021). Methods that are indeed validated in practical applications of
predictive building control (Jain et al., 2020; Yang et al., 2020) often rely on models
that lead to non-convex problem formulations. While these might be suitable for small
control problems such as single-building energy management, they can lead to computa-
tionally intractable optimization problems when applied to more complex control tasks,
such as distributed building control (Lefebure et al., 2021), or electric reserve provision.
Moreover, in the spirit of Mania et al. (2018), it is still unclear how Machine-Learning
based models compare to simpler model identification methods in practical applications.

1.1.3 Reserve provision with buildings and districts

Several authors (Zhang et al., 2017; Vrettos et al., 2016) have developed robust or stochas-
tic MPC schemes to provide day-ahead reserves for frequency regulation with commercial
buildings and HVAC systems. Some have also applied them in practice (Vrettos et al.,
2018a). These schemes ensure occupant comfort in the face of uncertainty, introduced
for example through the stochastic regulation signal from the transmission system oper-
ator. As building energy systems and related components (such as storage tanks) have
integrator dynamics, uncertain disturbances lead to built-up uncertainty in the system
state and thus limit the electrical reserves offered. This is the case because much of
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the available demand flexibility is used by accounting for the disturbance uncertainty.
While feedback policies are a known tool in stochastic and Robust MPC to mitigate
this problem (Goulart et al., 2006), they have not been applied in practice to reserve
provision with buildings and districts yet. Furthermore, so far practical implementations
of reserve provision schemes are limited to individual buildings, which have to be heavily
aggregated in order to meet minimal capacity requirements for reserve products. As
a result, there is a growing interest in the potential of providing ancillary services in
district heating systems (Lund et al., 2018; Xu et al., 2020; Pagh Nielsen and Sørensen,
2021; Ivanova et al., 2019). If operated with central heat pumps, they could meet the
capacity requirements without the need of aggregation. Review studies (Vandermeulen
et al., 2018; Hennessy et al., 2019), however, indicate that there is little work on the
operation (Terreros et al., 2020; Salpakari et al., 2016; Li et al., 2016) of such systems
and no implementation and validation on a real system in the literature. Moreover, to
efficiently design predictive control schemes for such systems, dynamic building models
are necessary to model the behavior of households that actively participate in the scheme
by offering the thermal inertia of their buildings for reserve provision. Following the rea-
soning in the previous section, these models should preferably be data-driven and should
lead to convex MPC formulations. Equipment such as the central heat pump itself and
central storage can be modeled based on physics, as these are industrial products and
only need to be modeled once. Other households might refuse to actively participate,
for example because of privacy or data security concerns, or might not be suitable to be
actively controlled by the central controller due to missing communication infrastructure
or hardware. For these buildings, accurate data-driven demand forecasting methods are
essential, as also the uncertainty related to these forecasts limits reserve provision.

1.2 Outline and contributions

Following the motivation given in the previous section, we present new methods in the
areas of online-corrected demand forecasting and data-driven dynamic building models
that lead to convex predictive control problem formulations. We combine them with
physics-based models of industrial components, and robust control methods to address
electrical reserve provision with buildings and districts. They are applied to and validated
on real building and district energy systems to address the issues of reducing building
energy consumption and demand-side frequency regulation, and comparisons are made
between various methods. Specifically, as shown in Figure 1.1, we make the following
contributions and organize the thesis as follows:

In Chapter 2, we develop two correction methods which are applied online for heating
demand forecasting with Artificial Neural Networks (ANN), to obtain reliable forecasting
models. The first one is based on the forecasting error-autocorrelation, and the second
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Chapter 2:
Demand forecasting 
with online-corrected 
ANN

Chapter 3:
Robust MPC for 
frequency regulation 
with heat pumps

Chapter 4:
Data-driven 
predictive building 
control

Chapter 5:
Combining electric 
reserves with 
data-driven 
predictive building 
control

Figure 1.1: Overview on the topics discussed in this thesis.

one is based on online learning. The approach is tested in three case studies in the frame
of day-ahead sub-hourly forecasting. In the first case study of a complex building, which
has properties of a district heating system, it is demonstrated that the methods signif-
icantly reduce variance in prediction performance and also increase average prediction
accuracy. When compared to other grey-box and black-box forecasting models, the ap-
proach performs well. In the second study, the approach is validated on three additional
buildings where the performance of the approach is confirmed. In a third case study, the
sensitivity with regards to quality and quantity of training data is investigated, and it is
shown that the forecasting method only requires little amounts of training data.

In Chapter 3, we present a control scheme to offer frequency reserves with an electri-
fied district heating system. Instead of exploiting the thermal inertia of connected build-
ings, we use the inertia of buffer storage for providing reserves, reducing the building
models to demand forecasts. This configuration resembles the situation where connected
buildings in a district system cannot be controlled actively by a central controller, for
example because they do not want to participate in a reserve scheme due to privacy
concerns, or because of missing communication infrastructure. The presented control
scheme paves the way for Chapter 5, where the thermal inertia of a subset of connected
buildings is exploited too. By combining robust Model Predictive Control with affine
policies, and heating demand forecasting based on Artificial Neural Networks with online
correction methods, as described in Chapter 2, we offer frequency regulation reserves and
maintain user comfort with a system comprising a heat pump and a storage tank. The
robust formulation ensures sufficient storage temperatures in the face of uncertainty, and
the affine policies reduce the effect of the uncertainty. In a three-day experiment with
a real district-like building energy system, we demonstrate that the scheme is able to
offer reserves in a variety of conditions and track a regulation signal while meeting the
heating demand of the connected buildings. In additional numerical studies, we demon-
strate that using affine policies significantly decreases the cost function and increases the
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amount of offered reserves, and we investigate the suboptimality in comparison to an
omniscient control system.

In Chapter 4, we explore various methods of data-driven model generation for con-
vex MPC in thermal building control. We introduce Machine Learning models based
on Random Forests and Input Convex Neural Networks, as well as physics-informed
ARMAX models, and compare them in experiments on a practical building application,
and in a numerical case study. We demonstrate that Predictive Control in general leads
to significant savings of heating and cooling energy, compared to the baseline hysteresis
controller of the building. Moreover, we show that all different model types lead to sat-
isfactory control performance in terms of constraint satisfaction and energy reduction.
However, we also see that the physics-informed ARMAX models have a lower computa-
tional burden, and a superior sample efficiency compared to the Machine Learning based
models. Moreover, even if abundant training data is available, the ARMAX models have
a significantly lower prediction error than the Machine Learning models, which indicates
that the encoded physics-based prior of the former cannot independently be found by
the latter.

In Chapter 5, we combine the methods of Chapters 2-4 and present a two-level con-
trol scheme based on Robust MPC with affine policies to offer frequency reserves with a
district system, comprising a central heat pump, as well as cold and warm buffer storage
tanks. In contrast to Chapter 3, a subset of the connected buildings is considered to
be controlled by the central controller, and others are not. For the controlled buildings,
we leverage the data-driven modeling methods of Chapter 4 to overcome the problem of
physics-based building modeling being tedious as each building is individual. The energy
demand of the other buildings is modeled with the methods developed in Chapter 2. In a
numerical case study based on one-year historical data of a real system, we compare the
approach to a situation where only the buffer storage is used for flexibility. We demon-
strate that the reserves offered are increased substantially if the inertia of a subset of the
connected buildings is exploited too. Furthermore, we validate the control approach in
a first-of-its-kind experiment on the actual system, where we show that while reserves
are offered by the district system, the comfort in the connected buildings is maintained
at all times.

We conclude the thesis in Chapter 6 and provide future research directions, which
include scaling up data-driven control methods, data-driven modeling of multi-energy
systems and physics-informed Machine Learning in the building domain.

1.3 Publications contributing to the thesis

The work presented in this thesis mainly relies on published and forthcoming work,
which has been created by me and my research collaborators. The specific journal and
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CHAPTER 2
Demand Forecasting with online-corrected

ANN

Predictive building energy control on higher system levels, for example demand-side
management in district energy systems, as will be presented in Chapter 3, often requires
forecasts of the future energy demand of buildings or entire districts. Such forecasts
can be done with data-driven methods such as Artificial Neural Networks. However, the
prediction performance of Artificial Neural Networks suffers from high variance due to the
stochastic nature of the training process. This means that two parameter-wise identical
networks fitted to the same training data set perform differently well in forecasting
the testing set. In this chapter, we propose two correction methods, one based on
the forecasting error-autocorrelation, and one based on online learning, to obtain more
reliable forecasting models.

The approach is tested in three case studies in the frame of day-ahead sub-hourly
heating demand forecasting. In the first case study of a complex building, which has
properties of a district heating system, it is demonstrated that the methods significantly
reduce the variance in prediction performance and also increase the average prediction
accuracy. When compared to grey-box and other black-box forecasting models, the
approach performs better. In the second study, the approach is validated on three
additional buildings where the performance of the approach is confirmed. In a third case
study, the sensitivity with regards to quality and quantity of training data is investigated
and it is demonstrated that the correction methods lower the amount of training data
needed.

2.1 Introduction

In addition to energy management on a building level, there are a number of higher-
level control tasks with the objective of optimizing energy consumption in the building
domain or in coupled sectors (e.g. the electricity grid). Such tasks are for example the
optimal control of the network temperature in low-temperature district heating and cool-
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ing networks (Bünning et al., 2018), optimal control of energy hubs with various heating,
cooling and storage technologies (Geidl et al., 2007; Arnold et al., 2009; Arnold and An-
dersson, 2011; Darivianakis et al., 2017), or frequency regulation with electrified heating
systems and water storage tanks (Kondoh et al., 2011), as discussed in Chapters 3 and 5.
Here, control tasks include minimizing energy costs, maximizing self-consumption, peak
shaving and optimal management of long-term and short-term energy storage devices
for example.

If predictive control is used to address these tasks, it is necessary to have detailed
forecasts about the future energy consumption of individually connected buildings or the
whole district. This has motivated an increasing research interest in demand forecasting
for buildings for heating, cooling and overall electricity consumption, see for example
the survey of different methods and models under (Mat Daut et al., 2017; Zhao and
Magoulès, 2012; Harish and Kumar, 2016; Wang and Srinivasan, 2017; Foucquier et al.,
2013; Suganthi and Samuel, 2012; Amasyali and El-Gohary, 2018; Ahmad et al., 2018).
According to Amasyali and El-Gohary (2018), 31% of the related studies make forecasts
with a yearly, monthly or daily resolution, while 57% consider hourly and 12% sub-
hourly forecasts respectively, which would be suitable for the above named control tasks.
Artificial Neural Networks (ANN) have been proven to perform well in a variety of
complex and difficult tasks, such as gaming (Silver et al., 2017), computer vision (Wojna
et al., 2018) and robotics (Tobin et al., 2017), and several studies have also demonstrated
that ANN perform well on the task of short-term heating demand forecasting with high
temporal resolution in the building and district domain.

On a district level, Kato et al. (2008) use a Recurrent Neural Network to make 24
hour ahead predictions of the hourly heating load of a real district heating system and
compare it to a three-layered feed-forward ANN. The Recurrent Neural Network has an
overall better forecasting performance, especially in periods that the authors consider as
non-stationary. Similarly, Park et al. (2010) compare feed-forward ANN, Support Vector
Machines (SVM) and the Particle Least Squares (PLS) method to perform 24 hour ahead
predictions of the heating load of a real district heating system. PLS slightly outperforms
SVM and ANN. Johansson et al. (2017) compare Extra-Trees Regressors (ETR) with
feed-forward ANN on a real district heating testing case in Sweden for 24 hour ahead
hourly forecast. ANN outperform ETR in this study. In Suryanarayana et al. (2018) the
same Neural Network approach is compared to linear regression, ridge regression and
lasso regression with an automatized feature selection process on two different district
heating test cases in Sweden. ANN outperform the other three approaches in both
cases. Saloux and Candanedo (2018) use ANN, SVM, and Regression trees (RT) and
compare them to Piecewise Linear Regression on six hour ahead and 48 hour ahead
heating demand forecasts with a sampling time of ten minutes in the case of a real
district heating system. While ANN, SVM and RT clearly outperform the Piecewise
Linear Regression, no distinguished performance difference is found between the other
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methods.

On the individual building level, Paudel et al. (2014) use ANN together with a pseudo-
dynamical model to make four-day predictions with a sampling time of 15 minutes for the
heating demand of a French office building. Kwok and Lee (2011) and Leung et al. (2012)
combine ANN with different occupancy prediction models to enhance the hourly load
prediction of a large office building and a university building in Hong Kong respectively.
The same forecasting task is performed for a commercial building in (Mestekemper et al.,
2013). Here, the authors improve the prediction accuracy of ANN by splitting the cooling
demand in a trend and a periodic signal and by training the ANN with the global
optimization method Modal Trimming.

While all of the above named studies have promising results for energy demand
forecasting with ANN, none of them communicate whether the achieved prediction results
are average results or best case results, or if they were obtained with a fixed random seed.
This is highly problematic as certain Machine Learning approaches and especially ANN
suffer from high variance (Henderson et al., 2018; Recht, 2018; Bengio, 2012; Jamieson
and Talwalkar, 2016): Depending on the random seed that is used while training the
ANN, the ANN will have different prediction accuracies for the same training and testing
data and same model parameters (i.e. number of neurons, number of layers, etc.).1

This is due to the initialization of the network’s weights with random values and the
following non-convex optimization that generally converges to a local minimum in the
fitting process. Jovanović et al. (2015), Jetcheva et al. (2014) and De Felice and Yao
(2011) use ensemble methods to overcome this problem in the context of building energy
demand prediction. However, using ensembles also has disadvantages. For example,
the prediction accuracy of an ensemble is not guaranteed to be better than the one
of its best predictor. Moreover, using ensembles is computationally more expensive
than using single predictors, which can obstruct their use in online control schemes.
The computational effort typically grows linear with the number of predictors in the
ensemble.

2.1.1 Contribution

We therefore make the following contribution with this chapter: A prediction model
based on single ANN to make 24 hour ahead forecasts with a 15-minute sampling rate2 of
the heating demand for complex buildings and districts is developed. Two simple forecast
correction methods, based on the error-autocorrelation and online learning, which make
use of the history of previous forecasting errors during the online phase, are introduced.

The methods are verified in three case studies to examine the performance of the

1While fixing the random seed appears tempting, this would raise the question of which random seed
to pick to reach the best performance.

2This is a common sample rate for many building energy management related control tasks.
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resulting prediction methods, to test if they generalize to other buildings, and to evaluate
requirements on the training data. This process is done to ensure that the methods are
accurate enough to be used as disturbance forecasts for predictive controllers, to ensure
that the methods are reusable for other buildings, as buildings are usually individual, and
to verify that the required amount and quality of training data is suitable for practical
application.

The first case study is based on data from the NEST building (Richner et al., 2017),
which comprises independent modular control zones that allow it to mimic a district
heating network. Here, we demonstrate that the methods reduce the ANN dependence on
random initialization parameters and thus significantly reduce the variance in prediction
performance. They also increase the average prediction accuracy and remove a prediction
bias. Moreover, the methods are compared to other Machine Learning (or regression-
based) approaches and to conventional resistor-capacitor (RC) building models, and are
found to be competitive.

In a second case study, the generalization capability of the method is investigated by
validating the approach on three additional buildings of different types and by comparing
it to fitted 5R3C resistor-capacitor models. It is shown that the approach outperforms
the RC model in all presented cases. Furthermore, improvements on the average accuracy
and variance of the prediction accuracy of different instances of ANN are also observed
for the other building test cases when the correction methods are applied.

In the third case study, we investigate the influence of sampling time, noise level and
amount of available training measurement data as well as the quality of the weather
forecast on the prediction accuracy. We demonstrate that the sampling time has a
stronger influence on the prediction performance than the noise level and the amount
of available data. Furthermore, we show that using measured ambient temperatures for
training appears to provide no benefit compared to using weather forecasts.

2.1.2 Structure

The remainder of the chapter is structured as follows: In Section 2.2, the forecasting
task is introduced. In Section 2.3, our ANN based methodology and the forecast cor-
rections, which are based on the forecasting error-autocorrelation and online learning,
are described. In Section 2.4, the first case study is defined. The energy system under
consideration is introduced, and the structure of the applied ANN and the benchmark-
ing grey-box and black-box methods are defined. Then, the results regarding prediction
accuracy and variance are discussed, as well as limitations of the study. Section 2.5
describes the configuration of the second case study first and then discusses the obtained
results. Section 2.6 is structured analogously for Case Study 3. In Section 2.7, the
chapter is concluded.
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2.2 Problem statement

2.2 Problem statement

In this chapter the following forecasting task is considered: A heating demand forecast
for a building or a district is made at midnight for the next 24 hours, sampled every
15 minutes, which is related to the reserve bidding mechanism used in Chapters 3 and
5, but also applicable for many other district energy management related tasks. The
training and validation data are assumed to be sampled at the same rate.

2.3 Methodology

The forecast is made with a feed-forward ANN, which will be described in detail in
Section 2.4.2. To model the closed-loop response of the building and its lower-level
climate controllers to the ambient conditions, model inputs related to ambient conditions
and time features are used. To reduce variance and to improve the forecasting accuracy,
we introduce two methods that are used in the online phase of the forecasting task.

2.3.1 Error-autocorrelation correction

Empirical evidence suggests that forecast errors persist over a longer period of time than a
single forecasting interval in the setting of building energy or district energy forecasting.
For example, if windows are left open, a room temperature set point is changed or a
fluid pump fails, this does not only have an effect on one single forecasting interval (15
minutes) but also on the following intervals, as the source of the error is usually not
eliminated within one single interval.3

Motivated by this, we predict the error ẽ for day D and forecast interval t ∈ [1, 96]

by setting

ẽD,t =
1

4

96∑
τ=93

eD−1,τΓee(t, E) (2.1)

with

Γee(l, E) =
E[(E − µ)(E+l − µ)]

σ2
. (2.2)

Here the first term in the right hand side of (2.1) denotes the average of the past
day’s forecasting errors e for the last four forecasting intervals; averaging over a few

3This is further demonstrated in section 2.4.4.
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Figure 2.1: Scheme of forecast correction based on autocorrelation of forecasting errors

elements helps to denoise the error at the cost of a small decrease in the autocorrelation.
The choice of four elements could be questioned, however, by further increasing the
averaging interval, prediction power is lost because of the decreasing correlation of the
error. Γee(l, E) denotes the autocorrelation for lag l, which is calculated with the set E
which contains all past forecasting errors e that have occurred until day D - including
the errors of the training set. E+l is the same set shifted by lag l. The expected value E,
the mean µ and the standard deviation σ are empirical approximations for the stochastic
process based on the set E.

Instead of including all past forecasting errors in E, one can also implement a shifting
window and compute the autocorrelation using the forecast errors for the past few days.
However, our experiments suggest that this does not improve the error prediction.

Figure 2.1 shows a schematic of the forecast correction procedure; A demand forecast
is made with an ANN (uncorrected forecast). Based on the database of all previous fore-
casting errors and the measured error of the previous day’s forecast, the error estimation
described in (2.1)-(2.2) is made. The estimated error is then added to the uncorrected
forecast to give a corrected demand forecast. At the end of the day, the difference be-
tween demand realization and demand forecast is added to the database. At the first
prediction day in the online phase, the correction is based on the errors in the training
set. The corresponding algorithm is shown in Algorithm 1.

2.3.2 Online learning

The second forecast correction method is online learning. Instead of using only the
training set for training the model, after each day, the newly collected data (network
inputs and demand realization) are used to retrain the ANN. The inputs are identical
to the ones used in offline training. The argument behind this approach is again that
phenomena in the building domain persist for time constants longer than hours and that
the assumption “tomorrow will be like today" (also referred to as “persistence model" or
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Algorithm 1
1: procedure Error-autocorrelation correction
2: for D in runtime do
3: for t in [1, 96] do
4: forecast[D,t]:=ANN.predict(inputs[D,t])
5: error[D,t]:=AvError[D-1]*Γee(t,E)

6: correctedFcast[D,t] := forecast[D,t]
+ error[D,t]

7: wait until day passes

8: measuredError[D] := realization[D]
- forecast[D]

9: E:=E.add(measuredError[D])

“naïve forecast") has some validity here. By retraining the network on the previous day,
we intentionally bias the network towards a certain solution, which is usually undesirable
in Machine Learning (Huang et al., 2006), but potentially beneficial when the model is
persistent. We can adjust this biasing via the learning rate of the optimizer used for
training. This balances the importance between the training set and the daily feedback
from the realised prediction errors. Combining this online training heuristic with the
autocorrelation based error correction outlined above, leads to Algorithm 2.

It should be noted, that in line 10 a second forecast is made at the end of the day,
after the ANN has been retrained on the inputs and demand realization of the day. The
error of this second forecast is then added to the error database. This is done because
next day’s error estimation needs to be performed for the retrained ANN. If this is not
done, the error for the next day is overestimated.

Algorithm 2
1: procedure Combined correction
2: for D in runtime do
3: for t in [1, 96] do
4: forecast[D,t]:=ANN.predict(inputs[D,t])
5: error[D,t]:=AvError[D-1]*Γee(t,E)

6: correctedFcast[D,t] := forecast[D,t]
+ error[D,t]

7: wait until day passes

8: ANN:=ANN.train(inputs[D],realization[D])
9: for t in [1, 96] do
10: forecast2[D,t]:=ANN.predict(inputs[D,t])
11: measuredError[D] := realization[D]

- forecast2[D]
12: E:=E.add(measuredError[D])
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Figure 2.2: NEST building at Empa in Switzerland, Copyright: Zooey Braun - Stuttgart

2.4 Case study 1: General Validation

In this case study of a modern multi-use building in Switzerland, we demonstrate the
general ability of the presented correction methods to increase accuracy and decrease the
prediction variance between ANN with different initialization values. Besides discussing
the individual effect of each correction method and analyzing the prediction error, we
also compare the method to other black-box and grey-box demand prediction approaches.
Here, we find that the presented approach outperforms all other tested methods.

2.4.1 System description

The NEST building at Empa in Switzerland (Richner et al., 2017), shown in Figure 2.2,
is used as a case study. The building contains multiple individual units with different
uses that can be added and removed from the building, in addition to office and meeting
rooms that are permanently installed. At different times during the period covered by
our data, two, three or four of these individual units were simultaneously in operation.
One of the units was added during the training set (August 2017) and one during the
test set (February 2018) of the case study. The configuration resembles a district heating
system because different units have different use patterns, some of which resemble those
of residential buildings while others those of office spaces. Moreover, all of the individual
units are equipped with local controllers, whose details are unknown to the forecasting
system. The demand forecast is therefore made for a collection of individual closed-loop
energy systems. The units are connected via substations to a central heating system
with a supply temperature of 38 ◦C and a return temperature of 28 ◦C. The heating
system is served by a central heat pump with a maximum thermal capacity of 100 kW.
A simplified schematic of the system can be seen in Figure 2.3. The heating demand
that our algorithm is designed to forecast is the energy flow difference between supply
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2.4 Case study 1: General Validation

line and the return line. For more information on the complete system see (Lydon et al.,
2017).

The building is set-up as a test bed for district heating and cooling and building
energy experiments. It integrates approximately 540 sensors, whose data is stored in an
SQL database with a temporal granularity of one minute, and approximately 200 control-
lable actuators. The measurement data used in this study contain 411 days (01.04.2017
to 16.05.2018) and include the measurements for ambient temperature and total heat
consumption. The measured heating demand is shown in Figure 2.4. Figure 2.5 shows
the ambient air temperature measured at the roof top of the building. Though, strictly
speaking, weather forecasts should be used in demand forecasting, in this case study
we use the actual ambient air temperature directly as an input. This is done to avoid
the additional uncertainty in the inputs and to allow direct comparison of the different
forecasting methods.

unit with
substation

heat-
pump
pump

return

supply

supply return

Figure 2.3: NEST heating system schematic. Orange lines denote the supply pipes and
blue lines denote the return pipes. The individual units are connected to the heating
system via heat exchangers.

2.4.2 Artificial Neural Network Configuration

We use feed-forward ANN with the Python package Keras (Chollet, 2018), which is a
higher-level API to TensorFlow (Abadi et al., 2016). We refrain from fundamental in-
troduction to the concept here and refer the reader to other sources (for example Shan-
muganathan (2016); Basheer and Hajmeer (2000)). Other topologies, such as Recurrent
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Figure 2.4: Measured total heating load of the NEST building. Periods where the tra-
jectories are flat denote system outages, where the signal is held automatically by the
database.
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Figure 2.5: Measured ambient temperature at the roof of NEST building. Periods where
the trajectories are flat denote system outages, where the signal is held automatically by
the database.

Neural Networks (RNN) and Long-Short-Term Memory Networks (LSTMN) were in-
vestigated in preliminary studies but showed weaker performance. To fit the ANN to
the training data, we use the optimizer Adam (Kingma and Ba, 2017) with standard
parameters. This includes the learning rate of 0.001 for both offline and online learning.
As a loss function, the mean squared error and as activation functions, Rectified Linear
Units (ReLu) (Nair and Hinton, 2010) are used.

Architecture

As we want to forecast the heating demand in a day-ahead fashion, we forecast 96 data
points at once. (One value every 15 minutes for one day.) For the structure of the ANN
this gives two possibilities: 1) The network is built with 96 outputs and the forecast for
the day is performed in one single step. 2) The network is built with one output and the
forecast is performed with 96 different input vectors to forecast 96 single output values.

Option 1 has one major advantage: As the heating demand (forecast target) is highly
correlated for small time delays, the accuracy of the prediction is very precise for the
first few forecast data points at the beginning of the day. This is because the network
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2.4 Case study 1: General Validation

makes use of the measured heating demands at the end of the previous day. In option
2, this is not possible as, for example, we cannot use the demand of t− 4 as an input for
the network because for forecasts t = 5, ..., 96 this input has not yet been measured at
the time the forecast is made. As an alternative, the forecasts of earlier time steps could
be used as inputs, but this would potentially lead to error propagation. However, in case
of option 1 the network needs a much higher complexity in terms of number of layers
and nodes, and thus potentially a larger training set compared to option 2. Preliminary
forecast runs have shown that this results in reduced prediction performance. For option
2, the disadvantage of not being able to use the last measured heating demands of the
previous day as inputs is compensated by the error-autocorrelation based correction
method that was introduced in Section 2.3.1. We therefore use option 2 in this study.

Feature selection

Although NEST also has measurements for wind speed and solar radiation, the ambi-
ent temperature was selected as the only weather-related feature4, because preliminary
experiments suggested that the other measurements do not substantially improve fore-
casting accuracy. This might appear surprising as generally solar radiation has indeed
an effect on the heating demand of a building, however, with a Pearson correlation coef-
ficient of 0.54 between ambient temperature and solar radiation in the considered data
set, it appears that the ambient temperature incorporates much of the information of
the solar radiation already.

With the assumption that the demand of the system shows daily and weekly patterns,
as the units are used for living and as office spaces, two more features were added: the
total heat consumption with a time delay of one day (again following the assumption
“tomorrow will be like today") and the total heat consumption with a time delay of one
week (motivated by the assumption that weekly routines can expected). This allows the
prediction of the energy demand today based on the demand at the corresponding time
yesterday and last week. Finally, the time stamp of all features was implemented as two
inputs: hour of the day and weekday/weekend5. Hour of the day was one-hot encoded
(Aggarwal, 2018), meaning that instead of one continuous input 24 binary inputs are
used. Preliminary experiments suggested that this improves the forecast accuracy. We
assume that the occupancy related internal gains are indirectly captured by the time-
related inputs and do not use a separate occupancy model. The resulting network has
28 inputs, of which three are continuous and 25 binary, and one continuous output.

4The term “feature" can be regarded as a synonym for “input", but is the more common term in
Machine Learning.

5Weekday/weekend was chosen instead of working day/non-working day as the difference is marginal
and the implementation effort substantially lower.
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Table 2.1: ANN parameters

Parameter Value
Number of hidden layers 2
Number of nodes per layer 8
Number of Epochs 10
Input scaling method Linear [-1,1]

Parameter selection

There is no proven rule on how to best determine the parameters of ANN. These values
are commonly set based on heuristics and an iterative approach that involves a substan-
tial amount of trial and error. Generally, a trade-off between overfitting and underfitting
of the training data has to be found.

A preliminary sensitivity analysis was conducted to decide on the number of hidden
layers, number of nodes per layer, number of training epochs (number of times the
network’s weights are updated based on each individual sample in the training set), and
on the input scaling method. The results for the suggested optimal parameter values are
given in Table 2.1.

2.4.3 Forecasting methods for benchmarking

To assess the performance of the ANN with the introduced correction methods for fore-
casting the thermal demand of NEST, their prediction accuracy is compared to those
of other state of the art prediction methods. These are grey-box models in the form of
resistor-capacitor building models, and black-box models in the form of other regression-
based or Machine Learning based approaches.

Grey-box method (RC models)

For the grey-box approach, resistor-capacitor (RC) models are used. We note that while
resistor-capacitor and other grey-box models are often used as optimization models for
selecting control inputs for building level Model Predictive Control, they are also used
for forecasting (De Coninck et al., 2015; Zhou et al., 2008). Moreover, grey-box and
white-box models are also commonly used for building performance simulation, which
is essentially forecasting without using the forecasts online, see for example (Zhao and
Magoulès, 2012).

