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Abstract The computation of the emitted radiation by an accelerated external particle can be addressed in a gauge theory with
the insertion of a Wilson loop. With the addition of conformal symmetry, this problem is consistently formalized in terms of
correlation functions in the presence of the Wilson loop, which are constrained by defect CFT techniques. In theories with extended
supersymmetry, we can also resort to supersymmetric localization on a four-sphere. By using this set of tools, we review the
close relation between the Bremsstrahlung function and the stress energy tensor one-point coefficient in abelian theories and in
superconformal field theories. After presenting the state of the art for generic CFTs, we mainly focus on the supersymmetric cases.
We discuss the differences between the maximally supersymmetric N = 4 case and N = 2 SCFTs, and finally, we review the
general and exact result for the emitted radiation in terms of a first-order derivative of the Wilson loop expectation value on a
squashed sphere.
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1 Introduction

The energy radiated by a particle in an accelerated motion represents an old story within the realm of classical electrodynamics [1],
see [2,3] for a standard textbook approach.

Such problem is related to a basic question for any Quantum Field Theory (QFT), namely its behavior in the presence of an
external source. The worldline of the external particle is incorporated at a QFT level as the insertion of an extended operator, the
Wilson loop, which represents the phase factor picked up by the accelerating particle. In a pure Maxwell theory, the simplicity of the
theory allows one to compute the emitted radiation in an exact way, as a function of the electric charge. The extension to non-abelian
gauge theories is more involved, but including additional space-time symmetries (supersymmetry and conformal symmetry), the
emitted energy can be understood in terms of special observables in the presence of the Wilson loop, and can be computed as a
function of the Yang–Mills coupling constant.

First of all, the emitted radiation is proportional to the so-called Bremsstrahlung function B, following the relativistic extension
of the classical Larmor formula:

ΔE = 2πB
∫
dτ a2 , (1)
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where a is the proper acceleration of the particle and B is a theory dependent function of the coupling.1 On the other hand, the
Bremsstrahlung function arises naturally in the study of vacuum expectation values of cusped Wilson loops, as a small angle limit
of the cusp anomalous dimension [4].2

〈
W [Ccusp]

〉 ∝ e
−Γcusp log ΛUV

ΛIR , Γcusp(ϕ)
ϕ→0−−−→ −B ϕ2 . (2)

The nontrivial relation between the emitted radiation (1) and the Bremsstrahlung function arising from cusp anomalous dimension
has been firstly addressed in [5]. In that same paper, the Bremsstrahlung function for a probe in the fundamental representation of
the gauge group SU (N ) has been computed exactly using supersymmetric localization for N = 4 Super Yang–Mills theory. Such
result was in agreement with previous achievements in AdS/CFT context [6–8] and was confirmed by integrability results [9–12].
Moreover, we consider the interpretation of the Wilson loop as a conformal defect, where a crucial quantity is represented by the
displacement operator Di , with the index i corresponding to the directions transverse to the defect. This quantity encodes the effects
of conformal transformations on correlators in presence of a defect (see also [13] for a deeper explanation) and as a defect operator
it represents a small perturbation of the line. In [5], it was proven the relation of the Bremsstrahlung function with the two-point
function coefficient CD of the displacement operator:

〈
Di (τ )D j (0)

〉
W = CD δi j

τ 4 . (3)

The physical interpretation is that slight modifications of the Wilson loop shape are responsible for the radiation.
Finally, the radiated energy of an accelerated particle can be “measured” by computing a flux of the stress tensor of the theory.

This idea was originally introduced in [14] and fully elaborated [15] for N = 4 SYM and led to the conclusion that the energy
radiated by the probe can be captured by the insertion of a stress tensor in the presence of the Wilson loop. Hence, the Bremsstrahlung
function is computed in terms of the one-point coefficient hW of the stress energy tensor [16]:

〈T00(x)〉W = hW
|x⊥|4 , (4)

where x⊥ is the orthogonal average distance from the line defect.
Therefore, it is reasonable to expect some explicit relations among the observables ΔE , B, CD and hW . For abelian gauge

theories and in the context of N = 4 SYM, there exists an exact correspondence for such observables, and they were computed as
exact functions of the coupling constants. The approach leading to these results is rather general. Similar results have been obtained
for higher representations of the gauge group [17–19]. Also a huge effort has been done in the maximally supersymmetric three-
dimensional context, where in a series of papers [15,20–27] (see [28] for a review) an exact and closed form for the Bremsstrahlung
function has been achieved.

The natural question arising at this point is to what extent such results hold when the degree of supersymmetry is decreased. In
particular, we focus on the N = 2 four-dimensional superconformal case. The way to compute the emitted radiation in N = 2
theories was conjectured in [29], where the computation of B was associated to a localization computation on a four sphere. Such
idea has passed many perturbative checks [30–32], and has been finally proven following two steps: in [33] the relation between
B and hW was fixed for any N = 2 superconformal theories, whereas in [34], it was proven that hW can be computed in terms
of the vacuum expectation value of the Wilson loop localized on a squashed sphere. This result is completely general for any
superconformal line defect, and therefore it represents a recipe for computing the stress tensor one-point function in the presence of
an external probe.

The main goal of this paper is to review the computation of the Wilson loop observables related to the emitted energy problem
in four dimensional superconformal field theories with extended (N ≥ 2) supersymmetry. After introducing the problem in the
free Maxwell case, in Sect. 2, we present the main criticalities for measuring the emitted radiation in a generic CFT. Moving to
the superconformal case, in Sect. 3, we review the long series of achievements for N = 4 case, and we also introduce the main
techniques that are needed throughout the paper, namely the interpretation of the Wilson loop as a superconformal defect and
supersymmetric localization. In Sect. 4, we review the computation of the Bremsstrahlung function in N = 2 conformal theories in
terms of a small variation of the background geometry. Finally, Sect. 5 is devoted to outline the conclusion and some perspectives,
while some technical material is contained in the appendices.

2 Radiation in free theories

We start by considering the free case, where the simplicity of the theory allows the physical aspects of the problem to emerge
naturally.

1 Formula (1) presents some subtleties, as discussed at the end of Sect. 2.
2 See Sect. 2 for a proper explanation about cusped Wilson loops.
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Fig. 1 Cusped Wilson loop with
angle ϕ

ϕv1

v2

2.1 Bremsstrahlung and stress energy tensor in pure Maxwell theory

Let us consider the Maxwell action

SMax = 1

4

∫
d4x FμνF

μν , (5)

and probe the vacuum with a cusped Wilson line representing the world line of a classical charged particle moving with constant
velocity v

μ
1 that suddenly changes to v

μ
2 due to instantaneous acceleration. The parameterization of the line reads:

xμ = v
μ
1 τ1 for − ∞ < τ1 < 0 ,

xμ = v
μ
2 τ2 for 0 < τ2 < +∞ .

