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Following the line of classification-based two-sample testing, tests based on the Random 
Forest classifier are proposed. The developed tests are easy to use, require almost no 
tuning, and are applicable for any distribution on Rd . Furthermore, the built-in variable im-
portance measure of the Random Forest gives potential insights into which variables make 
out the difference in distribution. An asymptotic power analysis for the proposed tests is 
conducted. Finally, two real-world applications illustrate the usefulness of the introduced 
methodology. To simplify the use of the method, the R-package “hypoRF” is provided.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Two-sample testing via classification methods is an old idea tracing back to the work of Friedman (2004). Generally 
speaking, one adapts the output of a classifier to construct a two-sample test. Let X1, . . . , Xn0 and Y1, . . . , Yn1 be a collection 

of Rd-valued random vectors, such that Xi
iid∼ P and Yi

iid∼ Q , where P and Q are some Borel probability measure on Rd . 
The goal is to test

H0 : P = Q , H A : P �= Q . (1)

Given these iid samples of vectors, we define labels �i = 1 for each Xi and �i = 0 for each Yi to obtain the data 
(
Z j, � j

)
, 

j = 1, . . . , N , for N = n0 + n1, and Z j = Xi or Z j = Yi . On this data, we train a classifier ĝ : Rd → {0, 1}. If ĝ is able 
to “accurately” predict � on some test samples, it is taken as evidence against H0. In this work, we assume the data is 
generated from a mixture distribution

Z j
iid∼ (1 − π)P + π Q ,

such that n1 ∼ Bin(π, N), where Bin denotes the Binomial distribution. While our exposition will be valid for general 
classifiers, we specifically target the use of the Random Forest (RF) classifier in this work. Random Forest is a powerful and 
flexible method developed by Breiman (2001), known to have a remarkably stable performance in applications (see e.g. the 
extensive work of Fernández-Delgado et al., 2014).
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This approach to testing was used in scientific applications, especially in the field of neuroscience. We refer to Kim et al. 
(2021) for an excellent overview of the literature. More recently, much additional work has been produced in this direction 
in the statistical literature, see e.g., Kim et al. (2021); Rosenblatt et al. (2021); Lopez-Paz and Oquab (2018); Borji (2019); 
Gagnon-Bartsch and Shem-Tov (2019); Kim et al. (2019); Cai et al. (2020). The closest relation to our work appears to be the 
recent work of Kim et al. (2021). Our first out-of-sample test in Section 2.1, though derived independently, is closely related 
to their test in Section 9.1. Moreover, Kim et al. (2021, Proposition 9.1) provide a consistency result for general classifiers 
under mild assumptions. We add to this discussion, by showing that under imbalance these assumptions nonetheless break 
down for the Bayes classifier, such that a test based on this classifier is not consistent. Kim et al. (2021) also provide a 
rule of thumb on when to use classification-based tests, as opposed to more fine-tuned statistical tests designed for a 
specific problem. We extend this discussion by adding a recommendation for when to use the RF-based test, as opposed to 
kernel-based tests, as for instance proposed in Gretton et al. (2012a), Gretton et al. (2012), Chwialkowski et al. (2015) and 
Jitkrittum et al. (2016). These tests are natural competitors to classification-based tests and our work indicates that:

1. If the differences between P , Q can be found in the marginal distributions, even sparsely so, the RF-based test tends to 
perform well. We demonstrate in Section 4.2 that the RF-based test succeeds in an example with marginal differences, 
which is difficult for kernel-based tests.

2. If the change is mostly found in the dependency structure, or copula, kernel tests like MMD may be preferable. As is 
demonstrated in Appendix B the RF-based test still has power, but less so than the kernel-based tests.

In addition, the Random Forest classifier brings two features to the two-sample testing problem: The out-of-bag (OOB) 
statistics and the variable importance measures. The former is used to increase sample efficiency, compared to a test based 
on a holdout sample, while the latter provides insights into the source of distributional differences.

Our work also shares similarities with Rosenblatt et al. (2021), Gagnon-Bartsch and Shem-Tov (2019) and Kim et al. 
(2019). The work of Gagnon-Bartsch and Shem-Tov (2019) focuses on the use of the in-sample classification error as a 
test statistic in the balanced case. Rosenblatt et al. (2021) focuses attention on the power of different classifier-based test 
statistics for specific alternatives. They also seem to be the first to propose the use of bootstrap-based classification tests. 
The work of Kim et al. (2019) presents a different approach based on regression and focuses on local testing, i.e. determining 
where the distributional difference appears.

The next two subsections list our contributions and demonstrate the advantages of our method with a small toy example. 
Section 2 introduces the two tests used, the first based on out-of-sample observations and the second on the OOB statistics. 
It closes with a theoretical insight into the consistency of classifier-based tests. Section 3 extends this theoretical insight 
into an asymptotic power analysis for a version of the OOB error-based test, using U-statistics theory. Finally, Section 4
discusses the role of the variable importance measure of the Random Forest and demonstrates the power of our tests with 
simulated as well as two real-world data sets.

1.1. Contributions

Our work differentiates itself from the existing literature in several aspects:

- The out-of-sample test based on the class-wise errors in Proposition 1, though similar to the one in Kim et al. (2021, 
Proposition 1), requires fewer assumptions to conserve the level asymptotically (though Kim et al. (2021) focus on a 
setting, where both the number of observations N → ∞ as well as the dimension d → ∞. In our work, d is assumed to 
be fixed).

