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SUMMARY

Metabolic activity is intimately linked to T cell fate
and function. Using high-resolution mass spectrom-
etry, we generated dynamic metabolome and prote-
ome profiles of human primary naive T cells following
activation. We discovered critical changes in the
arginine metabolism that led to a drop in intracellular
L-arginine concentration. Elevating L-arginine levels
induced global metabolic changes including a shift
from glycolysis to oxidative phosphorylation in acti-
vated T cells and promoted the generation of central
memory-like cells endowed with higher survival ca-
pacity and, in a mouse model, anti-tumor activity.
Proteome-wide probing of structural alterations, vali-
dated by the analysis of knockout T cell clones, iden-
tified three transcriptional regulators (BAZ1B, PSIP1,
and TSN) that sensed L-arginine levels and promoted
T cell survival. Thus, intracellular L-arginine concen-
trations directly impact the metabolic fitness and
survival capacity of T cells that are crucial for anti-
tumor responses.

INTRODUCTION

Upon antigenic stimulation, antigen-specific naive T cells prolif-

erate extensively and acquire different types of effector func-

tions. To support cell growth and proliferation, activated T cells

adapt their metabolism to ensure the generation of sufficient

biomass and energy (Fox et al., 2005). Unlike quiescent T cells,

which require little nutrients and mostly use oxidative phosphor-

ylation (OXPHOS) for their energy supply, activated T cells

consume large amounts of glucose, amino acids, and fatty acids

and adjust their metabolic pathways toward increased glycolytic

and glutaminolytic activity (Blagih et al., 2015; Rolf et al., 2013;

Sinclair et al., 2013; Wang et al., 2011).

At the end of the immune response, most T cells undergo

apoptosis, while a few survive as memory T cells that confer
Cell 167, 829–842, Octo
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long-term protection (Kaech and Cui, 2012; Sallusto et al.,

2010). T cell survival is regulated by extrinsic and intrinsic

factors. Prolonged or strong stimulation of the T cell receptor

(TCR) of CD4+ and CD8+ T cells promotes ‘‘fitness’’ by

enhancing survival and responsiveness to the homeostatic cyto-

kines IL-7 and IL-15, which in turn sustain expression of anti-

apoptotic proteins (Gett et al., 2003; Schluns and Lefrançois,

2003; Surh et al., 2006). Metabolic activity is also critical to deter-

mine T cell fate and memory formation (MacIver et al., 2013;

Pearce et al., 2013; Wang and Green, 2012). For instance, tri-

glyceride synthesis is central in IL-7-mediated survival of mem-

ory CD8+ T cells (Cui et al., 2015), while increased mitochondrial

capacity endows T cells with a bioenergetic advantage for

survival and recall responses (van der Windt et al., 2012). Mito-

chondrial fatty acid oxidation is required for the generation of

memory T cells (Pearce et al., 2009), while the mammalian target

of rapamycin (mTOR), a central regulator of cell metabolism, has

been shown to control T cell memory formation (Araki et al.,

2009).

Metabolic fitness and T cell survival are particularly crucial in

anti-tumor responses because nutrients are often scarce in the

tumor microenvironment leading to T cell dysfunction (Chang

et al., 2015; Ho et al., 2015), stress, and apoptosis (Alves et al.,

2006; Maciver et al., 2008; Siska and Rathmell, 2015). Depletion

of glucosemay decrease production of interferon (IFN)-g (Chang

et al., 2013) and modulate the differentiation of regulatory T cells

(De Rosa et al., 2015). In addition, degradation of L-arginine by

myeloid-derived suppressor cells leads to reduced expression

of the CD3z chain, resulting in impaired T cell responsiveness

(Bronte and Zanovello, 2005; Rodriguez et al., 2007). L-arginine

is a versatile amino acid that serves as a building block for pro-

tein synthesis and as a precursor for multiple metabolites,

including, polyamines, and nitric oxide (NO) that have strong

immunomodulatory properties (Grohmann and Bronte, 2010).

In this study, we took advantage of recent developments

in mass spectrometry (Bensimon et al., 2012; Meissner and

Mann, 2014; Zamboni et al., 2015) to obtain dynamic prote-

ome and metabolome profiles of human primary naive T cells

following activation and found several changes in metabolic

pathways. In particular, we found that L-arginine controls
ber 20, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 829
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Metabolic and Proteomic

Profiling Reveals Distinct Changes in

L-Arginine Metabolism in Activated Hu-

man T Cells

(A) Schematic view of the experimental approach.

(B) Comparison of protein abundances be-

tween 72-hr-activated (CD3 + CD28 anti-

bodies) and freshly isolated non-activated hu-

man naive CD4+ T cells. Closed circles indicate

proteins that changed significantly (FDR = 0.05,

S0 = 1). Colored dots are enzymes of the argi-

nine and proline metabolism that changed

significantly.

(C) Comparison of metabolite abundances in

72 hr-activated and freshly isolated non-activated

human naive CD4+ T cells. Closed circles indi-

cate metabolites that changed significantly

(jLog2 fcj > 1, p < 0.01). Colored dots are me-

tabolites of the arginine and proline metabolism

that changed significantly. Similar changes were

observed when 72 hr-activated CD4+ T cells

were compared with naive CD4+ T cells cultured

overnight in the absence of TCR stimulation.

See also Figure S1 and Tables S1, S2, and S3.
glycolysis andmitochondrial activity and enhances T cell survival

by interaction with transcriptional regulators. Moreover, L-argi-

nine enhanced the generation of central memory-like T (Tcm)

cells with enhanced anti-tumor activity in a mouse model.

RESULTS

Proteomic and Metabolomic Changes following
Activation of Human Naive CD4+ T Cells
To investigate the metabolic adaptations underlying T cell acti-

vation, we analyzed the cellular proteome and metabolome of

human primary naive T cells using high-resolution mass spec-

trometry. Naive CD45RA+ CCR7+ CD4+ T cells were sorted up

to >98% purity from blood of healthy donors (Figure S1A) and

either analyzed immediately after sorting or at different time

points following activation with antibodies to CD3 and CD28.

After cell lysis, proteins were digested and analyzed by liquid

chromatography-coupled mass spectrometry (LC-MS) (Meiss-

ner and Mann, 2014; Nagaraj et al., 2011). In parallel, polar

metabolites were extracted from cells at each time point and

analyzed by non-targeted flow-injection metabolomics, a semi-

quantitative method that allows rapid and deep profiling of me-

tabolites, with the limitations that isobaric compounds cannot

be discriminated and of possible in-source degradation (Fuhrer

et al., 2011) (Figure 1A).

We identified a total of 9,718 proteins, quantified the abun-

dance of 7,816 at each time point, and estimated their absolute
830 Cell 167, 829–842, October 20, 2016
copy numbers. Expression profiles of

characteristic T cell proteins were in

agreement with the literature and copy

numbers of stable protein complexes

had correct ratios (Figures S1B–S1G;

Table S1). Non-targeted metabolomics

led to the identification of 429 distinct
ion species, which were putatively mapped to human metabo-

lites (Table S2).

A comparative analysis of the proteome and metabolome

of 72 hr activated and non-activated naive T cells identified

2,824 proteins whose relative expression changed significantly

(Welch-test, false discovery rate [FDR] = 0.05, S0 = 1), reflecting

the fundamental morphological and functional alterations that

T cells undergo upon activation (Figure 1B; Table S3). Upregu-

lated proteins were enriched in enzymes of several metabolic

pathways, including nucleotide synthesis, folate-mediated one-

carbon metabolism, as well as arginine and proline metabolism.

Out of 429 metabolites, 49 increased significantly (Log2 fold

change [fc] > 1; p < 0.01), but only 14 were less abundant in acti-

vated T cells, of which three, arginine, ornithine, and N-acetylor-

nithine, belonged to the same metabolic pathway (Figure 1C).

Collectively, these data provide a comprehensive resource on

the dynamics occurring in the proteome and metabolome of

activated human primary naive CD4+ T cells.

Intracellular L-Arginine Is Rapidly Metabolized in
Activated T Cells
Based on the data obtained, we inspected the changes in the

arginine metabolism more closely. The decrease in intracellular

arginine occurred abruptly between 24 and 48 hr after T cell acti-

vation (Figure 2A). This finding was surprising in view of the high

concentration of L-arginine in the medium (1 mM) and of the high

uptake rate of 3H-L-arginine in activated T cells, which exceeded
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C Figure 2. L-Arginine Is Rapidly Metabolized

upon Activation

(A) Intracellular abundance of L-arginine in non-

activated (non-act) and activated naive CD4+

T cells (CD3 + CD28 antibodies). Boxplot, n = 30

from three donors, each in a different color.

(B) Kinetics of 3H-L-arginine uptake during a

15-min pulse. Box plot, n = 5 from three donors.

(C) Uptake, proteome incorporation and intracel-

lular abundance of the indicated amino acids.

Barplot (left): 5 3 104 cells were activated for

4 days and consumption of amino acids from me-

dium was analyzed. Essential amino acids are in

gray; n = 4 from four donors, error bars represent

SEM. Barplot (center): proteome incorporation of

amino acids estimated from the copy numbers of

each protein. Heat map (right): intracellular amino

acid abundance relative to naive T cells over time

as determined by mass spectrometry (MS) n = 30

from three donors. Leucine and isoleucine could

not be distinguished as they have the same mass.

(D) Changes in the abundance of metabolites and

proteins of the arginine and proline metabolism

between non-activated and 72 hr-activated CD4+

T cells. Log2 fold changes of proteins and metab-

olites are color-coded. Significant changes are in

bold (FDR = 0.05, S0 = 1 for proteins; and p < 0.05

[two-tailed unpaired Student’s t test], jLog2 fcj > 1

for metabolites). Black dots are metabolites that

were not detected by MS. Only enzymes that were

detected by MS are shown.

(E) Metabolic tracing of L-arginine. Ninety-six hour-

activated T cells were pulsed with 13C6-L-arginine

and the metabolic fate was analyzed by LC-MS/

MS at different time points. AFL, apparent frac-

tional labeling; n = 4 from two donors. 13C Citrulline

was not detected. Error bars represent SEM.

For (A) and (B), upper whisker = min(max(x), Q_3 +

1.5 * IQR) and lower whisker = max(min(x), Q_1 –

1.5 * IQR).
the requirement for protein synthesis by more than 2-fold (Fig-

ures 2C and 2B).

To gain insights into the metabolic fate of L-arginine, we

analyzed the activation-induced changes in metabolites and

proteins of the surrounding metabolic network (Figure 2D). While

metabolites around the urea cycle were decreased, the arginine

transporter cationic amino acid transporter 1 (CAT-1) and the
enzymes arginase 2 (ARG2), ornithine

aminotransferase (OAT), and spermidine

synthase (SRM), which are required for

the conversion of L-arginine into ornithine,

L-proline, and spermidine, respectively,

were upregulated. These findings suggest

that L-arginine was rapidly converted into

downstream metabolites. Indeed, 13C-L-

arginine tracing experiments showed an

immediate and strong accumulation of
13C in ornithine, putrescine, agmatine,

and, to a lower extent, in spermidine

and proline (Figure 2E). Addition of the
arginase inhibitor norNOHA did not affect the conversion of

L-arginine into agmatine, but markedly reduced the conversion

into ornithine, putrescine, spermidine, and proline (Figure 2E).