(6)

The velocity vectors satisfy vi · vi = 1 and define the cusp angle ϕ (see Fig. 1) as v1 · v2 = cos ϕ . The cusped Wilson line assumes
the following shape:

Wcusp = exp

[
i e

∫ 0

−∞
dτ1 v

μ
1 Aμ(x1) + i e

∫ ∞

0
dτ2 v

μ
2 Aμ(x2)

]
, (7)

where e denotes the electric charge. Since this is a free theory, the only contribution to
〈
Wcusp

〉
is given by the exchange of a single

gauge propagator.
Expanding Wcusp in perturbation theory and using the gauge propagator

〈
Aμ(x1)Aν(x2)

〉 = δμν

4π2x2
12

, (8)

we get 3:
〈
WCusp

〉 = 1 + e2 cos ϕ (I (ϕ) − I (0)) , (10)

where

I (ϕ) =
∫

dDk

(2π)D

1

k2 (k · v1 − δ) (k · v2 − δ)
. (11)

This integral has been evaluated explicitly in Appendix D of [34], so that the final result reads:

〈
WCusp

〉 = 1 − 1

2ε

e2

4π2 (ϕ cot ϕ − 1) . (12)

Expanding the result for small angles, from (2) and (9), we read the Bremsstrahlung as an exact function in the electric charge:

BMax = e2

12π2 . (13)

For this simple theory, the relation between the Bremsstrahlung function (and therefore the emitted energy) with the stress tensor
one-point function can be verified explicitly. Starting from the Maxwell stress energy tensor, it is possible to evaluate it on the
explicit solution for the gauge field Aμ in the presence of a source, given by the Lienard–Wiechert retarded potential, see [36–39]
for a thorough analysis. From this solution, it is possible to extract the one-point coefficient hW [16]:

hWMax = e2

32π2 . (14)

3 Following [35], we use dimensional regularization to face the UV divergence and regulate the IR divergence by introducing a dumping factor e−iδ(τ1−τ2)

and therefore an IR cut-off δ. In this scheme, the cusp anomalous dimension arises as

〈
Wcusp

〉 = e− 1
2ε

Γcusp (9)
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In summary, two independent computations determine both the Bremsstrahlung function B and the stress tensor coefficient hW for
the abelian Maxwell theory in the presence of an external particle. These observables are functions of the coupling, in this case, the
electric charge e and a simple relation between the two quantities holds:

BMax = 8

3
hWMax . (15)

2.2 Physical meaning

The simplicity of this relation for Maxwell theory is very appealing: the Bremsstrahlung function B parameterizes the radiated
energy of the accelerated particle, following (1), while the one-point coefficient hW defines the energy flux at the infinity, and
therefore it represents the ideal observable to capture the emitted energy. A similar simple relation between B and hW also arise
in a different setup, the conformally coupled scalar, where it was found [40] that B = 4hW . However, already for these simple
cases (both Maxwell and the conformal scalar are free theories), we see that the coefficient (15) between B and hW is not universal.
Additional issues arise when we try to further generalize this idea.

Equation (1) is valid only assuming the initial and final accelerations to be equal and asymptotically vanishing (i.e., asymptotically
constant velocities, like the configuration chosen in Fig. 1), but in general, it is not Lorentz invariant (and in particular it does not
hold for any trajectories and for any theories). This subtlety has generated a strong debate in the past, as summarized in [41,42].

It is possible to define a different object, the invariant radiation rate (see Chapter 5 of [39]) as R = vμ
dpμ

dτ
, where pμ is the

momentum of the probe particle.
This power rate is manifestly Lorentz invariant, since it is not integrated along the worldline, so it properly generalizes the Larmor

formula at a relativistic level and can be considered as the correct quantity to measure the emitted radiation of the charged particle.
In [40], it was found that R is directly related to the stress tensor coefficient hW :

R = −16π

3
hW aμaμ . (16)

However, the subtlety in the relation between B and the total emitted radiation makes the relation between B and hW rather unclear
in general, since the invariant radiation rate does not measure the pure emitted energy due to the presence of non-trivial boundary
terms.4 Thus, we expect no universal relation between B and hW , and in general, they will define two different functions of the
coupling.

We now want to explore the generalization to non-abelian Yang–Mills theories, where the situation is more involved due to two
main issues. As we explained above, it is hard to relate B to hW , also because for Yang–Mills theories, conformal invariance is broken
at the quantum level. Furthermore, the explicit calculations of B and hW as functions of the couplings become very complicated in
general using standard field theory techniques.

Hence, we face these problems in theories that preserve superconformal invariance, and we concentrate on theories endowed
with extended supersymmetry with N = 4 and N = 2. We will see that the additional constraints coming from supersymmetry
uniquely fix B in terms of hW and allow the explicit computation of the emitted radiation in terms of the Yang–Mills coupling.

3 Emitted radiation in N = 4 SYM

We first consider four-dimensional theory endowed with the maximal amount of supersymmetry, namely N = 4 Super Yang–Mills.
In this framework, the high degree of symmetry allows one to approach field theory computations with several powerful tools.

3.1 Wilson loop as a superconformal defect

The insertion of a Wilson loop in a superconformal theory generates a partial breaking of the space-time symmetries, as it can be
seen as a superconformal defect of the theory. We briefly discuss this symmetry breaking pattern, in order to understand how to
constrain observables in this set up.

Broken conformal symmetry Throughout the paper, we are going to consider a straight line as a conformal defect, so that the
four-dimensional Euclidean conformal group is broken as

SO(1, 5) → SO(1, 2) × SO(3) , (17)

4 As mentioned in [15], this fact may be related to the difficulty of separating the radiation component from the self-energy of the particle.
Technically, the crucial question should be how to determine the angular distribution of radiation, rather than simply the radiated power. This problem is
associated with the explicit shape of the one-point function

〈
Tμν

〉
W in the presence of a time-like defect with an arbitrary worldline. We thank B. Fiol for

this private comment.
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which corresponds to 1-d conformal symmetry × rotations around the line. Such residual symmetry is sufficient to constrain some
correlation functions, see [13] for a detailed analysis. The two examples that we need are the one-point function of bulk operators
and the two-point function of operators inserted on the defect. Both these observables are fixed in terms of a single coefficient:

〈OΔ(x)〉W ≡ 〈OΔW 〉
〈W 〉 = AO

|x⊥|Δ , 〈ΦΔ(τ1)ΦΔ(τ2)〉W = CΦ

|τ12|2Δ
. (18)

These formulas can be generalized for objects with spins, the key point is that the kinematics is fixed and the residual physical
information resides in the coefficients AO and CΦ .

Explicit examples of these coefficients are the stress tensor coefficient hW and the displacement normalizationCD as we mentioned
in the introduction. In defect CFT, the relation between the stress tensor and the displacement operator is extremely meaningful,
since the displacement arises as a defect-localized delta function in the stress tensor conservation laws:

∂μT
μi = −δD(x)Di + total derivatives . (19)

The broken translational invariance due to the defect induces the displacement operator to appear as a discontinuity of the stress
tensor across the defect, as a sign that energy is exchanged between the defect and the bulk. We expect no universal relation between
CD and hW by pure conformal constraints (see Sect. 5 of [13] for more details), but the further constraints from supersymmetry
determine a simple relation between the stress tensor one-point coefficient hW and the displacement two-point coefficient CD . We
will explicitly see this relation in both N = 4 and N = 2 contexts.

