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Abstract

The recent success in simulating crystal growth and nucleation of urea in

[11] and [12] by means of enhanced sampling aided molecular dynamics

(MD) simulations motivates to apply the same approach to other organic

compounds. The large free energy barriers of crystallization processes

make it impossible to study them with conventional MD simulations. A

crucial part in the enhanced sampling methods plays the choice of col-

lective variables (CVs). In this thesis the way of adapting the CVs used

for the urea simulations for naphthalene is described. A first success in

computationally growing and dissolving naphthalene crystal layers is doc-

umented and a route for further investigations is presented. Further, we

develop other CVs for a more general case of applications.
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Chapter 1

Introduction

1.1 Motivation

Today, controlling the shape of an organic crystal is a hard task because we still

have very little understanding of the underlying growth mechanisms. The ability of

controlling crystal shapes would be a benefit for numerous applications in different

fields, e.g. in pharmaceutical industries or in nanotechnology. One way of getting

a deeper insight into crystal growth phenomena is with the help of MD. There has

been a first success of this approach in the case of urea [11], [12], where the crystal

shapes under different growth conditions could be accurately predicted. This success

motivates to achieve similar results for naphthalene, a molecule with a monoclinic

unit cell structure rather than a primitive one as in the case of urea. In [7] different

crystal shapes of naphthalene crystals grown under different conditions are determined

experimentally. The first goal is now to be able to reproduce these experimental

results using MD. In case of success, new conditions can be simulated in order to find

favorable crystal shapes and consecutively the results can be verified experimentally.

A key role in the MD simulation of crystal growths play CVs, which are used for

understanding the current state of the simulated system, as well as for accelerating

the whole simulation process through enhanced sampling [14]. The goal of this thesis

is to develop a CV which can be used to accurately simulate the crystal growth

mechanisms of naphthalene.

1.2 Outline

In Chapter 2, Preliminaries, the role of CVs in MD and enhanced sampling is elabo-

rated briefly. In Chapter 3 the polymorph I of naphthalene [10] and different structure

analysis methods are presented. In Chapter 4, Collective Variables, different CVs are

1



introduced. In Chapter 5, Experimental Setup, the concrete simulation setups used

for the crystal analysis as well as for the evaluation of the CVs by growing a crystal

is described. In Chapter 6 the results of the analysis and crystal growth simulations

are presented. In Chapter 7 these results are discussed. Finally, in Chapter 8 we give

a conclusion of this thesis and an outlook to future work.
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Chapter 2

Preliminaries

2.1 Molecular Dynamics

MD is a computer simulation method for studying the movements of atoms and

molecules. The trajectories of the atoms are determined by numerically solving New-

ton’s equations of motion, where the forces between the atoms are computed using

molecular mechanics force fields.

2.2 Collective Variables

In MD one is normally interested in a certain property of the simulated system, e.g.

in our case if a given molecule is in liquid or solid phase. The purpose of CVs is to

describe such a property in only a low number of dimensions. Mathematically, a CV

S is a function from the space of all atomic coordinates R to the real numbers:

S : R → R : r 7→ S(r),

where r ∈ R is the collection of all atom coordinates in system. An appropriate CV

should be able to distinguish between all relevant stable and metastable states of the

system.

2.3 Prediction of Crystal Shape

The shape of a crystal under certain growth conditions can be predicted from the

growth velocities of the different crystal faces, whereas these velocities can be deter-

mined from the free energy barrier between two crystal layers in the direction of the

given face [12]. The goal is therefore to find a CV which can distinguish between the

3



F(S)

S
S2S0S1

Figure 2.1: Schematic plot of the FES F (S) as a function of a CV S of a crystal
growth simulation. S0, S1 and S2 are the locations of three local minimums.

number of crystalline layers in direction of a given face and compute the free energy

as a function of the CV, the so called free energy surface (FES) F (S).

Figure 2.1 shows a schematic plot of the FES F (S) as a function of a CV of a

crystal growth simulation. At point S0 the crystal-solution system is in equilibrium

state, therefore the FES is at its minimum. At point S1 the crystal has one molecule

layer less which can be seen from a smaller CV value. Here, the solution around the

crystal is supersaturated and the FES is therefore higher than in the equilibrium state.

At point S2 has an additional molecule layer. Here, the solution is undersaturated.

The different crystal layer states are separated by activation energy barriers.

2.4 Enhanced Sampling

The FES can be computed by sampling the equilibrium probability distribution p(S)

of the CV values:

F (S) = − 1

kBT
log p(S) = − 1

kBT
log

∫
drδ(S − S(r))e

− U(r)
kBT .

To this end we have to simulate the system as long as any possible state has occurred

enough times to be able to make a good estimate of the distribution p(S).

The emergence and disappearance of crystal layers under certain conditions is a

rare event in the order of milliseconds. This is much too long for conventional MD

simulations where systems can be simulated in the order of pico- to nanoseconds

within a reasonable time. This is where enhanced sampling methods, e.g. variational

enhanced sampling [14], comes into play. The idea is to add a variational bias potential

4



V (S) as a function of the CV S during the simulation which enhances the system to

visit any possible state in the CV space.