This indicated that in T cells L-arginine is mainly catabolized

through arginase, likely through mitochondrial ARG2, because

the cytosolic enzyme arginase 1 (ARG1) was not detected in

T cells.
Cell 167, 829–842, October 20, 2016 831



Fructose 1,6-bis-P

Glucose

3-P-Glycerate

Pyruvate

Glucose-6-P

ALDOC

GPI

2-P-Glycerate

ENO2

HK2

PKM

Glucose

SLC2A3 SLC2A1

Glucose

FBP1

Fructose-6-P
PFKP

PFKL

ENO1

PFKM

HK1

ALDOAGlycer-
aldehyde-3-P

Dihydroxy-
acetone-P

1,3-Bisphospho-
glycerate

GAPDH
TPI1

PGK1

Lactate LDHA

ENO3
P-enolpyruvate

PGAM1

P
R

O
TE

IN
S

M
E

TA
B

O
LI

TE
S

2
1
0

-1
-2

1.5
1

0.5
0

-0.5
-1

-1.5

Serine

PHGDH

PSPH

P-Serine

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
O

C
R

E

0

1

2

3

4

5

6

R
el

at
iv

e 
S

R
C

Glutamate

Ctrl
L-A

rg Ctrl
L-A

rg0 50 100 150
0

200

400

600

FCCPOligomycin Antimycin

Control
L-arginine

O
C

R
 [p

M
ol

/m
in

]

D

SRC
SRC

TCA
CYCLE

MDH2

B

Time (min)

0

1

2

3

4

Ctrl
L-A

rg

G
lu

c.
 c

on
su

m
. [

pm
ol

/c
el

l]

C F

Citrate

LDHB
PC PCK2

cis-
Aconitate

Isocitrate
α-Ketoglutarate

Succinate

Fumarate

Malate

PSAT1

ACO2

ACO2

IDH3A
IDH3B IDH3GOGDH

SDHC
SDHB SDHD
SDHA

FH

CS

na

12h
24h
48h
72h
96h

120h3h na

12h
24h
48h
72h
96h3h

L-Ornithine
 L-Arginine

N-Acetyl-L-citrulline
 L-2-Aminoglutaramic acid

 L-Arginosuccinic acid
Serine

3-Mercaptopyruvate
Phenylalanine

Tyrosine
Leucine

4-Oxo-L-proline
2,4-Dioxotetrahydropyrimidine

 L-Alanine
 5-Amino-4-oxovaleric acid

2-Aminosuccinamic acid
L-Aspartate

Adenosine 5'-triphosphate
Uridine triphosphate

 L-4-Aspartyl phosphate
2-Pyrrolidinecarboxylic acid

 cis-Aconitic acid
 Adenosine diphosphate ribose

5'-IMP
 Ribose 5-phosphate

 GABA
Coenzyme R

 Glycerol-3-phosphate
 Uridine 5'-diphosphate

Cytidine diphosphate
2'-Deoxycytidine 5'-diphosphate

 2-Hydroxytricarballylic acid
(R)-Pantothenate

 Dexfosfoserine
Glutamate

 Cytidine
Glycerophosphoethanolamine

Glucose
UDP-N-acetylglucosamine

 Clobenpropit
 UDP-alpha-D-glucose

Reduced glutathione
Cytidylic acid
Guanylic acid

Adenosine 5'-phosphate
5'Uridylic acid

N-Formyl-GAR
Aminoethylsulfonic acid
O-Succinylhomoserine

N-Carbamoyl-L-aspartate
N2-citryl-N6-acetyl-N6-hydroxylysine

Malic acid
Uridine

 N-Acetyl-L-aspartic acid
2-O-(alpha-Mannopyranosyl)-D-glycerate

1,3-Dihydroxypropan-2-one

 L-OrnL-Arg

120h

0 2-2

Log2 fold change

A

Lo
g2

 fo
ld

 c
ha

ng
e

**** **** ****

Oxalo
acetate

Acetyl-CoA

(legend on next page)

832 Cell 167, 829–842, October 20, 2016



Collectively, these data show that L-arginine is avidly taken up

by activated T cells in amounts exceeding the requirements for

protein synthesis and can be rapidly converted by metabolic

enzymes into downstream metabolites.

Elevated L-Arginine Levels Regulate Several Metabolic
Pathways
Because activated T cells showed a drop in their intracellular

arginine concentration—while all other amino acids either re-

mained steady or increased—we assessed the consequences

of increasing L-arginine availability on metabolism. We first per-

formed a kinetic metabolome analysis of naive T cells activated

in standardmedium (containing 1mML-arginine) or in medium in

which the concentration of L-arginine was increased 4-fold.

Intracellular arginine and ornithine levels were increased 1.5- to

2.5-fold at all time points in T cells activated in L-arginine-sup-

plemented medium as compared to controls (Figure 3A), while

nitric oxide, which is generated from L-arginine by nitric oxide

synthase (NOS), did not increase (Figure S2A). Notably, at late

time points after activation (72–120 hr), several other metabo-

lites, including intermediates of the urea cycle, nucleotides,

sugar derivatives, and amino acids were increased (Figure 3A).

In contrast, an increased availability of L-arginine’s downstream

metabolites L-ornithine or L-citrulline (added to the culture

medium at the same concentration as L-arginine) only had minor

effects onmetabolism (Figures 3A and S2B). These findings sug-

gest that L-arginine directly regulates several metabolic path-

ways in activated T cells.

A proteome analysis showed that the expression of 202 out of

7,243 proteins was significantly different in T cells activated in

L-arginine-supplemented medium (Table S4, ANOVA, FDR =

0.005, S0 = 5, jLog2 fcj > 1), indicating that T cells were reprog-

rammed under the influence of increased intracellular L-arginine

levels. In particular, PC, PCK2, and FBP1, which promote gluco-

neogenesis, were increased, while glucose transporters and

glycolytic enzymes were decreased (Figure 3B). Indeed, these

T cells consumed less glucose (Figure 3C), indicating that the

glycolytic flux was diminished by L-arginine supplementation.

Moreover, the serine biosynthesis pathway that branches from

glycolysis and several intermediates of the mitochondrial tricar-

boxylic acid (TCA) cycle were upregulated (Figure 3B). Consis-

tent with the fact that the TCA cycle fuels OXPHOS, L-arginine

supplementation increased oxygen consumption 1.7-fold and

augmented the mitochondrial spare respiratory capacity (SRC)
Figure 3. L-Arginine Globally Influences Metabolism of Activated Hum

(A) Human naive CD4+ T cells were activated in control medium (Ctrl) or in mediu

harvested at different time points. The heat map shows the difference between th

controls. Shown are only metabolites with a Log2 fc > 1 and an adjusted p value

(B) Differential analysis of the glycolytic pathway between naive CD4+ T cells cult

of proteins and metabolites are color-coded. Proteins or metabolites whose ab

jLog2 fcj > 1 and for metabolites p < 0.05 (Student’s t test), jLog2 fcj > 1). 3-P-glyce

(C) Seventy-two hour-activated T cells were plated in fresh medium and glucose c

Error bars represent SEM.

(D) Seahorse experiment performed with activated (96 hr) T cells from one dono

inhibit the respiratory chain) after 136 min. Data are representative of five indepe

(E and F) Relative oxygen consumption rate (OCR) (E) and relative spare respirator

0.0001 (Student’s t test). Error bars represent SEM.

See also Figure S2 and Table S4.
(Figures 3D–3F). Collectively, these data demonstrate that an

increase in intracellular L-arginine levels skewed the meta-

bolism in activated T cells from glycolysis toward mitochondrial

OXPHOS.

L-Arginine Influences Human T Cell Proliferation,
Differentiation, and Survival
Naive T cells start to divide after an initial period of growth that

lasts 24–40 hr. Subsequently, they divide rapidly and differen-

tiate into effector T cells that produce inflammatory cytokines,

such as IFN-g, and into memory T cells that survive through ho-

meostatic mechanisms (Schluns and Lefrançois, 2003; Surh

et al., 2006). We therefore asked whether elevated intracellular

L-arginine concentrations affect the fate of activated T cells.

Naive CD4+ T cells activated in L-arginine-supplemented me-

dium showed a slightly delayed onset of proliferation, but once

proliferation started, doubling rates were comparable to controls

(Figures S3A and S3B). The onset of proliferation was not

affected by D-arginine or by addition of L-lysine (a competitive

inhibitor of L-arginine uptake; Figure S3A) to L-arginine-supple-

mented cultures (Figure S3C). Importantly, T cells activated in

L-arginine-supplemented medium secreted much less IFN-g

than T cells cultured in control medium (Figure 4A). However,

when these cells were re-activated, they were able to secrete

IFN-g in comparable amounts (Figure 4B), indicating that

T cells primed in the presence of high L-arginine concentrations

retained the capacity to differentiate into Th1 effector cells upon

secondary stimulation. Because low production of cytokines is

characteristic of CCR7+ lymph node-homing Tcm cells (Sallusto

et al., 1999), we analyzed the expression of CCR7 on day 10 after

activation and found a higher fraction of proliferating CCR7+

T cells in L-arginine supplemented cultures than in control cul-

tures (Figure 4C). Collectively, these data indicate that increased

intracellular L-arginine levels limit T cell differentiation and main-

tain cells in a Tcm-like state.

To test whether L-arginine affects T cell survival, we activated

human naive CD4+ and CD8+ T cells, expanded them in the pres-

ence of IL-2 or IL-15, and measured their viability upon cytokine

withdrawal. Strikingly, L-arginine supplementation significantly

increased the survival of activated CD4+ and CD8+ T cells

when cultured in the absence of exogenous cytokines (Figures

4D and 4E). L-arginine was most effective when added during

the first 48 hr following T cell activation (Figure 4F). Conversely,

L-lysine or D-arginine, which both inhibit L-arginine uptake
an T Cells

m supplemented with 3 mM L-arginine (L-Arg) or 3 mM L-ornithine (L-Orn) and

e abundance of metabolites in T cells cultured in L-Arg or L-Orn-medium and

of < 0.05; n = 12 from two donors.

ured in L-Arg medium or Ctrl medium, 96 hr after activation. Log2 fold changes

undance changed significantly are in bold (for proteins FDR = 0.005, S0 = 5,

rate and 2-P-glycerate could not be distinguished as they have the samemass.

onsumption was determined enzymatically after 24 hr; n = 9 from three donors.

r. Oligomycin was injected after 56 min, FCCP after 96 min, and antimycin (to

ndent experiments with different donors; n = 4. Error bars represent SEM.

y capacity (SRC) (F) of activated (96 hr) T cells; n = 12 from three donors. ****p <
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Figure 4. L-Arginine Limits Human T Cell

Differentiation and Endows Cells with a

High Survival Capacity In Vitro

(A and B) Human naive CD4+ T cells were activated

in L-Arg medium or Ctrl medium in the presence of

10 ng/mL IL-12. IFN-g was quantified in culture

supernatants after 5 days (A) or after re-activation

for 5 hr with PMA/ionomycin (B); n = 9 from three

donors.

