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a b s t r a c t

Most stochastic gradient descent algorithms can optimize neural networks that are sub-differentiable in
their parameters; however, this implies that the neural network’s activation function must exhibit a
degree of continuity which limits the neural network model’s uniform approximation capacity to contin-
uous functions. This paper focuses on the case where the discontinuities arise from distinct sub-patterns,
each defined on different parts of the input space. We propose a new discontinuous deep neural network
model trainable via a decoupled two-step procedure that avoids passing gradient updates through the
network’s only and strategically placed, discontinuous unit. We provide approximation guarantees for
our architecture in the space of bounded continuous functions and universal approximation guarantees
in the space of piecewise continuous functions which we introduced herein. We present a novel semi-
supervised two-step training procedure for our discontinuous deep learning model, tailored to its struc-
ture, and we provide theoretical support for its effectiveness. The performance of our model and trained
with the propose procedure is evaluated experimentally on both real-world financial datasets and syn-
thetic datasets.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Since their introduction in [1], neural networks have led to
numerous advances across various scientific areas. These include,
mathematical finance in [2–4], computer vision and neuroimaging
in [5,6], signal processing in [7,8], and climate change modeling in
[9]. From the theoretical vantage point, these methods’ success lies
in the harmony between their expressivity [10–13], the training
algorithms which can efficiently leverage this expressibility [14–
17] and, the implicit inductive bias of deep neural model trained
with these methods [18,19].

This paper probes the first two aspects when faced with the task
of learning piecewise continuous functions. We first identify
approximation-theoretic limitations to commonly deployed feed-
forward neural networks (FFNNs); i.e.: with continuous activation
functions, and then fill this gap with a new deep neural model
(PCNNs) together with a randomized and parallelizable training
meta-algorithm that exploits the PCNN’s structure.

The description of the problem, and our results, begins by revis-
iting the classical universal approximation theorems [20–22]. Briefly,
these classical universal approximation results state that, when a
phenomenon is governed by some continuous target function f,
then FFNNs with continuous function r can control the worst-
case approximation of error to arbitrary precision. If f is discontin-
uous, as is for instance the case in many signal processing or math-
ematical finance [23,24] situations then, the uniform limit theorem
from classical topology [25] guarantees that the worst-case
approximation error of f by FFNNs cannot be controlled; neverthe-
less, the average error incurred by approximating f by FFNNs can
be [11,26,27]. Essentially, this means that if f is discontinuous then
when approximating it by an FFNN there must be a ‘‘small” portion
of the (non-empty) input space X#Rd whereon the approximation
can become arbitrarily poor.
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If f : X ! RD is a piecewise continuous function, by which we
mean that it can be represented as:

f ¼
XN
n¼1

IKn f n; ð1Þ

for some integer N, continuous functions f n : Rd ! RD and, some
(non-empty) compact subsets Kn #X then, the regions where the
approximation of f by FFNN is poor corresponds precisely to the
regions where the parts Knf gNn¼1 interface (whenever the subpatterns

f nf gNn¼1 miss-match thereon).
In principle, the existence result of [28] implies that guarantees

for uniform approximation should be possible with a deep neural
model and one such likely candidate are deep feedforward with
discontinuous activation functions. However, these types of net-
works are not compatible with most commonly used (stochastic)
gradient descent-type algorithms. A few methods for training such
models are available. For instance, [29] describes a heuristic
approach, but its empirical performance and theoretical guaran-
tees are not explored. In [30] the author proposes a linear program-
ming approach to training shallow feedforward networks with
threshold activation function whose hidden weights and biases
are fixed. This avoids back-propagating through the non-
differentiable threshold activation function; however, the method
is specific to their shallow architecture. Similarly, [31] considers
an extreme learning machine approach by randomizing all but
the network’s final linear layer, which reduces the training task
to a classical linear regression problem. However, this approach’s
provided approximation results are strictly weaker than the known
guarantees for classical feedforward networks with a continuous
activation function obtained, as are derived for example in [32].

Our proposed solution to overcoming the problem that: worst-
case universal approximation by FFNNs is limited to continuous
functions, begins by acknowledging that approximating an arbi-
trary discontinuous (or even integrable) function f is an unstruc-
tured approximation problem; whereas approximating a
piecewise continuous function is a structured approximation prob-
lem; i.e. there is additional structure and it should be encoded into
the machine learning model in order to achieve competent predic-
tive performance. Typical examples of structured approximation
problems include assimilating graph structure into the learning
model [33,34], manifold-valued neural networks [35–38], encoded
symmetries into the trained model [39–41], or encode inevitability
[42–45]. Here, the relevant structure is given by the (continuous)

subpatterns f nf gNn¼1 and (non-empty compact) parts Knf gNn¼1 repre-
senting the function f in (1).

Our proposed deep neural models, the PCNNs, reflects this
structure by approximately parameterized the sub-patterns

f nf gNn¼1 by in dependant FFNNs, approximately parameterizing

the parts Knf gNn¼1 by zero-sets of FFNNs, and the combining these
independent parts via a single discontinuous unit defined shortly.
An instance of our architecture is illustrated graphically in Fig. 2.
Since each FFNN component of our architecture is in dependant
from one another and are only regrouped at their final outputs
by the discontinuous unit, illustrated in red in Fig. 2, then we can
leverage this structure to decouple the training of each component
of our PCNN model and then re-combine them when producing
predictions. Thus, our decoupled training procedure allows effec-
tively avoids passing any gradients through the discontinuous unit.
Thus, our architecture enjoys the expressivity of a discontinuous
units (guaranteed by our universal approximation theorems for
piecewise continuous functions in Theorems 3.0.1, 3.0.2, and
3.2.1) while being pragmatically trainable (illustrated in by our
numerical experiments and previewed in Fig. 1).
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Fig. 1 provides a concrete visual motivation of our results and
approach. It illustrates the challenge of learning a piecewise con-
tinuous functions with two parts (in grey and orange) by an FFNN
with ReLU activation function 2 hidden layers and 100 neurons in
each layer (in purple) and a comparable PCNN model (green). After
3000 iterations of ADAM algorithm of [14], the training stabilizes
at a mean absolute error (MAE) of about 0:1477. In contrast the
PCNNs are capable produced an MAE of 0:986. see Fig. 3.

1.0.1. Organization of paper

Section 2 contains the background material required in the for-
mulation of the paper’s main results. Section 3 includes the paper’s
main results. These include qualitative universal approximation
guarantees for the PCNN as a whole, as well as, for each of its indi-
vidual components, quantitative approximation guarantees for the
PCNN given a partition, as well as a result showing that the PCNN
are dense in a significantly larger space than the FFNNs are, for the
uniform distance. We then introduce a randomized algorithm that
exploits the PCNN’s structure to train it. Theoretical guarantees
surrounding this algorithm are also proven. Lastly, in Section 4
we validate our theoretical claims by training the PCNN architec-
ture using our proposed meta-algorithm to generate predictions
from various real-world financial and synthetic datasets. The mod-
el’s performance is benchmarked against comparable deep neural
models trained using conventional training algorithms.

2. Preliminaries

Let us fix some notation. The following notation is used and
maintained throughout the paper. The space of continuous func-
tions from X to RD is denoted by C Rd;RD

� �
. When D ¼ 1, we follow

the convention of denoting C Rd;R
� �

by C Rd
� �

. Throughout this
paper, we fix a continuous activation function r : R! R. We denote

the set of all feedforward networks from Rd to RD by NN
r

d;D
and we

denote rsigmoid xð Þ , ex
1þex.

We denote the set of positive integers byNþ. The cardinality (or
size) of a set A is denoted #A. In this manuscript, d;D will always
be non-negative integers. Moreover, X will always denote a non-
empty compact subset of Rd.

2.1. The PCNN model

Before reviewing the relevant background for the formulation of
our results, we first define the PCNN architecture.

Definition 2.1. [PCNN] PCNN is a function f̂ : X ! RD with
representation
f̂ ¼
XN
n¼1

f̂ n xð ÞIbKn
xð Þ;

where the partition bKn

n oN

n¼1
is given by the ‘‘deep zero-sets”

defined as:bKn ¼ x 2 X : 1� I c;1ð � � rsigmoid ĉ xð Þn
� � ¼ 0

� �
; ð2Þ

and where the ‘‘sub-patterns” f̂ 1; . . . ; f̂ N are FFNNS in NN
r

d;D
; ĉ 2 NN

r

d;N
,

and 0 < c 6 1;N 2 Nþ. The set of PCNNs is denoted by PCNNNN
r

d;D
.

Each f̂ 1; . . . ; f̂ N is called a sub-pattern of the PCNN f̂ .



Fig. 1. Approximation of sub-patterns by FFNN.

A. Kratsios and B. Zamanlooy Neurocomputing 480 (2022) 192–211
An instance of the PCNN architecture is illustrated in Fig. 2. The
illustration depicts an architecture from a d ¼ 3 dimensional input
space to a D ¼ 4 dimensional output space, with 2 ‘‘deep zero-sets”bKn

� �2
n¼1

, and, accordingly, two sub-patterns f̂ 1 and f̂ 2 defining the

respective sub-pattern on their respective deep zero-sets. The deep
zero-sets are built by feeding the deep classifier ĉ into the discon-
tinuous unit x# x � I c;1ð � � rsigmoid. Fig. 2 highlights that each train-

able part of the network, namely the sub-patterns f̂ 1 and f̂ 2 and
the deep classifier ĉ, all process any input data independantly and
therefore can be parallelized. The outputs

ŷ 1ð Þ , f̂ x1; x2; x3ð Þ; ŷ 2ð Þ , f̂ x1; x2; x3ð Þ, and bC , ĉ x1; x2; x3ð Þ of each par-
allelizable sub-patterns then fed into the discontinuous unit:

ŷ 1ð Þ; ŷ 2ð Þ; bC� �
# ŷ 1ð ÞI c;1ð � � rsigmoid

bC1

� �
þ ŷ 2ð ÞI c;1ð � � rsigmoid

bC2

� �
;

��
which simultaneously defines the deep zero-sets and decides which

sub-pattern (f̂ i) is to be activated. Fig. 2 shows that the sub-patterns

f̂ 1 definition of PCNN need not have the configuration of hidden
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units. Indeed when training a PCNN, described in Section 4, we will
see that each of these sub-patterns is trainable in parallel to one
another and therefore their widths and depths may be selected
independently of one another.

2.2. Set-valued analysis

When performing binary classification, we want to learn which
x 2 X belongs to a fixed subset K#X. Thus, a classifier
ĉ : X ! 0;1f g is typically trained to approximate K’s indicator func-
tion IK . In this case, the results of [46] guarantee that IK can be
approximated point-wise with high probability. However, even if
the approximation guarantees are strengthened and ĉ (determinis-
tically) approximates IK point-wise, the approximation of K can be
wrong.

Example 2.1.1. Let X ¼ �1;1½ �;K ¼ 0;1½ �, and Kkf g1k¼1 be the con-
stant sequence of subsets of X given by Kk , 0;1ð Þ. Then, the
pointwise limit of IKk

equals to I 0;1ð Þ. Thus, the points 0;1f g are
always misclassified; even asymptotically.



Fig. 2. A PCNN f̂ from R3 to R4 with two sub-patterns.

Fig. 3. Four Year Returns of SnP500 Constituents’ Returns.