A pseudo-code algorithm of MD with enhanced sampling is shown in Algorithm 1.

First the coordinates r and the velocities v of all atoms and the bias potential V are

initialized. In every MD step t the current CV St is computed, the force Fi acting

on every atom is calculated from the force field potential U(r) and an additional bias

term V (S) and the atoms positions and velocities are propagated ∆t seconds. Every

nth MD step the bias potential V is updated in order to pull the system in a new

region of the CV space. In order to compute the atomic forces the derivatives of

the CVs are needed, therefore the CVs have to be differentiable. Normally, these

derivatives are calculated analytically.

Algorithm 1: Enhanced sampling

1 set initial r,v

2 set V = 0

3 every MD step:

4 compute CV values:

5 St = S(r)

6 every n MD steps:

7 update bias potential:

8 V = V (St)

9 compute atomic forces:

10 Fi = −∂U(r)
∂ri
− ∂V (S)

∂S
|S=St

∂S(r)
∂ri

11 propagate r,v by ∆t

5



Chapter 3

Naphthalene Polymorph I Analysis

In this chapter the Polymorph I of naphthalene [10], the experimental subject of this

thesis, is presented. Further, three methods for analyzing the simulation systems are

introduced. The purpose of the analysis methods is firstly to assess if the chosen

force field is capable of reconstructing the X-ray diffraction (XRD) measured crystal

structure in the MD simulations. Secondly, they will be used for the design and

parameter estimation of the CVs. The concrete simulation setups for the analysis are

presented in Chapter 5 and the results are presented in Chapter 6.

3.1 Naphthalene Molecule and Notations

Naphthalene is an organic compound with formula C10H8. Figure 3.1 shows a naph-

thalene molecule where the atoms are enumerated. Throughout this thesis the co-

ordinates of a specific atom of a specific naphthalene molecule will be referred to as

rNAi,k, where i = 1, . . . , N and k = 1, . . . , 18. The geometrical center between to

atoms is written as 〈{rNAi,k, rNAi,l}〉. With the vector between two atoms defined as

vi,kl = rNAi,l − rNAi,k we denote the angle between the molecules rNAi and rNAj as

](vi,kl, vj,kl), where

](vi, vj) = cos−1 vi · vj
||vi|| · ||vj||

.

3.2 Naphthalene Polymorph I

In Figure 3.2 the Polymorph I of naphthalene and the unit cell with the (001) face at

the top are shown. There are two Molecules in one unit cell.

6
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Figure 3.1: Naphthalene molecule with enumeration of the atoms.

3.3 Analysis Methods

In the context of crystalline systems three analysis functions are of special interest

which all have the form of an ensemble average of the correlation between a molecule

in the crystal and its neighbors. The Radial Distribution Function (RDF) [13] and

the ”Running” Coordination Number (RCN) [13] relate distances between molecules

and the angular distribution compares the angles between two molecules.

3.3.1 Radial Distribution Function

The RDF g(r) is a measure of the probability of finding two molecules at distance r

apart under the conditions of the canonical ensemble. It is defined as:

g(r) =
1

ρ

(N − 1)〈δ(r − r′)〉
4πr2

=
〈ρshell(r)〉

ρ
≈ 1

ρ

〈N(r ± δr
2

)〉
V (r ± δr

2
)
,

where ρ is the density, N is the number of molecules and ρshell(r) is the density on a

shell at distance r. In practice the RDF is obtained by a histogram of counting the

number of molecules N(r± δr
2

) within distance ± δr
2

divided by the volume V (r± δr
2

)

of a shell of thickness ± δr
2

.
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Figure 3.2: Naphthalene Polymorph I.

3.3.2 ”Running” Coordination Number

The RCN N(r) is defined as the average number of particles in a sphere of radius r

around a molecule:

N(r) = 4πρ

∫ r

0

r′2g(r)dr′ = 4π

∫ r

0

r′2ρshell(r
′)dr′ ≈ 〈N(r′ < r)〉.

The RCN is obtained simple by accumulating the number of molecules N(r′ < r)

within a distance r.

3.3.3 Angular Distribution

In order to measure an angle between two molecules a characteristic vector in the

molecule is defined. In the case of naphthalene the vector between atom rNAi,8 and

atom rNAi,9, defined as

vi,89 = rNAi,9 − rNAi,8

and the vector from the center of the atoms rNAi,1 and rNAi,2 to the center of atoms

rNAi,5 and rNAi,7, defined as

vi,1257 = 〈{rNAi,5, rNAi,7}〉 − 〈{rNAi,1, rNAi,2}〉

are of special interest as they point along symmetric axes of the molecule. In Fig-

ure 3.3 these two vectors and the corresponding angles between two molecules

θ89 = ](vi,89, vj,89)

8
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Figure 3.3: Vectors vi,89 and vi,1257 and angles θ89 and θ1257 of the naphthalene poly-
morph I.

and

θ1257 = ](vi,1257, vj,1257)

are marked.

