
M
or

itz
 G

ei
lin

ge
r Moritz Geilinger

Differentiable Dynamics and
Motion Synthesis for Legged Robots

Diss. ETH No. 27946

moritz geilinger

D I F F E R E N T I A B L E D Y N A M I C S A N D M O T I O N
S Y N T H E S I S F O R L E G G E D R O B O T S

diss . eth no. 27946

D I F F E R E N T I A B L E D Y N A M I C S A N D M O T I O N
S Y N T H E S I S F O R L E G G E D R O B O T S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

moritz geilinger

MSc, Dipl., Eidgenössisches Polytechnikum

born on 29 January 1988

citizen of Zurich, Switzerland

accepted on the recommendation of

Prof. Dr. Stelian Coros, examiner
Prof. Dr. Paul Kry, co-examiner

Prof. Dr. Kenny Erleben, co-examiner
Prof. Dr. Auke Ijspeert, co-examiner

2021

Moritz Geilinger: Differentiable Dynamics and Motion Synthesis for Legged
Robots , © 2021

To my family

A B S T R A C T

The generation of agile and dynamic motions for legged robots has long
been of interest in the fields of computer graphics and robotics. However,
planning motions to control these underactuated, nonlinear dynamical
systems has proven to be a difficult problem. Building on recent advances
in differentiable physical models and trajectory optimization, this thesis
presents several approaches to synthesizing motion controls for robots with
legs and wheels, as well as compliant robots.

We begin by introducing a computational framework for motion gen-
eration of legged-wheeled robots. The user can easily design a robotic
creature with an arbitrary arrangement of legs, motor joints, and various
types of end effectors, such as point feet, actuated and unactuated wheels.
Once the robot’s morphology is determined, the user can create and edit
motion targets, such as way points, using an interactive tool, while our tra-
jectory optimization method generates physically valid motion trajectories.
Finally, we fabricate prototypes designed with our system and show that
the generated motions can be applied to the real world.

Next, we extend our system with a warm start technique that dramatically
improves the convergence rate of the trajectory optimization. Using our
computational framework, we design and build an agile robot with legs
and wheels, AgileBot, which can be equipped with actuated wheels, roller-
blades or ice-skates. Our trajectory optimization generates various agile
motions, such as roll-walking, swizzling or skating, which are executed
on the physical prototype. Finally, we use our system to generate several
dynamic motions as reference trajectories for feedback control of a legged-
wheeled robot.

Lastly, we introduce a differentiable physics engine capable of handling
frictional contact for rigid and deformable objects in a unified framework.
We combine a smoothed contact model with implicit time integration and
sensitivity analysis to analytically compute derivatives with respect to the
simulation parameters. We use our differentiable simulation to perform
trajectory optimization that accounts for the full dynamics of a legged robot
with compliant actuators and soft feet. We also demonstrate applications of
our differentiable simulator to parameter estimation for deformable objects,
motion planning for robot manipulations, and efficient self-supervised
learning of control policies.

vii

Z U S A M M E N FA S S U N G

Die Erzeugung von agilen und dynamischen Bewegungen für Roboter mit
Beinen ist seit langem von Interesse in der Computergrafik und Robotik.
Die Planung von Bewegungen zur Steuerung dieser nichtlinearen dyna-
mischen Systeme hat sich jedoch als ein schwieriges Problem erwiesen.
Aufbauend auf den jüngsten Fortschritten bei differenzierbaren physikali-
schen Modellen und der Trajektorienoptimierung werden in dieser Arbeit
mehrere Ansätze zur Synthese von Bewegungen für Roboter mit Beinen
und Rädern sowie für Roboter mit nachgiebigen Komponenten vorgestellt.

Wir stellen zuerst unser rechnergestütztes System vor, das Bewegun-
gen für Roboter mit Beinen und Rädern generiert. Der Benutzer kann auf
einfache Weise ein Roboter mit einer beliebigen Anordnung von Beinen,
Motoren und Füssen, sowie angetriebene und freilaufende Rädern, entwer-
fen. Sobald die Morphologie des Roboters festgelegt ist, kann der Benutzer
mithilfe einer interaktiven Software Bewegungsziele festlegen und bearbei-
ten, während unsere Methode zur Trajektorienoptimierung physikalisch
valide Bewegungstrajektorien erzeugt. Schließlich stellen wir die mit unse-
rem System entworfenen Prototypen her und zeigen in Experimenten, dass
die erzeugten Bewegungen in der realen Welt angewendet werden können.

Als Nächstes erweitern wir unser System mit einer sogenannten ”warm
start”Methode, die die Konvergenzrate der Trajektorienoptimierung dras-
tisch verbessert. Unter Verwendung unseres computergestützten Systems
entwerfen und bauen wir einen agilen Roboter mit Beinen und Rädern, Agi-
leBot, der mit angetriebenen und freilaufenden Rädern, sowie Schlittschu-
hen ausgestattet werden kann. Unsere Optimierung generiert verschiedene
agile Bewegungen, wie z.B. rollen und gehen, ßwizzlingöder skaten, die
alle auf dem physischen Prototyp gezeigt werden. Schließlich verwenden
wir unser System, um mehrere dynamische Bewegungen als Referenztra-
jektorien für die aktive Regelung eines Roboters mit Beinen und Rädern zu
erzeugen.

Zuletzt stellen wir eine differenzierbare Physik-Engine vor, die in der
Lage ist, Reibungskontakt für starre und deformierbare Objekte in einem
einheitlichen Rahmen zu behandeln. Wir kombinieren ein geglättetes Kon-
taktmodell mit impliziter Zeitintegration und Sensitivitätsanalyse, um Ablei-
tungen in Bezug auf die Simulationsparameter analytisch zu berechnen. Wir
verwenden unsere differenzierbare Simulation, um Trajektorienoptimierung

ix

durchzuführen, die die gesamte Dynamik eines Roboters mit Beinen, nach-
giebigen Aktoren und weichen Füßen berücksichtigt. Wir demonstrieren
auch Anwendungen unseres differenzierbaren Simulators zur Bestimmung
von Parametern für deformierbare Objekte, zur Planung von Bewegungen
für Robotermanipulationen und zum effizienten selbstüberwachten Lernen
von Steuerungsstrategien.

x

A C K N O W L E D G E M E N T S

This thesis would not have been possible without the support and help of
many people.

I am deeply grateful to my PhD supervisor Prof. Dr. Stelian Coros, who
taught me many invaluable things. He has guided me through the PhD
journey with great vision, motivating me with his passion for solving hard
problems, while giving me the freedom to explore new topics and flexibly
balance work and family. I truly enjoyed the emotional rollercoaster every
time we submitted a paper and always felt unconditionally supported.

Thank you, Prof. Dr. Bernhard Thomaszewski, for introducing me to the
field of computer graphics and computational fabrication. I still vividly re-
member your awesome lecture on physics-based animation and the semester
thesis I did under your supervision. Your passion for your field infected me,
and I have not recovered from that to this day. Thank you for encouraging
me to pursue a PhD.

I would also like to express my gratitude to Peter Kaufmann, Gerhard
Röthlin, Max Grosse and Michele d’Ambroggio for sharing their engineer-
ing knowledge with me, which proved to be extremely useful during my
doctoral studies. I thank Prof. Markus Gross for introducing me to the inter-
section of computer graphics and industry. Many thanks to Prof. Paul Kry
and Prof. Eitan Grinspun, who generously took the time to work together
to solve various problems I had in my master’s thesis. It was great to see
experienced academics tackle a problem and has inspired me to help others
whenever possible

Thank you to my co-authors Prof. Roi Poranne, Ruta Desai, David Hahn,
Jonas Zehnder and Moritz Bächer. I was fortunate to have had the opportu-
nity to work with you. Thank you, Sebastian Winberg, for all the hard work
you put into our ambitious projects. It was a lot of fun working with you,
traveling and standing next to our robots.

Thank you to Jim, Vittorio, all the Simons, Miguel, Guirec, Dongho,
Florian, Liyue, Nuria, Flavio, and Oliver. It was great having you as labmates
and sharing our successes and failures.

Thank you to all my friends. Maybe I have time to have a beer now.
Last but not least, thank you to my wife Seraina for all the unconditional

support, understanding and love for my strange work. Thanks to my mother,
father, sisters and children for being there for me.

xi

C O N T E N T S

List of Figures xvi
List of Tables xviii
1 introduction 1

1.1 Motivation . 1

1.2 State of the Art . 3

1.3 Thesis Overview . 5

2 motion generation for legged-wheeled robots 7

2.1 Introduction . 8

2.1.1 Contributions . 9

2.2 Related Work . 9

2.3 Overview . 10

2.4 Motion Generation . 12

2.4.1 Optimization Model . 12

2.4.2 Numerical Solution . 18

2.4.3 Further Analysis and Optimization Speedup 19

2.5 Design Optimization . 21

2.5.1 Motivation . 21

2.5.2 Technical solution . 22

2.5.3 Manual Design Mode 23

2.5.4 Semi-Automatic Design Mode 24

2.5.5 Automatic Design Optimization 24

2.6 Results . 26

2.6.1 Wheeled robots . 26

2.6.2 Interactive Design . 29

2.6.3 Design optimization . 29

2.6.4 Fabrication . 29

2.7 Discussion . 31

3 design and fabrication of legged-wheeled robots 35

3.1 Introduction . 35

3.1.1 Contribution . 36

3.2 Related Work . 37

3.3 Warm-Start Routine for Motion Generation 39

3.4 Analysis . 42

3.4.1 Evaluation of Warm-Start Routine 42

xiii

xiv contents

3.4.2 Morphology exploration for hybrid legged/wheeled
robots . 43

3.5 Fabricated Results . 44

3.5.1 From conceptual designs to physical prototypes 44

3.5.2 Robot Designs . 45

3.5.3 Performance Evaluation 47

3.6 Motion Generation for Anymal on Wheels 48

3.6.1 Overview of Feedback Control System 49

3.6.2 Evaluation . 50

3.7 Discussion . 52

4 differentiable physics simulation for motion synthesis 55

4.1 Introduction . 56

4.1.1 Contributions . 57

4.2 Related work . 58

4.2.1 Frictional Contact Dynamics 58

4.2.2 Inverse Contact . 59

4.2.3 Differentiable Simulation 59

4.3 Differentiable Multi-Body Dynamics: Preliminaries 60

4.3.1 Implicit time-stepping for multi-body systems 60

4.3.2 Simulation Derivatives 62

4.4 Differentiable Frictional Contact Model 63

4.4.1 Sequential Quadratic Programming 65

4.4.2 Penalty methods . 66

4.4.3 Hybrid method . 67

4.4.4 Summary and evaluation 69

4.5 Internal and External Forces in Generalized Coordinates . . . 73

4.5.1 Soft bodies . 73

4.5.2 Rigid bodies . 74

4.5.3 Signed distance functions as collision objects 76

4.5.4 Multi-body systems . 78

4.6 Parameterization of Rigid Body Rotation 79

4.6.1 Exponential Coordinates and Angular Velocity 79

4.6.2 Reparameterization . 80

4.7 Solving Inverse Problems . 81

4.7.1 Optimization Framework 82

4.7.2 Motion Generation for Compliant Robot 84

4.7.3 Material parameter estimation 85

4.7.4 Trajectory Optimization 89

4.7.5 Self-supervised learning of control policies 94

contents xv

4.8 Discussion . 96

5 conclusion 99

5.1 Discussion . 99

5.2 Conclusion . 100

5.3 Future Work . 101

a appendix 103

a.1 Rigid body Theory . 103

a.1.1 Parameterization of Rotation 103

a.1.2 Rigid bodies . 104

a.1.3 Rigid body dynamics 105

a.2 Supplemental Material for Chapter 4 107

a.2.1 Comparison to CMA-ES 107

a.2.2 Scaling of computation time 107

a.2.3 Number of contact points 108

a.2.4 High-stiffness elastic material 108

a.2.5 Overview of Simulation Parameters 111

bibliography 113

L I S T O F F I G U R E S

Figure 1.1 Robot inspirations . 4

Figure 2.1 Robotic creatures created with our computational
design system . 7

Figure 2.2 High-level overview of our design system 11

Figure 2.3 Comparison of convergence rates for the motion
optimization process 20

Figure 2.4 Comparison of manual and semi-automatic design
editing modes . 25

Figure 2.5 Result of design optimization 26

Figure 2.6 Swizzle. 28

Figure 2.7 A demonstration of a slalom motion design 28

Figure 2.8 Convergence graph for automatic design optimization. 30

Figure 2.9 A robot leg before assembly. 30

Figure 2.10 A variety of unique legged/wheeled robots designed
with our system. 32

Figure 3.1 AgileBot and Skaterbot. 37

Figure 3.2 Convergence improvement when using the warm
start routine. The dashed lines denote the warm
start routine, which greatly improves convergence
speed. 42

Figure 3.3 Overview of computational framework 45

Figure 3.4 Robot components . 46

Figure 3.5 Skaterbot on ice . 47

Figure 3.6 Comparison of generated, physically simulated and
motion-captured trajectories for AgileBot 48

Figure 3.7 Anymal on wheels performing dynamic motions . . 51

Figure 3.8 Results of the interactive TO in combination with the
MPC . 52

Figure 3.9 Anymal on wheels performing a concatenated motion 53

Figure 4.1 Dropping a cylinder onto an inclined plane 69

Figure 4.2 Objective function landscapes 70

Figure 4.3 Optimization convergence for throwing a bunny . . . 71

Figure 4.4 Dropping an object composed of three tori 73

Figure 4.5 Total energy over time for bouncing rigid cubes . . . 75

Figure 4.6 Forward simulation for different collision types . . . 77

xvii

xviii list of figures

Figure 4.7 Coupling soft and rigid bodies allows us to equip
this compliant robot with soft feet 85

Figure 4.8 Control trajectories executed on a robot with com-
pliant motors and soft feet 86

Figure 4.9 Errors obtained when optimizing for ground truth
initial conditions and material parameters on syn-
thetic data . 87

Figure 4.10 Parameter estimation for throwing a sphere and a cube 88

Figure 4.11 Parameter estimation with Kinect data. 89

Figure 4.12 Throwing a deformable ball 90

Figure 4.13 Throwing with multiple contacts 91

Figure 4.14 Optimizing end-effector trajectories for robotic con-
trol of coupled dynamic systems 92

Figure 4.15 Trajectory optimization of three rigid bodies linked
together by soft springs 93

Figure 4.16 Trajectory optimization for a rigid body with com-
plex collision geometry. 94

Figure 4.17 Trajectory optimization of cloth modeled as mass-
spring system . 94

Figure 4.18 Differentiable simulation layer in a neural network. . 95

Figure 4.19 Convergence of the learning process for the throw
controller . 96

Figure A.1 Optimizing throwing the bunny to a specific target . 107

Figure A.2 Optimizing control trajectories for dragging a cube
along a circular arc . 108

Figure A.3 Computation time per number of rigid bodies 109

Figure A.4 Restitution experiment 110

Figure A.5 Objective function value per simulation run using
continuation . 110

L I S T O F TA B L E S

Table 2.1 Robot zoo . 31

Table 3.1 Outline of warm-start strategy 40

Table 3.2 Differences in SwizzleBot designs and motions 43

Table 3.3 Maximum Speed for Different Designs 49

Table A.1 Overview of simulation parameters 111

Table A.2 Overview of parameters used in trajectory optimiza-
tion examples. 112

xix

1
I N T R O D U C T I O N

The variety of motor skills possessed by humans and animals is astonish-
ing. Tasks in our daily lives, such as running down the stairs to get the
newspaper, turning the pages, and catching the coffee cup when it threat-
ens to slide off the table, seem trivial to us. However, the motor skills we
display every day are truly impressive. We humans are also very good at
adapting our behavior to new environments. When we first put on skates,
we may initially try to move around by pushing our feet backwards, only
to soon realize that we can not exert any force in the direction of the skates.
Then, figuring out how the skates and the ice interact, we find that the
friction between the skate’s blade and the ice perpendicular to the blade
is far greater. And once we gain this understanding, we tilt our feet and
successfully begin to push the ice under our feet. This innate understanding
of how our body behaves and interacts with the physical environment is
the foundation of our mobility and dexterity.

1.1 motivation

Nowadays, we can easily create our own virtual creatures that live in the
digital worlds of computer games or movies. The design of these creatures
is limited only by our imagination. They can resemble animals from the real
world or be completely fictional. Computer animation then breathes life
into their bodies to move with the same grace and agility as their real-world
counterparts.

The advent of digital manufacturing such as 3D printing has opened up
the possibility of bringing these virtual figures into the real world. In the
real world, however, these creatures are subject to the laws of physics that
govern every interaction with the surrounding world. While the motions in
the virtual world are inspired by the laws of physics, motions in the real
world are at the very mercy of these laws. And consequently, the motions
from the virtual world cannot simply be transferred to the real world. The
laws of physics govern all interactions in the real world, and therefore
understanding these physical principles is the key to successful locomotion.

1

2 introduction

At the same time, roboticists face a similar challenge. As robotic compo-
nents become more powerful and accessible, roboticists come up with novel
robot designs and must figure out how to control these new machines most
efficiently and robustly. However, compared to their biological counterparts,
robots still lag behind in terms of agility, speed, and elegance. So what’s
missing in robotics such that we can build machines that interact with the
world as dexterous and elegantly as animals and humans?

While this question certainly has many answers, we can take inspiration
from biology. Behind the wide range of abilities and adaptability to new
situations that animals and humans possess lies a deep understanding of
how our bodies and objects behave in the physical world around us. When
we are confronted with new environments - a slippery floor, for example -
the laws of physics remain the same, and only the parameters change. We
can reuse previous models that our brain has developed and only adjust
the parameters, such as the slipperiness of the floor. Using this physical
intuition, our body and brain develop adapted motor controls to navigate
and manipulate the world we live in.

However, this intuition alone would be useless if our bodies were not so
uniquely built. Roughly speaking, mammalian bodies are made up of rigid
components, like bones and nails, and soft components, like tendons, mus-
cles, or skin. There are certainly many reasons why mammals are built this
way. From a motor control perspective however, there are distinct advan-
tages of introducing compliance in a dynamical system. The combination of
rigid and soft structures allows humans and animals to control their bodies
robustly and interact effectively with the environment.

Similarly as in the virtual world, where there’s no boundaries to our
creativity, roboticists have come up with novel designs unseen in the animal
world, such as combining legs and wheels. These mobile robots can be
viewed as under-actuated, non-linear dynamical systems with large degrees
of freedom. As such, motion planning and control of these machines is
difficult. This has two consequences.

First, roboticists tend to build on a proven design. It is difficult to verify
whether a new design would be better, since we have to develop optimal
motion plans and controls for each new design. An example of this is the
popular four-legged design. But what if a robot had wheels? How would it
move? Would a traditional four-legged morphology still work?

Second, today’s standard algorithms for controlling robots, such as in-
verse dynamics, are geared towards robots that consist of rigid components.
However, the targeted introduction of compliant components could be the

1.2 state of the art 3

key to making them more robust and agile. The compliant components in
the form of soft, damped motors or deformable feet can already be seen
in current robot designs. To effectively exploit this compliance, the physi-
cal model on which high-level motion planning algorithms and low-level
controllers are built need to account for this compliance.

In this thesis, we aim to develop computational algorithms and tools that
enable motion synthesis frameworks to generate locomotion controls for
robots with legs and wheels, as well as compliant components. Our vision
is to develop a simulation model of the real world that provides robots
with an innate understanding of physics to enable lifelike and elegant
interactions with their environment.

1.2 state of the art

Content creation has been a central theme since the early days of computer
graphics. A variety of tools have been developed to help content creators
to animate their virtual characters. However, translating these motions to
characters living in the real world presents many new challenges. While we
can alter a virtual world to our liking, in the real world, the laws of physics
are predetermined. To overcome these real-world challenges, researchers
have developed computational tools that allow users to generate stable
motions that can be transferred to the real world. Users can focus on higher-
level motion goals and styles, and algorithms ensure that the resulting
motion trajectories are physically feasible. This computational approach
enables the generation of motions for a variety of non-standard and novel
robotic morphologies, such as the five-legged creature in Figure 1.1 top
left [1].

At the same time, mobile robots have become increasingly sophisticated
and reliable. One design is particularly popular: it is a quadruped in which
each leg consists of three motors with the same motor-axis configuration.
This design has proven quite successful for legged locomotion and is used by
a few quadruped platforms such as Anybotics’ Anymal, Boston Dynamics’
Spot Mini or MIT’s Mini Cheetah, which can be seen in Figure 1.1. Focusing
on a single design allows roboticists to fine-tune their motion planning and
control algorithms, resulting in fast, reliable and agile locomotion.

But what about other robot morphologies? One area we would like to
highlight is locomotion with legs and wheels: Legs allow for dexterous
mobility and wheels are fast and efficient. However, the combination of
legs and wheels also poses additional challenges to the design and control

4 introduction

Figure 1.1: Robots with legs, wheels or compliant components that have in-
spired our work. From top-left to bottom-right: Robot designed with
a computational framework [1]; Cheetah-Cub [2]; Boston Dynam-
ics’ Handle; Roller-Walker robot [3]; Anymal on wheels [4]; Agility
Robotics’ Cassie.

of these robots. Therefore, there are few robots today that have both legs
and wheels. A notable example is the Roller-Walker robot, shown in Figure
1.1. It combines legs and unactuated wheels and can move without lifting its
feet, resulting in a movement called ”swizzling”. The motions performed
by this inspiring robot were hand-crafted specifically for this morphological
design. Other robots combine legs and actuated wheels. Examples include
Boston Dynamics’ Handle and Anymal on wheels, both shown in Figure
1.1.

While wheels promise faster and more efficient locomotion, the motiva-
tion for building a robot with soft and compliant components is increased
robustness, safety, and, potentially, performance. Every dynamic system
exhibits some degree of desirable or undesirable compliance, even robots
made predominantly of rigid components. The quadrupeds mentioned
above all have soft feet and their motors have some compliance and damp-
ing. Another example is Agility’s robot Cassie (Figure 1.1), which has a
deformable plate in the linkage that controls the upper part of its leg. These

1.3 thesis overview 5

are examples of rather rigidly built robots that add some compliance to
their design. As more and more deformable components are introduced
into robot designs, the grand challenge is to develop appropriate control
strategies that govern these complex dynamical systems. To meet this chal-
lenge, much time and effort has been invested in developing differentiable
physical models for hybrid multibody systems. These models can account
for the compliance of robots and can then be used by motion planning
and control algorithms. The models must be expressive enough to capture
real-world phenomena such as deformation, friction, and contact while
providing meaningful derivatives in terms of control parameters.

Despite these achievements, the agility, grace, and elegance of real an-
imals remain unsurpassed. And the development of robots with novel
morphological designs, compliant components, or wheels still requires an
immense amount of engineering and prototyping. Every design decision-
whether adding another limb, changing the stiffness of a component, or
choosing between normal feet and wheels-is equivalent to changing a high-
dimensional, nonlinear, and underactuted dynamical system. The nature
of this dynamic system determines the space of motions the robot can
potentially perform. And so every design decision affects the way the robot
might be able to move.

The robots for which we want to generate motions may have an arbitrary
arrangement of legs and joints, be equipped with unactuated or actuated
wheels or ice-skates, or be designed with compliant motors or soft feet.
The generated motions must take into account the dynamics of the par-
ticular robot design and exploit the unique characteristics of each robot
morphology. Our goal is to develop algorithms and computational tools
that unlock the motion capabilities of this wide range of robot morphologies
and designs.

1.3 thesis overview

The work presented in this thesis explores different physical models of
robots and trajectory optimization algorithms with the goal to generate
compelling motions for legged-wheeled, and compliant robots. Each of
the main Chapters 2 - 4 contains an introduction identifying the main
contributions, followed by a Section on related work, a Section on results,
and a discussion at the end of each Chapter.

We begin by introducing the project Skaterbots (Chapter 2), which presents
a framework for motion generation of robots with legs and wheels. It allows

6 introduction

users to create their own robot designs and generate appropriate motions.
We use this system to design our own quadruped, AgileBot (Chapter 3),
which can be equipped with actuated and passive wheels. Thanks to the
flexibility of our motion planning tool, we can easily synthesise walking,
rolling, swizzling and skating motions. Equipped with ice-skates, it is (one
of) the first robots to master the art of skating. Using the experience gained
from building Agilebot, we aim to create a new physics model that can
capture the full dynamics and compliant behaviour of a real robot. This
leads to the development of a differentiable multibody simulator (Chapter
4). We use it to generate motions for a compliant quadruped with soft
feet. Unlike in previous Chapters, the underlying physical model is more
general and can be used to model many types of robotics problems. We
show several initial applications in the areas of trajectory optimization
for object manipulation, parameter estimation, and machine learning. We
conclude this thesis with a conclusion and promising directions for future
work (Chapter 5).

2
M O T I O N G E N E R AT I O N F O R L E G G E D - W H E E L E D
R O B O T S

In this Chapter we present a computation-driven approach to designing,
optimizing and synthesizing motions for different breeds of legged-wheeled
robots. At the core of our work lies an efficient trajectory optimization for-
mulation tailored to the specific challenges of this class of robotic creatures.
Through a unified treatment of feet and wheels, our model enables auto-
matic generation of stable, physically-valid walking, rolling and skating
motions for user-designed robots.

Although these motions are optimal with respect to the morphological
characteristics of each individual robot, not all robots are created equal.
Indeed, the motor capabilities of different robots can vary drastically. Opti-
mizing design parameters for user created robots is therefore an indispens-
able piece of the puzzle which we also address in this Chapter. To this end,
we develop a suite of computational tools that leverage sensitivity analysis
to support manual, semi-automatic and fully automatic design exploration
and optimization.

Using our robot design tool, we create a variety of unique robot mor-
phologies with different arrangements of legs and end-effector types. We
demonstrate the effectiveness of our computational approach by generating
motions for each of the robots. To show that the motions transfer to the
real world, we fabricate three of the robot designs and run the generated
motions.

Figure 2.1: Robotic creatures created with our computational design system
employ arbitrary arrangements of legs and wheels to locomote.

Adapted versions of this Chapter have been published as Geilinger,
M., Poranne, R., Desai, R., Thomaszewski, B. & Coros, S. Skaterbots:

7

8 motion generation for legged-wheeled robots

Optimization-Based Design and Motion Synthesis for Robotic Creatures
with Legs and Wheels, ACM Transactions on Graphics (TOG) 37, 1 (2018).

2.1 introduction

Whether it is to help with chores, keep us company, or entertain us, personal
robots promise to play a central role in our increasingly technology-driven
society. Echoing the trend of mass customization and leveraging recent
advances in digital fabrication, our long term goal is to develop algorithmic
foundations that will enable these robots to be created on-demand accord-
ing to the individual needs and preferences of those they serve. In this
quest, we join recent research efforts that bridge the fields of animation,
fabrication-oriented design and robotics [5–7]. Complementing this body of
work, we introduce a novel design system for a rich class of mobile robots
that employ arbitrary arrangements of legs and wheels for locomotion.
Such hybrid robots enjoy the combined versatility of legged and wheeled
systems, but they also inherit their compounded challenges: they have
many actuated degrees of freedom that need to be precisely coordinated
in order to generate motions that are balanced, elegant, and efficient; their
kinematics and dynamics are governed by highly non-linear equations; and
their motor capabilities and physical design characteristics are inseparably
intertwined. For these reasons, creating hybrid mobile robots remains a
very difficult and error-prone task.

We present a computation-driven approach to designing, optimizing and
synthesizing motions for different breeds of legged-wheeled robots. At
the core of our work lies an efficient trajectory optimization formulation
tailored to the specific challenges of this class of robotic creatures. Through
a unified treatment of feet and wheels, our model enables automatic gen-
eration of stable, physically-valid walking, rolling and skating motions
for user-designed robots. Although these motions are optimal accordig to
motion goals and with respect to the morphological characteristics of each
individual robot, not all robots are created equal. Indeed, the motor capabil-
ities of different robots can vary drastically. Optimizing design parameters
for user created robots is therefore an indispensable piece of the puzzle
which we also address in this work. To this end, we develop a suite of
computational tools that leverage sensitivity analysis to support manual,
semi-automatic and fully automatic design exploration and optimization.

To validate our work, we designed a variety of robotic creatures and
corresponding motions, all of which were tested using off-the-shelf physics-

2.2 related work 9

based simulators. We further fabricated three of our designs to assess the
degree to which physical prototypes match our simulation results.