Four different topologies were considered as shown in Figure 2.6, inspired by the
models used in (De Coninck et al., 2015). In this approach, the thermal capacity of
wall materials, floor materials and air volumes is represented by capacitors, whereas
the thermal resistance of walls and floors is represented by resistors. The parameters
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Model 4R3C Model 5R3C

Tambient

Czone

Rwall

Q

Model 1R1C Model 2R2C

Tambient

Czone

Rwall1

Q

Rwall2

Cwall

Tambient

Czone

Rwall1

Q1

Rwall2

Cwall

Rinfiltration

Q2

Rcore

Ccore

Tzone

Tzone Tzone

Tambient

Czone

Rwall1

Q1

Rwall2

Cwall

Rinfiltration

Q2

Rcore

Ccore

Rground

Tground

Tzone

Figure 2.6: RC building models with varying numbers of resistors and capacitors.

of all resistors and capacitors are estimated to fit a heating demand measurement time
series. As the RC models are purely thermal models, the ambient temperature is the
only used input. The models were implemented in the modeling language Modelica
(Mattsson et al., 1998) and simulated in Dymola (Brück et al., 2002). To estimate
the parameters, a Covariance matrix adaptation evolution strategy (CMA-ES) (Hansen
et al., 2003) optimizer was used in Python. CMA-ES is a evolutionary solver to find the
global optimum of non-linear and non-convex optimization problems. It is considered the
state-of-the-art algorithm in evolutionary computation (Loshchilov and Hutter, 2016).

In the 1R1C and 2R2C models, the parameters were estimated such that the mean
squared error between the heating energy Q̇ applied to the model and the target heating
demand is minimized. In model 1R1C, Q̇ was set equal to the heat flux through the
wall resistor Rwall and in model 2R2C, Q̇ was set equal to the heat flux through wall 2,
Rwall2, which keeps the temperature of Czone at a constant 20 ◦C.

As an additional capacitor for the building core, Ccore, was added for the models
4R3C and 5R3C, the mapping of the target heating demand is more complex. The
optimization was set up to minimize the mean squared error between the target heating
and Q̇total,

Q̇total = Q̇1 + Q̇2, (2.3)
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which is the sum of the heat distributed via fast emission systems (e.g. air conditioning)
to Czone (Q̇1) and the heat distributed via slow emission systems (e.g. floor heating)
to Ccore (Q̇2). Moreover, as the direction of heat loss is not unique in these models
(losses can go from Czone to Ccore and/or to Tground), a P-controller was set-up to keep
the temperature of Czone at a constant Tset = 20 ◦C:

Q̇total = kp × (Tset − Tzone). (2.4)

A P-controller is chosen because buildings are often controlled by thermostatic valves,
which approximately have proportional controller behaviour. Moreover, the closed-loop
demand response to the ambient temperature is assumed to be dominated by the build-
ing dynamics, which renders the choice for the assumed controller less important.6 Ad-
ditionally a fraction coefficient cf was introduced to distribute the heat between air
conditioning and floor heating, such that

Q̇1 = cf × Q̇total (2.5)

and

Q̇2 = (1− cf )× Q̇total. (2.6)

The values of kp and cf are also determined in the fitting process.

Black-box methods (regression-based methods)

To implement the benchmark black-box methods, we use Python’s scikit-learn package
(Pedregosa et al., 2011). The package features a variety of different regression or Machine
Learning methods. In the case study, the following methods are used:

1. Least squares Linear Regression

2. Support Vector Machine

3. Huber Regressor

4. Orthogonal Matching Pursuit

5. SGD Regressor
6This is the case for any well-regulated building.
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6. Decision Tree Regression

7. Random Forest

The data sets used for fitting and testing are identical to those used for the ANN
method, including the scaling of inputs and outputs and the one-hot encoding of cate-
gorical features. For all methods, a grid search regarding model tuning parameters was
performed to improve the forecasting results.7

2.4.4 Results and discussion

For the case study, the measurement data from NEST is divided into a training set and a
testing set. The training set consists of 70% of the whole data set, which corresponds to
287 days (27552 data points). The testing set consists of 124 days (11904 data points).

The data was post-processed with the help of the pandas package (Mckinney, 2011)
in Python 3. Missing data points were first linearly interpolated or extrapolated from
neighbouring data points. This excludes data points that have already been handled
by the NEST database (e.g. the constant values around September 2017 in Figure 2.5).
The data set was then re-sampled to a 15-minute interval using the mean value of all
relevant data points.

To benchmark the prediction performance, the coefficient of determination,

R2 = 1−
∑

i∈N (yi − f(xi))
2∑

i∈N (yi − ȳN)2
, (2.7)

is used. It becomes zero if the forecast f(xi) is as good as taking the average ȳN of
the data in the considered set N as a forecast, and becomes one if the forecast exactly
matches the validation data yi. In principle, R2 may also become negative if the forecast
is worse than taking the average, though this was not observed with any of the methods
tested here.

We train and forecast with 100 individual ANN as the initial input weights of each
node in the network are initialized with a random value. This randomness leads to differ-
ent prediction performance for each network as the training process involves the solution
of a non-convex optimization problem that generally converges to a local minimum. By
simulating 100 networks, a more confident statement about R2 can be made and the
quartiles can be studied.

7These parameters are in particular kernel, gamma, C and degree for Support Vector Machine,
epsilon and alpha for Huber Regressor, nonzero coefficients for Orthogonal Matching Pursuit, alpha
and L1 ratio for SGD Regressor, depth for Decision Tree Regression, and number of estimators and
depth for Random Forests. We refer the reader to the API reference of scikit-learn for details on the
tuning parameters.
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Prediction accuracy, quartiles and improvements through forecast corrections
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Figure 2.7: Coefficient of determination for ANN and forecast correction methods for
100 individual networks, with boxes describing the interquartile range, whiskers of 1.5
times the interquartile range, circles indicating outliers and the orange line indicating
the median.

Figure 2.7 shows the box plot of the coefficient of determination in the test set of 100
different networks for the uncorrected ANN, ANN with error-autocorrelation correction,
ANN with online learning and ANN with error-autocorrelation + online learning for
full day-ahead forecasts. First, it should be noted that the variance in performance
for uncorrected ANN is indeed very high, as discussed in Section 2.1. The highest
performing network reaches R2 = 0.868, while the lowest performing network reaches
R2 = 0.732. It can be seen that the quartiles regarding prediction accuracy amongst
different network instances are significantly reduced when correction methods are used.
While the interquartile range (IQR) is 0.038 in the uncorrected case, it reduces to 0.023
in the case with error-autocorrelation correction, 0.009 in the case with online learning
and 0.008 in the case where both correction methods are used. With both corrections
in place, all R2 lie between 0.872 and 0.898. The average achieved R2 are 0.818, 0.860,
0.878 and 0.885 subsequently. Figures A.1 - A.3 in the Appendix show the results of a
second experiment with 100 runs for the variance of three different KPI, Mean Squared
Error (MSE), Mean Absolute Error (MAE) and Coefficient of Variation of the Root-
Mean Squared Error (CV RMSE). The trend is identical to the one observed for R2 in
the first experiment. For clarity, the analysis is therefore limited to R2 in the following.

Figure 2.8 shows the coefficient of determination for a 2 hour ahead prediction and
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Figure 2.9 for a 24 hour ahead prediction8, again for 100 networks. First, it can be noticed
that the performance in terms of median and IQR is similar for the uncorrected forecasts.
However, in case of the corrected forecasts, the performance is better in the 2h ahead
case, because the forecast is closer to the model update and to the last measured error, on
which the error-autocorrelation correction is based on. Moreover, while the correction
based on online learning shows a better performance in terms of median for the full
forecast (Fig. 2.7) and 24h ahead forecast, the correction based on error-autocorrelation
is more effective in the 2h ahead case. However, the variance is significantly reduced by
both correction methods in all cases.

These results suggest that the corrections introduced in Section 2.3 can to a large
extent alleviate a main disadvantage of ANN, namely the dependence of the prediction
performance on randomly initialized node input weights, without the necessity of us-
ing an ensemble method. Moreover, the average prediction performance is significantly
improved.
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Figure 2.8: Coefficient of determination of 2h ahead prediction of 100 ANN and fore-
cast correction methods, with boxes describing the interquartile range, whiskers of 1.5
times the interquartile range, circles indicating outliers and the orange line indicating
the median.

8In contrast to the full day-ahead forecasts, the 24h ahead prediction only includes the sample for
exactly 24h ahead, but not the samples between the forecasting time and 24h. I.e. it does not include
the samples for 15m ahead to 23h45m ahead.
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Figure 2.9: Coefficient of determination of 24h ahead prediction of 100 ANN and fore-
cast correction methods, with boxes describing the interquartile range, whiskers of 1.5
times the interquartile range, circles indicating outliers and the orange line indicating
the median.

Influence of training set on prediction performance

The training set and the online application of forecasts can often fall into different seasons
for real-life applications, which results in different probability distributions of samples
in training and application (or in case of this study in the testing set). To investigate
the influence of different distributions, we have trained 100 networks based on randomly
sub-sampled sets, with random length and random location in the original set, from the
original training set described above. The networks are validated on the same testing
set for comparable R2.

Figure 2.10 shows the variance of the coefficient of determination. It can be seen
that both the median and IQR have significantly worsened for the uncorrected networks
compared to Figure 2.7. In the case where both correction methods are applied, both
median (0.868) and IQR (0.0183) are close to the ones achieved with the full training
set.

Prediction error analysis

To further evaluate the impact of the correction terms introduced in Section 2.3 we
analysed the statistics of the forecast error with and without the corrections.

Figure 2.11 shows the autocorrelation of the error for one instance of an uncorrected
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Figure 2.10: Coefficient of determination of 100 ANN and forecast correction methods
with randomized training period, with boxes describing the interquartile range, whiskers of
1.5 times the interquartile range, circles indicating outliers and the orange line indicating
the median.

ANN forecast (with a relatively high R2 of 0.841) and the remaining error after correction
for one instance of a corrected ANN with error-autocorrelation and online learning (with
R2 of 0.887). It can be seen that the signal for the corrected ANN is less correlated than
the uncorrected signal. However, the residual is still not “white", as the autocorrelation
is still substantial for many values of the lag. We conjecture that this residual auto-
correlation is an intrinsic artefact of the day-ahead forecast: Disturbances that occur
during the forecasting period will introduce a systematic forecasting error for the rest of
the period, as there is no chance to correct the forecast until the next forecasting period
begins.9 Moreover, one can see that there is no peak at t = 96, i.e. after one day. This
suggests that the network captured all regular daily time-dependencies of the demand
and has no systematic error regarding this aspect.

Figure 2.12 compares the forecasting error histogram of one instance of ANN without
correction to the one using both error correction methods. The plot is cut at a frequency
of 10 for the sake of readability, because by far most errors are 0 for both cases. The
interquartile range reduces from 0.054 in the uncorrected case to 0.033 in the corrected

9To use the example of an opened window again: If the window is opened at day D − 1, we can
use the resulting forecast error in day D − 1 in our forecast corrections for day D. However, if the
window is opened at day D, for example at t = 5, this will introduce a systematic error in the forecast
for t = [6...96]. This error will show up in the autocorrelation plot and is impossible to avoid in this
forecasting setting.
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Figure 2.11: Autocorrelation of the residual uncorrected ANN (black), and ANN with
correction by error-autocorrelation and online learning (blue).

case. Furthermore, the median improves from -0.025 to 0, which shows that the bias in
the forecast is effectively eliminated by the forecast corrections.

Forecasting trajectory examples

Figure 2.13 shows examples of the forecast heating demand trajectory at different tem-
poral resolutions for an ANN that includes the error-autocorrelation and online learning
corrections. The figure also shows the empirical confidence bounds for the forecast com-
puted with a posteriori analysis of the absolute error distribution of the testing set. The
dark-grey background depicts a confidence bound of 68% (one standard deviation) and
the light-grey background depicts a confidence bound of 95% (two standard deviations).
Such confidence intervals could be useful if one uses the forecast for predictive building
energy management based on robust or stochastic model predictive control, as done in
Chapter 3. For certain control tasks, such as temperature control within a building,
these confidence bounds might appear large. However, for high level energy manage-
ment tasks, methods such as affine decision rules (see (Goulart et al., 2006; Warrington
et al., 2012, 2014) and Chapter 3) can be deployed to introduce recourse in receding
horizon control schemes that significantly reduce the impact of forecast uncertainty on
the control performance.

The top graph of Figure 2.13 shows the prediction and the actual heating demand
for the complete testing set. The general trend is captured well. We note in passing
that the model seems to cope well with another unit being added to the building in
February (as described in Section 2.4.1), as the general trend is matched equally well
before and after February. The middle graph shows a more detailed view of five days
with a medium heating demand in March. At this scale, the capabilities and limitations
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Figure 2.12: Forecasting error histogram for uncorrected ANN (black), and ANN with
correction by error-autocorrelation and online learning (blue). The y-axis is limited to
10 for improved visibility. The number of bins is set according to the Freedman-Diaconis
rule.

of the forecast correction methods can be observed. At the beginning of the 18th of
March and 19th of March, the forecast signal is corrected towards the true demand,
because an error was observed at the end of the previous days. The time of correction
is indicated by the vertical grey lines. On the other hand, in the middle of 17th of
March the forecast deviates from the actual demand for several hours. However, this
error can not be corrected, as the correction is applied only at the beginning of each 24
hour forecasting interval. In the bottom graph, a system shut-down or failure occurs in
the afternoon of the 26th of February. The forecast is not corrected until the start of the
next day. At the beginning of the 28th of February and 1st of March a correction of the
forecast towards the real demand at the beginning of the day can be observed again.

Comparison of different forecasting methods

Table 2.2 compares the coefficient of determination in the testing set of the ANN with
both correction methods applied and the benchmark forecasting methods for full 24
hour forecasts.10 It can be seen that the ANN, corrected with both correction methods,
outperform the other forecasting methods.

Decision Tree Regression and Random Forest reach a high R2 without any additional
corrections. It is possible that with appropriate correction methods (similar to the ones
introduced in this study) the performance of our corrected ANN can be reached or
exceeded. With respect to the correction methods introduced here, we note that online

10N-step ahead error metrics are not analysed because the models are not updated or corrected and
the inputs are real measurements and not forecasts.
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Figure 2.13: Forecasting examples (orange) compared to the real heating load (blue) with
varying temporal resolution. The time of correction is indicated by the vertical grey lines.
The grey shadings indicate confidence bounds of 68% and 95%.
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Table 2.2: Coefficient of determination for all tested heating demand forecasting methods.

Method R2

ANN online + autocorr. 0.885

Huber Regressor 0.768
Orthogonal Matching Pursuit 0.770
Least squares Linear Regression 0.770
SGD Regressor 0.775
Support Vector Machine 0.811
Decision Tree Regression 0.844
Random Forest 0.860

Model 1R1C 0.691
Model 2R2C 0.702
Model 4R3C 0.739
Model 5R3C 0.761

learning is not a viable option for regression trees and random forests, because of the
way these are constructed. Both methods are based on decision trees in which the input
variables are split in partitions and the output is approximated with a constant value in
these partitions (see Chapter 4). The splitting variables and splitting points are chosen
heuristically. In online learning with ANN, the network weights are updated with the
measured input-output samples every day. The importance of the new samples can be
adjusted with a learning rate. Such an adjustment of splitting variable and point is not
possible in trees, as the whole tree would have to be rebuilt from the changed splitting
point down. Thus, regression trees or random forests always have to be trained on the
complete data set and cannot be updated with single samples. Retraining on a combined
set of historical data and daily measurements is in theory possible, but it would not bias
the forecast towards the recent behaviour of the building. Corrections based on error-
autocorrelation could, however, be used to correct forecasts made by any forecasting
method.

The resistor-capacitor based models perform worse than the majority of the regression
based methods in this case study. This could be due to the fact that these models can
only make use of the ambient temperature as an input, making it impossible to capture
time-dependent phenomena, such as occupancy for example. This shortcoming could be
improved by an occupancy model. Moreover, these models involve only a small number of
parameters, in the form of resistor and capacitor values. Increasing the model complexity
further could improve forecasting, as suggested by the fact that the R2 of the RC models
in our results continue to increase as more parameters are added. The addition of more
RC components of course implies increased modeling effort. Finally, RC models are often
used in this context for modeling building thermal dynamics (Sturzenegger et al., 2014)
and not for demand forecasting. This study suggest that they are not equally suitable
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for the latter.

Limitations

As evident from the discussion in the previous section, the case study has certain lim-
itations. The scope of the study is to find correction methods that solve the problem
of prediction accuracy variance of ANN and to increase their prediction performance.
As KPIs of prediction performance parameters are not comparable between different
studies in literature and in this work (as they heavily depend on the predicted trajec-
tory), ANN combined with online correction methods were benchmarked against other
forecasting methods. As the scope of this study is not a comprehensive review and com-
parison of forecasting methods, the benchmarking methods have certain limitations and
could potentially be improved in further studies. For example, besides the already men-
tioned measures, the prediction performance of the grey-box models could benefit from
re-initializing the model states with temperature measurements from the building at
the beginning of each forecasting period. However, there are also arguments that speak
against this. In particular, temperature measurements of individual buildings are not
always available in an energy-hub or a different higher level control context, for exam-
ple because of households having privacy concerns regarding sharing such measurements
with the system operator, or simply because of the lack of installed sensors.

2.5 Case study 2: Transferrability to other Buildings

The previous case study has demonstrated that ANN with online correction methods
show high prediction accuracy on a modern multi-use building that resembles a small
district heating system, and outperform other regression-based methods such as ran-
dom forests and support vector machines, as well as fitted resistor-capacitor models with
varying complexity. Moreover, the dependence of ANN prediction performance on ini-
tialization parameters, which are commonly randomly set, is significantly lowered with
the shown methods.

However, with respect to the viability of the methods for practical application, it
should be demonstrated that both the concept, and the found ANN architecture and
input features can be applied to more than one specific building. In the second case
study, we therefore aim to increase confidence in the methods by applying them to three
additional buildings and by comparing the prediction accuracy to a fitted 5R3C building
model.

It is shown that the approach outperforms the RC models in all presented cases.
Furthermore, it can be seen that an improvement on the prediction accuracy and a
reduction of the variance of the prediction performance of different instances of ANN
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holds for all test cases.

2.5.1 General Description

The same forecasting task as in the previous case study is assumed: A heat demand fore-
cast is made at midnight for the next 24 hours, sampled every 15 minutes. The training
and validation data are assumed to be sampled at the same frequency. Furthermore,
perfect knowledge of the ambient temperature for the forecasting period is assumed.

To validate the transferability of the ANN with online correction methods to other
buildings, additionally to the NEST building, three other buildings were selected for the
case study. For each building, a dataset of 15-minutely heat demand measurements and
ambient temperature measurements were available with lengths of one to three years.
In each case, the first 70% of the available dataset were used for model training (for
both ANN and RC model) and 30% of the dataset were used for model validation. The
buildings are introduced in the following and are depicted in Fig. 2.14.

Building (a) is the NEST building, as described in Case Study 1 (Section 2.4). 13.5
months of measured demand data were used for this building.

Building (b) is the ETL building located at the zentrum campus of ETH Zürich.
It is an eleven-story office building that harbours several research institutes and also
experimental laboratories. Six stories lie below ground. 36 months of measured demand
data were used for this building.

Building (c) is the Bauhalle at Empa. The building has offices and testing facilities
for material science experiments. The offices are spread on three stories while some of
the laboratories have the ceiling height of these three stories. The building also has a
basement. 24 months of measured demand data were used for this building.

Building (d) is the Verwaltungsgebäude at Empa. It is an office building with some
presentation rooms. It features three stories. 24 months of measured demand data were
used for this building.

Both model types, ANN with online correction methods, and the 5R3C resistor-
capacitor models were configured and parametrized in the same way as described in
Case study 1 (Section 2.4).

2.5.2 Results and discussion

Variance

Figure 2.15 (a)-(d) shows the variance of the prediction performance in terms of R2 for
100 different instances of neural networks for each building. The first column depicts
uncorrected networks, the second column networks with error-autocorrelation correction,
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(a) NEST at Empa, © Zooey Braun. (b) ETL at ETH Zurich.

(c) Bauhalle at Empa, © Heinrich Helfen-
stein. (d) Verwaltungsgebäude at Empa.

Figure 2.14: Buildings used in the validation study.

the third column networks with online learning and the last column a combination of
both correction measures.

Subplot (a) shows the results from the same building that was used in Case Study 1:
the median of the coefficient of determination increases from the case where no correc-
tions are made to the case where both correction methods are combined. Moreover, also
the variance reduces. The figure shows that the same trend occurs in the cases of build-
ings (b) and (c). Online learning gives the bigger improvement when compared to the
correction based on the error-autocorrelation. However, the combination of both gives
the best results in those cases. While the variance does not improve much, the median
of the coefficient of determination further increases with the combined method.

In the case of building (d), the trend is not as strong but still present. The median
increases with each individual correction method, but the median R2 of the online learn-
ing correction is lower than the one for error-autocorrelation correction. The median
of the combined method is again the highest one. The maximum achieved coefficient
of performance is lower for the online learning and the combination of both correction
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Figure 2.15: Variance of the coefficient of determination for all tested buildings. Boxes
describe the interquartile range, whiskers denote 1.5 times the interquartile range, circles
indicate outliers and the orange line indicates the median.

methods compared to the uncorrected network and the correction method based on
error-autocorrelation. This is due to overcorrection of already well predicting networks.

The difference in the result between building (d) and the other buildings could be
explained with the quality of the used data set. The measured heating demand of
building (d) has a quantization of 0.5 kW at a maximum load of 26.5 kW., while the
“next worst" building’s measured demand has a quantization of 0.5 kW at a maximum
load of 86 kW.

The results generally support the findings of the previous case study and indicate
that the correction methods work for more than one single building. It could be ques-
tioned why the combination of both correction methods in most cases gives a further
improvement over the individual methods as they both address a similar problem: the
miss-match between forecast and realization due to recently changed behaviour of the
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Table 2.3: R2 of different modeling approaches for all tested buildings.

Building ANN ANN auto ANN online ANN auto+online 5R3C model
Building (a) 0.818 0.860 0.878 0.885 0.761
Building (b) 0.886 0.907 0.933 0.936 0.890
Building (c) 0.674 0.752 0.793 0.809 0.676
Building (d) 0.856 0.858 0.860 0.862 0.747

building. However, the methods correct slightly different phenomena. The correction
based on error-autocorrelation can react very efficiently to errors that have occurred
shortly before the end of the last day’s forecast and apply efficient correction at the
beginning of the next day’s forecast, because the confidence in the error estimation is
high (because the autocorrelation is high). However, strong corrections are only possible
for the first few intervals of the day, as the autocorrelation of the forecasting error de-
creases during the course of the day. The correction based on only learning corrects to a
lesser extent on each individual interval, as the ANN still needs to be able to generalize.
However, this correction can be applied over the course of the full day’s forecast and not
just at the beginning of the day. The combination of both therefore gives the best result.

Accuracy

Table 2.3 shows the mean coefficient of determination (as opposed to the median dis-
cussed before) of the different ANN approaches for all buildings as well as the coefficient
of determination achieved by the 5R3C building model, which is fitted as described in
Section 2.4.3. It can be seen that the average R2 increases for all four buildings when
the individual correction methods are applied. A combination of both approaches gives
a further improvement in all cases. This is consistent with the results of the previous
case study. Moreover, the fully corrected ANN outperform the RC models in all tested
cases.

The results do not indicate that the approach outperforms RC building models in
every possible building simulation case. The RC model could for example be made more
complex or the parameter fitting could be improved, both of which methods could lead
to higher coefficients of determination. However, the resulst give an indication that the
ANN perform reasonably well compared to conventional methods and generalize to other
buildings.11

11Note that, between buildings it is not possible to compare the coefficient of determination because
it depends on the distribution of heating loads in the data set, which is different for each building.
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Physical behaviour of the forecast

Figure 2.16 shows the forecast and real heating load of building (b) from an excerpt of
the testing set. First, it can be seen that the real load is captured reasonably well by
the forecast, although the peaks in the last third of the excerpt are not predicted well.
However, to assess the quality of the forecast, the coefficient of determination is more
descriptive.
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Figure 2.16: Forecasting trajectory example from building (b) test set. The orange line
denotes the forecast and the blue line denotes the true heating demand.

Secondly, the plot shows that the forecast does not show any non-physical behaviour
in the sense of unreasonably high or low forecasting values. The results for all other
buildings allow the same observation. (The full forecasting plots of both training and
testing set for one instance of an ANN with both correction methods applied to all four
buildings is shown in the Appendix A.2)

This observation is made with respect to the fact that the extrapolation capability of
ANN is sometimes considered weak. Although these exemplary results cannot guarantee
that non-physical behaviour is impossible with other forecasting inputs or for other
building cases, the positive results for all four buildings indicate a robustness that is
sufficient for non-safety-critical control tasks. To further increase the confidence in the
forecast, the signal could be limited in its derivative and maximum/minimum values.

2.6 Case study 3: Sensitivity with respect to data
quality and quantity

In the first case study (Section 2.4), we have demonstrated that online-corrected ANN
have superior prediction accuracy compared to other Machine Learning methods and to
a variety of fitted simple resistor-capacitor models. Furthermore, the correction meth-
ods allowed a significant reduction of variance in the prediction performance of ANN.
In the second case study (Section 2.5), the method was validated on four individual
buildings with different uses, availability and quality of measurement data. The correc-
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tion methods significantly improved the forecast quality and reliability and the approach
outperformed a fitted 5R3C resistor-capacitor building model in all cases. However, the
results indicated that the prediction performance could be dependent on the quality of
the training data.

In a third case study, we therefore investigate the dependence of the forecasting
approach on the sampling time and the noise of the measurement data, as well as the
available amount of data and the quality of the weather forecast used as an input. The
results indicate that the sampling time of measurements has a larger impact on the
prediction quality than noise levels, and that one week of historical training data is
sufficient for meaningful demand predictions if online correction methods are applied.
Moreover, using ambient temperature measurements for ANN training appears to offer
no benefit compared to using weather forecasts.

2.6.1 General description

The same forecasting task is assumed as in the previous case studies of this chapter.
Moreover, the NEST building at Empa in Switzerland with the same type of input data
as described in Case Study 1 is used as the building to be investigated. The ANN are
also configured as described in Case Study 1. Measurement data of the whole building’s
heating demand over a period of 13.5 months is used. To investigate the sensitivity
with regards to data quantity and quality, the input and output data is manipulated as
follows.

Data preparation for varying sampling time: We assume that the true mea-
surement data is sampled in 15-minute intervals. To simulate different sampling times,
we sub-sample the data set to 30 minutes, 60 minutes and 120 minutes by taking the
mean over all relevant samples. The window to compute the mean starts with the sam-
ple under consideration, for example: in the 30-minute sub-sampled set, the data point
for 2017-04-01 00:00 is calculated by taking the mean of samples 2017-04-01 00:00 and
2017-04-01 00:15 from the 15-minute data set.

Data preparation for varying measurement noise: We assume that the refer-
ence building measurement data is noise-free. As the measurement tolerance of equip-
ment to measure temperatures and mass flows in buildings is usually given in a maximum
percentage of the measured value, we add noise to each sample value s in the measure-
ment data with

s̃ = s+ α r s with r ∈ [−1, ..., 1], (2.8)

where s̃ denotes the new sample value, α denotes the desired noise level (accuracy of
the measurement equipment) and r is random, independent (for different samples) and
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identically distributed uniformly between -1 and 1. For α, values of 0.1, 0.2 and 0.3 are
considered.

Data preparation for varying data set size: In the base case, the first 70% of
the data set is used for training of the ANN and the remaining 30% for validation of
the model. In order to ensure comparability between the different test cases, we keep
the validation set the same throughout. To simulate limited availability of measurement
data, the training set is shrunk from 41 weeks to one week by removing samples from the
beginning, such that there is no temporal gap between the training and the validation
set.

Use of weather forecasts: To investigate the effect of the quality of the weather
forecast on the heat demand prediction accuracy, we compare prediction results obtained
with measured weather data, which would represent a perfect forecast, to results obtained
from a weather forecast. For the weather forecast, forecasts of the ambient temperature
by MeteoSwiss, the Swiss national weather service, are used. Linear interpolation is used
to generate 15 minute forecast samples from the forecast with hourly resolution.

2.6.2 Results and Discussion

Influence of sampling time
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Figure 2.17: Variance of the coefficient of determination for sampling times 15 minutes,
30 minutes, 60 minutes, 120 minutes; for (a) corrected and (b) uncorrected forecasts, with
boxes describing the interquartile range, whiskers of 1.5 times the interquartile range,
circles indicating outliers and the orange line indicating the median. Note the different
scale of the y-axes.
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Figure 2.17 shows the prediction performance of the ANN with varying sampling
rate of 15 minutes, 30 minutes, 60 minutes and 120 minutes for uncorrected and cor-
rected (with both correction methods) demand forecasts. The forecasts for 30, 60 and
120 minutes were up-sampled by interpolation and validated against the test set for
15 minutes. In the uncorrected demand forecasts, a decreasing sampling time leads to
lowering of the average coefficient of determination and also to a growing variance. A
sampling time of 120 minutes does not lead to meaningful forecasts any more, which in-
dicates that the Nyquist sampling rate is not respected any more. This effect could shift
to higher or lower sampling times depending on the building inertia. In the corrected
demand forecasts, the same trend occurs, but the negative effects of bigger sampling
times are lowered. The variance is significantly decreased in all cases and the relative
variance reduction increases with increasing sampling time (factors 4.9, 12.9, 14.5, 14.9
for sampling times 15, 30, 60, 120 subsequently). The average R2 is significantly raised
by the correction methods for all sampling times. With an average R2 of 0.845 and an
interquartile range of 0.008, a corrected forecast with a sampling time of 30 minutes leads
to better results than an uncorrected forecast with 15-minute sampling time (R2 = 0.823

and IQR= 0.043).

Influence of noise level
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Figure 2.18: Variance of the coefficient of determination for noise levels 0, 10%, 20%,
30%; for (a) corrected and (b) uncorrected forecasts, with boxes describing the interquar-
tile range, whiskers of 1.5 times the interquartile range, circles indicating outliers and
the orange line indicating the median. Note the different scale of the y-axes.