Now we are interested in the probability distribution of these angles in the system:

p(θ) ≈ 〈N(θ ± δθ
2
〉

δθ ·N ,

where 〈N(θ± δθ
2
〉 is the ensemble average number of angles θ in the interval [θ− δθ

2
, θ+

δθ
2

] of length δθ and N is the total number of angles in the system. This distribution

can be sampled with a normalized histogram.

9



Chapter 4

Collective Variables

There are several approaches to the development CVs [14]. One important property is

the ability to distinguish clearly between the different states of interest. The success

of the so called Gsmac CV [6] in [11] and [12] suggest to adapt the same method

to the case of naphthalene at first. Further, other CVs building up on the ideas of

Gsmac are developed. In this chapter the CVs are stated formally. Parameter values

and performance results are presented in Chapter 6.

4.1 Gsmac

The idea of this CV is to determine the degree of crystallinity for each molecule of

interest in the system locally as Si ∈ [0, 1], where a value of Si = 1 means that the

molecule i is part of some crystalline structure and a value of Si = 0 means that the

molecule i is not part of any crystalline structure. This local CV for one molecule is

defined as

Si =
ρi
ni

N∑
j=1
j 6=i

fij

K∑
k=1

e
−

(θij−θ̄k)2

2σ2
k︸ ︷︷ ︸

φij=φ(θij)

. (4.1)

Here, θij is the angle between molecule i and molecule j as described in 3.3.3. φij

is a function that compares the angles θij to K reference angles θ̄k, the angle values of

the expected crystal structure, and expresses the similarity as a value between 0 and

1. The values of φij are summed over all molecules j in the system weighted with a

switching function (SWF) fij = f(rij) , a function of the distance rij between molecule

i and molecule j that decreases smoothly from 1 to 0 at a certain cutoff distance rcut.

In practice introducing the SWF fij enables a more efficient implementation by using

a nearest neighbor implementation, e.g. with a Verlet list [15], where we don’t have

10
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Figure 4.1: SWFs ρi = ρ(ni) (left) and fij = f(rij) (right).

to sum over all molecules j in the system but only over the nearest neighbors. The

SWF fij = f(rij) could e.g. be of the form

f(rij) =
1−

(
rij
rcut

)a
1−

(
rij
rcut

)b , (4.2)

as plotted in Figure 4.1.

Finally, the whole sum is normalized by the coordination number ni, which is

defined as

ni =
N∑
j=1

fij

and multiplied by another SWF ρi on the coordination number ni, e.g.

ρi =
1−

(
ni
ncut

)−a
1−

(
ni
ncut

)−b . (4.3)

An example of ρij is as well plotted in Figure 4.1. The SWF ρij checks if there are

enough nearest neighbors around a molecule for it to be part of a crystal structure.

The CVs Si of can be combined to one CV SGsmac describing the whole system

by summing over i:

SGsmac =
N∑
i=1

Si. (4.4)

SGsmac takes values in the interval [0, N ] and can be seen as an approximation of the

amount of molecules in the system in a crystal phase. For the calculation of the bias

potential, as described in Algorithm 1, we need the derivatives dS(R)
dR

which is still

dependent on the local structure of S and not only on its summed up value. The

derivatives are elaborated in Appendix C.

11



4.2 GsmacSmooth

The first idea for an improvement of this variable is to replace the sum in Equation 4.4

with a weighted average over all the nearest neighbors of molecule i. The resulting

CV

SGsmacSmooth =
N∑
i=1

1

ni + 1

(
Si +

N∑
j=1
j 6=i

fijSi
)

=
1

ni + 1

(
SGsmac,i +

N∑
j=1
j 6=i

fijSGsmac,i
)

is a smoothed version of SGsmac which takes the local correlation of the molecules in

a crystalline structure more into account.

4.3 Radsmac

The next idea is to compare the distances between two molecules with expected

reference values instead of the angles between them. This CV bases on the spacial

structure of a crystal rather than on the orientation. The local CV for each molecule

can be formulated as

Si =
ρi
ni

N∑
j=1
j 6=i

fij

K∑
k=1

e
−

(rij−r̄k)2

2σ2
k .

Like for Gsmac we can combine the CVs Si either by a sum or by a sum of smoothed

averages.

4.4 Maxsmac

The idea of this section is to formulate a CV which doesn’t compare characteristic

variables of the system to reference values but rather to each other. Such a CV could

be used for more general problems without introducing any hyper parameters θ̄k or

r̄k. Here, the more general assumption about a crystal structure is, that for every

molecule pair {NAi,NAj} there is at least one molecular pair {NAi,NAk} with a

similar angle:

θij = ](vi,lm, vj,lm) ≈ θik = ](vi,lm, vk,lm),

where

vi,lm = rNAi,m − rNAi,l.

12



This assumption can be employed to a CV by the use of the max function:

Si =
ρi
ni

N∑
j=1
j 6=i

max
k

( N∑
k=1

e
−

(θij−θik)2

2σ2
k fijfik

)
.

With a smooth approximation of the max function,

max(x1, . . . , xn) ≈ 1

p
log
( N∑
i=1

exp
(
pxi
))

for p� 1,

we can define the a CV as

Si =
ρi
ni

N∑
j=1
j 6=i

1

p
log
( N∑
k=1

exp
(
p exp(−(θij − θik)2

2σ2
k

)fijfik
))
.