2.1.1 Contributions

Succinctly, our main contributions are:

• A versatile trajectory optimization formulation that is used to generate
stable, physically-valid motions for a large variety of robots that
employ legs and wheels for locomotion

• An analysis of the underlying numerical solver that reveals an ef-
fective way to drastically increase convergence rates for the motion
optimization process

• A suite of user-guided computational tools that support manual, semi-
automatic and fully automatic optimization of the robot’s physical
dimensions

2.2 related work

Fabrication-aware design is a flourishing topic in Computer Graphics re-
search. This is not surprising, since content generation has been a core
topic of the field since its very beginnings, and digital fabrication machines
are simply new types of output devices. However, going from virtual en-
vironments to the real world introduces many new challenges that must
be addressed. For example, in recent years we have seen computational
design approaches for objects that are lightweight yet strong [8, 9], ob-
jects whose optimized mass distribution allows them to stand, spin or
float stably [10–12], physical characters that mirror the range of motion of
their virtual counterparts [13–15], and increasingly complex mechanisms
and mechanical automata designed to generate specific motions [16–20].
These computational tools share the same high-level goal as ours: enabling
non-experts to create complex physical artifacts without requiring domain
specific knowledge.

To increase the range of functionality for digitally-fabricated objects, re-
searchers are also investigating computational approaches to embedding
sensors and various other electromechanical components into their de-
signs [21–24]. These research efforts build a bridge between the fields of
HCI, Computer Graphics and Robotics, and our work follows this spirit. In

10 motion generation for legged-wheeled robots

particular, closely related to our work are algorithmic methods to design
origami-inspired robots [6] as well as walking automata [25] and robotic
creatures [26]. The computational techniques we describe in this thesis
complement this body of work by targeting a diverse class of mobile robots
that move using arbitrary arrangements of legs and wheels. The designs
we support may have any number of morphologically different legs each
equipped with a foot, or (un)actuated wheel. The many degrees of freedom
of these robot designs and their hybrid legged-wheeled nature demands
motion repertoires that are much richer and more intricate than those of
robots relying largely on quasi-static walking [26]. We therefore present a
new, highly efficient trajectory optimization approach that automatically
generates walking, rolling, skating or gliding motions, as appropriate given
the morphological designs of different robots.

Building on a growing body of literature [16, 20, 27–29], we leverage
sensitivity analysis to establish a relationship between the motions a robot
can generate and its physical design parameters. In particular, the method
described in [29] nicely complements our work: while their formulation
fine-tunes robot designs such that actuation forces are reduced, the suite of
computational tools that we propose are specifically developed to support
motion-aware manual, semi-automatic and fully automatic design explo-
ration and optimization. Our work also draws inspiration from a number
of specific, hybrid robot designs presented in the robotics literature [30–32].
These one-off designs are feats of engineering developed by teams of sea-
soned domain experts. Our long term goal is to allow even casual users to
create robotic creations that approach the same level of sophistication.

2.3 overview

Our system allows its users to create unique robot designs by connecting
together different types of mechanical components in a mix-and-match
manner. This design process is illustrated in Fig. 2.2 and can also be seen
in the video [33]. Our implementation of the underlying graphical user
interface is similar to the one employed by Desai et. al. [34], and the
database of components we use for all our results consists of servomotors,
3D printable connectors and three types of end effectors: actuated wheels
whose angular speed is controlled by motors, passive wheels that can spin
freely about their rotation axis, and welded wheels that afford no motion
relative to the body part they are attached to. Welded wheels are used to
model feet that roll on the ground as the robots are moving, and when their

2.3 overview 11

radii are set to 0, they become equivalent to the point foot model commonly
used by motion planning algorithms.

Figure 2.2: High-level overview of our design system: through a simple drag-and-
drop interface, designers can interactively generate a vast array of
robotic creatures. Once designs are finished, our system automatically
generates physically-valid motions that are skilled and agile. We
also present computational solutions for user-driven or automatic
optimization of the robot’s physical dimensions. The resulting designs
can be easily fabricated, leading to compelling physical robots.

The morphological design of each robot is generated from a user-specified
hierarchical arrangement of components: servomotors correspond to actu-
ated joints, connectors define the geometric shape of each rigid link of the
robot, and end-effectors specify the mechanical behavior of the components
that will come into contact with the environment as the robot moves. This
input directly defines the inertial parameters for each body part, 3D models
for fabrication, as well as the rotation axes for each wheel and each joint
actuator. With the resulting robot design as input, our trajectory optimiza-
tion method (Sec. 2.4) generates physically-valid walking, rolling, gliding
or skating motions. These motions are automatically tailored according to
the morphological characteristics of each individual design. We leverage
the particular structure of our motion synthesis formulation to significantly
accelerate the underlying numerical solver (Sec. 2.4.3). This allows designers
to interactively choreograph motions that are stable, agile and compelling.

To ensure that a robot functions as envisioned by its designer, we also
develop computational solutions for manual, semi-automatic and fully
automatic optimization of the robot’s physical dimensions (Sec. 2.5). These
tools leverage sensitivity analysis and allow even non-experts to explore
the often unintuitive relationship between design parameters and motor
capabilities, as a change in design may lead to a hard-to-predict effect
in motion capabilities. Prior to fabrication, designs are validated through
off-the-shelf physics simulators. We use proportional-derivative controllers

12 motion generation for legged-wheeled robots

to generate torques for every actuated joint of the simulated robot, and
feed-forward velocity controllers for its actuated wheels. Time-varying
joint angle and wheel speed targets for these low-level controllers are
directly generated from the optimized motions. We use the Open Dynamics
Engine [35] as a black-box simulator for all our results.

2.4 motion generation

Our motion generation model builds on trajectory optimization techniques
that reason in terms of a robot’s centroidal dynamics [36]. This class of meth-
ods exploits the fact that modeling the evolution of the robot’s aggregate
linear and angular momenta over time is much simpler than considering its
full-body dynamics. Nevertheless, this simplified dynamics representation
can be easily complemented by geometric constraints to ensure that the
generated motions are consistent with the robot’s kinematics [37]. Because
they strike a favorable balance between predictive power, simplicity and
computational efficiency, models based on centroidal dynamics are quickly
gaining in popularity.

In this Section, we describe a new mathematical formulation that lever-
ages the concept of centroidal dynamics to efficiently generate dynamic
motions for a diverse array of hybrid robotic creatures. The general nature
of our formulation allows physically-valid walking, rolling, gliding and
skating motions to emerge naturally as a function of the morphological
design of each individual robot.

2.4.1 Optimization Model

The input to our motion optimization model consists of robots with arbitrary
user-generated morphology. The robots interact with the environment
through their end effectors, which can be located on any of their body
parts. Without loss of generality, each end effector is assumed to be a wheel
described by its radius r, mounting location l̂ on body part b, and rotation
axis â expressed in the local coordinate frame of b. Our motion optimization
model supports passive and actuated wheels. Depending on the type of
wheel, different constraints are instantiated as discussed in below.

Using a direct transcription approach, we turn to a time-discretized
setting and represent a motion plan m = {m1, . . . , mT} as a set of vectors mi
that span a planning horizon with length of time hT, where h is the amount

2.4 motion generation 13

of time between consecutive time samples. The subscript indexes specific
samples in time, and mi is defined as:

mi = {qi, ci, e1
i , . . . en

i , f1
i , . . . fn

i , ω1
i , . . . ωn

i , α1
i , . . . αn

i } (2.1)

For every time index i, the vector qi = {q1
i , . . . , qK

i } denotes the pose of the
robot, which consists of the position and orientation of the root link, as well
as the joint angles that describe the relative orientation between articulated
body parts; qi is thus a vector of size K = 6 + N, where N is the number of
joints. The corresponding centroidal coordinate frame c = {x, θ} represents
the robot’s center-of-mass (COM) position x and global orientation θ. Each
of the robot’s n end effectors are referenced by superscript j, 1 ≤ j ≤ n.
The points e define the location of the end effectors in a global coordinate
frame (e.g. the points where each wheel should make contact with the
environment) at different moments in time and f represents the force
imparted by the robot onto the environment through each end effector. For
each wheel in the robot’s design we also store its instantaneous, world-
relative angular speed ω, and two rotation angles α = {αtilt, αyaw} that
define the global orientation of its rotation axis:

a(α) = W(α, â) = Rv(αyaw)Rt̂(αtilt)â, (2.2)

where R denotes a typical rotation operator. Note that we use the .̂ accent
to denote quantities expressed in local coordinates. In the equation above,
â and a therefore represent the rotation axis of the wheel expressed in local
and global coordinate frames, respectively.

αyaw

ω

a(
α
) t(α)

ρ
(α

)

t̂

â
αtilt

V

As illustrated in the inset figure, the tilt
axis t̂ is defined to lie at the intersection of
the ground plane with the wheel plane. It is
computed in the local coordinate frame of the
wheel as t̂ = â× v/|â× v|, where v is the ver-
tical axis in global coordinates. The tilt axis
in global coordinates, t(α), is computed as
W(α, t̂), and carries special meaning: it rep-
resents the only valid direction of movement
for the wheel at any specific moment in time.
Another important quantity, ρ̂ = t̂× âr, where r is the radius of the wheel,
is the vector from the center of the wheel to the point where the end effector
will make contact with environment (assuming locomotion on flat ground).

Our decision to model and parameterize wheels as separate entities
warrants a brief discussion. We initially considered treating wheels as

14 motion generation for legged-wheeled robots

additional rigid bodies in the robot’s morphological structure (i.e. their
motion would be stored as part of q, as for any other joint). While this
modeling choice would reduce the overall number of parameters we need to
optimize for, it presents two major downsides. First, even simple operations
such as determining the point on a wheel that contacts the environment
would require complex kinematic computations, because in the coordinate
frame of a rigid body, this point does not remain fixed. In contrast, it is
easily seen that upon transformation to global coordinates, ρ = W(α, ρ̂)
maintains its meaning, i.e. it still represents the vector from the center of the
wheel to the point that is closest to the ground. As a result, the objectives
and constraints formulated below take on much simpler forms and become
faster to evaluate. Second, as discussed in Sec 2.4.3, optimization terms
that include the full kinematic model of the robot are highly non-convex,
and if left untreated they negatively affect convergence rates. The auxiliary
variables we introduce for wheels allow us to localize these numerical issues
to just two consistency constraints, which we can therefore analyze and
address in isolation.

With the parameterization of the motion plan in place, we now turn
our attention to the constraints and objectives that govern the motions of
wheeled/legged hybrid robots.

kinematics and dynamics : Leveraging the centroidal dynamics rep-
resentation, the global motion of the robot is governed by the familiar
Newton-Euler equations. For our discrete setting, these equations take the
form:

n

∑
j=1

fj
i + Mg = Mẍi , ∀i (2.3)

n

∑
j=1

(ej
i − xi)× fj

i = Iθ̈+ θ̇× Iθ̇ , ∀i (2.4)

As before, the subscript i denotes a specific time index and the superscript
j refers to individual end effectors. The total mass of the robot is M and
its moment of inertia I is computed about the robot’s COM. The center
of mass acceleration, ẍi, is estimated using finite differences: ẍi = (xi−1 −
2xi + xi+1)/h2, where h is the time step. Similarly, θ̈ is computed using
finite differences that operate on axis-angle representations of the centroidal
coordinate frame’s change in orientation between time steps.

2.4 motion generation 15

The motion of the centroidal coordinate frame is a function of the forces
that the robot’s end effectors impart onto the environment. To ensure their
physical feasibility, these forces are subjected to constraints imposed by a
typical Coulomb friction model:

fn ≥ 0 , |ft| ≤ µfn , (2.5)

where ft and fn denote the tangential and normal component of f, and
µ is the coefficient of friction. Forces generated by unactuated wheels are
further constrained to have a vanishing component in the direction along
which the wheel is free to move (i.e. they can only push on the ground in
an orthogonal direction):

f · t(α) = 0 , (2.6)

Furthermore, end effectors can only generate ground reaction forces when
they are in contact with the environment. This behavior is enforced through
constraints of the form:

(1− c)f = 0 , (2.7)

where the binary contact flags c are specified by a foot fall pattern per end
effector, per time step [26]. These flags represent the schedule of contacts
that characterize different locomotion gaits; c = 1 indicates that an end
effector must be in contact with the ground, while c = 0 denotes swing
phases during which end effectors cannot generate ground reaction forces.
Constraints 2.5-2.7 are applied for all time samples i and all end effectors j.

ei ei+1

ρ
ωi

ρ

When end effectors are in contact with the
ground, their motion must be subject to kine-
matic no-slip constraints. Recall that ej

i repre-
sents the location where end effector j makes
contact with the ground at time index i. We
wish the evolution of these points to be consis-
tent with the motion of the wheel, as shown in
the inset figure. If at some moment in time the
wheel has angular velocity ω and the relative
velocity between the wheel and the ground at the contact point is 0, then
the center of the wheel must have velocity ω× ρ. The time derivative of ej

i
must take on the same value, so the no-slip constraint is formulated as:(

ej
i+1 − ej

i
h

+ ω
j
ia(α

j
i)× ρ(α

j
i)

)
cj

i = 0 (2.8)

16 motion generation for legged-wheeled robots

While the constraint above bounds end effector velocities such that their
motions model rolling wheels, the vertical component of their motion must
also be prescribed. We accomplish this through a simple constraint that
asks that the normal component of the end effector position is 0 in stance
(i.e. c = 1), or attain a user-specified value wh otherwise:

cj
ie

j
i · n + (1− cj

i)(e
j
i · n− wh) = 0 (2.9)

The motion of the end effectors is further optimized to ensure that the
motions that are generated are collision-free. For this purpose, we use
inequality constraints applied to every pair of end-effectors:

||ej
i − ek

i ||22 ≥ (rj + rk + β)2, ∀j, k ≤ n (2.10)

where β = 2cm is a safety factor.
We note that the constraints imposed on the motion of end effectors and

the forces they generate are a function of the types of wheels employed in
each design. These constraints, while each simple in formulation, lead to
interesting and often surprising motions.

consistency constraints : The terms described
above operate on the centroidal coordinate frame and
the set of auxiliary end effector variables introduced by
our model. We ensure that the motion of the robot is in
sync with these quantities through a set of consistency
constraints. First, we ask that the trajectory of the robot’s
center of mass matches the linear motion of the centroidal
coordinate frame:

ϕCoM(qi)− xi = 0 , (2.11)

where ϕCoM(q) outputs the robot’s center of mass given
pose q. Likewise, the orientation of the robot’s body, ϕθ(q), must match
that of the centroidal coordinate frame:

ϕθ(qi)R(θi)
−1 = I (2.12)

To mirror the motion prescribed through the auxiliary variables for wheels,
two constraints must be satisfied:

ϕb(â
j, qi)− a(αj

i) = 0 , (2.13)

ϕb(l̂
j, qi) + ρ(α

j
i)− ej

i = 0 , (2.14)

2.4 motion generation 17

Here, ϕb is the forward kinematics function that computes world coordi-
nates of points or vectors defined in the local coordinate frame of rigid body
b which wheel j is mounted on. The first constraint therefore demands that
the wheel axis, as seen from the coordinate frame of b, is aligned with the
wheel axis computed through the auxiliary variables. The second constraint
further requires that the position of the wheel’s center of rotation satisfies
the kinematic relationship illustrated in the inset figure.

ϕb(ŵ
j
b ,qi+1)

ϕb(ŵ
j
b ,qi)

W (αj
i+1, Râ(ωh)ŵw)

W (αj
i , ŵw)

The last consistency constraint is instantiated
only for welded wheels that must have zero veloc-
ity relative to the robot body part they are mounted
on. Before we provide the formulation of the con-
straints that model welded wheels, recall that the
wheel speed ω is specified in a global coordinate
frame, and not relative to b. Consequently, we must
establish a correspondence between the global mo-
tion of body part b, and the motion represented by
the auxiliary parameters of the wheel. We can do
this efficiently by requiring that vectors lying in
the plane of the wheel, as seen from the two differ-
ent coordinate frames, follow equivalent movement patterns. The constraint
therefore becomes:

ϕb(ŵ
j
b, qi) × ϕb(ŵ

j
b, qi+1) = W(α

j
i , ŵw) ×W(α

j
i+1, Râ(ωh)ŵw) (2.15)

where ŵb and ŵw are two reference vectors that lie in the plane of the wheel,
specified in the local coordinate frame of the parent body b and the auxiliary
wheel frame, respectively. We note that the end effector parameterization
does not explicitly store the orientation of the wheel about its rotation
axis. For this reason, for the second term on the right hand side, we first
rotate the vector ŵw according to the angular speed of the wheel, and
then compute its world coordinates, as illustrated in the inset figure. This
formulation does not require ŵb and ŵw to be the same vector, as the cross
product operator outputs the same result for any pair of reference vectors
we choose.

physical hardware constraints : With the motion of the robot
consistent with its centroidal dynamics, it is important to ensure that the
limitations of physical actuators are also respected. We therefore implement
bound constraints for the range of motion of each joint angle qk, its rate
of change q̇k and the angular speed ω of active wheels. The values for

18 motion generation for legged-wheeled robots

the bound constraints are hardware-specific, but they otherwise take on
standard forms, which we omit for brevity.

boundary conditions : Our trajectory optimization model supports
the generation of periodic motions as well as motions with prescribed
starting and end states. For periodic motions, we implement constraints
that ask that the poses of the robot at the start and end of the motion plan
to be identical, i.e. q1 = qT . Constraints for prescribed starting or end states
take on similar forms, and the target values can be poses generated for
any other motion. In this way, our method can easily generate transitions
between periodic motions to create motion graphs [38].

functional objectives and motion regularizers Complement-
ing the constraints detailed above, we also implement several objectives that
provide interactive control over the generated motions. The walking speed,
for example, is controlled by specifying a target offset between the first
and last configuration of the centroidal coordinate frame: ||(xT − x1)− t||2.
The turning rate is similarly controlled by specifying a target yaw angle
between θ1 and θT . To promote the generation of smooth motions, we also
include a regularizing term defined as (qi−1 − 2qi + qi+1).

To provide further control over the generated motions, we allow users to
interactively specify target positions for the robot’s end effectors or COM
trajectory. This interaction mode, which is demonstrated in the accompany-
ing video [33], is supported by simple objectives of the form ||ej

i − etarget||2
or ||xj

i − xtarget||2. We call these choreography objectives, and they are directly
instantiated or removed by the user as desired. Supported by the real-time
feedback enabled by the efficient solver described in Sec. 2.4.3, we found
this interactive motion synthesis mode to be very effective. This user-in-
the-loop optimization scheme can be used both to help the optimization
overcome undesirable local minima when they occur, as well as to shape
the style of the resulting motions.

2.4.2 Numerical Solution

One common approach to solving constrained optimization problems is
through Sequential Quadratic Programming. We initially pursued this
approach but, arguably due to the highly non-linear constraints required
for our formulation, we could not find a strategy (i.e., merit function and
line search parameters) that would reliably lead to good convergence. We

2.4 motion generation 19

therefore resorted to a penalty-based approach that allows us to isolate the
most challenging constraints into specific objectives that can then be treated
in a numerically stable way. To transform equality constraints into penalty
terms, it suffices to minimize their inner product: constraint f(x) = b
becomes (f(x) − b)T(f(x) − b). Inequality constraints are slightly more
involved. As in [7], we first define a C2, piece-wise polynomial function
ψ(x) as:

ψ(x) =

0 x ≤ −ε

1
6ε x3 + 1

2 x2 + ε
2 x + ε2

6 −ε ≤ x < ε

x2 + ε2

3 otherwise

(2.16)

Each scalar inequality constraint f (x) ≤ b is then modeled as ψ(f (x)− b).
The function ψ(x) is a quadratic penalty term when x ≥ ε, it is zero if
x ≤ −ε, and it behaves as a smooth interpolant otherwise. The constant
ε often affords an intuitive interpretation. For example, when placing a
bound on the velocity of a motor, we set ε to 10% of its maximum speed.

To solve the resulting optimization problem, we define a function E(m)
as a weighted sum of all objectives and penalty terms associated with the
equality and inequality constraints introduced earlier. We use a weight of
10000 for all penalty terms. The weights for the functional objectives are set
to 50, while the motion regularizers are assigned a weight of 0.1.

To minimize E(m), we use Newton’s Method coupled with a backtrack-
ing line search method. Once the optimization process converges, we alert
the user if the residual of any constraint penalty term is above an accept-
able threshold. This could be an indication of an invalid robot design, as
discussed in Sec. 2.5.

2.4.3 Further Analysis and Optimization Speedup

Although all gradients and Hessians are computed analytically in our
framework (we verified our implementation against numerical differentia-
tion estimates), the trajectory optimization algorithm is still quite slow to
converge, as illustrated in Fig. 2.3. This behavior is often caused by objec-
tives with an indefinite Hessian. If the Hessian is not positive semi-definite
(PSD), the Newton step may result in a non-descent search direction, which
explains the ”jittery” nature of the convergence plot. To avoid this artifact,
indefinite Hessians must be modified such as to remove negative eigen-
values. In many cases, one might opt to simply regularize the Hessian by
adding a scaled identity matrix to it. However, determining the optimal

20 motion generation for legged-wheeled robots

coefficient value is costly. If it is too low, the Hessian will remain indefinite,
and too high a value will slow down progress. Dynamic regularization
schemes, which we also tested, start out with a small coefficient that is
progressively increased if the search direction is invalid. Nevertheless, every
iteration requires an attempt to solve the underlying linear system, so a
different strategy is needed.

0 50 100 150 200 250 300
#Iterations (x10 for BFGS)

0

2

4

O
bj

ec
tiv

e
va

lu
e

True Hessian
Filtered Hessian

(a)

(b)

(c)

(a) (b) (c)

Initial motion True Hessian Filtered Hessian

BFGS

Figure 2.3: Comparison of convergence rates for the motion optimization pro-
cess using the True Hessian and the Filtered Hessian approximation
(Sec 2.4.3). The configurations of the robot in (b) and (c) correspond
to the motion plan after 10 optimization steps. The non-smooth end
effector trajectories shown in (b) provide a visual indication that the
motion has not converged. L-BFGS, a common quasi-Newton method,
features very poor convergence for our problem.

Furthermore, for multi-objective problems, while summing up the contri-
butions from different objectives might result in an overall PSD Hessian,
individual objectives that are badly behaved might still hinder progress.
To pinpoint the root cause of the problem, we examined the Hessians of
all our objectives. We found that the culprit was hidden in the consistency
constraints (2.11)-(2.14). For example, when written as a penalty term, (2.13)
has the form

E(qi, α
j
i) = ‖ϕb(â

j, qi)− a(αj
i)‖

2 = ‖ϕb − a(αj
i)‖

2 (2.17)

where we use ϕb := ϕb(âj, qi) for brevity. Its gradient w.r.t qi is

∇qi E(qi, α
j
i) = Jqi ϕ

T
b (ϕb − a(αj

i)) (2.18)

2.5 design optimization 21

where Jqi ϕb is the Jacobian of ϕb w.r.t. qi. The Hessian with respect to qi is
therefore

∇2
qi

E(qi, α
j
i) =

3

∑
k=1

(Jqi ϕb)(k)(Jqi ϕb)
T
(k) +

[
(∂Jqi ϕb)

T

∂qk
i

(ϕb − a(αj
i))

]K

k=1

, (2.19)

where we use A(k) for the k’th column of a matrix A, and [vk]
k
k=1 for the

concatenation of K vectors vk. The first term is always PSD since it is a
sum of outer products of vectors. However, we found that the second term
is often indefinite. We therefore simply exclude it when computing the
Hessian. We apply the same modification to the other consistency terms
and call the result the Filtered Hessian. This simplification is akin to a Gauss-
Newton approximation, but we note we only remove second derivatives of
(2.17) with respect to qi. A standard Gauss-Newton approximation would
also remove second derivatives with respect to other parameters (e.g. α

j
i)), as

well as mixed derivative terms. Furthermore, Gauss-Newton is traditionally
used on the entire objective when second-order derivatives are too difficult
or too expensive to evaluate. We use our approximation on only a select few
objectives. This simple filtering operation results in remarkably faster and
smoother convergence, as can be seen in Fig. 2.3. This result also highlights
another benefit of our formulation that employs auxiliary variables to model
end effectors: it allows these types of numerical problems to be isolated
and addressed in a targeted way.

2.5 design optimization

2.5.1 Motivation

Our early experiments with the motion op-
timization model described in the previous
Section exposed an interesting challenge: the
relationship between the morphological design
of a robot and the motions it can generate
can be very unintuitive. We illustrate this chal-
lenge with the example shown in the inset
figure. The design on the right is a simple car
with four parallel wheels, all of which are actu-
ated. When asked to move forward at constant

22 motion generation for legged-wheeled robots

speed, the trajectory optimization method generated the trivial motion plan
that one would expect. The design shown on the right is the same car, but
with the front wheels tilted by 45 degrees. This seemingly innocent editing
operation resulted in the robot no longer being able to move forward as
expected.

This is because tilting the front wheels has the unintended consequence
of lifting them off the ground. The pitch angle of the robot’s body must
therefore be adjusted such that all four wheels are once again in contact
with the environment. In this new configuration, however, as a result of
the combined tilt and pitch of the front wheels, the directions along which
they can move are no longer parallel – recall that these directions, which
are visualized as red arrows, are given by the intersection of the ground
plane with the plane that the wheels lie in. Slip-free motion is therefore no
longer possible. With this design flaw identified, the robotic car is easy to
fix: lowering the front wheels by just the right amount eliminates the need
for the body pitch, ensuring the directions of movement for all wheels are
once again in agreement.

2.5.2 Technical solution

The simple example described above highlights the subtleties and potential
pitfalls inherent to the task of creating mobile robots. Needless to say, ana-
lyzing and finding problems with designs becomes much more difficult as
they increase in complexity. Computational approaches to correcting flaws
and improving user-generated designs is therefore of utmost importance.
We explore solutions to this technical challenge through a suite of com-
putational tools that enable system-guided manual, semi-automatic and
fully automatic design methodologies. These tools leverage the fact that
the sensitivities of optimal motions with respect to morphological design
parameters encode very valuable information.

We treat each user-generated design as a parameterized morphological tem-
plate Ψ which takes as input a vector p. For our implementation, elements
of p encode the location of each joint and each end effector in the local coor-
dinate frame of their parent rigid bodies. Ψ(p) therefore outputs a specific
robot design, and different vectors p result in robots that have the same
morphology but different body proportions. Robots generated with our
graphical design system provide both a morphology, which remains fixed,
and an initial set of parameters p0. The motions generated through trajec-
tory optimization and the robot’s morphological parameters are deeply

2.5 design optimization 23

intertwined through the forward kinematics functions ϕb, ϕCoM and ϕθ that
appear in Eq. 2.11-2.15. Without loss of generality, we can therefore express
the motion of the robot as a function of its design parameters,

m(p) = arg min
m̃

E(m̃, p) , (2.20)

where the optimization energy E was defined in Sec. 2.4.2.
Although the function m(p) does not afford an analytic solution, we

leverage the fact that m and p are coupled through E to compute an explicit
map relating them. To derive this map, we note that as p changes, we can
always compute a new motion such that G(m, p) = ∂E/∂m = 0, i.e. m is
the minimizer of E for the new design parameters. Consequently, the total
derivative of G(m, p) with respect to p, dG/dp, vanishes always. Applying
the chain rule, we obtain

dG
dp

=
∂G
∂m

∂m
∂p

+
∂G
∂p

= 0 . (2.21)

This expression exposes the Jacobian J = ∂m
∂p , which captures to first

order how motion parameters m need to change as the design parameters p
change such that the solution remains on the manifold of optimal motions,
i.e., G(m, p) = G(m + ∂m, p + ∂p) = 0. Computing this Jacobian requires
the Hessian ∂G/∂m, which we compute analytically, and the term ∂G/∂p,
which we estimate numerically. With J at hand, we describe three system-
guided design editing modes supported by our computational framework.

2.5.3 Manual Design Mode

As shown in the accompanying video [33], our computational framework
provides an intuitive interface to directly edit the morphological parameters
of a robot design. The goal of the manual design mode is to enable users
to freely explore the design space. As the body proportions of robotic
creatures are interactively adjusted, our computational system provides
near-instantaneous feedback by generating and displaying corresponding
optimal motions. We achieve this performance by coupling the efficient
numerical treatment described in Sec. 2.4.3 with a simple warm-starting
scheme. Briefly, through the Jacobian ∂m/∂p, user-provided edits ∆p are
explicitly mapped to the changes in motion ∆m that they induce, ∆m =
∂m/∂p∆p. We therefore update the current motion plan by ∆m and then
proceed with numerical optimization.