- We show that no test based on the Bayes classifier is consistent for π �= 1/2 in Lemma 1, but that a simple change in 
the classifier’s “cutoff” restores consistency.

- We utilize the OOB error and variable importance measure in this context to both increase the power of the test and 
extract more meaning in practice. As shown in simulations, the increase in power with the OOB test is substantial.

- We analyze the asymptotic normality of an OOB error-based test statistic using U-statistics theory and use it to derive 
an expression for the approximate power of the test in Section 3.

- We provide empirical evidence in Section 4.2, and in Appendix B, that our test constitutes an important complementary 
method to powerful kernel-based tests, leading to improved performance in some traditionally difficult examples.

- Finally, we provide the R-package hypoRF available on CRAN, with an implementation of the method.

1.2. Motivational example

We consider a toy example to demonstrate the proposed methodology underlying the Random Forest classifier two-
sample test. We choose P and Q to be five-dimensional multivariate Gaussian probability distributions. The covariance 
matrix of P is the identity and the distribution Q only differs from P in the last two components between which a positive 
correlation of 0.8 is imposed. The OOB statistics-based two-sample test correctly rejects with a p-value of 0.0099 (details 
are given in Section 2.2). Fig. 1 presents a visual summary of the test. The right plot displays the last two components of 
the sampled points. On the top left, the estimated means, by component and class, indicate that no distributional difference 
2
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Fig. 1. (Intro) We sampled 300 observations from a d = 5 dimensional multivariate normal, with no correlation between the marginals. Likewise 300
observations were sampled from a multivariate normal, with the last two marginals having a correlation of 0.8. The Random Forest used 500 trees. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

is visible in the margins. The bottom left plot shows the variable importance measure for each component (as presented 
in Section 4.1). We can see that the last two components are picked-up as relevant variables, according to the threshold 
prescribed by the dotted red line.

Thus our method correctly rejects in this example and moreover delivers a hint as to which components might be 
responsible for the perceived difference in distribution.

2. Framework

Let Z1, . . . , ZN be random vectors with values in X ⊂ Rd and l1, . . . , lN corresponding labels in {0, 1}, collected in a 
dataset D N = {(Zi, li)}N

i=1 with

Zi
iid∼ (1 − π)P + π Q .

A sample Zi coming from the mixture component P (respectively Q ) is labeled li = 0 (respectively li = 1). Let ĝ(Z) :=
g(Z, D Ntrain ) be a classifier trained on a subset D Ntrain of size Ntrain < N of the observed data.

Given the setting above, we now present two tests based on the discriminative ability of ĝ . The first test uses an 
independent test set and is similar to the test proposed by Kim et al. (2021). The second test in Section 2.2 is entirely new 
and uses the OOB error to obtain its decision rule.

2.1. Out-of-sample test

Let Ntest = N − Ntrain be the number of test points. Moreover, n0,r is the number of observations coming from class 0, and 
n1,r the number of observations from class 1, for r ∈ {train, test}. We assume throughout the paper that n0,r ≥ 1, n1,r ≥ 1; 
otherwise we accept the null. If there is no difference in the distribution of the two groups, it clearly holds that
3
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P (�i = 1|Zi) = P (�i = 1) = π.

In other words, �i is independent of Zi . If π = 1/2, a test can be constructed by considering the overall out-of-sample 
classification error,

L̂(ĝ) = 1

Ntest

Ntest∑
i=1

I{ĝ(Zi) �= �i},

which has Ntest L̂(ĝ) ∼ Bin(Ntest , 1/2) under the null hypothesis. Here, I{ĝ(Zi) �= �i} takes the value 1 if ĝ(Zi) �= �i and 0 
otherwise. In an effort to extend this principle for general π , we instead use an approach based on the class-wise errors

L̂(ĝ)
0 = 1

n0,test

∑
{i:�i=0}

I{ĝ(Zi) �= 0}, L̂(ĝ)
1 = 1

n1,test

∑
{i:�i=1}

I{ĝ(Zi) �= 1},

similar to Kim et al. (2021). Define, for j ∈ {0, 1}, the true class-wise loss for a given classifier ĝ as L(ĝ)

j = P (ĝ(Z) �=
j|D Ntrain , � = j). As shown in the proof of Proposition 1, conditioned on the training data and the number of observations 
from class j ∈ {0, 1}, n j,test L̂(ĝ)

j |D Ntrain , n j,test ∼ Bin(n j,test , L
(ĝ)

j ). The loss L(ĝ)

j depends on the classifier and is generally not 
known, even under H0. However if P = Q , it holds that

L(ĝ)
0 + L(ĝ)

1 = P (ĝ(Z) = 1|D Ntrain , � = 0) + P (ĝ(Z) = 0|D Ntrain , � = 1)

= P (ĝ(Z) = 1|D Ntrain) + P (ĝ(Z) = 0|D Ntrain)

= 1,

where we used independence of � and Z when P = Q . As a side-note, this shows that L(ĝ)
0 + L(ĝ)

1 = 1 will be true, as soon as 
� and ĝ(Z) are independent. This follows if P = Q , but also if ĝ negates the dependence between � and Z, which essentially 
means it has no discriminating abilities.