A. Kratsios and B. Zamanlooy Neurocomputing 480 (2022) 192–211
The issue emphasised by Example (2.1.1) is that the points
0;1f g � K are limits of some sequence of points in the approximat-
ing sets Kk; for example, of the respective sequences 1

k

� �1
k¼1 and

1� 1
k

� �1
k¼1. Thus, a correct mode of convergence for sets should

rather qualify a limiting set as containing all the limits of all sub-

sequences xkj
n o1

j¼1
where xk 2 Kk for each k 2 Nþ. This is implied,

see [47], by the convergence according to the Hausdorff distance
dH defined for any pair of subsets A;B#X via:
dHjX A;Bð Þ , max supa2Aka� Bk; supb2BkA� bkf g,where
ka� Bk , infb2Bka� bk (similarly, we define kA� bk , kb� Ak).
The Hausdorff distance between A and B represents the largest dis-
tance which can be traversed if a fictive adversary assigns a start-
ing point from either of A or B. Whenever it is clear what X is, then
we simply denote the Hausdorff distance dHjX on X by dH . As dis-
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cussed in [47], the Hausdorff distance defines a metric on the set
Comp Xð Þ, whose elements are non-empty compact subsets of X
with Hausdorff distance equipped with the metric dH .
2.3. Partitions

Fix N 2 Nþ with N > 1. Throughout this paper, a partition

Knf gNn¼1 of the input space Rd, means a collection of compact sub-
sets of Rd. We use the term ”partition” loosely to mean any finite
family Knf gNn¼1 of non-empty compact subsets of X. Therefore,
unless otherwise specified, we do not require that
int Kn½ � \ int Km½ � to be disjoint. Thus, our results include that situa-
tion as a special case.
3. Main results

Our main results are now presented. All proofs are relegated to
the paper’s appendix.
3.1. Universal approximation guarantees

In this section, we examine the asymptotic approximation capa-
bilities of the PCNN model, and we compare and contrast it to that
of FFNNs. Two types of approximation theoretic results are consid-
ered. The first examines the asymptotic approximation capabilities

of PCNNNN
r

d;D
if the architecture’s parameters were simultaneously

optimizable. However, as discussed in the paper’s introduction,
this cannot be done with most available (stochastic) gradient
descent-type algorithms. Therefore this class of universal approxi-

mation results describes the ”gold standard” of what PCNNNN
r

d;D

could be expected to approximate.

However, since PCNNNN
r

d;D
are specifically designed to be train-

able in a two-step decoupled procedure (via Meta-Algorithm1
below) to avoid these non-differentiability issues. The next class
of universal approximation results are specifically designed to

quantify the approximate capabilities of PCNNNN
r

d;D
when approxi-

mating piecewise continuous functions of the form (1). These
results are broken into two stages. First, we introduce a space of
piecewise continuous functions on which a meaningful universal
approximation theorem can be formulated, and we examine some

of the properties of these new spaces. Next, we show that PCNNNN
r

d;D

is universal in this space, and we quantify its approximation effi-
ciency, analogously to [48]. Lastly, we show that, just as in the
”gold standard case,” FFNNs are not dense in this space; whenever
we are approximating piecewise continuous functions with N > 1
in (1).
3.1.1. Gold standard: maximum approximation capabilities

We find that PCNNNN
r

d;D
can approximate many more functions

uniformly than NN
r

d;D
. We do this by comparing the largest space in

which PCNNNN
r

d;D
is universal, to the largest space in which NN

r

d;D
is

universal. Since universality (or density) is an entirely topological
property, then we compare these two spaces using purely topolog-
ical criteria. We observe the following.
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Lemma 3.0.1. Every f 2 PCNNNN
r

d;D
is bounded on X; i.e.:

supx2Xkf xð Þk <1.

We need an ambient space to make our comparisons. Thus, we

begin by viewing PCNNNN
r

d;D
within the Banach space of all bounded

functions from X to RD, denoted by B X;RD� �
, equipped with the

following norm:

kfk1 , sup
x2X

f xð Þk k:

We use PCNNNN
r

d;D
to denote the closure of PCNNNN

r

d;D
inB X;RD� �

;

that is, PCNNNN
r

d;D
denotes the collection of all f 2 B X;RD

� �
for

which there is a convergent sequence f kf g1k¼1 � PCNNNN
r

d;D
with

limit f. In other words, PCNNNN
r

d;D
and NN

r

d;D
are the largest space of

bounded functions on X in which PCNNNN
r

d;D
and NN

r

d;D
are respectively

universal, with respect to k � k1.

Next, we show that NN
r

d;D
is relatively small in comparison to

PCNNNN
r

d;D
. To make this comparison, we appeal to an opposite con-

cept to universality (density), i.e.: nowhere denseness, which means

that the only open subset of PCNNNN
r

d;D
contained within NN

r

d;D
is the

empty-set.

Example 3.0.2. The set of linear models axþ b : a; b 2 Rf g � C Rð Þ
is nowhere dense in C Rð Þ. In contrast, the polynomial modelsPN

n¼0anx
n : an 2 R; N 2 N

n o
are dense in C Rð Þ (see [49]).

Nowhere dense sets are topologically negligible. Consequently,

NN
r

d;D
is topologically negligible in PCNNNN

r

d;D
.

Theorem 3.0.1. [The PCNN is Asymptotically More Expressive] Let

r 2 C Rð Þ be non-polynomial, and X ¼ 0;1½ �d. Then, NN
r

d;D
is nowhere

dense in PCNNNN
r

d;D
.

The next result shows that PCNNNN
r

d;D
is large in the sense that it

is not separable, this means that any dense subset thereof cannot
be countable. Examples of separable Banach spaces arising in clas-
sical universal approximation results include C Rd;RD� �

studied in

[10,32], the space of Lebesgue p-integrable functions Lp Rd� �
on

Rd studied in [50], or the Sobolev spaces on bounded domains in
Rd as in [51]. The most well-known example of a non-separable

space is L1 Rd
� �

, in which [52] have shown that NN
r

d;D
is not dense

whenever r is continuous.

Theorem 3.0.2 (PCNN s are Highly Expressive, Asymptotically). Let

r 2 C Rð Þ be non-polynomial, and X ¼ 0;1½ �d. Then the following hold:

(i) PCNNNN
r

d;D
is not separable,

(ii) C X;RD
� � � PCNNNN

r

d;D
.
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Remark 3.0.1. Theorems 3.0.1 and 3.0.2 formulate universal
approximation theorems that express the maximum approxima-

tion capabilities of the PCNN relative to NN
r

d;D
.

We complete this portion of our discussion here by observing
that even simple piecewise continuous functions (with more than
one piece) cannot be uniformly approximated by FFNNs with a
continuous activation function.

Proposition 3.0.1 (Deep Feedforward Networks are Not Universal in
B X;RD� �

). If r 2 C Rð Þ and K1 ¼ 0; 12
� 	

;K2 , 1
2 ;1
� 	

are given. Then,
For every � > 0 there exists an f � of the form (1) satisfying:

inf

f 2 NN
r

d;D
1;1½ �

sup
x2 0;1½ �

f xð Þ � f � xð Þk kP �:

Though the space B X;RD� �
does provide a concrete environ-

ment for comparing the maximum approximation capabilities of
different deep neural models, it is nevertheless ill-suited to the
approximation of piecewise continuous functions. These are the
two following reasons. This is because approximation of any
f 2 B X;RD� �

can not be decoupled, in the sense that any piecewise
function of the form (1) can not be approximated by approximat-
ing the f 1; . . . ; f N and the K1; . . . ;KN in separate steps. Rather uni-
form approximation necessitates that both must be
approximated in the same step, but we cannot do this due to the
discontinuous structure of our model. Furthermore, the uniform
norm does not genuinely reflect any of the ‘‘sub-pattern pattern”
structure of (1), and rather it only views f as a typical bounded
function. Accordingly, we now introduce a space of piecewise con-
tinuous functions and a mode of convergence for piecewise func-
tions capable of detecting when piecewise functions have
differing numbers of ‘‘sub-patterns” (defined below) and whose
mode of convergence is amenable to a two-step optimization pro-
cedure in which trains the f n are the Kn are separately.
3.2. PCNNs are universal approximators of piecewise continuous
functions

We introduce our space of piecewise continuous functions as
well the notion of convergence of piecewise continuous functions.
Then, we show that the PCNNs are universal for this mode of con-
vergence. PCNNs are shown to optimize a certain concrete upper
bound to the ”distance function” of piecewise continuous func-
tions; this upper bound reflects our proposed algorithm (described
in the next section). Lastly, we show that just like in the space
B X;RD� �

, FFNNs with continuous activation functions are not uni-
versal in the space of piecewise continuous functions.

3.2.1. The space of piecewise continuous functions
The motivation for our mathematical framework for describing

and approximating piecewise continuous functions can be moti-
vated by the fact that many FFNNs implement the same continuous
function [28,53]. For instance, [26,54,53] distinguishes between

FFNN’s (abstract) representation, which is an N þ 1-tuple Wnf gNþ1n¼1
of composable affine functions Wn; where these function’s param-
eters encode the information required to implement an FFNN once
the activation function is specified. Indeed, upon fixing r, the real-

ization of an (abstract) FFNN Wnf gNþ1n¼1 is the f̂ 2 C Rd;RD� �
defined

by:

f̂ xð Þ ¼WNþ1 � r � . . . � r �W1 xð Þ: ð3Þ
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The important point here is that, once r is fixed, every (ab-
stract) FFNN representation induces a unique FFNN realization via
(3). However, the converse is generally false. For instance, in
[53], it is shown that if r is the ReLU activation function,
x # max 0; xf g, then any FFNN realization has infinitely many
FFNN representations since ReLU layers can implement the iden-
tity map on RD. Analogously to FFNNs, every piecewise continuous
function of the form (1) has infinitely many different representa-
tions in terms of parts (defined below). Therefore, we introduce
our theory of piecewise continuous functions in analogy with the
above discussion, and we emphasize the distinction between a
piecewise continuous function’s representation and its realization.

The Space of Piecewise Continuous Functions. In a direct analogy,
we define an (abstract) representation of a piecewise continuous

function with N parts to be f n;Knð Þð ÞNn¼1 where f n 2 C X;RD� �
and

Kn 2 Comp Xð Þ; for n ¼ 1; . . . ;N. The set of all abstract representa-
tions of piecewise continuous functions is thereforeS

N2Nþ C X;RD� �� Comp Xð Þ� 	N
. We define the realization of any

piecewise continuous function’s representation f n;Knð Þð ÞNn¼1 to be

the following element R f n;Knð ÞNn¼1
� �

of B X;RD
� �

defined by:

R f n;Knð ÞNn¼1
� �

xð Þ ,
XN
n¼1

f n xð ÞIKn xð Þ: ð4Þ

The relationship (4) between a piecewise function and its repre-
sentation(s) is typically non-trivial. As the next example shows, if
N > 1 then there may be infinitely many different representations
of the same piecewise function.

Example 3.0.3. [Non-Uniqueness of Representation] Let
f xð Þ ¼ x2I 0;1½ � þ exI 1;2½ � and N ¼ 4. For each 0 < r < 1,

x2; 0; 1r
� 	� �

; x2; 1
r ;1
� 	� �

; � 1
r2 ;

1
r

� �� �
; ex; 1;2½ �ð Þ

� �
; x2; 0;1½ �� �

;
�

ex; 1;2½ �ð ÞÞ, and ex; 1;2½ �ð Þ; x2; 0;1½ �� �� �
all represent f.

We would like to quantify the distance between any two piece-
wise continuous functions which is invariant to the choice of rep-
resentation. We would equally like our ”distance function” to be
capable of detecting if and when two piecewise continuous func-
tions require a different minimal number of parts to be repre-
sented. In this way, our metric should be capable of separating
any two functions f and g if f is fundamentally more discontinuous
than g is. This is made rigorous through the following; note, the
infimum of £ is defined to be 1.

Definition 3.1. [Minimal Representation Number] For any
f 2 B X;RD� �

, its minimal representation number is:

N fð Þ , inf N : 9 f n;Knð Þð ÞNn¼1 2 [N2Nþ C X;RD
� �� Comp Xð Þ� 	N

: f
n

¼ R f n;Knð Þð ÞNn¼1
� �

g:

Many functions f 2 B X;RD� �
can be arbitrarily complicated;

these are beyond the scope of our analysis and can not be uni-
formly approximated. Here, infinite complexity is quantified by
N fð Þ ¼ 1.
Example 3.1.1. Let f ¼Pn2NþnI nþ1ð Þ�1 ;n�1½ �; then N fð Þ ¼ 1.