24 motion generation for legged-wheeled robots

2.5.4 Semi-Automatic Design Mode

While manual editing enables free-form exploration of the relationship
between robot designs and corresponding optimal motions, it is also impor-
tant to have the ability to optimize designs according to specific functional
goals. In general, these goals can be defined in a variety of ways. The option
we explore for our semi-automatic design mode is the following: starting from
an initial robot Ψ(p0) and associated motion m(p0), we enable user-driven
generation of design variations that ensure specific features of the motion
m f ⊆ m are affected as little as possible. In other words, we allow the
user to navigate the null space of their robot design. The desired set of
motion features is selected by the user from a dropdown menu, and it
can consist of the linear or angular motion of the body, the robot’s joint
angle trajectories, or the paths that its end effectors move along. As before,
designers can manually edit the robot’s body proportions as they desire.
These user-provided morphological edits, ∆pu, are complemented by syn-
ergistic changes to all other design parameters, ∆ps, that are automatically
computed such that changes to the motion features, ∆m f , are minimal.
Noting that ∆m f = J f (∆pu + ∆ps), where J f = ∂m f

∂p , ∆ps is the optimum
of the following quadratic program:

min
∆ps

1
2
||∂m f

∂p
(∆pu + ∆ps)− ∆m f ||22

subject to ∆ps
i = 0, ∀i : ∆pu

i 6= 0
(2.22)

The constraints ensure that the changes to design parameters that are
automatically computed are 0 for all components of p that are user-specified,
and ∆m f = m f (p)−m f (p0) helps to combat drift. With the solution to
this optimization problem computed, the design parameters are updated as
p = p+(∆pu +∆ps), and the corresponding optimal motion is recomputed.
The updated robot design respects the morphological edits specified by
the user while minimally changing the selected set of motion features. The
process, of course, can repeat as desired.

2.5.5 Automatic Design Optimization

As a more general solution, our mathematical framework also supports the
optimization of designs according to arbitrary functions defined in terms
of the robot’s motion parameters m. The choreography and functional
objectives described in the previous Section, as well as the overall energy

2.5 design optimization 25

Source Manual Semi-automatic

Figure 2.4: Comparison of manual and semi-automatic design editing modes.
In this example, we increase the length of the highlighted link and
apply symmetric edits to the right side of the body. In manual mode,
the lengthening of the leg results in a noticeable body pitch – the
transparent boxes are added to help better visualize body orientations.
In semi-automatic mode, we ask that the orientation of the body does
not change. As a result, when the highlighted link is lengthened,
synergistic adjustments to other design parameters are automatically
applied as well. In both cases, the weights of the objectives governing
the motion of the body are exactly the same, so its orientation is only
influenced by the robot’s design.

E minimized during the trajectory optimization process are examples of
such functions, which we denote as O(m). Through the chain rule, we can
easily compute the gradient of O(m) with respect to the design parameters:
∂O
∂p = ∂m

∂p
T ∂O

∂m . Updating the robot’s design parameters p using a step along

this gradient (i.e. p = p + β ∂O
∂p) induces the change in the robot’s optimal

motion that most improves O. We have used this optimization scheme
to confirm that the design of the simple car described at the start of this
Section can be fixed automatically. In this case, O(m) was simply E(m).
As we demonstrate in the results video [33], based on the choreography
objectives, the design of the robot and its motions can be concurrently
generated in a co-optimization process that is guided by the designer.

26 motion generation for legged-wheeled robots

Before Auto. Opt. After Auto. Opt.

Figure 2.5: Result of design optimization. The robot is asked to reach the high
target position as shown, but its initial design makes it unable to
comply. By optimizing the design parameters, the robot’s physical
dimensions automatically change such that it can achive the user-
specified motion goal.

2.6 results

Here we discuss our results, which showcase a variety of robots and corre-
sponding motions generated with our method. Thanks to our interactive
design system, all of these results were very easy to create. We emphasize
that all motions emerged automatically as a function of the morphological
design of each robot (i.e. number of limbs, types of wheels, etc). Users
provided only high-level guidance in the form of a desired moving speed,
or optionally, in the form of a sparse set of targets for the robot’s body
over time. The accompanying results video [33] shows real-time screen cap-
tures of our design system, including the motion optimization and physics
simulation steps.

2.6.1 Wheeled robots

actuated wheels Active wheels are highly successful locomotive de-
vices in their own right, as evidenced by the abundance of vehicles found
on our roads. This begs the question: what can be gained by placing motor-
ized wheels on robotic legs? In addition to providing the option to switch
to legged locomotion whenever convenient, the extra flexibility afforded
by combining legs and wheels enables increased agility. We demonstrate
this in the results video [33] by asking one of our robots, Agilebot, to first
accelerate and then quickly slow to a halt. In order to not lose balance

2.6 results 27

and topple over, the robot extends its front legs forward to maintain the
center of pressure within the support polygon. It is worth noting that the
optimization process discovers this strategy by itself, without any inter-
vention from the user. We further demonstrate automatically generated
step-and-drive and turn-in-place motions that are enabled by the robot’s
hybrid wheeled/legged design.

passive wheels Passive wheels also provide ample opportunities for
efficient locomotion, skating being the prime example. Skating is an elegant
and highly efficient form of human locomotion. Even at high speeds, mus-
cles move slowly and can thus exert a large amount of force for propulsion.
However, as anyone who has ever tried to roller-skate will attest, mastering
this skill requires a high degree of motor coordination, and one that is
radically different from other, more native, forms of movement. Unlike
walking, skating does not produce ground reaction forces aligned with
the desired direction of motion; it is precisely the absence of friction in
this direction that makes skating so elegant and efficient. We demonstrate
two types of natural skating motions that our optimization automatically
generates: swizzling and stroking.

Swizzling is a skating technique where wheels remain in constant contact
with the ground. This technique is based on wave-like motions of the feet
which exploit the directional friction of the wheels and cause the whole
body to be propelled forward. Our motion optimization process discovered
swizzling motions automatically for robot designs that feature only one
passive wheel per leg, as shown in Fig. 2.6 and in the accompanying
video [33].

Stroking is a slightly more advanced technique that requires the legs to
be lifted off the ground periodically. This is necessary when several wheels
are attached to a foot, since this type of design makes it impossible for
end effectors to rotate about the vertical axis without sliding while they
are touching the ground. This mode of locomotion requires the robot to
place its back leg on the ground, orienting the wheels in a direction almost
orthogonal to the direction of motion, while the front leg glides forward.
A stroke of the back leg pushes the body forward. Next, the legs switch
placement and the motion is repeated. Fig. 2.1(left) depicts a robot that
automatically learns to perform this type of movement. We note that to
obtain this motion, it is necessary to provide an input gait (e.g. a walk or
trot) that then defines the stroking pattern.

28 motion generation for legged-wheeled robots

1 2 3

Figure 2.6: Swizzle.

1 2

Figure 2.7: A demonstration of a slalom motion design. The user can quickly
place position objectives and observe the result in real-time.

welded wheels Welded wheels, which are supported by our design
system, enable a more general representation of physical robot feet as
compared to the widely used point foot model. Wheels can either be welded
permanently to a body part of the robot (e.g. they are printed together as
one piece), or they can be actuated wheels that are actively blocked. We
use the former option to demonstrate a design with three legs that end
in welded wheels and one passive wheel, as shown in Fig. 2.1(middle).
The results video [33] includes a real-time demonstration of the motion
optimization process for this robot. As can be seen, optimal motions are
generated in response to the user changing the desired speed and turning
rate.

2.6 results 29

2.6.2 Interactive Design

The improved performance of our motion optimization algorithm allows
the user to interactively specify motion choreography objectives. A wide
variety of motions can therfore be created in a very short time-span, and the
user may fine-tune the movements of the robot to any desired degree. One
example, shown in Fig. 2.7, is a slalom motion, which also benefits greatly
from the versatility of wheeled legs. For this example, the user simply
specifies a desired speed and provides several lateral target positions for
the center of mass at different moments in time. The optimal motion is
generated almost instantaneously.

2.6.3 Design optimization

As discussed in the previous Section, the three different design editing
modes assist users with the non trivial and often unintuitive task of optimiz-
ing their robots’ physical dimensions. These editing modes are supported
by our efficient motion optimization method which allows the user to vary
design parameters and observe the change in motion immediately.

Semi-automatic optimization allows the user to keep certain aspects of
the motion unchanged while manually tweaking their design, as shown in
Fig. 2.4. Fully automatic design optimization is used both to fix subtle flaws,
as discussed in Sec. 2.5, or to make more drastic changes that enhance a
robot’s ability to generate the motions envisioned by the designer. Fig. 2.8
presents convergence plots for both of these use cases. For both plots we
show the energy of the optimal motion corresponding to the morphological
parameters at each design optimization step. For the car example, shown
on the left, the initial design was unable to move forward due to the flaw
we identified earlier. After three design optimization steps, the flaw was
successfully fixed. The example on the right corresponds to the use case
shown in Fig. 2.5. Here, user-specified choreography objectives asked the
robot to move in ways that were incompatible with its initial design. After
one design optimization step, this robot could already reach its target, while
subsequent iterations further reduced the total energy of its motion.

2.6.4 Fabrication

Fig. 2.10 shows a collection of robots designed with our system. For all these
robots we also designed a variety of motion plans that were validated in a

30 motion generation for legged-wheeled robots

2 4 6 8 100

0.5

1

O
bj

ec
tiv

e
va

lu
e

2 4 6 8 100

1

2

3

4

5

O
bj

ec
tiv

e
va

lu
e

Optimize for travel distance Optimize for reach

#Iteration #Iteration

Figure 2.8: Convergence graph for automatic design optimization.

physically-simulated environment. Table 2.1 provides statistics regarding
the complexity of all the robots shown in the results video [33]. As can be
seen, generating each motion takes only a few seconds of compute time.

We validate our designs through three physical prototypes which are
shown in Fig. 2.1. To create these robotic creatures, we used off-the-shelf
micro-sized servo motors (e.g. Turnigy TGY-306), the Maestro USB controller
board from Pololu, a standard 7.4V battery and 3D printed connectors (e.g.
limb segments). Fig. 2.9 shows all the components used for the leg of one
of our robot prototypes. For each of our designs, the connectors took less
than 24h to 3D print on a Stratasys F370 machine. Assembling, calibration
and testing took an additional 2-4h.

Figure 2.9: A robot leg before assembly.

1Motion phase0

0.
04

V
el

oc
ity

 tr
ac

ki
ng

 e
rr

or
 (m

/s
)

Micro-sized servos are small, light and easy
to work with. However, they are also limited in
terms of the torque they can produce, which is
particularly problematic for robots with long
legs, and thus large moment arms. For this rea-
son, while we noticed that our smaller robots
were able to reproduce the motions generated

2.7 discussion 31

through optimization quite well, the Skatebot
design was noticeably slower as compared to the simulation results. Our
initial wheel design, which relied largely on 3D printed parts (e.g. no ball
bearings), further contributed to discrepancies between the motions of the
physical robot and its simulated counterpart. To quantify the degree to
which our robots were able to follow the optimized motion plans, we mea-
sured the relative difference in speed for Agilebot as it tracked the slalom
motion (Fig. 2.7). As can be seen in the inset figure, the relative error in the
velocity of the COM is less than 4cm/s (about 6% of the speed of the motion
plan). We note that this tracking error is recorded as the robot operates in
a physically-simulated environment, which bypasses mismatches arising
from sub-optimal hardware components.

Robot # joints
end-
effectors

motion motion goals
time
sam-
ples

motion
parame-
ters

planning
hori-
zon

opt.
time

Swizzlebot 12 4

swizzle forward d = 0.5m, α = 0◦ 12 648 1.2s 4.5s

swizzle turning d = any, α = 20◦ 12 648 1.2s 3.4s

Creature3 9 4

walk d = 0.1m, α = 0◦ 12 504 0.8s 1.3s

fast walk d = 0.3m, α = 0◦ 12 504 0.8s 2.5s

turning d = any, α = 20◦ 12 504 0.8s 1.5s

Brainbot 9 3

swizzle forward d = 0.2m, α = 0◦ 24 1008 2s 5.7s

swizzle forward & turn d = any, α = 20◦ 12 504 2s 5.9s

Agilebot 16 4

start & stop d = 1.0m, α = 0◦ 12 696 0.8s 5.2s

turn in place d = 0.0m, α = 0◦ 12 696 1.6s 1.1s

slalom choreography 24 1392 1.6s -1

side-step and roll choreography 36 2088 3s -1

Skatebot 16 8 two-leg skating d = 0.3m, α = 0◦ 12 696 1.2s 11.3s
Dinobot 17 8 skating d = 0.8m, α = 0◦ 12 1140 2s 11.0s

Table 2.1: With our system, the user can create various robot designs and easily
generate motions satisfying different motion goals.In the fifth column,
d defines the desired distance travelled, and α the desired turning
angle. Column 7 displays the number of motion parameters which
equals the size of m.
1: Motion is generated at interactive rates, while user edits choreogra-
phy objectives.

2.7 discussion

We presented a novel design system for a rich class of hybrid legged/wheeled
robotic creatures. Thanks to our versatile trajectory optimization formula-
tion, physically-valid walking, rolling, gliding and skating motions arise

32 motion generation for legged-wheeled robots

Figure 2.10: A variety of unique legged/wheeled robots designed with our sys-
tem.

naturally as a function of the design characteristics of different robots. We
further showed how to leverage the structure of our formulation to sig-
nificantly accelerate the underlying numerical solver. This, in turn, allows
designers to interactively choreograph compelling motions. Given that mo-
tor capabilities and the design of a robot are inseparably intertwined, we
also developed a suite of user-guided computational tools that support
manual, semi-automatic and fully automatic optimization of the robot’s
physical dimensions. We demonstrated the effectiveness of our method by
creating a variety of unique robot designs, three of which we fabricated.

Our results highlight exciting avenues for future work. For example,
we are encouraged by the significant improvements in convergence rates
achieved through the Filtered Hessian strategy described in Sec. 2.4.3.
Our ultimate goal here is to achieve faster than real time performance for
the trajectory optimization process. This will allow motion plans to be
computed on-line, taking into account dynamic environmental obstacles,
and capable of providing full-body feedback strategies in response to
unplanned disturbances.

The initial physical prototype for our SkateBot robot moves noticeably
slower than the simulation model. Our hope was that better engineered
physical wheels (i.e. equipped with professional-grade ball bearings rather
than 3D printed parts) and higher performance actuators would help close
this gap. This turned out to be the case: The improved hardware of Ag-

2.7 discussion 33

ileBot can skate much faster, and perform other compelling motions at
higher speeds compared to Skatebots and its siblings. The control of all of
these robots is however still done in an open-loop fashion. A closed-loop
controller could make these robots much more robust against external dis-
turbances. It may also allow them to traverse rough and unknown terrain,
where legged-wheeled robots might have a particular advantage as they
combine the agility of legs and speed of wheels.

There are also interesting opportunities to improve our motion opti-
mization model to allow the modeling of compliance and slipping, which
is currently outside the capabilities of our model. This would allow for
a new breed of agile robots that move with the grace of their biological
counterparts.

3
D E S I G N A N D FA B R I C AT I O N O F L E G G E D - W H E E L E D
R O B O T S

In the previous Chapter, we introduced a computational framework for
designing robotic creatures and generating motions. In this Chapter, we
will use this framework in an attempt to unleash the full potential of
legged-wheeled robots. The combination of legs and wheels requires novel
modes of locomotion, and robots must therefore be designed to support
these complex whole-body motions. Our computational framework can
accurately predict how different design decisions will affect the robot’s
ability to move, and thus serves as an important tool to explore new
morphologies for mobile robots. We introduce a novel warm-start method
that is critical to our rapid prototyping design approach. It leverages ideas
from numerical continuation to dramatically improve the convergence rates
for the trajectory optimization routine. This allows us to efficiently explore
different robot morphologies and their locomotion modes. The result is
AgileBot, a four-legged robot that can walk, roll, and skate. Compared to the
fabricated prototypes from the previous Chapter, this robot has servomotors
with higher torque and an untethered lightweight design. In addition, we
apply our computational method to generate motions for a robot with a
feedback control system, Anymal, which is equipped with actuated wheels.

Adapted versions of this Chapter have been published in a peer-reviewed
academic journal as Geilinger, M., Winberg, S., and Coros, S. (2020). A
computational framework for designing skilled legged-wheeled robots.
IEEE Robotics and Automation Letters, 5(2), 3674-3681.

3.1 introduction

Legged-wheeled robots hold the promise to deliver dexterous mobility
while at the same time being fast and efficient. Combining legs and wheels,
however, poses interesting new challenges: a robot’s morphology deter-
mines the range of motion it can perform, and different types of end-
effectors govern the way in which it can move. This relationship between
mechanical design and locomotion capabilities becomes particularly com-
plex when we want to exploit the combined advantages of legs and wheels.

35

36 design and fabrication of legged-wheeled robots

Because of these advantages and challenges, legged-wheeled locomotion
has become an increasingly active area of research in recent years. While
most advances in legged-wheeled locomotion have focused on the study
of predefined robot designs and their locomotion modes in isolation, our
long-term goal is to develop a general computational framework that can
serve as a powerful tool for the development of new types of hybrid mobile
robots. To this end, we are evaluating the predictive power of our design and
motion synthesis system. At the technical level, we introduce a novel warm
start technique to dramatically improve the reliability and convergence of
the trajectory optimization routine used to synthesize locomotion behavior.
This technique builds on ideas from numerical continuation and is particu-
larly effective for motions that combine walking and rolling behaviors. We
also build and analyze a novel legged-wheeled robot to validate our com-
putational framework. Equipped with different types of end effectors (i.e.,
actuated or unactuated wheels), this robot is capable of performing a vari-
ety of interesting locomotion modes that take advantage of the combined
benefits of limbs and wheels.

3.1.1 Contribution

We demonstrate the advantages of our computational system as a predictive
tool for the design of legged-wheeled robots by highlighting the important
relationship between the design of a robot and its locomotion. Our main
contributions are:

• A numerical continuation method for efficiently warm-starting the
motion synthesis process for robot designs created with our inter-
active program. This warm start procedure drastically improves the
robustness and convergence of the trajectory optimization routine
used by our framework.

• As a result, different robot morphologies can be tested very quickly
in simulation, leading to an efficient exploration of the space of loco-
motion modes that different configurations of legged-wheeled robots
are capable of.

• To validate our simulation results, we created two legged robots
shown in Fig. 3.1, which have five actuated degrees of freedom per
limb. Equipped with different types of end effectors-active or passive
wheels and ice-skates-these robots are capable of performing a range

3.2 related work 37

of interesting motions, including walking, roll-walking, roller-, and
ice-skating.

Our results suggest that a robot engineering system such as the one used
in our work can become an invaluable tool in discovering robot designs
specifically engineered for different tasks.

Figure 3.1: AgileBot and SkaterBot, two robots created with the help of our
interactive design system.

3.2 related work

Motion planning and control of legged robots has a rich history in the field
of robotics, as these machines show promise in navigating unstructured
environments. Nevertheless, wheeled and tracked robotic systems enjoy
widespread use in industry as they are more efficient, stable, and easier to
control reliably. It comes as no surprise, though, that researchers are also

38 design and fabrication of legged-wheeled robots

focused their efforts on the challenge of creating hybrid robots that combine
the advantages of wheels and legs. For example, the robot presented in [3]
uses a manually designed gait that exploits limb articulation and unactuated
wheels to create a very particular type of wheeled locomotion. Another
interesting robot design that combines legs and wheels is presented in [39].
Here, the robot uses its legs to actively control its support polygon while
driving with motorized wheels, allowing it to make aggressive start-stop
and turning motions. Boston Dynamics ’ Handle robot [40], one of the most
recent examples of a hybrid legged-wheeled system, displays an incredibly
rich repertoire of agile behavior, although the technical details behind this
platform and its control system remain unpublished.

Traditional legged robot designs are well-studied. However, equipping
them with different types of end effectors opens up interesting avenues for
further investigations. For example, the quadrupedal robot Anymal was
recently retrofitted with different types of wheels [4, 41], and even ice
skates [42]. The Anymal team also developed customized motion planning
and whole-body control techniques for the emerging mechatronic systems.
Their efforts in this area point to an important challenge. While Anymal
was able to move using motorized wheels reasonably well [41], it had
very limited mobility with skates [42]. We hypothesize that this important
limitation is due to Anymal’s morphoholgic design, which was intended
for traditional legged locomotion: the types of end-effector trajectories
required for skating may be difficult, if not impossible, to generate with
Anymal’s current limb design. This observation underscores the need for
an interactive design system such as the one we describe in our work.

The design of hybrid robots with wheels and legs requires special consid-
erations, as do the techniques used to control them. For conventional robots
with legs, there are already established techniques for motion planning. In
general, existing techniques must make a trade-off between computational
efficiency and the accuracy of the models used for motion planning. For
example, the framework FROST developed in [43] considers the whole-body
dynamics of a robot, but requires about 5 to 10 minutes of computation to
generate optimal motions. At the other end of the speed/accuracy spectrum,
state-of-the-art model predictive control was developed for the MIT cheetah
robots [44], which requires about one millisecond of computation time. To
achieve this computational efficiency, a linearized model of the centroidal
dynamics is used, and the robot’s root and end-effector trajectories are
computed using heuristics rather than being treated as parameters in a tra-
jectory optimization routine. The technique we use to generate motions for

3.3 warm-start routine for motion generation 39

hybrid robots lies between these two extremes. We use a centroidal model
to capture the dynamics of the robots, and simultaneously optimize the
body and end-effector trajectories, ground reaction forces, and whole-body
poses, similar to the method described in [45]. Our trajectory optimization
formulation is complemented by several constraints that model the way dif-
ferent types of end effectors can move when in contact with the ground. As
we describe in this Chapter, our trajectory optimization process converges
in a few seconds when initialized with the solution of a novel warm start
strategy, and allows for an interactive exploration of the motion capabilities
that different robot designs will possess.

Through a series of sim-to-real experiments, we have found that our
motion optimization model is sufficiently powerful to generate a variety
of dynamic maneuvers, such as rolling under obstacles, roller skating, and
ice-skating. Nevertheless, we note that for motor skills that are less dynamic
in nature, motion planning techniques that only consider only the kinematic
design of a robot [46–49], or approaches that use a simplified dynamics
model based on the zero moment point [41, 50] have also been proposed.
Although these methods are potentially faster, they have not been shown
to be able to produce the types of motor skills that we demonstrate in our
work.

3.3 warm-start routine for motion generation

The main goal of our computational framework is to provide an intuitive
interactive approach to creating, evaluating, and improving robot designs
based on a desired set of locomotion skills. This is only possible if the entire
design and motion generation pipeline is reliable and efficient. The system
presented in Section 2 generates full-body robot motions m by finding a
local minimum of E(m), a function that encodes various motion goals and
constraints, as described in Section 2.4. This function is characterized by a
strongly nonlinear and nonconvex landscape, so it has many undesirable
local minima in which standard gradient-based optimization methods
are prone to getting stuck. This challenge is particularly pronounced for
motions that exhibit intermittent contacts with the environment, and the
initial guess m0 from which the optimization routine starts plays a crucial
role in determining the local minimum to which the final solution m
will converge. In this Section, we therefore turn to the formalization of a
principled method for generating good initial solutions m0 for arbitrary
robot morphologies moving with arbitrary gaits.

40 design and fabrication of legged-wheeled robots

#
motion
parameters

constraints and objectives goal

1 f dynamics
robot stands on ground with
all end effectors in stance

2 f, c
dynamics,
zero f in swing∗

robot’s body moves
according to footfall pattern

3 q, e
kinematics, vertical end
effector position
trajectories∗

robot poses that satisfy
kinematics and
swing trajectories

4 q, c, e, f, ω, α
all constraints,
motion targets∗

motion plan with full
set of DOFs and
achieving motion targets

∗ introduced iteratively

Table 3.1: Outline of warm-start strategy

To gain intuition into the method we propose, consider the simple case
of a quadrupedal robot that must move with a periodic walking gait. The
motion of the robot body must be appropriately synchronized with the
corresponding footfall pattern. If the robot’s center of mass is inadequately
positioned at a certain point in the motion cycle, the robot will lose its bal-
ance when lifting the next foot and eventually fall. Such an initial guess for
a motion plan corresponds to a very large objective value for the trajectory
optimization objective E(m), and a very large number of iterations may
be required before a dynamically stable motion is found. In contrast, it is
trivial to generate a motion where the robot simply stands in place. Our
observation is that we can start from this trivial solution and formulate
regularizing objectives that ask the robot to gradually unload its feet ac-
cording to the desired gait. Since the robot does not need to lift its feet
during this initial optimization process, it can maintain balance while it
figures out how to coordinate the motion of its body with the underlying
footfall pattern. Essentially, the robot first learns how to walk in place. We
now show how to mathematically formalize this intuitive concept using a
numerical continuation approach [51].

step 1 To generate a favorable initial starting state m0 for the trajectory
optimization routine described in the previous Section, our warm start
method starts with a subset of the motion plan parameters and gradually

3.3 warm-start routine for motion generation 41

introduces new degrees of freedom and constraints. In the first step, the
footfall pattern and the corresponding constraints on the ground reaction
forces are ignored. Then, the ground reaction forces satisfying the con-
straints of the centroidal dynamics Cd given by the equations (2.3) - (2.5)
for a quiet standing behavior:

f = argminf∗
1
2

CT
d Cd

step 2 The next step of the warm start routine aims to synchronize
the motion of the robot body with the constraints imposed by the footfall
pattern on the set of feasible ground reaction forces. In particular, the
end effectors are not allowed to apply ground reaction forces during the
prescribed swing phases. To introduce these constraints incrementally, we
solve a sequence of N1 optimization problems of the form:

{f, c} = argminf∗i ,c∗
1
2

CT
d Cd s.t. (1− ci) · f∗i

N1 − k
N1 − 1

f1
i = 0

where i denotes the index of end effectors, N1 is the total number of
iterations, k ∈ {0, N1 − 1} is the index of the current iteration, and f1 is the
set of ground reaction forces calculated in step 1. At the beginning of this
iterative process, the robot has the greatest control authority because the
end effectors that are in swing (i.e., c = 0) can still generate ground reaction
forces that affect the robot’s full-body motion. As k approaches N1, these
forces are progressively driven toward 0, resulting in body trajectories that
are smoothly optimized to anticipate the swing phases before they actually
occur. We have experimentally found that N1 = 100 works reliably for a
variety of robot designs and footfall patterns, and we use this setting for all
of our results.

step 3 The intermediate motion plan created in Step 2 satisfies the
constraints imposed by the centroidal dynamics and the footfall pattern.
Next, our goal is to find full body robot motions q that match the trajectories
of the body and end effectors to satisfy the kinematic consistency constraints
Ck defined in equations (2.11)− (2.14). To smooth out this optimization
problem, we gradually increase the swing height from 0 to the user-defined
value edes

y and solve a sequence of subproblems:

{q, e} = argminq∗ ,e∗
1
2

CT
k Ck +

1
2
||ey −

k
N2 − 1

edes
y ||22

42 design and fabrication of legged-wheeled robots

Where N2 is the number of iterations, k ∈ {0, N2− 1} is the current iteration,
ey is the vertical component of the contact point, and is the desired swing
height trajectory.

step 4 The steps leading up to here have found a subset of motion
parameters f, c, q, e that satisfy the most challenging constraints. The final
step of the warm start routine now solves the full set of motion parameters
and considers all constraints. The values for all motion objectives (i.e., travel
or turning speed) are set to 0 in this step, so that the resulting motion
corresponds to the robot locomoting in place. This motion constitutes the
initial guess m0, which is fine-tuned according to the user-specific inputs
by the trajectory optimization described in the previous Section.

3.4 analysis

3.4.1 Evaluation of Warm-Start Routine

0.01

1

100

10000

1x10
6

AgileBot, walking

0.01

1

100

10000

1x10
6

AgileBot, trotting
0.01

1

100

10000

1x10
6

LegBot, walking

1

100

10000

1x10
6

0 1 2 3 4 50 1 2 3 4 5

SkaterBot, skating

computation time [s]

o
b
je

c
ti
v
e
 v

a
lu

e
 (

lo
g
 s

c
a
le

)

w/o WS
with WS

Figure 3.2: Convergence improvement when using the warm start routine. The
dashed lines denote the warm start routine, which greatly improves
convergence speed.