Supersymmetric Wilson loop On the other hand, N = 4 is the maximally supersymmetric gauge theory. We explore how
supersymmetry enters in the game when including Wilson loops to the theory. All the fields are packed in a single vector supermultiplet
which contains the gauge field Aμ, four Weyl gauginos λA and six scalars φu . Therefore, a supersymmetry-preserving Wilson loop
contains a non-trivial coupling with the scalars and takes the form:

W (C) = 1

N
tr P exp

{
g

∮
C
dτ

[
i Aμ(x) ẋμ(τ) + |ẋ | nu(τ )φu(x)

]}
, (20)

where tr stands for the trace over the fundamental representation of the gauge group (SU (N ) throughout this paper), P is the path
ordering, g is the YM coupling, and nu is a six-dimensional unit vector specifying the direction of the scalars. Different choices
of nu and the parameterization xμ of the line correspond to different fractions of supersymmetry preserved by this insertion. The
computation of the Bremsstrahlung function B for N = 4 SYM achieved in [5] highly relies on such different choices, which are
allowed by the high amount of supersymmetry.

3.2 Exact Bremsstrahlung function in N = 4

3.2.1 Half-BPS and latitude Wilson loops

First of all, for a τ -independent nu and considering a circular parameterization of the loop

xμ(τ) = (
cos τ, sin τ, 0, 0

)
, (21)

the Wilson loop (20) is maximally supersymmetric (1/2 BPS). This circular Wilson loop has been extensively studied using standard
Feynman diagrams [43,44] and has played a central role in the context of supersymmetric localization, which is one of the most special
tools of supersymmetric theories. The basic idea is that the path integral of a superconformal theory with extended supersymmetry
(N = 2, 4) only receives contributions from the locus of certain fixed points, and can be reduced to a finite-dimensional integral. In
Appendix A, we introduce the basics of this procedure and the main results for our purposes, whereas all the technical details can
be found in the original paper [45] and in the extended review [46]. As outlined in Appendix A, the N = 4 partition function can
be mapped on a four sphere and expressed as a simple Gaussian integral, see (86). The half-BPS circular Wilson loop is mapped on
the equator of S4 (see Fig. 2a) and its matrix model expression reads:

W(a) = 1

N
tr exp

(
g√
2
a

)
, (22)

so that its expectation value in the Gaussian matrix model of (86) reads:

〈W(a)
〉
N=4 = 1

ZN=4

∫
da e−tr a2 1

N
tr e

g√
2
a

. (23)

This matrix integral can be performed exactly and leads to the exact expression for the Wilson loop vev in the fundamental
representation for any values of the coupling g and the number of colors N :

Wcirc(g, N ) = 1

N
L1
N−1

(
−g2

4

)
exp

[
g2

8

(
1 − 1

N

)]
, (24)
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Fig. 2 On the left, the S4

configuration, with the half-BPS
Wilson loop along the equator and
the latitude Wilson loop
describing an angle θ0. On the
right, the cusped Wilson loop with
physical angle ϕ on R × S3

θ0

(a) 1/2-BPS Wilson loop (blue) and 1/4-BPS latitude (red).

ϕ

ϕ

(b)Cusped Wilson loop on the cylinder.

where Ln
m are the generalized Laguerre polynomials of degree m. This result represents the benchmark for many exact results in

N = 4 SYM, and in particular for Wilson loop observables.
A different choice of nu(τ ) is given by the latitude Wilson loop [47–54], parameterized by an angle θ0 inside the scalar profile:

nuθ0
= (sin θ0 cos τ, sin θ0 sin τ, cos θ0, 0, 0, 0) , (25)

which defines a latitude on S4, which is 1/4-BPS. We see that for θ0 = 0 the 1/2 BPS configuration is restored, see Figure 2a.
The vacuum expectation value of the latitude Wilson loop has been computed in [49], in terms the same expression as the circular

configuration (24), provided that the coupling constant is redefined in terms of θ0:〈
Wθ0(g)

〉 = 〈Wcirc(g̃)〉 , g̃ = g cos2 θ0 . (26)

3.2.2 Wilson loop variations and scalar two-point functions

Expanding equation (26) around θ0 = 0 up to order θ2
0 , and taking g̃ ∼ g (1 − θ2

0 ) one gets:〈
Wθ0

〉 − 〈Wcirc〉
〈Wcirc〉 = −θ2

0
1

2
g ∂g log 〈Wcirc(g)〉 . (27)

We work out the left hand side of (27) by expanding the functional integral in terms of the difference between the unit vectors
nuθ0

− nu . Again, expanding around small θ0, for each order in θ0, we obtain a correlation function of scalars along the line. Since
one-dimensional conformal invariance is preserved along the line defect, the one-point function vanishes and the first non-trivial
term reads: 〈

Wθ0

〉 − 〈Wcirc〉
〈Wcirc〉 = θ2

0

2

∫ 2π

0
dτ

∫ 2π

0
dτ ′ n̂x (τ ) n̂ y(τ ′)

〈
φx (τ )φy(τ ′)

〉
W + O(θ3

0 ) , (28)

where n̂x is a two-dimensional unit vector (x, y = 1, 2). Inside the integrals, we recognize a defect two-point function, following
the definition:

〈
φx (τ )φy(τ ′)

〉
W =

〈
tr

[
P φx (τ ) e

∫ τ ′
τ (idxμAμ+|dx |φunu)φy(τ ′)e

∫ τ
τ ′(idxμAμ+|dx |φunu)

]〉

〈W 〉 . (29)

We evaluate (28) using the fixed two-point function of (18). Then, imposing the circular parameterization of the loop (21), we find:〈
Wθ0

〉 − 〈Wcirc〉
〈Wcirc〉 = θ2

0 Cφ

π

2

∫ 2π−ε

ε

dτ
cos τ

1 − cos τ
= −θ2

0 π2 Cφ , (30)

where Cφ is the scalar two-point coefficient. We compare this result with (27) and obtain:

Cφ = 1

2π2 g ∂g log 〈Wcirc〉 , (31)

which is an exact expression for the coefficient Cφ in terms of the expectation value of the 1/2-BPS circular Wilson loop (24).
We now consider the Wilson loop configuration which is crucial to extract B, namely the cusped Wilson line Wcusp, written as

a generalization of (7) for non-abelian and supersymmetric theories. The parametrization of the line is again given by (6), and the
velocities define the cusp angle v1 · v2 = cos ϕ. The explicit expression reads:

Wcusp = 1

N
tr P exp g

( ∫ 0

−∞
dτ1 L1(τ1) +

∫ +∞

0
dτ2 L2(τ2)

)
, (32)

123
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where Li (τi ) are the generalized connections, defined as:

L1(τ1) = i v1 · A(x1) + 1√
2

(
e+i ϑ/2 φ(x1) + e−i ϑ/2 φ̄(x1)

)
,

L2(τ2) = i v2 · A(x2) + 1√
2

(
e−i ϑ/2 φ(x2) + e+i ϑ/2 φ̄(x2)

)
.