4.5 Maxradsmac

By applying the same step as from Gsmac to Radsmac we can define another CV as

Si =
ρi
ni

N∑
j=1
j 6=i

1

p
log
( N∑
k=1

exp
(
p exp(−(rij − rik)2

2σ2
k

)fijfik
))
.
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Chapter 5

Experimental Setups

In this chapter the different simulation setups used for the computational experiments

are presented. Two analysis setups (Section 5.1) are used to compare the structure

differences of a naphthalene in crystal phase and in a metastable liquid phase with

the methods defined in Section 3.3 and to evaluate the distinguishing performance

of the CVs. The crystal growth setup (Section 5.2) is used to grow a crystal with

an enhanced sampling simulation as described in Section 2.4 in order to evaluate

the enhanced sampling performance of the CVs. All simulations are performed with

GROMACS 5.1.1 [2] under periodic boundary conditions (PBCs) and PLUMED 2.4

[3] is used for the enhanced sampling. As a force field general AMBER force field

(GAFF) described in [5] is used for all simulations. In GROMACS a non-bonded

cutoff of 1 nm is chosen. Long range electrostatic interactions are calculated with the

particle mesh Ewald approach. The LINCS algorithm for bond lengths constraints

enables to use time steps of 2 fs. First, an energy minimization (with the conjugate

gradient algorithm and a maximum force tolerance of 50 kJ/mol/nm) as well as

100 ns pressure and temperature relaxations to 1 bar and 300 K (using the velocity

rescale thermostat and the semi-isotropic Berendsen barostat [1]) are performed for all

simulation boxes. Then the systems are simulated with the velocity rescale thermostat

[4] and the Parrinello-Rahman barostat [8].

5.1 Analysis Setup

For the crystal analysis a simulation box of size 4.05 nm× 2.98 nm× 3.57 nm of crys-

talline naphthalene, containing 250 molecules, is constructed by concatenations of the

unit cell described in Section 3.2 and in [10]. For the liquid analysis a similar simula-

tion box containing metastable liquid naphthalene is constructed by placing molecules

at random positions and with random orientations in the box. The metastable liquid

14



(a) Crystal box. (b) Metastable liquid box.

Figure 5.1: Simulation boxes for crystal analysis.

is taken as a worst case of a solution of naphthalene in terms of distinctness to a

crystal.

The systems are simulated for 10 ns under NPT conditions at 300 K and 1 bar.

The two boxes are shown in Figure 5.1.

5.2 Crystal Growth Setup

For the crystal growth and dissolution simulations two boxes are constructed with

help of the genbox utility of GROMACS with one naphthalene crystal in the middle

of the box immersed in a solution of naphthalene and ethanol (see Figure 5.2). In

the first box the (001) face of the crystal (which is supposed to grow more slowly

than the (1-10) face) and in the second box the (1-10) face (which is supposed to

grow faster than the (001) face) are exposed to the solution. The initial (001) crystal

is composed of 5 × 7 × 4 unit cells. The (1-10)-faced-up crystal is constructed of

6×4×9 properly rotated unit cells. The details of the unit cell rotation are described

in Appendix A. The (001) system contains totally 580 naphthalene molecules (280

in the crystal and 300 solved in ethanol) and 1’332 ethanol molecules. This makes

an initial supersaturation of 4.710. The (1-10) system contains 652 naphthalene

molecules (432 in the crystal and 220 in the solution) and 1’733 ethanol molecules

which gives an initial supersaturation of 1.278. The simulations are performed for

90 ns and are biased with variationally enhanced sampling (VES) [14], [9] (using

Legendre polynomials of order 20, a iteration step size of 0.01 and each iteration is

500 MD steps long).
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Figure 5.2: Simulation box for crystal growth. The naphthalene crystal in the middle
of the box is placed in a solution of naphthalene solved in ethanol (ethanol molecules
are omitted).
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Chapter 6

Results

In Section 6.1 the results of the analysis simulations described in Section 5.1 are

presented. From these results the parameters of the CVs described in Chapter 4 are

derived in Section 6.2. In Section 6.3 the performance of the CVs in distinguishing

between crystal and liquid naphthalene is evaluated. Finally, in Section 6.4, the

results of the crystal growth simulations as described in Section 5.2 are presented.

6.1 Analysis Simulations

6.1.1 Radial Distribution Function Results

In Figure 6.1 the RDFs of the simulations of crystal naphthalene and metastable

liquid naphthalene are plotted. For comparison we also have the RDF of the XRD

measured crystal used as initialization of for the crystal simulation in the plot. There

is no pairwise distance in any system lower than 0.3 nm, which visualizes the fact

that two molecules can not be arbitrarily close to each other. The crystal systems

have as expected a clearer spacial structure than the metastable liquid system. The

peaks of the simulated crystal coincide well with the peaks of the measured crystal.