We consider functions as in Example 3.1.1, pathological and,
this is because such functions do not admit any representation of
the form (1). The following result guarantees that if a piecewise
function f has a representation of the form (1), then it must admit
at least one such minimal representation.
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Proposition 3.1.1. If f 2 B X;RD� �
admits a representation of the

form (1) then N fð Þ 2 Nþ exists.
Example 3.1.2. If f 2 C 0;1½ �;Rð Þ and g ¼ I 0;1½ � þ I 1
3;
1
2½ � then N fð Þ ¼ 1

and N gð Þ ¼ 2.

Example 3.1.2 implies that if N fð Þ > 1 then f is discontinuous;
however, N fð Þ ¼ 1 does not imply continuity.

Example 3.1.3. Let f ¼ I 0;12½ � 2 B 0;1½ �;Rð Þ, then we note that

N fð Þ ¼ 1.

Next, we construct a ‘‘distance function”, on the set of piecewise
functions on X with finite minimal representation number. Our
construction is reminiscent quotient of metric spaces (see [55])
where different functions are identified as being part of the same

‘‘equivalence class”. We first equip
S

N2Nþ C X;RD
� �� Comp Xð Þ� 	N

with the following 0;1½ �-valued function:

dStep1 f n;Knð ÞNn¼1; f 0n;Kn0ð ÞN0n¼1
� �

,
max
16n6N

max kf n � f n0k1; dH Kn;Kn0ð Þ� �
: N ¼ N0

1 : N – N0

(
:

ð5Þ

Next, we use the map dStep1 to construct a ”distance function” on
B X;RD
� �

which expresses the similarity of any two function

f ; g 2 B X;RD
� �

therein in terms of their most similar and efficient
yet compatibility representations. A representation

F :¼ f n;Knð ÞNn¼1 2 [N2Nþ C X;RD� �� Comp
� 	N

is understood as being
efficient if #F , N 	 N fð Þ.

Likewise, two representations F and G, respectively represent-
ing f and g, are thought of as being compatible if #F ¼ #G (thus,
dStep1 F;Gð Þ <1) and similar if dStep1 F;Gð Þ 	 0. In this way, we
may quantify the ”distance” between any two bounded functions
in B X;RD� �

by searching through all compatible representations,
which simultaneously penalizes any such representation for its
inefficiency. We define this ”distance function”, or divergence, as
follows.

Definition 3.2. [Piecewise Divergence] The piecewise divergence
between any two f ; g 2 B X;RD� �

is defined as:

DPC f jgð Þ , inf
R Fð Þ¼f ; R Gð Þ¼g

dStep1 F;Gð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}RepresentationSimilarity

þ j#F � N fð Þj þ j#G� N fð Þj:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}CostofComparingInefficientRepresentations ð6Þ

We call DPC a divergence since even if is symmetric, unlike a
metric, it need not satisfy the triangle inequality. Divergences form
a common method of quantifying distance in machine learning.
Notable examples given by Bregman divergences (see [56] for
applications in regularization, [57] for applications in clustering,
and [58] for applications in Bayesian estimation). Examples of a
divergences are the Kullback–Leibler divergence of [59] and, more
generally, f-divergences which quantify the information shared
between different probabilistic quantities [60,61]. Similarly, the
divergence DPC allows us to define the space of piecewise continu-
ous functions by identify all ‘‘finitely complicated bounded func-
tions” with their ‘‘subpatterns” and the ‘‘parts” on which they are
defined.

LetBþ X;RD� �
consist of all f 2 B X;RD� �

with N fð Þ <1. We for-
malize our ‘‘space of piecewise continuous functions”, denoted by
PC X;RD� �

, to be the set of equivalence classes of f 2 Bþ X;RD� �
where any two functions f ; g 2 Bþ X;RD� �

are identified if
DPC f ; gð Þ ¼ 0 and DPC g; fð Þ ¼ 0.
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Unlike B X;RD
� �

, the space PC X;RD
� �

is well-suited to our

approximation problem. This is because, for any f 2 PC X;RD� �
,

the function DPC f j�ð Þ is upper-bounded by the error of approximat-
ing each f n and each Kn individually (using some optimally effi-

cient f n;Knð Þð ÞN fð Þ
n¼1 approximate representation of f). Most notably,

unlike the uniform metric on B X;RD� �
, the approximation error

in approximating each f n and each Kn is fully decoupled from
one another in this upper-bound of DPC f j�ð Þ. Thus, we may approx-
imate each f n and then each Kn in two separate steps.

Proposition 3.2.1 (Decoupled Upper-Bound on DPC f j�ð Þ). Fix
f 2 PC X;RD� �

and suppose that

f n;Knð Þð ÞN fð Þ
n¼1 2 C X;RD� �� Comp Xð Þ� 	N fð Þ

represents f. For any

f̂ n; bKn

� �� �N fð Þ

n¼1
2 C X;RD� �� Comp Xð Þ� 	N fð Þ

the following holds:

DPC f j
XN fð Þ

n¼1
f̂ nIbKn

 !
6
XN fð Þ

n¼1
kf n � f̂ nk1 þ

XN fð Þ

n¼1
dH Kn; bKn

� �
: ð7Þ

The decoupled upper-bound for the piecewise divergence DPC

derived in Proposition 3.2.1 will now be used to show that
PCNNs are universal approximators of piecewise continuous
functions.

As a final point of interest and motivation for our main result,

we demonstrate that sequences of FFNNs in NN
r

d;D
d;D½ � generally do

not converge, with respect to the piecewise divergence, to piece-
wise functions with at-least two parts. This is because the PC diver-
gence between any two functions f and g is lower-bounded by
jN fð Þ � N gð Þj. In particular, since every feed-forward network is
in C X;RD� �

, then the result follows from Example 3.1.2.

Proposition 3.2.2. [FFNNs are Not Universal Piecewise Continuous
Functions] Fix r 2 C Rð Þ. For each f 2 PC X;RD� �

, if N fð Þ > 1 then:

1 6 inf
f̂2NN

r

d;D

DPC f jf̂
� �

. Furthermore, if X ¼ 0;1½ � then,

f ¼ I 0;1½ � þ I 1
3;
1
2½ � 2 PC X;Rð Þ and N fð Þ > 1.
3.2.2. Approximating piecewise continuous functions by PCNNs
Our results, we require the following regularity condition on

r 2 C Rð Þ introduced in [32].

Assumption 3.2.1. r 2 C Rð Þ is not affine. There is an x0 2 R at
which r is continuously-differentiable and r0 x0ð Þ – 0.

We may now state our main result, which shows that PCNNs is
a universal approximator of piecewise continuous function with
respect to the piecewise continuous divergence, DPC . In particular,
PCNNs is strictly more expressive that FFNNs since Proposition
3.2.2 proved that FFNNs are not universal with respect to DPC .

Theorem 3.2.1 (PCNNs are Universal Approximators of Piecewise
Continuous Functions). Fix r satisfying Assumption 3.2.1. Let

f 2 PC 0;1½ �d;RD
� �

;0 < c < 1, and 0 < �. There exist a f̂ 2 PC X;RD� �
with representation bF , f̂ n; bKn

� �� �N
n¼1

where eachf̂ n 2 NN
r

d;D
of width

at-most dþ Dþ 2; bKn , x 2 X : I c;1ð � � rsigmoid � ĉ xð Þn
� �

and where

ĉ 2 NN
r

d;N fð Þ
has width at-most dþ N fð Þ þ 2, such that:

DPC f jbF� �
< �: ð8Þ
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A key step towards establishing Theorem 3.2.1, which we now
highlight, is deriving the following fact that our deep zero-sets are
universal in Comp Xð Þ with respect to the Hausdorff metric dH ,
thereon. This result is the first result describing the universal
approximation of compact sets defined by a deep neural model.
Theorem 3.2.2 (Deep Zero-Sets are Universal Compact Sets). Let r
satisfy Assumption 3.2.1, £– K1; . . . ;KN #X be compact, 0 < �, and

set c , r�1sigmoid 2�1�
� �

. There is an ĉ 2 NNr
d;N of width at-most

dþ N þ 2 for which the deep zero-setsbKn , x 2 X : I c;1ð � � rsigmoid � ĉ xð Þn
� �

simultaneously satisfy:

max
n¼1;...;N

dH Kn; bKn

� �
6 �: ð9Þ

We introduce our parallelizable procedure for training the
PCNNs and we investigate its theoretical properties.
3.3. The training meta-algorithm

Let X be a non-empty set of training data in Rd and let
L : Rd ! 0;1½ Þ quantify the learning problem

inf
f̂2PCNN

X
x2X

L f̂ xð Þ
� �

: ð10Þ

Even if L is smooth, we cannot use gradient-descent type meth-
ods to optimize (10) (in-sample on X) since the map I c;1ð � makes

each bKn into a discontinuous function, and by extension f̂ need
not be differentiable (even in the generalized sense of [62]).
Meta-Algorithm1 proposes an approach for training the PCNN
which avoids passing gradient updates through the indicator func-

tion I c;1ð � in bKn by decoupling the training of the f̂ n
n oN

n¼1
and the

bKn oN

n¼1
.

Algorithm1 Train PCNN.
1: Input: Training data X, Number of Parts N, Depth
parameters J1; J2;W 2 Nþ, FFNN training subroutine
GET FFNN;GET PARTITION subroutine.
2: Output: Trained PCNN fI ,
P

n6Nf
I
n �ð Þ � IKI

n
�ð Þ
3: Xnf gNn¼1  GET PARTITION Xð Þ

4: for n 6 N do
5: fIn  GET FFNN Xn; L; J;Wð Þ

6: end for

7: for x 2 X do� � � �� �

8: ln;x , I L fIn xð Þ 6 minm6NL fIm xð Þ

9: end for � �� �

10: cI  GET FFNN X;H �jln;� ; J2;W

11: for n 6 N do n o

12: Define deep zero-sets Kn , x 2 Rn : cIn xð Þ 6 2�1
13: end for
Step 1 (line 3) initializes partitions of the training data, accord-
ing to an extraneously given subroutine GET PARTITION, an exam-
ple of which we propose in Subroutine 2 below. Step 2 (lines 4-6)

optimizes the networks f̂ n.

Step 4 (lines 7-9) identifies which optimized sub-pattern f̂ n best
performs on any given input and adjusts the partitions. Step 5 (li-
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nes 10–12) interprets the ln;x
� �

n;x in 0;1f g as labels and trains the

ĉn defining the bKn (see Definition 2.1) as a classifier predicting

when fIn offers the best cross-entropy:

H yjln;xð Þ , ln;x ln yð Þ 1� ln;xð Þ ln 1� yð Þ,amongst the fIn
n o

n¼1N
(justi-

fied by Theorem 3.2.3 below).
Though there are many possible clustering algorithms which

can stand-in for the subroutine GET PARTITION in Meta-
Algorithm1, we present a novel geometric option with desirable
properties.

3.3.1. Initializing and training the deep zero-sets
Suppose that we can operate under the ‘‘geometric priors” that

nearby points tend to belong to the same part Kn and, given N, the
parts Knf gNn¼1 are as efficient as possible. This means that Knf gNn¼1
should partition X while having the smallest possible boundaries.
In particular, if X is representative of Knf gNn¼1, then

GET PARTITION seeks to partition the X into N parts Xnf gNn¼1 while
minimizing the distance between every pair of data-points in each
Xn.

This problem is known as the min-cut problem and it is a well-
studied problem in computer science. In particular, the authors of
[63] show that this is an NP-hard problem. Nevertheless, exploiting
the max-flow min-cut duality (see [64]) a randomized-polynomial
time algorithm which approximately solves the min-cut problem
with high probability is developed in [65]. Furthermore, the algo-
rithms tends to assign nearby points to the same part, where the
probability of this happening depends linearly on the distance
between those two points.