Thus under H0, L(ĝ)
0 = 1 − L(ĝ)

1 . Define for p ∈ [0, 1] the linear combination, L̂(ĝ)
p := (1 − p)L̂(ĝ)

0 + pL̂(ĝ)
1 and

σ̂c := 1/2

√√√√ L̂(ĝ)
0 (1 − L̂(ĝ)

0 )

n0,test
+ L̂(ĝ)

1 (1 − L̂(ĝ)
1 )

n1,test
.

Let moreover,

ĝ(D N) := (
ĝ(Z1), . . . , ĝ(ZN)

)
.

We are then able to formulate the following decision rule:

δB(ĝ(D Ntest )) := I
{

L̂(ĝ)
1/2 − 1/2 < σ̂c�

−1(α) + εNtest

}
, (2)

where �−1(α) is the α quantile of the standard normal distribution and εNtest is a decreasing sequence of small non-random 
numbers. Then

Proposition 1. There exists a sequence εNtest , such that the decision rule in (2) conserves the level asymptotically, i.e.

lim sup
Ntest→∞

P
(
δB(ĝ(D Ntest )) = 1

)≤ α,

under H0 : P = Q .

Proposition 1 is related to the first part of Proposition 9.1 in Kim et al. (2021). Note that we did not put any restrictions 
on how L ĝ

0 , L ĝ
1 change individually and in particular, we made no assumption on how Ntrain behaves, as Ntest goes to 

infinity. The reason for including the sequence εN is that, when Ntrain increases with Ntest , boundary cases are possible, in 
which the variance L ĝ

0(1 − L ĝ
0) + L ĝ

1(1 − L ĝ
1) decreases as 1/Ntest or faster, while still being nonzero for finite N . In this case 

the asymptotic normality of (L̂(ĝ)
1/2 − 1/2)/σ̂c breaks down and it becomes increasingly difficult to control the behavior of 

the acceptance probability under the null. Adding εN makes it possible to circumvent this difficulty, albeit at the price of a 
potential loss in asymptotic power in these boundary cases. If Ntrain grows at the same rate as Ntest , such boundary cases 
appear unlikely in practice. In fact, for a Random Forest classifier, it rather seems the classifier just outputs the majority 
class, such that σ̂c = 0 and L̂(ĝ)

1/2 = 0, L̂(ĝ)
1/2 = 1 or L̂(ĝ)

1/2 = 1, L̂(ĝ)
1/2 = 0. In this case the level is guaranteed, even if εN = 0 for all 

N . We will in the following simply take εNtest = 0 for the remainder of this paper. The test is summarized in Algorithm 1.
4
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We briefly highlight the connection between the above decision rule and the one based on the overall classification error 
L̂(ĝ) , in the case of π = 1/2 and εNtest = 0. Since, for π̂ = n1,test/Ntest .

L̂(ĝ) = (1 − π̂ )L̂(ĝ)
0 + π̂ L̂(ĝ)

1 = L̂(ĝ)

π̂
, (3)

and π̂ → π = 1/2 a.s., it holds that |L̂(ĝ) − L̂(ĝ)
1/2| → 0, a.s. Consequently, the (unconditional) limiting distribution of L̂(ĝ)

1/2 is 
the same as that of L̂(ĝ) or,

√
Ntest

(
L̂(ĝ)

1/2 − 1/2
)

√
1/4

→ N(0,1),

under H0. In particular, the asymptotic variance of L̂(ĝ)
1/2 under the null is the variance of L̂(ĝ) and thus one would expect 

the two tests to behave roughly the same for a large sample size, in the case of π = 1/2. However, as we demonstrate in 
Section 2.3, focusing on an equally weighted in-class loss, instead of the overall loss L̂(ĝ) , can be beneficial when π �= 1/2.

Algorithm 1 BinomialTest ← function(Z , �, ...)
Require: Z ∈RN×d , � ∈ {0, 1}N

1: D Ntrain ← (�i , Z i)
Ntrain
i=1 
 random separation of training data

2: Training of a classifier, ĝ(.) on D Ntrain

3: err0 ← 1
n0,test

∑N
i=Ntrain+1 I{�i = 0}I{ĝ(Zi) �= 0}

4: err1 ← 1
n1,test

∑N
i=Ntrain+1 I{�i = 1}I{ĝ(Zi) �= 1}

5: err1/2 ← 1
2 err0 + 1

2 err1 
 calculating the out-of-sample classification error

6: sig ← 1/2
√

err0(1 − err0)/n0,test + err1(1 − err1)/n1,test

7: if sig > 0 then

8: pvalue ← � 
(

err1/2−1/2
sig

)
9: else if sig == 0 then

10: pvalue ← I{err1/2 − 1/2 > 0}
11: end if
12: return pvalue

Naturally, the split in training and test set is not ideal. For finite sample sizes, one would like to have as many (test) 
samples as possible to detect differences. At the same time, it would be preferable to have the classifier trained on many 
data points. This in fact resembles a bias-variance trade-off, similar to what was described in Lopez-Paz and Oquab (2018): 
Let g∗

1/2 and L
(g∗

1/2)

π be the Bayes classifier and Bayes error respectively, both defined in Section 2.3. For π = 1/2, there is a 

trade-off between the closeness of L(ĝ) to L
(g∗

1/2)

π , which may be achieved through a large training set and the closeness of 
L̂(ĝ) to L(ĝ) , which is generally only true in large test sets.