(C) Naive CD4+ T cells were labeled with CellTrace

Violet (CTV) and activated in L-Arg medium or

Ctrl medium. On day 10, proliferating CTVlo T cells

were stained with an antibody to CCR7 and

analyzed by flow cytometry; n = 15 from three

donors.

(D) Naive CD4+ T cells were activated for 5 days in

L-Arg or Ctrl medium in the presence of exoge-

nous IL-2, washed extensively, and cultured in Ctrl

medium in the absence of IL-2. Shown is the per-

centage of living T cells as determined by Annexin

V staining at different time points after IL-2 with-

drawal. One representative experiment out of

three performed.

(E) Same experiment as in (D). Shown is the dif-

ference of living activated CD4+ and CD8+ T cells

5 days after withdrawal of IL-2; n = 46, from 16

donors (CD4+ T cells); n = 13, from four donors

(CD8+ T cells).

(F) Difference of living activated CD4+ T cells

5 days after IL-2 withdrawal. Naive CD4+ T cells

were activated and L-Arg (3 mM) was added to the

culture medium at the indicated time points; n = 12

from four donors.

(G) Difference of living activated CD4+ T cells

5 days after IL-2 withdrawal. Naive CD4+ T cells

were activated in Ctrl medium or medium supple-

mented with the indicated metabolites (3 mM,

except for spermidine 0.1 mM). Ctrl, n = 21; D-Arg,

n = 9; L-lysine, n = 18; L-Arg-HCl, n = 10; L-Arg +

L-Lys, n = 12; L-Orn, n = 20; L-Cit, L-Pro, n = 12;

urea, creatine, agmatine, n = 6; putrescine, n = 18;

spermidine, n = 8, from at least three donors.

(H) Difference of living activated CD4+ T cells

5 days after IL-2 withdrawal. Naive CD4+ T cells

were activated in the presence or absence of

nitric oxide synthase inhibitors dimethylarginine

(DiMeArg) or L-NG-nitroarginine methyl ester

(L-NAME), both used at 1 mM. Ctrl and L-Arg,

n = 26; DiMeArg and L-NAME, n = 16; DiMeArg +

L-Arg and L-NAME + L-Arg, n = 12, from at least

three donors.

(I) Difference of living activated CD4+ T cells 5 days

after IL-2 withdrawal. Naive CD4+ T cells were

activated in absence (Ctrl) or presence of

the arginase inhibitors Nu-Hydroxy-nor-L-arginine

(norNOHA, 300 mM) or S-(2-boronoethyl)-L-

cysteine (BEC, 300 mM); n = 21, from seven

donors.

(J) Same as in (I) but cultures were performed in

medium containing 150 mM L-arginine.

(K) Effect of norNOHA and BEC on proliferation of

CTV-labeled naive T cells measured 72 hr after

activation. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001 (Student’s t test).

(A–J) Error bars represent SEM throughout.

See also Figures S3 and S4.
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Figure 5. Increased Intracellular L-Arginine

Levels Endow Mouse T Cells with a High

Survival Capacity In Vitro and In Vivo

(A) BALB/c CD90.1+ CD4+ TCR transgenic T cells

specific for the influenza HA110–119 peptide were

adoptively transferred into CD90.2+ host mice that

were then immunized subcutaneously (s.c.) with

HA110–119 in complete Freund’s adjuvant (CFA).

Mice were fed with L-arginine-HCl (1.5 mg/g body

weight) or PBS, administrated daily starting 1 day

before immunization. Fifteen days later, the

amount of CD44hi CD90.1+ CD4+ TCR transgenic

T cells in draining lymph nodes was measured by

fluorescence-activated cell sorting (FACS) anal-

ysis; n = 9 from two independent experiments.

(B and C) In vitro T cell survival experiment with

C57BL/6 wild-type (WT) or Arg2–/– T cells. Naive

CD62Lhi CD44lo CD4+ T cells and CD8+ T cells

were activated for 4 days in L-Arg or Ctrl medium

in the absence or presence of the arginase inhibitor norNOHA (500 mM). On day 2 exogenous IL-2 was added to the cultures, on day 4 cells were washed

extensively and cultured in medium without IL-2. Shown is the difference in the percentage of living CD4+ (B) and CD8+ (C) T cells relative to WT T cells as

determined by Annexin V staining 2 days after IL-2 withdrawal. WT, n = 6-19; WT norNOHA, n = 6–8; Arg2–/–, n = 4–6; Arg2–/– norNOHA, n = 4.

(D) Equal numbers of CD45.1+WT and CD45.2+ CD90.2+Arg2–/– naive CD8+ T cells were transferred into CD45.2+ CD90.1+ host mice. Mice were immunized with

the OVA257–264 peptide in CFA. Fifteen days after immunization, the amount of OVA257–264-specific CD44
hi CD8+ T cells wasmeasured in draining lymph nodes by

flow cytometry using OVA257–264/H-2Kb multimers; n = 4. One representative experiment out of two performed. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(Student’s t test).

Error bars represent SEM throughout.

See also Figure S5.
(Figure S3C), decreased T cell survival significantly (Figure 4G),

indicating that reduced availability of intracellular L-arginine

negatively affects T cell survival. L-arginine’s downstream

metabolites ornithine, citrulline, proline, urea, and creatine, as

well as nitric oxide, had no effect, while agmatine, putrescine,

or spermidine decreased T cell survival (Figure 4G and 4H).

L-arginine-HCl enhanced T cell survival to a similar extent

than free base L-arginine, ruling out a possible influence of

pH. The increased T cell survival induced by elevated intracel-

lular L-arginine concentration was independent of mTOR

signaling (Araki et al., 2009), based on the finding that L-argi-

nine supplementation did not change phosphorylation levels

of two targets of mTOR (p70 S6K1 and 4E-BP) and inhibition

of mTOR by rapamycin, although enhancing T cell survival,

affected metabolism in an entirely different way than L-arginine

(Figures S4A–S4D).

To further support the notion that L-arginine regulates T cell

survival, we inhibited arginase (that converts L-arginine into

L-ornithine) with norNOHA or BEC, which increase intracellular

L-arginine levels (Monticelli et al., 2016). Inhibition of arginase

significantly increased the survival capacity of activated CD4+

T cells, even in medium containing physiological levels of L-argi-

nine (150 mM) (Figures 4I and 4J). Inhibition of arginase did not

affect proliferation (Figure 4K), indicating that polyamines can

be synthesized from other sources than L-arginine, i.e., from

L-glutamate (Wang et al., 2011), a finding that is consistent

with the experiments showing that polyamine synthesis only

partially depends on L-arginine (Figure 2E).

Collectively, these data indicate that elevated intracellular

L-arginine levels directly induced metabolic changes and

longevity of human CD4+ and CD8+ T cells, independently of

mTOR signaling or downstream metabolites.
L-Arginine Influences Mouse T Cell Survival In Vivo
To address the impact of changes in intracellular L-arginine

levels in vivo, we performed experiments in mice. Naive TCR

transgenic CD4+ T cells specific for a hemagglutinin peptide

(HA110–119) were adoptively transferred into BALB/c mice that

received daily supplements of L-arginine (1.5 mg/g body weight)

or PBS as a control. This amount of arginine doubled the daily

dietary intake present in chow. Mice were immunized with

HA110–119 in CFA and the amount of transgenic T cells in draining

lymph nodes was measured 15 days later. Three times more

CD44hi CD4+ TCR transgenic T cells were recovered in mice

fed with L-arginine compared to control mice (Figure 5A). In

control experiments, we found that 30 min after oral administra-

tion, L-arginine levels in the serum increased from �160 mM

to 700 mM (Figure S5A) and intracellular L-arginine levels of

CD44hi-activated T cells increased �2-fold (Figure S5B).

We then analyzed CD4+ and CD8+ T cells from Arg2-deficient

mice. When compared to wild-type T cells, Arg2–/– T cells

showed 20% higher baseline intracellular L-arginine levels (Fig-

ure S5C) and when stimulated in vitro with antibodies to CD3

and CD28, they survived significantly longer than wild-type

T cells after IL-2 withdrawal (Figures 5B and 5C). Moreover, acti-

vation in the presence of the arginase inhibitor norNOHA, while

increasing the survival of wild-type T cells, did not affect survival

of Arg2–/– T cells (Figures 5B and 5C), indicating that in mouse

T cells L-arginine degradation occurred mainly through ARG2.

Finally, equal numbers of congenically marked wild-type and

Arg2–/– CD8+ T cells were co-transferred into wild-type mice

that were immunized with the ovalbumin-peptide SIINFEKL

(OVA257–264) in CFA. Fifteen days after immunization, the number

of MHC-I H-2Kb haplotype (Kb)-restricted OVA257–264-specific

CD44hi CD8+ T cells was measured in lymph nodes by multimer
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Figure 6. BAZ1B, PSIP1, and TSN Mediate the L-Arginine-Dependent Reprogramming of T Cells toward Increased Survival Capacity

(A) Scheme of the limited proteolysis workflow.

(B) Proteins that experience a structural change in response to 1mML-arginine but not to 1mMD-arginine or L-ornithine. Transcriptional regulators are in orange,

proteins are grouped according to their functions. Known interactions are indicated based on http://string-db.org/ and http://www.genemania.org/.

(C) Survival experiment with human CD4+ T cell clones devoid of the indicated proteins. Control (Ctrl), n = 39; Cas9-transduced control (Cas9 Ctrl),

n = 45; BAZ1B-KO, PSIP1-KO, and PTPN6-KO, n = 46, n = 9, and n = 29, respectively. Each T cell clone was analyzed in triplicate. Bars represent the

mean ± SEM.

(D) Same as in (C). Cas9 Ctrl, n = 20; TSN-KO and B2M-KO, n = 23 and n = 3, respectively.

(E) Percentage of living cells after IL-2 withdrawal of T cells cultured in Ctrl medium. Ctrl, n = 39; Cas9 Ctrl, n = 45; BAZ1B-KO, PSIP1-KO, and TSN-KO, n = 46,

n = 9, and n = 29, respectively.

(legend continued on next page)
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staining. As shown in Figure 5D, OVA-specific Arg2–/– T cells

were more numerous than OVA-specific wild-type T cells. Taken

together, these findings provide evidence that intracellular

L-arginine concentrations, which can be elevated by dietary

supplementation, can increase the survival capacity of antigen-

activated T cells in vivo.