One stand-in for GET PARTITION, which we describe in Subrou-
tine 2, modifies the procedure of [65] to fit our setting. Key prop-
erties of our variant are described in Proposition 3.2.3. In
particular, Proposition 3.2.3 (v) states that with high-probability,
two nearby data-points in X are mapped to the same sub-pattern.

We use D Xð Þ , minx;y2X; x–y
1
2 kx� yk to denote the minimum

distance between any pair of training data-points and �D Xð Þ the
mean distance between distinct training data, given by
�D Xð Þ , 1

# x;yð Þ2X2 : x – yf g
P

x;yð Þ2X2 : x–ykx� yk. In Algorithm2, the ran-

domness arises from a which contributes to the random radius
in Line 7 that forms the data partitions. The minimum portion of
the data required in each partition is denoted by q. Line 3, shuffles
the training data. Line 7 use the random radius defined by a to
form the partitions of the data and line 8 extends the partition of
the data to forms parts of the input space. Lines 10–14 ensure each
part is not too large relative to the others.
Algorithm2 GET PARTITION.
1: Input: Training data X; q 2 0;1ð Þ� 	

2: Sample a uniformly from 1

2 ;
1
4

3: Pick a bijection p : 1; . . . ;#Xf g ! X
4: Compute D Xð Þ and �D Xð Þ

5: X0  X
6: loop � �

7: Xn , z 2 X0 : kz�X00k < a�D Xð Þn o

8: KX

n , z 2 Rd : 9x 2 Xnð Þkx� zk 6 D Xð Þ

9: X0  X0 �Xn
10: if #X0
#X

6 q
11: Xn , X0n o

12: KX

n , z 2 Rd : 9x 2 Xnð Þkx� zk 6 D Xð Þ

13: BREAK
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14: end if

15: end loop

16: Output: Xnf g , Xn – £f g, N ,# Xnf g,

KX
n

� �
, KX

n –£
� �
Proposition 3.2.3 (Properties of Subroutine 2). Let X; q ¼ 1, and

KX
n

� �N
n¼1 be as in Subroutine 2, and fix f̂ 1; . . . ; f̂ n 2 NN

r

d;D
. Set

f ¼PN
n¼1f nIKX

n
. The following hold:

(i) For x1; x2 2 X, P minn¼1;...;Nmaxi¼1;2kf̂ xið Þ � f̂ n xið Þk
�

¼ 0ÞP 1� 8 ln #Xð Þþ1ð Þ
�D Xð Þ kx1 � x2k,

(ii) Subroutine 2 terminates in polynomial time,
(iii) For n 6 N; int KX

n

� 	
– £,

(iv) If n –m then KX
n \ KX

m ¼£

Our final result guarantees that, given trained models fIn
n o

,

there exists KI
n

� � � Comp Xð Þ which optimizes the PCNN’s perfor-
mance with arbitrarily high-probability. We quantify this by a
fixed Borel probability measure P on X.

Theorem 3.2.3. [Existence: Performance Optimizing Partition] Fix

f̂ n
n oN

n¼1
2 NN

r

d;D
and L 2 C RD; 0;1½ Þ� �

for which L 0ð Þ ¼ 0. There exists a

compact subset Xd;P #X and a partition of Xd;P satisfying:

(i) P Xd;Pð ÞP 1� d,

(ii) For n 6 N and every x 2 KI
n , L f̂ n xð Þ

� �
¼minm6NL f̂ m xð Þ

� �
.

Moreover, if X#Xd;P and L fIn xð Þ
� �

< minn–~n; ~n6NL fI~n xð Þ
� �

for each

n 6 N; x 2 Xn then, Xn #KI
n .
Remark 3.2.1 (Approximation of Optimal Partition). Applying Theo-

rem 3.2.1, we conclude that for every � > 0 there is a PCNN f̂ such

that DPC
PN

n¼1 f̂ nIKI
n
jf̂

� �
< �;where the f̂ 1; . . . ; f̂ N are from Meta-

Algorithm1 (4–6).
4. Numerical experiments

We evaluate the PCNN’s performance on three different regres-
sion tasks. The goal of our experiments is twofold. The first objec-
tive is to show that the PCNN trained with Meta-Algorithm1 better
approximates the Knf gNn¼1 defining the piecewise function com-
pared to the the benchmark models. The second goal is to show
that the model offers a predictive advantage when the function
being approximated is discontinuous.

4.1. Implementation details

In the following, We implement PCNN, trained with Algorithm
(1) and subroutine 2, against various benchmarks. The first bench-
mark is the FFNNs, which we use to evaluate the predictive perfor-
mance improvement obtained by turning to PCNNs and utilizing a
discontinuous layer. The second class of benchmarks focuses on
the effectiveness of the PCNN’s structure itself. We consider two
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naive alternatives to the proposed model design. Since PCNN can
be viewed as an ensemble model, we compare its predictive per-
formance against a bagged model (FFNN-BAG) wherein the user

trains N distinct feed-forward networks f̂ 1; . . . f̂ N on the deep
zero-sets generated using subroutine 1 which are summed

together to construct the bagged model f̂ FFNNBAG xð Þ ,PN
n¼1 f̂ n xð Þ.

This benchmark has the benefit of distinguishing parts of the
inputs space via the Knf gNn¼1, instead of naively grouping them into
one estimator. Next, to evaluate the effectiveness of the deep par-
titions, we consider the (FFNN-LGT) model, which is identical to
the PCNN in structure except that the deep classifier r defining

the deep partitions bKn is replaced by a simple logistic classifier.
The model quality is evaluated according to their test predic-

tions and the learned model’s complexity/parsimony. Prediction
quality is quantified by mean absolute error (MAE), mean squared
error (MSE), and mean absolute percentage error (MAPE), each
evaluated on the test set. The models are trained by using the mean
absolute error (MAE). The model complexity is assessed by the total
number of parameters in each model (#Par), the average number
of parameters processing each input (#Par/x) and the training
times, either with parallelization (P. time) or without (L. time).

Our numerical experiments emphasize the scope and compati-
bility of Meta-Algorithm1 with most FFNN training procedures.
Fittingly, the experiments in Fig. 1 and Sections 4.3 take
GET FFNN to be the ADAM stochastic optimization algorithm of
[14] whose behaviour is well-studied [66]. The experiments in Sec-
tions 4.2 and 4.4 train the involved FFNNs by randomizing all their
hidden layers and only training their final ‘‘linear readout” layer.
This latter method is also well understood [67–71]).

In the latter experiments, we also benchmark PCNNs against a
deep feedforward network with randomly generated hidden
weights and linear readout trained with ridge-regression (FFNN-
RND). The FFNN-RND and FFNN benchmarks put the speed/preci-
sion trade-off derived from randomization into perspective. This
allows us to gauge the PCNN architecture’s expressiveness as it is
still the most accurate method even after this near-complete ran-
domization; in comparison, the FFNN-RND method’s predictive
power will reduce when compared to the FFNN trained with
ADAM.
4.2. Learning discontinuous target functions

It is well known that the returns of most commonly traded
financial assets forms a discontinuous trajectory [23,72,73]; the
origin of these ‘‘jump discontinuities” are typically abrupt ‘‘regime
switches” of the underlying market dynamics caused by news or
other economic and behavioural factors. The magnitude of discon-
tinuous behaviour depends on the idiosyncrasies of the particular
financial assets. The next experiments illustrate that PCNNs can
effectively model discontinuous function, with varying degrees of
discontinuities, by illustrating that they can replicate the returns
of assets with different levels of volatility; i.e.: the degree to which
any asset’s returns fluctuate.
4.2.1. Mild discontinuities: SnP500 market index replication
In this experiment we train the PCNN, along with the bench-

marks, to predict the next-day SnP500 market index’s returns
using the returns of all its constituents; i.e. the stocks of the 500
largest companies publically traded in the NYSE, NASDAQ, Cboe
BZX exchanges. The dataset consists of 2 years of daily closing data

ending on September 9th 2020. The test set consists of the final two
weeks. All returns are computed with the daily closing prices.

Since the principle parameter, extending FFNNs to PCNNs, is the
integer N, controlling the number of parts and sub-patterns
200
thereon. We study the effect of varying the number of parts when
training a PCNN using Algorithms 1 and 2. Figs. 4(c) explore the
effect of varying N on the considered performance metrics. We find
that the PCNN achieves the best performance amongst the consid-
ered models while relying on the smallest number of trainable
parameters. Thus, PCNN is the most efficient model. Throughout
this ablation experiment, the PCNNs deployed in Figs. 4(c) are
forced to have a comparable number of active neurons, with a fixed
minimum width to ensure expressibility. This is necessary, for
example, even in the case when there is a single-part whereon
PCNNs essentially coincide with FFNNs [74,75].

Figs. 4(a) and 4(b) show that, once enough parts have been built
into the PCNN, it outperforms the feedforward models. From Fig. 4
(b), we also see that the parallelizability and randomization of

Subroutine 2’s 3rd step enables a relatively small increase in paral-
lelized training times compared to the FFNN, even when N

increases. Furthermore, since each f̂ n are progressively narrowed
as N increases, then the training time further accelerates as the

f̂ n are built using progressively fewer neurons.
Fig. 4(b) shows that, P. time increases as the number of parts

defining PCNN do, this is because training ĉ and Subroutine 2 is
not parallelizable and scale in N; albeit not dramatically. Thus,
the number of parts defining the PCNNs’ predictive power, as
expressed through the MAE and MSE losses, rises before tapering
off. This is because a higher number of parts allows more regions
of discontinuities to be captured, but since our experiment fixed
the total number of neurons defining the PCNNs then each sub-
pattern can become too narrow to support expressivity as the
number of parts becomes large. see Table 1. see Fig. 5.

Table 2 shows that the models learning the partitions of the
input space, i.e. FFNN-LGT and PCNN, enhance the predictive per-
formance. Furthermore, the flexibility offered by the paradigm of
Meta-Algorithm1 further improves the prediction of the next-day
Bitcoin closing price.

We examine the effect of the number of partitions; we repeat
the experiment with a fixed number of neurons distributed

amongst the subpatterns f̂ n
n oN

n¼1
with the test set consisting of

the final two weeks of February 20th 2018. We also force the net-

work ĉ in (2), defining all the deep zero-sets bKn

n oN

n¼1
, to scale at

a rate of N�1 to ensure an even comparison between the FFNNs
(i.e.: PCNN with a single part) and the genuine PCNNs with multi-
ple parts. see Fig. 7.

From Fig. 6(a), we see that PCNNs has a lower test-set MAE than
PCNNs with fewer parts, and in particular they outperform PCNNs
with 1 part; i.e.: feedforward neural networks. Figs. 6(a) and 6(c)
show that the PCNNs require fewer neurons to produce their pre-
dictions. Moreover, Table 2 shows that any given input x 2 X is pro-
cessed by far fewer neurons than are available in the entire PCNN;
thus any input is first ‘‘triaged” by the network ĉ then assigned to
its correct deep zero-set and processes by the correct subpattern of
the PCNN specialized to that part of the input space.
4.3. Beating an expert partition

Often one has access to a partition of the training inputs derived
from expert insight. This experiment evaluates the impact of using
Subroutine 2 for GET PARTITION in Meta-Algorithm1 in compar-
ison to using the expert partition. The experiment will be on the
Kaggle housing dataset [76] where there is a commonly accepted
expert partition [77]. see Fig. 8.

We compare the PCNN model also trained using Meta-
Algorithm1 and the ADAM optimizer [14] for GET FFNN but now
with the expert partition in place of Subroutine 2. This benchmark



Table 1
Predictive Performance and Complexity Metrics.