The results in Figure 2.18 show that the noise level has a noticeable influence on the
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Figure 2.19: Forecast trajectory for test set with both correction methods applied with
single week of offline training. The blue line denotes the true heating demand, the green
line is the uncorrected forecast, and the orange line is the corrected forecast with both
correction methods applied.

variance in the uncorrected case. However, the average R2 is lowered subsequently for
higher noise levels. When online correction methods are applied, the variance appears
to be constant for all noise levels. A noise level of 10% slightly increases the prediction
performance for the corrected forecasts (average R2 of 0.892 vs. 0.885). Although this
might appear surprising, adding noise to data is a common way to avoid overfitting
in ANN (Zur et al., 2009). Further increase of the noise level reduces the prediction
performance. By comparison with the results for varying sampling time, it can be seen
that the performance is less sensitive to the noise level than to the sampling time.

Influence of training data amount

Figure 2.19 shows the forecast trajectory of an uncorrected ANN and a corrected ANN
with a single week of historical data for offline training. While the uncorrected forecast
appears to have learned daily demand fluctuations, it does not catch the influence of
the ambient conditions. The corrected forecast performs well from the start. It predicts
daily demand fluctuations and shows dependency on the ambient conditions. After one
month of operation, the performance does not differ from a model trained with 41 weeks
of historical data. The achieved R2 of the shown corrected forecast is 0.860 (the average
for 41 weeks of training is 0.885). The shown trajectory is not a “best case” example and
the performance is repeatable.

Influence of weather forecast

Figure 2.20 shows the prediction performance of the networks for (a) uncorrected demand
forecasts and (b) corrected demand forecasts with different inputs used in the training
and testing of the ANN: measured ambient temperature used both for training and
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Figure 2.20: Variance of the coefficient of determination for different uses of weather
forecasts with (a) uncorrected demand forecasts, and (b) corrected forecasts. Boxes de-
scribe the interquartile range, whiskers denote 1.5 times the interquartile range, circles
indicate outliers and the orange line indicates the median. Note the different scale of the
y-axes.

testing (perfect weather forecast), weather forecasts used for testing a model trained on
measured ambient temperature, and weather forecasts used for both training and testing.
The variance of the uncorrected ANN increases significantly when weather forecasts are
used for forecasting but not for training. This is not the case if forecasts are used for
both training and testing. However, the correction methods bring the variance to a
constant level as can be seen in (b). The average R2 reduces from 0.885 to 0.866 and
0.863 when online correction methods are used. The comparison of networks that use
ambient temperature measurements for training with those that use weather forecasts
shows that the former appears to offer no significant benefit over the latter.

2.7 Conclusion

Artificial Neural Networks can be used for data-driven demand forecasting in the building
and district energy domain. However, their prediction accuracy has high variance and
depends on network parameters that are commonly randomly initialized. Here, we have
introduced two simple forecast correction methods to significantly reduce this variance
without using computationally intensive ensemble methods. The correction methods are
based on the autocorrelation of the forecasting error and on online learning.

We have conducted three case studies to demonstrate the capabilities of the approach
with respect to prediction performance, generalizing capability, and training data sensi-
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tivity. With the help of the first case study of a complex building with district energy
system characteristics, we have demonstrated that the methods significantly reduce vari-
ance in the prediction performance and also improve prediction accuracy and model bias
for a sub-hourly day-ahead heat demand forecasting task. Furthermore, we have shown
that ANN with both correction methods outperform other grey-box and black-box fore-
casting methods in the case study.

In a second case study we have validated the transferrability of the corrections meth-
ods and ANN architecture to other building types by applying the approach to three
additional buildings. The results have shown that ANN with the named correction
methods perform well when compared to fitted 5R3C resistor-capacitor building models.
We have also demonstrated that the methods improve accuracy and reduce the variance
in all cases, which improves confidence in using ANN in the frame of control tasks.

In a third case study, the performance sensitivity with respect to sampling time, noise
level, amount of data, and accuracy of weather forecasts was investigated. It was found
that the sampling time of the inputs has significant impact. An input noise level of
10% increases prediction performance when online correction methods are used, whereas
higher noise levels lead to reduced performance. Furthermore, one week of historical
data suffices to train reliable ANN for forecasting in the demonstrated case. Moreover,
using ambient temperature measurements for training of the ANN appears to offer little
benefit compared to using weather forecasts directly for training when online correction
methods are applied.

The case studies give an indication that the developed methods are valid for more
than one specific building and can potentially be generalized. However, they do not
provide a formal proof. The confidence in the method is strengthened by the consistency
of the results. The generated heating demand forecasts will be used as an input for a
Robust Model Predictive Control scheme to provide frequency reserves to electrical grids
based on demand-side management in buildings and districts in the next Chapter 3 and
in Chapter 5.
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CHAPTER 3
Robust MPC for frequency regulation with

heat pumps

Accurate demand forecasting methods, as presented in Chapter 2, are a key ingredient
to control schemes for demand-side management with buildings and districts. With the
increased amount of volatile renewable energy sources connected to the electricity grid,
and the phase-out of fossil fuel based power plants, there is an increased need for fre-
quency regulation. On the demand side, frequency regulation services can be offered
by buildings or districts that are equipped with electric heating or cooling systems by
exploiting their thermal inertia. Existing approaches for tapping into this potential typi-
cally rely on dynamic building models, which in practice can be challenging to obtain and
maintain. Moreover, actively controlling individual buildings in a district setting requires
extensive control infrastructure, which might not be available in legacy configurations,
or may cause privacy concerns for occupants. To address these issues, in this chapter, we
instead exploit the thermal inertia of buffer storage for reserves, reducing the building
models to demand forecasts. The developed control scheme paves the way for Chapter 5,
where also building dynamics will be included. By combining a control scheme based on
Robust Model Predictive Control with affine policies, and heating demand forecasting
based on Artificial Neural Networks (ANN) with online correction methods, as intro-
duced in Chapter 2, we offer frequency regulation reserves and maintain user comfort
with a district system comprising a central heat pump and buffer storage. While the
robust approach ensures occupant comfort, the use of affine policies reduces the effect
of disturbance uncertainty on the system state. In a three-day experiment with a real
district-like building energy system, we demonstrate that the scheme can offer reserves
in a variety of conditions and track a regulation signal with high accuracy while meeting
the heating demand of the connected buildings. Of the consumed electricity, 13.4% is
flexible. In additional numerical studies, we demonstrate that using affine policies sig-
nificantly decreases the cost function and increases the amount of offered reserves and
we investigate the suboptimality in comparison to an omniscient control system.
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3.1 Introduction

The amount of renewable energy sources in the electricity grid is continuously increasing.
As many of these sources are highly volatile, there is a growing need for frequency
regulation (Johnson et al., 2019). A common strategy for frequency regulation is the
deployment of fast-reacting power plants, for example gas or hydro-power; an emerging
strategy is the use of storage technologies, for example batteries. Besides such regulation
on the supply side of the grid, frequency regulation on the demand side is possible through
manipulation of controllable loads. This concept falls under the category of demand-side
management (Gelazanskas and Gamage, 2014).

Possible candidates for demand-side management are buildings equipped with electric
heating or cooling systems, such as heating, ventilation and air conditioning (HVAC)
units, electric heaters and heat pumps (Hao et al., 2015), or entire district heating
systems with electric heat sources. Due to the thermal inertia of buildings, they are
to an extent flexible when it comes to their heating and cooling requirements, hence
their electricity consumption. By shifting their consumption in time they can therefore
influence the grid frequency (Fischer and Madani, 2017).

However, shifting electricity consumption can have an impact on occupant comfort
as heating and cooling energy might not be available at the exact time when it is needed.
There are different strategies to mitigate this impact. Rominger et al. (2018); Romero
Rodríguez et al. (2019) and Maasoumy et al. (2013) develop and test control strategies
for frequency regulation with heat pumps and HVAC units without explicitly enforc-
ing comfort constraints and check only a-posteriori whether these were violated or not.
Zhao et al. (2013) and Wang et al. (2020) use heuristics based on weather forecasts
and occupancy to limit the offered frequency reserve capacity to enforce comfort con-
straints. Other authors use dynamic building models to exactly determine the influence
of changed heating and cooling supply on room temperatures when providing reserves
with heat pumps (Kim et al., 2015) or air handling units (Hao et al., 2013; Lin et al.,
2013; Olama et al., 2018).

Combined with optimization in the frame of Model Predictive Control (MPC), such
dynamic models can be used to maximize the offered frequency reserves while maintain-
ing comfort constraints (Rastegarpour et al., 2020a,b). Zhang et al. (2017) and Vrettos
et al. (2016) develop Robust MPC schemes to provide day-ahead reserves for frequency
regulation with commercial buildings and HVAC systems. Robust schemes ensure oc-
cupant comfort in the face of uncertainty in the regulation signal from the transmission
system operator (TSO). In (Vrettos et al., 2018b,a) this approach is further developed
and tested in a case study on a real small air-conditioned building. In (Oldewurtel et al.,
2013), MPC is used to provide ancillary services with a real building, and simulation
studies are conducted to investigate a setup of an aggregation of office buildings.
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As buildings and related components (such as buffer storage) have integrator dynam-
ics, uncertain disturbances lead to uncertainty accumulation in the system state and
thus limit the electrical reserves offered. This is the case because the Robust MPC uses
much of the available flexibility to account for the uncertainty instead of exploiting it
for reserves. Feedback policies are a known tool in Stochastic and Robust MPC to miti-
gate this problem (Goulart et al., 2006), as they allow the controller to plan to react on
uncertainty before it is revealed. However, to the best of the authors’ knowledge, they
have not yet been applied in practice to reserve provision with buildings and districts.

Obtaining dynamic models of the thermal dynamics of buildings can be challenging,
as will be discussed in Chapter 4. Furthermore, most of today’s buildings are not yet
equipped with the necessary hardware for predictive room temperature control. More-
over, if buildings are to be controlled from an external entity in the context of reserve
provision, for example by an aggregator (Oldewurtel et al., 2013), occupants might have
privacy concerns related to room temperature and other live measurements, and could
therefore prefer to not actively participate. To also account for these cases, alternative
strategies for reserve provision schemes that do not necessarily rely on exploiting the
thermal inertia of buildings are necessary.

Here, we take a step in this direction by decoupling heating/cooling demand and
heating/cooling supply of the system. This is achieved by placing a buffer storage, e.g.
a water tank, between supply and demand. In this case, the thermal inertia of the buffer
storage allows flexibility in heating and cooling energy production without the necessity
to exploit the inertia of the connected building itself. The comfort of the occupants is
ensured by a separate (potentially unknown) lower level controller in the building as long
as the buffer storage has a sufficiently high temperature. The heating/cooling system
and storage can in this case be modeled with first principles, which is tractable from
an economic point of view as these are mass-produced products. The demand of the
building can be modeled with a forecasting method, such as the method introduced in
Chapter 2.

The above named configuration of a central heating/cooling device connected to
buffer storage is not only common for many commercial buildings, but also for entire
district heating systems (Hennessy et al., 2019). Here, central heat pumps and buffer
storages are controllable by the system operator, while connected buildings might not
be controllable (e.g. due to privacy concerns or hardware/model limitations). These can
be forecast, but not directly influenced. Using the thermal buffer presents an option to
offer electricity reserves even if the building’s thermal mass cannot be controlled, due to
one or more of the reasons given above.

There is a growing interest in the potential (Lund et al., 2018; Ivanova et al., 2019)
of providing ancillary services in district heating systems, and there are attempts to
quantify flexibility potentials (Xu et al., 2020) and to model individual components for
this purpose (Pagh Nielsen and Sørensen, 2021). However, review studies (Vandermeulen
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et al., 2018; Hennessy et al., 2019) indicate that there is little work on the operation
(Terreros et al., 2020; Salpakari et al., 2016; Li et al., 2016) of such systems with reserve
schemes and no implementation and validation on a real system in the literature. We
feel that enabling deployment at the district level is an important step because, with
the current structure of ancillary markets, individual buildings can only enter through
massive aggregation (Geidl et al., 2017; Koch et al., 2011; Borsche et al., 2014; Oldewurtel
et al., 2013); districts, however, may be able to enter individually, or in small clusters, if
minimal power requirements are reached. Moreover, deploying the methods in districts
instead of individual buildings can improve performance because of increased demand
predictability thanks to averaging (Bünning et al., 2020a) and because of synergistic
effects, for example between residential and commercial buildings (Darivianakis et al.,
2017).

However, for a practical application of such a reserve scheme, the combination of
advanced methods is essential. High-accuracy demand forecasting methods are needed
to reduce the uncertainty in the disturbance of the buffer storage, and as a result the
uncertainty in the system state. Robust MPC (Vrettos et al., 2016) is needed to ensure
occupant comfort in the face of uncertainty of the demand forecasts, of the frequency
regulation signal and of other disturbances. Moreover, to maximize the reserves offered,
feedback policies (Goulart et al., 2006) are required, to minimize the effect of disturbance
uncertainty on the system state, and as a result to better exploit the available storage
compared to open-loop MPC. This is especially important in the considered configura-
tion, as the thermal inertia of buffer storage is considerably smaller compared to the
inertia of the thermal mass of buildings.

3.1.1 Contribution

In this Chapter, we therefore present a combination of a three-level Robust MPC (Vrettos
et al., 2018a) for frequency regulation approach with the forecasting methods presented
in Chapter 2, to offer day-ahead frequency regulation reserves with a system comprising a
central ground-source heat pump and water buffer storage that meet the heating demand
of a building or group of buildings. The robust formulation is combined with affine
policies, as discussed in (Warrington et al., 2012) for reserve provision in power systems,
which allows us to increase the reserves offered compared to standard open-loop MPC.
While the individual methods have been presented in previous work, their combination
is required to achieve a practical implementation to enable the deployment of ancillary
services to the level of districts with central heat supply. We also document what we
believe to be the first implementation demonstrating this approach in experiments: We
validate the methods on a physical system, the NEST demonstrator in Switzerland, a
“vertical neighbourhood” connected by a district heating system (Richner et al., 2017).
We show that the approach is able to offer a substantial amount of regulation reserves in
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a variety of ambient conditions and on a configuration, where the storage capacity is only
a small fraction of the daily heating demand. We also demonstrate that the approach
ensures good regulation signal tracking performance with a variable speed heat pump.
Furthermore, we investigate optimality properties of the MPC solutions and investigate
the effect of the use of affine policies in two numerical experiments.

The presented scheme paves the way for Chapter 5, where a subset of the connected
buildings will be considered as uncontrollable (i.e., are treated as presented in this chap-
ter), and other connected buildings are considered as controllable, i.e., their thermal
mass can be exploited. This is after data-driven models for building thermal dynamics
are introduced in Chapter 4.

3.1.2 Structure

The remainder of the Chapter is structured as follows. In Section 3.2, we introduce the
reserve provision scheme and the system under consideration. In Section 3.3, we discuss
the models for heat pump and storage and re-visit the prediction models with correction
methods for the heating demand of buildings from Chapter 2. We also describe the
Robust MPC based control scheme and the use of affine policies. In Section 3.4, we
present the experimental case study and its results. In Section 3.5, we describe the
numerical case studies and discuss the suboptimality of the presented approach. We
discuss limitations and future research directions in Section 3.6 and conclude the chapter
in Section 3.7.

3.2 Problem statement

3.2.1 Reserve provision scheme

We assume a day-ahead planning frequency regulation reserve scheme, as used by the
regulation product RegD, offered by the U.S. transmission system operator PJM (Penn-
sylvania, New Jersey, and Maryland). We use the PJM reserve market to have a concrete
example. However, the method is not limited to this scheme and can be easily adapted
to other ancillary market conditions. In the considered scheme, the reserve provider
communicates an offer r ∈ R96

+ of symmetric reserves to the TSO at midnight. The offer
is made in 15-minute intervals and is fixed for the next 24 hours. During the next day,
when the offered reserves are due, the reserve provider can change its base consumption
u0
k every timestep k (i.e. every 15 minutes). It should then track the electrical load

uk(τ) = u0
k + w(τ)rk, (3.1)

where w(τ) ∈ [−1, 1] denotes the regulation signal which is updated every 2 seconds by
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Figure 3.1: Schematic of the system under consideration with heat pump, water storage
tank and heat exchangers for individual apartments.

the TSO, and rk denotes the kth element of the list of offered reserves r. The base load
u0
k can be updated every 15 minutes, rk is time varying in 15 minute intervals but fixed

for the day, while w(τ) changes every 2 seconds. Thus, uk(τ) also changes and is sampled
every 2 seconds.

The tracking performance is judged by a composite performance score monitored by
the TSO, which consists of an accuracy score which measures the correlation between
the reserve signal and the system response, a delay score which measures the time delay
between reserve signal and system response, and a precision score which measures the
error between reserve signal and system response (PJM, 2019).

Our scheme does not consider time-varying energy prices and peak pricing for u0
k, as

these aspects have been treated in the literature already, and their handling would dilute
the scope of this work. We therefore refer the interested reader to (Zhang et al., 2015;
Sundström et al., 2017; Ma et al., 2014).

3.2.2 System under consideration

We consider the heating system for reserve provision shown in Figure 3.1. It consists
of a vapour compression cycle heat pump, which is depicted on the left, and a water
storage tank, which is depicted in the middle. The heat pump draws cold water from the
bottom of the storage with the help of a pump, warms up the water by transferring heat
from the refrigerant to the water inside the condenser, and feeds it back into the top of
the storage. By varying the heat pump’s electrical consumption, frequency regulation
can be offered. On the right, individual pumps draw warm water from the top of the
storage tank and pass it through heat exchangers, which supply individual apartments
of a building or individual buildings of a district with heat. The cold water is returned
to the bottom of the tank.
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Figure 3.2: Hierarchical control scheme with three controller levels.

3.2.3 Control scheme

To provide day-ahead frequency regulation services, we use the three-level scheme shown
in Figure 3.2. The scheme is an extension of (Vrettos et al., 2018a) and was preliminarily
tested in a software-in-the-loop experiment in (Bünning et al., 2020c). Level 1 is an
optimization problem solved once per day, to determine the offered reserves r, which are
communicated to the TSO and fixed for the day ahead. Level 2 is an MPC controller,
which re-optimizes the base load u0

κ of the heat pump every fifteen minutes and reacts
to unforeseen disturbances.1 Level 3 is a lower-level feedback controller which tracks the
regulated load with a fast sampling time of 0.5 seconds. Levels 1 and 2 use a heating
demand forecast as an input, for example the method developed in Chapter 2. The
required models for levels 1 and 2, along with the detailed control scheme are presented
in the following section.

3.3 Methodology

3.3.1 Models

The heat pump and water storage are modeled with first principles (physics based), while
the heating demand of the building is modeled with the help of online corrected ANN.
This is done as heat pumps and storage tanks are mass-produced industrial products for
which first principles models are relatively easy to develop, while buildings are generally
different from each another and thus modeling the building demand with first principles
would require significant effort for each building.

1The index κ ∈ [1, 96] denotes the discrete time index, e.g. κ = 1 for midnight and κ = 2 for 00.15
a.m., while k ∈ [1, N ] denotes the index in the optimizations: for example, u03,8 is the eigth element of
the heat pump base consumption in the optimization conducted at time κ = 3 (00.30 a.m.).
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Heat pump and storage model

The heat pump, depicted on the left of Figure 3.1, generates high temperature heat uth(t)

by using electricity u(t) and ambient heat at a lower temperature level. Here, t denotes
continuous time. The conversion efficiency between electrical energy and high temper-
ature thermal energy is assumed to be described with the coefficient of performance
(COP) αCOP:

uth(t) = αCOP u(t) + e(t). (3.2)

To keep the optimization problem linear, a constant αCOP is a reasonable assumption for
ground-sourced heat pumps: as the temperature of the ground changes slowly and the
heating supply temperature on the building side is usually fixed for a day (following a
heating curve dependent on the ambient temperature of the previous day), the COP can
be updated on the basis of previous days’ measurements for example, and kept constant
for a day. For air-sourced heat pumps, αCOP can be modeled as a function of the ambient
temperature, which in practice can be obtained from the weather forecast.

The error e(t) captures potential additional thermal disturbances. Note that equation
(3.2) holds for any uth and u, thus also for the discrete time instants used in the reserve
scheme of (3.1).

Neglecting thermal losses, because they are slow and small compared to the charging
and discharging of the tank, the average temperature x(t) of the storage tank in Figure
3.1 is described by the energy balance

m cp
dx(t)

dt
= uth(t)− v(t) + δ(t), (3.3)

where m and cp denote mass and isobaric specific heat capacity of the water respectively,
v(t) denotes the heating demand of the building, and δ(t) denotes the error between the
forecast and the actual heating demand. Like the error e(t) in (3.2), δ(t) will be modeled
as a box-constrained uncertainty set for the robust optimization. Allowing mixing of
different water layers in the storage, but assuming no swapping of temperature layers2,
the average temperature constitutes a lower bound for the water temperature in the top
layer and an upper bound for the temperature in the lowest layer, which is sufficient for
our control purpose. Moreover, model inaccuracies compared to a stratified tank model
can also be captured by δ(t). Inserting equations (3.1) and (3.2) into equation (3.3) gives
rise to the full linear description of the storage temperature:

m cp
dx(t)

dt
= αCOP

(
u0
k + w(τ)rk

)
+ e(t)− v(t) + δ(t). (3.4)

2The results of the experiment will confirm that this is a reasonable assumption.
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Figure 3.3: Forecast correction based on error-autocorrelation and online learning.

Building energy demand model

The ANN forecasting approach with online correction methods for forecasting heating
demands of buildings and districts has been presented in Chapter 2. For the sake of
completeness, we briefly revisit the methods here and adapt them to the addressed
forecasting task. For the purposes of frequency reserve provision, a heating demand
forecast for a building for the next 24 hours is made starting at midnight and afterwards
every 15 minutes until the end of the day. The forecasting horizon thus decreases by
15 minutes with every forecast. Both training and validation data are assumed to be
sampled at 15 minute time steps. The forecast is made with a feed-forward ANN, with
inputs related to ambient conditions and time features.

Two correction methods are applied in the online phase of the forecasting task (Figure
3.3). The first correction method is based on the forecasting error-autocorrelation.
The error ẽ of the forecast conducted at the current time κ for forecasting interval k is
estimated with

ẽκ,k = eκ−1,1Ree(k, E), (3.5)

where, eκ−1,1 denotes the difference between the first (15-minute) element of the last
conducted forecast (at time κ−1) and the actual measured heating demand. Ree(l, E) is
the autocorrelation of the forecasting error, which is dependent on a time-lag l and the
set of all past forecasting errors E , as described in Equation (2.2).

The correction procedure is illustrated in Figure 3.3. A forecast is made at time κ
based on the inputs fκ. The previous forecast from time κ− 1 is compared to the actual
measured heating demand, giving rise to eκ−1,1. With all previously measured errors
E , stored in a database, ẽκ can be calculated on the basis of (3.5). Adding ẽκ to the
uncorrected forecast gives rise to the corrected forecast vκ, which will later be used as
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an input to the control scheme.

The second forecasting correction method is based on online learning: Instead of
only training the ANN on a training set offline and using the ANN for predictions online,
the ANN is retrained online every 24 hours on the basis of the data gathered during the
previous day. By doing this, changes to the building that persist for longer than one
day can be captured; such changes could include changing the set point of a thermostat
for example. While conventional wisdom suggests that ANN require large data sets
for training, due to the correction methods, the presented approach can already reach
high prediction performance with a single week of training data as shown in Chapter 2,
Section 2.6.

3.3.2 Controller design

The models and demand forecast developed in Section 3.3.1 are used in the three-level
control scheme depicted in Figure 3.2. Level 1 solves a robust optimization problem once
every 24 hours at midnight. Based on the current storage tank temperature xκ,0 and the
heating demand forecast of the building vκ it determines the reserves r to be offered and
fixed in 15 minute intervals, rk, over the next 24 hours. Level 2 solves an optimization
problem similar to the one in Level 1 every 15 minutes during the day, with a shrinking
horizon, from the current time to midnight. In this optimization problem, the values of
the reserves r for the rest of the day are already known, because they have been fixed by
Level 1. Further inputs to this problem are the updated tank temperature measurement
xκ,0 and the updated heating demand prediction vκ. The outputs of Level 2 are the
nominal heat pump electrical power set points u0

κ for each 15 minute interval for the
remainder of the day, of which the first one, u0

κ,1, is passed on to Level 3. Level 3 is a
Proportional-Integral controller that controls the relative rotational speed n of the heat
pump’s compressor to track the regulated heat pump’s electricity consumption uκ(τ).

Level 1

For Level 1, equation (3.3) can be rearranged to the continuous state space system

dx(t)

dt
=

1

m cp
(uth(t)− v(t) + δ(t))

= Acx+Bc (uth(t)− v(t) + δ(t)) ,

(3.6)

with Ac and Bc denoting the continuous state and input matrix respectively. Discretizing
in time gives the discrete state space system

xk+1 = Ãxk + B̃(uk − vk + δk), (3.7)
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where Ã and B̃ are the discrete time state and input matrices respectively. By redefining
x := [x1, ..., xN ]> ∈ RN , uth := [uth,1, ..., uth,N ]> ∈ RN , v := [v1, ..., vN ]> ∈ RN , δ :=

[δ1, ..., δN ]> ∈ RN , with > denoting a transpose, and N denoting the prediction horizon,
we can describe the discrete state trajectory by

x = Ax0 +B(uth − v + δ), (3.8)

where x0 is the initial state of the system, and A and B are defined appropriately
(Borrelli et al., 2017). By vectorizing all remaining variables and adding equation (3.2)
to the formulation, the robust optimization problem in terms of the offered reserves r,
the nominal heat pump electrical set points u0, and the heat pump on/off condition z,
can be written as

min
r,x,u0,uth,ε,z

f el>u0 − f r>r + λ>ε (3.9a)

subject to x = Ax0 +B(uth − v + δ + e), (3.9b)

uth = αCOP(u0 + w � r), (3.9c)

Xmin − ε ≤ x ≤ Xmax + ε, (3.9d)

zUmin ≤ u0 + w � r ≤ zUmax, (3.9e)

z ∈ ZN2 , (3.9f)

ε ≥ 0, (3.9g)

∀w ∈ W,∀δ ∈ ∆,∀e ∈ E. (3.9h)

Here, f el and f r denote costs for electricity and benefits for offered reserves respectively.
Xmin and Xmax describe temperature limits for the storage tank, defined by the lowest
possible operating temperature for floor heating, which ensures the indoor thermal com-
fort, and the highest supply temperature of the heat pump. The slack variable ε ∈ RN

ensures feasibility with respect to the storage temperature constraint and λ denotes
the associated cost. The lower and upper electrical capacity limits of the heat pump
are described by Umin and Umax, and z ∈ ZN2 is a binary variable that determines if
the heat pump is switched on or off. The symbol � denotes the operator for element-
wise multiplication. All constraints have to hold for all realizations of uncertainties
w ∈ W, δ ∈ ∆, e ∈ E. Suitable sets for W can be found by analysing the regulation sig-
nal w(τ). Note that r will always be positive due to the formulation of the cost function.
However, as W can contain negative regulation signals, the effective reserve can become
negative.

Constraints (3.9c) and (3.9e) can be reformulated as linear constraints by making
w a square diagonal matrix. While W , ∆ and E generally allow any convex sets, for
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box-constrained sets the robust optimization problem (3.9), which has to hold for the
qualifier (3.9h), can be reformulated as a Mixed Integer Linear Program via explicit
maximization (Löfberg, 2012). This reformulation is performed automatically by many
modern optimization tools (Löfberg, 2004; Goh and Sim, 2011).

The binary variable z forces u0 and r, and thus uth, to be zero if the electrical input
to the heat pump does not exceed Umin. For the heating system this means that in case
of low heating demand from the building, a hysteresis behaviour can be expected, where
the heat pump changes between over-serving the demand and switching off. Potentially,
there could be combinations of Xmin, Xmax, Umin and Umax where the heating demand
could not be served, but this issue is captured by the slack variable ε.

In the case of low storage capacities, i.e. large B, corresponding to low mass of
water, low Xmax or high Xmin, or large uncertainty in W , ∆, and E, the offered reserves
r may become very small or, without the slack variable ε, the problem may even become
infeasible. This is because the uncertainty induced in x by the action of w, δ, and e

compounds along the horizon, as uncertainty at subsequent steps gets added to that of
earlier steps through the “integrator” implicit in (3.9b) (see (3.3)). As a consequence,
near the end of the horizon the uncertainty in x becomes large, leading to a violation
of (3.9d). This growth in uncertainty traces its origins to the fact that (3.9) addresses
Level 1 in the control hierarchy of Figure 3, but does not contain any information about
the actions of the lower levels. In reality, Level 2 and Level 3 will be executed repeatedly
within the horizon of (3.9), adjusting the decisions of Level 1 to account for information
that has become available in the meantime. This introduces feedback to the process,
that will in practice limit the growth of the uncertainty.