Global Analysis of Structural Changes Identifies
Putative L-Arginine Sensors
To elucidate the mechanism by which L-arginine promotes

T cell survival, we first examined the list of differentially ex-

pressed proteins (Table S4) and found among the top hits Sir-

tuin-1, a histone deacetylase, which is known to increase the

lifespan of different organisms (Tissenbaum and Guarente,

2001). However, a role for Sirtuin-1 was excluded based on

the findings that human naive T cells activated in the presence

of the Sirtuin-1 inhibitor Ex-527 and Sirtuin-1-deficient T cells

generated using the CRISPR/Cas9 technology displayed a

L-arginine-mediated increase in survival comparable to con-

trols (Figure S6).

Given that L-arginine directly promotes T cell survival, we set

out to identify putative protein interactors that may be modified

by binding of L-arginine and initiate the pro-survival program.

For this, we probed structural changes across the T cell prote-

ome that occur in response to L-arginine following a recently

developed workflow (Feng et al., 2014) (Figure 6A). T cells

were homogenized and incubated in the absence or presence

of 1 mM L-arginine, D-arginine, or L-ornithine. Subsequently,

samples were subjected to limited proteolysis (LiP) with protein-

ase K, which preferentially cleaves flexible regions of a protein.

After denaturation and trypsin digestion, peptide mixtures were

analyzed by LC-MS. Because trypsin cleaves polypeptides

specifically after lysine or arginine, cleavages after other amino

acids were introduced by proteinase K, leading to half-tryptic

peptides. Significant changes in the abundances of half-tryptic

peptides (fc > 5, p < 0.05, > 2 peptides per protein) were used

as readout for structural changes induced by the addition of

metabolites.

Because L-arginine, but not D-arginine or L-ornithine, pro-

moted T cell survival, we searched for proteins that were exclu-

sively affected by L-arginine and were cleaved by proteinase K

at identical sites in all samples from six donors. Out of 5,856

identified proteins, only 20 candidates fulfilled these stringent

criteria (Figure 6B). These proteins differed widely in molecular

weight and abundance (Table S5), excluding a bias toward

large or abundant proteins. Most candidates were assigned

to four functional groups: mRNA splicing, DNA repair, regula-

tion of the cytoskeleton, and the ribosome, while seven were

transcriptional regulators (in orange in Figure 6B). Thus, our

global approach revealed several proteins with various func-

tions that structurally respond to elevated intracellular L-argi-

nine levels.
(F–I) Western blots or FACS analysis of T cell clones showing deletion of target pro

An antibody to tubulin (Tub) was used as a loading control. B2M-KO was verified

0.001, ****p < 0.0001 (Student’s t test).

(C–E) Error bars represent SEM throughout.

See also Figure S6 and Table S5.
BAZ1B, PSIP1, and TSNAre Required for the L-Arginine-
Mediated Effect on T Cell Survival
To test whether selected candidates identified through the

structural analysis were involved in the L-arginine-mediated sur-

vival benefit, we generated gene knockout human T cell clones

using the CRISPR/Cas9 system that were screened for loss of

the corresponding protein by western blot or flow cytometry.

Knockout of PTPN6 (Shp-1) or B2M did not alter the effect of

L-arginine on T cell survival (Figures 6C and 6D), while no viable

clones were obtained after knockout of XRCC6, ACIN1, and

SSB (not shown). Strikingly, knockout of the transcriptional reg-

ulators BAZ1B, PSIP1, and TSN significantly reduced L-argi-

nine’s beneficial effect on T cell survival (Figures 6C, 6D, and

6F–6J). Importantly, when cultured in control medium prior to

the IL-2 withdrawal, T cell clones lacking these transcriptional

regulators proliferated and survived like controls (Figure 6E),

indicating that their viability was unaffected but they were un-

able to sense increased L-arginine levels and to induce the

pro-survival program. Taken together, these data provide evi-

dence that BAZ1B, PSIP1, and TSN interact with L-arginine

and play a role in the reprograming of T cells toward increased

survival capacity.

L-Arginine Improves Anti-tumor T Cell Response In Vivo
Because L-arginine increased the survival capacity of human

and mouse T cells and favored the formation of Tcm-like cells

that have been shown to be superior than effector memory

T cells (Tem) in eradicating tumors in mouse models (Klebanoff

et al., 2005), we reasoned that increased intracellular L-arginine

levels might positively affect anti-tumor T cell responses in vivo.

We stimulated naive TCR transgenic CD8+ OT-I T cells specific

for the OVA257–264 peptide in control or L-arginine-supple-

mented medium for 4 days and measured their survival in vitro

following IL-2 withdrawal and in vivo after adoptive transfer

into lymphopenic Cd3e–/– mice. Consistent with our previous

data, L-arginine endowed OT-I T cells with a higher survival ca-

pacity both in vitro and in vivo (Figures 7A and 7B). Moreover,

these T cells maintained a Tcm-like state and secreted less

IFN-g than controls after in vitro priming but upon reactivation,

they produced even more IFN-g than controls (Figures 7C–

7E). Remarkably, when adoptively transferred into wild-type

mice bearing B16 melanoma tumors expressing the OVA anti-

gen, L-arginine-treated OT-I T cells mounted a superior anti-

tumor response, as measured by the reduction of tumor size

and by the increased survival of mice (Figures 7F and 7G). Naive

OT-I T cells primed in vivo by OVA + Alum immunization of

tumor-bearing mice that were fed with L-arginine were also

superior in mediating an anti-tumor response compared to

OT-I T cells primed in mice fed with PBS (Figure 7H). Collec-

tively, these data demonstrate that elevated L-arginine levels

increased the survival capacity of CD8+ T cells and their anti-

tumor activity in vivo.
teins. C refers to Cas9 Ctrl clones. Unspecific bands are marked with asterisk.

by staining cells with an antibody against MHC-I. *p < 0.05, **p < 0.01, ***p <
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Figure 7. CD8+ T Cells with Increased L-Arginine Levels Display Improved Anti-tumor Activity In Vivo

(A) Survival of activatedmouse CD8+ OT-I T cells (4 days) after IL-2 withdrawal. Data points represent the difference between the percentage of living T cells from

cultures performed in L-Arg medium or Ctrl medium; n = 11.

(B) CD90.1+ CD45.1/2+ and CD90.1+ CD45.1+ naive CD8+ OT-I T cells were activated for 4 days in Ctrl medium or L-Arg medium, respectively. Equal numbers of

the congenically marked activated OT-I cells were co-transferred into Cd3e–/– mouse and the number of living T cells was measured in pooled spleen and lymph

nodes at the indicated time points; n = 3 at each time point.

(C) Naive CD8+ OT-I T cells were activated with CD3 + CD28 antibodies in L-Arg medium or Ctrl medium. Five days after activation, the percentage of Tcm-like

cells (CD44hi, CD62L+) was measured by flow cytometry; n = 15.

(D) Naive OT-I CD8+ T cells were activated in L-Arg medium or Ctrl medium and IFN-g was quantified in culture supernatants after 5 days; n = 15.

(E) Same as in (D) but T cells were re-activated on day 5 day with PMA/Ionomycin; n = 15.

(F and G) B16.OVAmelanoma cells were injected into C57BL/6 mice and tumors were allowed to grow for 10 days. Naive OT-I CD8+ T cells were activated in vitro

in L-Argmedium or Ctrl medium and injected into tumor bearingmice. Tumor burden (F) and survival (G) were assessed over time. Data are representative of three

independent experiments, each performed with seven to nine mice per group.

(H) B16.OVAmelanoma cells were injected into C57BL/6mice and tumors were allowed to grow for 6 days. At day 6, naive CD8+ OT-I T cells were transferred into

tumor bearingmice and at day 7micewere immunizedwith OVA peptide. Starting one day before the T cell transfer, PBS or L-arginine (1.5mg/g bodyweight) was

orally administered daily; n = 19 from three independent experiments. Bars represent the SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Student’s t test).

In (G), *p < 0.05 as determined by log-rank test comparison between curves.

Error bars represent SEM throughout.
DISCUSSION

Using proteomics, metabolomics, and functional approaches,

we have shown that increased L-arginine levels can exert pleio-

tropic effects on T cell activation, differentiation, and function,

ranging from increased bioenergetics and survival to in vivo

anti-tumor activity.

We found that activated T cells heavily consumeL-arginine and

rapidly convert it into downstream metabolites, which lead to a

marked decrease in intracellular levels after activation. Addition

of exogenous L-arginine to the culture medium increased intra-

cellular levels of free L-arginine and of several other metabolites

and induced a metabolic switch from glycolysis to OXPHOS,

thus counteracting the Warburg effect (Vander Heiden et al.,
838 Cell 167, 829–842, October 20, 2016
2009). While the mechanism by which L-arginine induces the

broadmetabolic changes remainselusive, apossible explanation

for the switch towardOXPHOS is that increased L-arginine levels

upregulate the serine biosynthesis pathway, which has been

shown to fuel the TCA cycle and consequently OXPHOS (Posse-

mato et al., 2011). Suggestive evidence for a link between L-argi-

nine and the functionality of mitochondria has been provided by

earlier observations; L-arginine improves mitochondrial function

and reduces apoptosis of bronchial epithelial cells after injury

induced by allergic airway inflammation (Mabalirajan et al.,

2010) and had a beneficial effect for the treatment of patients

with a mitochondrial disorder (Koga et al., 2010).

A striking finding is that a 2-fold increase in intracellular L-argi-

nine concentrations induces human andmouse T cells to acquire



a Tcm-like phenotype with high expression of CCR7 and CD62L

and a decreased production of IFN-g. This may be a conse-

quence of decreased glycolysis induced by L-arginine, as previ-

ous studies demonstrated that glycolytic activity supports IFN-g

mRNA translation (Chang et al., 2013). Although we observed a

delayed onset of cell proliferation, L-arginine-treated T cells pro-

gressed through cell division in a way comparable to controls

and readily proliferated and differentiated to effector cells upon

secondary stimulation. Furthermore, inhibition of arginases in

human T cells or deletion of ARG2 in mouse T cells did not affect

cell proliferation, suggesting that the downstream fate of L-argi-

nine is less important in T cells than the levels of free L-arginine.

L-arginine may induce some of its pleiotropic effects through

interfering with arginine methyltransferases, which can affect

the functions of various proteins (Geoghegan et al., 2015).