2.2. Out-of-bag test

For the purpose of overcoming the arbitrary split in training and testing, Random Forest delivers an interesting tool: the 
OOB error introduced in Breiman (2001). Since each tree is built on a bootstrapped sample taken from D N , approximately 
1/3 of the trees will not use the ith observation (�i, Zi). Thus we may use this ensemble of trees not containing observation 
i to obtain an estimate of the out-of-sample error for i. We slightly generalize this here, in assuming we have an ensemble 
learner g: That is, we assume to have iid copies of a random element ν , ν1, . . . , νB , such that each ĝνb (Z) := g(Z, D Ntrain , νb)

is a different classifier. We then consider the average

ĝ(Z) := 1

B

B∑
b=1

ĝνb (Z). (4)

For B → ∞, it holds that (a.s.) ĝ(Z) → Eν [ĝν(Z)]. For Random Forest, ν usually represents the bootstrap sampling of 
observations and the sampling of variables to consider at each splitpoint for a given tree.

Let as before, n0 :=∑N
i=1 I{�i = 0} and n1 :=∑N

i=1 I{�i = 1}, with n0 ≥ 1, n1 ≥ 1. We assume in the following that each 
ĝνb (Z) uses a bootstrapped sample from the original data, as Random Forest does. The class-wise OOB error of such an 
ensemble of learners trained on N observations is defined as

Eoob
0 = 1

n0

N∑
I{�i = 0}I{ĝ−i(Zi) �= 0},
i=1

5
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Eoob
1 = 1

n1

N∑
i=1

I{�i = 1}I{ĝ−i(Zi) �= 1},

Eoob
p = (1 − p)Eoob

0 + pEoob
1 ,

where ĝ−i , represents the average over the ensemble of learners not containing the ith observation for training.
Unfortunately, the test statistic Eoob

1/2 is difficult to handle; due to the complex dependency structure between the ele-
ments of the sum, it is not clear what the (asymptotic) distribution under the null is. For theoretical purposes, we consider 
in Section 3 a solution based on the concept of U-statistics. Here, we recommend using the OOB error together with a per-
mutation test. See e.g., Good (1994) or Kim et al. (2021), who use it in conjunction with the out-of-sample error evaluated 
on a test set: We first calculate the class-wise OOB errors Eoob

0 , Eoob
1 and then reshuffle the labels K times to obtain K

permutations, σ1, . . . , σK say. For each of these new datasets 
(
Zi, �σk(i)

)N
i=1, k ∈ {1, . . . , K }, we calculate the OOB errors

Eoob,k
j := 1

n j

N∑
i=1

I{�σk(i) = j}I{ĝ−i(Zi) �= �σk(i)},

for j ∈ {0, 1}. Under H0, (�1, . . . , �N ) and (Z1, . . . , ZN ) are independent and each Eoob
1/2 is simply an iid draw from the 

distribution F of the random variable Eoob
1/2 |(Z1, . . . , ZN). As such we can accurately approximate the α quantile F −1(α) of 

said distribution by performing a large number of permutations and use the decision rule

δoob(D N) =
{
Eoob

1/2 ≤ F −1(α)
}

. (5)

Thus, as in the decision in Equation (2), the rejection region depends on the data at hand. Nonetheless, the level will be 
conserved, as proven e.g. in Hemerik and Goeman (2018, Theorem 1).

Heuristically, this procedure will have power under the alternative, as in this case there is some dependence between 
(�1, . . . , �N ) and (Z1, . . . , ZN ), formed by the difference in the distribution of the Zi . The OOB error Eoob

1/2 will thus be different 
than those observed under permutations.

The whole procedure is described in Algorithm 2. We name this test “hypoRF”.

Algorithm 2 hypoRF ← function(Z, K , ...)
Require: Z ∈RN×d , � ∈ {0, 1}N , K

1: D N ← (�i , Zi)
N
i=1

2: n j ←∑N
i=1 I{�σk(i) = j}

3: Training of an ensemble learner ĝ(.) on D N

4: O O B j ← 1
n j

∑N
i=1 I{ĝ−i(Zi) �= j}I{�i = j} 
 calculating the OOB-error for j ∈ {0, 1}

5: O O B1/2 ← 1/2(O O B0 + O O B1)

6: for k in 1:K do
7: Dk

N ← (
�σk(i),Zi

)N
i=1 
 reshuffle the label

8: O O Bk
j ← 1

n j

∑N
i=1 I{ĝ−i(Zi) �= j}I{�σk(i) = j}

9: O O Bk
1/2 ← 1/2(O O Bk

0 + O O Bk
1) 
 calculating the OOB-error

10: end for

11: mean ← 1
K

∑K
k=1 O O Bk

1/2

12: sig ←
√

1
K−1

∑K
k=1(O O Bk

1/2 − mean)2

13: if sig > 0 then

14: pvalue ← 1
K+1

(∑K
k=1 I{O O Bk

1/2 < O O B1/2} + 1
)

15: else if sig == 0 then
16: pvalue ← I{O O B1/2 − mean > 0}
17: end if
18: return pvalue

2.3. What classifier to use

The foregoing tests are valid for any classifier g : X → {0, 1}. In practice, most classifiers try to approximate the Bayes
classifier: Let for p, q the densities of P , Q

η(z) := E[�|z] = πq(z)
, (6)
πq(z) + (1 − π)p(z)

6
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then the Bayes classifier is given as g∗
1/2(Z) = I{η(Z) > 1/2}, see e.g., Devroye et al. (1996). It is the classifier with minimal 

classification error, designated the Bayes error L
(g∗

1/2)

π =P (g∗
1/2(Z) �= �). Under H0, this Bayes error will be min(π, 1 − π).