(33)

Here, φ is one of the three complex scalar of N = 4 vector multiplet (and φ̄ is the complex conjugate) and ϑ is an “internal” angular
parameter [55,56], defined as:

cos ϑ = n1 · n2 . (34)

In general, the cusped Wilson loop displayed in (32) and (33) is not supersymmetric, but it does become BPS for ϑ = ±ϕ. Around
these values, the Bremsstrahlung function can be extracted from the extended cusp anomalous dimension:

Γcusp  − (
ϕ2 − ϑ2) B , (35)

and B can be obtained either for ϕ � 1 and ϑ = 0 or ϑ � 1 and ϕ = 0.
Playing with these angles, we can relate the coefficient Cφ displayed in (31) with the Bremsstrahlung function. We switch off the

physical angle ϕ and keep the internal angle ϑ . Using a conformal transformation, we consider the cylinder configuration, where
the cusped Wilson line of Fig. 1 is mapped to a quark anti-quark configuration on R× S3, see Fig. 2b. We proceed in the same way
as before, by varying Wcusp around small ϑ , and we obtain a relation between the cusp anomalous dimension with the two-point
function of the scalars along the line:

Γcusp(ϕ = 0, ϑ) = −ϑ2

2

∫ ∞

−∞
dτ

〈
φ(τ)φ̄(0)

〉
W + O(ϑ3) . (36)

Exploiting again (18) and evaluating the integral, we find that Γcusp for ϕ = 0 and small ϑ is written in terms of the coefficient Cφ :

Γcusp(ϕ = 0, ϑ) = Cφ

ϑ2

2
+ O(ϑ3) . (37)

By the comparison of (37) with (35) and reading the value of Cφ from (31), we get a formula for the Bremsstrahlung function in
terms of the vacuum expectation value of the circular Wilson loop:

B(g, N ) = 1

4π2 g
∂

∂g
log 〈Wcirc(g, N )〉 . (38)

Since 〈Wcirc〉 is an exact expression (24), this result represents an exact formula valid for any values of the coupling constant g. As
a byproduct, it matches some preliminary weakly and strongly coupled results [17,56,57].

3.3 Bremsstrahlung and displacement operator

We introduce another crucial observable for the superconformal case, i.e., the two-point function of the displacement operator,
mentioned in (3). The displacement operator Di in a defect CFT is responsible for orthogonal and infinitesimal modifications of the
defect. For a time-like Wilson loop, the definition is the following:

δW = P
∫

dτδxi (τ )Di (τ )W . (39)

Since Wilson lines are special defects explicitly written in terms of fields, we can write an explicit form for the displacement operator:

Di (τ ) = iF0 j (τ ) + nu∂ jφu(τ ) . (40)

Using similar tricks as before, it is possible to relate the Bremsstrahlung function to the two-point coefficient of the displacement
operator (see [58]). Starting again from the cusped Wilson loop (32) and (33), we vary Wcusp with respect to the physical angle
ϕ. Differently from (36), ϕ enters in the arguments of both the gauge field and the scalars through the velocities vi . Discarding
again O(ϕ) terms due to the vanishing of one-point functions along the line, from the variation, we precisely get the displacement
two-point function:

Γcusp
ϕ→0−−−→ −ϕ2

2

∫
dτ 〈Di (τ )Di (0)〉W + O(ϕ3). (41)

Performing the integral5 and comparing with (35), we obtain:

CD = 12 B. (42)

5 Again it is convenient to exploit the conformal map from S4 to R × S3, see Fig. 2b.
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Notice that this formula is universal for any four-dimensional conformal theory, and in particular, its validity can be extended to the
N = 2 conformal case, as we will see in the next section.

3.4 Stress tensor one-point function

Having introduced the two-point coefficient of the displacement operator, we can relate both B and CD with the one-point function
of the stress tensor, along the line of the discussion of Sect. 2.2. In N = 4 case, the correspondence between B and hW comes
out from a key observation [14,59]: the Bremsstrahlung exact formula (38) is analogous to the one-point function of a dimension 2
chiral operator in the presence of a Wilson loop. The only difference stands in an overall numerical coefficient.

Indeed, defining the chiral operators and their one-point function following (18):

Φ2(x) =Cuv tr φuφv(x), Cuv symmetrictraceless,

〈Φ2(x)〉W = A2(g, N )

4π2|x |2 ,
(43)

the computation of A2(g, N ) can be performed using supersymmetric localization on S4. The chiral operators sit in a 1/2-BPS
multiplet, and preserve enough supersymmetry to be localized together with the half-BPS Wilson loop: the Wilson loop is placed
at the equator and the chiral operator on one of the two poles. The matrix model expression of the chiral operator O(a) is slightly
subtle due to the non-trivial mixing when moving from R

4 to S4 (see [60–63] for further details), but the resulting matrix integral
can be exactly evaluated in terms of Gaussian integrals [64–66]:

A2(g, N ) = 〈O(a)W(a)
〉
N=4 = 1

ZN=4

∫
da e−tra2 O(a)

1

N
tr e

g√
2
a

= 1

8π2 g ∂g log 〈Wcirc〉.
(44)

The fact that B and A2 are equal up to a numerical coefficient is clearly not a coincidence. In N = 4 theory, the Δ = 2 chiral
operator belongs to the same supermultiplet as the stress tensor (which is the supercurrent multiplet, see for example [67]), so we
expect A2 to be related to hW by a simple numerical coefficient. The exact correspondence between the Bremsstrahlung function B
and the stress tensor coefficient hW in N = 4 SYM has been fixed by [15] to be:

B = 3 hW . (45)

3.4.1 Summary

We can summarize the analysis for N = 4. Even for non-abelian theories, but exploiting the presence of maximal supersymmetry,
an exact correspondence among the following physical observables holds:

• the small angle limit of the cusp anomalous dimension, i.e., the Bremsstrahlung function B,
• the normalization of the displacement operator CD ,
• the one-point coefficient of the stress tensor hW .

Such relations are shown in eqs. (42) and (45) and all of them are related to the total energy emitted by an accelerated heavy particle
ΔE (see (1)) as well as the radiation rate R (see (16)).

The second crucial point is that in N = 4 context the high degree of symmetry is enough to compute all these quantities exactly
in terms of the coupling constant g: resorting to the exact localization result (24) for the 1/2-BPS fundamental Wilson loop vev, B,
CD and hW are computed in terms of the logarithmic derivative of the fundamental Wilson loop vev, see (38). These achievements
can also be generalized to any gauge groups and representations [68].

The next step to address is to what extent these results hold when decreasing the degree of supersymmetry down to N = 2, while
keeping conformal invariance. We will see that the N = 2 analysis enriches the physical understanding of the radiation problem.

4 Radiation and geometry in N = 2 superconformal theories

The problem of the emitted radiation for N = 2 SCFTs has been addressed for the first time in [29], where both the problems of
relating B and hW and finding a consistent way to compute the stress tensor one-point function in a N = 2 SCFT were discussed.

4.1 Conformal line defects and radiation

First of all, the connection between the Bremsstrahlung function and the stress tensor coefficient passes through the relation between
B and the displacement two-point function. From the N = 4 argument of [5], we can state that the connection between B and CD
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displayed in (42) is valid for any conformal theory, since introducing a small angle along the contour is equivalent to the infinitesimal
deformations of the line coming from the displacement operator insertions.