MAE P. Time L. Time #Par/x #Par

FFNN 9.0e+2 – 8.0e+2 6.0e+3 6.0e+3
FFNN-RND 1.3e+4 – 8.7e-3 6.0e+3 6.0e+3
FFNN-BAG 9.0e+2 1e-1 2.4e-1 5.6e+6 5.6e+6
FFNN-LGT 9.1e+2 2.5e+1 2.7e-1 6.1e+6 5.5e+6
PCNN 8.7e+2 9.1e+1 9.2e+1 5.1e+4 5.4 e+5

Table 2
Predictive Performance and Complexity Metrics.

MAE P. Time L. Time #Par/x

FFNN 9.6e+2 – 1.2e+1 1.2e+4
FFNN-RND 7.6e+4 - 2.7e-3 1.2e+4
FFNN-BAG 4.5e+3 3.1e-2 3.9e-1 4.87 + 6
FFNN-LGT 1.0e+3 1.4e-1 5.0e-1 2.0e+6
PCNN 8.2e+2 1.0e+1 1.4e+1 1.2e+5

Fig. 4. Performance as Function of Number of Parts with Variable Number of Neurons.
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(PCNN + EXP) quantifies how well the partition initialization of
Subroutine 2 and the partition updating of Meta-Algorithm1 (steps
10–12) performs against the commonly accepted partition of that
dataset. The PCNN + EXP benchmark takes the [77] partition and
then trains an FFNN independently on each part using [14] before
recombining them with the discontinuous unit (Fig. 2 in red). see
Fig. 9.
Fig. 5. Two Year Cryptocurrency Returns.
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The impact of the partition updating of Meta-Algorithm1 (steps
10–12), given a good initialization of the partition, is quantified by
another benchmark (PCNN + EXP + UP). The PCNN + EXP + UP
benchmark is trained just as PCNN + EXP, but it also incorporates
the partition updating in Meta-Algorithm1 before regrouping the
trained FFNNs by the discontinuous unit (Fig. 2 in red). Thus,
PCNN + EXP + UP measures the impact of Meta-Algorithm1’s the
partition updating steps. Since the PCNN + EXP’s parts are not
implemented by neurons, as are the other benchmark models,
reporting#Par=x in this experiment would not be accurate; rather,
Table 6 reports the total number of parameters (#Par) in each
model.

The PCNN + EXP + UP benchmark contrasts against the FFNN-
LGT benchmark, also considered in the above experiments, which
quantifies the impact of our partitioning procedure against a
naively chosen one with no good prior initialization. The bench-
marks of the previous experiments are included in Table 6 to gauge
the PCNN’s performance.

The PCNN trained with Meta-Algorithm1 out-predicts all the
considered benchmarks; in particular, we note the predictive gap
of 4k$MAE from the second-best benchmark (PCNN + EXP + UP)
and a gap of 8k$from the FFNN benchmark. Thus, no prior knowl-
edge of the input is needed for a successful PCNN deployment
using Meta-Algorithm1.

When examining the importance of proper partitioning, the gap
between the FFNN-LGT and the PCNN models shows that a poorly
chosen partition still impacts the model’s performance. In more
granularity, the PCNN + EXP has an MAE of 3:175e+4 while the
PCNN + EXP + UP has a mildly lower MAE of 3:171e+4. This shows
that an accurate choice of the subroutine GET PARTITION is much
more impactful in Meta-Algorithm1 than the updating steps (10–
12). The reason for this is that the training of PCNN’s sub-patterns
depends on that initialization. Therefore, a poor choice of an initial
partition translates to a reduction of the PCNN’s inductive bias.
This is validated by the small gap between the FFNN-LGT, the
PCNN + EXP, and PCNN + EXP + UP models.
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4.4. Ablation within A controlled environment

We begin by ablating the performance of the PCNN architecture
on various synthetic experiments, wherein we may examine the
effect of each component of the synthetic data on the proposed
model. We study the performance of various learning models when
faced with the non-linear regression problem

yn ¼ f xnð Þ þ r�mn; ð11Þ

where for each n ¼ 1; . . . ;N; xn is sampled uniformly from

0;1½ �d;rP 0 is the variance parameter, and are �mn are i.i.d. random
variables with t-distribution with m degrees of freedom.We vary the
behaviour of f, the dimensionality d, the level of noise r, and the
size of �n’s extreme values captured by the heavy-tailedness param-
eter m, to understand how the PCNN architecture trained according
to Subroutine 2 behaves. We consider piecewise continuous f of the
form:
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f xð Þ ¼ f 1 Axð ÞI 0;2�1r½ Þ Axbmodrð Þ þ f 2 Axð ÞI 2�1r;r½ Þ Axbmodrð Þð Þ;

where r > 0 captures the rate at which the sub-patterns f 1 and f 2
interchange and A is a randomly generated D� 1-matrix with i.i.d.
standard Gaussian entries. For instance, if d ¼ 100 then there is
on average, 10 discontinuities in each direction of the input space.
The difficulties in the non-linear regression problem (11) arise from
the many discontinuities of f, the opposing and oscillating trends of
the f i, the problem’s dimensionality, and the heavy-tailedness of its
noise.

The previous experiment’s predictive results were based on
concrete dollar values; however, the outcomes of these experi-
ments are just numerical values. Therefore to maintain inter-
pretability, all performance metrics will be reported as a fraction
over the principle benchmark, i.e. the FFNN model’s performance
metric.

Each experiment also reports the mean total number of neurons
processing each of the network’s inputs (#Par/x), the total number
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of parts used in building each neural model, and the quantities d;r,
the number of data points, m, and r. To frame the irregularity of
each function being learned, each table will be accompanied by a
plot of the samples from the noiseless target function f (in red)
and the noisy training data (in blue) in the ‘‘visualizable case”
where d ¼ 1 and A ¼ 1.
Table 3
Performance Metrics/FFNN - Varying ‘‘Discontinuity Rate” rð Þ.

MAE P. Time L. Time #Par/x

FFNN 1.00e+00 1.00e+00 – 1.00e+00
FFNN-RND 1.00e+04 1.45e-04 – 2.49e-03
FFNN-BAG 2.96e+00 1.05e-02 1.77 9.95e-01
FFNN-LGT 1.91e+00 1.11e-01 1.87 1.00e+00
PCNN 9.97e-01 1.93e-01 1.95 1.99e+00

FFNN 1.00e+00 1.00e+00 – 1.00e+00
FFNN-RND 9.06e+03 5.35e-05 – 2.49e-03
FFNN-BAG 5.72e+00 3.46e-03 1.58e-1 3.66e-01
FFNN-LGT 5.98e+00 4.30e-02 1.98e-1 3.67e-01
PCNN 9.87e-01 7.70e-02 2.31e-1 7.31e-01

Table 4
Performance Metrics/FFNN – Varying Signal-to-Noise Ratio r; mð Þ.

MAE P. Time L. Time #Par/x

FFNN 1.00e+00 1.00e+00 – 1.00e+00
FFNN-RND 1.69e+01 5.53e-05 – 2.49e-03
FFNN-BAG 1.18e+00 3.48e-02 21.74 3.70e+00
FFNN-LGT 1.11e+00 3.82e-01 22.09 3.72e+00
PCNN 8.86e-01 1.33e-01 21.84 7.40e+00

FFNN 1.00e+00 1.00e+00 – 1.00e+00
FFNN-RND 1.70e+01 7.14e-05 – 2.49e-03
FFNN-BAG 1.21e+00 3.19e-02 27.73 4.98e+00
FFNN-LGT 1.19e+00 2.14e-01 27.91 5.00e+00
PCNN 8.48e-01 8.92e-02 27.78 9.95e+00
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4.4.1. Parsing oscillations from discontinues
This experiment examines how well PCNNs can learn disconti-

nuities in the presence of distinct oscillating subpatterns. For this,
we set f 1 uð Þ ¼ 1þ eu cos uð Þ and f 2 uð Þ ¼ �1� u2 cos uð Þ and vary r.

As r approaches 0; f contains more regions of discontinuities.
Table 4 validates our hypothesis by showing that for small r the
feedforward networks (FFNN and FFNN-RND) have trouble captur-
ing these discontinuities. In contrast, even with a mostly random
training procedure and subpatterns generated by relatively narrow
layers, the PCNN is expressive enough to bypass these issues.

4.4.2. Learning from noisy data
Next, we examine the PCNN’s predictive performance when

there is variable levels of noise. In this experiment, we move
between the low and high ‘‘signal-to-noise ration” regimes by pro-
gressively increasing the variance parameter r and reducing the
parameter m, which increases the size and frequency of extreme
values of the �mx [78]. In this experiment, we consider an oscillatory
pattern f 1 uð Þ ¼ 1þ sin 10uð Þ which is difficult to parse from noisy
data due to its oscillations and a stable pattern f 2 uð Þ ¼ �2� u2.

Table 3 shows that the PCNNmodel is capable of producing reli-
able results even when approximating complicated functions in
the presence of a high signal-to-noise ratio. We find that the sub-

patterns f̂ n selected when noise is high tend to be narrow and the
number of parts tends to be larger. Heuristically, this means that
the number of parts selected for PCNN tends to be large as the
signal-to-noise ratio lowers and visa-versa as the signal-to-noise
ratio increases.

4.4.3. Learning from few training samples
We examine the impact of small sample size on the PCNN mod-

el’s performance. In this experiment, we fix a relatively simple dis-
continuous function f 1 uð Þ ¼ x and f 2 uð Þ ¼ x2, and vary the size of
the training dataset #Datað Þ. Fig. 5 shows that, just as with the
#Parts d r #Data m r

1 100 0.01 10000 30 0.25
1 100 0.01 10000 30 0.25

400 100 0.01 10000 30 0.25
400 100 0.01 10000 30 0.25
400 100 0.01 10000 30 0.25

1 10e+2 0.01 10e+5 30 0.1
1 10e+2 0.01 10e+5 30 0.1

147 10e+2 0.01 10e+5 30 0.1
147 10e+2 0.01 10e+5 30 0.1
147 10e+2 0.01 10e+5 30 0.1

#Parts d r #Data m r

1 10e+2 0.01 10e+5 15 0.25
1 10e+2 0.01 10e+5 15 0.25

1400 10e+2 0.01 10e+5 15 0.25
1400 10e+2 0.01 10e+5 15 0.25
1400 10e+2 0.01 10e+5 15 0.25

1 10e+2 0.1 10e+5 5 0.25
1 10e+2 0.1 10e+5 5 0.25

2000 10e+2 0.1 10e+5 5 0.25
2000 10e+2 0.1 10e+5 5 0.25
2000 10e+2 0.1 10e+5 5 0.25



Table 5
Performance Metrics/FFNN - Varying #Train. Data. #Datað Þ.

MAE P. Time L. Time #Par/x #Parts d r #Data m r

FFNN 1.00e+00 1.00e+00 – 1.00e+00 1 1 0.01 10e+2 30 0.25
FFNN-RND 1.28e+00 4.80e-04 – 4.98e-03 1 1 0.01 10e+2 30 0.25
FFNN-BAG 8.81e-01 2.39e-04 2.38e-4 4.98e-03 1 1 0.01 10e+2 30 0.25
FFNN-LGT 8.81e-01 1.02e-04 1.02e-4 4.99e-03 1 1 0.01 10e+2 30 0.25
PCNN 8.81e-01 4.80e-04 4.80e-04 9.95e-03 1 1 0.01 10e+2 30 0.25

FFNN 1.00e+00 1.00e+00 – 1.00e+00 1 1 0.01 1000 30 0.25
FFNN-RND 1.19e+06 1.40e-04 – 6.23e-04 1 1 0.01 1000 30 0.25
FFNN-BAG 3.54e+11 1.64e-02 4.02 4.99e-01 1 1 0.01 1000 30 0.25
FFNN-LGT 1.28e+00 0.01 4.01 5.01e-01 800 1 0.01 1000 30 0.25
PCNN 1.02e+00 1.09e-01 4.11 9.98e-01 800 1 0.01 1000 30 0.25

Table 6
Comparison of PCNN with Partitioning and Prediction Benchmarks.