6.1.2 ”Running” Coordination Number Results

Figure 6.2 shows the RCN of the three systems. From this cumulative version of the

RDF it is clearly visible how many neighbors a molecule in the crystal structure has

at a certain distance. E.g., there are four nearest neighbors at 0.5 nm and another

two neighbors at about 0.6 nm.
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Figure 6.1: RDF of the naphthalene polymorph I and metastable liquid naphthalene
at three different times of the NPT simulation.

6.1.3 Angular Distribution Results

Figure 6.3 shows the angular distributions of the three systems. The angular distri-

bution can be written by function of the form (see Appendix B)

fΘ(θ) = fΘ′(θ)sin(θ), θ ∈ [0, π].

In the case of a metastable liquid fΘ′(θ
′) is a uniform distribution on the interval

[0, π]. In case of a crystal fΘ′(θ
′) can be approximated by a function of the form

fΘ′(θ
′) =

1

K

K∑
k=1

ck · e
−(θ′−θ̄′k)2

2σ′
k

2
, θ′ ∈ [0, π],

where θ̄′k, k = 1, . . . , K are the expected angles taken from the XRD measurements

(angular distribution of the measured crystal in Figure 6.3), ck are constants which

normalize each term in the sum such that they integrate to one and σk determine the

with of the angle distribution depending on the temperature.

With these considerations we can conclude that in the metastable liquid the angles

are uniform distributed. In the crystal we have to peaks in the distributions (the

angles are mirrored at π/2, therefore we have no angles above π/2), one at θ = θ̄′1 = 0
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Figure 6.2: RCN of the naphthalene polymorph I and metastable liquid naphthalene
at three different times of the NPT simulation.

of all molecules which are orientated in the same direction and another one θ = θ̄′2 of

all molecules which are orientated in a second direction. From comparing simulated

crystal distribution with the measured distribution we see that the θ1257 angle is

well reconstructed by the simulation but the second θ89 angle is shifted to the left

during the simulation. This indicates that energy minimum of the GAFF of the

naphthalene crystal remarkably differs from reality and that there has to be done

further investigations in finding an appropriate force field. For this thesis, for practical

reasons, we will stay with this force field while being aware, that the used GAFF may

not reproduce the growth rates of crystal faces measured in reality.
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(a) Distribution of θ1257.
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(b) Distribution of θ89.

Figure 6.3: Angular distributions of the naphthalene polymorph I and metastable
liquid naphthalene at three different times of the NPT simulation.
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6.2 CV Parameters

The goal of this section is to find the parameters defined in Chapter 4 with help of

the analysis results from the previous sections of this chapter.

6.2.1 Gsmac

The steps to find the parameters {θ̄k} and {σk} of the function φ (as defined in 4.1)

are plotted in Figure 6.4. We start with the angular distribution of the simulated

crystal from the previous section and fit a function of the form

(
c1 · e

− (θ−θ̄1)2

2σ2
1 + c2 · e

− (θ−θ̄2)2

2σ2
2

)
· sin(θ)

to it. From this fitting we directly get the parameters {θ̄k} = {0, 0.3674} and

{σk} = {0.0730, 0.0778}. The resulting function φ(θ) is plotted in bold blue. The CV

is not very sensitive on the values of σk. Therefore can also be slightly adjusted.

The parameters rcut and ncut can be determined with help of the RCN in Figure 6.2.

The computational cost of the CV is highly sensitive on the value of rcut (and the

related size of the Verlet list), therefore we should choose it as small as possible. We

find that a value of rcut = 0.65 nm is a good trade-off between CV performance and

computational cost. From the RCN in Figure 6.2 we directly see that there are 6

neighbors within a distance of 0.65 nm. To be on the save side we therefore can

choose ncut = 5.

6.2.2 Radsmac

Similar to the previous section the parameter values for Radsmac from the RDF plot

(Figure 6.1). Here, we take the values {r̄k} = {0.503, 0.596} and {σk} = {0.02, 0.02}

6.2.3 Maxsmac and Maxradsmac

For the σk, rcut and ncut values of Maxsmac and Maxradsmac we can take the same

values as for Gsmac and Radsmac respectively. For the p we take a value of 300.

6.3 CV Distinctness Performance

In Figure 6.5 the value distributions of the local CVs Si with the parameter values

from the previous section are shown. (In Appendix D the distributions with other

parameter values are shown.) In Gsmac the distributions of the metastable liquid
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Figure 6.4: Steps for finding parameters θ̄k and σk of the function φ (as defined in
4.4) from angular distribution.

and the crystal systems have still a small overlapping region. The smoothing in Gs-

macSmooth eliminates this overlapping remarkably. All other CVs are also capable of

distinguishing between the crystal and the lipuid system. If we compare the distance

CVs (Radsmac and Maxradsmac) with their angle counterpart (GsmacSmooth and

Maxsmac), the distributions of the liquid and the crystal are a little bit less separated.

6.4 CV Crystal Growth Performance

In Figure 6.6 the initial and final configurations of the crystal growth and dissolution

simulations is shown. It is clearly visible from comparing the first two figures how

one layer has grown completely and one layer is about to be built in the (001) face

simulation box. Also the naphthalene concentration in the solution is remarkably

reduced. From the two lower figures one can see how in the (1-10) face simulation

one crystal layer has been dissolved.
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(a) Gsmac.
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(b) GsmacSmooth.
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(c) Radsmac (smoothed).
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(d) Maxsmac (smoothed).
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(e) Maxradsmac (smoothed).