Improved T cell survival is another striking effect induced by

elevated intracellular L-arginine levels. Having excluded a role

for L-arginine-derived nitric oxide and for themetabolic regulator

Sirtuin-1 that has been shown to increase lifespan of lower eu-

karyotes (Tissenbaum and Guarente, 2001) and reduce glyco-

lytic activity (Rodgers et al., 2005), which in T cells may enhance

memory T cell formation and anti-tumor responses (Sukumar

et al., 2013), we considered a direct effect of L-arginine on

protein functions. Metabolite-protein interactions are more

frequent than previously appreciated (Li et al., 2010), and in

some cases, such interactions may have functional conse-

quences. For instance, cholesterol binds to�250 proteins (Hulce

et al., 2013) and succinate, an intermediate of the TCA cycle, sta-

bilizes HIF-1a in macrophages, leading to increased secretion of

IL-1b (Tannahill et al., 2013). We took advantage of a novel

method that allows proteome-wide probing of metabolite-pro-

tein interactions without modifying metabolites (Feng et al.,

2014) and identified several proteins that changed their structure

in the presence of L-arginine, which were likely sensors required

to mediate the metabolic and functional response. We provide

evidence that three nuclear proteins (BAZ1B, PSIP1, and TSN)

were required in T cells for mediating L-arginine’s effect on sur-

vival. BAZ1B is a transcriptional regulator containing a PHD

domain that supposedly binds to methylated histones. PSIP1

is a transcriptional co-activator implicated in protection from

apoptosis (Ganapathy et al., 2003). Interestingly, the structural

changes induced by L-arginine affect the PHD domain of

BAZ1B and the AT-hook DNA-binding domain of PSIP1, which

may affect DNA binding and lead to the induction of the pro-sur-

vival program. Finally, TSN, a small DNA and RNA binding pro-

tein, has been implicated in DNA repair, regulation of mRNA

expression, and RNAi (Jaendling and McFarlane, 2010) and

can thus influence the cellular phenotype in various ways. The

conclusion that these three proteins are involved in the pro-sur-

vival effect mediated by L-arginine is based on the analysis of

several different knockout T cell clones. Yet, there was variability

in the response to L-arginine, which may suggest compensa-

tory mechanisms. This would be consistent with our finding

that several independent proteins can sense L-arginine and

contribute to the improved survival capacity. Future studies are

needed to clarify the mechanism of how L-arginine affects the

structure and functions of the identified sensors in vivo and

how this translates into increased survival.
While in this study we addressed the response to elevated

L-arginine levels, it is well established that T cells also sense

L-arginine depletion, as it may occur in tumor microenviron-

ments or when myeloid suppressor cells degrade L-arginine

through ARG1 (Bronte and Zanovello, 2005). We have shown

that moderately reduced uptake of L-arginine has a negative

impact on T cell survival without affecting proliferation. However,

when L-arginine was completely depleted from the culture me-

dium, T cells no longer proliferated (data not shown and Rodri-

guez et al., 2007). Lack of L-arginine in T cells can be sensed

by GCN2, leading to an amino acid starvation response (Rodri-

guez et al., 2007) and by SLC38A9, leading to inhibition of

mTOR (Rebsamen et al., 2015; Wang et al., 2015), which in

turn inhibits T cell growth and proliferation.

Our findings that T cells with increased L-arginine levels

display improved anti-tumor activity may be due to a combina-

tion of phenotypic changes, including improved survival capac-

ity, metabolic adaptations, and maintenance of a Tcm-like

phenotype. L-argininemay also impact on other cell types in vivo,

e.g., oral administration of L-arginine to healthy volunteers has

been shown to enhance the numbers and activity of natural killer

cells (Park et al., 1991). Future work is needed to address the

exact mechanism by which L-arginine acts in vivo and favors

memory T cell formation and anti-tumor responses.

Generally, metabolite levels can be influenced without genetic

manipulations, offering the possibility for therapeutic applica-

tions. The beneficial effect of L-arginine on T cell survival and

anti-tumor functionality may be exploited therapeutically, for

instance to improve adoptive T cell therapies. Additionally, our

dataset on the dynamics of the proteome and metabolome dur-

ing the T cell response constitute a framework for future studies

addressing the complex interplay between metabolism and

cellular functions.
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amy, R.K., Snijder, B., Fauster, A., Rudashevskaya, E.L., Bruckner, M., et al.

(2015). SLC38A9 is a component of the lysosomal amino acid sensing machin-

ery that controls mTORC1. Nature 519, 477–481.

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puig-

server, P. (2005). Nutrient control of glucose homeostasis through a complex

of PGC-1alpha and SIRT1. Nature 434, 113–118.

Rodriguez, P.C., Quiceno, D.G., and Ochoa, A.C. (2007). L-arginine availability

regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573.

Rolf, J., Zarrouk, M., Finlay, D.K., Foretz, M., Viollet, B., and Cantrell, D.A.

(2013). AMPKa1: a glucose sensor that controls CD8 T-cell memory. Eur. J.

Immunol. 43, 889–896.

Sallusto, F., Lenig, D., Förster, R., Lipp, M., and Lanzavecchia, A. (1999). Two

subsets of memory T lymphocytes with distinct homing potentials and effector

functions. Nature 401, 708–712.

Sallusto, F., Lanzavecchia, A., Araki, K., and Ahmed, R. (2010). From vaccines

to memory and back. Immunity 33, 451–463.

Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and

genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784.

Scheltema, R.A., and Mann, M. (2012). SprayQc: a real-time LC-MS/MS qual-

ity monitoring system to maximize uptime using off the shelf components.

J. Proteome Res. 11, 3458–3466.

Schluns, K.S., and Lefrançois, L. (2003). Cytokine control of memory T-cell

development and survival. Nat. Rev. Immunol. 3, 269–279.
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L-arginine monohydrochloride Sigma Cat#A4599

D-arginine Sigma Cat#A2646

L-Arginine-13C6 hydrochloride Sigma Cat#643440

L-[2,3,4-3H]-arginine-monohydrochloride Perkin Elmer Cat#NET1123001MC

Annexin-V-FITC Biolegend Cat#640906

Cell-Tak BD Biosciences Cat#354240

Oligomycin Sigma Cat#75351

Carbonyl cyanide-4-(trifluoromethoxy)

phenylhydrazone (FCCP)

Sigma Cat#C2920

Antimycin Sigma Cat#A8674

Recombinant human interleukin-2 BD Biosciences Cat#554603

Recombinant human interleukin-12 Biolegend Cat#573002

Human recombinant interleukin-2 (transfected J588L

cell supernatant)

In house N/A

FlowCytomix basic kit eBioscience Cat#BMS8420FF

Flow Cytomix human Th1/Th2/Th9/Th17/Th22 13plex eBioscience Cat#BMS817FF

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Phorbol 12-myristate 13-acetate (PMA) Sigma Cat#P1585

Ionomycin Sigma Cat#I0634

Rapamycin Sigma Cat#R8781

Proteinase K Sigma Cat#P2308

Critical Commercial Assays

Glucose (GO) Assay Kit Sigma Cat#GAGO20-1KT

Experimental Models: Cell Lines

Human: primary T lymphocytes This paper N/A

Mouse: primary T lymphocytes This paper N/A

HEK293T/17 ATCC Cat#CRL-11268

B16.OVA Matteo Bellone Bellone et al., 2000

Experimental Models: Organisms/Strains

Mouse: C57BL/6: (C57BL/6JOlaHsd) Harlan Cat#57

Mouse: BALB/c: (BALB/cOlaHsd) Harlan Cat#162

Mouse: Cd3e–/– C57BL/6 Malissen et al., 1995 N/A

Mouse: OT-I: (C57BL/6-Tg(TcraTcrb)1100Mjb/J) The Jackson Laboratory Cat#JAX003831

Mouse: Rag1–/–: (B6.129S7-Rag1tm1Mom/J) The Jackson Laboratory Cat#JAX002216

Mouse: Arg2–/–: C57BL/6 (Arg2tm1Weo/J) The Jackson Laboratory Cat#JAX020286

Mouse: Hemagglutinin (HA) TCR-transgenic (6.5)

BALB/c

Kirberg et al., 1994 N/A

Recombinant DNA

lentiCRISPR v2 Addgene Cat#52961

psPAX Addgene Cat#12260

pMD2.G Addgene Cat#12259

Sequence-Based Reagents

Short guide RNAs, see Table S6 This paper N/A

Software and Algorithms

MaxQuant Cox and Mann, 2008 http://www.coxdocs.org/doku.php?

id=maxquant:start

Perseus Cox and Mann, 2012 http://www.coxdocs.org/doku.php?id=perseus:start

Progenesis-QI Version 2.0 Nonlinear Dynamics, Waters http://www.nonlinear.com/progenesis/qi/

Proteome Discoverer 1.4 (SEQUEST HT search

engine)

Thermo Fisher https://www.thermofisher.com/order/catalog/

product/IQLAAEGABSFAKJMAUH

R environment for statistical computing N/A https://www.r-project.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Antonio Lanza-

vecchia (lanzavecchia@irb.usi.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Primary T Cells
Blood from healthy male or female donors was obtained from the Swiss Blood Donation Center of Basel and Lugano, and used in

compliance with the Federal Office of Public Health (authorization no. A000197/2 to F.S).

Mice
Wild-type (WT) C57BL/6J and BALB/cmice were obtained fromHarlan (Italy).Cd3e–/– C57BL/6mice, which lack all T cells but exhibit

organized lymphoid organ structures and normal B cell development, have been described previously (Malissen et al., 1995). OT-I
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(JAX 003831) mice were bred and maintained on a Rag1–/– (JAX 002216) background. WT C57BL/6 mice with different CD45 and

CD90 alleles were bred in our facility, and crossed with Rag1–/– OT-I transgenic mice, to perform adoptive transfer experiments.

Arg2–/– C57BL/6 (JAX 020286) mice were kindly provided by W. Reith. Hemagglutinin (HA) TCR-transgenic (6.5) BALB/c mice (Kir-

berg et al., 1994) specific for peptide 111-119 from influenza HA were kindly provided by J. Kirberg and bred in our facility. All mice

were bred andmaintained under specific pathogen-free conditions. Animals were treated in accordance with guidelines of the Swiss

Federal Veterinary Office and experiments were approved by the Dipartimento della Sanità e Socialità of Canton Ticino.

METHOD DETAILS

Isolation of Human T Cells
Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll gradient centrifugation. CD4+ T cells were enriched with mag-

netic microbeads (Miltenyi Biotec). Naive CD4+ T cells were sorted as CD4+ CCR7+ CD45RA+ CD25– CD8– on a FACS Aria III cell

sorter (BD Biosciences). For cell staining, the following antibodies were used: anti-CD4-APC (allophycocyanin), clone 13B8.2;

anti-CD8-APC, clone B9.11; anti-CD8-FITC (fluorescein isothiocyanate), clone B9.11; anti-CD4-FITC, clone 13B8.2; anti-

CD45RA-PE (phycoerythrin), clone alb11; anti-CD25-FITC, clone B1.49.9 (all from Beckman Coulter); anti-CCR7-Brilliant Violet

421, clone G043H7 (Biolegend).

Cell Culture
Cells were cultured in RPMI-1640 medium supplemented with 2mM glutamine, 1% (v/v) non-essential amino acids, 1% (v/v) sodium

pyruvate, penicillin (50 U ml�1), streptomycin (50 mg ml�1; all from Invitrogen), and 5% (v/v) human serum (Swiss Blood Center). Hu-

man T cells were activated with plate bound anti-CD3 (5 mg/ ml, clone TR66) and anti-CD28 (1 mg/ml, clone CD28.2, BD Biosciences)

for 48 hr. Then, cells were cultured in IL-2 containing media (500 U/ml).

Metabolomics
Naive CD4+ T cells were either analyzed directly after isolation or at different time points after activation with CD3 and CD28 anti-

bodies. Cells were washed twice in 96-well plates with 75 mM ammonium carbonate at pH 7.4 and snap frozen in liquid nitrogen.