An interesting question is whether g∗
1/2 leads to a consistent test in our framework. We first define consistency for 

a hypothesis test: Let � be the space of tuples of all distributions on Rd , θ = (P , Q ) ∈ �, �0 = {(P , Q ) : P = Q }, �1 =
{(P , Q ) : P �= Q }. Let δ : X N → {0, 1} be a decision rule and φ(θ) := Eθ [δ]. Following e.g., van der Vaart (1998) we call 
a test consistent at level α (for �1), if lim supN supθ∈�0

φ(θ) ≤ α and for any θ ∈ �1, lim infN φ(θ) = 1. For theoretical 
purposes, we extend this definition also to δ which depend on the unknown θ itself, for instance via the densities of P and 
Q respectively.

Under the assumption of equal class probabilities π = 1/2 the Bayes error has the property that,

L
(g∗

1/2)

π = L
(g∗

1/2)

1/2 = 1/2(1 − T V (P , Q )), (7)

where T V (P , Q ) is the total variation distance between P , Q : T V (P , Q ) = 2 supA |P (A) − Q (A)|, with the supremum 
taken over all Borel sets on Rd . As T V defines a metric on the space of all probability measures on Rd , it holds that 
P = Q ⇐⇒ T V (P , Q ) = 0. Consequently, as soon as there is any difference in P and Q , T V (P , Q ) > 0 and L

(g∗
1/2)

π < 1/2. 
Thus we would expect a test based on g∗

1/2 to be consistent. More generally, Kim et al. (2021) prove that if the classifier ĝ
is such that

L̂(ĝ)
0 = L0 + oP (1), L̂(ĝ)

1 = L1 + oP (1), for some L0, L1 ∈ (0,1) with L0 + L1 = 1 − ε, for any ε > 0, (8)

then the decision rule in (2) is consistent.
Unfortunately, this assumption does not hold for g∗

1/2, if π �= 1/2. In this case, simple counterexamples show that even 

when P , Q are different, it might still be that L
(g∗

1/2)

0 + L
(g∗

1/2)

1 = 1.

Lemma 1. Take X ⊂R and π �= 1/2. Then no decision rule of the form, δ(D N) = δ(g∗
1/2(D N )) is consistent.

Thus even though we allow the classifier g∗
1/2 to depend for each (P , Q ) ∈ �1 on the densities p of P and q of Q , 

we are not able to construct a consistent test. The problem appears to be that the Bayes classifier minimizes the overall
classification loss, so that condition (8) cannot hold. In doing so, it focuses too much on the overrepresented class. Indeed, 
we might define the following alternative classifier: For given P , Q let g∗

π be the classifier that minimizes the error Lg
1/2, 

i.e. a classifier that solves the problem

arg min{Lg
1/2 : g : X → {0,1} a classifier}. (9)

It turns out that a slight variation to the Bayes classifier solves this problem:

Lemma 2. The classifier

g∗
π (z) = I {η(z) > π} , (10)

is a solution to (9). Moreover it holds that

1 − T V (P , Q ) = L
g∗
π

0 + L
g∗
π

1 , (11)

for any π ∈ (0, 1).

Thus for this classifier a generalization of (7) holds for any π ∈ (0, 1). In particular, it now yields a consistent test:

Corollary 1. The decision rule δB(g∗
π (D N)) in (2) is consistent for any π ∈ (0, 1).

Since this theoretical classifier needs no training, the two testing approaches coincide with an evaluation of the classifier 
loss on the overall data D N . While this analysis with theoretical classifiers is by no means sufficient for the much more 
complicated case of a classifier ĝ trained on data, it suggests that adapting the “cutoff” in a given classifier might improve 
consistency issues. Indeed, we use the classifier

ĝ(z) = I{η̂(z) > π̂},
where π̂ is an estimate of the prior probability based on the training data. As long as the latter is used (as opposed to the 
test data), the tests above are still valid.
7
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3. Tests based on U-statistics

To avoid the splitting in training and test set, we introduced an OOB error-based test in Section 2.2. In this section, 
we discuss a potential framework to analyze a version of such a test theoretically. For Ntrain ≤ N , let again, n0,train =∑Ntrain

i=1 I{�i = 0} and n1,train =∑Ntrain
i=1 I{�i = 1}. Let D−i

Ntrain
denote the data set without observation (�i, Zi) and define ĝ as 

in (4) for B learners. Then we consider the class-wise OOB error based on Ntrain observations:

hNtrain((�1,Z1), . . . , (�Ntrain ,ZNtrain )) := 1

2

⎛
⎝ 1

n0,train

∑
i:�i=0

I{ĝ−i(Zi) = 1} + 1

n1,train

∑
i:�i=1

I{ĝ−i(Zi) = 0}
⎞
⎠

= 1

2

Ntrain∑
i=1

εoob
i , (12)

where

εoob
i := I{ĝ−i(Zi) �= �i}

(
1 − �i

n0,train
+ �i

n1,train

)
,

for ĝ−i trained on D−i
Ntrain

. Also recall that L ĝ
j = P (ĝ(Z) = j|D Ntrain , � �= j) for j ∈ {0, 1} and L(ĝ)

1/2 = 1/2(L(ĝ)
0 + L(ĝ)

1 ). We 
assume that the number of classifiers in the ensemble, B → ∞, so that ĝ(Z) → Eν [ĝν(Z)], almost surely. We refer to the 
function hNtrain as kernel of size Ntrain and define the incomplete U-Statistics,

Û N,K := 1

K

∑
hNtrain((Zi1 , �i1), . . . , (ZiNtrain

, �iNtrain
)), (13)

where the sum is taken over K randomly chosen subsets of size Ntrain - see e.g., Lee (1990), Fuchs et al. (2013), Mentch and 
Hooker (2016), Peng et al. (2019). We assume that K goes to infinity as N goes to infinity. Since we are only considering 
learners for which the ith sample point is not included, we may simply see ĝ−i as the average of an infinite ensemble build 
on the dataset D−i

Ntrain
only. Consequently, with the assumption of an infinite number of learners, the OOB error is “almost” 

unbiased for E[L(ĝ)
1/2].