This point has been exploited in [33] to relate CD to hW by only using the constraints of N = 2 superconformal symmetry.
Building the whole stress tensor supermultiplet for a generic N = 2 SCFT, the stress tensor conservation law (19) is extended to the
other components of the stress tensor multiplet. This procedure generates other defect delta function contributions, corresponding to
the components of a supermultiplet of the displacement operator. All the components of the stress tensor multiplet have a one-point
function in the presence of a Wilson loop which is proportional to hW , and analogously the two-point functions of the whole
displacement supermultiplet give rise to the CD coefficient. Finally superconformal Ward identities provide enough constraints to
fix CD unambiguously in terms of hW :

CD = 36 hW , (46)

confirming that

B = 3 hW . (47)

This result is valid for any superconformal line defect with N = 2 supersymmetry. In [69], a similar computation has determined
a similar result CD = 48 hW for a surface defect, proving the complete generality of this procedure.

4.2 Emitted radiation as a geometry deformation

The next step consists in finding the right tool to compute the observables B, CD, hW in terms of the coupling of the theory, and
again, we can resort to supersymmetric localization. It turns out that also in N = 2 theories, the one-point function of a Δ = 2 chiral
operator 〈Φ2(x)〉W can be computed in terms of the localized Wilson loop vev. Indeed equation (44) still holds in N = 2, where
the Wilson loop vev is now computed in the N = 2 matrix model, see Appendix A. However, such one-point function is unrelated
to the insertion of the stress-energy tensor, since the N = 2 supercurrent multiplet does not contain any chiral primaries [67]. The
way to overcome this deadlock has been proposed by [29], following the idea that by definition the stress tensor is associated to a
small deformation of the geometry. Therefore, starting from the configuration of a Wilson loop along the equator of a four sphere,
the following conjecture has been proposed:

hW = 1

12π2 ∂b log 〈Wb〉
∣∣∣
b=1

. (48)

Here, 〈Wb〉 is the vacuum expectation value of the Wilson loop on a four-dimensional squashed sphere with squashing parameter b
[70] and for b = 1 the round sphere is restored. The stress tensor insertion corresponds to a first order deformation of S4, represented
by the squashing. This formula has been fully proved in [34] and represents an optimal way to compute hW , since the right-hand
side of this relation localizes and can be expressed in terms of a matrix model. We now go through this derivation, which makes use
of several techniques from N = 2 SCFTs on curved spaces.

4.2.1 N = 2 SCFTs on the ellipsoid

We first define a consistent superconformal theory on the ellipsoid, following [70]. We consider a four-dimensional ellipsoid
embedded in R

5 as:

x2
1 + x2

2

�2 + x2
3 + x2

4

�̃ 2
+ x2

5

r2 = 1. (49)

When � = �̃ = r we recover the round sphere. We introduce the squashing parameter b2 = �/�̃ so that the axis are parameterized
as

� = l(b) b, �̃ = l(b)

b
, r = r(b), (50)

where the generic functions l(b) and r(b) are such that l(1) = r(1) = r, r being the radius of the sphere. The limit b → 1 recovers
the sphere configuration. We parameterize the ellipsoid in polar coordinates ξμ = (ρ, θ, ϕ, χ):

x1 = � sin ρ cos θ cos ϕ, x2 = � sin ρ cos θ sin ϕ ,

x3 = �̃ sin ρ sin θ cos χ, x4 = �̃ sin ρ sin θ sin χ, x5 = r cos ρ, (51)

where ρ ∈ [0, π], θ ∈ [0, π/2], ϕ ∈ [0, 2π ] and χ ∈ [0, 2π]. From (51), we can read the ellipsoid metric gμν , which is also
displayed in (91d).
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Fig. 3 Wilson loop around the
circle of radius � in the x1, x2

plane. In the polar coordinates ξμ,
the Wilson loop locus C is defined
by χ = θ = 0, ρ = π/2

x1

x2

x3,4,5

�

�̃

From [71], it is known that in order to build supersymmetric field theories on a curved space, it is necessary to introduce a
supergravity multiplet treated as a non-dynamical background, see [72] for such a construction on the ellipsoid. In Euclidean
signature, the components of the N = 2 supergravity multiplet are the following [73]:

gμν, ψI
μ , Tμν, T̄μν, V 0

μ, (Vμ)IJ , ηI , M, (52)

where gμν is the metric, ψI
μ (where I = 1, 2 R-symmetry index) is the gravitino, Tμν and T̄μν are real self-dual and anti-self-dual

tensors 6, V 0
μ and (Vμ)IJ are the gauge fields of the U (2)R R-symmetry, ηI is the dilatino, and finally M is a scalar field. We build

a gauge theory consistently coupled to this gravity multiplet:

Sb = 1

g2

∫
d4ξ

√
det g L , (53)

where L contains all the field content for N = 2 theories, hence the gauge vector multiplet
(
Aμ, λI , λ̄I , φ, φ̄

)
and the matter

hypermultiplet
(
qI , q̄I , ψ, ψ̄

)
. See [34] for the explicit expression of this Lagrangian. The ellipsoid action (53) is invariant under

N = 2 supersymmetry up to a suitable choice of the non-dynamical supergravity background. The conditions for having a consistent
gauge theory preserving supersymmetry on a curved space are the following:

δSUSY ψI
μ = 0, δSUSY ηI = 0. (54)

These are defined as the Killing spinor equations, and impose conditions for having background values for all the bosonic fields
Tμν, T̄μν, V 0

μ, (Vμ)IJ , M of the gravity supermultiplet. Their expressions depend on the geometric properties of the ellipsoid,
so they are functions of the ellipsoid coordinates ξμ and of the squashing parameter b. Notice that no background fields should
be turned on for a similar construction on the round sphere; therefore, the ellipsoid background values shall be considered in their
first-order variation in the squashing parameter b. The explicit formulas are quite cumbersome, see [34,70], those which are relevant
for the present computation can be found in Appendix B.1.

4.2.2 Stress tensor and ellipsoid deformation

We analyze how the vacuum expectation value of the Wilson loop in the superconformal N = 2 theory responds to a small
deformation of the ellipsoid geometry, in order to find the relation between the stress tensor coefficient hW and the 1/2-BPS Wilson
loop vev and prove the conjecture (48).

There are two possible half-BPS Wilson loops on the ellipsoid. The first configuration wraps the circle of radius � in the x1, x2

plane, the other wraps the circle of radius �̃ in the x3, x4 plane. The two options can be exchanged by sending b ↔ b−1, and are
completely equivalent, so we choose the first configuration, see Fig. 3.

The explicit expression of the Wilson loop is

Wb = 1

N
tr P exp

[
i
∫
C
dϕ

(
Aϕ − �(φ + φ̄)

)]
, (55)

which depends on b through �, see (50). Its vacuum expectation value on the ellipsoid theory is

〈
Wb

〉 = 1

Zb

∫
[DΦ] e−Sb Wb, (56)

where Sb is defined in (53).
From this definition it follows that

∂b log 〈Wb〉
∣∣∣
b=1

= −〈∂bSb Wb〉 + 〈∂bSb〉 〈Wb〉 + 〈∂bWb〉
〈Wb〉

∣∣∣∣
b=1

= −〈:∂bSb : Wb〉
〈Wb〉

∣∣∣∣
b=1

. (57)

6 Do not confuse Tμν , with upright font, with the stress tensor Tμν .
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A few comments about this expression. Firstly, the dots : : indicate the normal ordering, namely the subtraction of all possible
self-interactions. Such normal ordering is crucial to ensure the absence of anomalies when computing correlation functions on
curved backgrounds, see Sect. 3.2 of [34] for a detailed discussion on this point.