Figure 6.5: Value distributions of the different local CVs Si.
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(a) (001) face initial configuration.

(b) (001) face final configuration.

(c) (1-10) face initial configuration.

(d) (1-10) face final configuration.

Figure 6.6: Crystal growth and dissolution simulations. The ethanol molecules are
omitted.
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Chapter 7

Discussion

7.1 Analysis Simulations

The distribution of the θ89 angle (Figure 6.3b) manifests some significant differences

between the simulations of the naphthalene polymorh I to the XRD measurements

(see Section 6.1.3) caused by the choice of the force field. Nevertheless, the good

correlations between the simulations and the measurements in the RDF analysis (Fig-

ure 6.3a) and the distribution of the θ1257 angle (Figure 6.1) suggest that the GAFF

can be used for some first crystal growth simulation experiments, being aware of the

expected discrepancies to real measurements.

In Section 6.2 it is described how the parameters for the different CVs can be

determined from the performed analysis methods.

7.2 CV Performance

7.2.1 Distinctness

From Figure 6.5 it is clear that all CV are capable of distinguishing between a crystal

and a metastable liquid system. The difference to a solution will be even more explicit

as the impact of the SWF ρi further comes into play when the density of naphthalene

molecules decreases, as it is the case in a solution. The smoothing of the local CVs

Si brings a notable improvement in distinctness of the two systems.

7.2.2 Crystal Growth

Figure 6.6 shows that we have been able to grow and dissolve a naphthalene crystal

for two different crystal faces. This process is only possible due to the enhanced
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sampling. It shows that Gsmac adapted for naphthalene is a proper CV for the task.

For the sampling of the FES longer simulation runs have to be performed.

7.2.3 Computational Cost

The computational cost is a critical aspect of a CV. The cost of Gsmac and Radsmac

(whithout smoothing) is in the order of

O(N2)

and of Maxsmac and Maxradsmac in the order of

O(N3),

where N is the number of molecules in the system. However by the use of a Verlet

list all CVs can be computed in order of

O(N),

where Gsmac and Radsmac have a linear overhead for the number of neighbors in

the Verlet list and the other methods a quadratic one. If the smoothed versions are

used to combine the local CVs Si instead of summation Gsmac and Radsmac have

a quadratic overhead for the number of neighbors and Maxsmac and Maxradsmac

have a qubic one. However all CVs seem to be feasible as they show already a good

performance for a small number of considered neighbors. The number of neighbor

molecules in the Verlet list is very sensitive to the chosen cutoff distance used to

build the list. Therefore it could be beneficial to investigate in optimizing the cutoff

of the Verlet list compared to the cutoff rcut of the SWF fij as a trade-off between

computational cost and accuracy.
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Chapter 8

Conclusion and Outlook

We have managed to grow and dissolve a naphthalene crystal in a naphthalene-ethanol

solution. This is definitely a first success confirming the power of the VES apporach.

Further investigations have to be done. Different CVs have been developed, so far

they still have to be implemented in PLUMED and their performance in an enhanced

sampling simulation has to be tested. In terms of computational performance one

could try to optimize the parameters of the SWF fij and the Verlet list. Another

critical point is to find a proper force field for the simulations. When these issues

are solved one can start with the simulation experiments for learning more about the

crystallization process of naphthalene.
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Appendix A

Rotation of Unit Cell

In this appendix the rotation of the unit cell of the naphthalene polymorph I such

that the (1-10) face becomes the (001) face is described. All quantities from the old

and the new unit cells are marked in Figure A.1. We have:

a′ = c b′ = y′ c′ = b α′ = φ

γ′ = sin−1 x
′

c
cz = c sin β cx = c cos β φ = tan−1 a

b

ψ = cos−1
(
(
−a
−b
0

)
×
(
cx
0
cz

)
) ·
(

0
0
1

)
||
(
−a
−b
0

)
×
(
cx
0
cz

)
|| · ||

(
0
0
1

)
||

= cos−1 acz√
b2c2

z + a2c2
z + b2c2

x

x′ =
cz

sinψ
y′ =

√
a2 + b2 z′ = b sinφ sinψ

We have to rotate the unit cell first around the z-axis by φ and then around the

y-axis by −ψ, which means we have to multiply every point by two rotation matrices:

rnew = RYRZrold,

where

RZ =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1


and

RZ =

 cos−φ 0 sin−φ
0 1 0

− sin−φ 0 cos−φ

 .
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Figure A.1: Rotation of unit cell: The grey area is the (1-10) face of the old unit cell
and will become the (001) face in the new unit cell.
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Appendix B

Analytical Expression for Angular
Distribution

In this appendix it is augmented that an angular distribution can be written as a

function of the form

fΘ(θ) = fΘ′(θ)sin(θ),

where fΘ′(θ
′) is an arbitrary probability distribution on the interval [0, π], as shown

in Figure B.1.