In stochastic programming, information about this “recourse” process can be intro-
duced by optimising over causal feedback policies instead of a sequence of “open-loop”
decisions fixed at the beginning of the horizon. In this case, the optimization problem for
Level 1 encodes the fact that the system will react to uncertainties that are still unknown
at the time Problem (3.9) is solved, but will been revealed at the time the decision is
implemented. Unfortunately, as discussed by Warrington et al. (2012), optimizing over
the set of all possible policies is intractable in general. To obtain a tractable optimization
problem, one can restrict the classes of causal policies considered. A common choice in
this respect is the class of affine disturbance policies (Ben-Tal et al., 2004; Goulart et al.,
2006). For the uncertainties introduced by the regulation signal w, equation (3.9c) can
be extended to

uth = αCOP(u0 + w � r +Dww), (3.10)

56



3.3 Methodology

where Dw ∈ RNxN is a strictly lower triangular matrix:

Dw :=


0 0 · · · 0

[Dw]2,0 0
. . . 0

... . . . . . . 0

[Dw]N,0 · · · [Dw]N,N−1 0

 . (3.11)

By making Dw a decision variable in the optimization problem, the uncertainty in uth

can be lowered, and thus also the uncertainty in x. Affine policies on the other uncertain
variables δ and e can also be defined. Because δ and e appear together in (3.9b), a single
lower triangular matrix can be used:

uth = αCOP(u0 + w � r +Dww +Dδ,e(δ + e)). (3.12)

We note that the regulation signal that takes values in the interval [-1, 1] is updated
every 2 seconds, but the rest of the decision variables in (3.9) refer to quantities that
are updated every 15 minutes. Therefore, when trying to meet the robust constraint
(3.9d), the average value of w(τ) over a 15 minute interval (denoted by w̄ below) is more
relevant than the instantaneous value. By collecting historical data, a second uncertainty
set on the average of w(τ) can be created by integrating over 15-minute horizons and
evaluating the distribution of these integrals (see Vrettos et al. (2018a)). As a result,
the uncertainty set is decreased to W̄ ⊂ W for constraint (3.9c). As the instantaneous
electrical consumption needs to remain within operational limits at all times, w ∈ W

remains for constraint (3.9e).
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The resulting optimization problem is

min
r,x,u0,uth,z,
z̃,Dw,Dδ,e,ε

f el>u0 − f r>r + λ>ε (3.13a)

subject to x = Ax0 +B(uth − v + δ + e), (3.13b)

uth = αCOP(u0 + w̄ � r +Dww̄ +Dδ,e(δ + e)), (3.13c)

Xmin − ε ≤ x ≤ Xmax + ε, (3.13d)

zUmin ≤ u0 + w � r +Dww̄ +Dδ,e(δ + e) ≤ zUmax, (3.13e)

z̃Rmin ≤ r ≤ z̃Rmax, (3.13f)

z, z̃ ∈ ZN2 , (3.13g)

ε ≥ 0, (3.13h)

[Dw]i,j = 0 ∀j ≥ i, (3.13i)

[Dδ,e]i,j = 0 ∀j ≥ i, (3.13j)

∀w ∈ W,∀w̄ ∈ W̄ ,∀δ ∈ ∆,∀e ∈ E. (3.13k)

The heat pump capacity constraint, now (3.13e), is adapted to ensure feasibility under
the chosen policies. Note that, [Dδ,e]k,j and [Dw]k,j (as well as u0

k and rk) will be zero
whenever zk = 0. Moreover, as preliminary experiments suggested that small reserves r
lead to weak tracking performance (and low performance scores) because of large relative
errors, a second binary variable z̃ was added to impose a lower limit on r through
constraint (3.13f).

Level 2

Controller Level 2 is an MPC scheme with shrinking horizon. The horizon is shrinking,
because r is only fixed by Level 1 until the end of the day. This choice could potentially
lead to storage depletion towards the end of the day if no reserves are offered during
these intervals. However, as we use a slack variable on the state constraints, there are
no issues with recursive feasibility.3 At most, storage depletion will lead to low reserves
being offered in the first intervals of the following day. Alternative formulations include
a receding horizon scheme, which allows Level 2 to choose those reserves r at the end of
the horizon that are not yet fixed by Level 1. However, this significantly increases the
computational complexity. Alternatively, the reserves that are not fixed can be padded
with zeros, as will be discussed in Chapter 5.

Level 2 can update u0, depending on new measurements of initial conditions x0 and
demand forecasts v, which are updated every 15 minutes. It uses an optimization problem

3Moreover, as the system is stable and in practice often operated with hysteresis control, even without
slack variables, recursive feasibility is ensured.
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similar to that of Level 1. The only difference is that r is now fixed, leading to

min
x,u0,uth,z,
Dw,Dδ,e,ε

f el>u0 + λ>ε (3.14a)

subject to x = Ax0 +B(uth − v + δ + e), (3.14b)

uth = αCOP(u0 + w̄ � r +Dww̄ +Dδ,e(δ + e)), (3.14c)

Xmin − ε ≤ x ≤ Xmax + ε, (3.14d)

zUmin ≤ u0 + w � r +Dww̄ +Dδ,e(δ + e) ≤ zUmax, (3.14e)

z ∈ ZN2 , (3.14f)

ε ≥ 0, (3.14g)

[Dw]i,j = 0 ∀j ≥ i, (3.14h)

[Dδ,e]i,j = 0 ∀j ≥ i, (3.14i)

∀w ∈ W,∀w̄ ∈ W̄ ,∀δ ∈ ∆,∀e ∈ E. (3.14j)

Other than r, no information from Level 1 is carried over to Level 2. The purpose of Level
2 is to introduce feedback, i.e. change the planned control inputs due to newly available
information. The optimization schemes in Levels 1 and 2 do not consider electricity
peak pricing and time-varying energy prices. However, they can be easily included in
the schemes as described in (Zhang et al., 2015; Sundström et al., 2017; Ma et al., 2014).

Level 3

Level 3 is a discrete Proportional-Integral feedback controller, with proportional gain kp
and integral gain ki, to track equation (3.1) with the heat pump. The controller output
is the set point for the relative rotational compressor speed of the heat pump nset. The
controller input is the heat pump’s measured electrical load û. An anti-windup scheme
is used in case the heat pump reaches its compressor speed limitations. The integration
block of the controller is also bypassed if the difference between the set compressor speed
nset and the measured compressor speed n exceeds a limit. This is done because heat
pumps usually have up and down ramping limits.

3.4 Experimental case study

3.4.1 Configuration

We test the reserve scheme in a three-day experiment on a real system in the NEST
building (see Figure 2.2 in Chapter 2) at Empa, Switzerland. As discussed in Chapter
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Figure 3.4: Experimental facility with heat pump (left) and water storage tanks (right)
(Bünning et al., 2020c).

Table 3.1: Parameters for controller Levels 1 and 2.

N = 96, αCOP = 3.53, Ã = 1,
λ = 5, W = [−1, 1], B̃ = 0.0978 K

kW ,

f el = 1, W̄ = [−0.25, 0.25], Xmin = 28◦C,
f r = 1.5 Umin = 8.2kW , Xmax = 38◦C,
Rmin = 0.4kW Umax = 12.8kW , E ⊕∆ = [−4.0, 4.0] kW

2, the building consists of individual residential, office and multi-use units that can
be added and removed from the building backbone, as well as permanent office and
meeting rooms. The individual units are connected to a central heating system with
a supply temperature of 38 ◦C and a return temperature of 28 ◦C via heat exchangers
and are equipped with their independent control systems considered to be unknown in
the experiment. Due to the independence of the connected units and their controllers,
and the structure of the heating system, the building is often referred to as a “vertical
district” (Empa, 2018) or “vertical neighborhood” (Richner et al., 2017) and is intended
to serve as an emulator for studies on concepts considered for district heating systems.

The heating system (Figure 3.4) comprises a ground source heat pump, specifically
the two-compressor model WP-WW-2NES 20.F4-2-1-S-P100 produced by Viessmann
with a maximum thermal capacity of 100 kW, and a water buffer storage consisting of
two 1100 litre Matica water tanks connected in series. Only the first compressor stage
is used in the experiment, which leads to a rated maximum thermal capacity of 50 kW.
The system resembles the configuration described in Section 3.2.

The control scheme configuration is as follows. The parameters for controller Levels
1 and 2 are shown in Table 3.1. The cost-function related parameters λ, f el, and f r

were chosen based on preliminary numerical studies to balance the trade-off between
cost optimality and constraint violation. Compared to the preliminary experiments in
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(Bünning et al., 2020c), we have increased the reserve benefit f r to get richer r vectors
to test the robustness of the controller. They are not directly related to a specific
energy product and therefore considered dimensionless. The values for αCOP, Umin, Umax

and Rmin were set on the basis of preliminary heat pump experiments. The limits for
W are properties of the used regulation signal RegD by PJM. The uncertainty set W̄
can be determined by analyzing historical regulation signals (Vrettos et al., 2018a), Ã
follows from the assumption of no thermal losses, and B̃ is calculated on the basis of
the tank volume and the specific heat capacity of water. In contrast to (Bünning et al.,
2020c), where we chose the set boundaries based on historical measurement data from
the building and the heat pump, we do not specify the uncertainty sets E (error from
disturbances of the heat pump) and ∆ (error from demand forecast) separately, but
instead define the Minkowski sum E⊕∆, and shrink it compared to the original source.
The initial value of the average tank temperature, x0, is determined by taking a weighted
average of six temperature sensor measurements at different heights within the storage
tank. To reduce wear on the heat pump, we introduce an additional constraint to Level
1, and require zk to be constant during each thirty minute interval.

The proportional and integral gains, kp = 2.0 and ki = 0.4, of the PI controller in
Level 3 were determined by first modeling and auto-tuning a first-order representation of
the heat pump in Simulink®, and then manually adjusting the values after implementing
the controller on the actual plant. The controller output limits for nset are set to 20%
and 50% of the relative compressor speed4. The controller sampling time is 500 millisec-
onds and the maximum allowed difference between controller output nset and measured
compressor speed n before anti-windup activates is set to 2%. Moreover, as the heat
pump is only fully controllable five minutes after switching it on, it is switched on five
minutes early in the case that reserves are offered for the next 15-minute interval.

For the implementation of Levels 1 and 2 we use Matlab®. As all uncertain vari-
ables are box-constrained, the optimization problems become MILPs. These are written
with YALMIP (Löfberg, 2012), which automatically derives robust counterparts, and
are solved with CPLEX® 12.9. Each optimization is started five minutes before the
decision is implemented, limiting the solver time to five minutes. This time is enough
to solve the problem close to optimality in all cases.5 The best feasible solution is then
implemented. The Level 3-controller is written in Python 3. The communication of the
optimization results and the sensor measurements between Matlab and Python is facili-
tated via shared csv files. A Python OPC-UA (Leitner and Mahnke, 2006) client is used
for the communication with sensors and actuators of the heat pump and the building.
The heat pump takes as an input the relative compressor speed (as discussed above) and
uses an internal controller to track it.

4The second compressor stage of the heat pump is activated if the relative speed exceeds the limit
of 50%.

5We conducted preliminary numerical studies to investigate how the solution converges with time.
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The heating demand forecast is performed at midnight (for Level 1) and then every 15
minutes (for Level 2) with an ANN and the correction methods presented in Section 3.3
and Chapter 2. The correction based on error-autocorrelation is applied with every new
forecast, while the online retraining is done only at midnight. The ANN model uses as
inputs the forecast ambient temperature (broadcast by MeteoSwiss and updated every 12
hours), the hour of the day (which is one hot encoded), the measured heating demand one
day ago at the same time, the measured heating demand one week ago at the same time,
and a binary variable that indicates whether it is a working or a non-working day. The
ANN model is implemented in Python 3 with Keras (Chollet, 2018). It is a feed-forward
network with two hidden layers and 8 nodes per hidden layer with Rectified Linear Units
(ReLu) as activation functions. Just short of three years of historical data (sampled in
15 minute intervals) were used for training using the optimizer adam (Kingma and Ba,
2017) with the standard learning rate of 0.001, a batch size of 1, and 10 epochs. This
configuration corresponds to the one presented and validated in Chapter 2.

The experiment was conducted on three consecutive days from the 25th of February
2020, 11.45 am, to the 28th of February, 11.45 am. As a regulation signal, the RegD
signal by PJM from the 27th of January 2019 was used for all three days.6

3.4.2 Results

Figures 3.5 - 3.7 show the results of the three-day experiment, split in single days for
readability. Note that the time axis is shifted by 11 hours and 45 minutes, to virtually let
the experiment start at midnight. In each of the figures, plot (a) depicts the real heating
demand of the NEST building in dashed blue, the forecast conducted at midnight for
Level 1 in orange, and the forecasts for Level 2, which are conducted every 15 minutes, in
transparent grey. The initial forecast (orange) predicts the trend of the heating demand
well, confirming the results of Bünning et al. (2020a) and Chapter 2. The correction
based on error-autocorrelation is visible, whenever the previous forecast significantly
differs from the measured heating demand. This is the case at 00:00 at the beginning
of the second day, Figure 3.6, for example. At this point, the initial forecast of 23 kW
(orange line) differs from the measured demand of 20 kW after one interval. The next
corrected forecast at 00:15 (cyan line) therefore starts at 20 kW. The following corrected
forecast at 00:30 (red line) starts at the measured demand of 16 kW. Both corrected
forecasts merge back into the initial forecast over the course of the day because the
error-autocorrelation also decreases with time. It can also be seen that the experiment
covers a range of heating demands from 10 kW, which is below the minimum thermal
capacity of the heat pump, to 45 kW, which is close to the maximum capacity of the

6This choice was made for convenience, as the signal starts and ends with a value of 1 and is thus
continuous when repeated.
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Figure 3.5: Experimental results of day 1. (a): measured heating demand in dashed blue,
daily forecast in orange, 15-minute forecasts in transparent grey, (b): offered reserves
in blue, (c): average tank temperature in black, temperature constraints in dotted black,
individual layer temperatures in transparent colours, (d): set point for electrical power
in orange, measured electrical reserves in dashed blue (no data during hours where no
reserves are offered, potential power range due to regulation signal in dotted red, (e):
PJM performance score in blue (no data during hours where no reserves are offered),
20-hour moving average of performance score in orange, qualification limit in dotted
orange, operation limit in dotted red.
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Figure 3.6: Experimental results of day 2. (a): measured heating demand in dashed blue,
daily forecast in orange, 15-minute forecasts in transparent grey, specifically mentioned
forecasts in cyan and red, (b): offered reserves in blue, (c): average tank temperature
in black, temperature constraints in dotted black, individual layer temperatures in trans-
parent colours, (d): set point for electrical power in orange, measured electrical reserves
in dashed blue, potential power range due to regulation signal in dotted red, (e): PJM
performance score in blue (no data during hours where no reserves are offered), 20-hour
moving average of performance score in orange, qualification limit in dotted orange, op-
eration limit in dotted red.
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Figure 3.7: Experimental results of day 3. (a): measured heating demand in dashed blue,
daily forecast in orange, 15-minute forecasts in transparent grey, (b): offered reserves
in blue, (c): average tank temperature in black, temperature constraints in dotted black,
individual layer temperatures in transparent colours, (d): set point for electrical power
in orange, measured electrical reserves in dashed blue, potential power range due to reg-
ulation signal in dotted red, (e): PJM performance score in blue (no data during hours
where no reserves are offered), 20-hour moving average of performance score in orange,
qualification limit in dotted orange, operation limit in dotted red.
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heat pump using only one compressor stage.

Plot (b) in the figures shows the reserves offered during the experiment. The reserves
are either zero, or between 0.4 kW and 2.3 kW, which are the lower and upper limits.
The upper limit is set as a constraint in the optimization problem, but is also a result
of offering symmetric reserves and the electrical capacity of the heat pump being in the
range of 8.2 to 12.8 kW. During the first day (Figure 3.5) very little reserve is offered.
This is for two reasons. First, the heat pump is frequently switched off because the
demand is low. (See also plots (d) in Figure 3.5). In this case, constraint (3.14e) forces
the corresponding elements in Dw and Dδ,e to be zero, which means that recourse on
uncertainties is no longer possible. Second, whenever the heat pump is on, it operates
at the lower capacity limits, which for symmetric reserves results in offering no reserves.
During the second (Figure 3.6) and the third day (Figure 3.7) of the experiment, reserves
are offered during most of the 15 minute intervals. On day 1, 3.1% of the electricity
consumed is flexible, on day 2 and 3, 14.9% and 19.1% are flexible respectively. The
average of all three days is 13.4%. In addition to being constrained by the thermal
inertia of the storage, the reserves are also limited by the region of operation of the heat
pump, specifically to 2.3 kW in this particular case. On days one, two and three 4%,
29% and 41% of this potential are exploited respectively. Considering the small size of
the buffer storage compared to the thermal demand - on a day with an average heating
demand of 35 kW, the thermal capacity of the buffer is just 3% of the daily demand -
this is a considerable outcome. As we will see in Section 3.5, it is mostly thanks to the
use of affine policies.

Plot (c) shows the average storage temperature in solid black, the temperature con-
straints at 28 ◦C and 38 ◦C in dotted black and the six temperature measurements at
different heights of the storage tank in transparent colors. The average temperature
stays between the constraints for most of the time, except one 30 minute instance be-
tween 7.30 and 8.30 on day two, Figure 3.6. However, during this time the heating
demand of the building could still be served, as the upper temperature layer in the stor-
age tank (transparent blue) was above 28 ◦C at all times, which is a result of the average
storage temperature being a lower bound for the temperature of the top water layer in
the storage tank.7 The average temperature stays relatively close to the lower constraint
most of the time as a result of the optimization: unless needed for reserves, temperatures
above the minimum mean unnecessary consumption of electricity. During the first day
(Figure 3.5), where the heating demand is below the minimum thermal capacity of the
heat pump, this results in a hysteresis-like behaviour because the heat pump is switched
on and off frequently. Between 8.00 and 12.00 on the second day, when the heat pump
is switched on due to the reserves offered, the controller regulates the base load u0 such
that the temperature tracks the lower constraint. However, at times where the heating

7Close investigation of the different temperature layers also shows that swapping of temperature
layers indeed does not occur and the assumption for the storage model holds.
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Figure 3.8: Results tracking performance, (a): set point for electrical power in orange,
measured electrical reserves in dashed blue, potential power range due to regulation sig-
nal in dotted red, (b): regulation signal, (c): tracking error, (d): delay score in green,
accuracy score in orange, precision score in red, composite score in dotted blue.

demand of the building is substantially overestimated by the initial demand forecast, the
average storage temperature rises. This can be seen in the period between 12.00 and
18.00 on the third day (Figure 3.7).

Plot (d) of Figures 3.5 - 3.7 shows the set point for the electrical power of the heat
pump in orange, the actual measured power of the heat pump in dashed blue and the
possible range of the power due to the offered reserves in dotted red. As the results
are difficult to read in this scale, an excerpt of this plot (9.00 to 11.00 of the second
day) is shown in the subplot (a) of Figure 3.8. It can be seen that the heat pump
delivers the reserves offered by modulating the electricity between the limits defined
by the base load and the offered reserves (dotted red) following the regulation signal
depicted in Figure 3.8 (b). The effects of different sizes of offered reserves can also be
observed. From 9.00 to 9.30, where no reserves are offered, the heat pump does not
exactly follow the set point; the resulting tracking error is also evident in subplot (c) of
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Figure 3.8. There are two reasons for this tracking error. First, there is measurement
noise of approximately ±200 W. Second, the heat pump’s internal controller only accepts
integer set points for relative compressor speeds (e.g. 34% and 35%, but not 34.5%),
which leads to a discontinuous control signal. After 9.30, a range of different reserves is
offered, visible from the span between the red dotted lines. Visible from 10.00 to 10.15,
large reserves lead to bigger tracking errors because of the ramping limits of the heat
pump. Large tracking errors also occur when large steps in the base set-point for the
heat pump appear (at 10.15).

Despite these tracking errors, the performance score8 of the TSO PJM (PJM, 2019)
is better when higher amounts of reserves are offered. This is shown in subplot (d) of
Figure 3.8. Here, the green line depicts the delay score (time delay between reserve signal
and system response), the orange line depicts the accuracy score (correlation between
the reserve signal and the system response), the red line depicts the precision score
(error between reserve signal and system response) and the dashed blue line depicts the
composite score (average of the three). The scores are averaged over one hour intervals
and are normalized in the interval [0, 1], with 1 being the best score. While the delay
score is constantly high, both the accuracy score and especially the precision score become
worse when the reserves offered are low, because the error relative to the offered reserves
becomes large. Especially in the one-hour intervals where only small reserves are offered
(or a combination of no reserves and small reserves), the composite performance score
becomes low.

With respect to the whole experiment, this result is not problematic, as can be seen
by going back to Figures 3.5 - 3.7. In plot (e), the composite performance score is shown
in blue. The orange line depicts the 20-hour moving average of the performance score.
This is the metric used by PJM to judge whether a device or power plant is suitable for
their reserve product. In the qualification phase, the limit for the performance score is
0.75 (dotted orange), while in the operational phase, the limit is lowered to 0.4 (dotted
red). It can be seen that the performance score in this experiment is always well above
both limits.

3.5 Numerical case study

To better understand the performance of the control scheme, we have further analyzed
it in two numerical experiments.

8We note that the performance score is calculated with a Macro Excel sheet provided by PJM and
could not be replicated with our own calculations. We refer the interested reader to the original source
(PJM, 2019).
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3.5.1 Use of affine policies compared to open-loop MPC

In the first numerical experiment, we compare the solution of Level 1 with affine policies
(as presented in Section 3.3) to a Level 1 scheme based on standard open-loop MPC
without feedback policies for various constant heating demands v. The optimization
problem for Level 1 for open-loop MPC is

min
x,r,u0,uth,

z,z̃,ε

f el>u0 − f r>r + λ>ε (3.15a)

subject to x = Ax0 +B(uth − v + δ + e), (3.15b)

uth = αCOP(u0 + w̄ � r), (3.15c)

Xmin − ε ≤ x ≤ Xmax + ε, (3.15d)

zUmin ≤ u0 + w � r ≤ zUmax, (3.15e)

z̃Rmin ≤ r ≤ z̃Rmax, (3.15f)

z, z̃ ∈ ZN2 , (3.15g)

ε ≥ 0, (3.15h)

∀w ∈ W,∀w̄ ∈ W̄ ,∀δ ∈ ∆,∀e ∈ E. (3.15i)

The comparison is made for constant heating demands between 5 kW and 50 kW, in
steps of 5 kW. All parameters for the optimization schemes are the same as in Section 3.4.
Figure 3.9 and Figure 3.10 show the reserves offered and the cost functions (including
the λ term) for both approaches. It can be seen in Figure 3.9, that without using
feedback policies, the reserves offered are close to zero for most demands. This is due
to the build-up of uncertainty in the state x (storage temperature) over the horizon of
the optimization problem in combination with a relatively small buffer, compared to the
magnitude of the heating demand. In contrast, Level 1 with affine policies is able to offer
reserves in most cases except when approaching the upper and lower capacity limits of
the heat pump. From Figure 3.10 it can be seen that the value of the cost function is
significantly lower when affine policies are used for all heating demands below 45 kW.
Above 45 kW, there is no difference because the heat pump will always work at maximum
capacity. We note however, that the played-out costs (with the MPC re-optimizing every
15 minutes) would have different results for both cases, which significantly depend on
the uncertainty realizations.9

9While the played-out behaviour would certainly be an interesting result to study, the computational
effort is not feasible.
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Figure 3.9: Reserves offered in Level 1: affine policies (blue) vs. open-loop MPC (or-
ange).
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Figure 3.10: Cost in Level 1: affine policies (blue) vs. open-loop MPC (orange).

3.5.2 Use of affine policies compared to a system with perfect
knowledge

In a second numerical experiment, we compare the performance of Level 1 using affine
policies with an omniscient Level 1 solution that has perfect knowledge of all uncertainty
realizations at the time of optimization. In this case, the optimization problem becomes
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3.5 Numerical case study
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Figure 3.11: Reserves offered in Level 1: affine policies (green) vs. perfect knowledge
(best case in orange, worst case in blue).

min
x,r,u0,uth,

z,z̃,ε

f el>u0 − f r>r + λ>ε (3.16a)

subject to x = Ax0 +B(uth − v + (δ + e)), (3.16b)

uth = αCOP(u0 + w̄ � r), (3.16c)

Xmin − ε ≤ x ≤ Xmax + ε, (3.16d)

zUmin ≤ u0 + wmin � r, (3.16e)

u0 + wmax � r ≤ zUmax, (3.16f)

z̃Rmin ≤ r ≤ z̃Rmax, (3.16g)

z, z̃ ∈ ZN2 , (3.16h)

ε ≥ 0, (3.16i)

where (δ+e) is drawn from a uniform distribution with the same limits as the uncertainty
set E ⊕ ∆, and wmin, wmax and w̄ are extracted from the regulation signal used (PJM
RegD of 27th of January 2019). Here, wmin and wmax are the minimum and maximum
value of the regulation signal that occurs during a 15 minute interval respectively; w̄ is
the average of the interval.

The experiment is conducted for a constant heating demand v between 5 kW and
50 kW, in steps of 5 kW, with 10000 uncertainty realizations for each v. Optimization
problem (3.16) is solved much faster than the robust counterpart of problem (3.13),
requiring less than 5 seconds for convergence.

Figure 3.11 shows the reserves offered for both cases for all different v. Here, the
orange line denotes the best result achieved with the omiscient system with 10000 uncer-
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Figure 3.12: Cost in Level 1: affine policies (green) vs. perfect knowledge (best case in
orange, worst case in blue).
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3.6 Limitations and future directions

tainty realizations, while the blue line denotes the worst result.10 The green line shows
the solution of Level 1 with affine policies. It can be seen that for all cases except v = 45

and 50 kW, the solutions with perfect knowledge of the uncertainties, offer significantly
more reserves than the scheme with affine policies. The results for the cost function,
depicted in Figure 3.12 for all v and depicted in Figure 3.13 for v between 15 and 40 kW,
show that the scheme with perfect knowledge performs significantly better at very high
and very low heating demands, which is due to avoiding the use of the slack variable
ε. Also at intermediate demands, there is an offset between the cost functions of both
schemes. This can be explained by the fact that the scheme with perfect knowledge
is able to operate right at the storage temperature constraints (maximizing offered re-
serves or minimizing the base load), while the scheme with affine policies needs to stay
at least B(∆⊕E) away from the storage temperature constraint, even when no reserves
are offered. This is the case because affine policies can only react to uncertainties in
the timestep after their realization, unlike a system with perfect knowledge, which can
plan ahead and can compensate for uncertainties before they are revealed. The larger
optimality gap at 15 kW can again be explained by the fact that affine policies can only
work when z is non-zero, which is often not the case for low heating demands.

3.6 Limitations and future directions

The numerical results show that using affine policies on uncertainties significantly in-
creases reserve provision and decreases cost when compared to using open-loop MPC.
Nevertheless, the comparison with the omniscient optimization indicates that there is
still room for improvement. One possibility could be the use of more sophisticated poli-
cies (for example deflected linear (Chen et al., 2008), or piecewise linear (Georghiou
et al., 2015) policies). However, due to causality constraints, no policy can match the
performance of an omniscient controller that knows the future.

Moreover, the presented method of only exploiting the thermal inertia of buffer stor-
age should be extended to and compared to a scheme where the inertia of a subset of
the connected buildings (willing and able to participate in the reserve provision scheme)
is also taken into account, to further investigate the added potential by including build-
ing thermal dynamics in the problem formulation. This will be discussed in Chapter 5,
after appropriate data-driven models for building thermal dynamics are introduced in
Chapter 4.

On a more practical note, a limitation of the approach presented here is that it can
only work with variable speed heat pumps, which, although becoming more common,

10Each set of uncertainty realizations drawn leads to a different cost function and to differing amounts
of reserves offered, as each realization either benefits the operation or harms it, compared to the case
without uncertainty. We report the best case and worst case among these realizations.
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are still relatively rare compared to fixed speed heat pumps. To offer reserves with
fixed speed devices, an aggregation mechanism that pools heat pumps of many different
buildings would still be necessary in order to follow a continuous reserve signal. A
further limitation for air-sourced heat pumps could be the requirement of regular de-
freezing cycles. However, as these do not last long and our achieved performance scores
are well above the qualification limit, they could be integrated without a change to the
control scheme.

3.7 Conclusion

In this chapter, we have combined a three-level control scheme based on robust opti-
mization with affine policies with heating demand forecasting based on ANN and online
correction methods to provide frequency regulation reserves with heat pumps and wa-
ter storage in buildings and district heating settings. The approach works without the
necessity of a dynamic building model, which reduces modeling effort compared to in-
cluding reserve provision in MPC building temperature control. Moreover, it alleviates
privacy concerns and has reduced hardware requirements, as no indoor temperature or
occupancy measurements are necessary to guarantee indoor comfort.

The experiments on the heat pump and water storage in the NEST demonstrator
building have shown that the three-level control approach with affine policies on uncertain
variables presented here is viable. The method allows the offering of frequency regulation
reserves with a single variable speed heat pump and a small (compared to the overall
heating demand) buffer storage. On average, 13.4% of the consumed electricity is flexible
as a result of the reserves offered. The performance of tracking the regulation signal is
more than sufficient. Our experiments indicate that large buildings or district heating
systems equipped with variable speed heat pumps can in principle directly be used for
ancillary services, without the need for aggregation, and that the control scheme is
robust in practical applications. The heating demand forecasting approach with ANN
and online correction methods gives predictions with high accuracy, such that the demand
of the building can always be met. The numerical case studies show that, while there is
still a performance gap compared to an omniscient controller, the use of affine policies
significantly reduces costs and improves reserve provisions, compared to open-loop MPC.
In Chapter 5, the method will be extended to a problem formulation that also exploits
the thermal inertia of connected buildings.
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CHAPTER 4
Data-driven predictive building control

Models of building thermal dynamics can be used in Model Predictive Control (MPC)
schemes to reduce building energy consumption, or to extend electrical reserve schemes
like the one presented in Chapter 3, to exploit their thermal inertia for reserves. Because
physics-based building models are difficult to obtain as each building is individual, there
is an increasing interest in generating models suitable for building MPC directly from
measurement data. Machine Learning methods have been widely applied to this problem
and validated mostly in simulation; there are, however, few studies on a direct compar-
ison of different models or validation in real buildings in the literature. Methods that
are indeed validated in application often lead to computationally complex non-convex
optimization problems. Here, we introduce physics-informed Autoregressive–Moving-
Average with Exogenous Inputs (ARMAX) models and Machine Learning models based
on Random Forests and Input Convex Neural Networks, and compare the resulting con-
vex MPC schemes in experiments on a practical building application, and in a numerical
case study. We demonstrate that Predictive Control in general leads to savings between
26% and 49% of heating and cooling energy, compared to the standard hysteresis con-
troller used in the building. Moreover, we show that all model types lead to satisfactory
control performance in terms of constraint satisfaction and energy reduction. However,
we also see that the physics-informed ARMAX models have a lower computational bur-
den, and a superior sample efficiency compared to the Machine Learning based models.
Moreover, even if abundant training data is available, the ARMAX models have a signif-
icantly lower prediction error than the Machine Learning models, which indicates that
the encoded physics-based prior of the former cannot independently be found by the
latter.