Moreover, in (57), we dropped the term with
〈
∂bWb

〉
since it defines a one-point function along the loop. Due to the preserved

conformal symmetry along the defect (see Sect. 3.1), we expect any defect one-point function to vanish. Finally, let us stress that
this expression should not depend on the parametrization (50) of the scales of the ellipsoid.

We work out ∂bSb, exploiting the fact that the action Sb depends on b only through the background supergravity fields, finding:

∂bSb =
∫
d4ξ

√
det g

[
1√

det g

∂(
√

det g L)

∂gμν
∂bg

μν + ∂L

∂(Vμ)J I
∂b(V

μ)J I

+ ∂L

∂Tμν
∂bTμν + ∂L

∂T̄μν
∂bT̄μν + ∂L

∂M
∂bM

]
, (58)

where the supergravity multiplet was defined in (52). By definition, the variation of the action with respect to the metric at b = 1
yields the stress energy tensor Tμν on the sphere. More precisely, we have:

∂(
√

det g L)

∂gμν

∣∣∣∣
b=1

= −1

2

√
det g0 Tμν, (59)

where g0
μν is the metric on the round sphere S4, namely

g0
μν = lim

b→1
gμν. (60)

Similarly, the variations of the action with respect to the other background fields of the supergravity multiplet yield the bosonic
components of the stress energy tensor supermultiplet, known also as the supercurrent multiplet [67], given by the following
operators:

Tμν, JIμ , Hμν, H̄μν, jμ, (tμ)IJ , χI , O2. (61)

The coefficients relating them to the variations of the Lagrangian must be consistent with the supersymmetry transformations and
are crucial for the final result. We refer to Appendix B of [34] for the conventions, and the relations read:

∂L

∂(Vμ)JI

∣∣∣
b=1

= − i

2
(tμ)IJ ,

∂L

∂(Vμ)0

∣∣∣
b=1

= − i

2
jμ,

∂L

∂Tμν

∣∣∣
b=1

= −16Hμν,
∂L

∂T̄μν

∣∣∣
b=1

= −16H̄μν,
∂L

∂M

∣∣∣
b=1

= −O2.

(62)

We substitute these definitions in (58) and plug the resulting expression for ∂bSb in (57) obtaining:

∂b log
〈
Wb

〉∣∣∣
b=1

=
∫
d4ξ

√
det g0

[
1

2

〈
Tμν

〉
W ∂bg

μν
∣∣
b=1+ i

2

〈
(tμ)IJ

〉
W ∂b(V

μ)JI
∣∣
b=1

+ i

2

〈
jμ

〉
W ∂bV

μ
0

∣∣
b=1+16

〈
Hμν

〉
W ∂bTμν

∣∣
b=1+16

〈
H̄μν

〉
W ∂bT̄μν

∣∣
b=1+〈O2〉W ∂bM

∣∣
b=1

]
.

(63)

Here, we have dropped the normal ordering symbol : : and adopted the short-hand notation 〈X〉W to identify the normalized one-point
function of a normal ordered operator : X : in presence of the Wilson loop on the sphere. We now want to evaluate such one-point
functions and then explicitly calculate the integrals in (63).

Relevant one-point functions: The functional form of one-point functions of bulk operators is entirely fixed by the preserved defect
conformal symmetry, as reviewed in Sect. 3.1. To write their expressions for the ellipsoid theory, it is convenient to use the so-called
embedding formalism (see [13]), which realizes conformal transformations as linear transformations over a d+2 dimensional space,
by exploiting the isomorphism of the conformal group with SO(1, 5). Despite some subtleties for operators with spins [74], all the
one-point functions in (63) can be written in terms of the ellipsoid coordinates using this technique.

In the presence of a conformal line defect, only operators with even spin can acquire an expectation value [13]. Therefore, in our
case, the one-point function of jμ and tμ vanish: 〈

(tμ)IJ
〉
W = 〈

jμ
〉
W = 0. (64)

The only nonzero one-point functions are those of the stress tensor Tμν , of the anti-symmetric tensors Hμν and H̄μν , and the
dimension 2 scalar superprimary O2. The explicit formulas for these sphere one-point functions can be found in Appendix B.2. All
these correlators should be generically written in terms of the one-point coefficients, hW , AH AH̄ and AO , respectively, by using
conformal symmetry only. If we now enforce N = 2 supersymmetry, we can relate all the one-point coefficients to hW by using
superconformal Ward identities. The one-point functions of the whole stress tensor multiplet (62) are written in terms of hW , see
(93), (95) and (96).
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4.2.3 Integration and final result

Using these one-point functions together with the background values of the supergravity multiplet, we have all the necessary
ingredients to perform the integration. The explicit results needed to evaluate the sum in (63) are stored in Appendix B. We begin
with the contribution coming from

〈
Tμν

〉
W . This integral needs to be regularized by a UV cutoff ε to keep the integration away from

the defect; the result is∫
d4ξ

√
det g0

[
1

2

〈
Tμν

〉
W ∂bg

μν
∣∣
b=1

]
=

(
3l ′ − 3r ′ − 3

ε3 − l ′ − r ′ − 5

ε

)
2πhW + O(ε), (65)

where

l ′ = ∂bl(b)
∣∣
b=1, r ′ = ∂br(b)

∣∣
b=1, (66)

and l(b) and r(b) come from the parameterization (50) of the ellipsoid axis. The expression (65) does not contain any finite
contribution, whereas the divergence is an artifact of the regularization procedure. In particular, computing the integral (65) in
dimensional regularization would simply return a vanishing result. Hence we discard this contribution.

Instead, the other terms in (63) yield finite contributions:∫
d4ξ

√
det g0

[
16

〈
Hμν

〉
W ∂bTμν

∣∣
b=1

]
= (

14 + 4l ′ − 4r ′)π2hW − 3

2
π4hW , (67a)

∫
d4ξ

√
det g0

[
16

〈
H̄μν

〉
W ∂bT̄μν

∣∣
b=1

]
= (

14 + 4l ′ − 4r ′)π2hW − 3

2
π4hW , (67b)

∫
d4ξ

√
det g0

[〈
O2

〉
W ∂bM

∣∣
b=1

]
= −(

16 + 8l ′ − 8r ′)π2hW + 3π4hW . (67c)

We notice that the individual integrals depend on l ′ and r ′, related to the arbitrary chosen parametrization of the ellipsoid (50).
However, when we sum (67a), (67b) and (67c), the result is independent of such a choice. Therefore, collecting all the finite
contributions, we can rewrite (63) as follows:

∂b log
〈
Wb

〉∣∣∣
b=1

= 12π2hW . (68)

This formula exactly proves the conjecture (48) and represents an exact way of computing the stress tensor one-point function in the
presence of an external probe, and due to (46), it also represents a way to measure the Bremsstrahlung function of the accelerated
particle in N = 2 superconformal settings, according to the following formula:

B = 1

4π2 ∂b log
〈
Wb

〉∣∣∣
b=1

. (69)