Partition Benchmarks Prediction Benchmarks

MAE L. time P. time #Par MAE L. time P. time #Par

PCNN+EXP 3.17e+4 8.45e+4 4.12e+4 8.37e+5 FFNN 3.21e+4 9.28e+4 9.28e+4 3.7e+5
PCNN+EXP + UP 3.17e+4 1.58e+5 6.60e+4 1.36e+5 FFNN-BAG 4.95e+4 6.36e+4 2.89e+4 2.8e+4
PCNN 3.13e+4 1.28e+5 9.28e+4 3.0e+4 FFNN-LGT 3.18e+4 6.37e+4 2.90e+4 2.8e+4
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other experiments which all used 10eþ 5 training instances, when
the #Data is reduced the PCNN model’s predictive performance
remains comparable to that of FFNN model.

Table 5 shows when few training data points are available then
fewer parts are required, because there is enough space for a clas-
sical FFNN (i.e.: a PCNN with a single part) to interpolate the data
even if f is discontinuous. Nevertheless, as the size of the training
dataset increases the FFNN does not have as much flexibility to
meander through the training data as the PCNN model does, as is
seen both in Table 5 and all the previous experiments.

We see that the experiments which used a stochastic optimiza-
tion method for the subroutine GET FFNN tended to use much
fewer partitions than the experiments which randomized the
involved FFNN’s hidden layers and only trained their final layer.
This validates the theoretical results derived in Theorems
3.0.2,3.2.1 guaranteeing that the PCNNs are more expressive than
their FFNN counterparts.
5. Conclusion

We introduced a new deep neural model capable of uniformly
approximating a large class of discontinuous functions. We pro-
vided theoretical universal approximation guarantees for each of
the PCNN’s parts and the deep neural models as a whole. We
showed that the PCNN’s sub-pattern structure could be exploited
to decouple the model’s training procedure, thus, avoided passing
gradient updates through the model’s non-differentiable I c;1ð � unit.
In this way, the PCNN offers the best of both worlds. It is as expres-
sive as deep neural networks with discontinuous activation func-
tions while simultaneously being trainable with (stochastic)
gradient-descent algorithms like feed-forward networks with dif-
ferentiable activation functions.
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Appendix A. Proof of the negative result for FFNNs

The first section in our appendix contains the proofs of results
illustrating the limitations of FFNNs in approximating piecewise
continuous functions.

Proof (Proof of Proposition 3.2.2). By definition (i.e., (6)) we have

that infR Gð Þ¼g jN fð Þ � Gj 6 DPC f jf̂
� �

. Now, since 1 < N gð Þ, then
jN fð Þ � N gð Þj 6 inf
R Gð Þ¼g

jN fð Þ � Gj 6 DPC f jf̂
� �

: ðA:1Þ

Since r 2 C Rð Þ, then NN
r

d;D
#C X;RD� �

and since X is compact then

for each f̂ 2 NN
r

d;D
; f̂ ; IX
� �

is a representation of f̂ . Hence, N fð Þ ¼ 1 and

therefore:

1 6 N fð Þ � 1 ¼ jN fð Þ � N gð Þj: ðA:2Þ
Plugging (A.2) into (A.1) yields the desired lower-bound on

DPC f ; jf̂
� �

for each f̂ 2 NN
r

d;D
. Lastly, Example 3.1.2 gives the last

claim. h
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Next we turn our attention to the proof of Proposition 3.0.1.
Proposition 3.0.1 implied by, and is a special case of, the following
general result.

Assumption 5.0.2 (Regularity of Partition I). The partition Knf gNn¼1
satisfies the following:

(i) Non-Triviality: For each n;m 6 N; int Knð Þ –£ and if n –m
then int Knð Þ \ int Kmð Þ ¼£.
(ii) Pairwise Connectedness: For every n 6 N there is some
~n < N with ~n – n and Kn \ K~n –£,
(iii) Regularity: For n 6 N we have int Kn½ � ¼ Kn.
Proposition 5.0.4. Let Knf gNn¼1 be a partition of X satisfying Assump-
tion 5.0.2 and let r 2 C Rð Þ. For every d > 0, there exists some f d of the
form (1) with supp f dð Þ#K1 [ Kn, for some 1 < n 6 N, such that

inf
f 2 NNr

d;D

supp fð Þ#K1 [ Kn

sup
x2
SN

k¼1Kk

f xð Þ � f d xð Þk kP d:

In what follows, for any d 2 Nþ; x 2 Rd, and d > 0 we use
Ball x; dð Þ to denote the set Ball x; dð Þ , z 2 Rd : kx� zk < d

� �
.

Proof (Proof of Proposition 5.0.4). By Assumption 5.0.2 (ii), there
exists some 1 < n < N such that K1 \ Kn –£ and by Assumption
5.0.2 (i) we have that int K1ð Þ \ int Knð Þ ¼£. Let f d be defined by

f d ¼ �2c1Iint K1ð Þ þ 2cnIint Knð Þ;

where c1; cn 2 RD are such that kc1 � cnk ¼ d. Thus, for every f 2 NN
r

d;D

we compute

sup
x2K

f xð Þ � f d xð Þk k ¼max
i¼1;n

sup
x2int Kið Þ

f xð Þ � f d xð Þk k

P max
i¼1;n

sup
x2int Kið Þ

f xð Þ � cik k: ð3Þ

Let f 2 NN
r

d;D
, then there exist composable affine functions

WJ; . . . ;W1 such that f ¼WJ � r � . . . � r �W1. Since r is continu-
ous, each Wj is continuous, and since the composition of continu-
ous functions is again continuous then f is continuous. Since f is
continuous, then its supremum on any bounded open subset
B#Rd is equal to the maximum of f over the closure of B in Rd;
hence we refine (3) to

sup
x2K

f xð Þ � f d xð Þk k ¼max
i¼1;n

sup
x2int Kið Þ

f xð Þ � cik k

¼max
i¼1;n

max
x2Ki

f xð Þ � cik k: ð4Þ

Suppose that supx2Kkf xð Þ � f d xð Þk < d for some f 2 NN
r

d;D
. Then (4)

implies that f xð Þ 2 Bd cið Þ for i ¼ 1;n but by definition of c1 and cn
we had that kc1 � cnk ¼ d and therefore Bd c1ð Þ \ Bd cnð Þ ¼£, a con-

tradiction. Hence, there does not exist some f 2 NN
r

d;D
satisfying

supx2Kkf xð Þ � f d xð Þk < d. h
Appendix B. Proof of supporting results
.

Proof (Proof of Lemma 3.0.1). If f 2 PCNNNN
r

d;D
, then by definition

there exist f 1; . . . ; f N 2 NN
r

d;D
and some K1; . . . ;KN #X, such that

f ¼PN
n¼1f nIKn . Since NN

r

d;D
#C X;RD� �

, since X is compact, and since
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every continuous function achieves its maximum on a compact
space then, for every n ¼ 1; . . . ;N; supx2Xkf n xð Þk <1. Therefore, we
compute

sup
x2X

XN
n¼1

f n xð ÞIKn xð Þ
�����

����� 6 sup
x2X

XN
n¼1

f n xð ÞIKn xð Þk k

¼ sup
x2X

XN
n¼1

IKn xð Þ f n xð Þk k

6 sup
x2X

XN
n¼1

1 f n xð Þk k <1:

Thus, f is bounded on X if f 2 PCNNNN
r

d;D
. h
Proof (Proof of Proposition 3.1.1). If f 2 B X;RD� �
admits a repre-

sentation of the form
PN0

n¼1f nIKn for some N0 2 Nþ, some
f 1; . . . ; f N0 2 C X;RD� �

and some K1; . . . ;KN0 2 Comp Xð Þ then,

N fð Þ ¼ inf N 2: 9 f n;Knð Þð ÞNn¼1 2 [k2Nþ ; k6N0 C X;RD
� �� Comp Xð Þ� 	kn

: f ¼ R f n;Knð Þð ÞNn¼1
� �

g:

Since the set 1; . . . ;N0f g is finite, then it admits a minimum and
therefore N fð Þ 2 Nþ exists. h
Proof (Proof of Proposition 3.2.1). By definition,

N fð Þ ¼ # f̂ n; bKn

� ��N fð Þ

n¼1
. Therefore, (6) is upper-bounded using

dStep1 of (5) via:

DPC f jR f̂ n; bKn

� �� �N fð Þ

n¼1

� � 
6 inf

R ~f n ;eKn

� �� �N
n¼1

� �
¼f ;N¼N fð Þ

dStep1
~f n; eKn

� �� �N
n¼1

; f̂ n; bKn

� �� �N
n¼1

� 

¼ inf
R ~f n ;eKn

� �� �N
n¼1

� �
¼f ;N¼N fð Þ

max
16n6N

max k~f n � f̂ nk1;dH
eKn; bKn

� �n o ðB:1Þ

6 max
16n6N fð Þ

max kf n � f̂ nk1;dH Kn; bKn

� �n o
: ðB:2Þ

Note that, we have use the fact that f 2 PC X;RD� �
to conclude

that N fð Þ <1 and therefore the infimum in (B.1) is not vacuously

1 and we have used the fact that # f̂ ; bKn

� �� �N fð Þ

n¼1
¼ N fð Þ to con-

clude that each dStep1
~f n; eKn

� �� �N
n¼1

; f̂ n; bKn

� �� �N
n¼1

� 
<1in (B.1)

is finite. Next, we observes that for each N 2 Nþ and each x 2 RN

it follows that max16n6Njxnj 6
PN

n¼1jxnj; thus, we upper-bound on
the right-hand side of (B.2) as follows:

DPC f jR f̂ n; bKn

� �� �N fð Þ

n¼1

� � 
6 max

16n6N fð Þ
max kf n � f̂ nk1; dH Kn; bKn

� �n o
6

XN fð Þ

n¼1
max kf n � f̂ nk1;dH Kn; bKn

� �n o
6

XN fð Þ

n¼1
kf n � f̂ nk1 þ dH Kn; bKn

� �� �
:

ðB:3Þ

Thus, (B.3) implies that the estimate (7) holds. h
Appendix C. Proofs of main results

This appendix contains proofs of the paper’s main results. We
draw the reader’s attention to the fact that many of the paper’s
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results are interdependent and, as such, this appendix organizes
our results’ proofs in their logical order and that this order may dif-
fer from the one used in the paper exposition.

C.1. Proofs concerning the closure of the PCNNs in B X;RD� �
Proof (Proof and Discussion of Theorem 3.0.1). Define the subset
V#B X;RD� �

by, f 2V if and only if there exist some

f 1; f 2 2 C X;RD� �
for which
f ¼ I 1
2;1ð � � rsigmoid � g

� �
f 1 þ f 2;

where g 2o is the same as in part (i). Let f ;~f 2V and k 2 R. Then,

f þ k~f ¼ I 1
2;1ð � � rsigmoid � g

� �
f 1 þ k~f 1
� �

þ f 2 þ k~f 2
� �

2V;

where, mutatis mutandis, we have represented ~f in the form (C.1).