4.1 Introduction

MPC in buildings has been applied successfully in simulation (Oldewurtel et al., 2012;
Touretzky and Baldea, 2014; Chen et al., 2013; Mai and Chung, 2015) and real buildings
(Sturzenegger et al., 2016; Hilliard et al., 2017; Castilla et al., 2014; Ma et al., 2014;
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Žáčeková et al., 2014; Hammer and Gersmann, 2003) many times with significant reduc-
tion of energy consumption compared to the baseline controllers. It can also be used to
provide electrical reserves with buildings by exploiting their thermal inertia, as demon-
strated in (Vrettos et al., 2018b), which is a second application that is highly relevant to
the scope of this thesis. However, models in building MPC are conventionally based on
physics (Picard et al., 2015; Sturzenegger et al., 2014), which means that the model is
built using principles of heat transfer and thermodynamics, or based on expensive exci-
tation experiments, or a combination of both. Another approach are grey-box methods
(Dimitriou et al., 2015; De Coninck et al., 2015; Li et al., 2021), where the basic physical
and architectural structure of the considered building is modeled by hand, which also re-
quires a considerable amount of manual work, and parameters are fitted to measurement
data. Several recent (Maddalena et al., 2020; Kathirgamanathan et al., 2021; Drgoňa
et al., 2020a; Péan et al., 2019; Lee and Karava, 2020; Mariano-Hernández et al., 2021;
Gholamzadehmir et al., 2020; Zong et al., 2019) and less recent (Rockett and Hathway,
2017; Henze, 2013; Afram and Janabi-Sharifi, 2014; Serale et al., 2018) reviews provide
an excellent overview on the issues related to the use of MPC in buildings, including
physics-based modeling pipelines such as the Building Resistance-Capacitance Modeling
(BRCM) toolbox (Sturzenegger et al., 2014) or Modelica-based approaches (Picard et al.,
2015). A common observation is that developing and maintaining such models is often
considered too expensive to justify investment as each building is individual, an issue
that potentially hinders the commercial application of MPC in buildings (Sturzenegger
et al., 2016).

As a result, data-driven approaches that rely purely on historical measurement data
have emerged. Data-driven methods, which are sometimes referred to as Data Predictive
Control (DPC) (Smarra et al., 2018), either use models built from measurement data in
an MPC framework (Smarra et al., 2018) or compute optimal inputs directly from past
and currently measured data (Coulson et al., 2019; Markovsky et al., 2006). As the dis-
tinction between these methods and methods based on excitation experiments is blurry,
we will use the common term MPC in the following for all predictive methods. Many
Machine Learning (ML) methods, such as Artificial Neural Networks (ANN), Random
Forests (RF) and Support Vector Machines (SVM) are universal function approximators
(Hornik, 1991; Hammer and Gersmann, 2003), and have proven successful in various
technical domains (Silver et al., 2017; Wu et al., 2016; Hershey et al., 2017). As they
come with the tempting promise to model any system well as long as the underlying
data quality is good, they are also natural candidates for MPC in buildings.

There are several studies on the comparison of such modeling methods in the context
of data-driven MPC in simulation. While some authors (Mugnini et al., 2020; Wang
et al., 2019; Chen et al., 2019) compare purely data-driven methods such as ANN, RF and
SVM to grey-box methods such as resistor-capacitor (RC) models, others (Picard et al.,
2016) compare RC methods to white-box models, or subspace identification methods
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to ARMAX (Ferkl and Jan Široký, 2010). Other studies apply data-driven MPC for
buildings in practice but do not compare different modeling methods. For example,
Ferreira et al. (2012) use an ANN-based MPC controller on a set of rooms in a real
university building. The controller saves up to 50% of energy compared to the baseline
controller. Aswani et al. (2012) use switched linear input-output models, which are
trained based on excitation experiment data, to control a university building with an
MPC framework. In an eight day experiment, the controller saves a significant amount of
energy compared to the baseline controller, while providing similar comfort levels. Finck
et al. (2019); Jain et al. (2020) and Yang et al. (2020) use ANN-based MPC controllers
with varying types of cost functions on real building applications with varying purposes,
such as minimizing energy use or maximizing demand flexibility. The review article of
Kathirgamanathan et al. (2021) concludes that the validation and comparison of data-
driven MPC controllers in practice is not appropriately addressed in the literature so
far.

In the spirit of Mania et al. (2018), it is also unclear how the considered Machine
Learning based methods models compare to simpler identification methods, such as
ARMAX models identified through linear regression. While ARMAX models are not
universal function approximators, they do have the trait of being physically interpretable,
which is often not the case for ML methods. There is a general growth in research on
physics-informed data-driven methods (see e.g. (Raissi et al., 2017, 2019; Sharma et al.,
2018; Manek and Kolter, 2020; Lutter et al., 2019; Márquez-Neila et al., 2017)), but very
little work has been done so far in the domain of building energy control. Drgoňa et al.
(2020b) introduce physics-constrained RNN to model the thermal dynamics of buildings
and use information about the general model structure of buildings to structure the
neural dynamics models, constrain the eigenvalues of the model, and use penalty methods
to impose physically meaningful boundary conditions to the learned dynamics. The
method is applied to an open-loop prediction on a data set of a real 20-zone building.
The authors find that the prediction accuracy is significantly improved compared to
not-constrained RNN models. The method is not tested in closed-loop MPC. To the
best of our knowledge this is the only published study on the topic of physics-informed
data-driven models in the building control domain. There is no study available on a
closed-loop implementation on a physical building.

Besides the addressed lack of physics-informed data-driven models, the body of stud-
ied literature has shown that there is a general lack of comparisons of the performance
of different data-driven models in MPC for practical building applications (Kathirga-
manathan et al., 2021). Moreover, in cases where data-driven methods are indeed tested
on real systems, the resulting MPC problem is often non-convex and has to be solved
with non-linear solvers. While this approach might be suitable for single building en-
ergy management, the resulting computational complexity of solving the MPC problem
online likely leads to intractable problems if more complex system architectures or ap-
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plications are considered. Examples for such problems are coordinated building control
(Yang et al., 2020), or electric reserve provision as discussed in Chapters 3 and 5.

4.1.1 Contribution

In this chapter, we therefore focus on the development and practical validation of data-
driven methods that lead to convex MPC problem formulations. We introduce two
Machine Learning based data-driven models for building thermal dynamics. The first
one is a combination of Random Forests (RF) and linear regression, based on the work
of (Smarra et al., 2018). The second one is based on Input Convex Neural Networks
(ICNN), which were extended from (Amos et al., 2017) to ensure convexity in the face of
recursive evaluation of the networks. Under some assumptions on the cost function and
state constraints, both RF and ICNN models lead to convex optimization problems that
can be solved to global optimum in real time. Moreover, we introduce physics-informed
ARMAX models by exploiting the physical interpretability of ARMAX models and their
relation to the physical dynamics of buildings.

We conduct a series of heating and cooling experiments on an occupied apartment
(see lit apartment on second floor in Figure 2.2, Chapter 2), with the different models
embedded in an MPC framework, and compare them qualitatively in terms of constraint
satisfaction and exploitation, and in terms of the computational burden, i.e the online
optimization time and memory requirements. Moreover, we quantitatively evaluate the
energy savings achieved with MPC compared to the baseline hysteresis controller used in
the apartment, which amount to 26% to 49%. In a numerical experiment on the basis of
historical measurement data from the apartment, we also compare the models in terms
of sample efficiency, i.e. how much data a good model needs for training, and multi-step
prediction accuracy. While all models perform well on the task of predictive control in
the application case study and outperform the baseline hysteresis controller in terms of
energy consumption, the physics-informed ARMAX models show a considerably lower
computational burden, better sample efficiency and better prediction accuracy in the
numerical evaluation. On one hand, our results show that any model with reasonable
accuracy will be suitable for predictive control. On the other hand, they demonstrate
that ML-based models do not have any advantage over a physics-informed ARMAX
model in the given case, i.e. they do not identify potential non-linearities such as time
related solar gains or occupancy effects. On the contrary, the stronger physical prior of
the ARMAX models, besides leading to higher sample efficiency, is not achieved by the
ML models, even if abundant training data is available for training.
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4.2 Problem statement

4.1.2 Structure

The remainder of this chapter is structured as follows. In Section 4.2, we discuss the
concept of MPC with input-output models. In Section 4.3, we introduce the models based
on RF, ICNN and physics-informed ARMAX. Section 4.4 describes the apartment that
we use as a test bed and its heating and cooling system. The results of the experiments
of all models applied to the test case are presented and discussed in Section 4.5, while in
Section 4.6, we investigate the sample efficiency of the models. Section 4.7 summarises
our findings and provides directions for future work.

4.2 Problem statement

MPC is a control scheme where a constrained optimization problem is solved repeatedly
to find optimal control inputs over a receding horizon. Besides state-space formulations,
the problem can be formulated with an input-output model, where previous outputs,
inputs and disturbances are measured, and the optimization problem

min
u,y

N−1∑
k=0

Jk(yk+1, uk) (4.1a)

s.t. yk+1 = f(yk−, uk−, dk−) (4.1b)

(yk+1, uk) ∈ (Yk+1,Uk) (4.1c)

∀k ∈ [0, ..., N − 1],

is solved at discrete time instants. Here, the variables y, u and d denote the system
outputs, control inputs and disturbances respectively. The variable k denotes the time
step in the horizon N , Jk is the stage cost, and f denotes the model describing the system
dynamics as a function of autoregressive terms of outputs, and moving average terms of
inputs and disturbances (or their forecasts), denoted by the subscript −. Output and
input constraints are formulated with the sets Yk and Uk.

Problem (4.1) is solved every time a new measurement of the output is available;
after each optimization, the first element of the optimal input sequence, u∗0, is applied to
the system and the process is repeated. Input-output models are suitable for building
control, as there are usually no constraints on hidden system states (for example wall
temperatures).

Problem (4.1) describes a basic MPC scheme, but many alternatives have been ex-
plored in the literature, for example applying multiple steps of the optimal sequence
before repeating the optimization, treating uncertainty in the disturbance forecast in a
worst-case or stochastic way, using state space formulations for the system dynamics and
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state estimators during controller application, etc. The interested reader is referred to
(Kouvaritakis and Cannon, 2016) for information on many of these alternatives.

The control performance generally improves with solving (4.1) more frequently (i.e.
the controller has a smaller sampling time) and a larger prediction horizon N . This,
however, implies that less time is available to solve a more complex optimization problem.
As convex optimization problems can usually be solved more efficiently, formulations
where the cost and constraints in (4.1) are convex with respect to the decision variables
are often preferable. Indeed, the art of MPC design is making design choices to master
this trade-off between computation and control performance.

4.3 Methodology

In this section, we describe our models based on RF, ICNN, and physics-informed AR-
MAX models.

4.3.1 Random Forests with linear regression leaves

The presented model, extended from the work of Smarra et al. (2018), is an input-output
model y = f(Xc, Xd), where Xc are the controllable inputs, i.e. control inputs u (such
as valve positions, supply temperatures, etc.) in the prediction horizon, but not those
that lie in the past (as they cannot be decided on any more). The vector Xd denotes all
uncontrollable model inputs, i.e. disturbances (for example ambient temperature, solar
irradiation, time features, etc.), previously measured room temperatures and control
inputs u that lie in the past. The model is built in two steps as follows.

Fitting of random forests

First, a random forest g(Xd) is built for each prediction step in (4.1), i.e N forests,
which map the uncontrollable inputs Xd to a finite set of leaves 1, ...,L. Random forests
are ensembles of regression trees - a form of decision tree to approximate continuous
functions. A decision tree is built by splitting the training set Xd of the input Xd into
partitions p, yielding X p

d , in each of which the output y is approximated with a constant
value ȳp (which is the mean of all measured outputs y ∈ Ypd corresponding to X p

d ). This
constant value at the bottom of a tree is called a leaf. The splitting variable and splitting
point defining the partitions X p

d are obtained with the help of a greedy heuristic:

Consider a splitting variable v ∈ X p
d and a splitting point s, the pair of half planes

R defined by these are

R1(v, s) = {Xd ∈ X p
d |v ≤ s} and R2(v, s) = {Xd ∈ X p

d |v > s}. (4.2)
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We seek the splitting variable v and splitting point s that solve

min
v,s

min
ȳR1

∑
Xd,j∈R1(v,s)

wj( yj(Xd,j)− ȳR1)2

+ min
ȳR2

∑
Xd,j∈R2(v,s)

wj( yj(Xd,j)− ȳR2)2

 (4.3)

by iterating over v and s. Here, yj(Xd,j) denotes the measured output corresponding to
a specific input Xd,j. The variable wj can be used to apply sample-weighting techniques.
If no sample weighting is applied, its value is 1 for all inputs.

A random forest of T trees is built by bootstrapping (Efron, 1979) T subsets of
samples from the available training data and building a tree based on each subset. The
function evaluation of the forest for Xd is then done by evaluating each tree, giving rise
to T different ȳ(Xd) which are then averaged. T is independent of N and needs to be
chosen heuristically. For more details on the training process please refer to the original
source (Smarra et al., 2018) and to general literature on random forests (Louppe, 2014).

Linear regression leaves

Second, instead of using the constant values ȳ(Xd) as predictors, in each leaf of the forest,
a function hi(Xc) with i ∈ 1, ...,L is defined on the basis of the controllable inputs, which
maps Xc to y. Smarra et al. (2018) fit an affine model to approximate y with Xc (to
relate the response of the room temperature to the control inputs) with least squares
in each leaf i. For the prediction of the future temperature of a single room y at time
k + 1, this gives

yk+1 = βk,i,Xd +
k∑

n=0

βk,i,Xc,nun + e, (4.4)

in which βk,i,Xd and βk,i,Xc,n denote the fitted coefficients and e the model error. The
temperature is therefore an affine function of all control inputs from the time instant
when the prediction is made, to the predicted time instant k + 1. As each leaf i is
based on a different partition X p

d , βk,i,Xd and βk,i,Xc,n are also different for each leaf, thus
implicitly dependent on Xd.

Preliminary results suggested that the proposed approach leads to weak prediction
performance for more than three prediction steps. This can be explained by the high
dimensionality of the fitting process for larger prediction steps in combination with a lim-
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ited amount of training samples per leaf. We therefore model the predicted temperature
in the k + 1th step as

yk+1 = βk,i,Xd + βk,i,Xc

k∑
n=0

un + e (4.5)

in which only two coefficients have to be fitted for any number of prediction steps. This
approach is less realistic than eq. (4.4), as an early control input will have the same effect
on the predicted temperature as a late control input (close to k+ 1), whereas one would
expect the effect of earlier time steps to be weaker. However, preliminary experiments
suggested that the advantage of better model fits outweighs the disadvantage of a less
realistic model. As we use random forests and not the individual regression trees for
predicting y, the average of all relevant βk,i,Xd and βk,i,Xc is taken when the model is
applied in (4.1).

The resulting prediction function is f(Xc, Xd) = hg(Xd)(Xc). When the model is
applied in MPC as (4.1b), it is not applied recursively. Instead, for each time step k in the
horizon N , a separate model fk is built. Here, only previously measured outputs, but not
previously predicted outputs are used as model inputs to keep the optimization problem
convex. For example, we could define y1 = f1 (Xc = (u0), Xd = (y0, y−1, d0, d−1)) for the
first prediction, but y2 = f2 (Xc = (u1, u0), Xd = (y0, d1, d0)) for the second prediction
step; i.e. f2 is not a function of y1, only of u1. This is done to maintain the convexity of
the MPC controller. The optimization problem is solved by looking up the leaves in the
forest on the basis of measurements and forecasts of Xd and collecting the appropriate
functions hi(Xc) (i.e eq. (4.5)) first, and second by solving the resulting optimization
problem.

4.3.2 Input convex neural networks

We extend the work of Amos et al. (2017), to describe building dynamics with a Neural
Network that allows a convex formulation of problem (4.1) in the absence of lower output
constraints. The model is an input-output model y = f(Xcvx, Xncvx), where the output
is convex with respect to Xcvx (for example decision variables such as room temperatures
and control inputs), but not necessarily with respect to Xncvx (for example disturbances
such as solar irradiation or ambient temperature), even for multi-step predictions. The
derivation of the model is explained in the following.

Convex one-step ahead prediction

Amos et al. (2017) introduced an architecture for feed-forward Neural Networks where
the scalar output of the network is convex with respect to all inputs (Fully Input Convex
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Neural Network or FICNN), or with respect to a subset of the inputs (Partially Input
Convex Neural Network or PICNN). These networks are therefore promising candidates
for f in problem (4.1).
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Figure 4.1: Schematic of a Fully Input Convex Neural Network

Figure 4.1 shows the schematic of an FICNN. It shows a L-layer fully connected
network in which the output of each layer follows

zi+1 = gi(W
(z)
i zi +W

(x)
i Xcvx + bi), (4.6)

with z0 = 0 and W
(z)
0 = 0, where gi denotes the activation function for layer i ∈

[1, .., L − 1], W (z)
i and W

(x)
i denote the network’s weights, and bi denotes a constant

bias. Both weights and biases are model parameters that are determined during network
training. The network output of the last layer zL, which is also the model output y, is
convex with respect to the elements of the input vectorXcvx if allW

(z)
1:L−1 are non-negative

and all activation functions gi are convex and non-decreasing (Amos et al., 2017).
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Figure 4.2: Schematic of a Partially Input Convex Neural Network

Similarly, Figure 4.2 depicts a PICNN. Here, the output of each network layer follows

vi+1 = g̃i(W̃ivi + b̃i),

zi+1 = gi

[
W

(z)
i

{
zi ◦ [W

(zv)
i vi + b

(z)
i ]
}

+ W
(x)
i

{
Xcvx ◦ [W

(xv)
i vi + b

(x)
i ]
}

+W
(v)
i vi + bi

]
,
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(4.7)

with z0 = 0,W (z)
0 = 0 and v0 = Xncvx, where g̃i and gi are activation functions, W̃i,W

(z)
i ,

W
(zv)
i , W (xv)

i , W (v)
i are input weights, b̃i, bi, b

(z)
i , b(x)

i are constant biases, and ◦ denotes
the Hadamard product. Under the condition that all weights W (z)

1:L−1 are non-negative
and all activation functions gi are convex and non-decreasing, the model output y, i.e.
the output of the last layer zL, is convex with respect to the elements of the input vector
Xcvx (but not necessarily with respect to the elements of Xncvx) (Amos et al., 2017).

FICNN and PICNN guarantee input-output convex behaviour, making them promis-
ing candidates for MPC schemes, as mentioned above. However, when ICNNs are applied
for f in problem (4.1), for example as yk+1 = f(Xcvx = (yk, uk, dk)), it becomes evident
that there is an issue with convexity in multi-step ahead prediction. While the first step
y1 = f(y0, u0, d0) is a convex function of the decision variables, the second one is not
guaranteed to be. For example, if a 1-layer FICNN is considered, the output at timestep
2 follows

y2 = f(y1, u1, d1) = g0(W
(x)
0 (y1, u1, d1) + b0). (4.8)

As the elements of y1 are convex functions of the elements of y0 and u0, take y1 = y2
0 +u2

0

as a scalar example, and W (x)
0 can attain any value (thus also a negative one), the term

W
(y)
0 (y1, u1, d1) can become a concave function in the elements of y0 and u0, for example

(−1)(y2
0 + u2

0). The output y2 = f(y1, u1, d1) is thus not guaranteed to be convex with
respect to the elements of y0 and u0.

ICNN for multi-step ahead prediction

To make ANNs input convex in the face of multi-step ahead prediction, Chen et al.
(2019) have presented a solution for Fully Input Convex Recurrent Neural Networks.
Here, we present a solution for Fully and Partially Input Convex Feed-Forward Neural
Networks. We accomplish this through additional constraints in the network architecture
and the use of ReLu (Nair and Hinton, 2010) activation functions in appropriate places
in the network topology. Our approach readily extends to FICNN, where it becomes the
feed-forward counterpart of the approach developed by Chen et al. (2019) for recurrent
neural networks.

Proposition 1: Consider the two FICNNs f1(Xcvx,1) and f2(Xcvx,2) as defined in eq.
(4.6). The composition f2(Xcvx,2 = (X̂cvx,2, f1(Xcvx,1))) is a convex function with respect
to the elements of the vector Xcvx,1, if all weights W

(z)
i and W (x)

i are non-negative and
all functions gi are convex and non-decreasing. Here, X̂cvx,2 are the inputs unrelated to
f1.
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The proof follows from the fact that non-negative sums of convex functions are convex
and that compositions of a convex function and a convex non-decreasing function are
also convex. Looking at eq. (4.6), the elements of W (z)

i zi are convex functions assuming
that zi is convex in its inputs and all elements of W (z)

i are non-negative. The parameter
bi is a constant. Generally, the term W

(x)
i Xcvx is convex in Xcvx for any W (x)

i if Xcvx

is constant because a linear function with negative gradient is also convex (Amos et al.
(2017)). Here, we require the elements of W (x)

i to be non-negative, because Xcvx itself
might be a convex function in the form of an ICNN (from a previous prediction step).
The term (W

(z)
i zi + W

(x)
i Xcvx + bi) is therefore a non-negative sum of convex functions

and gi(W
(z)
i zi + W

(x)
i Xcvx + bi) a composition of a convex function and a convex non-

decreasing function (for example the commonly used ReLu function gi = max(x, 0)).
For the example of eq. (4.8), as W (x)

0 is now constrained to be non-negative, W (x)
0 (y1 =

f(y0, u0, d0)) is convex in the elements of y0 and u0, if y1 is convex in the elements of y0

and u0 (which is the case). Thus, y2 is also convex in the elements of y0 and u0. The
network output zL is a convex non-decreasing function of the elements of the input Xcvx.
An alternative proof can be constructed from showing that a FICNN is a convex non-
decreasing function and using the composition rule of convex and convex non-decreasing
functions.

In the case of PICNN, we propose the following structure for the outputs of the
network layers for input convex multi-step prediction,

vi+1 = g̃i(W̃ivi + b̃i),

zi+1 = gi

[
W

(z)
i

(
zi ◦ g(zv)

i [W
(zv)
i vi + b

(z)
i ]
)

+W
(x)
i

(
Xcvx ◦ g(xv)

i [W
(xv)
i vi + b

(x)
i ]
)

+W
(v)
i vi + bi

]
,

(4.9)

where the activation functions g(zv)
i and g(xv)

i are added compared to eq. (4.7).

Proposition 2: Consider the two PICNNs f1(Xncvx,1, Xcvx,1) and f2(Xncvx,2, Xcvx,2)

as defined in eq. (4.9). The composition f2(Xncvx,2, Xcvx,2 = (X̂cvx,2, f1(Xncvx,1, Xcvx,1)))

is a convex function with respect to the elements of Xcvx,1 (and Xcvx,2), but not necessar-
ily with respect to the elements of Xncvx,1 (and Xncvx,2), if all weights W

(z)
i and W (x)

i are
non-negative, all functions g(zv)

i and g(xv)
i map to a non-negative value and the function

gi is convex and non-decreasing. Here, X̂cvx,2 are the inputs unrelated to f1.

The proof again follows from only applying operations that maintain convexity. Going
through eq. (4.9) term by term, zi ◦ g(zv)

i [W
(zv)
i vi + b

(z)
i ] is convex in the elements of the

inputs of zi if zi is a convex function because g(zv)
i maps all negative values of [W

(zv)
i vi +

b
(z)
i ] to zero. As W (z)

i is non-negative, W (z)
i (zi ◦ g(zv)

i [W
(zv)
i vi + b

(z)
i ]) is also convex.
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The same argument can be made for the next term W
(x)
i (Xcvx ◦ g(xv)

i [W
(xv)
i vi + b

(x)
i ])

regarding the convexity in the elements of Xcvx and its inputs. Here, we need g
(xv)
i to

map all negative values to zero, because Xcvx is not a constant (as in Amos et al. (2017)),
but a convex function itself. As gi is convex non-decreasing, the composition of gi and
before-mentioned terms is a convex function. Eq. (4.9) is thus convex with respect to the
elements of the input vectors of any convex functions Xcvx and zi. We note in passing,
that other formulations of FICNN and PICNN can be thought of and will give the same
result as long as it is ensured that zi+1 is convex non-decreasing in the elements of Xcvx.

When PICNN or FICNN are applied in the MPC problem (4.1), constraints (4.1b)
and (4.1c) define a convex set as long as the outputs are box-constrained and no lower
bounds are imposed. This is because the equality constraint can be eliminated. For
example, the dynamics y2 = f(y1, u1, d1) and a box-constrained output y2 ≤ ymax can
be replaced with f(f(y0, u0, d0), u1, d1) ≤ ymax, which defines a convex set because f is
convex non-decreasing. We note, that in many practical cases, the problem could remain
convex also in the presence of lower output constraints due to the monotonicity of the
dynamics.

4.3.3 Physics-informed ARMAX models

The models presented in Subsections 4.3.1 and 4.3.2 fall into the family of Machine
Learning methods. In the case of modeling building dynamics, it is tempting to use
them to learn the building’s behaviour, as some dynamics-related effects are difficult
to model from first principles for individual buildings. An example is the heating gain
through windows as a function of time, global solar irradiation, window size, and window
orientation. However, the ML methods usually do not encode constraints coming from
building physics, for example the law that heat flows from warm to cold, the first law
of thermodynamics, etc. In the following, we aim to construct a physics-informed data-
driven model, which happens to be linear, as most dynamic effects on the thermal mass
of a building are indeed linear.

Modeling thermal zones

The evolution of the temperature T of a lumped mass in a building, for example a
thermal zone, can be described by

mcp
dT

dt
= Q̇amb + Q̇n + Q̇sol + Q̇occ + Q̇act, (4.10)

where m and cp denote the mass and specific heat capacity of the mass respectively. The
Q̇ terms denote incoming and outgoing energy flows, i.e heat flows from and to ambient,
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Q̇amb, and neighboring zones, Q̇n, by solar irradiation, Q̇sol, by occupancy, Q̇occ, and by
actuators Q̇act (such as radiators, air conditioning, etc.) respectively. The terms Q̇amb

and Q̇n are linear functions of T , for example Q̇amb = θamb(Tamb − T ), where θamb is
a constant; Q̇n is given by a sum of similar linear functions with Tamb replaced by the
temperatures of the neighbouring zones. The influence of occupancy, Q̇occ, is part of
ongoing research and is neglected for this particular model, partly because occupancy
forecasts were not available in the case study. We will treat the remaining terms, Q̇sol

and Q̇act, in the following.

Modeling solar gains Q̇sol

A simple physics-based model for solar gains through windows is given by

Q̇sol = Awin sin(α− α0)
cos(β)

sin(β)
Ihor, (4.11)

where Awin is the window surface area, and the angles α and β denote the azimuth (i.e.
the horizontal angle with respect to north) and elevation (i.e. the vertical angle with
respect to earth’s surface) of the sun respectively. The offset α0 denotes the orientation
of the window and Ihor is the horizontal global irradiation, which is an input commonly
available from a weather forecast. Note that sin(α − α0) can become negative, which
means that the direction of the irradiation through the surface is negative. For the given
case of a window, we therefore take max(0, sin(α−α0)). Equation (4.11) shows that the
gains through solar irradiation are a non-linear function of the window orientation and
the angles α and β, which are themselves highly non-linear functions of time.

To embed Q̇sol in our model, we assume that the second term of (4.11), Ivert(t) =
cos(β)
sin(β)

Ihor, which denotes the irradiation on a vertical surface following the sun, is given as
an input. This is a reasonable assumption as Ihor can be obtained from a weather forecast
and β is a function of time and location. We model the first term, Awin sin(α−α0), with
τ time varying coefficients [θsol,1 ... θsol,τ ], where τ represents one day. The solar gain can
then be formulated as

Q̇sol = [θsol,1 ... θsol,τ ][Ivert,1 ... Ivert,τ ]
T , (4.12)

where [Ivert,1 ... Ivert,τ ] is a one-hot encoding (Brownlee, 2018) of Ivert with respect to
discrete time-periods 1, ..., τ :

Ivert,i =

{
Ivert(t), if i ≥ t > i+ 1

0, otherwise.
(4.13)
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This way of modeling the solar irradiation creates τ input variables that are zero during
most times of the day, but are equal to Ivert(t) for fixed periods. For example, in the case
of τ=4 with time periods of equivalent length, Ivert,1 attains Ivert(t) for the first six hours
of the day, and is zero for all other times, Ivert,2 attains Ivert(t) for the period of 6 am
to 12 pm, and zero otherwise, etc. The solar gains Q̇sol are now a linear function of the
easy-to-obtain inputs Ivert,t1 ... Ivert,τ . A validation of this modeling approach compared
to the physical model of (4.11), on the data set later used in the case studies, is shown
in Figure A.6 in the Appendix for τ = 9. The coefficient of determination R2 is 0.96 for
both the training and the testing set. Note that the number of one-hot encoded inputs
τ does not relate to the sampling time of the MPC; it only needs to be sufficiently high
to reach a reasonable fit of Q̇sol.

Modeling actuator gains Q̇act

For most relevant heating and cooling systems, such as radiators, floor heating and
(neglecting the water and vapour content) air conditioning units, the energy transferred
from an actuator to a thermal zone can be described by an equation of the form

Q̇act = ṁfcp,f(Tsup − Tret). (4.14)

Here, ṁf and cp,f denote respectively the mass flow and specific heat capacity of the fluid
(usually water or air), and Tsup and Tret denote supply and return temperatures.

There are a variety of options to model Q̇act. In an ideal case, it is directly accessible
by measuring ṁ, Tsup and Tret and can be used directly in (4.10). Unfortunately, in many
buildings measurements at this level are not available. In such cases, one has several
options for inferring Q̇ from the available measurements. One option is by measuring
the total energy consumption of a building and allocating portions of it based on design
mass flows to individual rooms; this is the approach we follow for ˜̇Qact,i in Section 4.4.
Another is to model Q̇act as a linear function of the mass flow or a valve position b:

Q̇act = θ̄ṁ ≈ θb. (4.15)

This assumes that (Tsup−Tret) is approximately constant, which is a reasonable assump-
tion for example in the case of heating with a high supply temperature. In the case of
using the valve position b and not directly the mass flow ṁ, the assumption that their
relation is linear also has to be made.