If we want to find the angular distribution between two random oriented vectors,

we always can translate and turn the two vectors, such that both vectors start from

the origin and the first vector is oriented along the z-axis, without affecting the

distribution. We can also normalize both vectors. Now the angle between the vector

coincides with the polar angle θ of the spherical coordinates (Figure B.2) and the

random orientation of the second vector is a point density on the unit sphere. If we

assume the two independent random angles Θ′ and Φ′, where Θ′ is distributed in

the yz-plane according to fΘ′(θ
′) and Φ′ is distributed in the xy-plane according to

fΦ′(φ
′), we find the probability of a point on the unit sphere contained in a differential

area according to

f(θ′, φ′)sin(θ′)dθ′dφ′ = fΘ′(θ
′)fΦ′(φ

′)sin(θ′)dθ′dφ′,

where sin(θ′)dθ′dφ′ is the surface area element of the spherical coordinates. Therefore

we can get the probability distribution of θ from

fΘ(θ)dθ =

∫
φ

fΘ′(θ)fΦ′(φ
′)sin(θ)dθ′dφ′ = fΘ′(θ)sin(θ)dθ.

In particular, if we assume that the angle distribution of two molecule vectors in the

plane spanned by this two vectors can be approximated by a cutout of a Gaussian
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Figure B.1: Sampled angular distribution and fitted function.

Figure B.2: Spherical coordinates.

distribution, c · exp(−(θ′ − θ′0)2/2σ′2), θ′ ∈ [0, π], the angular distribution of the two

vectors follows to be

fΘ(θ) = c · e
−(θ−θ′0)2

2σ′2 · sin(θ).
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Appendix C

CV Derivatives

For the derivatives of the CVs only the terms containing of the center atoms ri,center

and the start atoms ri,start and end atoms ri,end of the vector defined for the inter-

molecular angle are different from zero.

C.1 Inner Derivatives

Derivative of φij:

∂

∂r
(d)
i,start

φ(θij) =
K∑
k=1

−θij − θ̄k
σ2
k

· φk(θij) ·
∂

∂r
(d)
i,start

θij

=
K∑
k=1

−θij − θ̄k
σ2
k

· φk(θij) ·
−1√

1− arg(θij)
· ∂

∂r
(d)
i,start

arg(θij)

=
−1√

1− arg(θij)

(
−

v
(d)
j

||vi|| · ||vj||
+

v
(d)
i (vi · vj)
||vi||3 · ||vj||

) K∑
k=1

−θij − θ̄k
σ2
k

φk(θij),

where

arg(θij) =
vi · vj

||vi|| · ||vj||
and

vi =

(
v

(1)
i

v
(2)
i

v
(3)
i

)
=

r
(1)
i,end−r

(1)
i,start

r
(2)
i,end−r

(2)
i,start

r
(3)
i,end−r

(3)
i,start


PBC

is the PBC-distance vector from atom ri,start to ri,start.

Further
∂

∂r
(d)
i,end

φ(θij) = − ∂

∂r
(d)
i,start

φ(θij).
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Derivative of fij:

∂

∂r
(d)
i,center

f(||rij||) = −
r

(d)
i,j

||ri,j||
· f ′(||rij||),

where

vi =

(
r
(1)
j,center−r

(1)
i,center

r
(2)
j,center−r

(2)
i,center

r
(3)
j,center−r

(3)
i,center

)
PBC

is the PBC-distance vector from atom ri,center to rj,center.

C.2 Gsmac Derivatives

∂

∂r
(d)
i,a

S =
∂

∂r
(d)
i,a

Si +
N∑
l=1
l 6=i

∂

∂r
(d)
i,a

Sl,

where

∂

∂r
(d)
i,center

Si =
ρi
ni

N∑
j=1
j 6=i

( ∂

∂r
(d)
i,center

fij

)
φij

− ρi
n2
i

N∑
m=1
m6=i

( ∂

∂r
(d)
i,center

fim

) N∑
j=1
j 6=i

fijφij

+
1

ni
ρ′(ni)

N∑
m=1
m 6=i

( ∂

∂r
(d)
i,center

fim

) N∑
j=1
j 6=i

fijφij

=
1

ni

N∑
m=1
m 6=i

( ∂

∂r
(d)
i,center

fim

)(
ρi

(
φij −

1

ni

N∑
j=1
j 6=i

fijφij

)
+ ρ′(ni)

N∑
j=1
j 6=i

fijφij

)
,

∂

∂r
(d)
i,center

Sl = − ∂

∂r
(d)
i,center

Si, for l 6= i,

∂

∂r
(d)
i,start

Si =
ρi
ni

N∑
j=1
j 6=i

fij

( ∂

∂r
(d)
i,start

φ(θij)
)
,

∂

∂r
(d)
i,start

Sl =
ρl
nl
fli

( ∂

∂r
(d)
i,start

φ(θli)
)
,
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∂

∂r
(d)
i,end

Si = − ∂

∂r
(d)
i,start

Si

and

∂

∂r
(d)
i,end

Sl = − ∂

∂r
(d)
i,start

Sl.
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Appendix D

CV Evaluations for Further Values

In this appendix the CV evaluations from different parameters than used in Section 6.3

are presented. All CV are evaluated for rcut = 5.5 nm and ncut = 3 in Figure D.1 and

for rcut = 8 nm and ncut = 9 in Figure D.2. For Gsmac the parameters

{θ̄k} = {0, 0.3776}

and

{σk} = {0.1, 0.1}.

are chosen. For Radsmac the parameters:

{r̄k} = {0.503, 0.596, 0.778, 0.782}

and

{σk} = {0.02, 0.02, 0.004, 0.004}.