4.3 Ellipsoid matrix model and perturbative results

The proven formula (48) between the one-point coefficient hW and the first-order variation of the ellipsoid Wilson loop purely relies
on superconformal symmetry of the ellipsoid gauge theory. We did not use any explicit realization of the gauge theory in terms of
fundamental fields. We now show that formula (48) is useful to evaluate the stress tensor coefficient as a function of the coupling.
Again, the crucial technique is represented by supersymmetric localization. Indeed, in [70] SUSY localization was applied to the
ellipsoid theory to express its partition function and the expectation value of circular Wilson loops in terms of a matrix model.
Hence, hW can be evaluated using matrix model techniques. Since this is a N = 2 theory, the computation of the Wilson loop vev
in a matrix model is more involved than the N = 4 case described in (22). The Wilson loop (55) on the localization locus keeps the
same shape than the N = 4 case, apart from an explicit dependence on the squashing b:

Wb(a) = 1

N
tr exp

( b g√
2
a
)
. (70)

Instead, the partition function contains the Gaussian term, like the N = 4 case, but also a one-loop determinant and an instanton
term, which are specific of N = 2 theories:

Zb =
∫
da e− tr a2 ∣∣Z1-loop

b

∣∣2 ∣∣Z inst
b

∣∣2
. (71)

Luckily, Zb enjoys some special properties that allow to perform the matrix integral. Both the one-loop determinant and the
instanton term only depend on the squashing parameter b = (�/�̃)1/2 (and not on � and �̃ separately), and for b = 1, they reduce
to the expressions obtained on the sphere in [45]. Moreover, as shown in [70], they are symmetric in the exchange b ↔ b−1. As a
consequence of this symmetry, the partition function Zb does not depend on b at first order, namely

∂b Zb

∣∣∣
b=1

= 0. (72)
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Now, the localized Wilson loop expectation value reads:

〈Wb〉 = 1

Zb

∫
da Wb e− tr a2 ∣∣Z1−loop

b

∣∣2 ∣∣Z inst
b

∣∣2
, (73)

and we can evaluate explicitly the right-hand side of (48). Due to (72), we get a contribution only when the b derivative is applied
to Wb itself. Thus, we obtain

hW = 1

12π2 ∂b log
〈Wb

〉∣∣∣
b=1

= 1

12π2

〈
∂bWb

∣∣
b=1

〉
〈W 〉 . (74)

Here, W stands for Wb
∣∣
b=1. Due to the ellipsoid properties, these vacuum expectation values are now evaluated in the N = 2 matrix

model on the sphere, displayed in (87).
TheN = 4 case: In the N = 4 SYM theory, the matrix model is purely Gaussian as both the one-loop determinant and the instanton
factor reduce to 1. Then, observing the identity

∂bWb
∣∣
b=1 = g

∂W
∂g

, (75)

and since the g dependence lies purely in W , the g-derivative commutes with the expectation value and thus we re-obtain the result
of [5]:

hW
∣∣∣N=4

= 1

12π2 g∂g log 〈W〉, (76)

which corresponds to (38), provided that B = 3hW .
Therefore, it is clear that the result (48) is a generalization of the N = 4 result.

Perturbative expansions in N = 2 This big simplification no longer occurs in the N = 2 case, due to the non-trivial one-loop
determinant and instanton factors. Nevertheless, the quantity in (74) can be computed in the interacting N = 2 matrix model on
S4. In particular, employing the techniques of [66,75] reviewed in Appendix A, we describe its perturbative expansion in g. We
consider the perturbative limit in which the coupling g is small and the instanton contributions become trivial setting Zinst = 1. The
one-loop contribution can be expanded as an interacting term:

|Z1−loop|2 = e−Sint , Sint =
∑
n=2

(−1)n
(

g2

8π2

)n
ζ(2n − 1)

n
Tr′R a2n, (77)

where the combination Tr′R is defined in (88). The correlator of a generic observable in the N = 2 matrix model can be expressed
in terms of vacuum expectation values computed in the Gaussian model, simply in the presence of the interacting action (77). We
can rewrite (74) as

hW = 1

12π2

〈
∂bWb

∣∣
b=1 e−Sint

〉
0〈W e−Sint

〉
0

, (78)

where the subscript 0 stands for the evaluation in the Gaussian matrix model.
Expanding W and ∂bWb

∣∣
b=1 as well as Sint in series of small g, we get a perturbative expansion of hW in terms of expectation

values of multi-trace combinations of the matrix a in the Gaussian integral. Such combinations can be computed recursively at
very high orders in perturbation theory and for a large class of N = 2 theories defined by the representation R of the matter
hypermultiplets. The final result can be nicely organized in terms of the Riemann zeta-values appearing in (77). Such organization
could be useful for studying related quantities and different theories.

We report the first perturbative orders at low transcendentalities for the perturbative expansion of hW :

hW = 1

12π2

g2(N 2 − 1)

4N

(
1 + ζ(3)

(
g2

8π2

)2

C4 − ζ(5)

(
g2

8π2

)3

C6 + O(g8)

)
, (79)

where C2n is the totally symmetric contraction of the SU (N ) tensor Ca1...a2n = Tr′R Ta1 . . . Ta2n . In general C2n is a rational function
in the number of colors N (we refer to Sect. 3 of [75] for more details). For example, in superconformal QCD theory (where R is
defined by N f = 2N fundamental hypermultiplets), one finds

C4 = −3(N 2 + 1), C6 = −15(N 2 + 1)(2N 2 − 1)

2N
. (80)

Using the relations (46) and (47), one can derive the analogous perturbative expansions of the coefficient CD in two-point function
of the displacement operator and the Bremsstrahlung function B. These results have also been explicitly checked against some
honest Feynman diagrams computations up to four-loops order in [75]. Using the sphere matrix model achievements for the Wilson
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loop vev (see also [76,77]), the computation of hW could be pushed even further in perturbation theory, and explored in the strongly
coupled regime [78,79]. All these results represent a further proof of the validity of the squashed sphere formula (48).

5 Conclusions and perspectives

In this paper, we reviewed the emitted radiation of a relativistic particle in an accelerated motion in some special classes of theories.
While this problem is easily solvable for abelian gauge theories, it definitely becomes less trivial for non-abelian theories, where
the addition of superconformal symmetry is needed to produce exact results in the coupling constant. The final outcome for the
Bremsstrahlung function is given by equation (69), which follows from an analogous formula (48) for the stress tensor coefficient.
These expressions relate the emitted radiation to a variation of the geometry of the system, following the geometric interpretation
for the insertion of a stress tensor operator.

This derivation is valid for any four-dimensional superconformal theory with at least N = 2 supersymmetries, and only uses
general properties of the geometric background and of defect CFTs. Thus, the relation (48) is valid for any superconformal line
defect. Furthermore, it provides a general recipe to extract exact results for the stress tensor correlators by perturbing the background
geometry. Such idea could be applied to a wider class of defects [69,80]. We stress that this is a peculiarity of defect CFTs, where
the one-point function is non-vanishing and the first-order derivative returns a non-trivial result.