A last option is suitable when both valve position b and Tsup are measured. The
transferred energy then follows

Q̇act = θb(Tsup − T ), (4.16)
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where T is the current temperature of the zone itself1. For air-based systems, the as-
sumption Tret = T is always reasonable. For water-based systems, the assumption holds
if the heat transfer surfaces are large and the mass flows are low. Also, the assumption
that ṁ and b have a linear relation has to hold again. All options assume that cp,f is
constant. In the case studies in Sections 4.5 and 4.6, we will explore several of these
options for Q̇act.

Positivity constraints for building dynamics

By substituting all Q̇ terms in (4.10) using (4.16) for Q̇act, and neglecting occupancy,
the dynamics can be rewritten as

mcp
dT

dt
=θamb(Tamb − T ) + θn(Tn − T )

+

(
τ∑

ti=t1

θsol,tiIvert,ti

)
+ θactb(Tsup − T̄ ),

(4.17)

where we assume a single neighbouring zone to simplify the notation; similar equations
are obtained with the other options for modeling Q̇act. To avoid the bilinearity in the
valve opening b and the zone temperature T , the zone temperature is replaced by an
approximation T̄ , which can be obtained from the last measured room temperature for
example. After performing Euler discretization, the discrete time thermal zone dynamics
can be written as

Tk+1 =

(
1− ∆t θamb

mcp
− ∆t θn

mcp

)
Tk +

(
∆t θamb

mcp

)
Tamb,k +

(
∆t θn
mcp

)
Tn,k

+

(
τ∑

ti=t1

(
∆t θsol,ti

mcp

)
Ivert,ti

)
+

(
∆t θact

mcp

)
b(Tsup − T̄ )k,

(4.18)

where the subscripts k and k+1 denote the current and subsequent time step respectively,
and ∆t is the sampling time. By reducing all constants in (4.18) to coefficients θ̃, the
expression can be further simplified to

Tk+1 =θ̃autoTk + θ̃ambTamb,k + θ̃nTn,k

+

(
τ∑

ti=t1

θ̃sol,tiIvert,ti

)
+ θ̃actb(Tsup − T̄ )k.

(4.19)

1The input is therefore linear in the system state.
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We emphasize that for a sufficiently small time step ∆t, all coefficients θ̃ are positive
since the masses, specific heat capacities and heat transfer coefficients are all positive.

The temperatures can be stacked in a state vector x, inputs (b(Tsup − T̄ )) and dis-
turbances (Tamb, Ivert,ti) can be stacked in the input and disturbance vectors u and d,
and a conventional linear state space system of the form xk+1 = Axk + Buuk + Bddk,
yk+1 = Cxk can be formulated, where the output vector y collects all the entries of x
(zone temperatures) that can be measured. The influence of the hidden states can then
be modeled implicitly by a convolution of the previous outputs y (i.e. the measured zone
temperatures), inputs and disturbances. This results in an ARMAX model of the form

yk+1 = Θ [yk ... yk−δ uk ... uk−δ dk ... dk−δ]
T , (4.20)

which can be used for the dynamics in (4.1b). Here, Θ is the vector of regression
coefficients for each thermal zone and δ determines the number of autoregressive and
moving average steps.2 Similar to the state space system, the elements of Θ are positive
and can be found through non-negative least squares regression.

4.3.4 Model properties

The presented models have different properties in terms of expressiveness and the com-
plexity of the resulting MPC problem. The ARMAX model is limited to (4.1b) being
linear in all variables. RF are generally more expressive, as they are piecewise constant
in the disturbances and piecewise linear in the inputs. ICNN are also more expressive
than ARMAX, being convex in the inputs, and even less restrictive for disturbances.
Generally it could be expected that more expressive models lead to a more accurate
representation of the system dynamics as long as they can be trained to optimality and
there is enough data to avoid overfitting. This is studied in Section 4.6 below.

Compared to ICNN, ARMAX and RF are generally more lightweight in terms of
online computation, when applied in the MPC problem (4.1). For example, if (4.1a) is
quadratic and (4.1b) linear in the decision variables, the resulting problem is a QP, for
which very efficient solvers are available. By contrast, ICNN lead to a general convex
optimization problem, that require more generic methods like interior point or gradient
decent. To get a convex problem, ICNN are limited to box constraints with only an
upper bound when it comes to the output variables in (4.1c). The other two models
allow general convex output constraints.
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Figure 4.3: Rendering of the UMAR unit in NEST with both bedrooms marked.
© Werner Sobek.

Tsup 

bi bR 

QUMAR 

Figure 4.4: Heating system of the UMAR unit in NEST. The heating loop is connected
to the central heating system via a heat exchanger. The heating and cooling panels in
each room are controlled with individual on/off valves.

4.4 Test bed

We use the Urban Mining and Recycling (UMAR) unit (Kakkos et al., 2019; Heisel et al.,
2019) of the NEST building (Richner et al., 2017) at Empa, Dübendorf, Switzerland as
a test bed in our case studies. The unit, shown in Figures 2.2 and 4.3, is an apartment
built to demonstrate the circular economy in the building construction industry and is
constructed from recycled material or material that can be recycled completely after
dismantling the unit. It comprises two bedrooms and one living/kitchen area with large
south-east facing windows, two bathrooms, an entrance area and a technical room. The
two bedrooms have identical floor plans and furniture. The apartment is considered to
be a “living lab” and is occupied by two persons, who live there.

The unit is equipped with a water-based heating and cooling system (Figure 4.4). The

2Generally, δ can be different for y and u, d.
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system is connected to the NEST heating grid via a heat exchanger and the total energy
consumption of the unit, Q̇UMAR, is measured with the help of an Energy Valve™(Belimo,
2021). Each room is equipped with at least one heating/cooling ceiling panel, which is
controlled by individual on/off valves bi. There is a central pump that provides pressure,
as long as one of the valves is open. The supply temperature Tsup is regulated by adjusting
the mass flow on the NEST heating grid side of the heat exchanger. The same system
is used for cooling during warm days through a second heat exchanger connected to the
NEST cooling grid. As the pump delivers a constant pressure and the valves are either
fully open or closed, the design mass flows3 for each heating/cooling panel ṁi can be
used to calculate the amount of energy transferred to each room ˜̇Qact,i through

˜̇Qact,i = Q̇UMAR
ṁibi∑
j∈R ṁjbj

, (4.21)

where R denotes the set of all rooms in the unit. All measurements, including the
individual room temperatures are stored in an SQL database with a sampling time of one
minute. A weather forecast, sampled in one-hour periods, for the ambient temperature
and global solar irradiation is available from the national weather service, Meteo Swiss.
All actuators can be controlled via OPC-UA software clients (Leitner and Mahnke, 2006).
During standard operation, the room temperature is controlled by a hysteresis baseline
controller that regulates the room temperature between an occupant-decided set point
and 1 ◦C below in the cooling case, and above in the heating case. An example of
a temperature trajectory of bedroom 2 and the corresponding control input with the
baseline controller is shown in Figure A.7 in the Appendix.

4.5 Experiment case study

Over the course of two years, we have implemented MPC, based on RF, ICNN and
physics-informed ARMAX models, for 156 full days of experiments in the two bedrooms
of the UMAR unit. In the following, we will discuss the model configuration and train-
ing, present example closed-loop trajectories of the controllers, and analyse the energy
consumption compared to the base-line controller. For each controller type a different
model was trained for each bedroom.

3We introduce this way of calculating the transferred energy in Section 4.4 rather than 4.3, as the
design mass flows of each individual zone are commonly not known in a building and specific to this
case study. They are specified by the heating/cooling system installer.
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4.5.1 Model and controller configuration

All models use the same training data set of 2018-05-23 to 2019-05-28 (370 days), gen-
erated during normal operation of the building with the baseline hysteresis controller.
In this subsection, we define which inputs and outputs each model uses, how the model
hyperparameters were determined, and how many degrees of freedom each model has.

To configure the RF model, extensive feature engineering and hyperparameter tuning
was conducted (Bünning et al., 2020b). For the feature engineering, domain knowledge
was used to pre-select certain model inputs and disregard others. With these features,
models were then trained on the first 70% of the data and tested on the remaining
data. As a result of feature engineering, it was found that predicting room temperature
differences ∆x (or ∆T ) leads to better model accuracy than directly predicting room
temperatures. This has no effect on the convexity of the MPC problem (4.1). As
model inputs for the forests, autoregressive terms of ∆x, of temperature differences
between rooms and neighboring rooms, of window opening times, of the horizontal solar
irradiation, and of the ambient temperature were chosen. We also use the time of the day
and month, encoded as cosine and sine functions4, to capture any time-related influences
on the room temperatures (for example, occupants entering the rooms every day at the
same time) and to identify relations between time and global solar irradiation (similar
to (4.12)). For the linear regression in the forest leaves, moving average terms of the
control input ˜̇Qact,i are used. The number of autoregressive and moving-average steps
was set to 16.5 The sampling time was set to 30 minutes based on preliminary numerical
studies.

The hyperparameters of a random forest are mainly the number of trees per forest
and the minimum number of samples per leaf. To find suitable hyperparameters, we
applied line searching, where each parameter is varied while keeping the others constant.
The procedure is not iterative, i.e. each parameter is just updated once. The resulting
model has 200 trees per forest and a minimum of 200 samples per leaf.

The degrees of freedom of a random forest with linear regression grows with the
number of training samples S, due to the automatic scaling through the minimum number
of samples per leaf, and approximately follows 3 S

200
(with 200 being the number of samples

per leaf). For a sampling time of 30 minutes, this amounts to 270 for the full training
set. The models are implemented with Scikit-learn (Pedregosa et al., 2011) in Python 3.

The configuration of the ICNN models is described in (Bünning et al., 2021b) and in
more detail in (Schalbetter, 2020). For feature engineering, a k-fold cross validation with

4Both cosine and sine are used, to have distinct inputs for each time, as sine and cosine functions
have the same function value twice per period (Bescond, 2020). We can also fit any phase offset with a
linear parametrization.

5This number might seem excessive, however, additional inputs do not affect the fitting process of
regression trees negatively, as unimportant inputs do not get chosen as splitting/partitioning variables.
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k=12 was performed on the entire data set, with 9 folds being used for training and 3 for
validation. After this, the networks were chosen to predict the change of room temper-
atures instead of directly predicting temperatures. For PICNN, as non-convex inputs,
autoregressive terms of the solar irradiation (with three delay steps), the temperature
difference with respect to neighboring rooms (one delay step) and the sine-encoded time
of day (but not time of year) were chosen (one delay step). As convex inputs, autoregres-
sive terms of the change of room temperature (with three delay steps), the temperature
difference between room and ambient (one delay step), and the heating/cooling control
input were chosen (one delay step). In the case of FICNN, all the above features are
convex inputs. The sampling time was also decided on with cross validation and is 20
minutes for predictions up to one hour and 180 minutes beyond (Schalbetter, 2020). To
allow the network output zL (i.e. the change of room temperature) to be negative, we
use a shifted ReLu function, gi(x) = max(x, 0) − β, as the final activation function in
the output layer of the networks instead of a regular one. Here, β is a hyperparameter
of the network.

The other hyperparameters of an ICNN are the training method, the step-size of the
training method, number of training epochs, nodes per layer and number of layers. They
were optimized with line searches applied to the k-fold cross validation. The resulting
networks have approximately 1000 degrees of freedom (i.e. parameters to fit). The models
are implemented with Keras (Chollet, 2018) in Python 3.

The inputs for the ARMAX model directly follow from the physical structure de-
scribed in Section 4.3. They comprise autoregressive terms for the room temperature6,
moving average terms for neighboring zones, the ambient temperature, the one-hot en-
coded global solar irradiation and for the control input. The only hyperparameters to be
tuned are τ , the number of one-hot inputs of the solar irradiation, and δ, the number of
autoregressive and moving average terms. These were chosen to be τ = 9 and δ = 3 after
preliminary experiments. Our ARMAX models have (δ + 1)(4 + τ) degrees of freedom,
i.e. 52 for our configuration. The models are implemented with Scikit-learn (Pedregosa
et al., 2011) in Python 3.

All models are applied as the model for the building dynamics (4.1b) in the MPC
optimization problem (4.1). After specifying the cost function and constraints, this leads
to the optimization problem

min
u,y,ε

N−1∑
k=0

(ukRuk +Quk + λεk+1) (4.22a)

s.t. yk+1 = f(yk−, uk−, dk−) (4.22b)

ymin − εk+1 ≤ yk+1 ≤ ymax + εk+1 (4.22c)
6For linear models, the choices of using absolute temperatures or temperature differences both lead

to the same model accuracy.
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εk+1 ≥ 0 (4.22d)

umin ≤ uk ≤ umax (4.22e)

∀k ∈ [0, ..., N − 1],

where ε is a slack variable introduced to ensure feasibility. A quadratic weight for the
control input R, a linear weight for the control input Q, and a linear weight λ for the
comfort slack variable are used in the cost function; the weights are specified below for
each experiment. The comfort constraints ymin and ymax are time varying and will also
be reported with the results. The control input is applied to the valves of the UMAR
unit with pulse-width modulation (PWM). The limits for the control input are therefore
umin = 0 and umax = 1. The resulting problem is a Quadratic Program in the case of the
ARMAX and RF models (see discussion in Sections 4.3.1 and 4.3.4), which we solve with
the QP solver of CVXOPT (Andersen et al., 2004) in Python 3. For the ICNN, under the
absence of the lower output constraint, the problem results in a convex problem without
direct access to the function derivatives. We solve it with the COBYLA (Powell, 1994)
solver of SciPy (Virtanen et al., 2020) in Python 3.

4.5.2 Example closed-loop experiments

To compare the closed-loop behaviour of the ARMAX controller and an FICNN con-
troller, we conducted a cooling experiment on NEST with the ARMAX model (controller
properties: N=7h, R=1, Q=0, λ=100, δ=7, ∆t=30 min, actuation: valve opening) ap-
plied to bedroom 1 and a FICNN (controller properties: N=7h, R=1, Q=0, λ=100)
applied to bedroom 2. The results in Figure 4.5 show that both controllers keep the
temperature within the comfort constraints most of the time and exploit the relaxed
constraints during the day to save energy. However, the controller using the ARMAX
model is less conservative. It keeps the room temperature closer to the upper com-
fort constraint during the night, and meets the lowered comfort constraint at 22:00
just in time or violates it by a fraction of a degree for a short period of time. Day
2020-08-19 is characteristic of the different behaviour of the two controllers. Here, the
FICNN-controller applies control action during the second half of the day although the
temperature is already relatively low, (which even leads to slight violations of the lower
comfort constraints a few hours later,) while the ARMAX-controller slightly violates the
upper comfort constraint. Experiments with the PICNN showed similar results to those
conducted with the FICNN (Data omitted in the interest of space).

To compare the behaviour of the RF controller in a similar setting, we performed a
cooling experiment with an RF controller applied to bedroom 1 (controller properties:
N=6h, R=1, Q=0, λ=100); to investigate the effect of the cost weights we also applied
the same controller to bedroom 2 with controller properties N=6h, R=100, Q=0, λ=100.
Figure 4.6 demonstrates that the behaviour is very similar to the one observed with the
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Figure 4.5: Cooling experiment with ARMAX in bedroom 1 (blue) and FICNN in bedroom
2 (orange). (a): Temperature in the two bedrooms. The comfort bounds are shown in
dashed black. In 1 , 3 and 4 the connection between the controller and actuators was
lost for a short time. In 2 , the otherwise closed window blinds were automatically opened
due to strong wind, which lead to the system not being able to reject the solar gains, even
at maximum cooling power. (b): Relative control input, i.e. the fraction of time where
the maximum control input is applied during one control step. (c): Measured ambient
temperature at the experiment site. (d): Global solar irradiation at the experiment site.

ARMAX model. The room temperature is kept close to the upper comfort constraint
during the night, the controller exploits the relaxed comfort constraints during the day to
save energy, and starts cooling early enough to meet the lowered comfort constraints at
22:00. The difference in relative weighting between costs for control input and constraint
violations does not seem to significantly influence behaviour.

In general, the experiments demonstrate that all controllers have reasonable be-
haviour, with the ICNN-based controllers being more conservative compared to the AR-
MAX and RF-based controller. This is possibly due to underestimating the influence
of the control input or overestimating the thermal capacity of the system. Although
this issue is more pronounced for the ICNN, it is also visible for RF and ARMAX to a
lesser extent during times where the comfort constraints are relaxed but the controller
is aiming for the lowered upper comfort constraint at 22.00, for example at 1 in Figure
4.6. Here, the controllers often apply a high control input in one step, which cools down
the room temperature more than necessary, and then do not apply any control input in
the consecutive time step, which lets the room temperature rise again. This is likely a
result of the training data being correlated due to the underlying feedback controller: the
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Figure 4.6: Cooling experiment with RF in bedroom 1 (blue) and bedroom 2 (orange)
with different weights on the control input cost. (a): Temperature in the two bedrooms.
The comfort bounds are shown in dashed black. (b): Relative control input, i.e. the
fraction of time where the maximum control input is applied during one control step.
(c): Measured ambient temperature at the experiment site. (d): Global solar irradiation
at the experiment site.

effects of control input and disturbance on the room temperature cancel out. Besides the
obvious solution of generating training data with an uncorrelated input signal, tracking
the predicted temperature trajectory with a lower-level feedback controller instead of
directly applying the optimized control input could mitigate the issue.

Similar experiments in UMAR have been conducted for the heating case with the
RF and the ARMAX controller. (We have not conducted heating experiments with
the ICNN models due to the MPC problem not being convex at the lower comfort
constraint (Bünning et al., 2021b).) The general behaviour of the controllers in the
heating experiments is similar to the one observed in the cooling experiments. The
results therefore do not add anything new to the discussion, other than the observation
that predictive control in general also works in the heating case with both model types.
We therefore refer the interested reader to the linked data repository at the end of the
chapter for data on these experiments.

4.5.3 Energy consumption

We compare the energy consumption of the MPC-based controllers to the baseline con-
troller on the basis of the concept of Heating Degree Solar Days (HDSD) and Cooling
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Degree Solar Days (CDSD), explained in the following.

HDSD and CDSD

Heating Degree Days (without Solar) are commonly used to quantify the energy con-
sumption of a building as a function of the ambient conditions (ScienceDirect, 2021).
Here, a base temperature Tamb,b is defined (usually assumed to be the ambient temper-
ature at which no heating is necessary), and it is assumed that the daily heating energy
consumption of a building is proportional to the difference between the daily average
ambient temperature T̄amb and the base temperature:

Qhea = θHDD(Tamb,b − T̄amb) = θHDDHDD. (4.23)

The difference between the base temperature and the daily average temperature is called
Heating Degree Days (HDD). The coefficient θHDD can be found with linear regression.
Similarly a model with Cooling Degree Days (CDD) can be defined to quantify the cooling
consumption of a building based on a separate base temperature Tamb,b. (Depending on
the selection of the different base temperatures, the same day can have Heating Degree
Days and Cooling Degree Days). While this expression might be a good assumption for
most common buildings, it might not be for buildings with large windows, such as the
UMAR apartment, where the solar irradiation is a main driver of the dynamics. We
therefore add the global solar irradiation Ihor with a new regression coefficient θsol to the
equation,

Qhea = θHDDHDD + θsolIhor + c, (4.24)

and add a constant c to omit the dependence on the base temperature Tamb,b.7 Finally,
we divide the regression coefficients by each other and define the Heating Degree Solar
Day (HDSD):

Qhea = θHDD(HDD +
θsol

θHDD
Ihor) + c = θHDDHDSD + c. (4.25)

The concept of Cooling Degree Solar Days (CDSD) works accordingly, approximating
the cooling demand Qcoo of a building.

7If the regression chooses to set c = −θHDDTamb,b, the function effectively is not dependent on
Tamb,b any more. We could also write (4.24) directly in terms of T̄amb, but choose not to, to maintain
the relation to the HDD concept.
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Experiment results

We have evaluated measurement data spanning 2.5 years (2018-06-01 to 2021-02-14)
for the analysis of the energy consumption with the MPC controllers compared to the
baseline controller (example in Figure A.7 in the Appendix).

Figure 4.7 (a) shows the heating energy consumption as a function of the HDSD for
bedroom 1. Each blue dot represents a day under standard operation with the baseline
controller and each orange dot represents a day with an MPC controller. Days where the
average room temperature is outside the range of 21 ◦C to 27 ◦C are excluded from the
analysis for a fair comparison, as these conditions are often results of the heating/cooling
system not working correctly, leading to unrealistically low/high energy consumption.
The lines represent the HDSD regressions. Note, that we have lumped all different
MPC models (ARMAX, RF and ICNN)8 here in orange, as all controllers have shown
reasonable control performance in the individual experiments. As the experimental data
sets for the individual methods are small, we refrain from distinguishing quantitatively
between the modeling methods. However, as we use a different marker for each method,
it can be seen that qualitatively, the methods perform similarly.

There is a clear trend visible confirming that the MPC controllers consume less
heating energy than the baseline controller. At 5 HDSD the reduction is approximately
41% while at 15 HDSD it is 29%. Besides anticipating “free of cost” heat gains from
solar irradiation and other environmental factors, the MPC controllers of course save
a significant amount of energy by exploiting relaxed comfort constraints. However, we
note that the energy savings do not stem from a generally substantially lower room
temperature set point, or the violation of constraints (as could be seen in Section 4.5.2).
As Figure A.8 in the Appendix shows9, the median daily room temperature difference
between MPC and standard operation is 0.18 ◦C. The same trend of MPC consuming
significantly less energy compared to the baseline controller is visible in the cooling
experiments in bedroom 1, shown in Figure 4.7 (b). MPC consumes 33% less cooling
energy at 5 CDSD and 28% less at 15 CDSD.

The trend is slightly less pronounced in the heating experiments in bedroom 2, which
are shown in Figure 4.7 (c). Here, the difference between the MPC controllers and the
baseline controller is smaller. This behaviour can be explained by the better insulation
of bedroom 2. While bedroom 1 has a window surface and a wall surface connected to
the ambient, the wall surface of bedroom 2 is adjacent to another unit. This results in
less temperature loss during the night, which means that the MPC controller can exploit
the relaxed comfort constraint less. The result indicates that the potential for energy

8The ARX+window label denotes a model where eq. (4.11) is calculated based on the window
dimensions and orientations and directly used as a model input instead of eq. (4.12).

9Data on the cooling case in bedroom 1 and both cases in bedroom 2 is available in the linked data
repository, see Section Data Availability. These data show a similar trend.
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(a) Heating case bedroom 1.
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(b) Cooling case bedroom 1.
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(c) Heating case bedroom 2.
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(d) Cooling case bedroom 2.

Figure 4.7: Heating energy of MPC methods (orange) and baseline (blue) controller as a
function of HDSD and CDSD. Each sample represents one day of experiment, the solid
lines show the HDSD and CDSD regressions of these samples. (a): Heating case bedroom
1 with 41 samples for MPC, 258 samples for baseline controller. (b): Cooling case
bedroom 1 with 39 samples for MPC, 230 samples for baseline controller. (c): Heating
case bedroom 2 with 41 samples for MPC, 184 samples for baseline controller. (d):
Cooling case bedroom 2 with 35 samples for MPC, 206 samples for baseline controller.
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savings through MPC depends on the level of insulation of the controlled building. For
the cooling experiments in bedroom 2, which are shown in Figure 4.7 (d), MPC again
saves a significant amount of energy compared to the baseline controller. Here, the
solar irradiation is the significant disturbance working against the control input, and the
window surface area is the same for both bedrooms, which means that relaxed comfort
constraints can be exploited in both bedrooms.

When the HDSD and CDSD input data of the entire 2.5 years of measurement data is
applied as an input to the linear regression models10 in Figure 4.7, the MPC controllers
on average save 33% and 26% of heating energy in bedrooms 1 and 2 respectively, and
32% and 49% of cooling energy in bedrooms 1 and 2 respectively compared to the baseline
controller. Note that, given the deviations of the individual experiments from the regres-
sions in Figure 4.7, this is only a rough estimate. However, it demonstrates that MPC
generally saves a significant amount of heating and cooling energy in our experiments,
without a significant difference in room temperatures or constraint violations.

4.5.4 Computational performance

Table 4.1 summarises the computational requirements for the MPC controllers tested
with the different models of this chapter on a single optimization with fixed initial con-
ditions and disturbance forecasts. The optimization problems were solved on an Intel(R)
Core(TM) i7-7500U CPU with 2.7 GHz, and 16 GB of memory. The analysis is done for
N=6h, R=1, Q=0, λ=100.

It can be seen that the ARMAX controller outperforms the other two in terms of
solving time and memory usage. While the RF problem is also a QP, the solving time
is longer because the parameters for the optimization problem need to be found from
the forest on the basis of the non-controllable inputs Xd first. The PICNN has a longer
solving time as the optimization problem is more difficult to solve. This is because, even
though the problem is convex (without the presence of lower comfort constraints), we do
not have access to analytical gradients and the solver has to numerically approximate
them. FICNN show similar results. The memory requirements grow with the complexity
of the models. While all solving times are acceptable for the considered residential
building case, it is to be expected that RF and ARMAX controllers scale better due to
their linear dynamics, which could be beneficial for larger scale buildings, or the reserve
application discussed in Chapter 5. We note that all models and solvers are based on
open-source libraries, which are not optimized for our specific purpose.

10This corresponds to a situation where either the baseline controller or the MPC would have been
run for the entire duration of 2.5 years.
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Table 4.1: Computational resources for MPC controllers with varying models.

Model Solving time Memory usage Software (Python 3)
ARMAX 0.2 s 36 MB Scikit-learn, CVXOPT
RF 1.5 s 68 MB Scikit-learn, CVXOPT
PICNN 3.0 s 158 MB Keras, SciPy
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Figure 4.8: Mean Squared Error for 1-hour open loop prediction with ICNN (blue), RF
(orange) and ARMAX (green) models. The solid lines depict the median achieved MSE,
and the shaded areas depict the 16% and 84% percentiles.

4.6 Numerical case study

Our experiments have shown that MPC with all the considered models is generally
suitable for building control in practice. However, to minimize costs and time of com-
missioning, the amount of historical measurement data required to train the model is a
considerable factor for choosing a model for MPC. To address this point, we compare
here the sample efficiency of the ARMAX, RF and ICNN models.

For this, the training data from 2018-05-23 to 2019-05-28 for bedroom 1 is divided
into weekly folds and a k-fold cross validation is performed, where a randomly selected
subset of the data is used for training and the rest is used for model validation in terms
of the mean squared error (MSE) for a one-hour open loop prediction. The numerical
experiment is repeated 100 times to account for different training and validation data.
Figure 4.8 shows the result for a PICNN, RF (both tuned for this particular bedroom),
and an ARMAX model with three lag terms11 using a positivity constraint on the ele-

11Our validation experiments suggest that including more than three lag terms does not improve the
accuracy of the predictions of the ARMAX model in this case.
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Figure 4.9: Mean Squared Error for 1-hour open loop prediction with ARMAX model
and varying control inputs. The solid lines depict the median achieved MSE, and the
corresponding coloured shadows depict the 16% and 84% percentiles.

ments of Θ in (4.20). We do not show results of FICNN as they are very similar to those
of PICNN. All models use ˜̇Qact,i (Equation (4.21)) as the control input.

It can be seen that the ICNN performs poorly for a single week and two weeks of
training data, and significantly improves after four weeks. This is most likely due to the
large number of parameters that need to be fitted. In contrast, the RF already performs
relatively well for a single week of training data but does not improve much when more
training data is available. The good performance for a small training data set is due
to the automatic scaling of RF through the minimum number of samples per leaf. The
median of the ARMAX model outperforms both the ICNN and RF models for all sizes
of training data. This could be expected for small training data sets as the physical
priors lead to strong regularization. However, it can also be seen that the ICNN and
RF models converge to the same median MSE and similar variance, while the ARMAX
model’s median converges to a much lower MSE and less variance. This indicates that
using physical model inputs gives the ARMAX model domain knowledge that the ML
models cannot find by themselves (for example the solar irradiation through windows
as a function of time and global solar irradiation), even if abundant training data is
available.

The higher variance of the prediction error of the ARMAX model for low-sized train-
ing sets, compared to the RF model, is most likely an effect of the one-hot encoding of
Ivert(t) (the vertical solar irradiation): for small training sets it can happen that the set
does not include samples from the summer, which means that Ivert,1 and Ivert,τ are always
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zero in the training set because the sun rises late and sets early12. Accurate coefficients
can therefore not be found during training. If samples from the summer are included in
the validation set, this leads to large prediction errors. For real applications, the issue
is likely less pronounced, if the models are updated regularly. The issue could also be
addressed through further regularization, e.g. with the Lasso method (Tibshirani, 1996).

For practical implementations of data-driven MPC, it is important to know which
quantities need to be measured in a building. We therefore compare ARMAX models
with various choices for the control input, as described in Section 4.3.3, in Figure 4.9.
The first model (blue) uses the considered true energy input ˜̇Qact (Equation (4.21)),
the second one (orange) only uses the valve opening b (Equation (4.15)), and the third
one (green) uses the approximation via valve opening, supply temperature Tsup and
a previously measured room temperature T̄ (Equation (4.16)). The last model (red)
additionally constrains all regression coefficients Θ in (4.20) to be non-negative. The first
three models perform similarly well, which indicates that using just the valve opening
to model the control input could be sufficient in practical cases - an observation that
is also supported by our experiments. Measuring mass flows and supply temperatures
gives no visible performance advantage, which simplifies practical implementation. The
red result in Figure 4.9 demonstrates that the positivity constraint on Θ significantly
benefits the sample efficiency. This is especially important for practical implementation,
as it reduces controller commissioning time. The model variance and the median MSE
are also reduced.