Lemma 3. E[hNtrain ((�1, ZNtrain ), . . . , (�Ntrain , ZNtrain ))] =E[L
(ĝ−i)

1/2 ].

Here, E[L
(ĝ−i)

1/2 ] refers to the expected value of the error based on the classifier trained on Ntrain − 1 data points. As such, 
it does not depend on i. This is essentially the same result as in Luntz and Brailovsky (1969) in the case of the leave-one-out 
error.

We are now able to show that hNtrain in (12) is a symmetric function, unbiased for E[L
(ĝ−i )

1/2 ]:

Lemma 4. hNtrain is a valid kernel for the expectation E[L
(ĝ−i)

1/2 ].

Combining arguments from Mentch and Hooker (2016) and Wager and Athey (2017), we obtain the conditions for asymp-
totic normality listed in Theorem 1. Though both papers consider the asymptotic distribution of a Random Forest prediction 
at a fixed z, the U -Statistics theory they develop can be used in our context as well. We also refer to Peng et al. (2019) and 
DiCiccio and Romano (2020), who already refined the results of Mentch and Hooker (2016) for asymptotic normality of a 
U -statistics with growing kernel size. Peng et al. (2019) in particular, derived a similar result to Theorem 1 independently 
from us. Let for random variables ξ1, ξ2, V (ξ1), Cov(ξ1, ξ2) be the variance and covariance respectively and define for the 
following, for c ∈ {1, . . . , Ntrain},

ζc,Ntrain = V (E[hNtrain((Z1, �1), . . . , (ZNtrain , �Ntrain ))|(Z1, �1), . . . , (Zc, �c)]). (14)

In particular, ζ1,Ntrain and ζNtrain,Ntrain will be of special interest. Lee (1990) provides an immediate important result:

Lemma 5. Ntrainζ1,Ntrain ≤ ζNtrain,Ntrain

Lemma 5, which is actually true for any U -statistics, shows that, whenever the second moment of the kernel hNtrain

exists, ζ1,Ntrain = O (N−1 ). Then
train

8
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Theorem 1. Assume that for N → ∞, Ntrain = Ntrain(N) → ∞ and K = K (N) → ∞,

lim
N

K N2
train

N

ζ1,Ntrain

ζNtrain,Ntrain

= 0, (15)

lim
N

√
K Ntrain

N
= 0. (16)

Then,

√
K (Û N,K −E[L(ĝ−1)

1/2 ])√
ζNtrain,Ntrain

D→ N(0,1). (17)

Condition (15) is hard to control in general, but with Lemma 5, it can be seen that choosing

K Ntrain

N
→ 0, (18)

is sufficient for both (15) and (16). If K = log(Ntrain)1+d , this corresponds to the condition log(Ntrain)1+d Ntrain/N → 0 re-
quired by Wager and Athey (2017). In the context of Random Forest, Theorem 1 essentially proves that the OOB error of a 
prediction function that is bounded, is asymptotically normal if the number of trees is “high” and if K forests are trained 
on subsamples such that (15) and (16) are true. Since the OOB error with infinite learners is essentially the leave-one-out 
error in the context of cross-validation, this also means that a test of the cross-validation error could be derived under 
much weaker assumptions as for instance in Fuchs et al. (2013). The key reason for the generality of the result, as was also 
realized by Peng et al. (2019), is that K should be chosen small relative to N . This introduces additional variance, such that 
conditions on ζ1,Ntrain usually required in such results, see e.g., DiCiccio and Romano (2020), can be replaced by (18). This 
has an additional computational advantage, but it may come at the price of reduced power, as will be seen in Corollary 2.

Mentch and Hooker (2016, Section 3) also provide a consistent estimate for ζc,Ntrain , denoted ζ̂c,Ntrain , for any c ∈
{1, . . . , Ntrain}. As its population counterpart, this estimator is also bounded by 1 for all c and Ntrain in our case. Thus 
if for a classifier (15) and (16) are true, the decision rule

δ(ĝ(D N)) = I

⎧⎪⎨
⎪⎩

√
K (Û N,K − 1/2)√

ζ̂Ntrain,Ntrain

< �−1(α)

⎫⎪⎬
⎪⎭ , (19)

constitutes a valid test. To illustrate Theorem 1, Fig. 2 displays the simulated distribution of

Z =
√

K (Û N,K −E[L
(ĝ−i)

1/2 ])√
ζ̂Ntrain,Ntrain

, (20)

for P = N(μ1, I10×10) and Q = N(μ2, I10×10), with μ1 = 0 and μ2 = 0.4/
√

10 · 1. We simulated S = 500 replications using 
N = 6000, K = �2 ∗ log(N)� = 17 and Ntrain = �N/(K ∗ log(log(N)))� = 163.