Metabolites were extracted three times with hot (> 70�C) 70% ethanol. Extracts were analyzed by flow injection – time of flight

mass spectrometry on an Agilent 6550 QTOF instrument operated in the negative mode, as described previously (Fuhrer et al.,

2011). Typically 5,000-12,000 ions with distinct mass-to-charge (m/z) ratio could be identified in each batch of samples. Ions

were putatively annotated by matching their measured mass to that of the compounds listed by the KEGG database for Homo sa-

piens, allowing a tolerance of 0.001 Da. Only deprotonated ions (without adducts) were considered in the analysis. In case of multiple

matching, such as in the case of structural isomers, all candidates were retained.

Metabolic Flux Experiments
Naive CD4+ T cells were activated and 4 days later extensively washed and pulsed with L-arginine free RPMI medium containing

1 mM [U-13C]-L-Arginine hydrochloride (Sigma). After increasing pulse-times, cells were washed and snap frozen in liquid nitrogen.

Metabolites were extracted and analyzed by HILIC LC-MS/MS.

Detection of Amino Acids and Polyamines by HILIC LC-MS/MS
Supernatants from extraction were dried at 0.12 mbar to complete dryness in a rotational vacuum concentrator setup (Christ, Oster-

ode am Harz, Germany) and dried metabolite extracts were stored at �80�C. Dry metabolite extracts were resuspended in 100 ml

water and 5 ml were injected on an Agilent HILIC Plus RRHD column (100 3 2.1mm 3 1.8 mm; Agilent, Santa Clara, CA, USA).

A gradient of mobile phase A (10 mM ammonium formate and 0.1% formic acid) and mobile phase B (acetonitrile with 0.1% formic

acid) was used as described previously (Link et al., 2015). Flow rate was held constant at 400 ml/min and metabolites were detected

on a 5500 QTRAP triple quadrupole mass spectrometer in positive MRM scan mode (SCIEX, Framingham, MA, USA).

Sample Preparation for Proteome MS Analysis
Samples were processed as described by (Hornburg et al., 2014). In brief, cell pellets were washed with PBS and lysed in 4% SDS,

10mMHEPES (pH 8), 10mMDTT. Cell pellets were heat-treated at 95�C for 10min and sonicated at 4�C for 15min (level 5, Bioruptor,

Diagenode). Alkylation was performed in the dark for 30 min by adding 55 mM iodoacetamide (IAA). Proteins were precipitated over-

night with acetone at �20�C and resuspended the next day in 8 M Urea, 10 mM HEPES (pH 8). A two-step proteolytic digestion was

performed. First, samples were digested at room temperature (RT) with LysC (1:50, w/w) for 3h. Then, they were diluted 1:5 with

50 mM ammoniumbicarbonate (pH 8) and digested with trypsin (1:50, w/w) at RT overnight. The resulting peptide mixtures were

acidified and loaded on C18 StageTips (Rappsilber et al., 2007). Peptides were eluted with 80% acetonitrile (ACN), dried using a

SpeedVac centrifuge (Eppendorf, Concentrator plus, 5305 000.304), and resuspended in 2% ACN, 0.1% trifluoroacetic acid

(TFA), and 0.5% acetic acid. For deeper proteome analysis a peptide library was built. For this, peptides from naive and activated

T cells were separated according to their isoelectric point on dried gel strips with an immobilized pH gradient (SERVA IPG BlueStrips,

3-10 / 11 cm) into 12 fractions as described by Hubner et al., 2008 (Hubner et al., 2008).
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LC-MS/MS for Analysis of Proteome
Peptides were separated on an EASY-nLC 1000 HPLC system (Thermo Fisher Scientific, Odense) coupled online to a Q Exactive

mass spectrometer via a nanoelectrospray source (Thermo Fisher Scientific)(Michalski et al., 2011). Peptides were loaded in buffer

A (0.5% formic acid) on in house packed columns (75 mm inner diameter, 50 cm length, and 1.9 mm C18 particles from Dr. Maisch

GmbH). Peptides were eluted with a non-linear 270 min gradient of 5%–60% buffer B (80% ACN, 0.5% formic acid) at a flow rate of

250 nl/min and a column temperature of 50�C. Operational parameters were real-time monitored by the SprayQC software (Schel-

tema and Mann, 2012). The Q Exactive was operated in a data dependent mode with a survey scan range of 300-1750 m/z and a

resolution of 70’000 at m/z 200. Up to 5 most abundant isotope patterns with a chargeR 2 were isolated with a 2.2 Th wide isolation

window and subjected to higher-energy C-trap dissociation (HCD) fragmentation at a normalized collision energy of 25 (Olsen et al.,

2007). Fragmentation spectra were acquired with a resolution of 17,500 at m/z 200. Dynamic exclusion of sequenced peptides was

set to 45 s to reduce the number of repeated sequences. Thresholds for the ion injection time and ion target values were set to 20 ms

and 3E6 for the survey scans and 120ms and 1E5 for theMS/MS scans, respectively. Data were acquired using the Xcalibur software

(Thermo Scientific).

Analysis of Proteomics Data
MaxQuant software (version 1.3.10.18) was used to analyze MS raw files (Cox and Mann, 2008). MS/MS spectra were searched

against the human Uniprot FASTA database (Version May 2013, 88’847 entries) and a common contaminants database (247 entries)

by the Andromeda search engine (Cox et al., 2011). Cysteine carbamidomethylation was applied as fixed and N-terminal acetylation

andmethionine oxidation as variablemodification. Enzyme specificity was set to trypsin with amaximumof 2missed cleavages and a

minimum peptide length of 7 amino acids. A false discovery rate (FDR) of 1% was required for peptides and proteins. Peptide iden-

tification was performedwith an allowed initial precursormass deviation of up to 7 ppmand an allowed fragmentmass deviation of 20

ppm. Nonlinear retention time alignment of all measured samples was performed inMaxQuant. Peptide identifications werematched

across different replicates within a timewindow of 1min of the aligned retention times. A library for ‘match between runs’ inMaxQuant

was built from additional single shot analysis at various time points aswell as fromOFF gel fractionated peptides of naive andmemory

CD4 T cells. Protein identification required at least 1 razor peptide. A minimum ratio count of 1 was required for valid quantification

events via MaxQuant’s Label Free Quantification algorithm (MaxLFQ)(Cox and Mann, 2008; Luber et al., 2010). Data were filtered for

common contaminants and peptides only identified by side modification were excluded from further analysis. In addition, it was

required to have a minimum of two valid quantifications values in at least one group of replicates. Copy numbers were estimated

based on the protein mass of cells (Wi�sniewski et al., 2012). We set the protein mass of a naive T cell to 25 pg and of an activated

T cell to 75 pg.

Limited Proteolysis and Mass Spectrometry
Naive CD4+ T cells were washed twice with PBS and homogenized on ice under non-denaturing conditions (20 mMHEPES, 150 mM

KCl and 10 mMMgCl2 [pH 7.5]) using a tissue grinder (Wheaton, Millville, NJ, NSA). Homogenates were further passed several times

through a syringe (0.45x12mm) on ice. Next, cell debris was removed by centrifugation and protein concentration of supernatants

was determined by BCA assay (BCA Protein Assay Kit, Thermo Scientific, Rockford, IL, USA). L-arginine, D-arginine or L-ornithine

was added to homogenates to a final concentration of 1 nmol per mg total protein, and incubated for 5 min at room temperature. As a

control, samples without added metabolites were processed in parallel. Then, proteinase K from Tritirachium album (Sigma) was

added at an enzyme to substrate ratio of 1:100, followed by an incubation of 5 min at room temperature. The digestion was stopped

by boiling the reactionmixture for 3min. Proteins were denatured by adding 10%sodiumdeoxycholate (DOC) solution (1:1, v/v) to the

reaction mixture, followed by a second boiling step of 3 min. Disulfide bridges were reduced with 5 mM Tris(2-carboxyethyl)phos-

phine hydrochloride (Thermo Scientific) at 37�C for 30 min and subsequently free cysteines were alkylated with 40 mM IAA at

25�C for 30 min in the dark. DOC concentration of the mixture was diluted to 1% with 0.1 M ammonium bicarbonate (AmBiC) prior

to a stepwise protein digestion with LysC (1:100, w/w) for 4 hr at 37�C and trypsin (1:100, w/w) overnight at 37�C. The resulting pep-

tide mixture was acidified to pH < 2, loaded onto Sep-Pak tC18 cartridges (Waters, Milford, MA, USA), desalted and eluted with 80%

acetonitrile. Peptide samples were dried using a vacuum centrifuge and resuspended in 0.1% formic acid for analysis by mass

spectrometry.

Peptides were separated using an online EASY-nLC 1000 HPLC system (Thermo Fisher Scientific) operated with a 50 cm long in

house packed reversed-phase analytical column (Reprosil Pur C18 Aq, Dr. Maisch, 1.9 mm) (Reprosil Pur C18 Aq, Dr. Maisch, 1.9 mm)

before being measured on a Q-Exactive Plus (QE+) mass spectrometer. A linear gradient from 5%–25% acetonitrile in 240 min at a

flowrate of 300 nl/minwas used to elute the peptides from the column. Precursor ion scansweremeasured at a resolution of 70,000 at

200m/z and 20MS/MS spectra were acquired after higher-energy collision induced dissociation (HCD) in the Orbitrap at a resolution

of 17,500 at 200 m/z per scan. The ion count threshold was set at 1,00 to trigger MS/MS, with a dynamic exclusion of 25 s. Raw data

were searched against the H. sapiens Uniprot database using SEQUEST embedded in the Proteome Discoverer software (both

Thermo Fisher Scientific). Digestion enzyme was set to trypsin, allowing up to two missed cleavages, one non-tryptic terminus

and no cleavages at KP (lysine-proline) and RP (arginine-proline) sites. Precursor and fragment mass tolerance was set at 10 ppm

and 0.02 Da, respectively. Carbamidomethylation of cysteines (+57.021 Da) was set as static modification whereas oxidation
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(+15.995 Da) of methionine was set as dynamicmodification. False discovery rate (FDR) was estimated by the Percolator (embedded

in Proteome Discoverer) and the filtering threshold was set to 1%.

Label-free quantitation was performed using the Progenesis-QI Software (Nonlinear Dynamics, Waters). Raw data files were im-

ported directly into Progenesis for analysis. MS1 feature identification was achieved by importing the filtered search results (as

described above) from Proteome Discoverer into Progenesis to map the corresponding peptides based on their m/z and retention

times. Annotated peptides were then quantified using the areas under their extracted ion chromatograms. Pairwise comparisons

were performed with the untreated (no metabolite added) sample as a reference and peptide fold changes were calculated using

three biological replicates per condition where the statistical significance was assessed with a two-tailed heteroscedastic Student’s

t test. A fold change was considered significant with an absolute change > 5 and a corresponding p value < 0.05. Only proteins with

two or more peptides changing significantly (according to the aforementioned criteria) were taken into consideration.