Hence, V is a vector space containing NN
r

d;D
as a proper subspace;

where the latter claim follows by taking f 2 ¼ 0 in the representation

(C.1) and f 1 2 NN
r

d;D
¼ C X;RD� �

arbitrary. In particular, by construc-
d1 I
rsigmoid g�c t1ð Þ;1ð ��rsigmoid�gð Þf ; I

rsigmoid g�c t2ð Þð Þ;1ð ��rsigmoid�g

� 
f

0BB@
1CCA ¼ sup

x2X
I rsigmoid g�c t1ð Þð Þ;1ð � � rsigmoid � g xð Þ
� �

f xð Þ � I rsigmoid g�c t2ð Þð Þ;1ð � � rsigmoid � g xð Þ
� �

f xð Þ
��� ���

0BB@
¼ sup

t2 0;1ð Þ
I rsigmoid g�c t1ð Þð Þ;1ð � � rsigmoid � g c tð Þð Þ
� �

f xð Þ � I rsigmoid g�c t2ð Þð Þ;1ð � � rsigmoid � g c tð Þð Þ
� �

f xð Þ
��� ��� ¼ I rsigmoid g�c t1ð Þð Þ;1ð � � rsigmoid � g c t1ð Þð Þ

� �
f c t1ð Þð Þ

���
� I rsigmoid g�c t2ð Þð Þ;1ð � � rsigmoid � g c t1ð Þð Þ
� �

f c t1ð Þð Þ
��� > 1:
tion, V is a subspace of B X;RD� �
. By the Uniform Limit

Theorem [Theorem 21.6] [25] C X;RD� �
is closed with respect to

d1; hence, C X;RD� �
a closed proper subset of V. Hence, it is not

dense therein. Applying [Excersize 11.4.3 (f)][79] we conclude that
C X;RD
� �

is nowhere dense in V. It is therefore sufficient to show

that V# PCNNNN
r

d;D
to conclude that C X;RD

� �
is nowhere dense

PCNNNN
r

d;D
, and therefore, NN

r

d;D
is nowhere dense in PCNNNN

r

d;D
.

Let f 2V, which we represent according to C.1, and let � > 0. By

the hypothesized density of NN
r

d;D
in C X;RD� �

there exist some

f̂ �1; f̂
�
2 2 NN

r

d;D
satisfying

max
i¼1;2
kf i � f̂ �i k1 <

�
2
: ðC:2Þ

Therefore, from (C.2) and (C.1) we compute the estimate

f � I 1
2;1ð � � rsigmoid � g

� �
f̂ �1 þ f̂ �2

� ���� ���
1

¼; I 1
2;1ð � � rsigmoid � g

� �
f 1 � f̂ �1
� �

þ f 2 � f̂ �2
� ���� ���

1

¼ I 1
2;1ð � � rsigmoid � g

� �
f 1 � f̂ �1

��� ���þ f 2 � f̂ �2
��� ���

1

¼ I 1
2;1ð � � rsigmoid � g

��� ��� f 1 � f̂ �1
��� ���þ f 2 � f̂ �2

��� ���
1

6 1 �
2þ �

2 ¼ �:
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Hence, V#PCNNNN
r

d;D
. The conclude the proof. h

In what follows, we denote d1 f ; gð Þ , f � gk k.

Proof (Proof of Theorem 3.0.2). Since NN
r

d;D
is dense in C X;RD� �

, there

exists an f 2 NN
r

d;D
for which f n xð Þ > 1 for each n ¼ 1; . . . ;D and every

x 2 X. Similarly, since o is dense in C X;Rð Þ then it must contain
some non-constant g for which g xð Þ > 0 for all x 2 X. Since g is non-
constant and X is path-connected then the intermediate value
theorem ([Theorem 24.3] [25]) implies that there exist a curve
c : 0;1ð Þ ! X such that

g � c t1ð Þ < g � c t2ð Þ; ð3Þ
for each 0 < t1 < t2 < 1. Since rsigmoid is injective, then (3) implies
that

0 < rsigmoid g � c t1ð Þð Þ < rsigmoid g � c t2ð Þð Þ < 1: ð4Þ
Consider the subset

Z , I rsigmoid g�c t1ð Þ;1ð ��rsigmoid�gð Þf
� o

#PCNNNN
r

d;D

�
.

By (4), for every 0 < t1 < t2 < 1 we compute:

Therefore, Z is an uncountable discrete subspace of PCNNNN
r

d;D
.

Hence, it cannot contain a countable dense subset (since each
singleton in Z is an open subset of Z). In other words, Z is not
separable. Since every subset of a separable space it is itself

separable, then we conclude that PCNNNN
r

d;D
is not separable. That is,

(i) holds.

Next, we show (ii). Lastly, we show that C X;RD� �
is a subset of

PCNNNN
r

d;D
. Since o contains the zero-function f xð Þ ¼ 0, for all

x 2 X, then for every f 2 NN
r

d;D
, the function ~f , I 3

4;1ð � � rsigmoid � f
� �

f

belongs to PCNNNN
r

d;D
. However, by construction
I 3
4;1ð � � rsigmoid � f xð Þ

� �
¼ 1;

for all x 2 X. Therefore, ~f I 3
4;1ð � � rsigmoid � f

� �
f ¼ 1f ¼ f . Hence,

NN
r

d;D
# PCNNNN

r

d;D
. Since density is transitive, then it follows that

C X;Rd
� �

# PCNNNN
r

d;D
. However, any function in Z does not belong

to C X;RD
� �

since each function in Z is discontinuous. Thus,
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C X;RD
� �

is a proper subset of PCNNNN
r

d;D
. This concludes the proof.

h

C.2. Proof of Theorem 3.2.2

The proof of our main universal approximation Theorem (i.e.,
Theorem 3.2.1) relies on approximating the parts of a minimal rep-
resentation of the target function f 2 PC X;RD� �

using the decou-
pled upper-bound of Proposition 3.2.1. The f 1; . . . ; f N fð Þ in any
such minimal representation are approximated using a classical
Universal Approximation Theorem, such as [32]. Next, the
K1; . . . ;KN fð Þ is such a minimal representation are approximated
using the following next Lemma (which quantitatively refines The-
orem 3.2.2) guarantees that the deep zero sets (defined in (2)) are
dense in Comp Xð Þ with respect to the Hausdorff metric. The fol-
lowing is a quantitative refinement of Theorem 3.2.2.

Theorem 5.0.4 (Deep Zero-Sets are Universal: Quantitative Ver-
sion). Let r satisfy Assumption 3.2.1,£ – K1; . . . ;KN #X be compact,

0 < �, and set c , r�1sigmoid 2�1�
� �

. There is a FFNN ĉ 2 NNr
d;N of width

at-most dþ N þ 2 for which the deep zero-setsbKn , x 2 X : I c;1ð � � rsigmoid � ĉ xð Þn
� �

max
n¼1;...;N

dH Kn; bKn

� �
6 �:

In particular, if X ¼ 0;1½ �d then:

(i) if r ¼max 0; xf g, then f̂ can be implemented by a FFNN of

constant width 2dþ 10 and depth O b�ð Þ�dþ1
� �

,

(ii) if r 2 C1 Rð Þ then f̂ can be implemented by a narrow FFNN
with constant width 2dþ 2 and depth O b��2d

� �
,

where in both cases (i) and (ii), b > 0 is a (possibly different) con-
stant which is independent of r; �, and of K1; . . . ;KN .
Remark 5.0.2. [Implications of Lemma 5.0.4 for Classification]
Lemma 5.0.4 strengthens the recent deterministic universal classi-
fication result in [Theorem 3.11] [36] and the probabilistic classifi-
cation results of [46]. Moreover, the approximation does not omit
sets of Lebesgue measure 0, as do the results of [80].
Remark 5.0.3. [Discussion: Approximation Rates of Theorem 5.0.4
always achieve the optimal depth-rates of [48]] In [48], it is shown
that there are deep ReLU network approximating of constant width
2dþ 10 and depth

O ~b�
� ��dþ1� �� p

; ð5Þ

the achieved the optimal approximate for any 1
p-Hölder function, for

p 2 1;1½ Þ; for some constant ~b > 0. We make two observations
between comparing the rates of (5) and to our rates in Theo-
rem 5.0.4 (i); which describe a network of the same width whose
depth grows at the rate:

O b�ð Þ�dþ1
� �

: ð6Þ

First, we note that (6) coincides with the optimal rates of (5) in
the case where p ¼ 1; that is when the target function is Lipschitz.
However, the ”double exponential” dependence on � and the regu-
larity of the target function is always avoided from our problem;
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this is because the distance function d �;Kð Þ can never be less regu-
lar than p ¼ 1. The case where r is smooth is similar. Here, we
notice that the rate (ii) achieves the rate of [37] only when approx-
imating maximally regular target functions; i.e., Lipschitz
functions.
Proof (Proof of Lemma 5.0.4). Let
K1; . . . ;KN 2 Comp Xð Þ;N 2 N;0 < c < 1, and let 0 < �. For each
n ¼ 1; . . . ;N, [Lemma 1.2] [81] guarantees that the map

C : Rd 3 x# d �;Knð Þð ÞNn¼1 2 RN is 1-Lipschitz continuous. Therefore,
as r is non-affine and continuously differentiable at at-least one
point with non-zero derivative that point, then [Corollary 42]

[37] applies. Hence, there exists a FFNN ĉ 2 NN
r

d;D
d;N½ � r½ � of width

at-most dþ N þ 2 satisfying:

max
n¼1;...;N

max
x2X

d x;Knð Þ � f̂ xð Þn
��� ��� 6 max

n¼1;...;N
max
x2X

C xð Þn � ĉ xð Þn
�� ��

< 2�1�: ð7Þ
Since rsigmoid is continuous and monotone increasing then [The-

orem 1] [82] implies that it is injective with continuous inverse on

its image; thus, we can define c , r�1 2�1�
� �

and we definebKn , x 2 X : I c;1ð � � rsigmoid � ĉ xð Þn � 1 ¼ 0
� �

. Observe that, for each
n ¼ 1; . . . ;N, by (7) we have that:

bKn ¼ x 2 X : ĉ xð Þn < 2�1�
n o

: ð8Þ

It is enough to show the claim for an arbitrary n ¼ 1; . . . ;N;
thus, without loss of generality we do so for an arbitrary such n.

Let us compute the Hausdorff distance between Kn and bKn. If
x 2 Kn, then by (7) and the definition of d �;Kmð Þ we compute:

f̂ xð Þn 6 ĉn xð Þ � 0j j ¼ ĉn xð Þ � d x;Knð Þj j 6 2�1�: ð9Þ

Thus, Kn # bKn; hence, d x; bKn

� �
¼ 0 whenever x 2 Kn. Whence,

by the definition of the Hausdorff distance, we have:

dH Kn; bKn

� �
¼max sup

x2Kn

d x; bKn

� �
; sup
x2bKn

d x;Knð Þ
8<:

9=;
¼ sup

x2bKn

d x;Knð Þ: ð10Þ

It remains to bound the right-hand side of (10). Let x 2 bKn. By

definition of bKn we have that ĉ xð Þn 6 2�1�. Coupling this observa-

tion with the estimate (7), we find that for every x 2 bK :
d x;Knð Þ 6 2�1�þ jĉ xð Þnj 6 2�1�þ 2�1� ¼ �: ð11Þ
Combining the estimate of (11) with (10) yields the desired esti-

mate: d Kn; bKn

� �
¼ sup

x2bKn
d x;Knð Þ 6 �.Lastly, since C is 1-Lipschitz

then if X ¼ 0;1½ �d then, the estimate in (i) follows form [Theorem 2
(a) and (b)] [48] and the estimate (ii) holds by [Corollary 42] [37].
h

C.3. Proof of main result – Theorem 3.2.1

We may now return to the proof of Theorem 3.2.1.

Proof (Proof of Theorem 3.2.1). Let f 2 PC X;RD� �
and let � > 0. By

definition, N fð Þ <1 and therefore by Proposition 3.1.1 there exists

some f n;Knð Þð ÞN fð Þ
n¼1 2 C X;RD� �� Comp Xð Þ� 	N fð Þ

with

R f n;Knð Þð ÞN fð Þ
n¼1

� �
¼ f .
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Since r 2 C Rð Þ satisfies the Kidger-Lyons conditions, then

Lemma 5.0.4 implies that there exists some ĉ 2 NN
r

d;N fð Þ
of width at-

most dþ N fð Þ þ 2 for which, the associated the deep zero-setsbKn , x 2 X : I c;1ð � � rsigmoid � ĉ xð Þn
� �

satisfy:

dH Kn; bKn

� �
< 2N fð Þð Þ�1�; ð12Þ

for each n ¼ 1; . . . ;N fð Þ. Since r satisfies the Kidger-Lyons condi-
tion, then the universal approximation Theorem [Corollary 42]

[37] implies that there are FFNNs f̂ 1; . . . ; f̂ N fð Þ 2 NN
r

d;D
of width at-

most dþ Dþ 2 satisfying the estimate:

max
n¼1;...;N fð Þ

kf n � f̂ nk1 < 2N fð Þð Þ�1�: ð13Þ

Combining the estimates (12) and (13) with the estimate of
Proposition 3.2.1 yields:

DPC f j
XN fð Þ

n¼1
f̂ nIbKn

 !
6
XN fð Þ

n¼1
kf n � f̂ nk1 þ

XN fð Þ

n¼1
dH Kn; bKn

� �
6 N fð Þ 2N fð Þð Þ�1�þ N fð Þ 2N fð Þð Þ�1�

ð14Þ ¼ �:ð15Þ
Thus, the result follows. h
C.4. Proof of Theorem 3.2.3

Theorem 3.2.3 is a special case of the following, more detailed,
result.