On the other hand, the extended supersymmetry allows to exploit the power of supersymmetric localization. Hence, formula (48)
together with the equalities (46) and (47) implies that all these apparently distinct observables are captured by a non-local operator
localized on a deformed geometry. With the help of the localized matrix model, it is possible to explicitly compute perturbative
expansions with a well-defined organization in terms of transcendentality, which is a prediction for Feynman diagrams computations.
Since in special N = 2 theories, it is also possible to go beyond perturbation theory [81–87], it would be interesting to explore the
N = 2 emitted radiation in these contexts to explore the holographic perspectives.

Finally, additional directions would be to generalize the relation between CD and hW in specific setups for non-supersymmetric
lines [88–91], or explore the integrability approach for the generalized Bremsstrahlung [92–94].
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A Sphere matrix model

The localization procedure performed by Pestun [45] allows to reduce the path integral of any Lagrangian supersymmetric theory
with at least N = 2 supersymmetry to a matrix model on a four sphere S4. We review the construction of this matrix model,
concentrating on a mostly perturbative approach.

We consider N = 2 theories with gauge group SU(N ) and matter hypermultiplets transforming in a generic representation R
which preserves conformal symmetry. The only non-vanishing contributions to the path integral arise from the localization locus,
which is defined by the following saddle points:

Aμ = 0 , φ = φ̄ = a√
2

, (81)

where Aμ is the gauge field, φ and φ̄ are the scalar fields of the vector multiplet and a is a N × N Hermitean matrix which can be
decomposed over a basis of generators ta of su(N ) Lie algebra:

a = ab tb , b = 1, . . . , N 2 − 1 . (82)

The partition function on a 4-sphere S4 with unit radius can be expressed as follows:

ZS4 =
∫

da
∣∣Z tree Z1−loop Z inst

∣∣2
, (83)

where the integration measure stands for the integral over the eigenvalues of the matrix a. Z inst is the Nekrasov’s instanton partition
function [95,96] that can be put to 1 when considering perturbation theory.
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The tree-level term is given by a Gaussian term:
∣∣Z tree

∣∣2 = e− tr a2
. (84)

The one-loop determinant contains interaction terms, and can be written as:
∣∣Z1−loop

∣∣2 ≡ e−Sint(a) . (85)

At this point, we distinguish between the maximal supersymmetric case N = 4 and generic N = 2 theories.
In N = 4 SYM theory, all the interacting terms exactly cancel, such that Sint(a) = 0, and the corresponding matrix model is

purely Gaussian:

ZN=4 =
∫

da e− tr a2
. (86)

This fact allows to obtain several exact results in the coupling g.
For N = 2 SYM theories, interaction terms are contained in the one-loop determinant, and they explicitly depend on the matter

representation R. The perturbative matrix model can be written as follows:

ZN=2 =
∫

da e− tr a2−Sint(a) ,

Sint(a) = −
(

g2

8π2

)2
ζ(3)

2
Tr′R a4 +

(
g2

8π2

)3
ζ(5)

3
Tr′R a6 + . . .

(87)

where ζ(n) are the Riemann ζ -values and Tr′R stands for the notation:

Tr′R • = TrR • − Tradj • . (88)

From this shape, we immediately see that Sint(a) = 0 for N = 4 SYM, which can be seen as a N = 2 theory with a single
hypermultiplet in the adjoint representation. In N = 2 theories, the matrix model (87) is valid for any conformal matter content, see
[75] for explicit examples, and it allows for explicit perturbative computations for several supersymmetric-invariant observables.

B Useful formulas for the ellipsoid computation

We report here some useful formulas explicitly obtained in [34] that are necessary to perform the ellipsoid integrals discussed in
Sect. 4.2.

B.1 Background values for the supergravity multiplet

The Killing spinor equations provide specific geometric constraints that allow to fix the profile of the background fields, although
not uniquely. This arbitrariness is fully discussed in [70] and does not affect the final result of the calculation. Due to (64), we can
avoid to write the results for V 0

μ and (Vμ)IJ . All the results are written in terms of three functions:

f1 =
√

�2 sin2 θ + �̃ 2 cos2 θ , f2 =
√
r2 sin2 ρ + 1

f 2 �2�̃ 2 cos2 ρ , f3 = �̃ 2 − �2

f
cos ρ sin θ cos θ . (89)

The solution for the metric is given in terms of the vierbeins Em , while the (anti-)self-dual tensors Tμν and T̄μν are related to the

matrices Tβ
α and T̄α̇

β̇
as:

Tβ
α = −i

(
σμν

)β

α
Tμν , T̄α̇

β̇
= −i

(
σ̄ μν

)α̇

β̇
T̄μν . (90)

The explicit solutions read:

M = 1

f 2
1

+ f 2
3 + r2

f 2
1 f 2

2

− 4

f1 f2
, (91a)

Tβ
α = 1

4

(
1

f1
− 1

f2

)
(τ 1

θ )βα + f3
4 f1 f2

(τ 2
θ )βα , (91b)

T̄α̇

β̇
= 1

4

(
1

f1
− 1

f2

)
(τ 1

θ )α̇
β̇

− f3
4 f1 f2

(τ 2
θ )α̇

β̇
, (91c)

E1 = � sin ρ cos θ dϕ , E2 = �̃ sin ρ sin θ dχ ,
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E3 = f1 sin ρ dθ + f3 dρ , E4 = f2 dρ , (91d)

where the matrices τ iθ are

τ iθ = τ i
(

eiθ 0
0 e−iθ

)
, (92)

and τ i are the Pauli matrices.

B.2 One-point functions of the stress tensor multiplet

We report the explicit results of the one-point functions of the components of the stress tensor multiplet which are necessary to
perform the ellipsoid integration. We start from the stress tensor one-point function 〈Tμν〉W . To write the kinematic structure of a
correlator with spin, one can contract all indices with a complex vector zμ, such that zμg0

μνz
ν = 0. Then, the one-point function of

this tensor is a polynomial in z:

zμzν
〈
Tμν

〉
W

= hW
z2
χ sin2 θ sin2 ρ

(
cos 2θ−2 cos2 θ cos 2ρ−3

)−4
(
zρ sin θ+zθ cos θ sin ρ cos ρ

)2

r4
(

cos2 ρ + sin2 θ sin2 ρ
)3 . (93)

To open indices again, one can apply the Todorov operator to this polynomial

Dμ =
(

1 + zλ
∂

∂zλ

)
∂

∂zμ
− 1

2
zμ

∂2

∂zρ∂zρ
. (94)

Similarly, for the (anti-)self dual operators the one-point functions read:

〈
Hβ

α

〉
W = 3ihW

4

cos θ cos ρ (τ 1)
β
α − sin θ (τ 2)

β
α

r3
(
cos2 ρ + sin2 θ sin2 ρ

)2 ,

〈
H̄ α̇

β̇

〉
W

= −3ihW
4

cos θ cos ρ (τ 1)α̇
β̇

+ sin θ (τ 2)α̇
β̇

r3
(
cos2 ρ + sin2 θ sin2 ρ

)2 . (95)

The last one-point function that we need is the scalar superprimary operator O2:

〈O2〉W = 3hW
8

1

r2
(

cos2 ρ + sin2 θ sin2 ρ
) . (96)

The coefficients for
〈
Hμν

〉
W ,

〈
H̄μν

〉
W and 〈O2〉W have been fixed in terms of hW using superconformal Ward identities.
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