The goal of the warm-start strategy we introduced in Section 3.3 is to
appropriately initialize the non-linear program used to generate optimal
robot motions. As shown in Fig. 3.2, the convergence rates for the trajectory
optimization process are greatly improved when using the initial solution
obtained through warm-starting. We note that the trajectory optimization
process can converge without warm-starting as well, but it is typically
much slower. For AgileBot (quadruped robot, 16 joints, 4 actuated wheels)

3.4 analysis 43

performing a trotting gait, for example, the trajectory optimization process
takes about 9.5 seconds of compute time to reach the same objective value
as the one obtained with warm-starting after just 5 seconds. However, the
walking gait for the same robot fails to converge within 1 minute when
warm-starting is omitted.

3.4.2 Morphology exploration for hybrid legged/wheeled robots

leg design motion trajectories avg. joint
angle veloc-
ity [rad

s]

avg. joint
angle accel.
[rad

s2]

2m 4.87 4408.22

3m 3.26 2572.32

4m 3.07 1870.08

5m 0.68 23.93

Table 3.2: Differences in SwizzleBot designs and motions

Traditional designs for legged robots with point feet are optimized to
provide a sufficiently large reachable space for its end effectors. Adding
passive or active wheels to a robot’s feet demands further considerations
in terms of the space of reachable end effector orientations, as this directly
governs the functional capabilities of the final robot design. A robot whose
wheels are actuated, for example, will need to move its limbs as it locomotes
in a very different manner than one that propels itself using passive wheels
or ice skates. Indeed, a robot design that is not compatible with a specific

44 design and fabrication of legged-wheeled robots

set of end effectors and desired motion skills may function poorly [42], or it
may fail to locomote altogether.

Naturally, the question then arises: how does the morphological design
of a robot shape its motor capabilities? We begin to study this question
by using our computational framework to analyze a quadrupedal robot
design that is equipped with one unactuated wheel per end effector – the
SwizzleBot. Thanks to our warm start routine (Section 3.3) we can quickly
explore the space of eventual robot morphologies. In Table 3.2 we compare
four different leg designs for SwizzleBot, with 2, 3, 4 and 5 motors per limb
respectively. For each design we used our warm-starting and trajectory
optimization routines to generate full-body motions using a desired speed
of 0.3m/s as a target. All four robot designs successfully reached this target
forward speed. However, the effort required to move as desired is vastly
different. This can be seen in the last two columns of Table 3.2 which show
the joint angle velocity and acceleration averaged over a motion cycle.

Indeed, the robot designed with five joints per limb stands out by being
able to locomote with much smoother motion trajectories compared to the
other three robot designs. To further clarify table 3.2, we refer the interested
readers to the video [52] for a side-by-side comparison of all four designs.
We note that creating these designs and their corresponding motions took
only a matter of a few minutes with our computational framework.

3.5 fabricated results

3.5.1 From conceptual designs to physical prototypes

In order to test the results generated with our computational framework
and motion optimization process, we built two quadrupedal robots that
can be equipped with actuated or unactuated wheels as end effectors. In
our computational framework, Figure 3.3, the user can (1) create arbitrary
robot designs, (2) generate and interactively edit motion plans in the motion
editor, and (3) try the resulting control trajectories in a physics simulator or
transfer them wirelessly to a physical prototype. This process can be seen
in the video [52].

Both of our robots are made using 3d printed parts and off-the-shelf servo-
motors and electronic components. For 3D printing we used a Markforged
Two machine that reinforces digitally manufactured parts with long strands
of carbon-fiber. For actuation we used Dynamixel servomotors (XM430-
W210T and XM540-W150T), both for the robot’s joints and to power active

3.5 fabricated results 45

Figure 3.3: This figure depicts the computational framework we use to design
hybrid legged/wheeled robots: Left: Users can generate arbitrary
robot designs by mixing together different building blocks using an
interactive graphical interface. Middle: Physically-correct locomotion
behaviors are generated through trajectory optimization. Right: These
motions can then either be tested in simulation, or they can be trans-
ferred wirelessly to the physical robot.

wheels. An onboard Raspberry Pi 3B+ was used to send control signals to
the servomotors. Fig. 3.4 shows some of the components we used to fabri-
cate the physical robot prototypes. 3d-printing the structural components
of the robot designs took about one week, while the assembly process took
an additional half day.

Motion plans are generated offline on a desktop PC, sampled at 60Hz and
then transferred to the Raspberry Pi wirelessly. A touch screen is mounted
on the robot to provide an interactive interface that allows the robot oper-
ator to load new motion plans, combine multiple motions into a motion
graph, and to set various servomotor parameters (e.g. the proportional
and damping gains of the low-level PD controllers). We further use an
XBox gamepad controller to give high-level commands to the robot (i.e.
which generated motion to execute). This intuitive and streamlined process
makes it possible to try out the motions and behaviors generated with our
framework in a matter of seconds.

3.5.2 Robot Designs

agilebot - a legged robot with actuated wheels The first robot
we designed is a quadruped that has four joints and one actuated wheel per

46 design and fabrication of legged-wheeled robots

Figure 3.4: Our robots are made from 3d-printed parts and off-shelf electronic
components for actuation and control. From left to right: 3D printed
wheels that can be attached to a motor or left to spin freely, a roller
blade with passive wheels and an ice skate, Dynamixel XM430-W210T
are used to actuation joints and active wheels, and 3d-printed brack-
ets.

limb, Figure 3.1. The joint degrees of freedom allow it to move sideways,
turn in-place, move forward or sideways while ducking, and perform other
agile motions; the accompanying video [52] shows several motor skills
where AgileBot makes efficient use of all its degrees of freedom. Note that
all these motions emerge from the trajectory optimization process given
only high-level targets as input. For example, in the forward-duck motion,
we use a simple objective to ask the height of the robot’s body to be below
a user-specified threshold. Additional objectives can ask, for example, that
the relative motion between the wheel and the body part it is attached to
vanishes, essentially resulting in a design where the virtually welded wheel
becomes a circular arc-shaped foot. We refer to this design as LegBot.

skaterbot - a legged robot with passive wheels As this design
illustrates, equipping a legged robot with passive wheels can lead to fast,
energetically favorable locomotion modes. To create SkaterBot, Figure 3.1,
we used the same overall morphology as for AgileBot, but we exchanged
the actuated wheels with roller blades – pairs of passive inline wheels.
When both wheels are on the ground, the corresponding end effector
can not rotate around the vertical axis without slipping. Skating motions
therefore require the robot to lift its feet as it moves. To create an additional
locomotion mode, the ankle joints can be rotated by 45 degrees, resulting
in only one wheel of the roller blade being in contact with the ground. We
call this design SwizzleBot, and we note that it is functionally equivalent
to the ice skating robot that we also experimented with, given that the ice
skates we employed have non-zero curvature. This robot design can propel
itself without ever having to lift its feet.

3.5 fabricated results 47

Figure 3.5: Top: Skaterbot on ice performing a swizzle motion. Bottom: Experi-
ment at high altitude, 1,560 meters aboce sea.

Instead of roller-blades, Skaterbot can also be equipped with ice-skates.
The blades are slightly curved, which results in a single contact point with
the ice. Since friction perpendicular to the blade is much higher than in
the direction of the blade, we thus model ice-skates as unactuated wheels.
In Figure 3.5, we demonstrate that the swizzle motion leads to successful
locomotion on ice, and combined with left- and right-turning motions,
Skaterbot can enjoy the pleasures of effortlessly gliding on frozen water.

3.5.3 Performance Evaluation

We used our trajectory optimization framework to generate a variety of
locomotion modes for AgileBot, SkaterBot, LegBot and SwizzleBot. For
each of the motions summarized in Table 3.3, which can also be seen in
the accompanying video [52], our goal was to maximize speed. For the
AgileBot’s walking gait, we enforced the constraint that ensures the speed
of the wheels is always zero, and we set the footfall pattern accordingly. For
the rolling motion, the feet were set in stance mode for the entire duration
of the gait cycle. For the walking and rolling behavior, the wheels were left

48 design and fabrication of legged-wheeled robots

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(m
)

time (s)

body position x

desired motion
simulated motion

motion captured motion
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(m
)

time (s)

body body position y

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(m
)

time (s)

body position z

-15

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(d
e

g
re

e
s
)

time (s)

body rotation x

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(d
e

g
re

e
s
)

time (s)

body rotation y

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 0.5 1 1.5 2 2.5 3

d
is

p
la

c
e

m
e

n
t

(d
e

g
re

e
s
)

time (s)

body rotation z

Figure 3.6: Comparison of generated, physically simulated and motion-captured
trajectories for AgileBot. The motor skill we evaluate here is the
”forward-duck” motion, which can be seen in the accompanying
video [52]. The simulated and motion-captured trajectories match the
motions generated through our optimization model very well. (Note
the difference in scales of the vertical axes.)

free to rotate as best determined by the motion generator, and a walking
footfall pattern was provided as input. We note that the speed limit of the
wheels imposes strict constraints on the overall movement speed of the
robot.

As our results show, the designs that feature passive wheels are much
faster than AgileBot. This is particularly noteworthy because we used
exactly the same types of servomotors to power the joints of the two robots.
The skating motion, in particular, is more than twice as fast as AgileBot’s
roll-walking locomotion mode.

Fig. 3.6 compares the motions generated by our trajectory optimizer
against the motions executed by the physical robot. For this sim-to-real
experiment, we measure differences in the motion of AgileBot’s body as it
performs the ”forward duck” maneuver that can be seen in the accompany-
ing video [52]. We use an OptiTrack motion capture system to record the
motion trajectories executed by physical robot prototype. As can be seen,
the planned position and orientation body trajectories for this relatively
complex maneuver are tracked effectively both in simulation, and in the
real.

3.6 motion generation for anymal on wheels

Due to its particular morphology, AgileBot can perform a variety of com-
pelling and dynamic motions. However, the joint angle trajectories are

3.6 motion generation for anymal on wheels 49

Robot measured max. speed

AgileBot walking 0.1483 m/s

AgileBot rolling 0.3380 m/s

AgileBot walking & rolling 0.4762 m/s

SwizzleBot 0.6897 m/s

SkaterBot 0.9677 m/s

Table 3.3: Maximum Speed for Different Designs

executed in open loop and tracked by the proportional-derivative controller
integrated in each servomotor. The robot’s ability to respond to pertur-
bations is therefore severely limited, which has a particular impact on
dynamically demanding motions. In this Section, we investigate whether
the control trajectories generated by our trajectory optimization can be used
as reference trajectories in a closed-loop feedback control system.

To this end, we combine our motion generation system with the loco-
motion controller developed by Bjelonic et.al. [53, 54], which is capable of
tracking reference trajectories for legged-wheeled robots.

3.6.1 Overview of Feedback Control System

We give a brief overview of the control system developed in [54]. The
locomotion control system has a hierarchical structure. First, a motion
planner generates dynamically feasible trajectories guided by higher-level
motion goals. This process is controlled by a user and executed offline. The
resulting trajectories are stored in a motion library. The trajectory composer
then concatenates the trajectories and feeds them into the model predictive
control algorithm (MPC), which tracks the trajectories based on the current
robot state. Finally, the inverse dynamics issues torque commands that are
sent to the robot. A state estimator predicts the state of the robot used by
the MPC and inverse dynamics.

3.6.1.1 Model Predictive Control

The basic idea of MPC is to repeatedly generate controls over a longer
time horizon and then apply only the current set of control inputs. This

50 design and fabrication of legged-wheeled robots

allows anticipation of future events while responding to immediate state
disturbances.

The MPC problem is formulated as an optimization problem over a
cost term that penalizes deviations from the reference trajectories. Various
constraints ensure that physically feasible trajectories are generated. The
dynamics of the robot is based on a kinodynamic model. Just as in the case
of centroidal dynamics, the kinodynamic model defines a single rigid body
together with the kinematics to determine the position of the end- effectors.
However, the mass properties of the rigid body are fixed and assumed to
be independent of the joint configuration. Other constraints enforce the
kinematics of the robot, the initial conditions given by the state estimator,
and that the trajectories of the end effectors are compatible with the wheel’s
speed and orientation. The MPC receives the desired robot state, joint angle,
and ground reaction force trajectories from the trajectory composer. Based
on the current estimated robot state, it then computes optimal controls
consisting of ground reaction forces and joint angle velocities.

3.6.1.2 Inverse Dynamics

Inverse Dynamics takes as input the state of the robot measured by the
state estimator, as well as the ground reaction forces and joint angular
velocities coming from the MPC. Forward simulation is used to calculate
the desired joint accelerations, which are then converted to torques. The
inverse dynamics only considers the current time step, while the MPC has
a fixed planning horizon of 1 second.

For more details on the locomotion controller, we refer to [54].

3.6.2 Evaluation

We now want to test whether the reference motions generated by our
interactive trajectory optimization are a suitable input for the locomotion
controller briefly described above. The robotic platform used for the real
experiments is ANYmal [55] equipped with non-steerable wheels, similar
to [53].

Unlike AgileBot, the space of possible movements that ANYmal on
wheels can perform is more restricted due to the combination of joint con-
figuration and wheels. In Section 3.4.2, we explored different morphologies
for a four-legged robot with unactuated wheels. ANYmal’s leg configura-
tion is similar to that of the robot with 3 joints per leg seen in Table 3.2,
where the orientation of the joint axes is forward, sideways, and sideways

3.6 motion generation for anymal on wheels 51

Figure 3.7: ANYmal on wheels performing dynamic motions generated with our
trajectory optimization. The top image shows a fast ducking motion.
The bottom image shows a dynamic turning-in-place motion. The
green arrows indicate ground reaction forces. The dashed and solid
lines show the reference and the actual trajectories, respectively.

from top to bottom. Our results suggest that this joint configuration is
unsuitable for a swizzling motion. It is therefore not surprising that the
same morphology does not allow a turning motion while keeping all end-
effectors on the ground. Thus, to perform a turning motion, ANYmal on
wheels must lift at least two wheels off the ground per motion cycle.

We generate various dynamic motions using our motion generation
system, feed them to the motion library, and execute the motions on the
real robot. Figure 3.7 shows a ducking motion and a spinning motion.
As shown in Figure 3.9, we also create a longer motion where ANYmal
ducks under a table, rotates 90

circ, and then ducks under another table.
The control system and the robot are able to perform these dynamic and
fast movements without losing balance. In the figure 3.8, we compare the
reference trajectories from our trajectory optimization with the trajectories

52 design and fabrication of legged-wheeled robots

Figure 3.8: Results of the interactive TO in combination with the MPC while
executing a repositioning motion ([0-1]s) and the turning motion in
Figure 3.7 ([1-2.7]s). The plots compare the optimized whole-body
trajectory of both algorithms. Here, the MPC solution is represented
by the robot’s measured state, which is the equivalent of the initial
state vector x(t = 0) and initial control input vector u(t = 0). This
equivalency is due to the MPC’s fast update rate and the reinitializa-
tion of its optimization problem after every iteration with the robot’s
measured state.

tracked by the MPC. The comparison shows that the MPC is able to track
the reference trajectories well, even over longer time horizons. This indicates
that our trajectory optimization indeed produces physically feasible motions
that can be used as input for a feedback control system.

3.7 discussion

We introduced a novel warm-starting method that drastically improves
the robustness and computational efficiency of the trajectory optimiza-
tion routine that we use to generate optimal motions for legged robots.
Integrated into our computational design framework, this warm-starting
strategy promotes a systematic, interactive study of the ways in which the
morphological design of a legged robot shapes its motor capabilities.

We leveraged our computational design framework to create two physical
robot prototypes that are capable of a rich array of motions and locomotory
behaviors. The predictions generated by our trajectory optimization are
evaluated by real-world experiments. In addition, we showed that our

3.7 discussion 53

Figure 3.9: Anymal on wheels performing a concatenated motion: It ducks under
a table, turns in place and ducks again under the other table.

trajectory optimization can be combined with a state-of-the-art closed-loop
control system, which allows for even more dynamic and fast motions.

Our current efforts in establishing a computational workflow for robot
engineering are not without limitations. We would like to extend our
computational design and motion generation framework to support robot
morphologies that include mechanical transmission elements (e.g. linkages
and drive belts), increasingly complex design features (e.g. kinematic loops
that allow a robot’s body to reshape as needed for different tasks), as well
as soft materials (e.g. rubber feet, flexible links or springs used to store and
release energy) that are appropriately accounted for within the trajectory
optimization process. These extensions would not only allow for new robot
designs, but also benefit the motion generation of existing robots as motors,
links and interactions with the ground could be modeled more accurately.

4
D I F F E R E N T I A B L E P H Y S I C S S I M U L AT I O N F O R M O T I O N
S Y N T H E S I S

Computational tools are becoming increasingly important in robotics. They
rely on physics simulation models of the robot and its interactions with the
environment. The computational tool presented in Chapters 2 and 3 uses
a physics model based on centroidal dynamics and kinematic constraints
to model the legs. This model has two main benefits. First, it allows for
interactive rates in the motion planning tool. Second, it is expressive enough
to capture the dynamics of the robot such that the generated motions
transfer to the real world.

However, as we pushed our system to produce more dynamic and agile
motions, the limitations of the physical model became more apparent. Most
notably, the model is unable to capture the effects of compliant motors or
soft feet on the robot’s dynamics. Similarly, the capabilities of the motor,
such as torque limits, cannot be taken into account when planning a motion.
And due to the constraints of non-slip friction, the generation of sliding
motions is not possible. In addition, the model does not allow for kinematic
loops or deformable components.

In our quest to develop tools that enable the creation of more agile and
lifelike robotic creatures, we believe that a more expressive physical model
is needed to take advantage of linkages, compliant motors, and hybrid
rigid-soft robotic morphologies in both the design and motion planning
processes. To this end, we are developing a differentiable simulator for
multibody systems with frictional contact. The simulator is targeted at
robot applications, such as motion planning for legged robots, parameter
estimation, or manipulation of deformable objects.

An adapted version of this Chapter has been published as Geilinger, M.1,
Hahn, D.1, Zehnder, J., Bächer, M., Thomaszewski, B. & Coros, S. ADD:
analytically differentiable dynamics for multi-body systems with frictional
contact. ACM Transactions on Graphics (TOG) 39, 1 (2020). David contributed
by implementing the simulation model for deformables, conducting the
experiments, and writing parts of the manuscript. I developed the multi-

1 joint first authors

55

56 differentiable physics simulation for motion synthesis

body differentiable simulation framework, wrote parts of the manuscript
and conducted experiments.

4.1 introduction

Simulation tools are crucial to a variety of applications in engineering
and robotics, where they can be used to test the performance of a design
long before the first prototype is ever built. Based on forward simulation,
however, these virtual proving grounds are typically limited to trial-and-
error approaches, where the onus is on the user to painstakingly find
appropriate control or design parameters. Inverse simulation tools promise
a more direct and powerful approach, as they can anticipate and exploit the
way in which a change in parameters affects the performance of the design.
Unlike forward simulation, this inverse approach hinges on the ability to
compute derivatives of simulation runs.

Differentiable simulations have recently seen increasing attention in the
vision, graphics, and robotics communities, e.g., in the context of fluid
animation [56], soft-body dynamics [57], and light transport [58]. As a char-
acteristic trait of real-world interactions, however, the strong non-linearities
and quasi-discontinuities induced by collisions and frictional contact pose
substantial challenges for differentiable simulation.

The equations of motion for mechanical systems with frictional contact
can be cast as a non-linear complementarity problem that couples the tan-
gential forces to the magnitude of the normal forces. While the exact form
depends on the friction model being used, this formulation typically postu-
lates different regimes—approaching or separating and stick or slip—with
different bounds on the admissible forces. These dichotomies induce dis-
continuities in forces and their derivatives, which, already for the forward
problem, necessitate complex numerical solvers that are computationally de-
manding. For inverse simulations that rely on gradient-based optimization,
however, this lack of smoothness is a major stumbling block.

To overcome the difficulties of the non-smooth problem setting, we pro-
pose a differentiable simulator that combines fully implicit time-stepping
with a principled mollification of normal and tangential contact forces.
These contact forces, as well as the coupled system mechanics of rigid and
soft objects, are handled through a soft constraint formulation that is simple,
numerically robust and very effective. This formulation also allows us to
analytically compute derivatives of simulation outcomes through adjoint
sensitivity analysis. Our simulation model enables an easy-to-tune trade-off

4.1 introduction 57

between accuracy and smoothness of objective function landscapes, and we
showcase its potential by applying it to a variety of application domains,
which can be summarized as follows:

real2sim We perform data-driven parameter estimation to find material
constants that characterize the stiffness, viscous damping, and friction
properties of deformable objects. This enables the creation of simulation
models that accurately reproduce and predict the behaviour of physical
specimens.

control Our differentiable simulator is ideally suited for control prob-
lems that involve coupled dynamical systems and frictional contact. We
explore this important problem domain in the context of robotic manipula-
tion, focusing, through simulation and physical experiments, on behaviours
that include controlled multi-bounce tossing, dragging, and sliding of differ-
ent types of objects. We also use our simulator to generate optimal motion
trajectories for a simulated legged robot with compliant actuators and soft
feet.

self-supervised learning By embedding our simulator as a spe-
cialized node in a neural network, we show that control policies that map
target outcomes to appropriate control inputs can be easily learned in a
self-supervised manner; this is achieved by defining the loss directly as a
function of the results generated with our differentiable simulation model.
We explore this concept through a simple game where a robot arm learns
how to toss a ball such that it lands in an interactively placed cup after
exactly one bounce.

4.1.1 Contributions

Our main contributions can be summarized as follows:

• A stable, differentiable, two-way coupled simulation framework for
both rigid and soft bodies.

• A smooth frictional contact model that can effectively balance differ-
entiability requirements for inverse problems with accurate modelling
of real-world behaviour.

• Application of the differentiable model for trajectory optimization for
compliant quadruped with soft feet.

58 differentiable physics simulation for motion synthesis

• An evaluation of our friction formulations on a diverse set of applica-
tions that highlight the benefits of differentiable simulators.

4.2 related work

Contact modelling is a well-studied problem in mechanics (see e.g. [59]),
and has received a significant amount of attention in graphics due to
its importance in physics-based animation. Here, we focus our review
on frictional contact dynamics, its differentiability, and its use in solving
inverse problems.

4.2.1 Frictional Contact Dynamics

For rigid bodies, early work focused on acceleration-level [60] and velocity-
level [61, 62] linear complementarity problem (LCP) formulations and
isotropic Coulomb friction. Later, iterative LCP approaches were explored [63,
64], and LCP formulations extended to quasi-rigid objects [65], deformable
solids [63, 66], and fast simulation of large sets of rigid bodies [67]. Harmon
et al. [68] propose an asynchronous treatment of contact mechanics for
deformable models, discretizing the contact barrier potential. Unifying fast
collision detection and contact force computations, Allard et al. [69] target
deformable contact dynamics where deeper penetrations can arise. Recent
work [70] has integrated penalty-based friction models with optimization-
based time integration. Exact Coulomb friction paired with adaptive node
refinement at contact locations is used for accurate cloth simulation [71].
Anisotropic Coulomb friction in the deformable [72] and rigid-body set-
ting [73] has also been considered.

Like Kaufman et al. [74], our frictional contact formulation applies to
coupled rigid and deformable bodies. For this setting, Macklin et al. [75]
solve a non-linear complementarity problem for an exact Coulomb friction
formulation with a non-smooth Newton method. A similar technique was
applied to fibre assemblies [76]. However, in contrast to the above body of
work, we target inverse contact applications [77–81], rather than animation.
Interestingly, our hybrid approach can be interpreted as the opposite of
staggered projections [74], as we soften contact constraints with penalty
forces, but can enforce static friction with hard constraints. Softening contact
has also proven useful for the control of physics-based characters [82]. In
the context of identifying frictional parameters, we share goals with Pai
et al. [83]. However, in contrast to measuring frictional textures with a

4.2 related work 59

robotic system, we aim at characterizing material properties and initial
conditions from motion data. For parameter estimation, we draw inspiration
from physics-guided reconstruction [84], who consider frictionless contact
between rigid bodies. Our formulation extends to frictional contact and
deformable bodies.

4.2.2 Inverse Contact

Ly et al. [85] solve for the rest configuration and friction forces of a shell
model such that the corresponding static equilibrium state best approx-
imates a user-specified target shape. In a first pass, contact is handled
using frictionless bilateral constraints whereas frictional forces are found
in a second pass. While Ly et al. focus on quasi-static inverse problems,
our focus is on inverse dynamics. To enable design optimization, Chen et
al. [86] introduce an implicitly integrated elasto-dynamics solver that can
handle complex contact scenarios. We share the goal of making our fric-
tional contact model smooth and invertible with previous work in optimal
control [87–89]. However, instead of relying on finite-differencing and ex-
plicit time integration [90], our approach builds on analytically-computed
derivatives and fully implicit time integration, allowing us to handle both
soft and stiff systems.

4.2.3 Differentiable Simulation

Emerging differentiable physics-based simulators are increasingly used for
applications in machine learning, physics-based control, and inverse design.
While common physics engines such as NVIDIA’s PhysX or Bullet Physics
enjoy widespread use, they prioritize speed over accuracy, especially in the
context of dynamics of deformable objects.

The “MuJoCo” framework [90] has been designed as a differentiable
simulator for articulated rigid-body dynamics. However, derivatives are
computed through finite differences, and the use of an explicit time inte-
gration method in conjunction with a penalty-based contact model restricts
the size of the time steps that can be used for reasonably accurate results.
Targeting end-to-end learning, de Avila Belbute-Peres et al. [91] compute
analytical gradients of LCPs for simple rigid-body systems. Other notable
differentiable rigid-body simulations include the work of Freeman et al. [92]
and Heiden et al. [93]. In contrast, our approach is able to handle multi-
body systems that couple rigid and deformable objects and is very robust

60 differentiable physics simulation for motion synthesis

with respect to the coefficients used for the contact model even under large
time steps. Learning-based approaches have also been applied to fluids [94],
cloth [95], and robotic manipulation [96].

Hu et al. [57] base their differentiable simulation on the material point
method and target specific applications in soft robotics for which explicit
time integration is sufficient. Degrave et al. [97] rely on auto-differentiation
to compute derivatives of rigid-body dynamics. Similarly, for end-to-end
learning of controllers, recording and reversing simulations for back-
propagation, DiffTaichi [98] also relies on auto-differentiation. While auto-
differentiation can work well in some settings, the stiff problems we are
considering demand fully implicit integration schemes that must run to con-
vergence. Consequently, our non-linear solver requires a variable number
of iterations in the outer loop, accurate and efficient sparse linear solvers
in the inner loop, and line-search mechanisms to enforce monotonicity. In
this setting, it is very unclear how to apply auto-differentiation, as it would
need to act on the precise sequence of numerical operations performed
during the solve. Our approach, on the other hand, analytically computes
derivatives via sensitivity analysis, similar to recent work in graphics [99–
101], which describes differentiable simulators for visco-elastic materials
and constrained flexible multi-body dynamics. However, as a significant
departure from prior work, frictional contact is at the core of our paper.

4.3 differentiable multi-body dynamics : preliminaries

We begin by deriving the mathematical formulation underlying our analyti-
cally differentiable simulation model. While this derivation follows general
concepts recently described in the literature [100, 102], we note that our
quest for a unified simulation framework for multi-body systems composed
of arbitrary arrangements of rigid and soft objects demands a somewhat
different methodology, as detailed below.

4.3.1 Implicit time-stepping for multi-body systems

We start from a time-continuous dynamics problem described in terms of
generalized coordinates q(t), see also [74]. These generalized coordinates
can directly represent the nodal positions of a finite element mesh or the
degrees of freedom that describe the position and orientation of a rigid body
in space. Without loss of generality, here we consider dynamical systems
that are characterized by a set of time independent input parameters p, which

4.3 differentiable multi-body dynamics : preliminaries 61

could represent, for instance, material constants or a fixed sequence of
control actions. The dynamics of such a system can be succinctly represented
through a differential equation of the form:

r(q, q̇, q̈, p) = 0 ∀t, where r := M̂(q, p)q̈− f̂(q, q̇, p). (4.1)

For soft bodies, the generalized mass M̂ is identical to the constant FEM
mass matrix, whereas for each rigid body, the corresponding 6× 6 block is
defined as

M̂RB :=

(
mI 0

0 Iq

)
, (4.2)

with m and Iq representing its mass and configuration-dependent moment
of inertia tensor in generalized coordinates [103] (see Appendix A.1.3).