4.7 Conclusion

In this chapter, we have compared physics-informed ARMAX models to Machine Learn-
ing models based on RF and ICNN in the domain of MPC for building climate control
in experiments and in numerical case studies.

It was shown that MPC with all three models, RF, ICNN and ARMAX, generally
delivers good control performance. Moreover, in all heating and cooling cases, MPC
achieves significant energy savings compared to the baseline controllers. Our results also
suggest that the physics-informed ARMAX models outperform the RF and ICNN models
in terms of online computational requirements and offline training sample efficiency,
which means that good models can be extracted from less data. The latter finding
suggests that the physics-based inputs and constraints give the model an information
prior, which cannot be found by the ML methods themselves, even if abundant training
data is available. The increased expressiveness of ML-based models therefore does not
seem to add any benefits in this case.

12In our implementation Ivert,0 covers the night-time, therefore Ivert,τ (late evening) and Ivert,1 (early
morning) may or may not be non-zero depending on the season.
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Considering the larger scope of this thesis, this result is interesting when compared to
the prediction results of the demand forecasting models of Chapter 2, where even the un-
corrected Machine Learning methods outperformed the resistor-capacitor models (which
effectively also impose a physical prior on the model). The difference in performance
could be explained with the fact that the demand forecasting methods have to predict
the closed-loop behaviour of the considered system, which is, although dominated by
the dynamics of the considered buildings and their ambient conditions, also dependent
on the underlying specific controller behaviour. Depending on the controller type, this
behaviour can also be time dependent for example and ML methods appear to be more
suitable to capture it.

For modeling building dynamics, the next logical step is to apply the physics-informed
inputs to the ML methods and to find ways to enforce physics-based constraints with
ICNN and RF. Physics-informed ML methods could potentially be interesting as soon
as non-linearities are added directly to the control problem, instead of being treated on
a lower control level. Moreover, experiments with the physics-informed ARMAX models
should be conducted on large-scale buildings. This is currently under investigation with
an industry partner.

Data Availability

The data presented in this chapter, and data from additional experiments is available
under the DOI https://doi.org/10.3929/ethz-b-000496285.
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CHAPTER 5
Combining electric reserves with data-driven

building control

As discussed in Chapter 3, district heating and cooling systems, supplied by large-scale
heat pumps and chillers, and their connected buildings are candidates for providing
electrical reserves to the electricity grid. In Chapter 3, we have presented a method
to offer electrical reserves with such systems without the need of exploiting the thermal
inertia of the connected buildings. This is necessary if buildings do not want to or cannot
participate in the scheme, for example due to privacy concerns or hardware limitations.
Other buildings, however, might be keen and able to participate, and could potentially
increase the reserves offered by allowing their thermal inertia to be exploited. The
methods for data-driven modeling of building thermal dynamics presented in Chapter 4
can be used to integrate them into the reserve provision scheme.

In this chapter, we therefore present a central control scheme based on Robust Model
Predictive Control (MPC) with affine policies to offer frequency reserves with a district
system, where we exploit the thermal inertia of buffer storage tanks and a subset of the
connected buildings. We leverage the data-driven model generation methods of Chapter
4 to overcome the problem of physics-based building modeling being tedious because of
each building being individual. In a numerical case study based on one-year historical
data of a real system, we compare the approach to the configuration of Chapter 3, where
only the buffer storage is used for flexibility. We demonstrate that the reserves offered are
increased substantially if the inertia of a subset of the connected buildings is exploited
too. Furthermore, we validate the control approach in a first-of-its-kind experiment on
the actual system, where we show that while reserves are offered by the district system,
the comfort in the connected buildings is maintained at all times.

5.1 Introduction

Buildings with electrified heating and cooling systems are potential candidates for pro-
viding electrical reserves on the demand side because their thermal inertia allows loads
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to be shifted in time (Junker et al., 2018; Kathirgamanathan et al., 2020; Tang and
Wang, 2021). However, due to minimum capacity requirements, individual buildings are
often not allowed to participate in reserve programs. Instead, their loads have to be
aggregated (Alahäivälä et al., 2017; Oldewurtel et al., 2013; Geidl et al., 2017). Besides
aggregating individual buildings, entire district heating and cooling systems could poten-
tially be used to provide reserves, if heating or cooling is supplied with large-scale heat
pumps (Lygnerud et al., 2021; Harild Rasmussen et al., 2021), as discussed in Chapter
3. This possibility is facilitated by the trend towards low-temperature heating and high-
temperature cooling networks (Wirtz et al., 2020; Lund et al., 2021) as these allow heat
pumps to be operated at higher coefficients of performance, making them a cost-effective
alternative to boilers or combined heat and power units. While some authors discuss
the general potential of offering electrical reserves with electric district heating systems
(Lund et al., 2018), others develop methods to estimate this potential for concrete cases
(Xu et al., 2020). There are also efforts to develop dynamical models for individual com-
ponents of such systems, to simulate their operation (Pagh Nielsen and Sørensen, 2021).
However, according to reviews (Hennessy et al., 2019; Vandermeulen et al., 2018), there
is a lack of studies investigating the control of such configurations, both in simulation
and in application.

In Chapter 3, we have presented and validated a control approach to offer reserves
on the day-ahead frequency regulation market with a heat pump serving a small district
heating system. The Robust MPC exploits the thermal inertia of a buffer storage tank
and increases the reserves offered by using affine policies on the uncertainty introduced
by the frequency regulation signal and other disturbances. The connected apartments
were only treated as a disturbance to the buffer and are not included in the dynamics of
the optimization problem. This configuration addresses the situation where connected
buildings cannot or do not want to participate in the reserve scheme, for example due
to missing infrastructure or privacy concerns.

In addition, this choice was made because compared to easy to obtain building heat-
ing demand forecasts (Zhao and Magoulès, 2012; Wang and Srinivasan, 2017; Foucquier
et al., 2013; Suganthi and Samuel, 2012; Cholewa et al., 2021), modeling building dy-
namics from first principles is considered to be tedious and cost-prohibitive for industrial
application because buildings are individual (Sturzenegger et al., 2016). However, in
Chapter 4 we have shown that even simple models based on physics-constrained linear
regression are suitable for predictive control of building thermal dynamics.

5.1.1 Contribution

In this chapter, we therefore present an extended control scheme that leverages these
models to offer frequency reserves with a district heating and cooling network supplied
by a central heat pump, which exploits both the thermal inertia of buffer storage tanks
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and of a subset of the buildings connected to the district system. By controlling a
subset of the buildings, we seek to increase the reserves compared to the case where only
the thermal flexibility of a buffer storage is used. This configuration has relevance for
practical applications as it resembles the situation where a subset of customers connected
to the district heating/cooling system is willing to give control authority to the district
heating/cooling provider, while others are not. The presented control scheme is a two-
level Robust MPC scheme1 that uses affine policies to reduce the effect of uncertain
disturbances. The controlled buildings are modeled with a data-driven approach based
on positive linear regression (as discussed in Chapter 4), the heating demand of the other
connected buildings is forecast (as discussed in Chapter 2), while the heat pump and
storage tanks are modeled based on physics. The approach is applied in a numerical
case study based on measurement data spanning one year of the NEST demonstrator
(Richner et al., 2017). We show that by exploiting the thermal inertia of a subset of
connected buildings, the operational costs can be lowered and the reserves offered can be
increased by a factor of 2.7 compared to the case where only the thermal inertia of the
buffer storage is used. In a first-of-its kind experiment on the actual district heating and
cooling system with connected apartments and office units, it is shown that the control
scheme is viable for practical applications, i.e. reserves are offered while the comfort is
maintained in all connected buildings.

5.1.2 Structure

The remainder of the chapter is structured as follows. In Section 5.2, we present the
reserve provision scheme, the system under consideration, and the architecture of the
control scheme. In Section 5.3, we first discuss the models that describe the energy system
and then present Levels 1 and 2 of the Robust MPC control scheme. In Section 5.4, we
present the considered case study and demonstrate the potential of the control approach
in a numerical case study on the basis of one year of historical measurement data.
In Section 5.5, we show the validation of the control scheme in an experiment on the
demonstrator and discuss the results. In Section 5.6, we discuss some limitations of the
study and we conclude the chapter in Section 5.7.

1Compared to Chapter 3, we only treat the first two control layers here, as the lower level controllers
for heat pumps and buildings have been discussed in Chapters 3 and 4.
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5.2 Problem statement

5.2.1 Reserve provision scheme

The considered day-ahead frequency regulation scheme has been presented in Chapter
3, but we revisit it here for convenience. It is inspired by the RegD product of PJM
(Pennsylvania, New Jersey, and Maryland), a transmission system operator in the U.S..
The reserve provider, i.e. the district heating/cooling operator in this case, sends an offer
of non-negative reserves to the TSO at the beginning of the day. The offer is divided in
intervals of 15-minutes for the next 24 hours, thus r ∈ R96

+ . When the offered reserves
are due on the following day, the reserve provider is allowed to adapt their electric base
load u0

el,k every 15 minutes, i.e. every time step k. The heat pump should then track the
electric load

uel,k(τ) = u0
el,k + w(τ)rk, (5.1)

where rk is the kth element of the vector of reserves offered r, and the regulation signal
w(τ) ∈ [−1, 1] is updated by the TSO every 2 seconds. Note that the offered reserves
are effectively symmetric because w(τ) varies between -1 and 1. The base load u0

el,k can
be changed by the reserves provider every 15 minutes, rk is fixed at the beginning of the
day, but time varying in 15 minute intervals, and w(τ) updates every 2 seconds. As a
result, uel,k(τ) is also updated every 2 seconds.

5.2.2 System under consideration
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Figure 5.1: Schematic of the system under consideration with heat pump, warm and
cold water storage tanks, controlled and uncontrolled buildings with heat exchangers for
heating and cooling, and a borehole field for seasonal storage.

The system under consideration, shown in Figure 5.1, is a small district heating and
cooling system which is supplied by a central large-scale heat pump. On the evaporator
side, the heat pump is connected to a cold thermal storage tank, and on the condenser
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side to a warm thermal storage tank. To cover peak demands, the system is connected
to an external heating and cooling grid via heat exchangers behind the condenser and
evaporator respectively. Individual buildings and apartments draw water from either
one of the storage tanks to serve their heating or cooling demand. We consider buildings
that are controllable by the central system operator (yellow) and buildings that are
uncontrollable2 (blue), i.e. they are controlled individually by their own control system
considered unknown to the system operator. Note, that we have only depicted one
controlled and one uncontrolled building here for clarity, but there can be many. As the
heating and cooling demand of the entire system rarely match each other, excess heating
or cooling energy is stored in a borehole field for seasonal storage3.

5.2.3 Control scheme

Level 1
Optimization

1/day

Level 2
MPC

1/(15min)
Heat pump

TSO

r

u0
el,κ

w(τ),rκ

, xc,κ,0

vh,κ
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buildings

/xh,κ,0

ub,h,κ /ub,c,κ

xb,κ,0

/vc,κ

dκ

+

+

Peak

heating/cooling

up,h,κ /up,c,κ

Storage

Figure 5.2: Hierarchical control scheme with two control Levels.

The presented two-level control scheme, as shown in Figure 5.2, is adapted from
(Bünning et al., 2020d; Vrettos et al., 2018b) and Chapter 3. Here, we extend it to
include the dynamics of buildings connected to the district heating/cooling system. Level
1 is a robust optimization problem which is solved at the beginning of the day with the
purpose to communicate the reserves offered r for the following 24 hours to the TSO.
It tries to maximize the reserves, while minimizing the costs for electricity and peak
heating/cooling, maintaining sufficient temperature levels in the storage tanks to serve
the uncontrolled buildings, and respecting comfort constraints of the controlled buildings.
The optimization problem is formulated on the basis of models of the heat pump, storage

2Note that controllable and uncontrollable do not refer to the system-theoretic attributes here, but
are rather a description of whether the central controller can actively control the considered buildings.

3There is a separate heat exchanger that decouples the shown water-based system and the borehole
glycol cycle that is not shown in the Figure.
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tanks, and controlled buildings. As inputs, it takes the initial states of the cold and warm
storage tanks, xc,κ,0 and xh,κ,0 respectively, initial states of the controlled buildings xb,κ,0,
forecasts for the heating and cooling demand of the uncontrolled buildings, vh,κ and vc,κ,
and forecasts of the disturbances to the controlled buildings dκ. Note that, compared to
k, introduced in (5.1), which describes the k-th element in a vector, κ denotes the time
of optimization (which is also discretized in 15-minute time steps).

Level 2 is a receding horizon MPC controller based on the same optimization prob-
lem as Level 1 with the purpose of re-optimizing the heat pump base load (u0

el,κ), the
peak heating and cooling (up,h,κ and up,c,κ), and heating/cooling control inputs to the
controlled buildings (ub,h,κ and ub,c,κ) on the basis of updated disturbance forecasts and
initial conditions. The reserves r of the current day are not decision variables in Level
2, as they have been fixed by Level 1.

For the heat pump, the peak heating and cooling heat exchangers, and the controlled
buildings, we assume that lower-level controllers are in place, which track the desired set
points with reasonable performance. Such controllers are discussed in Chapters 3 and 4,
and are out of scope of this chapter.

5.3 Methodology

5.3.1 Modeling

For the optimization problems in the controller Levels 1 and 2, models of the considered
system components are needed. These are discussed on the following.

Component models

For the storage tanks, we neglect thermal losses, because they happen on a much longer
time scale and are small compared to charging and discharging by the heat pump and
the buildings. Also the mass and heat capacity of the storage container itself are not
modeled, because they are small compared to those of the water stored. The stored
energy of the hot storage tank in continuous time can then be described in terms of its
average temperature xh(t) with

mh cp,h
dxh(t)

dt
= uHP,h(t) + up,h(t)− ub,h(t)− vb,h(t) + δh(t), (5.2)

where mh and cp,h denote the mass and specific heat capacity of the water, uHP,h(t) and
up,h(t) denote the heat supplied by the heat pump and the peak heat source respectively,
and ub,h(t) and vb,h(t) are the sums of the heating demand of the controlled and uncon-
trolled buildings respectively. The uncertainty with respect to the heating demand of the
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uncontrolled buildings is denoted by δh(t), which will be modeled as a box-constrained
uncertainty set in the robust controller. Note that we have shown in Chapter 3, that
modeling the average temperature is sufficient for this control task and a stratified tank
model is not required. Moreover, errors induced by this simplification can be captured
by δh(t). A model for the cold storage tank can be expressed accordingly with

mc cp,c
dxc(t)

dt
= −uHP,c(t)− up,c(t) + ub,c(t) + vb,c(t) + δc(t), (5.3)

where the type of variables are identical to the ones in (5.2), but describe the cooling
case. Note that all variables are considered to be positive and the direction of energy
transfer is encoded in the signs.

The heating output of the heat pump can be described by the energy balance

uHP,h(t) = uHP,c(t) + uHP,el(t) + ẽ(t) = COPh uHP,el(t) + e(t), (5.4)

where COPh is the heating coefficient of performance, uHP,el(t) is the electrical power
consumption, and uHP,c(t) is the cooling power. As discussed in Chapter 3, the COP is
modeled as a constant. The error term e(t) can capture the resulting modeling error and
potential additional thermal disturbances. It will also be modeled as a box-constrained
uncertainty set in the controller. After rearranging (5.4), the cooling output of the heat
pump can be described in terms of the electrical power by

uHP,c(t) = (COPh − 1) uHP,el(t) + e(t). (5.5)

To actively integrate the controlled buildings in the control scheme and to exploit
their thermal inertia for reserves, models of their thermal dynamics are needed. The
continuous time temperature of room j in a controlled building i can be described by

mb,i,j cp,b,i,j
dxb,i,j(t)

dt
= αamb,i,j (damb(t)− xb,i,j(t))

+
∑
n∈Nj

αn,i,j (xn,i,j(t)− xb,i,j(t))

+ ub,h,i,j(t) + ub,c,i,j(t)

+ dsol(t) + γi,j(t),

(5.6)

where mb,i,j and cp,b,i,j denote mass and specific heat capacity of the room respectively,
αamb,i,j and damb are the heat transfer coefficient with the ambient and the ambient tem-
perature respectively, n ∈ Nj denotes the neighboring rooms of room j, αn,i,j and xn,i,j
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are the heat transfer coefficient and the temperature of a neighboring room respectively,
ub,h,i,j and uc,h,i,j are heating and cooling control inputs, dsol(t) are heat gains from solar
irradiation and γi,j(t) is the model error.

Whole system model

As all presented models are linear, they can be rearranged, discretized in time and written
as a discrete time linear state space system of the form xk+1 = Ãxk + B̃uk (Borrelli
et al., 2017). After stacking the discretized variables along the prediction horizon N

in vectors RN , for example by defining the trajectory of the warm temperature storage
as xh := [xh,1, ..., xh,N ]> ∈ RN and the heating output of the heat pump as uHP,h :=

[uHP,h,1, ..., uHP,h,N ]> ∈ RN , we can describe the state evolution of all system components
in terms of the initial state conditions, inputs and disturbances as

xh = Ahxh,0 +Bh(uHP,h + up,h − ub,h − vb,h + δh) (5.7a)

uHP,h = (COPh) uHP,el + e, (5.7b)

xc = Acxc,0 +Bc(−uHP,c − up,c + ub,c + vb,c + δc) (5.7c)

uHP,c = (COPh − 1) uHP,el + e, (5.7d)

xb,i = Ab,ixb,0 +Bb,u,i(ub,h,i − uc,h,i) +Bb,d,id+ γi, ∀i ∈ B, (5.7e)

ub,h =
∑
i∈B

ub,h,i, (5.7f)

uc,h =
∑
i∈B

uc,h,i, (5.7g)

with the matrices A and B defined appropriately. Here, (5.7a) describes the state evolu-
tion of the warm temperature storage, with ub,h denoting the sum of all heating inputs
of the controlled buildings i in the set of buildings B, as described in (5.7f). Accordingly,
Equation (5.7c) describes the cold storage temperature evolution, with the cooling power
of the controlled buildings described by (5.7g). Equations (5.7b) and (5.7d) describe the
heating and cooling power of the heat pump. Equation (5.7e) denotes the temperature
evolution in the controlled buildings, where xb,i is a stacked vector of the room temper-
ature trajectories of building i. Accordingly, ub,h,i and uc,h,i are stacked vectors of the
heating and cooling inputs to the individual rooms, and d comprises the disturbances
dsol and damb.
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Model parameterization

As repeatedly discussed in this thesis, modeling buildings from first principles is te-
dious because each building is individual. However, in Chapter 4 we have demonstrated
in experiments, that linear ARMAX models with physics-based inputs and constraints
on the model coefficients are sufficient for predictive temperature control in buildings.
These models can be generated directly from measurement data obtained under standard
building operation, for example with hysteresis temperature control.

By treating the discretized version of (5.6) as an input-output model with one lag
term, model output xb,i,j,k+1, and model inputs xb,i,j,k, damb,k, xn,i,j,k, ub,h,i,j,k, dsol,k, we
can identify the coefficients that multiply the model inputs with the method presented
in Chapter 4 and construct the matrices Ab,i, Bb,u,i and Bb,d,i for model (5.7e). Here, the
disturbance dsol,k comprises the one-hot encoding of the solar irradiation as described in
Chapter 4.

As (5.2)-(5.5) (and (5.7a)-(5.7d)) describe commercially available equipment, they
can be parameterized efficiently based on physics and manufacturer data.

5.3.2 Controller design

In the following, we will explain the design of the two-level controller and the integration
of the models developed above.

Heating and cooling mode

The heating and cooling power of a heat pump are directly coupled through (5.4). The
heat pump can, therefore, either be operated heating-driven or cooling-driven, which
either leads to excess cooling power or excess heating power respectively. For the con-
sidered system, this means that the desired temperature constraints in the storage tanks
cannot be guaranteed at the same time: if the connected buildings require significantly
more heating than cooling, the temperature in the cold storage tank will drop as a con-
sequence and vice versa. The excess cooling or heating energy is stored in the borehole
field.4

For the presented controller, we therefore define a heating and a cooling mode: At
the beginning of the day, when controller Level 1 is executed, we compute based on
the heating and cooling demand forecasts vb,h and vb,c, and Equations (5.4) and (5.5),

4Note, that the borehole field is not specifically taken into account in this study for two reasons.
First, under normal operating conditions of the considered demonstrator system, it is not considered
either. A potential mismatch between charging and discharging is accepted at the cost of a sub-optimal
borehole field temperature. Second, seasonal storage management requires different modeling techniques
which are out of scope of this study. The interested reader is referred to (Flamm et al., 2021).
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whether the sum of electrical energy for the day required to supply heating is larger than
the one required to supply cooling. If yes, the controller is run in heating mode and the
cold thermal storage is not considered in the controller (as we can then assume that it
will always be sufficiently cold), if no, the controller is run in cooling mode.5

Level 1 controller

The purpose of Level 1 is to optimize the offered reserves for the next 24 hours and
to communicate them to the TSO. For this, we define an optimization problem that
minimizes the cost of operation of the system while maintaining a sufficient tempera-
ture in the storage tank to meet the demand of the uncontrolled buildings, and while
maintaining the comfort constraints in the controlled buildings. For the sake of space,
we only discuss the heating case. The cooling case works accordingly by exchanging the
dynamics for the heat pump and storage. The optimization problem is defined as

min
r,xh,u

0
HP,el,

uHP,h,εh,z
xb,i,ub,h,i,uc,h,i,
ub,h,uc,h,εb,i

f el>u0
HP,el − f r

>r + fp>up,h + λh>εh + λb>εb (5.8a)

subject to xh = Ahxh,0 +Bh (uHP,h + up,h − ub,h − vb,h + δh) , (5.8b)

uHP,h = COPh
(
u0

HP,el + w̄ � r
)

+ e, (5.8c)

Xh,min − εh ≤ xh ≤ Xh,max + εh, (5.8d)

zUHP,min ≤ u0
HP,el + w � r ≤ zUHP,max, (5.8e)

z̃Rmin ≤ r ≤ z̃Rmax, (5.8f)

z, z̃ ∈ ZN2 , (5.8g)

εh ≥ 0, (5.8h)

xb,i = Ab,ixb,0 +Bb,u,i(ub,h,i − uc,h,i) +Bb,d,id+ γi, (5.8i)

ub,h =
∑
i∈B

ub,h,i, (5.8j)

uc,h =
∑
i∈B

uc,h,i, (5.8k)

Xb,i,min − εb,i ≤ xb,i ≤ Xb,i,max + εb,i, (5.8l)

εb,i ≥ 0, (5.8m)

Ub,h,i,min ≤ ub,h,i ≤ Ub,h,i,max, (5.8n)

Ub,c,i,min ≤ ub,c,i ≤ Ub,c,i,max, (5.8o)

5A common strategy in practical applications is to set heating or cooling modes based on the ambient
temperature. However, this is less exact than our method.

116



5.3 Methodology

∀i ∈ B, (5.8p)

∀w ∈ W,∀w̄ ∈ W̄ , ∀δh ∈ ∆h,∀e ∈ E,∀γi ∈ Γi. (5.8q)

Here, f el, fp, λh and λb denote the costs for electricity consumption, peak heating
(through the external heating grid), temperature constraint violations in the storage
tank, and temperature constraint violations in the controlled buildings respectively. The
benefits for reserves offered are denoted by f r.

Equations (5.8b)-(5.8h) describe the constraints directly related to the heat pump
and water storage. Equation (5.8b) defines the dynamics of the storage, as described
in (5.7a), and (5.8c) describes the dynamics of the heat pump with the reserve tracking
signal (5.1) inserted for uHP,el. The symbol � denotes the operator for element-wise
multiplication. Note that the regulation signal w(τ) is updated every 2 seconds and takes
values in the interval [-1, 1]. However, the decision variables in (5.8) refer to quantities
that are updated every 15 minutes. Therefore, to meet the robust temperature constraint
of the storage tank (5.8d), the average value of w(τ) over a 15 minute interval, denoted
by w̄, is used in (5.8c) because it is more descriptive than the instantaneous value. The
temperature limits of the storage tank Xw,min and Xw,max in (5.8d) are defined by the
lowest possible operating temperature to supply heating to the connected buildings, and
the highest desirable supply temperature of the heat pump. The slack variable εh ensures
feasibility of this constraint. Constraint (5.8e) defines the operational limits of the heat
pump, with UHP,min and UHP,min being the lower and higher capacity limit respectively.
Here, w is used instead if w̄, because the operational constraint has to be maintained
for all realizations of the regulation signal, not just for the average. The binary variable
z is introduced to allow an on-off condition while also having the lower capacity limit.
As close-to zero offered reserves can lead to bad tracking performance (Bünning et al.,
2020c), (5.8f) also implements limits on the offered reserves, with Rmin and Rmax denoting
the lower and upper limit respectively, and z̃ being a binary that allows r to attain zero.

Equations (5.8i)-(5.8p) describe constraints and qualifiers directly related to the con-
trolled buildings. Constraints (5.8i)-(5.8k) define the dynamics of the buildings as defined
in (5.7e)-(5.7g). The comfort constraints are defined in (5.8l) with Xb,i,min and Xb,i,max

denoting lower and upper comfort constraints respectively and εb,i being a slack vari-
able to ensure feasibility. Input constraints for heating and cooling energy are defined
in (5.8n)-(5.8o), with Ub,h,i,min and Ub,h,i,max denoting lower and upper bounds for the
heating inputs respectively, and Ub,c,i,min and Ub,c,i,max denoting the limits for cooling.

The presented constraints have to hold for all uncertainty realizations, introduced
by the regulation signal w, thermal disturbances in the heat pump e, uncertainty in the
demand prediction δh and modeling error of the controlled buildings γi, as defined in the
qualifier (5.8q).
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As discussed in Chapter 3, one drawback of the method is that, the effect of the
uncertainties on the states xh and xb,i compound along the prediction horizon through
the integrators implicit in (5.8b) and (5.8i). As explained in Chapter 3, here, we therefore
also introduce affine policies on uncertain variables in the form of matrices D, which
change the optimization problem to

min
r,xh,u

0
HP,el,

uHP,h,εh,z
xb,i,ub,h,i,uc,h,i,
ub,h,uc,h,εb,i,D

f el>u0
HP,el − f r

>r + fp>up,h + λh>εh + λb>εb (5.9a)

subject to xh = Ahxh,0 +Bh (uHP,h + up,h − ub,h − vb,h + δh) , (5.9b)

uHP,h = COPh
(
u0

HP,el + w̄ � r +Dw,HPw̄ +Dδhe,HP(δh + e)

+
∑
i∈B

Dγi,HP γi) + e, (5.9c)

Xh,min − εh ≤ xh ≤ Xh,max + εh, (5.9d)

zUHP,min ≤ u0
HP,el + w � r +Dw,HPw̄ +Dδhe,HP(δh + e)

+
∑
i∈B

Dγi,HPγi ≤ zUHP,max, (5.9e)

z̃Rmin ≤ r ≤ z̃Rmax, (5.9f)

z, z̃ ∈ ZN2 , (5.9g)

εh ≥ 0, (5.9h)

xb,i = Ab,ixb,0 +Bb,u,i (ub,h,i − uc,h,i + (Dw,b,h,i −Dw,b,c,i)w̄

+ (Dδhe,b,h,i −Dδhe,b,c,i)(δh + e) + (Dγ,b,h,i −Dγ,b,c,i) γi)

+Bb,d,id+ γi, (5.9i)

ub,h =
∑
i∈B

(ub,h,i +Dw,b,h,iw̄ +Dδhe,b,h,i(δh + e) +Dγ,b,h,iγi) , (5.9j)

ub,c =
∑
i∈B

(ub,c,i +Dw,b,c,iw̄ +Dδhe,b,c,i(δh + e) +Dγ,b,c,iγi) , (5.9k)

Xb,i,min − εb,i ≤ xb,i ≤ Xb,i,max + εb,i, (5.9l)

εb,i ≥ 0, (5.9m)

Ub,h,i,min ≤ ub,h,i +Dw,b,h,iw̄ +Dδhe,b,h,i(δh + e)

+Dγ,b,h,iγi ≤ Ub,h,i,max, (5.9n)

Ub,c,i,min ≤ ub,h,i +Dw,b,c,iw̄ +Dδhe,b,c,i(δh + e)

+Dγ,b,c,iγi ≤ Ub,c,i,max, (5.9o)

∀i ∈ B, (5.9p)
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∀w ∈ W,∀w̄ ∈ W̄ , ∀δh ∈ ∆h,∀e ∈ E,∀γi ∈ Γi. (5.9q)

In (5.9a), D denotes all affine policies defined in the constraints (5.9b)-(5.9o). As dis-
cussed in Chapter 3, the D matrices are constrained to be causal, i.e. strictly lower
triangular, such that the controller can only implement feedback policies on past un-
certainty realizations with respect to the considered time step, but not to future ones.
In addition to the dynamics of the storage tank and the temperature of the controlled
buildings, also the capacity constraints for the heat pump and the input constraints
of the buildings have to hold for the introduced policies. Note, that in principle, each
controlled building could also react to the disturbance realization observed in the other
buildings. For simplicity of notation we are neglecting this possibility and just show
policies where each building only reacts to their own disturbance realizations.

As in Chapter 3, the uncertainty setsW , W̄ , ∆h, E, and Γi generally allow any convex
sets. For box-constrained sets, problem (5.9) can be reformulated as a Mixed Integer
Linear Program. Many modern optimization tools (Löfberg, 2004; Goh and Sim, 2011)
perform this reformulation automatically, for example through explicit maximization
Löfberg (2012).

The final optimization scheme used for controller Level 1 is (5.9). (Problem (5.8) was
presented to ease following the modeling process.)