Quantitative Amino Acid Uptake and Calculation of Proteome Incorporation
150,000 freshly isolated naive CD4+ T cells were activated with plate bound CD3 and CD28 antibodies and cultured in the same me-

dium for four days. As a control, medium without cells was co-cultured. Then cell supernatants and control media were analyzed by

quantitative amino acid analysis (MassTrak, Waters) at the Functional Genomic Center in Zurich. Amino acid uptake was calculated

as the difference between control media and cell supernatants. At the time of the measurement, we counted on average 1 Mio cells.

We then calculated how much of each amino acid is incorporated into the proteome of 850,000 cells based on the amino acid

sequences and copy numbers of each protein. Average copy numbers from the time point 72 hr were used.

3H-Arginine Uptake Assay
Arginine uptake was measured as previously described for glutamine uptake (Carr et al., 2010). Briefly, resting or activated T cells

were resuspended at a concentration of 1.5x107 cells/ml in serum-free RPMI 1640 lacking L-arginine. 50 ml 8% sucrose/20%

perchloric acid were layered to the bottom of a 0.5 ml Eppendorf tube and 200 ml 1-bromododecane on top of it (middle layer), fol-

lowed by 50 ml L-arginine-free medium containing 1.5 mCi L-[2,3,4-3H]-arginine-monohydrochloride (Perkin Elmer). Then, 100 ml cell

suspension was added to the top layer and cells were allowed to take up radiolabeled L-arginine for 15 min at room temperature.

Cells were then spun through the bromododecane into the acid/sucrose. This stops the reaction and separates cells from unincor-

porated 3H-L-arginine. The bottom layer containing the cells was carefully removed and analyzed by liquid scintillation. As controls

cell-free media were used.

OCR Measurements
Measurements were performed using a Seahorse XF-24 extracellular flux analyzer (Seahorse Bioscience). Naive CD4+ T cells were

sorted and activated with plate-bound CD3 and CD28 antibodies in complete medium or medium supplemented with 3 mM L-argi-

nine. Four days later (in themorning), cells were pooled, carefully count and plated (73 105 cells/well) in serum-free unbufferedRPMI-

1640 medium (Sigma) onto Seahorse cell plates coated with Cell-Tak (BD Bioscience). The serum-free unbuffered medium was not

supplemented with L-arginine. Oligomycin (1.4 mM, Sigma), Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP, 0.6 mM,

Sigma) and antimycin (1.4 mM, Sigma) were injected.

IL-2 Withdrawal Assay
Naive CD4 T cells were activated with plate-bound CD3 and CD28 antibodies. 48 hr after activation IL-2 was added to culture media

(500 Uml�1). After a further 3 days of culturing, cells were washed, counted, and equal cell numbers were plated in medium devoid of

IL-2. The withdrawal medium was no longer supplemented with e.g., L-arginine. Cell viability was assessed with annexin V.

Cytokine Analysis
105 naive T cells were stimulated with plate bound anti-CD3 (5mg/ml�1) and anti-CD28 (1mg/ml�1) in the presence of IL-12

(10 ng/ml, R&D Systems) to polarize cells toward a Th1 phenotype. After 48 hr, cells were transferred into U-bottom plates and

IL-2 (10 ng/ml, R&D Systems) was added. Three days later, supernatants were collected and interferon-g was quantified using

FlowCytomix assays (eBioscience). Samples were analyzed on a BD LSR Fortessa FACS instrument and quantification was per-

formed with the FlowCytomix Pro 3.0 software. For re-stimulation, cells were cultured for 5 hr in the presence of 0.2 mM phorbol

12-myristate 13-acetate (PMA) and 1 mg/ml ionomycin (both from Sigma).

Glucose Consumption Assay
The amount of glucose in media was determined using the Glucose (GO) Assay Kit from Sigma. Consumption was calculated as the

difference between glucose content in reference medium (co-incubated medium without cells) and cell supernatants.

Analysis of Phosphorylation Levels of 4E-BP and S6K1
Naive CD4+ T cells were activated with plate-bound antibodies to CD3 and CD28. Four days after activation, cells were lysed and

analyzed by western blot with the following antibodies obtained from Cell Signaling Technology. Phospho-p70 S6K(Thr389)

#9205; p70 S6 Kinase #9202; Phospho-4E-BP1 (Thr37/46) #2855; 4E-BP1 #9644. Rapamycin (Sigma) was used at 100 nM.
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CRISPR/Cas9-Mediated Gene Disruption
Two to four short guide RNAs (sgRNAs) per gene (Table S6) were designed using the online tool provided by the Zhang laboratory

(http://tools.genome-engineering.org). Oligonucleotide pairs with BsmBI-compatible overhangs were annealed and cloned into the

lentiviral vector lentiCRISPR v2 (Addgene plasmid # 52961) (Sanjana et al., 2014). For virus production, HEK293T/17 cells were trans-

fected with lentiCRISPR v2, psPAX2 (Addgene # 12260) and pMD2.G (Addgene plasmid # 12259) at a 8:4:1 ratio using polyethyle-

nimine and cultured in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum (FBS), 1% sodium pyruvate,

1% non-essential amino acids, 1% kanamycin, 50 units/ml penicilin/streptomycin and 50 mM b-mercaptoethanol. The medium was

replaced 12 hr after transfection and after a further 48 hr virus was harvested from supernatant. Cell debris was removed by centri-

fugation (10 min at 2000 rpm followed) followed by ultra-centrifugation (2.5 hr at 24’000 rpm) through a sucrose cushion.

Freshly isolated naive CD4+ T cells were lentivirally transduced and activated with plate-bound CD3 and CD28 antibodies. 48 hr

after activation IL-2 was added to culture media (500 U/ml�1). 6 days after activation, cells were cultured for 2 days in medium sup-

plemented with 1 mg/ml puromycin to select for cells expressing the lentiCRISPR v2 vector. Subsequently, cells were cultured in

normal medium followed by additional two days inmedium containing puromycin for a second selection step. Then, single cell clones

were generated by limiting dilution as described in (Messi et al., 2003).

To screen for clones with disrupted target genes, individual clones were lysed with sample buffer containing 80 mM Tris (pH 6.8),

10.5% glycerol, 2% SDS and 0.00004% Bromophenol blue. Lysate of 100’000 cells was separated by SDS-PAGE followed, blotted

onto PVDF membranes and analyzed with antibodies to target proteins, Baz1B (Abcam, ab50850), PSIP1 (Bethyl, A300-848A),

DDX17 (Abcam, ab180190), PTPN6 (Santa Cruz, sc-287) or TSN (Sigma, HPA059561). As loading control membranes were reprobed

with an antibody to beta-tubulin (Sigma, T6074). To screen for clones with disrupted B2M, single cell clones were stained with an

antibody to MHC-I (eBioscience, HLA-ABC-FITC) and analyzed by flow cytometry.

Isolation and Culturing of Mouse CD8+ T Cells
Naive CD8+OT-I cells were isolated fromRag1–/– OT-I transgenic mice. Lymph nodes and spleens were harvested and homogenized

using the rubber end of a syringe and cell suspensions were filtered through a finemesh. Cells were first enriched with anti-CD8mag-

netic microbeads (CD8a, Ly-2 microbeads, mouse, Miltenyi Biotec) and then sorted on a FACSAria III Cell Sorter (BD Biosciences) to

obtain cells with a CD44lo CD62Lhi CD8+ phenotype. OT-I cells (CD90.1+) were cultured for 2 days in aCD3/aCD28 (2mg/ml) bound to

NUNC 96 well MicroWell MaxiSorp plates (Sigma-Aldrich M9410) in the presence or absence of 3 mM L-arginine in the culture

medium. On day 2 cells were transferred to U-bottom plates and cultured for 2 additional days in the presence of IL-2 (500 U/ml).

Adoptive T Cell Transfers and Survival Experiments
CD90.1+ CD45.1/2+ OT-I T cells were activated with plate-bound antibodies to CD3 and CD28 in control medium. OT-I cells with a

different congenic marker (CD90.1+ CD45.1+) were activated in L-arginine-supplemented medium. At day 4, equal cell numbers

were injected into the tail vein of Cd3e–/– host mice. To study the expansion of OT-I effector cells, host mice were sacrificed after

1, 3, 6, and 10 days post transfer and CD90.1+ OT-I T cells from lymphoid organs (spleen and lymph nodes) were enriched with

anti-CD90.1 microbeads (Miltenyi Biotec), stained and analyzed by FACS. The following monoclonal antibodies were used

a-CD8a (53-6.7), a-CD44 (IM7), a-CD62L (MEL-14), a-CD90.1 (OX-7), a-CD90.2 (30-H12), a-CD45.1 (A20), a-CD45.2 (104).

Tumor Experiments: In Vitro Activation of T Cells
B16-OVA melanoma cells were cultured in RPMI 1640 plus 10% FCS, 1% penicillin/streptomycin and 2mM glutamine. Before injec-

tion intomice, cells were trypsinized andwashed twice in PBS. Then, 5x105 cells were subcutaneously injected in the dorsal region of

WT C57BL/6 mice. Ten days post injection, 5x106 OT-I cells, that have been activated in vitro as described above, were injected into

the tail vein of tumor-bearing mice. The size of tumors was measured in a blinded fashion using calipers.

Tumor Experiments: In Vivo Priming of T Cells
B16-OVA melanoma cells were cultured and injected into WT C57BL/6 mice as described above. Five days post injection, when

tumors were very small, mice were g-irradiated (5 Gy) and 24 hr later they received 4x105 OT-I cells intravenously (i.v.). The day after

mice were immunized intraperitoneally (i.p.) with SIINFEKL peptide (OVA257-264) in Imject Alum Adjuvant (Thermo Fisher Scientific).

L-Arg (1.5 g/Kg bodyweight) or PBS, as control, was daily orally administrated, starting one day before T cell transfer and until the end

of the experiment. The size of tumors was measured in a blinded fashion using calipers.

Experiments with Arg2–/– Mouse T Cells
For in vitro experiments, 5x104 FACS-sorted naive T cells were activated with plate-bound antibodies to CD3 (2 mg/ml) and CD28

(2 mg/ml). Two days after activation, T cells were transferred into U-bottom plates and IL-2 was added to culture media. Four

days after activation, cells were washed extensively and plated in medium devoid of IL-2. Cell viability was measured two days after

IL-2 withdrawal by Annexin V staining. For in vivo experiments, 106 FACS-sorted WT CD8+ naive T cells (CD45.1+) were transferred

together with 106 FACS-sorted Arg2–/– CD8+ naive T cells (CD45.2+, CD90.2+), into slightly g-irradiated (3 Gy) WT mice (CD45.2+,

CD90.1+). The day after, hostmice were immunized subcutaneously (s.c.) withMHC class-I binding peptide SIINFEKL (Chicken Oval-

bumin, OVA, amino acids 257-264, 15 mg/mouse) emulsified in Complete Freund’s Adjuvant, CFA. CFA was prepared by adding
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4mg/ml ofM. tuberculosisH37RA (Difco) to Incomplete Freund’s Adjuvant, IFA (BDBiosciences). SIINFEKL peptide (OVA257-264) was

obtained from Servei de Proteòmica, Pompeu Fabra University, Barcelona, Spain. On day 15 post immunization, mice were eutha-

nized and draining lymph nodes were collected and analyzed by flow cytometry. Cells were counted according to the expression

of congenic markers and by gating on live CD44hi, H-2Kb/OVA257-264 multimer+, CD8+ cells. The H-2Kb/OVA257-264 multimers

were purchased from TCMetrix.