The generalized force vector f̂ aggregates all internal and external forces
applied to the simulation’s degrees of freedom. Sections 4.4 and 4.5 detail
the exact mathematical formulation for these forces, but here we note that
for each rigid body, forces must be mapped from world to generalized
space, and an additional term C(q, q̇) that captures the effect of fictitious
centrifugal and Coriolis forces must also be added.

Turning to a time-discrete setting, we opt to discretize the residual r
using implicit numerical integration schemes. This decision warrants a
brief discussion. While implicit integration schemes are standard when
it comes to simulation of elastic objects, rigid-body dynamics is typically
handled with explicit methods such as symplectic Euler. This misalignment
in the choice of integrators often necessitates multi-stage time-stepping
schemes for two-way coupling of rigid bodies and elastic objects [104].
One notable exception is “RedMax” [105], which directly couples rigid
and deformable objects. However, their system is only efficient for a small
number of deformable DOFs, and they employ staggered projections for
ground contacts, which is not well suited for differentiable simulation.
Although effective, such a specialized time-stepping scheme complicates
matters when differentiating simulation results. Furthermore, as discussed
in §4.4, the smooth contact model we propose relies on numerically stiff
forces arising from a unilateral potential. Robustly resolving contacts in this
setting demands the use of implicit integration for both rigid and elastic
objects. As an added bonus, two-way coupling between these two classes of
objects becomes straightforward and numerically robust even under large
simulation time steps.

We begin by approximating the first and second time derivatives of
the system’s generalized coordinates, q̇ and q̈, according to an implicit

62 differentiable physics simulation for motion synthesis

time-discretization scheme of our choice. For instance with BDF1 (implicit
Euler), they are q̇(ti) ≈ q̇i = (qi − qi−1)/∆t and q̈(ti) ≈ q̈i = (qi − 2qi−1 +
qi−2)/∆2

t , where ∆t is a constant finite time step and superscript i refers to
the time-step index for time ti.

For each forward simulation step i we then employ Newton’s method to
find the end-of-time-step configuration qi such that

ri := r(qi, q̇i, q̈i, p) = M̂(qi, p)q̈i − f̂(qi, q̇i, p) = 0.

This process requires the Jacobian dri/dqi, which combines derivatives of
the generalized forces, the discretized generalized velocities and accelera-
tions, as well as the generalized mass matrix w.r.t. qi. Recall that for rigid
bodies the mass matrix is configuration-dependent, see also Appendix A.1.3
for details. We note that in contrast to previous work [100, 102], we cannot
treat time-stepping as an energy minimization problem due to this state
dependent nature of the mass matrix. A recent alternative formulation for
rigid bodies [106] could overcome this limitation. Nevertheless, in conjunc-
tion with a line-search routine that monitors the magnitude of the residual,
directly finding the root of ri works very well in practice.

4.3.2 Simulation Derivatives

With the basic procedure for implicit time-stepping in place, we now turn
our attention to the task of computing derivatives of simulation outcomes.
To keep the exposition brief, we concatenate the generalized coordinates
for an entire sequence of time steps computed through forward simulation
into a vector q̃ := (qT , . . . , qnt T)T , where nt is the number of time steps.
Similarly, we let r̃ be the vector that concatenates the residuals for all time
steps of a simulation run. Differentiating r̃ with respect to input parameters
p gives:

dr̃
dp

=
∂r̃
∂p

+
∂r̃
∂q̃

dq̃
dp

. (4.3)

Since for any p we compute a motion trajectory such that r̃ = 0 during the
forward simulation stage, the total derivative ((4.3)) is also 0. This simple
observation lets us compute the Jacobian dq̃/dp, which is also called the
sensitivity matrix, as:

S :=
dq̃
dp

= −
(

∂r̃
∂q̃

)−1 ∂r̃
∂p

. (4.4)

4.4 differentiable frictional contact model 63

The sensitivity matrix S captures the way in which an entire trajectory
computed through forward simulation changes as the input parameters p
change. Note that S can be computed efficiently by exploiting the sparsity
structure of ∂r̃/∂q̃, a matrix that can be easily evaluated by re-using most
of the same ingredients already computed for forward simulation. For
example, in the case of BDF1, each sub-block si

j := dqi/dpj of S, which
represents the change in the configuration of the dynamical system at time
ti with respect to the j-th input parameter pj, reduces to:

si
j = −

(
∂ri

∂qi

)−1
(

∂ri
∂pj

+
∂ri

∂qj−1
si−1

j +
∂ri

∂qj−2
si−2

j

)
. (4.5)

Note that the dependency on past sensitivities follows the same time-
stepping scheme as the forward simulation. We refer the interested reader
to [107] for more details on this topic, but for completeness we briefly
describe a variant of this formulation, the adjoint method, as it can lead to
additional gains in computational efficiency.

4.4 differentiable frictional contact model

With the differentiable simulation framework in place, our challenge now
is to formulate a smooth frictional contact model that approaches, in the
limit, the discontinuous nature of physical contacts. In this context, we
always refer to the smoothness of the resulting trajectory, rather than
the contact forces. Specifically, an impulsive force would result in a non-
smooth trajectory, which we must avoid. As we show in this Section, a
soft-constraint approach to modelling frictional contact fits seamlessly into
the theory presented in §4.3, and enables an easy-to-tune trade-off between
accuracy (e.g. solutions satisfying contact complementarity constraints
and Coulomb’s law of friction) and smoother, easier to optimize objective
function landscapes.

Our work investigates different friction models from multiple points of
view: accuracy of forward simulation results, smoothness of optimization
landscapes, and suitability for gradient-based optimization. It is this mission
statement that sets our work apart from previous efforts. Our extensive
virtual and real-world experiments show that our simulation model can be
used for various applications in graphics and robotics.

We begin by formulating the contact conditions and response forces in
terms of a single contact point x(q). For deformable objects, we handle
contacts on the nodes of the FEM mesh. For rigid bodies, we implement

64 differentiable physics simulation for motion synthesis

spherical or point-based collision proxies and then map the resulting world-
space contact forces f into generalized coordinate space f̂, as described in
§4.5.

For the normal component of the contact we must find a state of the
dynamical system such that

g(x) ≥ 0, (4.6)

where we refer to g as the gap function, measuring the distance from
x to the closest obstacle. Assuming that g is a signed distance function
(and negative if x lies inside of an obstacle), we define the outward unit
normal n := (∂g/∂x)T . Note that we use the convention that the derivative
of a scalar function w.r.t. a vector argument is a row-vector throughout
this work, consequently n is a column-vector. Furthermore, we assume
that g is available in closed form; we mostly use planar obstacles in our
examples. We will also use the notation N := nnT for the matrix projecting
to this normal. The force required to maintain non-negative gaps (non-
penetration), denoted fn, must be oriented along n, i.e. fn = fnn. The
normal force magnitude fn must be non-negative and can only be non-zero
if there is a contact, consequently (Hertz-Signorini-Moreau condition, see
also Eq. (2.10) in [108]):

fn ≥ 0, fn g = 0 (4.7)

In the tangential direction, we must determine a friction force ft whose
magnitude is constrained by the Coulomb limit

‖ft‖ ≤ c f fn, (4.8)

where c f is the coefficient of friction. This inequality distinguishes two
regimes: static and dynamic friction (also referred to as stick and slip re-
spectively). In the former case, the friction force magnitude is below the
Coulomb limit and the tangential velocity vanishes (stick). In the latter case,
following the principle of maximum dissipation [109], the friction force
is oriented opposite the tangential velocity and Eq. (4.8) is satisfied as an
equality (slip).

More formally we have either

Tẋ = 0 (stick), or (4.9)

ft = −c f fnt (slip), (4.10)

where t := (Tẋ)/ ‖Tẋ‖ and T := I−N projects to the tangent plane. Note
that in either case ft · n = 0 must hold.

4.4 differentiable frictional contact model 65

4.4.1 Sequential Quadratic Programming

Here, we briefly outline a hard constrained formulation of frictional con-
tacts, which we employ for comparison. Introducing Lagrange multipliers
(representing contact forces) for the contact constraints (4.6) and (4.9), along
with the dynamic friction forces, into the residual (4.1) leads to a system of
equations representing the Karush-Kuhn-Tucker conditions of an optimiza-
tion problem:

r + nλ + T̄Tµ = 0,

g(x) ≥ 0, and

T̄ẋ = 0,

(4.11)

where λ and µ are the Lagrange multipliers for the normal and static friction
constraints respectively. For a single contact point in static friction, ¯ has two
components and T̄ contains two orthogonal tangent vectors (corresponding
to the two non-zero eigenvalues of T). In the case of dynamic friction
(sliding) we remove the constraint on the tangential velocity and replace
the friction force T̄Tµ with ft according to Eq. (4.10).

In principle, the KKT system (4.11) can be linearized and solved as a
sequence of quadratic programs (SQP). In this way, each quadratic program
takes the role of the linear solve in Newton’s method. However, there are
some limitations to this approach. In particular, linearizing the dynamic
friction force resulting from Eq. (4.10) is not straightforward, as this force
depends not only on the simulation state and velocity, but also on the
normal force, in this case given by the Lagrange multiplier λ. Furthermore,
the direction of the friction force should be opposing the current sliding
velocity, which is ill-defined if this velocity approaches zero.

One way to address these issues is to assume that ft is constant rather
than linear, and compute its value based on the previous iteration. Doing
so however reduces the convergence of the SQP iteration. In some cases the
ill-conditioned behaviour of the unit vector t can even cause this approach
to not converge at all. To help mitigate this problem, we first approximately
solve the problem assuming sticking contacts, and then only update the
friction force magnitude according to the Coulomb limit, but maintain its
direction. Similarly, the approach of Tan et al. [80] formulates the frictional
contact problem as a quadratic program with linear complementarity con-
straints by linearizing the friction cone. Their solver also iteratively updates
a set of active constraints, which effectively selects the direction of the
sliding force. Finally, the SQP iteration is not as straightforward to stabilize

66 differentiable physics simulation for motion synthesis

by a line-search procedure as a Newton iteration would be. Macklin et
al. [75] report similar issues and present approaches to improve upon them.

Note that derivatives of the KKT conditions (4.11), once the solver has
converged, could still be used to compute simulation state derivatives
by direct differentiation. However, it is currently not clear whether this
approach would immediately integrate with our adjoint formulation. We
refer to [110] for further details on derivatives of QP solutions.

In the light of these limitations, we have implemented an SQP forward
simulation approach only for the sake of comparisons on simple deformable
examples, where stability and convergence is not an issue; see also Fig. 4.1.
We show that our hybrid method, Section 4.4.3, yields visually indistin-
guishable results.

4.4.2 Penalty methods

Another approach to solve dynamics with contacts is to convert the con-
straints (4.6) and (4.9) to soft constraints, and introduce penalty forces if the
constraints are violated. For the contact constraint, this means we need to
add a force that is oriented along the outward normal and vanishes when
g > 0. There are various types of functions, such as soft-max or truncated
log-barriers, that we can use for this purpose. We find that even the simplest
choice of a piece-wise linear penalty function is fast and sufficiently accurate
for our applications:

fn = n kn max(−g, 0), (4.12)

where kn is a penalty factor that must be chosen large enough to sufficiently
enforce the normal constraint.

Note that kn effectively controls the steepness of the resulting force and
therefore the smoothness of the collision response. Of course the derivative
of this force contains a discontinuity due to the max operator. While this
could easily be replaced by a soft-max, our experiments indicate that doing
so is not necessary. To find itself exactly at the kink in the contact force, a
point on the multi-body system would have to be on the g = 0 manifold
at the end of the time step due only to gravity, inertia, and internal force,
which is extremely unlikely. The force Jacobian, which is needed for both
forward simulation and to compute derivatives is well-defined everywhere
else.

Similarly, we can formulate Coulomb friction as a clamped linear tangen-
tial penalty force with corresponding penalty factor kt:

ft = −t min(kt ‖Tẋ‖ , c f fn). (4.13)

4.4 differentiable frictional contact model 67

This expression reduces to (4.10) for dynamic friction, but results in the
linear penalty force ktTẋ for static friction.

Instead of solving the KKT conditions (4.11), we now only need to solve
a formally unconstrained system that has the same form as Eq. (4.1), with
additional penalty forces according to (4.12) and (4.13): r + ft + fn = 0.
From now on, we assume that these penalty forces (mapped to general-
ized coordinates in the case of rigid bodies) are part of the residual itself.
Consequently, we can still use a standard Newton method to solve for the
dynamic behaviour (after applying an adequate time discretization scheme).
Stabilizing the solver with a line-search method that enforces decreasing
residuals is sufficient to handle the non-smooth points of the penalty forces
introduced by the max and min operators.

We can also smooth out the transition between stick penalty and dynamic
friction force and replace ft of Eq. (4.13) with

ft = −t c f fn tanh
(

kt ‖Tẋ‖ /(c f fn)
)

. (4.14)

Using a hyperbolic tangent function introduces slightly softer friction con-
straints and can help improve the performance of optimization methods,
see Fig. 4.2. Note that for tangential velocities close to zero tanh(v) ≈ v,
which resolves any numerical issues with computing t for small velocities.

In our examples we always choose kt = kn∆t, because kn penalizes a
positional error, whereas kt penalizes a velocity error. Consequently, scaling
by a time step admits a similar positional error per time step for both
components.

4.4.3 Hybrid method

Solving frictional contacts with hard constraints is both computationally
expensive in terms of the forward simulation, as well as more challenging
to differentiate, especially in an adjoint formulation. Typically, the normal
contact constraint is satisfied exactly, but the friction model is simplified to
enable more efficient simulation. Even then, the resulting complementarities
are technically a combinatorial problem and heuristics are employed to
choose the active constraints.

Penalty formulations, on the other hand, are formally unconstrained and
therefore relatively straightforward to simulate and differentiate. While the
choice of penalty stiffness does affect numerical conditioning, using implicit
integration enables stable simulation for a wide range of stiffness. The

68 differentiable physics simulation for motion synthesis

main drawback of penalties is that one must allow some small constraint
violations.

While a small violation of the normal constraint (4.6) is often visually
imperceptible, softening the static friction constraint can introduce unac-
ceptable artefacts in some situations. In particular, if a (heavy) object is
supposed to rest on an inclined surface under static friction and the simula-
tion runs for a sufficiently long time, the tangential slipping introduced by
softening the stick constraint will inevitably become visually noticeable.

Tẋ

kt

c f fn

hybrid
linear
tanh

We address this problem by formulating
a hybrid method using linear penalty forces,
Eq. (4.12) and (4.13), combined with equality
constraints for the static friction case. In order
to take one time step in the forward simulation,
we proceed as follows: first, we approximately
solve the linear penalty problem to a residual of
‖r‖ < ε1/2. Then, we apply hard constraints of
the form (4.9) if the friction force according to (4.13) is below the Coulomb
limit. Note that these equality constraints are analogous to standard Dirichlet
boundary conditions. Consequently, we continue with the Newton iteration,
including these constraints. However, if enforcing a hard constraint leads
to a tangential force exceeding the Coulomb limit, we revert that contact
point back to the clamped penalty force (4.13). We only allow this change
if the intermediate state satisfies ‖r‖ < ε1/2. In rare cases, we eventually
fall back to the penalty formulation. These cases typically arise right at the
transition point when a sliding object comes to rest; once at rest, the hard
constraints keep it in place reliably. Even if we revert to penalties, we know
that hard constraints would have violated the Coulomb limit in that time
step, so allowing a small sliding velocity is acceptable at this point. Finally,
we continue the solver iterations until convergence, i.e. ‖r‖ < ε.

In this way, we enforce sticking with hard constraints whenever possible,
and guarantee that the Coulomb limit is never violated.

Note that employing a penalty formulation for the normal forces means
that both, the normal force and the Coulomb limit, depend directly on the
simulation state (as opposed to representing normal forces as Lagrange
multipliers). Consequently, we can easily compute the derivatives of these
forces, maintain the quadratic convergence of Newton’s method, and stabi-
lize the solver with a line search.

Similarly, when computing sensitivities or adjoint objective function
gradients, we can incorporate the additional equality constraints in the

4.4 differentiable frictional contact model 69

(a) c f = 0.4 (b) Mean tangential velocity1

0.001

10−6 v
[m

/s
]

time step
1 150 300 450

SQP
hybrid
tanh penalty
linear penalty

20

10−12

10−6

10−1

R
es

id
ua

l

4 8 12Iteration

(c)

Figure 4.1: Dropping a cylinder onto an inclined plane. The resulting motion is
generated using different contact and friction methods: linear penalty
(green), tanh penalty (blue), hybrid (yellow), SQP (red). The final
state of the simulation (a) after 500 time steps (t = 2.5 s) is shown
on the top left, and the mean tangential velocity over time (b) is
shown in the top right sub-figure. Solver convergence for time steps
60 (sliding phase, solid), and 150 (sticking phase, dashed) are shown
in sub-figure (c). Note that tangential penalty methods cannot achieve
a full stop under static friction. Our hybrid method is very close to
the SQP solution.

same way as Dirichlet boundary conditions. That is, the sensitivities or
the adjoint state must fulfil analogous boundary conditions to the forward
simulation. Specifically, for BDF1, the static friction constraint at time
ti becomes T̄ixi = T̄ixi−1 and consequently, we have T̄isi = T̄isi−1 for
sensitivities of x, or T̄iλi−1 = T̄iλi for the adjoint state (note that the earlier
state is unknown in the latter case).

4.4.4 Summary and evaluation

In this Section we have described various ways of handling contacts with
Coulomb friction, focusing our discussion on a single contact point. Now

70 differentiable physics simulation for motion synthesis

(a) soft (b) stiff (c) hybrid

Figure 4.2: Objective function (shading and isolines) and gradients (arrows) cor-
responding to the control problem presented in Fig. 4.12a, using soft
(a; kn = 100) and stiff (b; kn = 103) linear penalty contacts, compared
to hybrid contacts (c; kn = 103). Note that the overall nature of the ob-
jective landscape (i.e. the local minima it exhibits) remains the same,
although these minima do shift slightly when softening the contacts.
This behaviour promotes the use of continuation methods, whereby
solutions obtained with a soft, smoother contact model are used as
initial guess for simulations with stiffer, more realistic, parameters.

we briefly summarize how these considerations integrate with our differen-
tiable simulation framework. Recall that for deformable objects the nodes
of the FEM mesh directly define the degrees of freedom. In this case, the
contact handling extends naturally from a single point to each mesh node
independently. For rigid bodies, on the other hand, we handle spheres or
point sets defining the collision proxy. The resulting contact forces are then
mapped from each contact point to the generalized force vector as described
in §4.5.

In Fig. 4.1, we compare the different contact models described above
through an experiment where a soft cylindrical puck is dropped onto an
inclined plane. We choose a relatively low penalty factor of kn = 102 for
this example to highlight the differences between soft and hard constrained
methods, especially in the static friction phase. The differences in the normal
direction are imperceptible, even with a fairly low penalty factor. With soft
friction constraints the cylinder slides slightly further (Fig. 4.1a) and does
not come to a complete stop (Fig. 4.1b) (though the tangential speed is on
the order of 1 mm/s). Also of note is the fact that the SQP solver converges
much slower during the sliding phase (Fig. 4.1c), while our hybrid method
performs similarly to pure penalty methods in most cases, but delivers
equivalent results to the SQP version under static friction. Conversely, tanh
penalty forces are highly non-convex around the Coulomb limit, which
results in slightly slower convergence during the sticking phase as compared
to the linear friction forces. Overall, the linear penalty approach to friction

4.4 differentiable frictional contact model 71

10−2

10−1

100

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
ti

on

0 200 400Simulation runs

direct
continuation

Figure 4.3: Optimization convergence for throwing a bunny, similar to Fig. 4.13b
but without the wall, such that it lands upright, close to a target pose.
A continuation strategy applied to the stiffness of the contact model
can drastically improve optimization results for such challenging
control problems. Direct optimization uses kn = 103; continuation
uses kn: 100 (yellow), 200 (purple), 400 (green), 800 (blue), and 103

(red).

forces converges faster than tanh penalties or hybrid contacts, while the
SQP method takes about twice as long in terms of total CPU time; see also
Table A.1.

In summary, our validation tests show that penalty-based models of
frictional contact approach the ground truth defined by complimentary
contact constraints and Coulomb’s friction law, and they lead to better
convergence rates for forward simulation than alternatives based exclusively
on hard constraints. In this context, employing an implicit integration
method in conjunction with a line-search routine maintains simulation
stability at every time step even for very stiff penalties. Furthermore, our
treatment of normal and friction forces makes sensitivity analysis (both
the direct and adjoint variation) easy to apply to the simulated motion
trajectories. We note that this would be much more challenging to achieve if
we had to take derivatives of the general KKT conditions of the underlying
linear complementarity problem.

To understand how the different contact models affect the types of inverse
problems we aim to solve with our differentiable simulator, we perform

72 differentiable physics simulation for motion synthesis

another experiment. Here we exhaustively sample the objective function
on the task of tossing a ball to a specific target location (see also Fig. 4.12a).
In particular, we evaluate the objective function value and its gradients on
a regular grid in input parameters vx and vz (i.e. the initial linear velocity
in the forward and upward direction, respectively). Note that the ball is
initially spinning with a non-zero angular velocity that is kept fixed for all
tosses. Figure 4.2 illustrates these results. The two local minima correspond
to one-bounce and two-bounce solutions to this control problem. As can
be seen, contacts introduce noise into the objective function (visible as
wiggly isolines and somewhat incoherent gradients); this is inevitable as
contacts are inherently discontinuous events. Slight changes in the object’s
initial velocity can lead to a different order in which the nodal degrees
of freedom impact the ground. When both the object and the ground
are stiff, the noise in the objective function landscape caused by these
discretization artefacts can be significant and lead to reduced performance
of gradient-based optimization methods. Nevertheless, our experiment
shows that the smoothness of the objective function landscape can be
effectively controlled through the parameters used by the contact model.
This is because smoother contact models enlarge the window of time over
which contacts are resolved, and they avoid the use of large impulsive
forces. Sensitivities with respect to the exact timing and order of collisions
are therefore reduced. This observation, which is supported by the objective
function landscapes visualized in Fig. 4.2, can be exploited to improve
convergence rates for the inverse problems that leverage our differentiable
simulator.

For the example in Fig. 4.3, we evaluate a simple continuation approach.
This time around, the task is to throw a geometrically complex object
(a bunny) such that it lands upright in a particular location. When the
optimization problem is solved using a stiff contact model, an unfavourable
local minimum is quickly reached. In contrast, if the optimization problem
starts out with a soft contact model which gets progressively stiffer over
time, a much better solution is found.

Based on the experimental results described above, we conclude that the
linear friction force model offers a favourable trade-off between simplicity,
accuracy and practical performance, and as such it is our default choice for
the results we present in this Chapter.

4.5 internal and external forces in generalized coordinates 73

4 8 12 22Iteration10−12

10−6

10−1

R
es

id
ua

l

(a) (b)

(c)

Figure 4.4: Dropping an object composed of three tori. Selected frames from
the animation (a), and overlay of the wall contact configuration (b)
simulated with different contact methods: linear penalty (green), tanh
penalty (blue), hybrid (yellow). Solver convergence (c) for the shown
time steps with ground contact (solid), and wall contact (dashed).

4.5 internal and external forces in generalized coordi-
nates

In this Section, we describe the models used to generate the forces acting on
the multi-body systems simulated within our framework. We also present
basic validation tests of our forward simulation.

4.5.1 Soft bodies

For deformable elastic objects, we employ a standard Neo-Hookean material
model, given by homogeneous Lamé parameters (µ, λ) and constant mass
density ρ. As is standard, this material model describes the energy density
as a function of the deformation gradient F. Internal shape-restoring forces
that arise in response to induced deformations are then computed as the
negative gradient of the energy density integrated over each element with
respect to the nodal degrees of freedom.

To model the behaviour of real-world objects, the elastic forces described
above must be complemented by internal damping forces. Most viscosity
models, such as the ones described in [100], define the viscous stress (and
consequently the damping force) based on the linear strain rate (Ḟ + ḞT).

74 differentiable physics simulation for motion synthesis

One major drawback of these models is that they are not invariant to rota-
tional motion, and therefore damp out the angular velocity of a deformable
object during free flight.

Brown et al. [111], on the other hand, describe a family of rotation
invariant viscosity models. Here, we employ a quadratic model, similar to
their power-law damping, defining the viscous stress as a function of the
Green strain rate D. In particular, we define the viscous stress as where F is
the deformation gradient, Ḟ is the velocity gradient, and ν is the material’s
viscosity. We compute this derivative, as well as the corresponding damping
matrix entries, using symbolic differentiation. As this viscosity model is
based on a quadratic strain rate, it behaves like a power-law model with
flow index h = 2.

Figure 4.4 shows a deformable object composed of three tori in a drop test.
The ground is inclined by 20, while the friction coefficients of the ground
and the wall are 0.4 and 0.8 respectively. In this example, we use BDF2

time integration. The rotation invariant viscosity model allows the object to
rotate freely in the absence of contacts, but damps out elastic oscillations.
Our three contact methods converge reliably to very low residuals; Fig. 4.4c
shows convergence for two representative time steps during ground and
wall contact respectively. Again, the linear penalty method is fastest, while
tanh and hybrid contacts are closely matched. These tests further confirm
our conclusion that penalty methods are sufficiently accurate when using
implicit integration, which allows a high penalty stiffness.

4.5.2 Rigid bodies

Cartesian-space forces f and torques τ applied to a rigid body project to
generalized coordinates via the standard transformation

f̂ =

(
I 0

0 JT
l

)(
f

[x̂]f + τ

)
,

where the Jacobian Jl maps the rate of change of a rigid body’s rotational
degrees of freedom to changes in its world-space angular velocity. We
use this expression, for example, to apply the contact and friction forces
computed in §4.4 to rigid bodies that are in contact with the environment.
Note that this operation demands the computation of the world coordinates
of a contact point, x(q), as well as its time derivative ẋ(q) = (∂x/∂q)q̇.
We parameterize rotations with exponential coordinates θ and compute
derivatives as in Gallego and Yezzi [112]. A more detailed description of

4.5 internal and external forces in generalized coordinates 75

Time [s] 3.01.00.0

En
er

gy
[J

]

0.02

0.04

0.06

0.08 kd = 0
kd = 0.1
kd = 1
kd = 10

Figure 4.5: Total energy over time for bouncing rigid cubes (BDF2) with various
ground contact damping coefficients (increasing left-to-right in the
inset image).

how we use exponential coordinates and how we avoid the singularity at
|θ| = 2π can be found in Chapter 4.6. Force Jacobians, which are needed for
both forward simulation and sensitivity analysis, can be easily computed
analytically by using the chain rule in conjunction with the derivatives
presented in our supplements.

One important concept that must still be modelled is the restitution be-
haviour of rigid-body contacts. While post-impact velocities for deformable
objects are governed by the material’s elastic parameters and internal
viscosity, for rigid bodies we must explicitly include a damping force in
the normal direction in the event of a contact:

fd = −kdNẋ if g(x) ≤ 0, fd = 0 otherwise,

where kd is the damping coefficient. For our implicit soft contacts, this
contact damping model replaces the common Moreau impact law used in
explicit rigid-body engines to model restitution behaviour. In the absence of
external forces, the contact phase for a single one-dimensional point mass
x against a wall at x = 0 can be described as a damped harmonic oscillator
mẍ + kd ẋ + knx = 0. Analysing the exact solution for this oscillator, with
initial conditions x0 = 0 and ẋ0 = −vin, we find the following relation
between the damping coefficient and the restitution ratio:

vout

vin
= exp

 −πkd√
4knm− k2

d

 ,

where vout is the outgoing velocity measured after the first half-period
of oscillation. Restitution occurs only below the critical damping factor,

76 differentiable physics simulation for motion synthesis

k2
d < 4knm. This relation can be useful to either determine the restitution

coefficient having estimated kd using our system, or to set kd manually for
a desired restitution behaviour.