For Maxsmac the parameter values are σ = 0.1 and p = 300 and for Maxradsmac

σ = 0.02 and p = 300.
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Figure D.1: Value distributions of the different local CVs Si for rcut = 5.5 nm and
ncut = 3.
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Figure D.2: Value distributions of the different local CVs Si for rcut = 8 nm and
ncut = 9.
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Outline semester thesis: Development of
collective variables for the molecular description

of crystallization processes for paracetamol

September 22, 2016

1 Literature research

i) Crystal morphology of paracetamol including experimentally observed polymorphs.

ii) Force fields of paracetamol as well as ethanol, in particular of the type AMBER.

iii) Summary on the solubility of paracetamol in water and ethanol, and the melting
point of each of the paracetamol polymorphs.

2 Development of the collective variable (CV) with the
Gsmac algorithm

The CV should be able to quantify the degree of crystallinity of each individual parac-
etamol molecule. The concepts of the Gsmac algorithm should be adapted and tested as
a quantitative measure of crystallinity [1].
The adaption of the Gsmac algorithm to paracetamol comprises following points:

Density:

i) Choice of appropriate center of mass for the paracetamol molecule.

ii) Calculation of the distance for all paracetamol molecules within the crystal lattice
of the corresponding polymorph.

iii) Choice of the appropriate cut-off distance for the coordination number of each
molecule within the lattice.

Order:

i) Choice of appropriate vectors and corresponding angles of the vectors between pairs
of molecules within the lattice of each polymorph.

1
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ii) Choice of a reasonable width of the vector angles defined in the Gaussian function
within the Gsmac algorithm.

If Gsmac does not provide a satisfactory measure for the crystallinity of the paraceta-
mol molecules, Gsmac should be modified with new concepts like a different weighting
method for each angular contribution or introducing a lower bound in addition to the
upper bound for the nearest neighbor weighting. Also an approach containing the con-
cept of Landau’s theory of phase transition [2] can provide a good phase discriminating
CV for paracetamol.

3 Nucleation simulations of paracetamol

Crystallization processes can be investigated by simulation in an extensive manner once
a suitable CV for the phase discrimination is found. Under the condition a good CV
for the crystallinity of paracetamol was provided, nucleation simulations of paracetamol
from the melt and in ethanol will be performed. Variationally enhanced sampling will
be used to accelerate the sampling of the CV space of interest. Nucleation simulations
provide quantitative results on the critical nuclei size, the height of the activation barrier
for an nucleation event, and the pathway of the nucleation mechanism.

References

[1] F. Giberti et al. Chem. Eng. Sci. 121 (2015) 51.

[2] L. Landau, Phys. Z. Sowjet. 11 (1937) 26.
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Schedule semester thesis: Development of
collective variables for the molecular description

of crystallization processes

October 26, 2016

1 Gsmac simulations

18.09.2016 - 31.11.2016

1.1 Literature research

30.10.2016

a) Search for force fields of naphthalene

b) Find method for the extraction of the transition pressure from MD simulations

1.2 Simulation of the naphthalene polymorph I

20.11.2016

Simulate the stability of the naphthalene polymorph I

a) Measure the distances and angles of the polymorph I

b) Write code which measures the average distances and angles of the naphthalene
polymorph I simulation

c) Compare the average distances and angles between the simulation and XRD mea-
surement

1.3 Transition pressure simulations

20.11.2016

Calculate the transition pressure between the two naphthalene polymorphs

1
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1.4 Gsmac tests

30.11.2016

a) Find the right vector definition within the naphthalene molecule

b) Find the right Gsmac parameters for the naphthalene polymorph I

c) Compare the Gsmac values for liquid and solid naphthalene

d) Improvement test for the Gsmac algorithm:

⇧ Change the angle function (e.g. step functions instead of Gaussians)

⇧ Include lower and upper boundaries for the measurement of the number of
nearest neighbors

⇧ Further improvement tests

2 Development of novel CV concepts for crystallization
processes

01.12.2016 - 16.01.2017

Write general C++ code for the distinction between different polymorphs and liquid
using Landau’s principle of symmetry breaking [1],[2] or other principles like time aver-
aging or space averaging recursive techniques

References

[1] L. Landau, Phys. Z. Sowjet. 11 (1937) 26

[2] F. Giberti et al. Chem. Eng. Sci. 121 (2015) 51
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Declaration of Originality
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Acronyms

CV collective variable.

FES free energy surface.

GAFF general AMBER force field.

MD molecular dynamics.

PBC periodic boundary condition.

RCN ”Running” Coordination Number.

RDF Radial Distribution Function.

SWF switching function.

XRD X-ray diffraction.
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