Theorem 5.0.5 (Existence of an Optimal Partition: Extended Ver-
sion). Let L : RD ! R be a continuous loss-function for which L 0ð Þ ¼ 0

and let f̂ n
n oN

n¼1
#C X;RD� �

. There exists a Borel measurable function

C : RD ! n 6 Nf g such that for each x 2 RD

min
m6N

L f̂ m xð Þ
� �

¼ L
X
n6N

In C xð Þð Þf̂In xð Þ
 !

; ð16Þ

where In : n ¼ 1N ! 0;1 and In mð Þ ¼ 1 if and only if n ¼ m. Moreover,
for each Borel probability measure P on Rd and each d 2 0;1ð �, there
exists a compact subset Xd;P #Rd such that:

(i) P Xd;Pð ÞP 1� d,
(ii) C is continuous on Xd;P,

(iii) For n 6 N;KI
n , Xd;P \ C�1 nf g½ � is a compact subset of Xd;P on

which
min
m6N

L f̂Im xð Þ
� �

¼ L f̂In xð Þ
� �

; ð17Þ
holds for each x 2 KI
n .

(iv) Xd;P ¼
S

n6NK
I
n and for each n;m 6 N if n –m then

KI
m \ KI

n ¼£.

(v) For each n 6 N;KI
n is an open subset of Xd;P (for its relative

topology). In particular, Xd;P is disconnected.

Moreover, if X#Xd;P and L f̂ n xð Þ
� �

< minn–~n; ~n6NL f̂ ~n xð Þ
� �

for each

n 6 N and each x 2 Xn then for each n 6 N.

� Xn #KI
n ,

� Xn \ KI
m ¼£ for every m 6 N distinct from n.
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Proof (Proof of Theorem 5.0.5). We begin by establishing the exis-
tence of a measurable selector, that is, a measurable function C sat-

isfying (ii) on all of X. First, notice that the map n0; xð Þ# L f̂ n0 xð Þ
� �

,

from n 6 Nf g � Rd to R can be represented by

L f̂ n0 xð Þ
� �

¼
X
n06N

In0 nð ÞL f̂ n0 xð Þ
� �

; ð18Þ

where In0 nð Þ ¼ 1 if n ¼ n0 and 0 otherwise. Next, observe that the

map x# f̂ n0 xð Þ is continuous and this holds for each n0 6 N. Next,

since L is continuous, each f̂ n0 is continuous, and the composition

of continuous functions is again continuous, then L � f̂ n0 is continu-

ous. Therefore, for each n0 6 N the map x # L f̂ n0 xð Þ
� �

is continuous

from Rd to R. Next, observe that for any fixed x 2 Rd, the map

n#
P

n06NIn0 nð ÞL � f̂ n0 xð Þ is a simple-function, thus, it is Borel-

measurable. Hence, the map n; xð Þ#P
n06NIn0 nð ÞL f̂ n0 xð Þ

� �
is a Car-

athéodory function ([Definition 4.50] [83]).
Next, observe that the Umulti-function taking any x 2 Rd to the

set U xð Þ , n 6 Nf g is constant. Therefore, it is a weakly-
measurable correspondence in the sense of [Definition 18.1] [83].
Moreover, since the set n 6 Nf g is a non-empty finite set then
U xð Þ ¼ n 6 Nf g is non-empty and compact for each x 2 Rd. Hence,
U is a weakly-measurable correspondence taking non-empty and
compact-values in the separable metric space Rd. Therefore, the
conditions for the [Measurable Maximum Theorem; Theo-
rem 18.19] [83] are met and thus, there exists some Borel-
measurable function C : Rd ! n 6 Nf g satisfying (16)

min
n6N

X
n06N

In0 nð ÞL f̂ n0 xð Þ
� �

¼ L f̂ C xð Þ xð Þ
� �

; ð19Þ

for every x 2 Rd. Since L 0ð Þ ¼ 0, then, combining (18) and (19) we
find that for every x 2 Rd the following holds (16) holds. This estab-
lishes the first claim.

Since P is a Borel probability measure on X and since X is
separable and metrizable then by [Theorem 13.6] [84] P is a
regular Borel measure on Rd. Since Rd is a metric space, it is a
second-countable Hausdorff, and since Rd is also locally-compact

(since each x 2 Rd satisfies x 2 z 2 Rd : kx� zk < 1
n o

and the latter

is compact by the Heine-Borel theorem) then Rd is a locally-
compact Hausdorff space; thus, [Theorem 7.8] [85] applies there-
fore P is a Radon measure on Rd. Since P is a regular Borel measure
on Rd;Rd is a locally-compact Hausdorff space, C is a Borel
measurable function to n 6 Nf g, and n 6 Nf g is a separable metric
space (when viewed as a metric sub-space of RN), and

P Rd
� �

¼ 1 <1 since P is a probability measure, then [Lusin’s

Theorem; Exercise 2.3.5] [86] applies; whence, for every d 2 0;1ð �
there exists some non-empty compact subset Xd;P #Rd for which
CjXd;P

2 C Xd;P; n 6 Nf g� �
is continuous and for which

P Xd;P
� �

P 1� d. This establishes (i) and (ii).
Since C is continuous on Xd;P, each nf g is closed in n0 6 Nf g,

since the pre-image of closed sets under continuous functions is

again closed. Therefore, for each n 6 N;C�1 nf g½ � is a closed subset

of Rd. Since each KI
n ¼ C�1 n½ � \ Xd;P is a closed subset of Xd;P and

since Xd;P is compact then each KI
n is compact. For each

n 6 N; x 2 KI
n only if x 2 C�1 nf g½ �, only if C xð Þ ¼ n and therefore

condition:

L f̂ xð Þ
� �

¼min
m6N

L f̂Im xð Þ
� �

;
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holds. This gives (17). Observe that

Xd;P \ Rd ¼ Xd;P \ C�1 n 6 Nf g½ � ¼ Xd;P \
[
n6N

C�1 nf g½ �

¼
[
n6N

Xd;P \ C�1 nf g½ � ¼
[
n6N

KI
n :

Therefore, (iii) holds.
Lastly, let n;m 6 N and n –m. Suppose that there exists some

x 2 KI
n \ KI

m. Since x 2 KI
n then C xð Þ ¼ n and since x 2 Km then

C xð Þ ¼ m; therefore n ¼ C xð Þ ¼ m and n –m, a contradiction.
Hence, KI

n \ KI
m ¼£ for each n;m 6 N with n –m and therefore

(iv) holds.
Since n 6 Nf g is a discrete metric space then for each n 6 N, the

singleton set nf g is open in n 6 Nf g. Therefore, by (ii), C is

continuous on Xd;P (for the relative topology) hence C�1 nf g½ � \ Xd;P

is open in Xd;P. By (iv), pick 1 < n 6 N, since KI
n \ KI

1 ¼£ then
[Definition 3.23] [25] is satisfies and therefore Xd;P is not
connected, i.e:: it is disconnected. This gives (v). If X#Xd;P then

by (iv) X#
S

n6NK
I
n . Since, for each n 6 N and each

x 2 Xn; L f̂ n xð Þ
� �

< min~n–n; ~n6NL f̂ ~n xð Þ
� �

then Xn #KI
n by (iii). Note,

moreover, that by (iv) KI
n \ KI

m ¼£ for every n;m 6 N with n 6 m

then there exists a unique nx 2 n 6 Nf g such that x 2 KI
nx and

therefore Xn \ KI
m ¼£for each m 6 N with m – n. h
C.5. Proof of Proposition 3.2.3

Proof (Proof of Proposition 3.2.3). By construction, for each
n 6 N;KX

n –£ and KX
n \Xn #£. Therefore, there exists some

~x 2 KX
n \Xn. Since the set x; yð Þ 2 X2 : x – y

� �
is a non-empty

finite set then the minimumminx;y2X; x–y kx� yk is attained and it is
non-zero since kx� yk > 0 for each x; y 2 X with x – y. Thus,
D Xð Þ > 0. Therefore, Ball ~x;D Xð Þð Þ–£ and contained in KX

n . There-
fore, by definition of the interior of KX

n we compute

int KX
n

� 	 ¼ [
KXn #U#Rd

Uisopen

U 
 Ball ~x;D Xð Þð Þ–£:

This gives (iii).
For (iv), note that by definition of

D Xð Þ;Ball x;D Xð Þð Þ \ Ball y;D Xð Þð Þ ¼£ for each x; y 2 X with x– y
and by construction

KX
n ¼

[
x2Xn

Ball x;D Xð Þð Þ: ð20Þ

Therefore, for n;m 6 N with n –m, by construction
Xn \Xm ¼£ and therefore (20) implies that KX

n \ KX
m ¼£.

For (i), note that, if f is of the form (1), then f ¼Pn6Nf nIint Kn½ �.
Therefore, for x1; x2 2 X, we have that there exits some n 6 N for
which f xið Þ ¼ f n xið Þ for i ¼ 1;2 if (but not only if) x1; x2 2 KX

n . Next,
observe that by construction KX

n \X ¼ Xn. Therefore,

P 9n 6 Nð Þ f xið Þ ¼ f n xið Þfori ¼ 1;2ð Þ
P P 9n 6 Nð Þxi 2 Knfori ¼ 1;2ð Þ: ð21Þ
The central results of [87] implies that

P :9n 6 Nð Þ 9n 6 Nð Þxi 2 Knfori ¼ 1;2ð Þ

6 23

�D Xð Þ kx1 � x2k
X#BallX x1 ;�D Xð Þð Þ

i¼#BallX x1 ;2
�3 �D Xð Þð Þ

i�1

0B@
1CA: ð22Þ
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For each positive integer I, since the partial sums of the har-

monic series
PI

i¼1i
�1 are bounded above by ln Ið Þ þ 1, then (22)

implies that

P :9n 6 Nð Þ 9n 6 Nð Þxi 2 Knfori ¼ 1;2ð Þ

6 23
�D Xð Þ kx1 � x2k

X#BallX x1 ;�D Xð Þð Þ

i¼#BallX x1 ;2
�3 �D Xð Þð Þ

i�1

0B@
1CA

6 23
�D Xð Þ kx1 � x2k

X#BallX x1 ;�D Xð Þð Þ

i¼1
i�1

0@ 1A
6 23

�D Xð Þ kx1 � x2k
X#X

i¼1
i�1

 !
6 23

�D Xð Þ kx1 � x2k ln #Xð Þ þ 1ð Þ:

ð23Þ

Combining (21) and (23) we obtain the following bound

P 9n 6 Nð Þ f xið Þ ¼ f n xið Þfori ¼ 1;2ð Þ

P 1� 23

�D Xð Þ kx1 � x2k ln #Xð Þ þ 1ð Þ: ð24Þ

Lastly, for (ii), by [65] and the definition of Subroutine 2 all but the
last step of Subroutine 2 runs in polynomial time. The final step of
Subroutine 2 runs in O N log Nð Þð Þ since it is simply sorting proce-
dure. Therefore Subroutine 2 terminates in polynomial time. h
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