Figure 4.5 shows a basic test case for our fully implicit rigid-body sys-
tem using BDF2 time integration. Without additional damping, numerical
damping is barely noticeable when time-stepping at ∆t = 1/60 s. This cor-
responds to almost perfectly elastic collisions. We can effectively control the
restitution via our linear contact damping model. Note that the symmetry
of the contact is maintained over many bounces. In our video [113], we also
show that rotating the cube slightly to the left quickly breaks this symmetry
for comparison.

4.5.3 Signed distance functions as collision objects

Another problem is the generation of the contact point itself, which is
usually one of the most complex parts of a physics engine. For simple
geometries, such as planes or spheres. However, for arbitrarily complex
geometries, computing contact points can be computationally challenging.
A common approach is to use explicit representations of the collision ge-
ometries, such as triangle meshes, and compute contact points and normals
geometrically. Finding the contact points of intersecting triangle meshes
usually involves clipping polygons or traversing graph structures, which
are operations not well suited for differentiation.

If a collision occurs, our contact model requires the distance to an obstacle,
referred to as the gap function g(x), the normal n(x), and the curvature κ(x),
which is used to compute derivatives of the contact model. A promising
approach is to resort to implicit representations of the collision geometries,
namely signed distance functions

s(x) =

g(x, ∂Ω) if x ∈ Ω

−g(x, ∂Ω) if x ∈ Ωc
(4.15)

where Ω, Ωc, and ∂Ω denote the interior, exterior, and boundary of the
object, respectively. The first and second derivatives of s(x) are the normal
n(x) = −∇xs(x) and the curvature κ(x) = −∇2

xs(x). This makes signed
distance functions a well-suited level of abstraction to combine our contact
model with more complex geometries, and gives us several options for how
the signed distance field is created.

4.5 internal and external forces in generalized coordinates 77

The first way is to manually find an analytic expression for the signed
distance function. For example, a sphere can be described as s(x) =
||c− x||22− r, where c and r are the center and the radius. Distance functions
for primitive shapes can be composed, smoothed, and modified in many
ways, as shown in [114].

Figure 4.6: Forward simulation for different collision types

Second, we can compute signed distance fields using distance samples
at discrete points in space. To this end, we can leverage VDB, an efficient
sparse datastructure, specifically developed for processing volumetric data
in computer graphics applications [115]. Similar to a B+-Tree it hierarchi-
cally partitions the space into smaller and smaller volumes until a certain
leaf volume size is reached. The leaf cubes store the distance values and
represent voxels in 3D space. We use an OpenSource version, OpenVDB,
of the VDB architecture and make use of its ability to create narrow-band
signed distance fields around the zero levelset. Smoothing of the distance
field can naturally be applied with a gaussian filter of variable kernel size.
This allows an easy way to smooth out high frequencies in the distance
field. Figure 4.6 shows strings of point masses and cloth colliding with
collision objects represented using VDB.

Finally, neural networks can be used to represent signed distance fields,
which has recently attracted much interest in the machine learning commu-
nity. In recent work, auto-encoder-decoder frameworks are used to learn
classes of shapes [116, 117]. In IGR [118], signed distance functions are
directly learned from raw point cloud data with multilayer perceptrons.
Another approach is employed in Siren [119], where periodic activation
functions are used to solve constraint level set equations. Our initial tests
with Siren and IGR are very promising and we are eager to present more
details and results in the near future.

78 differentiable physics simulation for motion synthesis

4.5.4 Multi-body systems

As we use implicit integration schemes for time-stepping, we employ (stiff)
generalized springs and damping to couple the individual constituents of a
multi-body system to each other. This is a simple, general, and drift-free
technique that can be shown to be closely related to Baumgarte-stabilized
velocity-level constraints for rigid-body dynamics [120]. In general, for non-
dissipative coupling elements, we define a potential energy as a function of
points or vectors anchored on the multi-body system. Taking the gradient
of this potential energy with respect to the system’s generalized coordinates
directly outputs the resulting generalized forces. More formally, constraints
c(q) are enforced through potentials of the form E(q) = (kc/2) c(q)Tc(q).

For instance, the constraint

cs := ‖x1(q)− x2(q)‖ − l0 = 0,

asks that a specific distance is maintained between two points on the multi-
body system. Its resulting potential models a stiff linear spring of rest
length l0. We use zero-length springs to formulate ball-and-socket joints.
Furthermore, unilateral springs (of non-zero length), which do not produce
a force under compression, model cables and elastic strings (similar to Bern
et al. [121]).

Hinge joints (i.e. 1-DOF revolute joints) connecting two rigid bodies
are defined through attachment points (x̂1, x̂2) and rotation axes (â1, â2),
specified in the local coordinate frame of each rigid body respectively. We
model hinge joints with two constraints: a zero-length spring connecting the
attachment points (x̂1, x̂2), and a second constraint that aligns the rotation
axes (â1, â2):

ch := w(â2)−w(â1) = 0,

where w(â) denotes the mapping from local to world coordinates.
We model active motors by extending hinge joints with a second set

of local axes (b̂1, b̂2) that are orthogonal to the rotation axes â1 and â2
respectively. A motor constraint, cm, enforces a specific relative angle α
between w(b̂1) and w(b̂2):

cm := w(b̂1)− R(α)w(b̂2).

To model position-controlled motors that are driven by typical
Proportional-Derivative controllers, it is also important to add a damp-
ing component to the torques these motors generate. To this end we directly

4.6 parameterization of rigid body rotation 79

define a world-space torque as a function of end-of-time-step angular veloc-
ities:

τmd := kmd(ω1(q, q̇)−ω2(q, q̇)),

which we then project into generalized coordinates using (4.5.2).

4.6 parameterization of rigid body rotation

One of the challenges in simulating the dynamics of rigid bodies in three
dimensional space is representing the rotation and angular velocity of
rigid bodies. Parameterizations of the rotation matrix either suffer from
singularities or impose additional constraints arising from the identities of
the rotation matrix. In both cases, a reparameterization of the rotational
degrees of freedom is required: either to avoid a singularity in the parameter
space, or to project back to the constraint manifold.

We choose exponential coordinates as parameterizations of rotation ma-
trices. Unlike unit quaternions, they do not require normalization after a
simulation step. However, they suffer from a singularity when their mag-
nitude approaches 2π, which requires an occasional reparameterization.
In this Section, we propose a reparametrization strategy for exponential
coordinates that preserves the angular velocity. We also show how this
reparametrization fits seamlessly into a differentiable simulator and how
the sensitivities can be computed across a reparameterization step.

4.6.1 Exponential Coordinates and Angular Velocity

We now introduce exponential coordinates as our choice of parametrization
of rotations. While this is in no way a complete description, we hope the
reader will gain some intution on how exponential coordinates fit into our
framework. We refer the reader to [122] for a more detailed exposition of
the exponential map, SO(3)-group and associated Lie algebra.

Rotation can be viewed as a transformation of a vector a with â = Ra,
where the identities of a rotation matrix must hold. These are the orthogo-
nality identity RTR = I and the identity det(R) = 1 which preserves the
right-handedness of the coordinate system. One can think of the elements
of a rotation matrix R ∈ R3×3 as inhabiting a 9-dimensional space. Not all
matrices R ∈ R3 ×3 are valid rotation matrices. The rotation identities are
constraints on the elements of R that form a 3-dimensional manifold in
9-dimensional space. A parametrization of the rotation matrix maps from

80 differentiable physics simulation for motion synthesis

the parameter space to the manifold formed by the identity constraints in
9-dimensional space.

We can derive exponential coordinates and angular velocity by taking the
rate of change of the orthogonality terms RTṘ + ṘTR = 0. By rearranging
the terms we obtain

RTṘ = −ṘTR = −(RTṘ)T = [ω]×,

we note that the above matrix is skew-symmetric, denoted [. . .]x, and
define ω to be the corresponding vector. Note that Ṙ = [ω] at R = I, and
we therefore call it the angular velocity. We can now solve the ordinary
differential equation Ṙ = R[ω]x and find R(t) = R0 exp([ω]×t). At the
origin R0 = I, exponential coordinates are then defined as the vector θ = uθ =
ωt integrating the rotation in terms of an angular axis-axis representation,
with angle θ and unit axis u. A closed expression for the exponential
mapping R(θ) = exp([θ]×) = ∑i[θ]

i
×/i! is given by the Rodrigues rotation

formula
R(θ) = I + sin(θ)[u]x + cos(θ)[u]2x.

Another useful relation is that of the time derivative of the rotation
parameters and the angular velocity

ω(θ, θ̇) = Jl(θ)θ̇,

where Jl(θ) is the left Jacobian, see Appendix A.1.1.1.

4.6.2 Reparameterization

Unlike unit quaternions, exponential coordinates introduce no additional
constraints. Numerical integration is therefore very straightforward, since
we don’t have to worry about projecting back onto the manifold of valid ro-
tation matrices. However, exponential coordinates suffer from a singularity
at θ = 2nπ, where n is an integer.

The common solution is to reparameterize to keep θ within the half-
sphere θ ≤ π. In what follows, the symbols marked ′ denote the quantities
after the reparametrization step. If θ ≥ π, we compute a new set of parame-
ters θ such that R(θ) = R(θ′) and θ′ < π with

θ′ = (1− 2π

θ
)θ. (4.16)

We note that since θ ≈ π, u′ = −u and θ′ = 2π − θ.

4.7 solving inverse problems 81

When integrating in time, the integration scheme computes the time
derivatives using the states of the previous time steps, e.g., for BDF1 θ̇ =
1
h (θ− θ−1) with θ−1 being the state in the previous time step. Changing θ
to θ′ necessarily requires adjusting all past states used in the integration
scheme. In doing so, we attempt to find a new θ̇′ that preserves the angular
velocity

ω(θ, θ̇) = ω(θ′, θ̇′)⇔ θ̇ = J−1
l (θ′)Jl(θ)θ̇. (4.17)

We can now substitute the expressions for Jl and J−1
l , and simplify the

expression (see Appendix A.1.1.3) to get the formula

θ̇′ =

(
I + [u]2×

2π

θ

)
θ̇. (4.18)

We find an easier way to the same result if we take the time derivative of
the reparameterization formula (4.16):

θ̇′ =
d

dθ

(
(1− 2π

θ
)θ

)
θ̇ (4.19)

=
d

dθ
(θ− 2πu) θ̇ (4.20)

=

(
I +

2π

θ
[u]2×

)
θ̇ (4.21)

where in the last step we used ∂u
∂θ = − 1

θ [u]
2
× from [112], Appendix B.

We now have formulas (4.16) and (4.18) to compute new parametrizations
θ′, θ̇′ of the rotation matrix and angular velocity, which can then be used
to adjust past states θ′−1, θ′−2, ... depending on the integration scheme.
When a reparameterization occurs in the forward simulation, it needs to
be accounted for in the backwards pass. For this, we refer the reader to
the Appendix A.1.1.2 for the necessary derivatives of equations (4.16) and
(4.18).

4.7 solving inverse problems

We now turn our attention to optimization problems based on dynamical
systems. The original motivation for developing our differentiable simu-
lator was to consider the full dynamics of a legged robot when planning
its locomotion. This allows us to more accurately predict the motion tra-
jectories and take advantage of compliance and deformable components

82 differentiable physics simulation for motion synthesis

in the motion planning process. In this Section, we demonstrate the effec-
tiveness of our differentiable physics model for trajectory optimization of
a compliant robot with soft feet. We also present results on several other
important robot applications: Estimation of material parameters including
contacts, optimization of initial conditions, machine learning with our differ-
entiable simulator directly integrated with the loss function, and trajectory
optimization for manipulation. Before devoting ourselves to these exciting
applications, we give an overview of how we formulate these problems in
an optimization framework.

4.7.1 Optimization Framework

The robotics problems we are interested in can all be represented as opti-
mization problems where we want to find parameters p∗ that minimize an
objective O defined as a function of the simulation result:

p∗ = arg min
p

O (p, q̃(p)) , (4.22)

where q̃(p) is the entire trajectory of the dynamical system.
In order to solve this optimization problem using gradient-based methods

such as ADAM [123, 124] or L-BFGS [125, 126], we need to compute the
derivative

dO
dp

=
∂O
∂p

+
∂O
∂q̃

S. (4.23)

In our framework, the parameters p can be initial conditions, material
parameters or control variables. Depending on the objective function, we
can then solve a variety of interesting problems. For example, if the pa-
rameters are the initial throwing velocity of a ball and the objective is the
distance between a target location and the position of the ball at the end of
the simulation, we perform trajectory optimization. If the parameters are
the material properties of a deformable ball and the objective is the distance
between a motion-captured reference trajectory and the simulated trajec-
tory, we perform parameter estimation, also called real2sim. The choice of
parameters and objective defines the problem we solve while staying within
the same optimization framework. A differentiable simulation model that
captures a wide range of physical effects thus opens up the possibility of
solving many robotics problems using gradient-based techniques.

4.7 solving inverse problems 83

4.7.1.1 The adjoint method

For some applications, it is not necessary to explicitly compute the sensi-
tivity matrix. Instead, we are interested in finding the input parameters p∗

directly. The adjoint method allows us to compute the objective function
gradient (4.23) without directly computing S. While Bradley [127] derives
the adjoint method for the continuous-time case, here we describe it directly
for the discretized-time setting.

We first express the sensitivity matrix as S = −B̃−1Ã, where Ã :=
∂r̃/∂p and B̃ := ∂r̃/∂q̃, respectively. Introducing the notation ỹ := ∂O/∂q̃,
Eq. (4.23) becomes

dO
dp

=
∂O
∂p
− ỹB̃−1Ã. (4.24)

Instead of evaluating this expression directly, we first solve for the adjoint
state λ̃:

B̃Tλ̃ = ỹT , (4.25)

and then compute the gradient of the objective function as follows:

dO
dp

=
∂O
∂p
− λ̃

TÃ. (4.26)

Note that both ỹ and λ̃ are vectors of length |q| nt, while the size of Ã
is|q| nt × |p|, where nt is the number of time steps, |q| is the number of
degrees of freedom, and |p| is the number of parameters. Moreover, the
sparsity of Ã (or lack thereof) depends on the time interval and spatial
domain in which each parameter affects the simulation. For instance, ho-
mogeneous material parameters of deformable objects generally affect the
entire simulation and result in dense (parts of) Ã , whereas control inputs
for specific time steps influence only a small subset of the simulation and
result in a much sparser structure. Finally, we note that the block-triangle
structure of B̃ can also be leveraged to speed up the computation of the ad-
joint state. This block-matrix shape highlights when (and where) data must
be stored during the forward simulation, regardless of how the system is
solved. During adjoint state computation, information propagates backward
in time (a common feature of time-dependent adjoint formulations).

4.7.1.2 Gauss-Newton Hessian Approximation

The adjoint method makes computing the gradient of the objective more
efficient, and in combination with a quasi-Newton method such as L-BFGS,

84 differentiable physics simulation for motion synthesis

we can improve convergence compared to gradient-descent. We however
found, that using the Gauss-Newton approximation proposed in [102] in
combination with Newton’s method leads to even faster convergence rates.

Computing the full Hessian

d2O
dp2 =

d
dp

(
∂O
∂q

S
)
+

d
dp

∂O
∂p

would require us to compute second-order sensitivites. Zimmermann
et.al. [102] suggest to leave away the terms involving second-order sensitivi-
ties, which leads to the Gauss-Newton approximation

H = ST ∂2O
∂q2 + 2ST ∂2O

∂q∂p
+

∂2O
∂p2 .

In comparison to the adjoint method, the Gauss-Newton approximation
does require the explicit computation of the sensitivity matrix S. In our
experiments, we found that the convergence improvements per optimization
iteration cost outweighs the additional computational cost required to
compute the approximated Hessian.

4.7.2 Motion Generation for Compliant Robot

In our first experiment, we optimize the control inputs for a legged robot
actuated by compliant motors. We note that this use case is motivated by
real-world challenges. Compliance, whether parasitic (e.g., motors that are
not infinitely strong) or intentionally built in (e.g., rubber feet designed
to absorb shock), is a defining feature of physical robots. However, most
existing motion planning and trajectory optimization algorithms are unable
to account for this. Our differentiable simulator, on the other hand, allows
us to optimize the robot’s motion by directly taking into account its whole-
body dynamics, including the compliant nature of its actuators and feet.

For this experiment, we model the robot’s actuators as relatively low-
gain PD controllers, a reasonable model for position-controlled motors
implemented as soft, damped angular constraints between the coordinate
frames of adjacent rigid links. We use the motion synthesis tool presented
in Chapter 2 to create a nominal motion trajectory for this robot. How-
ever, the physical model based centroidal dynamics is a relatively coarse
approximation of the robot’s dynamics and assumes precise and strong
actuators. Unsurprisingly, due to these model simplifications, our compliant

4.7 solving inverse problems 85

(b)(a)

Figure 4.7: Coupling soft and rigid bodies allows us to equip this compliant
robot with soft feet. We can perform trajectory optimization on the
entire robot to find control inputs that account for the compliant
motors, as well as the deformable end-effectors.

robot is unable to move effectively when attempting to follow the nominal
trajectory.

To recover the target walking speed, we perform trajectory optimization
using our differentiable simulation to account for the full dynamics as well
as the stiffness and compliance of the actuators. We optimize for control
trajectories p = [pT

1 , ..., pT
n]

T , where pi represents the target motor angles
at time i and n the number of time steps. To generate stable motions,
we set the time horizon to 5n∆t, which includes five motion cycles. The
same control trajectory is applied for each motion cycle. The initial guess
for the control trajectories is set to the motor angle trajectories generated
by the motion synthesis tool presented in Chapter 2, and the goal is to
achieve the target walking speed. Using our differentiable simulator, we
apply trajectory optimization to the fully coupled multibody dynamics
and achieve optimized control so that the robot reaches the target walking
speed. The result, as shown in Fig. 4.8, is a successful locomotion gait for
this robot with compliant actuators and soft feet. Details of the simulation
parameters and runtime can be found in Table A.2.

4.7.3 Material parameter estimation

To solve problems in robotics, we must be able to accurately predict the
dynamics of the physical world. A critical component to this success is
parameter estimation, where we attempt to fit the material properties of

86 differentiable physics simulation for motion synthesis

Figure 4.8: Control trajectories executed on a robot with compliant motors and
soft feet. Top: The control trajectories generated with a simplified
dynamics model assuming very stiff motors (chapter 2) fail to achieve
the target walking speed. Bottom: Using our multibody differentiable
simulation model, we model the compliance of this robot and generate
new control trajectories such that the robot reaches the target walking
speed.

our simulation model so that the simulation results match the real world.
In this Section, we demonstrate this approach by estimating the material
parameters of a deformable ball.

Our system allows us to estimate material parameters such as stiffness
and damping of deformable objects. We capture the behaviour of our
samples in the real world using either an optical motion capture system or
an Kinect v2 depth camera. In the former case, we track up to six labelled
optical markers on the sample at a frame rate of 120 Hz using an array of 10
OptiTrack Prime 13 cameras. System calibration ensures that the world-space
coordinates match the ground and wall planes so that these rigid obstacles
can be included in the simulation. For motion capture data, the objective
function measures the sum of squared distances between the tracked marker
position and the corresponding position on the simulated mesh for all time
steps. In each time step, we only consider markers that are currently visible
to the tracking system are considered. In the latter case, we read 3D point
clouds from the Kinect at 30 Hz and then identify the ground and wall
planes in a manual post-processing step. We apply box filters in both world
and colour space to identify the points that correspond to the surface of
the object. In this case, since there is no direct correspondence between

4.7 solving inverse problems 87

the tracked points and the mesh positions, the objective function instead
measures the distances of all filtered points to their nearest point on the
surface of the simulated mesh.

Figure 4.9: Errors obtained when optimizing for ground truth initial conditions
and material parameters on synthetic data for linear penalty contacts
(a), tanh penalties (b), and hybrid contacts (c). We show relative errors
for Young’s modulus E and the coefficient of friction c f , and absolute
errors for initial conditions (position and velocity).

For parameter estimation, we use a temporal continuation strategy, where
we first optimize the initial conditions of the simulation (in terms of position,
orientation, velocity, and spin) to match the recorded motion during the
ballistic phase (before the first contact). In the second phase, we keep
the initial conditions fixed,and optimize the material parameters to most
closely match the initial bounce of the recorded motion. Finally, we add
a third phase in which all parameters (material and initial conditions) are
optimized simultaneously for the entire motion. In our experiments, we
found that L-BFGS is well suited for these optimization tasks.

We evaluate the robustness of this approach using synthetic ground truth
data containing only a single bounce in Fig. 4.9. Starting from a different
initial guess, which is about 10 times softer than the ground truth material,
the optimization should recover both the initial conditions and the material
parameters while we add uniform random noise to the ground truth data.
Both penalty-based approaches find very accurate solutions in the absence
of noise and provide good approximations even with higher noise levels.
In contrast, the hybrid method, where static friction is enforced by hard
constraints, causes the optimization to find unfavourable local minima even
in the absence of noise. In particular, the friction coefficient is not correctly
recovered in the presence of increased noise. Therefore, we prefer penalty
point-based methods for optimization tasks, but also show examples where
the hybrid method can be used for optimization.

88 differentiable physics simulation for motion synthesis

Figure 4.10: Parameter estimation for throwing a sphere and a cube. The 3D
image shows motion-capture trajectories for all six markers (one in
the centre of each face) and snapshots of the best fitting simulation.
The inset graph shows captured and simulated trajectories for the
front facing marker.

Here, we show three results for material parameter estimation of real-
world specimens. We prepare two custom-made elastic foam specimens,
a sphere and a cube, for motion capture with six slightly inset motion
capture markers each, see Fig. 4.10. The motion capture data provides
direct correspondences between the tracked markers and their simulated
counterparts, allowing us to find the initial orientation and angular velocity
in the first phase. In the first example, Fig. 4.10 left, we then optimize
material parameters for the duration of the first bounce, and finally all
parameters over the entire recorded trajectory. The second example, Fig. 4.10

right, uses a more automated approach, optimizing all parameters over
increasing time horizons. Apart from the material parameter optimization
in the first example, which includes a short ADAM phase, we use L-BFGS
for all these optimizations. In our video [113] we also show verification tests
for both of these results, where we use the material parameters obtained via
these optimizations, and then only fit the initial conditions to the ballistic
phase of a different recorded motion. Please also refer to Table A.1 for
details on material parameters and runtime.

Finally, we show an example for a foam ball without additional markers,
where we record the real-world motion with a Kinect depth camera, Fig. 4.11.
In this case, we minimize the distance from the simulated surface to the
recorded point cloud, which means that we do not have any rotational
information about the real-world specimen. Nevertheless, by allowing the
optimization to change initial conditions during later stages where contacts
are taken into account, we find a good match between real and simulated
motion. We employ the same approach to estimate parameters of a common

4.7 solving inverse problems 89

Figure 4.11: Parameter estimation with Kinect data. Image shows input point
cloud (time colour-coded purple to yellow) and representative time
steps of the simulation result (green). Graph shows average coordi-
nates; axes represent the camera orientation (z forward, y up).

tennis ball, which we subsequently throw with a robot as discussed in the
next Section.

4.7.4 Trajectory Optimization

With optimal parameters found by parameter estimation, we can now use
our simulation model to find optimal controls via trajectory optimization.
We separate these applications into two groups. First, we find optimal initial
conditions to throw objects to hit a target. And second, we find optimal
controls for a robot arm which manipulates rigid and soft objects.

4.7.4.1 Throwing

Our framework allows us to parameterize, and optimize for, the initial
conditions of our simulation, such as in the examples shown in Fig. 4.12.
In these cases, we must account for the contribution of the initial condi-
tions to the objective function gradient in Eq. (4.26). While previous work
provides an adjoint formulation for general, implicitly defined, initial condi-
tions [127], when directly parameterizing initial conditions we find it more
convenient to calculate the corresponding derivatives explicitly.

90 differentiable physics simulation for motion synthesis

Parameters that define initial conditions, p0, are parameter variables
that affect only the initialization of the time-integration scheme, but do
not directly affect any of the unknown states q̃. We can therefore com-
pute the derivatives of the residuals w.r.t. these parameters analytically:
∂ri/∂p0 = (∂ri/∂χ)(∂χ/∂p0), where χ refers to the initial state of the time
integrator. The first term follows directly from the choice of time-integration
method, while the second term follows from the parameterization of initial
conditions. Finally, these derivatives are added to the matrix Ã of the sensi-
tivity system, where each block now becomes Ai := ∂ri/∂p + ∂ri/∂p0. Note
that only the first few time steps receive a non-zero update, depending on
the chosen time-discretization scheme.

0

1

2

(a) (b)

Figure 4.12: Throwing a deformable ball: a point target for the ball’s centre of
mass (a) admits multiple exact solutions with either zero, one, or two
bounces off the floor. Asking the second half of the c.o.m. trajectory
(red) to be as close to a vertical line as possible (b) requires a trade-
off between forward motion and back-spin (black arrow) such that
friction slows the ball down when it bounces off the ground.

In our tests, we optimize initial linear and angular velocities for throwing
a deformable ball, Fig. 4.12. The objective function measures the distance
from the ball’s centre of mass to a specific target point at the end of
the simulation (Fig. 4.12a), or to a target line over a specified time range
(Fig. 4.12b), respectively.

In order to compare our results to a gradient-free sampling method,
we run CMA-ES on the optimization problem in Fig. 4.12a. Qualitatively,
gradient-based approaches are less likely to traverse a saddle point, whereas
sampling methods explore the parameter space more randomly in the early
stages before settling into a local minimum. In this particular case, using
L-BFGS and linear penalty contacts requires 28 simulation runs to find
an exact solution for the two-bounce motion (relative objective function

4.7 solving inverse problems 91

w

w-f

f

f-w-f

(a) (b)

Figure 4.13: Throwing with multiple contacts: (a) multiple paths for the ball’s
c.o.m. to reach the target point, labelled by contact sequence (‘w’ wall,
‘f’ floor); (b) throwing the bunny to a specific target pose (wireframe)
after bouncing off the floor and the wall (time colour-coded from
dark to bright).

value O/O0 < 10−25) in a matter of minutes (Table A.1), while CMA-ES
requires 1042 simulations and 2h 15m to find an approximate solution with
O/O0 ≈ 10−6.

On a more complex example (Fig. 4.13b), L-BFGS finds a better solution
(O/O0 ≈ 4 · 10−4) after 319 simulations, whereas CMA-ES returns a notice-
ably worse result (O/O0 ≈ 10−2) even after running over 8000 simulations.
We observe the same behaviour for a trajectory optimization test, similar
to Fig. 4.14, where CMA-ES fails to produce an acceptable solution after
multiple hours, whereas our system yields a good result in a few minutes
using direct sensitivity analysis and Gauss-Newton optimization; see our
supplements for details.

We now show results for artistic control of animations. In particular, we
find optimal throwing velocities such that an elastic object hits a specified
target after multiple bounces. We first extend the example of Fig. 4.12a
by including a wall and increasing the distance to the target, Fig. 4.13a.
Depending on the initial conditions, we can now find multiple paths to
the target with various bounce patterns, as labelled in the image. In these
examples, using smoother tanh friction forces (blue) yields slightly better
results than linear ones (green).

We can also throw the Stanford bunny (again including a contact with
a wall) such that it lands at a specific target location (Fig. 4.13b). In this
example, the objective function measures the squared distance to the target

92 differentiable physics simulation for motion synthesis

pose for each mesh node, and also includes a regularizer that additionally
penalizes solutions where the bunny falls over.

After performing parameter estimation for a tennis ball, as described in
the previous Section, we also optimize initial conditions for a new throw
such that the tennis ball hits a specific location on the wall after bouncing
off a table once. For the resulting initial position and velocity, we then
generate a throwing motion (shown in our video [113]) for a UR5 robot
using a standard inverse kinematics model.

4.7.4.2 Manipulation

(a) (b) (c)

Figure 4.14: Optimizing end-effector trajectories for robotic control of coupled
dynamic systems. Our robot drags a rigid cube attached with nylon
strings over a distance of 5 cm (a) or 11 cm (b) respectively, and
actuates a coupled system composed of two rigid cubes and four
elastic rubber bands (c) such that the lower cube is tipped over.

We present various applications to robot control using trajectory op-
timization and show that our contact-aware differentiable simulation is
well-suited for these types of problems. We optimize for per-time-step
control trajectories p representing the position and orientation of a robotic
end-effector over time.

We manually define targets for rigid objects or point masses at specific
moments in time. The objective function O again measures squared dis-
tances between the simulated and target state at the specified time. To
ensure temporal smoothness of parameters, we add the regularization term
β ∑i ‖pi+1 − pi‖2 to O.