Mouse Experiments with Dietary L-Arginine
2x105 CD90.1+ CD4+HA TCR-transgenic T cells, on a BALB/c background, were adoptively transferred inWTCD90.2+ BALB/cmice.

The day after, host mice were immunized s.c. with influenza HA110-119 peptide (purchased from Anaspec) emulsified in CFA. L-Arg

(1.5 g/kg body weight) or PBS, as control, was daily orally administrated, starting 1 day before T cell transfer and until the end of the

experiment. Draining lymph nodes were analyzed on day 15 post immunization for the presence of transferred transgenic memory

CD44hi CD90.1+ CD4+ T cells. Sera were collected 30 min after oral L-arginine administration to mice and L-arginine and L-threonine

concentrations in sera were measured on a MassTrak (Waters) instrument at the functional genomics center in Zurich. To determine

intracellular L-arginine levels, activated T cells were isolated from draining lymph nodes 60 hr after activation and 30 min after the

daily L-arginine administration. Metabolites were extracted with hot 70% ethanol and analyzed by HILIC LC-MS/MS.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the exact value of n, the definition of center, dispersion and precision measures (mean ± SEM) and

statistical significance are reported in the Figures and Figure Legends. Data were judged to be statistically significant when p < 0.05

by two-tailed Student’s t test. In figures, asterisks denote statistical significance as calculated by Student’s t test (*, p < 0.05; **, p <

0.01; ***, p < 0.001; ****, p < 0.0001). Survival significance in adoptive cell transfer studies was determined by a Log-rank test. Sta-

tistical analysis was performed in R or GraphPad PRISM 6.

Proteome Data
Data analysis was performed using the Perseus software and the R statistical computing environment. Missing values were imputed

with a normal distribution of 30% in comparison to the SD of measured values and a 1.8 SD down-shift of the mean to simulate the

distribution of low signal values (Hubner et al., 2010). Statistical significance between time points was evaluated by one-way ANOVA

for each proteinGroup using a FDR of 0.1% and S0 of 2 (S0 sets a threshold for minimum fold change), unless otherwise noted (Tusher

et al., 2001). For pairwise comparison, t test statistic was applied with a permutation based FDR of 5% and S0 of 1.

Enrichment Analysis
Univariate test was performed on either all proteins or metabolites by t test with unequal variance (Welch Test). The resulting P-values

were adjusted using the Benjamini-Hochberg procedure. Enrichment analysis was performed as suggested by Subramanian et al.

(Subramanian et al., 2005). Both for metabolomics and proteomics data, we applied a permissive filtering with adj. p value less or

equal than 0.1 and absolute log2(fold-change) larger or equal than 0.5. Enrichment P-values were calculated by the Fisher’s exact

test for all incremental subsets of filtered features ranked by the p value. For the 261 pathways defined by KEGG, the lowest P-value

was retained as a reflection of the best possible enrichment given by the data independently of hard cut-offs. Eventually, enrichment

P-values were corrected for multiple testing by the Benjamini-Hochberg method. In general, enrichments with an adjusted P-value <

0.05 were considered significant. Pathway enrichments were calculated independently for proteomics and metabolomics data. For

metabolome-based enrichments, structural isomers in pathway were condensed and counted only once to account for the fact that

the employed technology cannot distinguish between metabolite with identical molecular weight.

DATA AND SOFTWARE AVAILABILITY

Themetabolomics and proteomics data are available in Tables S1 and S2. All software is freely or commercially available and is listed

in the STAR Methods.
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Supplemental Figures

Figure S1. Quality Control of the Proteome Dataset, Related to Figure 1

(A) Sorting of human naive CD4+ T cells. Shown are FACS plots of cells after enrichment with anti-CD4 magnetic beads. Cells were sorted as CD4+ CCR7+

CD45RA+ and CD8–CD25–.

(B) Expression kinetics of indicated marker proteins. Bars represent the SEM of data from different donors, n = 7 (for resting cells), n = 3 (for 12h, 72h), n = 2 (for

96h, 48h), n = 1 (for 24h). CD25 and CD8 were not identified in resting cells. After activation, expression of CD25 increased whereas CD8 was never detected.

(C) Identified protein groups per condition. Taking all conditions together, a total of 9,718 proteins were identified. Per condition two numbers are indicated; the

higher number indicates the total identifications and the lower number themean of the single shots. Samples in blue weremeasured on a different instrument than

samples in black. L-arg refers to 3 mM L-arginine.

(D) Relative protein abundance over time shown as a heat map. Log2 fold changes (FC) are relative to naive resting T cells. The marker for proliferating cells Ki-67

increased abruptly after 48h, when cells started to proliferate. CD40L expression increased immediately after activation and then decreased to initial levels. A

similar expression pattern was observed for CD69, which inhibits egress from lymph nodes (Shiow et al., 2006). The expression of integrins a4 and b7 increased at

later time points.

(E) Copy numbers of individual subunits of well-characterized protein complexes were plotted against each other. As the Sec23 subfamily includes Sec23A and

Sec23B, their copy numbers were added up. The same was done for the subfamily members of Sec24 (A-D).

(F) Copy numbers of components of the nuclear pore complex (NPC). The stoichiometry of subunits measured using targeted quantitative proteomics (Ori et al.,

2013) is indicated on the graph in red. Shown are copy numbers measured in naive resting T cells from seven donors.

(G) Same as in (F) but shown are copy numbers measured from activated cells (72h). n = 3 from three donors. Note that the numbers of Nup107 increased from

11,464 ± 1620 to 53,091 ± 1471. (A and E–G) Error bars represent SEM throughout.
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Figure S2. Impact of L-citrulline on Metabolism, Related to Figure 3

(A) Human naive CD4+ T cells were activated in normal medium or in L-Argmedium. Nitric oxide formationwasmeasured using DAF-FMdiacetate at different time

points.

(B) T cells were activated in control medium (Ctrl, containing 1mM L-arginine), or in medium supplemented with 3mM L-arginine (L-Arg) or 3mM L-citrulline (L-Cit)

and harvested at different time points. The heatmap shows the difference in the abundance of metabolites in T cells cultured in L-Arg- or L-Cit-medium compared

to controls. Shown are only metabolites with a log2 fold change > 1 and an adjusted p value of < 0.05. n = 6 from one donor.
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Figure S3. L-Arginine Delays the Onset of Proliferation, Related to Figure 4

(A) Kinetics of T cell proliferation. Human naive CD4+ T cells were labeledwith CellTraceViolet (CTV) and activated in Ctrl medium or in L-Argmedium or inmedium

supplemented with 3 mM D-arginine or 3 mM L-arginine together with 3 mM L-lysine. Cell divisions were monitored at 48h and 72h by flow cytometry.

(B) CTV-labeledCD4+ T cells were activated in normal medium or L-Argmedium and the dilution of CTVwasmeasured over time by flow cytometry. n = 5 from two

donors.

(C) 3H-L-arginine uptake by 3 day-activated CD4+ T cells during a 15min pulse. Where indicated, 3mML-arginine, D-arginine or L-lysine was added to the culture

medium as a competitive uptake inhibitor. n = 7 for control, n = 9 for L-Arg, n = 5 for D-Arg, and n = 9 for L-Lys. Error bars represent SEM throughout.



Figure S4. L-Arginine Increases the Survival of Activated T Cells Independent of mTOR Signaling, Related to Figure 4

(A) Human naive CD4+ T cells were activated for 4 days, lysed and the phosphorylation levels of S6K1 (pThr389) and 4E-BP (pThr37/46) were analyzed by western

blot. Rapamycin inhibited the phosphorylation of the mTOR targets, while DMSO or supplementation of the culture medium with 3 mM L-arginine had no effect.

T cells hardly proliferated upon activation in culture medium containing no or 20 mM L-lysine and therefore phosphorylation of the target proteins could not be

assessed.

(B) T cell survival experiment. Human naive CD4+ T cells were activated in Ctrl medium or inmedium containing 100 nM rapamycin. On day 5, cells werewashed to

withdraw IL-2 and cell survival was measured at different time points.

(C) Same as in (B) but cell survival was only measured 5 days after IL-2 withdrawal. n = 7 from seven donors. Boxplot. Same as in Figures 2A and 2B.

(D) Metabolic profiling of CD4+ T cells activated inmedium containing 100 nM rapamycin. The heat map shows the difference of metabolite abundances between

rapamycin-treated cells and controls. n = 10 from two donors.
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Figure S5. Oral Administration of L-Arginine Increases L-Arginine Levels in Mouse Sera and T Cells, Related to Figure 5

(A) BALB/c mice were administered L-arginine (1.5 mg/g body weight) and sera were collected after 30 min. L-arginine and, as a control, L-threonine con-

centrations were analyzed on a MassTrak amino acid analyzer. n = 4.

(B) BALB/c mice were immunized with ovalbumin in CFA. Sixty hours later, activated T cells from draining lymph nodes were enriched using magnetic beads

coated with antibodies to CD44. Metabolites were extracted using hot 70% ethanol and L-arginine and L-glutamine levels (as an internal standard) were

measured using LC-MS/MS. Shown is the ratio between L-arginine and L-glutamine intensities. n = 14.

(C) Intracellular L-arginine levels of wild-type and Arg2–/–CD4+ and CD8+ T cells 4 days after activation. n = 3. For statistical tests, a two-tailed unpaired Student’s

t test was used throughout, n.s. non significant; *p < 0.05; **p < 0.005; ***p < 0.0005; ****p < 0.0001. Error bars represent SEM throughout.
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Figure S6. L-arginine Upregulates Sirtuin-1, Related to Figure 6

(A) Copy numbers of Sirtuin-1 (SIRT1) as determined by quantitative MS in human naive CD4+ T cells activated in normal medium or L-Arg-medium. n = 3 from

three donors.

(B) T cell survival experiment. The Sirtuin-1 inhibitor Ex-527 was added at the time point of activation at a concentration of 5 mM. n = 16 from four donors.

(C) T cell survival experiments with clones expressing Cas9 only, or clones devoid of Sirtuin-1. n = 16 from 6 clones. Right panel: western blot of two different

Sirtuin-1 knockout clones generated with different sgRNAs. * unspecific band. For statistical tests, a two-tailed unpaired Student’s t test was used throughout,

n.s. non significant; *p < 0.05; **p < 0.005; ***p < 0.0005; ****p < 0.0001. (B and C) Error bars represent SEM throughout.