Level 2 controller

Level 2 is a receding horizon MPC scheme. Its purpose is to update the control inputs
of the controlled buildings, as well as the heat pump base load u0

HP,el on the basis of new
disturbance forecasts, which are updated every 15 minutes, and new measurements of
initial states (which implicitly also encode the uncertainty realizations). Level 2 uses the
same optimization problem as Level 1, i.e. (5.9). However, the offered reserves r have
been fixed by Level 1 for the whole day. This means that at optimization time κ, the
first N − κ elements of r are constrained to the values decided on by Level 1. The last
κ elements can be chosen by Level 2, or can be constrained to zero for example for the
sake of computational efficiency.

Note, that the scheme also works with a shrinking horizon in Level 2, as was shown
in Chapter 3. Compared to this, a receding horizon scheme where the not-fixed reserve
variables are padded with zeros has the advantage of not depleting the storage towards
the end of the day when the shrinking horizon becomes small. This is at the expense of
a slightly more complex6 optimization problem. However, the experiments in Chapter 3

6On the other hand, for the receding horizon approach the optimization problem compiling process
is considerably faster as only one optimization problem needs to be constructed, whereas N problems
need to be built for the shrinking horizon approach. As deriving the robust counterpart of Problem
(5.9) is computationally expensive, there is a trade-off between both approaches.
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Figure 5.3: DFAB HOUSE at NEST at Empa in Switzerland. Copyright: Roman Keller.

and this chapter show that both approaches are viable in practice.

5.4 Numerical case study and results

In Chapter 3, we have presented a reserve provision scheme which offers reserves in large
building energy systems or district heating systems, purely by exploiting the thermal
flexibility of buffer storage tanks. In this case study, we therefore investigate the added
potential from exploiting the thermal flexibility of a subset of the connected buildings
as presented in Section 5.3.

5.4.1 Configuration

The case study is conducted on the basis of historical data of one year (2019-06-24 to
2020-06-24) from the NEST demonstrator (Figure 2.2). We use the same heating system
configuration with the heat pump and warm storage tanks as described in Chapter 3.
However, in contrast to Chapter 3, we also consider the cooling system, which also
comprises two 1100 litre Matica water tanks, connected to the evaporator side of the
heat pump. The system resembles the configuration described in Figure 5.1.

As controlled buildings, we consider the units UMAR (Urban Mining and Recy-
cling)(Heisel and Rau-Oberhuber, 2020), depicted on the second floor of Figure 2.2, and
DFAB (Digital Fabrication and Living)(Graser et al., 2021), depicted in Figure 5.3. As
described in Chapter 4, UMAR is a two-bedroom apartment with a joint living and
kitchen area, a hallway and two bathrooms. Its heating and cooling system comprises
ceiling heating/cooling panels which behave similarly to conventional wall radiators.
DFAB is a three-story apartment comprising four bedrooms, a living and kitchen area
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Table 5.1: Parameters for controller Level 1 related to heat pump and storage.

N = 96, COPh = 3.53, Ãh, Ãc = 1,
λh = 20, COPh = 2.73, B̃h, B̃c = 0.0978 K

kW ,

f el = 1, W = [−1, 1], Xh,min = 28◦C,
fr = 1.5, W̄ = [−0.25, 0.25], Xh,max = 38◦C,
fp = 1, Umin = 8.2kW , Xc,min = 7◦C,
Rmin = 0.4kW , Umax = 12.8kW , Xc,max = 18◦C,
xh,0 = 33◦C xc,0 = 12.5◦C E ⊕∆h,c = [−4.0, 4.0] kW

and four bathrooms. It is heated and cooled by a floor heating/cooling system. All other
units of NEST, i.e. several residential apartments, office units, and a fitness center, are
considered uncontrollable.

In the numerical study, we only consider controller Level 1, as we intend to investigate
the reserves offered. The parameters for the controller are shown in Table 5.1. The cost-
function related parameters f el, f r and fp were chosen on the basis of the studies in
Chapter 3 to maintain comparability. They are not directly related to a specific local
energy product, but rather reflect the assumption that the benefits for offering reserves
are higher than the base price for electricity, and back-up heating/cooling being more
expensive (after considering the COP of the heat pump) than using the heat pump. The
penalty for using the storage slack variable is set to 20, such that it is only used in
case of inevitable infeasibility otherwise. The values for COPh, COPc, Umin, Umax and
Rmin were set based on preliminary heat pump experiments. Note that the simplified
relation COPc = COPh − 1 does not hold here due to thermal losses in the heat pump.
The bounds for W are defined by the regulation signal RegD by PJM and the averaged
uncertainty set W̄ is set by analyzing historical regulation signals, as described in (Vrettos
et al., 2018a). The storage properties Ãh, Ãc follow from the assumption of no thermal
losses, and B̃h, B̃c are set by calculating the heat capacity based on the specific heat
capacity of water and the tank volumes. The temperature constraints of the storage tanks
Xh,min, Xh,max, Xc,min, Xc,max are based on the operational constraints used in the building
to guarantee sufficient heating and cooling temperatures. The initial conditions of the
storage tanks are set to 33◦C and 12.5◦C, for the heating and cooling case respectively,
which is in the middle of their temperature range. The Minkowski sum E ⊕∆h,c, which
we use here because e and δh/c appear in the same way in (5.9), are based on the studies
in Chapter 3, and are a result of analyzing historical prediction errors of the heating
demand forecasts of Chapter 2, and measurements of the thermal output of the heat
pump. To increase the reliability of the heat pump, we also introduce an additional
constraint that requires zk to be constant during each thirty minute interval. The lower
reserve constraint Rmin is set to 0.4kW as lower reserves lead to large relative tracking
errors in preliminary experiments (Bünning et al., 2020c).

The models for UMAR and DFAB are parameterized based on historical measurement
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data and the method of physics-informed linear regression as presented in Chapter 4,
which has been validated in various experiments (Bünning et al., 2021a; Lefebure et al.,
2021). From these experiments, we also know that a deterministic MPC formulation
is suitable to maintain comfort in the units. The uncertainties related directly to the
controlled buildings, γi, are therefore set to zero; consequently also the related affine
policies disappear in (5.9). The heating and cooling input constraints are determined on
the basis of preliminary experiments and vary for each room and each building unit. The
initial temperature is set to 22.5◦C in all rooms, and the comfort constraints are 20◦C -
25◦C. The constraint violation penalty λb is set to 20 for all rooms in both buildings. All
disturbances, i.e. the heating demand of the uncontrolled buildings, ambient temperature
and solar irradiation are historical measurements from the building site.

For the implementation of the optimization problem, we use Matlab® with YALMIP
Löfberg (2012), which automatically derives robust counterparts. As all uncertain vari-
ables are box-constrained, the robust counterparts become MILPs, which we solve with
Gurobi® 9.0.3. The solver stops the optimization if the gap to the lower MIP bound is
less than 1% or if a time limit of 15 minutes is reached, in which case the best feasible
solution is taken as the result. To increase computational efficiency, the affine policies
are set to be equal between the rooms of each individual controlled building. Moreover,
the number of feedback steps in the policies is limited to 4 in the storage and 2 in the
units.

5.4.2 Results and discussion

In the case study, we compare the case where UMAR and DFAB are controllable buildings
in (5.9) to the case where the entire NEST building including UMAR and DFAB is
uncontrollable (as described in Chapter 3).

Figure 5.4 shows the results of the study. Subplot (a), depicts the mean daily heating
and cooling demand of the entire NEST building with UMAR and DFAB included. As
can be expected for a building in central Europe, the total heating demand is higher than
the cooling demand. The orange shading indicates whether Level 1 was set to heating
mode (orange) or cooling mode (no shading).

From subplot (b) it can be seen that the cost function7 is generally slightly lower for
the case where DFAB and UMAR are controlled (shown in green) to the case where the
entire building is uncontrolled (dashed black). The total cost reduction over the course
of the entire year is 8%. There are exceptions where the case with controlled units is
more expensive, for example on several days after 2020-04. In theory, the unit-controlled

7We do not consider the constraint violation terms here as they are different for the case with
controlled buildings and without controlled buildings. Moreover, in the case where the solver does not
find the global optimal solution, small constraint violations lead to large distortions in the cost function,
which makes comparison difficult.
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Figure 5.4: Results of the numerical case study. (a): Average daily heating demand of
entire NEST in orange, average daily cooling demand in dashed blue. Orange shaded
areas indicate that Level 1 runs in heating mode, otherwise cooling mode. (b): Cost
function without constraint violations taken into account for Level 1 considering DFAB
and UMAR as controllable (green) and uncontrollable (dashed black). (c): Daily sum
of offered reserves by Level 1 considering DFAB and UMAR as controllable (green) and
uncontrollable (dashed black). (d): Base daily electricity consumption of the heat pump
as planned by Level 1 considering DFAB and UMAR as controllable (green) and uncon-
trollable (dashed black). (e): Peak heating and cooling consumption as planned by Level 1
considering DFAB and UMAR as controllable (green) and uncontrollable (dashed black).
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case should always be less or at least equally expensive, because Level 1 should be able to
replicate the control action of the baseline hysteresis controllers implemented in UMAR
and DFAB. This solution should lead to the same cost as the uncontrolled case under
the assumption that there is no significant model mismatch.8 The higher costs could be
a result of the solver not finding the optimal solution within the time limit and using
the peak heater/cooler too much (see subplot (e)). Moreover, in some instances9 the
Level 1 controller also optimizing DFAB and UMAR could not find any solution. In this
case, we set the solution to be equal to the one obtained by Level 1 only optimizing the
storage tanks. We will further discuss this issue in Section 5.6.

As can be seen in subplot (c), the reserves offered are in total 2.7 times higher when
UMAR and DFAB are actively controlled by the reserve scheduling scheme. This is
remarkable as UMAR and DFAB only account for 7% of the total heating demand and
12% of the total cooling demand of NEST. The ratio of the offered reserves to the base
electricity consumption, shown in subplot (d), is increased from 2.8% in the case of no
unit control to 7.3% in the case where UMAR and DFAB are controlled. This increase
is not limited to specific periods but can be observed over the course of the whole year.
In the period after 2020-05 with low heating and cooling demands, the reserves offered
without unit control are close to zero, while in the case where UMAR and DFAB are
controlled, reserves are still being offered.

The total electricity consumption is 0.3% higher for the case where the units are
controlled by Level 1, which indicates that the heat pump does not need to be run at
considerably higher set points to offer the reserves. The backup heat exchangers are
used 16% less. This advantage mainly stems from the time period between 2019-12 and
2020-02, where the heating demand of all connected units is high. This result shows that
exploiting the thermal flexibility of the controlled buildings not only helps increasing
the offered electrical reserves, but can also decrease the need for peak power, which is
intuitive because the units can shift their demand to avoid peaks. This observation is
also interesting for the emerging research area of thermal reserves in district heating
systems supplied by volatile thermal renewable sources (Ilić, 2020; Vandermeulen et al.,
2018).

5.5 Experimental case study and results

To demonstrate the viability of the control approach and to investigate the controller be-
haviour, we have conducted an experiment in the heating case on the same demonstrator
system as described in Section 5.4.

8This should be the case as the models have been validated in experiment repeatedly (Bünning et al.,
2021a; Lefebure et al., 2021).

9In particular in 13% of the days, mostly occurring at very low heating and cooling demands.
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5.5.1 Configuration

The configuration generally follows the one presented in the previous Section 5.4, with
the exception that only DFAB is considered as a controllable building and the rest of
the NEST demonstrator is treated as uncontrollable. Moreover, also the peak heating
and cooling heat exchangers are not used10 and the lower room temperature limit is
set to 21◦C. To solve Levels 1 and 2 in real time, forecasts of the heating demand
of the uncontrolled building and the ambient conditions are necessary. The ambient
conditions are forecast by the national weather service MeteoSwiss and are updated
every twelve hours. The heating demand is forecast with the online-corrected Artificial
Neural Network (ANN) method presented in Chapter 2, which is updated every 15
minutes. The method uses as inputs the forecast ambient temperature, the hour of the
day (one hot encoded), the measured heating demand one day ago at the same time, the
measured heating demand one week ago at the same time, and a binary variable that
indicates whether it is a working or a non-working day. As a regulation signal, the RegD
signal by PJM from the 27th of January 2019 is used.11

Level 1 is executed 10 minutes before the beginning of the day, while Level 2 is repeat-
edly executed every 15 minutes, 5 minutes before the control inputs are implemented on
the system (time κ). Different optimization times are used as Level 1 is computationally
more heavy, because r is not fixed yet and as a consequence all binary variables are
open. Moreover, compared to Level 1, the prediction horizon of Level 2 is reduced from
24 hours to 12 hours.12 The best feasible solution found by the solver within the time
limit is implemented on the system. To estimate the initial states of the storage and
the controlled buildings, their states are measured at κ-15 minutes and κ-10 minutes for
Level 1, and κ-15 and κ-5 minutes for Level 2, and linearly extrapolated to time κ.

The optimization problems Level 1 and 2 are implemented in Matlab, as described
in Section 5.4, while the lower level controllers handling the communication with NEST
are implemented in Python 3 through an OPC-UA client (Leitner and Mahnke, 2006).
Data exchange between Matlab and Python is facilitated through shared csv files.

5.5.2 Results and discussion

Figure 5.5 shows the results of the experiment. From the heating demand, depicted in
dashed blue in Figure 5.5 (a), it can be seen that the experiment covers a wide range
of demands; from less than 20 kW, which is below the lower thermal capacity limit of

10In practice, these serve as backups operated by the fallback system, for the case when experiments
go wrong.

11As in Chapter 3, this choice is made for convenience, as the signal starts and ends with a value of
1 and is thus continuous when repeated.

12This has little effect on the optimality of the implemented control inputs, as the time constant of
both storage and units is considerably smaller than 12 hours.
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Figure 5.5: Results of the control experiment at NEST. (a): actual heating demand of
the building in dashed blue, initial forecast heating demand in Level 1 in orange, updated
forecasts every 15 minutes for Level 2 in grey, specifically mentioned forecast in red.
(b). Offered reserves in blue. (c): Average storage temperature in black, temperature
constraints in dotted black, temperatures of individual storage layers in transparent colors.
(d): Electrical power of heat pump in dashed blue, set point to be tracked in orange,
range of possible set points as a result of the reserves offered in dotted red. (e): Comfort
constraints for DFAB rooms in dotted black, room temperatures in different colors. (f):
Total heating demand of DFAB in blue.
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Figure 5.6: Room temperature examples from the units not directly controlled by the
controller. The office unit “Meet2Create” is shown in blue, a permanent meeting room
in orange, the residential unit “UMAR” in green, the office unit “Solace” in red, and the
residential unit “Vision Wood” in purple.
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Figure 5.7: Detailed plot of the heat pump following the regulation signal. Electrical
power of heat pump in dashed blue, set point to be tracked in orange, range of possible
set points as a result of the reserves offered in dotted red.

the heat pump, to more than 50kW, which is above the upper capacity limit of the heat
pump (as we only consider the first compressor stage here). As a consequence, also
the reserves offered, depicted in 5.5 (b) vary significantly. In the first third of the day,
when the initial demand prediction (orange) is at an intermediate level, many reserves
are offered, while during the last two thirds of the day, when the demand prediction is
constantly close to the upper capacity limit of the heat pump, very little reserves are
offered.

Subplot (c) shows the average warm storage temperature in solid black, and the
temperature measurements of the individual layers in transparent colors. It can be
seen that the temperature constraints, depicted in dotted black, are maintained during
most times, except during the periods marked with cyan and orange backgrounds. In
the period marked in cyan, the effect of the demand prediction error being outside
the bounds of the uncertainty set can be noticed. At the time of optimization, the
heating demand of the building was low and as a consequence also the demand prediction,
shown in red in subplot (a), was low, because it is corrected based on the last measured
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prediction error13 (see Chapter 2). Thus, Level 2 switches off the heat pump, whose
electricity consumption is shown in dashed blue in subplot (d), as no reserves were
offered in the following 15-minute interval. However, shortly after, the heating demand
of NEST increases by a larger amount than covered by the uncertainty set E⊕∆h, causing
the storage temperature to drop below the constraints. Subplot (e), which shows the
temperature trajectories of the rooms in DFAB demonstrates that this short constraint
violation in the storage tank has no negative effect on the comfort in the connected
buildings. During the entire experiment, the room temperatures are kept between the
comfort constraints. This is also the case for the other, uncontrolled, apartments and
office units connected to the system, as shown for some examples of room temperatures
in Figure 5.6. The local controllers (which are considered unknown to Level 1 and 2) are
able to keep the temperatures between the comfort constraints because the warm storage
temperature is sufficiently high. Small violations of the temperature constraint in the
storage do not cause comfort constraint violations in the connected buildings because of
their thermal inertia.

In the period marked in orange in Figure 5.5, it can be seen that the Level 2 controller
modulates the energy consumption in DFAB to maintain the temperature constraints
in the storage: The heat pump can not maintain the storage temperature because the
heating demand of NEST exceeds its thermal capacity limit. As a consequence, the
heating energy consumption of DFAB is set to zero, as can be seen in subplot (f). Another
example for this modulation of the controllable building heat consumption depending
on the heating demand of the other NEST units and the storage temperature, can also
be seen in the purple period. Before midnight, the heating demand of NEST is high
and the water storage is depleting although the heat pump runs at full capacity. As a
consequence, the energy consumption in DFAB is kept low by the Level 2 controller. As
soon as the heating demand of NEST decreases, and the storage temperature is rising,
the controller increases the heating consumption of DFAB again.

Generally, the controllers keep the room temperatures in DFAB close to the lower
constraint to save energy with the exception of the room with the smallest heat capacity,
which is depicted in orange in subplot (e). This can be explained by the affine policies
being constrained to be identical for all rooms. To maximize recourse on uncertainties
(i.e. to make the coefficients in the D matrices large), the room with a low thermal
capacity has to be kept far from the comfort constraints (because reacting to uncertain-
ties will drive the temperature towards the constraints fast), while the rooms with a
high thermal capacity can stay close to the lower bound. This issue could potentially
be mitigated by scaling the the policies with the thermal capacity of the rooms. Other

13Note, that there is at times a difference between the measured heating demand shown in dashed
blue in Figure 5.5 (a) and the measured heating demand seen by the forecasting method. The depicted
heating demand is averaged over a 15-minute interval, while the forecasting method uses instantaneous
demand measurements. This choice needs to be reconsidered in future research.
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possible explanations include that the room is directed towards the sun, resulting in
higher heating gains compared to the other rooms, and that the identified model indi-
cates good thermal insulation towards the ambient and a high heat transfer coefficient
towards neighboring rooms. This could cause the optimizer to run the room at a higher
temperature to implicitly heat the neighboring rooms.

Subplot (d) shows the heat pump following the regulation signal during times where
reserves are offered (see subplot (b)). As shown in detail for the first 1.5 hours of the
experiment in Figure 5.7, this reserve tracking happens with high accuracy by manipu-
lating the compressor speed in the heat pump on a lower controller level. The reserves
offered together with the base load of the heat pump, determine the range of opera-
tion, which is limited by the dotted red line. The tracking signal for the heat pump, as
defined by (5.1) is shown in orange and the actual electricity consumption of the heat
pump in dashed blue. The lower-level controller and the tracking performance have been
discussed in detail in Chapter 3 and are not discussed here to avoid repetition.

5.6 Limitations

In Section 5.4, we have shown the potential of exploiting the thermal inertia of district
heating/cooling-connected buildings to offer electrical reserves with the example of a real
system. In Section 5.5, we have demonstrated in an experiment on the same system, in
which a wide range of heating demand situations are covered, the control-performance
of the presented reserve scheduling and control scheme. While longer experiments would
further benefit the confidence in the scheme, together with previous experimental studies
performed on the operation of the heat pump (Bünning et al. (2020d), Chapter 3),
on predictive control of the units (Bünning et al. (2021a), Chapter 4), on the demand
forecasting approach (Bünning et al. (2020a), Chapter 2), and on a combined distributed
operation of all entities (Lefebure et al., 2021), the presented experiments promise the
viability of the approach for real application.

However, the computational complexity of the reserve scheduling problem needs to
be addressed in future research. For the presented numerical case study, sometimes a
feasible solution could not be found within 15 minutes when the predicted heating/cool-
ing demand is very low, although only two buildings were considered to be controllable
and the affine policies were constrained to be the same for the rooms of each building.
Although the optimization time could be further increased in practice, as Level 1 only
has to be solved once per day (and Level 2 is less computationally heavy due to many
fixed binary variables and the option of a shortened prediction horizon), the presented
approach is likely limited to small community heating/cooling systems. For larger scale
applications, distributed optimization approaches could be investigated, which besides
sharing the computational burden between agents, would also suit the distributed struc-
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ture of the district heating/and cooling system. Implementing the optimization problem
directly in a solver language instead of YALMIP could further improve optimization
time. Alternatively, the reserve provision could be disabled for days with particularly
low heating/cooling demands, where the solver struggles. Here, the expected reserves
offered are anyways low, because the heat pump has to operate at the lower capacity
limit.

5.7 Conclusion

In this Chapter, we have combined the methods of the previous chapters and presented
a two-level Robust MPC approach with affine policies to offer frequency reserves with
a district heating/cooling system supplied by a heat pump. The approach exploits the
thermal inertia of buffer storage tanks and a subset of the connected buildings, which
are controlled by the central controller directly. In a numerical case study based on
historical data of a real system, we have shown that the approach significantly increases
the offered reserves, compared to a case where only the thermal inertia of buffer storage
tanks is exploited. Moreover, also the operational costs are decreased. In an experiment
on the same system, we have demonstrated that the controller indeed offers and delivers
electrical reserves, while maintaining comfort in all of the buildings connected to the dis-
trict system. Future research should focus on the scalability of the approach, potentially
investigating distributed optimization schemes.
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CHAPTER 6
Conclusions and future directions

6.1 Summary and conclusion

In this thesis, we have developed and compared data-driven methods for building de-
mand forecasting and building thermal dynamics modeling for predictive control. By
combining physics-based modeling of industrial components with data-driven modeling
of buildings and advanced control concepts, we have reduced the manual modeling effort
considerably, leading to controllers that are viable for practical application. Addressing
the objectives of reducing building energy consumption and providing electrical reserves,
the presented methods were validated in experiments in building energy and district en-
ergy applications.

In Chapter 2, we presented two online correction methods, one based on error-
autocorrelation and one based on online learning, for ANN-based heating demand fore-
casts. The methods were validated with measurement data of a variety of buildings, and
it was found that they significantly increase prediction accuracy and reduce the vari-
ance of accuracy between different networks trained on the same data set. The methods
also significantly reduce the amount of training data needed compared to uncorrected
forecasts.

In Chapter 3, we combined these demand forecasts with Robust MPC to offer elec-
trical reserves with a system comprising a heat pump and buffer storage tanks without
modeling the dynamics of the connected buildings. The approach was validated in an
experiment, where it was shown that the temperature constraints in the storage tanks
are respected, ensuring the comfort in the connected buildings, while reserves are being
offered and a regulation signal is tracked successfully by the heat pump.

In Chapter 4, we presented Machine Learning methods based on Random Forests and
Input Convex Neural Networks for data-driven model generation for building MPC, as
well as a method based on physics-informed ARMAX. In extensive heating and cooling
experiments with predictive building control and time-varying comfort constraints, all
methods maintained occupant comfort and at the same time significantly reduced the
heating and cooling energy consumption compared to a baseline hysteresis controller.
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However, the physics-informed ARMAX model significantly outperforms the other meth-
ods in terms of sample efficiency.

In Chapter 5, we combined the methods of the previous three chapters to offer elec-
trical reserves with an electrified district heating/cooling system, exploiting the thermal
inertia of warm and cold water storage and a subset of the connected buildings. The
buildings were modeled with data-driven methods, whereas the heat pump and tanks
were modeled with first principles. The potential to offer electrical reserves was investi-
gated in a numerical case study on the basis of historical measurement data of a small
district heating system. It was found that by exploiting the thermal inertia of a subset of
the buildings, the reserves offered could be significantly increased compared to Chapter
3. Moreover, the approach was validated in experiment.

In conclusion, we have made the following contributions. We have demonstrated
that data-driven methods can lead to viable predictive controllers for building thermal
control that outperform state-of-industry controllers. We have also seen that they and
are transferable: The best-performing modeling method for predictive control, physics-
informed ARMAX, was validated in two different apartment units, UMAR (Chapter 4)
and DFAB (Chapter 5), in both of which it performed well. For the industrial application
of data-driven MPC, it is especially encouraging that no excitation experiments with the
purpose to create informative training data were conducted. All training data used
was generated under standard building operation, i.e. with hysteresis-based controllers.
The reasonable control performance of the other two methods, RF and ICNN, given
their lower prediction accuracy, also shows that a perfect model is not necessary for
predictive building thermal management. This observation traces its origins to the fact
that building dynamics are inherently stable, i.e. wrong control inputs do not take the
system state to unsafe trajectories. Moreover, as the dynamics are slow, the required
sampling times are long, and the controller can correct the control input often if smaller
sampling times are chosen.

We have also found that in the case of modeling building thermal dynamics for small
buildings with convection-based emission systems (i.e. radiator or floor heating/cooling),
linear models seem to be sufficient. Moreover, the physics-based priors enforced in the
regression process of the ARMAX model cannot be identified by the considered Machine
Learning methods, even if abundant training data is available. These observations are
potentially interesting for the commercial application of predictive control in residential
buildings, where the mentioned conditions are common.

Finally, by combining data-driven methods with Robust MPC and physics-based
models of some industrial components (i.e. the heat pump and water tanks) even com-
plex control tasks, such as day-ahead reserves provision in buildings and districts can be
addressed. In the case study of Chapter 5, the modeling effort of the combined system
is reduced considerably, from potentially hundreds of manually-set and difficult to ob-
tain parameters in a pure physics-based model to less than ten parameters that can be
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obtained from technical sheets in our approach.

6.2 Future directions

The presented work takes a step towards real-life-applicable efficient building energy
control by replacing tedious first-principles-based modeling with data-driven methods in
areas where parameters are difficult to identify, i.e. building thermal dynamics. While we
have demonstrated that the developed approaches work in practice, there are limitations
that lead to future research directions. One immediately obvious future direction is the
application of the presented models and methods to different optimization goals. Here,
we have applied them to the goals of energy use reduction in Chapter 4, and frequency
reserve provision in the Chapters 3 and 5. However, the presented methods are not
limited to these objectives. Alternative objectives that should be tested in practice are,
for example, the exploitation of time-varying energy prices, and peak shaving.

Future directions that require significantly more thinking comprise various aspects
of scalability, which relate to increasing the boundaries of the controlled systems. For
example, the numerical study in Chapter 5 has shown that more efficient optimization
methods are needed if the number of controlled buildings is to be increased. Such meth-
ods should also ideally be distributed algorithms to represent the distributed architecture
of the controlled energy systems. Moreover, privacy concerns related to the sharing of
measurement data, as well as game-theoretic implications of distributed algorithms in
energy-hub settings and related incentive structures should be considered in the opti-
mization schemes. If, as a result of integrating a larger number of buildings, the spacial
size of the considered district system is increased, also modeling the distribution network
could become necessary, as thermal losses in the piping system need to be considered.

In addition to increasing the number of controlled entities, also the diversity of their
types should be considered in future research: To make energy systems more efficient,
sectors and energy streams will need to be coupled and combined into multi-energy-
systems in the future. A control system addressing building thermal management should
therefore be able to also consider a connected PV panel or to control the charging and
discharging of a battery electric vehicle. It should also communicate with district heating
system operators or the electricity grids to coordinate control decisions on various levels
of hierarchy. While the presented work takes a step in this direction by demonstrating
methods for providing electrical reserves to the grid with electrified building and district
heating/cooling systems, all presented data-driven methods in this study only consider
the thermal behaviour of buildings. However, in an ideal case, a data-driven modeling
approach should, given a set of measurement data, independently identify different types
of data (electrical loads, room temperature trajectories, states of charge, etc.) and the
related entities, and then build a dynamic model of the identified multi-energy system.
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Chapter 6. Conclusions and future directions

This task requires a combination of classification and regression methods that has not
been appropriately addressed in the literature yet. Such solutions could especially be
important for legacy buildings, where labeling of data streams requires a considerable
amount of manual effort when old building equipment is brought to the cloud in an effort
to integrate it in advanced control schemes.

Related to this, also the field of physics-informed Machine Learning should be con-
sidered, as for different classes of data different physical priors can be applied. Chapter
4 has shown that physics-based priors can significantly improve the model accuracy and
sample efficiency for models of building thermal dynamics. By embedding these pri-
ors in more flexible modeling approaches, such as the presented RF and ICNN methods,
potentially also multi-energy systems could be addressed. Here, the RF and ICNN meth-
ods could potentially have an advantage compared to linear methods, as the underlying
physics of multi-energy-systems contain more non-linearities compared to pure building
thermal dynamics. For this task, compared to the efforts in this thesis, maintaining the
balance between model flexibility and computational efficiency during operation will be
even more challenging.
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A.1 Additional KPI for Case study 1 in Chapter 2
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Figure A.1: Mean Squared Error (MSE) of 100 ANN and forecast correction methods.
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Figure A.2: Mean Absolute Error (MAE) of 100 ANN and forecast correction methods.
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Figure A.3: Coefficient of Variation of Root-Mean Squared Error (CV RMSE) of 100
ANN and forecast correction methods.
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Figure A.4: Scaled forecasting trajectories on the training set for buildings (a)-(d).
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Figure A.5: Scaled forecasting trajectories on the test set for buildings (a)-(d).
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A.3 Additional Figures for Chapter 4
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Figure A.6: Example from the validation set of the one-hot solar model. The blue line
denotes the true solar gains through a window. The orange line denotes the predicted
gains by the model.
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Figure A.7: Baseline controller example for the heating case in bedroom 2. (a): Temper-
ature in the bedroom. The limits of the hysteresis controller are shown in dashed black.
(b): Relative control input, i.e. the fraction of time where the maximum control input is
applied during one control step. (c): Measured ambient temperature at the experiment
site. (d): Global solar irradiation at the experiment site.
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Figure A.8: Temperature analysis of MPC vs. baseline controller for heating experiments
in bedroom 1.
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