With this at hand, we can construct another test:

Corollary 2. Assume the conditions of Theorem 1 hold true and that ζ̂Ntrain,Ntrain/ζNtrain,Ntrain

p→ 1. Then the decision rule in (19)
conserves the level asymptotically and has approximate power

�

(
�−1(α) +

√
K

ζNtrain,Ntrain

(1/2 −E[L
(ĝ−i)

1/2 ])
)

. (21)

The test has thus power going to one, as soon as

lim sup
N

E[L
(ĝ−i)

1/2 ] < 1/2. (22)

Condition (22) mirrors condition (A9) in Kim et al. (2021), in that it asks for a better than chance prediction in expectation. 
Crucially, Corollary 2 also illustrates the downside of the weak assumptions used in Theorem 1: The power is dependent 
on 

√
K , as well as the accuracy of the trained classifier through E[L(ĝ−i )]. Since our theory requires that K is of small 

order compared to N , we lose power, at least theoretically. In practice, it appears from simulations with Random Forest that 
ζNtrain,Ntrain decreases to zero and roughly behaves like 1/Ntrain . From the asymptotic power expression above, it can be seen 
that this would offset the small order K . Nonetheless, the test of Corollary 2 appears less powerful than the Binomial and 
9
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Fig. 2. Illustration of the asymptotic normality of the OOB error based test-statistic for the Random Forest classifier. In this example, P = N(0, I10×10) and 
Q = N(0.4/

√
10 · 1, I10×10), an N = 6000, K = 2 �log(N)� = 17 were chosen over 500 replications.

hypoRF test. In the example of Fig. 2, plugging the estimate of E[L
(ĝ−i )

1/2 ] obtained from the 500 repetitions into (21) and 
averaging, we obtain an expected power of 0.63. The actual power, i.e. the fraction of rejected tests over the 500 repetitions, 
is given as 0.61. The Binomial test with Random Forest on the other hand, reaches a power of 1. This illustrates that the test 
derived in this section still lags behind the test that uses sample-splitting. Nonetheless, modern U -statistics theory gives 
powerful theoretical tools to construct OOB-error based tests with tractable asymptotic power.

4. Application

In this section, we first describe the proposed significance threshold for the variable importance measure and apply the 
hypoRF test to simulated and real application cases. In the simulation section, we will compare the hypoRF to recent kernel-
based tests by investigating the power of a selected scenario. A more extensive simulation study is given in Appendix B. In 
Section 4.3, two real data sets from biology and finance are considered.

4.1. Variable importance measure

Variable importance measures in the context of Random Forest are practical tools introduced by Breiman (2001). As a by-
product of the hypoRF test of Section 2.2, we obtain a significance threshold for such a given variable importance measure: 
For each permutation, we record the maximum variable importance measure Iσ over all variables, thus approximating the 
distribution of Iσ under H0. The estimated 1 −α quantile of this distribution will then be used as the significance threshold. 
Every variable with an importance measure above this threshold will be called significant. This should serve as an additional 
hint, as to which components a rejection decision might originate from. We will use in all instances the “Gini” importance 
measure or “Mean Decrease Impurity”, see e.g., Biau and Scornet (2016, Section 5).

Obtaining p-values for the variable importance measure by permuting the response vector was developed much earlier 
in Altmann et al. (2010) and further developed in Janitza et al. (2018). As we are not directly interested in p-values for 
each variable, our approach differs slightly and is more in the spirit of the Westfall-Young permutation approach, see e.g., 
Westfall et al. (1995). Since we use a permutation approach already to define the decision rule of the hypoRF test, the 
significance threshold for the variable importance arises without any additional cost.

Fig. 1 in Section 1.2 demonstrates that in this example the Random Forest is able to correctly identify the effect of 
the last two components. This appears remarkable, as there is only a change in dependence, but no marginal change. On 
the other hand, one could imagine a situation, where no significant variable may be identified, but the test overall still 
rejects. This is illustrated in Fig. 3. In this example, instead of endowing only the last two components with correlations, 
we introduced correlations of 0.4 between all variables when changing from P to Q . Again the hypoRF test manages 
to differentiate between the two distributions. However this time, no significant variables can be identified. This seems 
sensible, as the source of change is divided equally between the different components in this example. Any situation could 
also be a mixture of the above extreme examples: There could be one or several significant variables, but the test still 
rejects, even after removing them. Section 4.3 will show real-world examples in which some variables can be identified to 
be significant in the above sense.
10
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Fig. 3. (Application) We sampled 300 observations from a d = 5 dimensional multivariate normal, with no correlation between the marginals. Likewise 300
observations were sampled from a multivariate normal, where the pairwise correlation between the columns is 0.4. The Random Forest used 500 trees. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.2. Simulation

In what follows, we will demonstrate the power of the proposed tests through simulation, and compare it with 3 kernel 
methods and a recently proposed Random Forest test based on the classification probability. To this end, we will use both 
the first version of the test, as described in Algorithm 1 (“Binomial” test), and the refined version in Algorithm 2 (“hypoRF” 
test). For the latter, as mentioned in Section 2.2, we will use K = 100 permutations. For the Binomial test described in 
Algorithm 1 we decided to set Ntrain = Ntest , as taking half of the data as training and the other half as a test set seems to 
be a sensible solution a priori. To conduct our simulations we will use the R-package “hypoRF” developed by the authors, 
which consists of the “hypoRF” function including the two proposed tests. For each pair of samples, we run all tests and 
save the decisions. The estimated power is then the fraction of rejected among the S tests.