4.7 solving inverse problems 93

We first optimize the trajectory for a 6-DOF robotic end-effector over a
time interval of 1 s, and test our results on a real-world Universal Robotics
UR5 robot running at a controller frequency of 60 Hz, Fig. 4.14. This test
shows that we can effectively optimize for a large number of parameters, as
each time step (∆t = 1/60 s) has its own set of end-effector coordinates. We
also demonstrate that our simulated results carry over to the real world by
having the robot perform the resulting motion repeatedly for comparison.

Figure 4.15: Trajectory optimization of three rigid bodies linked together by soft
springs (blue). The target, green, is to translate and rotate the bottom
rigid body by half a turn.

Our system also works for more complex dynamical systems and goals.
In Figure 4.15, three rigid bodies are linked together with springs and
control trajectories for the end-effector of the robot arm are optimized such
that at the end of the time, the bottom rigid body is translated and rotated
to mach the state of the greeen target. Note that the bottom rigid body is
being turned on of its corners.

Another example of the application of our differentiable simulator in a
trajectory optimization setting is the manipulation of a sheet modelled as a
mass-spring system (Fig. 4.17). The control parameters specify the positions
of two handles, each attached to a corner of the sheet. Initially, the cloth lies
on the ground facing upwards. The objective function asks for the following
motion of this sheet: After 1 s it is to be flipped over and point downward,
and later, at t = 2 s, it is to be flipped back to its original orientation, as
well as translated to the right. By adding a smoothing regularizer for the
control parameters, the trajectory optimization finds a solution after a few
Gauss-Newton iterations.

In our last example, the goal is to catapult a bunny to a target location
by controlling the corner points of a cloth. The is cloth modeled as a mass-
spring system, whereas the bunny is represented as a rigid body and has

94 differentiable physics simulation for motion synthesis

Figure 4.16: Trajectory optimization for a rigid body with complex collision
geometry.

its collision geometry described as a signed distance field using OpenVDB,
as laid out in Section 4.5.3.

Figure 4.17: Trajectory optimization of cloth modeled as mass-spring system. The
handles attached attached to the corners of the cloth sheet control
the cloth sheet. The first target configuration, yellow dots, is to flip
the cloth in place after 1s. The second target configuration, orange
dots, is to flip the cloth back to its initial orientation, but translated
to the right. The purple lines denote the parameter trajectories that
are found using trajectory optimization.

4.7.5 Self-supervised learning of control policies

Learning-based methods that leverage neural networks and simulation data
to train control policies have achieved impressive results for various control
applications. Forward simulation is commonly used as an infinite data

4.7 solving inverse problems 95

trainable layers
differentiable

simulation layer

co
nt

ro
ls

ta
rg

et

dynamics
collisions

friction

loss

st
at

e
tr

aj
ec

to
ry

Figure 4.18: Differentiable simulation layer in a neural network.

source that is sampled over initial conditions and control parameters to gen-
erate training data. While this data-driven approach effectively decouples
learning from simulation and thus simplifies implementation, it critically
relies on the parameter space sampling reflected in the training data to yield
an appropriate coverage in performance space. We pursue an alternative
strategy that, rather than using a fixed training set, integrates simulation
directly into the loss function, as illustrated in Fig. 4.18, thus enabling the
learning algorithm to exploit the map between parameter and performance
space provided by our differentiable simulator. Note that this is not our
core contribution as similar approaches have been explored in related work,
nevertheless, we demonstrate that our framework is well-suited for this
important application.

As in the other applications, the objective (or loss) function measures the
simulation result q̃ against a desired target behaviour q∗, i.e. O(q∗, q̃). We
then train the neural network φ(q∗, w) to return simulation parameters p
that achieve the given target. The result is a weight vector w for the network
that minimizes the training loss:

min
w

1
n ∑n

l=1 O(q∗l , q̃(φ(q∗l , w))). (4.27)

Note that the simulated trajectory is a function of the parameters returned
by the neural network, i.e. q̃(φ(q∗, w)). Consequently, a differentiable simu-
lation is key to computing gradients during training while avoiding costly
finite differencing. We demonstrate this approach on a simple game, where
we train a neural network to find the throwing velocity for a rigid ball such
that, after a single impact with the ground, it hits a given target position.
The objective (or loss) function measures proximity to the target location
using a soft minimum over the descending part of the trajectory, and in-

96 differentiable physics simulation for motion synthesis

cludes a penalty term that discourages solutions without contact. Rather
than measuring distance at a specific time, this approach provides more
flexibility in terms of timing, allowing the learning algorithm to find better
solutions.

We select n = 1000 target positions for training and 100 for testing,
uniformly sampled in a rectangular region. We train using ADAM [123]
with β1 = 0.95, β2 = 0.999, ε = 10−8, and a mini-batch size of 5. We start
with a learning rate of 10−2, which is reduced by a factor of 0.5 after each
epoch. On average, each epoch takes about 450 s of CPU time to compute.
The architecture of the network is shown in Fig. 4.19. It is worth noting
that, even in this comparatively simple example, accounting for friction
in the simulation is crucial for accurate control; a controller trained in a
friction-less environment will systematically fail to hit the target.

100

10−4

10−2

Lo
ss

Epoch0 1 2 3

Training (mini-batch)
Test Dense layer ELU

Concatenation

Figure 4.19: Convergence of the learning process for the throw controller (left)
and the corresponding network architecture (right). The neural net-
work outputs the initial velocity of the simulation such as to hit the
given target after one bounce. (ELU: exponential linear unit.)

4.8 discussion

We present an analytically differentiable dynamics solver that handles
frictional contact for soft and rigid bodies. A key aspect of our approach is
the use of a soft constraint formulation of frictional contact, which makes
our simulation model straightforward to differentiate.

Our results show that penalty-based contact models, especially in the
normal component, are sufficiently accurate when combined with implicit
time integration, and also enable tuneable, sufficiently smooth contact

4.8 discussion 97

treatment for gradient-based optimization. We also analyse the effects of
penalties against hard constraints with respect to static and dynamic friction.
For dynamic motion, where static friction persists only for a short contact
duration, penalty-based methods perform adequately and improve the
performance of optimization methods built upon these simulations.

In contrast to Chapter 2, we can leverage our differentiable simulator to
take into account the compliant nature of motors and feet when generat-
ing motion plans for a legged robot. Since our simulation can model the
compliant and damped nature of the actuators as well as the deformation
of the feet, the trajectory optimization successfully retargets the original
control trajectories to regain the target walking speed. We further demon-
strate the effectiveness of our approach on a wide range of other robotic
applications, including parameter estimation and manipulation tasks, as
well as learning-based control. Our optimization examples show that using
this framework, gradient-based optimization methods greatly outperform
sampling-based methods such as CMA-ES.

All of our examples assume that contact forces obey the isotropic
Coulomb model (neglecting viscous contact dynamics, for the time being).
While this assumption is valid for a large class of surfaces, anisotropy is an
important characteristic of various physical systems such as textiles [72].
Furthermore, in our modelling, we assume a functional representation of
the distance metric between different bodies to be readily available, and to
be sufficiently smooth. For complex contact scenarios where the geometric
representations of the bodies involved in collisions are highly detailed or
non-convex, we employ an approach similar [128], where the collision object
is represented as a signed distance field.

Our experiment on learning-based control is an initial investigation into
combining our differentiable simulator with machine-learning techniques.
In the future, we see great promise in leveraging this concept in the context
of deep reinforcement learning. By eliminating the need for random explo-
ration, for example, the analytic gradient information that our framework
provides is likely to improve sample efficiency.

Similarly, our experiments on performing throwing motions on a real-
world robot demonstrate that our simulation results translate to the physical
specimens. However, there are still numerous sources of error such as align-
ing the robot in its environment, unwanted movements of the robot’s base,
and latency of the hardware controller, which require further investiga-
tion. Further, we would like to apply the real2sim2real approach to more
complex dynamical systems.

98 differentiable physics simulation for motion synthesis

In summary, our experiments demonstrate that our system enables ef-
ficient inverse problem solving for various applications in graphics and
robotics. For many of these applications, soft constraints with linear penalty
forces, combined with implicit integration, lead to physically meaningful
and analytically differentiable simulations. Furthermore, we explore op-
tions for smoother friction forces, which help reduce noise in the objective
function, as well as equality constraints for static friction in cases where
physical accuracy is key. In either situation, a soft contact in the normal
component enables differentiability and gradient-based optimization.

In the future, we plan to further investigate simulation-driven optimiza-
tion methods in the context of robotics and control of highly complex
multi-body systems that combine rigid and flexible elements.

5
C O N C L U S I O N

5.1 discussion

Physical models of robots and their environment play a central role in
motion planning and the design of new robot morphologies. They can be
used to generate motions in an interactive tool, to quickly explore the space
of feasible motions when designing a new robot, or to provide parameter
estimates and synthesis of control strategies.

This thesis presents different approaches to physical modeling of both
legged-wheeled and compliant robots, and leverages the simulation models
to generate physically valid and agile motions. In Chapter 2, we introduce
a physical model based on centroidal dynamics that focuses on robots with
legs and wheels. Using this model, we develop a computational framework
for designing and planning motions in an interactive editor for a variety
of robot morphologies. Given high-level motion goals, the trajectory op-
timization method generates physically valid motions taking advantage
of the motion capabilities imposed by the leg configurations and type of
end-effector, such as point feet, actuated and unactuated wheels. In Chapter
3, we extended our framework with a warm start technique that initiates
the trajectory optimization routine, allowing for rapid exploration of dif-
ferent robot designs and their locomotion options. Using this system, we
designed a more powerful robot specifically designed to display the poten-
tial combining legs and wheels. Equipped with actuated and unactuated
wheels or even ice-skates, it can perform different locomotion modes, such
as roll- walking, skating, or swizzling, all of which emerge as solutions to a
trajectory optimization problem given high-level goals. Furthermore, we
demonstrate the versatility of our computational framework by synthesiz-
ing control trajectories for Anymal on wheels and using them as reference
trajectories for a state-of-the-art feedback controller.

While our computational approach to motion planning is capable of
generating various agile and dynamic motions, the underlying physical
model does not capture a variety of physical characteristics of the real robot,
such as compliance, deformation, or torque limits of actuators. However,
most of today’s robots do feature deformable objects, such as soft feet, and
compliant components, such as PD -controlled actuators. Moreover, we

99

100 conclusion

use a fixed footfall pattern and restrict the ground reaction forces to the
non-slip region of Coulomb’s friction law. In our experiments with the
prototypes shown in Chapters 2 and 3, we encountered these limitations as
we advanced to increasingly dynamic and complex motions. Furthermore,
robot designs that effectively combine rigid and soft structures could be the
key to more agile and lifelike motions.

To address these issues, in Chapter 4 we developed a differentiable
dynamics model that can simulate both rigid and deformable objects, uses
a mollified frictional contact model, and allows modeling of compliant
actuators. Our method circumvents the main difficulties associated with
the non-smooth nature of frictional contact. We combine this contact model
with a unified treatment of rigid and deformable objects and fully-implicit
time integration to obtain a robust and efficient dynamics solver that is
analytically differentiable. In conjunction with sensitivity analysis, our
formulation enables trajectory optimization taking into account the full
body dynamics, compliant motors, and soft feet. We further showcase
the effectiveness of our differentiable simulation in applications beyond
locomotion, such as parameter estimation, object manipulation, and self-
supervised learning of control policies.

5.2 conclusion

Motion planning for robots with arbitrary morphologies and design fea-
tures is a challenging problem, as it amounts to determining a large number
of actuation signals to control the high-dimensional state trajectory of a
nonlinear dynamical system. In this thesis we have shown that motion gen-
eration for robots with legs, wheels, and compliant components becomes a
well-solvable problem by using trajectory optimization with an appropriate
physical model.

The dynamics model and trajectory optimization of our computational
framework allow for interactive rates when editing motions, while gener-
ating control trajectories that transfer well to the real world. This human-
in-the-loop optimization approach has proven critical to exploiting the full
motion capabilities of arbitrary robot design, as the space of physically valid
motions can sometimes be unintuitive, especially for designs that combine
legs and wheels. Our approach is not limited to toy-like robotic creatures,
but can also be used in the design of more powerful legged robots, or in
the synthesis of dynamic motions that serve as reference trajectories in a
feedback controller.

5.3 future work 101

We have also shown that a differentiable physical model can be used to
optimize motion trajectories that take into account the full dynamics of a
legged robot as well as the compliance of its actuators and feet. A penalty-
based approach to friction and contact fits well in a differentiable simulation
model that can have many applications beyond legged locomotion.

5.3 future work

The results presented in this thesis point in exciting directions for future
work. Our trajectory optimization runs at interactive rates, but does not
converge fast enough to be used in a closed loop controller. We are encour-
aged by the significant improvements in convergence rates achieved by the
Filtered Hessian strategy described in Section 2.4.3. Our ultimate goal is
to make the trajectory optimization process faster than real-time. This will
enable online computation of motion plans taking into account dynamic
obstacles in the environment and providing full-body feedback strategies
in response to unplanned perturbations.

There are also interesting opportunities to improve our motion optimiza-
tion model and the manufacturing process of robots designed using our
framework. For example, the physical prototype of our SkaterBot robot
moves more slowly than the simulation model. This is not surprising since
the wheels in the simulation have no backlash or friction losses and the
motors can track the planned movements very accurately. Increasing the
accuracy of our predictive model to better account for real-world constraints
would also be beneficial and allow us to produce increasingly agile motions.
For example, drift maneuvers make very effective use of glide, which is
currently beyond the capabilities of our model.

As for differentiable simulation, there are many exciting opportunities
to expand its modeling capabilities and performance. We would like to
increase the modeling options for deformable bodies, for example, by in-
troducing model reduction of FEM meshes or cloth models that account
for bending. This would open up the space of possible applications. Per-
formance improvement in deformation simulation could enable the de-
velopment of closed-loop systems, such as model predictive control or
whole-body controllers for hybrid rigid-soft robots.

Another interesting starting point is to improve contact model and col-
lision detection capabilities. Macklin et al. [128] propose some interesting
methods to account for collisions between cloth and sharp features and
embed a signed distance field in a deformable cage. This would allow a

102 conclusion

more accurate prediction of the interactions between deformable and rigid
objects. In addition, we intend to further investigate the representation of
signed distance fields using neural networks and their use in a differentiable
simulator.

We also plan to extend the application of the real2sim2real approach to
more complex dynamical systems. For example, we can envision a system
in which a robotic arm picks up an object, chooses a simulation model and
parameters, and then begins to manipulate that object. The differentiable
simulation model could also be useful in evaluating the robustness of a
dynamical system. Derivatives of state trajectories with respect to potential
perturbations or unknown variables (such as the friction of the floor) could
be used to aid in decision making when designing a robot or setting the
parameters of a controller.

Finally, our experiment on learning-based control is an initial investiga-
tion into combining our differentiable simulator with machine learning
techniques. In the future, we see great potential in using this approach
in the context of deep reinforcement learning. For example, the analytical
gradient information provided by our framework can improve sampling
efficiency by eliminating the need for random exploration. Research efforts,
such as [129], are very promising.

A
A P P E N D I X

a.1 rigid body theory

a.1.1 Parameterization of Rotation

We parameterize the rotation of a rigid body with exponential coordinates
θ, using the exponential map R(θ) = limn→∞(I + [θ])n. For ||θ|| > ε we
compute R(θ) with the Euler-Rodrigues formula, where we use ε = 10−8

in all our examples. For ||θ|| ≤ ε, we use the first-order approximation to
the exponential map R(θ) = I + [θ]. The derivative of dR/dθ is computed
analytically using the derivation by Gallego and Yezzi [2015], and for
||θ|| ≤ ε we use dR/dθ = [I]. The second-order derivative of the rotation
matrix is computed using symbolic differentiation.

a.1.1.1 Jacobians

Closed forms of the left Jacobian of the exponential coordinates and its
inverse are

Jl(θ) = I +
1− cos(θ)

θ2 [θ]× +
θ − sin(θ)

θ3 [θ]2×

J−1
l (θ) = I− 1

2
[θ]× +

(
1
θ2 −

1 + cos(θ)
2θ sin(θ)

)
[θ]2×

a.1.1.2 Derivation of Reparameterization Formula

The formula (4.18) can be obtained by taking the time derivative of (4.16).
Another way is to start at equation (4.17) and plug in the definitions of
the Jacobian and its inverse. First, we note that θ′ = −(θ − 2π)u and
consequently sin θ′ = sin(2π − θ) = − sin θ and cos θ′ = cos(2π − θ) =
cos θ. We insert these expressions in J−1

l (θ′) to get

J−1
l (θ̂′) = I− 1

2
[θ]× + [θ′]2×

1
||θ′||2

(
1− ||θ

′||
2

sin ||θ′||
1− cos ||θ′||

)
= I + [u]×

(2π − θ)

2
+ [u]2×

(
1 +

(2π − θ)

2
sin θ

1− cos θ

)
.

103

104 appendix

Using the expression [u]3× = −[u]× and [u]4× = −[u]2×, we obtain

J−1
l (θ′)Jl(θ)

=

[
I + [u]×

(2π − θ)

2
+ [u]2×

(
1 +

(2π − θ)

2
sin θ

1− cos θ

)]
·
[

I + [u]×

(
1− cos θ

θ

)
+ [u]2×

(
θ − sin θ

θ

)]
= I+[u]2×

[
1 +

2π − θ

2θ(1− cos θ)

(
(1− cos θ)2 + θ sin θ − (θ − sin θ) sin θ

)]
= I+[u]2×

[
1 +

2π − θ

2θ(1− cos θ)

(
1− 2 cos θ + cos2 θ + sin2 θ

)]
= I+[u]2×

[
1 +

2π − θ

2θ(1− cos θ)
(2(1− cos θ))

]
= I+[u]2×

[
1 +

2π − θ

θ

]
= I + [u]2×

2π

θ

a.1.1.3 Derivatives of Reparameterization Formulas

If a reparameterization happens in the forward simulation, we need to
account for it when computing derivatives with respect to simulation
parameters. Below we provide derivatives of the reparameterization formula
(4.16).

∂θ′

∂θ
=

2π

θ

∂[u]2×θ̇

∂θ
+ [u]2×2π

∂

∂θ
(

θ̇

θ
) (A.1)

= −2π

θ2 ((uT θ̇)I + uθ̇
T
)[u]2× − [u]2×

2π

θ2 θ̇uT (A.2)

= −2π

θ2

[
((uT θ̇)I + uθ̇

T
)[u]2× + [u]2×θ̇uT

]
(A.3)

Where we used the following expressions from Gallego et al. [112] to

get from the first to the second line: ∂[u]2×a
∂θ = − 1

θ ((u
Ta)I + uaT)[u]2× and

∂ a
θ

∂θ = − 1
θ3 aθT = − 1

θ2 auT with a being a vector independent of θ. The
derivative of (4.16) with respect to θ̇ is trivial.

a.1.2 Rigid bodies

A rigid-body frame is defined by its centre of mass c and rotational degrees
of freedom θ. A point x̂ in rigid-body coordinates is transformed to world

A.1 rigid body theory 105

coordinates with x = c + R(θ)x̂. Similarly, w = R(θ)ŵ maps a vector ŵ
from rigid-body to world coordinates.

The linear velocity v is equal to the rate of change of the rigid body’s
centre of mass v = ċ. The angular velocity ω, however, describes the rate
‖ω‖ at which an object rotates around an axis ω/‖ω‖, and thus ω 6= θ̇. To
relate the angular velocity ω to the rate of change of rotational degrees of
freedom, θ̇, consider a vector a: its rate of change due to an angular velocity
ω is computed as ȧ = ω× a. Since the column vectors of R are just the axes
of the rigid body’s coordinate frame, Ṙ can therefore be computed with

Ṙ = [ω]R,

where [·] denotes the skew-symmetric matrix corresponding to the left-cross
product. R being an orthogonal matrix, we find

[ω] = ṘRT = ∑
j

∂R
∂θj

RT θ̇j = ∑
j
[(Jl)j]θ̇j,

where (Jl)j is the j-th column vector of the Jacobian Jl , representing the
skew-symmetric matrix (∂R/∂θj)RT .

Note that Jl is a function of θ. We can consequently write the angular
velocity in terms of the generalized coordinates and their time derivative:

ω(θ, θ̇) = Jl(θ)θ̇

a.1.3 Rigid body dynamics

Using the above mapping from θ̇ to ω, we can write the Newton-Euler
equations in the form of Eq. (1), where the generalized mass and forces are

M̂ =

(
mI 0

0 JT
l IcJl

)
and

f̂ =

(
I

JT
l [x̂]

)
f− C(q, q̇),

respectively. The first term in f̂ maps forces from the body’s surface to
generalized coordinates and the fictitious force term C is defined as

C(q, q̇) =

[
0

JT
l Ic J̇l θ̇+ JT

l [Jl θ̇]IcJl θ̇

]
.

106 appendix

This term appears because θ̇ is not the same as the angular velocity ω.
To solve rigid-body dynamics implicitly, we need to compute the follow-

ing derivatives: [
∂(Jl)j

∂θi

]
×
=

∂2R
∂θj∂θi

RT +
∂R
∂θj

∂R
∂θi

T
,

[
∂2(Jl)j

∂θi∂θk

]
×
=

∂3R
∂θj∂θi∂θk

RT +
∂2R

∂θj∂θi

∂R
∂θk

T

+
∂2R
∂θjθk

∂R
∂θi

T
+

∂R
∂θj

∂2R
∂θi∂θk

T

,

and
∂J̇l
∂θi

= ∑
j

∂2Jl
∂θjθi

θ̇.

The rotated moment of inertia is computed as Ic = RTI0R (where I0 is
the inertia in rigid-body coordinates). Its derivative with respect to θ is

∂Ic

∂θi
=

∂R
∂θi

I0RT + RI0
∂R
∂θi

T
.

A.2 supplemental material for chapter 4 107

a.2 supplemental material for chapter 4

a.2.1 Comparison to CMA-ES

10−4

10−2

100

102

O
bj

ec
ti

ve
fu

nc
ti

on

0 4000 8000Simulation runs

L-BFGS

CMA-ES

0 30010
−

4
1

Figure A.1: Optimizing throwing the bunny to a specific target. Graph shows
all simulation runs, including ones during line search for L-BFGS.
Circles mark best result per method.

In this Section we show convergence plots of optimizations using our
differentiable simulation framework compared to a gradient-free CMA-ES
approach. We use the CMA implementation by Nikolaus Hansen1 in the
first comparison (Fig. A.1), and the implementation by Alexander Fabisch2

in the second one (Fig. A.2); both with their default parameter values.

a.2.2 Scaling of computation time

Here, we test how the computation time scales with increasing number of
objects in a simulation scene. In this test case, a chain of N rigid bodies
is simulated. The first rigid body is connected to two springs anchored
in world space. Similarly, each following rigid body is connected to the
previous one by two springs. For all rigid bodies, collision (kn = 103,
kd = 10−3) and friction (µ = 0.5) with the ground plane is enabled. The
total simulated time is t = 2s with a time step of ∆t = 1/500 s.

1 https://github.com/cma-es/c-cmaes
2 https://github.com/AlexanderFabisch/CMA-ESpp

https://github.com/cma-es/c-cmaes
https://github.com/AlexanderFabisch/CMA-ESpp

108 appendix

0.002

0.01

0.1

1

O
bj

ec
ti

ve
fu

nc
ti

on

0 5000 15000CPU time [s]

0 2 4

0.002

1

Gauss-Newton

CMA-ES

Figure A.2: Optimizing control trajectories for dragging a cube along a circular
arc. Graph shows best result per iteration (filtering out line-search
evaluations for Gauss-Newton, and sub-optimal samples per genera-
tion for CMA).

Figure A.3 shows the resulting computation time for N = 1..40, exhibiting
fairly linear scaling.

a.2.3 Number of contact points

The number of contact points influences the collision response. Increasing
the number of contact points, while keeping the contact penalties (kn, kd)
fixed, results in a stiffer collision response. Conversely, when scaling the
penalties by the surface area each contact point represents, we arrive at
the same total contact force regardless of the number of contact points (for
a planar collision geometry). In Fig. A.4 the restitution is plotted against
the number of contact points per edge of a rigid cube. For each sample we
scale the penalty factor according to the surface area each contact point
represents, e.g. kn,N = kn,0/N2 and kd,N = kd,0/N2 for N contact points per
edge, where kn,0, kd,0 are nominal stiffness and damping coefficients.

a.2.4 High-stiffness elastic material

In this example we show an optimization using continuation of the penalty
stiffness (kn = 100..106) such that a deformable cube made of a stiff elastic
material (shear modulus µ = 10 MPa) reaches a given target position. The

A.2 supplemental material for chapter 4 109

0

1

2

3

C
PU

ti
m

e
[s

]

0 10 20 30 40

Nr. of rigid bodies

Figure A.3: Computation time per number of rigid bodies in a “chain” setup.
The inset image shows a screenshot of this test with N = 20.

optimization must find the initial velocity, such that the cube drops to the
ground and then slides to the target.

110 appendix

0

0.5

1

R
es

ti
tu

ti
on

5 10 15 20 25

Contact points per edge

Figure A.4: Restitution remains constant as the number of contact points in-
creases when scaling penalty factors by surface area. Inset images
show the contact point distribution for 2, 4, and 10 points per edge
respectively.

10−5

10−10

10−15

O
bj

ec
ti

ve
fu

nc
ti

on

0 200 400

Simulation run

Figure A.5: Best objective function value per simulation run using continuation
on the contact penalty factor. In each continuation step (colours), the
penalty factor doubles, starting from 100, up to the final value of 106.
The inset image shows the final result.

A.2 supplemental material for chapter 4 111

a.2.5 Overview of Simulation Parameters

Figure E [Pa] ν [Pa s] ρ [kg/m3] c f [1] m tsim [s] topt iopt

4.1 lin. 2.1E+03 0 * 150 0.4 879 26.24

4.1 tanh 2.1E+03 0 * 150 0.4 879 30.86

4.1 hyb. 2.1E+03 0 * 150 0.4 879 31.2

4.1 SQP 2.1E+03 0 * 150 0.4 879 66.78

4.4 lin. 2.1E+04 0.1 150 0.4 (0.8) 1930 119.19

4.4 tanh 2.1E+04 0.1 150 0.4 (0.8) 1930 178.5

4.4 hyb. 2.1E+04 0.1 150 0.4 (0.8) 1930 180.75

4.12a (0) 2.0E+04 0.0125 150 0.4 451 6.92 27.33 4

4.12a (1) 2.0E+04 0.0125 150 0.4 451 8.65 222.54 24

4.12a (2) 2.0E+04 0.0125 150 0.4 451 8.62 265.21 28

4.12b 2.0E+04 0.0125 150 0.4 451 8.21 01:01:11 453

4.13b 2.4E+04 0 * 90 0.2 (0.4) 2729 71.28 05:59:32 322

4.10 left (initial mat. param.) 2.1E+05 0.025 86 0.4 1351 (4.13) 38.35 05:08:42 (104) 586

Second motion (video [113]) 3.3E+04 6.225 86 0.47 1351 13.38 158.04 105

4.10 right (initial mat. param.) 2.0E+04 0.525 77 0.4 1501 (3.08) 421.70 06:58:22.30 (150) 350

Second motion (video [113]) 1.5E+04 0.7183 77 1.16 1501 1.89 430.35 112

Table A.1: Material parameters, performance on our FEM examples. Timings
obtained on a 4× 3.5 GHz CPU with 16 GB RAM. Columns: Young’s
modulus E, viscosity ν (* BDF1), mass density ρ, coefficient of friction
c f (values in braces refer to walls), number of elements in the mesh
m, sim. runtime tsim, runtime of the entire optimization topt (in sec.
or hh:mm:ss), number of sim. runs iopt.

112 appendix

Example Figure |q| |p|/nt nt ∆t [s] kn kd k kmd c f [1] β tsim [s] topt iopt

Cube dragging 4.15 12 6 60 1/60 200 1e-3 5 n.a. 0.5 1e-2 0.044 00:03.3 20

Mass-spring flipping 4.17 75 6 120 1/60 1e3 1e-3 1000 n.a. 0.5 1 0.109 00:54 25

Compliant robot, soft feet 4.8 414 12 144 1/60 1e5 1e-3 5e5 (1e5) 10 0.8 1e-3 1.552 27:54 17

Table A.2: Simulation parameters and performance on our trajectory optimiza-
tion examples. Columns: number of degrees of freedom |q|, param-
eters per time step |p|/nt, time steps nt, time step size ∆t, contact
stiffness kn, contact damping kd, stiffness of constraints k, compliant
motors (braces), motor damping kmd, coefficient of friction c f , runtime
tsim, runtime for the entire optimization topt, optimization iterations
iopt.

B I B L I O G R A P H Y

1. Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M. &
Coros, S. Interactive design of 3D-printable robotic creatures. ACM
Transactions on Graphics (TOG) 34, 216 (2015).

2. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E. &
Ijspeert, A. J. Towards dynamic trot gait locomotion: Design, control,
and experiments with Cheetah-cub, a compliant quadruped robot.
The International Journal of Robotics Research 32, 932 (2013).

3. Hirose, S. & Takeuchi, H. Study on roller-walk (basic characteristics and
its control) in Proceedings of IEEE International Conference on Robotics
and Automation 4 (1996), 3265.

4. Bjelonic, M., Bellicoso, C. D., de Viragh, Y., Sako, D., Tresoldi, F. D.,
Jenelten, F. & Hutter, M. Keep rollin’—whole-body motion control
and planning for wheeled quadrupedal robots. IEEE Robotics and
Automation Letters 4, 2116 (2019).

5. Du, T., Schulz, A., Zhu, B., Bickel, B. & Matusik, W. Computational
Multicopter Design. ACM Trans. Graph. 35, 227:1 (2016).

6. Schulz, A., Sung, C., Spielberg, A., Zhao, W., Cheng, R., Grinspun, E.,
Rus, D. & Matusik, W. Interactive robogami: An end-to-end system
for design of robots with ground locomotion. The International Journal
of Robotics Research 36, 1131 (2017).

7. Bern, J. M., Chang, K.-H. & Coros, S. Interactive Design of Animated
Plushies. ACM Trans. Graph. 36, 80:1 (2017).

8. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C.,
Cohen-Or, D. & Chen, B. Build-to-last: strength to weight 3D printed
objects. ACM Transactions on Graphics (TOG) 33, 97 (2014).

9. Stava, O., Vanek, J., Benes, B., Carr, N. & Měch, R. Stress Relief:
Improving Structural Strength of 3D Printable Objects. ACM Trans.
Graph. (Proc. SIGGRAPH) 31 (2012).

10. Prévost, R., Whiting, E., Lefebvre, S. & Sorkine-Hornung, O. Make
it stand: balancing shapes for 3D fabrication. ACM Transactions on
Graphics (TOG) 32, 81 (2013).

113

114 bibliography

11. Musialski, P., Auzinger, T., Birsak, M., Wimmer, M., Kobbelt, L. &
Wien, T. Reduced-order shape optimization using offset surfaces.
ACM Transactions on Graphics (TOG) 34, 102 (2015).

12. Bächer, M., Whiting, E., Bickel, B. & Sorkine-Hornung, O. Spin-it:
optimizing moment of inertia for spinnable objects. ACM Transactions
on Graphics (TOG) 33, 96 (2014).

13. Bächer, M., Bickel, B., James, D. L. & Pfister, H. Fabricating Articulated
Characters from Skinned Meshes. ACM Trans. Graph. 31, 47:1 (2012).

14. Ureta, F. G., Tymms, C. & Zorin, D. Interactive Modeling of Mechan-
ical Objects in Proceedings of the Symposium on Geometry Processing
(Eurographics Association, Berlin, Germany, 2016), 145.

15. Calı̀, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J. &
Weyrich, T. 3D-printing of Non-assembly, Articulated Models. ACM
Trans. Graph. 31, 130:1 (2012).

16. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner,
R. W., Matusik, W. & Bickel, B. Computational design of mechanical
characters. ACM Transactions on Graphics (TOG) 32, 83 (2013).

17. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M. & Pauly, M. Designing
and fabricating mechanical automata from mocap sequences. ACM
Transactions on Graphics (TOG) 32, 186 (2013).

18. Song, P., Wang, X., Tang, X., Fu, C.-W., Xu, H., Liu, L. & Mitra, N. J.
Computational Design of Wind-up Toys. ACM Trans. Graph. 36, 238:1
(2017).

19. Zhang, R., Auzinger, T., Ceylan, D., Li, W. & Bickel, B. Functionality-
aware Retargeting of Mechanisms to 3D Shapes. ACM Trans. Graph.
36, 81:1 (2017).

20. Megaro, V., Zehnder, J., Bächer, M., Coros, S., Gross, M. &
Thomaszewski, B. A Computational Design Tool for Compliant Mech-
anisms. ACM Trans. Graph. 36, 82:1 (2017).

21. Villar, N., Scott, J., Hodges, S., Hammil, K. & Miller, C. in Pervasive
Computing 216 (Springer, 2012).

22. Weichel, C., Lau, M. & Gellersen, H. Enclosed: a component-centric
interface for designing prototype enclosures in Proceedings of the 7th In-
ternational Conference on Tangible, Embedded and Embodied Interaction
(2013), 215.

bibliography 115

23. Follmer, S., Savage, V., Li, J. & Hartmann, B. Makers’ Marks: Physical
Markup for Designing and Fabricating Functional Objects in UIST’15
Proceedings of the 28th annual ACM symposium on User interface software
and technology (2015).

24. Bächer, M., Hepp, B., Pece, F., Kry, P. G., Bickel, B., Thomaszewski, B.
& Hilliges, O. DefSense: Computational Design of Customized Deformable
Input Devices in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (ACM, San Jose, California, USA, 2016), 3806.

25. Bharaj, G., Coros, S., Thomaszewski, B., Tompkin, J., Bickel, B. &
Pfister, H. Computational Design of Walking Automata in Proceedings
of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer
Animation (ACM, Los Angeles, California, 2015), 93.

26. Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M. &
Coros, S. Interactive Design of 3D-printable Robotic Creatures. ACM
Trans. Graph. 34, 216:1 (2015).

27. Umentani, N., Igarashi, T. & Mitra, N. J. Guided Exploration of
Physically Valid Shapes for Furniture Design. Commun. ACM 58, 116

(2015).

28. Pérez, J., Otaduy, M. A. & Thomaszewski, B. Computational Design
and Automated Fabrication of Kirchhoff-plateau Surfaces. ACM Trans.
Graph. 36, 62:1 (2017).

29. Ha, S., Coros, S., Alspach, A., Kim, J. & Yamane, K. Joint Optimiza-
tion of Robot Design and Motion Parameters using the Implicit Function
Theorem in Robotics: Science and Systems (2017).

30. Endo, G. & Hirose, S. Study on Roller-Walker - Adaptation of characteris-
tics of the propulsion by a leg trajectory - in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems (2008), 1532.

31. Smith, J. A., Sharf, I. & Trentini, M. PAW: a hybrid wheeled-leg robot in
Proceedings 2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006. (2006), 4043.

32. BostonDynamics. Handle, https://www.bostondynamics.com/handle 2017.

33. Accompanying video of Chapter 2. http://crl.ethz.ch/videos/skaterbots.
mp4. 2018.

34. Desai, R., Yuan, Y. & Coros, S. Computational Abstractions for Interactive
Design of Robotic Devices in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA) (2017).

http://crl.ethz.ch/videos/skaterbots.mp4
http://crl.ethz.ch/videos/skaterbots.mp4

116 bibliography

35. ODE. Open Dynamics Engine, http://www.ode.org/ 2007.

36. Orin, D. E., Goswami, A. & Lee, S.-H. Centroidal Dynamics of a
Humanoid Robot. Auton. Robots 35, 161 (2013).

37. Dai, H., Valenzuela, A. & Tedrake, R. Whole-body motion planning with
centroidal dynamics and full kinematics in Humanoids (2014).

38. Kovar, L., Gleicher, M. & Pighin, F. Motion Graphs in Proceedings of the
29th Annual Conference on Computer Graphics and Interactive Techniques
(ACM, San Antonio, Texas, 2002), 473.

39. Smith, J. A., Sharf, I. & Trentini, M. PAW: a hybrid wheeled-leg robot in
Proceedings 2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006. (2006), 4043.

40. Handle: Boston Dynamics robot on wheels performs on stage.
Youtube. [Online]. Available: https://www.youtube.com/watch?v=-
7xvqQeoA8c.

41. De Viragh, Y., Bjelonic, M., Bellicoso, C. D., Jenelten, F. & Hutter,
M. Trajectory optimization for wheeled-legged quadrupedal robots
using linearized zmp constraints. IEEE Robotics and Automation Letters
4, 1633 (2019).

42. Bjelonic, M., Bellicoso, C. D., Tiryaki, M. E. & Hutter, M. Skating
with a force controlled quadrupedal robot in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2018), 7555.

43. Hereid, A. & Ames, A. D. FROST*: Fast robot optimization and sim-
ulation toolkit in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2017), 719.

44. Bledt, G., Powell, M. J., Katz, B., Di Carlo, J., Wensing, P. M. & Kim, S.
MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2018), 2245.

45. Dai, H., Valenzuela, A. & Tedrake, R. Whole-body motion planning
with centroidal dynamics and full kinematics in 14th IEEE-RAS Interna-
tional Conference on Humanoid Robots, Humanoids 2014, Madrid, Spain,
November 18-20, 2014 (2014), 295.

46. Reid, W., Pérez-Grau, F. J., Göktogan, A. H. & Sukkarieh, S. Actively
articulated suspension for a wheel-on-leg rover operating on a martian
analog surface in 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016), 5596.

bibliography 117

47. Grand, C., Benamar, F. & Plumet, F. Motion kinematics analysis
of wheeled–legged rover over 3D surface with posture adaptation.
Mechanism and Machine Theory 45, 477 (2010).

48. Klamt, T. & Behnke, S. Anytime hybrid driving-stepping locomotion
planning in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2017), 4444.

49. Kamedula, M., Kashiri, N. & Tsagarakis, N. G. On the kinematics
of wheeled motion control of a hybrid wheeled-legged centauro robot in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2018), 2426.

50. Suzumura, A. & Fujimoto, Y. Real-time motion generation and control
systems for high wheel-legged robot mobility. IEEE Transactions on
Industrial Electronics 61, 3648 (2013).

51. Krauskopf, B., Osinga, H. M. & Galán-Vioque, J. Numerical continua-
tion methods for dynamical systems (Springer, 2007).

52. Accompanying video of Chapter 3. http : / / crl . ethz . ch / videos /

skaterbotsRAL.mp4. 2020.

53. Bjelonic, M., Sankar, P. K., Bellicoso, C. D., Vallery, H. & Hutter, M.
Rolling in the deep–hybrid locomotion for wheeled-legged robots
using online trajectory optimization. IEEE Robotics and Automation
Letters 5, 3626 (2020).

54. Bjelonic, M., Grandia, R., Harley, O., Galliard, C. M., Zimmermann, S.
& Hutter, M. Whole-Body MPC and Online Gait Sequence Generation
for Wheeled-Legged Robots in. 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2021); Conference Location:
Prague, Czech Republic; Conference Date: September 27 - October 1,
2021 (2021-07).

55. Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C. D.,
Tsounis, V., Fankhauser, P., Diethelm, R., Bachmann, S., Blösch, M.,
et al. Anymal-toward legged robots for harsh environments. Advanced
Robotics 31, 918 (2017).

56. Holl, P., Thuerey, N. & Koltun, V. Learning to Control PDEs with
Differentiable Physics in Int. Conf. on Learning Representations (to appear)
(2020).

http://crl.ethz.ch/videos/skaterbotsRAL.mp4
http://crl.ethz.ch/videos/skaterbotsRAL.mp4

118 bibliography

57. Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J. B., Freeman, W. T., Wu,
J., Rus, D. & Matusik, W. ChainQueen: A Real-Time differentiable
Physical Simulator for Soft Robotics. Proceedings of IEEE International
Conference on Robotics and Automation (ICRA) (2019).

58. Loubet, G., Holzschuch, N. & Jakob, W. Reparameterizing Discontin-
uous Integrands for Differentiable Rendering. ACM Trans. Graph. 38
(2019).

59. Brogliato, B. Nonsmooth Mechanics: Models, Dynamics and Control
(Springer, 1999).

60. Baraff, D. Fast Contact Force Computation for Nonpenetrating Rigid Bodies
in Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques (1994), 23.

61. Stewart, D. E. & Trinkle, J. C. An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction.
International Journal for Numerical Methods in Engineering 39, 2673

(1996).

62. Anitescu, M. & Potra, F. A. Formulating Dynamic Multi-rigid-body
Contact Problems with Friction as Solvable Linear Complementarity
Problems. NONLINEAR DYNAMICS 14, 231 (1997).

63. Duriez, C., Dubois, F., Kheddar, A. & Andriot, C. Realistic Haptic
Rendering of Interacting Deformable Objects in Virtual Environments.
IEEE Transactions on Visualization and Computer Graphics 12 (2006).

64. Erleben, K. Velocity-Based Shock Propagation for Multibody Dynam-
ics Animation. ACM Trans. Graph. 26, 12 (2007).

65. Pauly, M., Pai, D. K. & Guibas, L. J. Quasi-Rigid Objects in Contact in
Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Eurographics Association, 2004), 109.

66. Otaduy, M. A., Tamstorf, R., Steinemann, D. & Gross, M. Implicit
Contact Handling for Deformable Objects in. 28 (2009).

67. Kaufman, D. M., Edmunds, T. & Pai, D. K. Fast Frictional Dynamics
for Rigid Bodies. ACM Transactions on Graphics 24, 946 (2005).

68. Harmon, D., Vouga, E., Smith, B., Tamstorf, R. & Grinspun, E. Asyn-
chronous Contact Mechanics in ACM SIGGRAPH 2009 Papers (2009).

69. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C. & Kry,
P. G. Volume Contact Constraints at Arbitrary Resolution. ACM Trans.
Graph. 29 (2010).

bibliography 119

70. Ding, O. & Schroeder, C. Penalty Force for Coupling Materials with
Coulomb Friction. IEEE Transactions on Visualization and Computer
Graphics 26, 2443 (2020).

71. Li, J., Daviet, G., Narain, R., Bertails-Descoubes, F., Overby, M., Brown,
G. E. & Boissieux, L. An Implicit Frictional Contact Solver for Adap-
tive Cloth Simulation. ACM Trans. Graph. 37 (2018).

72. Pabst, S., Thomaszewski, B. & Straundefineder, W. Anisotropic Fric-
tion for Deformable Surfaces and Solids in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2009),
149.

73. Erleben, K., Macklin, M., Andrews, S. & Kry, P. G. The Match-
stick Model for Anisotropic Friction Cones. Computer Graphics Forum
(2019).

74. Kaufman, D. M., Sueda, S., James, D. L. & Pai, D. K. Staggered Projec-
tions for Frictional Contact in Multibody Systems. ACM Transactions
on Graphics (SIGGRAPH Asia 2008) 27, 164:1 (2008).

75. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S. &
Makoviychuk, V. Non-smooth Newton Methods for Deformable
Multi-body Dynamics. ACM Transactions on Graphics 38 (2019).

76. Bertails-Descoubes, F., Cadoux, F., Daviet, G. & Acary, V. A Nons-
mooth Newton Solver for Capturing Exact Coulomb Friction in Fiber
Assemblies. ACM Trans. Graph. 30 (2011).

77. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z. & Witkin, A.
Interactive manipulation of rigid body simulations in Proceedings of the
27th annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’00 (2000).

78. Twigg, C. D. & James, D. L. Many-Worlds Browsing for Control of
Multibody Dynamics. ACM Transactions on Graphics 26 (2007).

79. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R.
& Gross, M. Deformable Objects Alive! ACM Trans. Graph. 31 (2012).

80. Tan, J., Turk, G. & Liu, C. K. Soft Body Locomotion. ACM Trans.
Graph. 31 (2012).

81. Chen, X., Andrews, S., Nowrouzezahrai, D. & Kry, P. Ballistic Shadow
Art. Proceedings of Graphics Interface 2017 Edmonton, 190 (2017).

82. Jain, S. & Liu, C. K. Controlling Physics-Based Characters Using Soft
Contacts. ACM Transactions on Graphics 30 (2011).

120 bibliography

83. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E.,
Richmond, J. L. & Yau, S. H. Scanning physical interaction behavior of 3D
objects in Proceedings of the 28th annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’01 (2001).

84. Monszpart, A., Thuerey, N. & Mitra, N. J. SMASH: Physics-Guided Re-
construction of Collisions from Videos. ACM Trans. Graph. 35 (2016).

85. Ly, M., Casati, R., Bertails-Descoubes, F., Skouras, M. & Boissieux, L.
Inverse Elastic Shell Design with Contact and Friction. ACM Trans.
Graph. 37 (2018).

86. Chen, D., Levin, D. I. W., Matusik, W. & Kaufman, D. M. Dynamics-
aware numerical coarsening for fabrication design. ACM Transactions
on Graphics 36, 1 (2017).

87. Yunt, K. & Glocker, C. Trajectory optimization of mechanical hybrid
systems using SUMT in 9th IEEE International Workshop on Advanced
Motion Control (2006).

88. Todorov, E. A convex, smooth and invertible contact model for trajec-
tory optimization in 2011 IEEE International Conference on Robotics and
Automation (2011), 1071.

89. Erez, T. & Todorov, E. Trajectory optimization for domains with contacts
using inverse dynamics in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (2012).

90. Todorov, E., Erez, T. & Tassa, Y. MuJoCo: A physics engine for model-
based control in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (2012).

91. De Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J. &
Kolter, J. Z. in Advances in Neural Information Processing Systems 31
7178 (2018).

92. Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I. &
Bachem, O. Brax - A Differentiable Physics Engine for Large Scale
Rigid Body Simulation. CoRR abs/2106.13281 (2021).

93. Heiden, E., Millard, D., Coumans, E., Sheng, Y. & Sukhatme, G. S.
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
in Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA) (2021).

94. Schenck, C. & Fox, D. SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks in Proceedings of The 2nd Conference on Robot Learning
87 (PMLR, 2018), 317.

bibliography 121

95. Liang, J., Lin, M. & Koltun, V. Differentiable Cloth Simulation for Inverse
Problems in Advances in Neural Information Processing Systems 32 (2019),
772.

96. Toussaint, M., Allen, K., Smith, K. & Tenenbaum, J. Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning in
Robotics: Science and Systems XIV (Robotics: Science and Systems
Foundation, 2018).

97. Degrave, J., Hermans, M., Dambre, J. & Wyffels, F. A Differentiable
Physics Engine for Deep Learning in Robotics. Frontiers in Neuro-
robotics 13, 6 (2019).

98. Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-Kelley, J.
& Durand, F. DiffTaichi: Differentiable Programming for Physical
Simulation. International Conference on Learning Representations (ICLR)
(2019).

99. Hoshyari, S., Xu, H., Knoop, E., Coros, S. & Bächer, M. Vibration-
Minimizing Motion Retargeting for Robotic Characters. ACM Transac-
tions on Graphics 38 (2019).

100. Hahn, D., Banzet, P., Bern, J. M. & Coros, S. Real2Sim: visco-elastic
parameter estimation from dynamic motion. ACM Transactions on
Graphics 38, 1 (2019).

101. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S. &
Kim, T.-Y. Primal/dual descent methods for dynamics in Computer Graphics
Forum 39 (2020), 89.

102. Zimmermann, S., Poranne, R., Bern, J. M. & Coros, S. PuppetMaster:
robotic animation of marionettes. ACM Transactions on Graphics 38
(2019).

103. Liu, C. K. & Jain, S. A quick tutorial on multibody dynamics 2012.

104. Shinar, T., Schroeder, C. A. & Fedkiw, R. Two-way Coupling of Rigid
and Deformable Bodies in Proceedings of the 2008 Eurographics/ACM
SIGGRAPH Symposium on Computer Animation (2008), 95.

105. Wang, Y., Weidner, N. J., Baxter, M. A., Hwang, Y., Kaufman, D. M. &
Sueda, S. RedMax. ACM Transactions on Graphics 38 (2019).

106. Pan, Z. & Manocha, D. Position-Based Time-Integrator for Frictional
Articulated Body Dynamics in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2018).

122 bibliography

107. Zimmermann, S., Poranne, R. & Coros, S. Optimal control via second
order sensitivity analysis. CoRR (2019).

108. Wriggers, P. Computational Contact Mechanics (Springer-Verlag GmbH,
2006).

109. Stewart, D. E. Rigid Body Dynamics with Friction and Impact. SIAM
Review, 3 (2000).

110. Amos, B. & Kolter, J. Z. OptNet: Differentiable Optimization as a
Layer in Neural Networks. ICML’17 136 (2017).

111. Brown, G. E., Overby, M., Forootaninia, Z. & Narain, R. Accurate
dissipative forces in optimization integrators. ACM Transactions on
Graphics 37 (2019).

112. Gallego, G. & Yezzi, A. A compact formula for the derivative of a 3-D
rotation in exponential coordinates. Journal of Mathematical Imaging
and Vision 51, 378 (2015).

113. Accompanying video of Chapter 4. http://crl.ethz.ch/videos/ADD.mp4.
2020.

114. Quilez, I. A distance functions for basic primitives https://www.iquilezles.
org/www/articles/distfunctions/distfunctions.htm. Accessed: 2021-
03-30.

115. Museth, K. VDB: High-Resolution Sparse Volumes with Dynamic
Topology. ACM Trans. Graph. 32 (2013).

116. Park, J. J., Florence, P., Straub, J., Newcombe, R. & Lovegrove, S.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Rep-
resentation 2019.

117. Michalkiewicz, M., Pontes, J. K., Jack, D., Baktashmotlagh, M. & Eriks-
son, A. Implicit Surface Representations As Layers in Neural Networks
in 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(2019), 4742.

118. Gropp, A., Yariv, L., Haim, N., Atzmon, M. & Lipman, Y. Implicit
Geometric Regularization for Learning Shapes 2020.

119. Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B. & Wetzstein,
G. Implicit Neural Representations with Periodic Activation Functions in
Proc. NeurIPS (2020).

120. Catto, E. Reinventing the spring in (2011).

http://crl.ethz.ch/videos/ADD.mp4
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm

bibliography 123

121. Bern, J., Banzet, P., Poranne, R. & Coros, S. Trajectory optimization
for cable-driven soft robot locomotion. Robotics: Science and Systems
(2019).

122. Sola, J., Deray, J. & Atchuthan, D. A micro Lie theory for state estima-
tion in robotics. arXiv preprint arXiv:1812.01537 (2018).

123. Kingma, D. P. & Ba, J. ADAM: A Method for Stochastic Optimization
(2014).

124. O’Hara, K. OptimLib https://www.kthohr.com/optimlib.html. 2019-
11-28. 2019.

125. Nocedal, J. Updating quasi-Newton matrices with limited storage.
Mathematics of Computation 35, 773 (1980).

126. Qiu, Y. LBFGS++ http://yixuan.cos.name/LBFGSpp. 2019-03-12.
2019.

127. Bradley, A. PDE-constrained optimization and the adjoint method tech.
rep. (Stanford University, 2013).

128. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S. &
Corse, Z. Local optimization for robust signed distance field collision.
Proceedings of the ACM on Computer Graphics and Interactive Techniques
3, 1 (2020).

129. Mora, M. A. Z., Peychev, M. P., Ha, S., Vechev, M. & Coros, S. PODS:
Policy Optimization via Differentiable Simulation in International Confer-
ence on Machine Learning (2021), 7805.

C U R R I C U L U M V I TA E

personal data

Name Moritz Geilinger
Date of Birth January 29, 1988

Place of Birth Zürich, Switzerland
Citizen of Switzerland

education

2017 – 2021 ETH Zurich,
Zürich, Switzerland
Phd Student, Computational Robotics Lab

2012 – 2015 ETH Zurich,
Zürich, Switzerland
Final degree: MSc in Mechanical Engineering

2007 – 2012 ETH Zurich
Zürich, Switzerland
Final degree: Bsc in Mechanical Engineering

– 2006 Literargymnasium Rämibühl
Zürich, Switzerland
Final degree: Matura

employment

2015 – 2017 Research Engineer
Disney Research,
Zürich, Switzerland

125

P U B L I C AT I O N S

Articles in peer-reviewed journals:

1. Geilinger, M., Poranne, R., Desai, R., Thomaszewski, B. & Coros, S.
Skaterbots: Optimization-Based Design and Motion Synthesis for
Robotic Creatures with Legs and Wheels. ACM Transactions on Graph-
ics (TOG) 37, 1 (2018).

2. Geilinger, M., Hahn, D., Zehnder, J., Bächer, M., Thomaszewski, B. &
Coros, S. ADD: analytically differentiable dynamics for multi-body
systems with frictional contact. ACM Transactions on Graphics (TOG)
39, 1 (2020).

3. Geilinger, M., Winberg, S. & Coros, S. A computational framework
for designing skilled legged-wheeled robots. IEEE Robotics and Au-
tomation Letters 5, 3674 (2020).

Conference contributions:

4. Geilinger, M., Winberg, S. & Coros, S. Motion synthesis for legged-
wheeled robotic creatures in AMAM 2019 Conference Proceedings (2019).

127

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Thesis Overview

	2 Motion Generation for Legged-Wheeled Robots
	2.1 Introduction
	2.1.1 Contributions

	2.2 Related Work
	2.3 Overview
	2.4 Motion Generation
	2.4.1 Optimization Model
	2.4.2 Numerical Solution
	2.4.3 Further Analysis and Optimization Speedup

	2.5 Design Optimization
	2.5.1 Motivation
	2.5.2 Technical solution
	2.5.3 Manual Design Mode
	2.5.4 Semi-Automatic Design Mode
	2.5.5 Automatic Design Optimization

	2.6 Results
	2.6.1 Wheeled robots
	2.6.2 Interactive Design
	2.6.3 Design optimization
	2.6.4 Fabrication

	2.7 Discussion

	3 Design and Fabrication of Legged-Wheeled Robots
	3.1 Introduction
	3.1.1 Contribution

	3.2 Related Work
	3.3 Warm-Start Routine for Motion Generation
	3.4 Analysis
	3.4.1 Evaluation of Warm-Start Routine
	3.4.2 Morphology exploration for hybrid legged/wheeled robots

	3.5 Fabricated Results
	3.5.1 From conceptual designs to physical prototypes
	3.5.2 Robot Designs
	3.5.3 Performance Evaluation

	3.6 Motion Generation for Anymal on Wheels
	3.6.1 Overview of Feedback Control System
	3.6.2 Evaluation

	3.7 Discussion

	4 Differentiable Physics Simulation for Motion Synthesis
	4.1 Introduction
	4.1.1 Contributions

	4.2 Related work
	4.2.1 Frictional Contact Dynamics
	4.2.2 Inverse Contact
	4.2.3 Differentiable Simulation

	4.3 Differentiable Multi-Body Dynamics: Preliminaries
	4.3.1 Implicit time-stepping for multi-body systems
	4.3.2 Simulation Derivatives

	4.4 Differentiable Frictional Contact Model
	4.4.1 Sequential Quadratic Programming
	4.4.2 Penalty methods
	4.4.3 Hybrid method
	4.4.4 Summary and evaluation

	4.5 Internal and External Forces in Generalized Coordinates
	4.5.1 Soft bodies
	4.5.2 Rigid bodies
	4.5.3 Signed distance functions as collision objects
	4.5.4 Multi-body systems

	4.6 Parameterization of Rigid Body Rotation
	4.6.1 Exponential Coordinates and Angular Velocity
	4.6.2 Reparameterization

	4.7 Solving Inverse Problems
	4.7.1 Optimization Framework
	4.7.2 Motion Generation for Compliant Robot
	4.7.3 Material parameter estimation
	4.7.4 Trajectory Optimization
	4.7.5 Self-supervised learning of control policies

	4.8 Discussion

	5 Conclusion
	5.1 Discussion
	5.2 Conclusion
	5.3 Future Work

	A Appendix
	A.1 Rigid body Theory
	A.1.1 Parameterization of Rotation
	A.1.2 Rigid bodies
	A.1.3 Rigid body dynamics

	A.2 Supplemental Material for Chapter 4
	A.2.1 Comparison to CMA-ES
	A.2.2 Scaling of computation time
	A.2.3 Number of contact points
	A.2.4 High-stiffness elastic material
	A.2.5 Overview of Simulation Parameters

	 Bibliography
	Curriculum Vitae
	Publications