The 3 kernel-based tests include the “quadratic time MMD” (Gretton et al., 2012a) using a permutation approach to 
approximate the H0 distribution (“MMDboot”), its optimized version “MMD-full”, as well as the “ME” test with optimized 
locations, “ME-full” (Jitkrittum et al., 2016). The original idea of the “MMD-full” was formulated in Gretton et al. (2012), 
however they subsequently used a linear version of the MMD. We instead use the approach of Jitkrittum et al. (2016), which 
uses the optimization procedure of Gretton et al. (2012) together with the quadratic MMD from Gretton et al. (2012a). A 
Python implementation of these methods is available from the link provided in Jitkrittum et al. (2016) (https://github .com /
wittawatj /interpretable -test). Among these tests, it seems the MMDboot is still somewhat of a gold-standard, with newer 
methods, such as those presented in Gretton et al. (2012), Chwialkowski et al. (2015) and Jitkrittum et al. (2016), more 
focused on developing more efficient versions of the test that are nearly as good. Nonetheless, the new methods often end 
up being surprisingly competitive or even better in some situations, as recently demonstrated in Jitkrittum et al. (2016). 
Thus we chose to include MMD-full, ME-full as well. For all tests, we use a Gaussian kernel, which is a standard and 
reasonable choice if no a priori knowledge about the optimal kernel is available. The Gaussian kernel requires a bandwidth 
parameter σ , which is tuned in MMD-full and ME-full based on training data. For MMDboot we use the “median heuristic”, 
as described in Gretton et al. (2012a, Section 8), which takes σ to be the median (Euclidean) distance between the elements 
in (Zi)

2n
i=1.

Finally, we consider the method of Cai et al. (2020), which is a test based on the classification probability of Random 
Forest. We would like to emphasize that their first publication on arXiv appeared more than 6 months after our first 
11
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upload on arXiv. As such, we do not view them as a direct competitor. Nonetheless, it seems interesting to compare their 
performance to the one of hypoRF, as they use a permutation approach based on the in-sample probability estimates.

We would like to stress that we did not use any tuning for the parameters of the RF-based tests, just as we did not 
use any tuning for MMDboot. As such, comparing the MMD/ME-full to the other methods might not be entirely fair. On the 
other hand, our chosen sample size might be too small for the optimized versions to work at full capacity. In particular, all 
optimized tests suffer from a similar drawback as our Binomial test: The tuning of the method takes up half of the available 
data. While Jitkrittum et al. (2016) find that ME-full outperforms the MMD, they only observe settings where the latter also 
uses half of the data to tune its kernel, as proposed in Gretton et al. (2012). In our terminology, they only compare ME-full 
to MMD-full, instead of MMDboot. It seems unclear a priori what happens if we instead employ the median heuristic for 
the MMD and let it use all of the available data, as in Gretton et al. (2012a). It should also be said that both optimization 
and testing of the ME-full scale linearly in N , making its performance below all the more impressive. On the other hand, 
the optimization depends on some hyperparameters common in gradient-based optimization, such as step size taken in the 
gradient step, the maximum number of iterations, etc. As this optimization is rather complicated for large d, some parameter 
choices sometimes lead to a longer runtime of the ME than the calculation-intensive hypoRF and CPT-RF. In general, it 
seems both runtime and performance of ME-full are in practice highly dependent on the chosen hyperparameters; we tried 
3 different sets of parameters based on the code in https://github .com /wittawatj /interpretable -test with very different power 
results. The setting used in this simulation study is the exact same as that used in their simulation study.

As discussed in Ramdas et al. (2015), changing the parameters of our experiments (for instance the dimension d) should 
be done in a way that leaves the Kullback-Leibler (KL) Divergence constant. When varying the dimension d we generally 
follow this suggestion, though in our case, this is not as imminent; whatever unconscious advantage we might give our 
testing procedure is also inherent in the competing methods. Finally, also note that, while our methods would be in principle 
applicable to arbitrary classifiers, we did not compare our proposed tests with tests based on other classifiers, such as those 
used in Lopez-Paz and Oquab (2018). Rather, we believe the choice of classifiers for binary classification is a more general 
problem and should be studied separately, as for example done extensively in Fernández-Delgado et al. (2014). The only 
exception to this, is our use of an LDA classifier-based test for the example of a Gaussian mean-shift in B.1.

Where not otherwise stated, we use for the following experiments: N = 600 observations, 300 per class, d = 200 dimen-
sions, K = 100 permutations and 600 trees for the RF-based tests. In some examples, we additionally study a sparse case, 
where the intended change in distribution appears only in c < d components. Throughout, notation such as

P =
T∑

t=1

ωt N(μt,�t),

with ωt ≥ 0, 
∑T

t=1 ωt = 1, μt ∈ Rd , �t ∈ Rd×d means P is a discrete mixture of T d-valued Gaussians. Moreover, if 
P1, . . . , Pd are distributions on R, we will denote by

P =
d∏

j=1

P j,

their product measure on Rd . In other words, in this case, we simply take all the components of X to be independent.
The prime example which we present here in the main text is rather challenging. Let P = N(μ, �) with μ set to 50 · 1

and � = 25 · Id×d . For the alternative, we consider the mixture

Q = λHc + (1 − λ)P ,

λ ∈ [0, 1], and Hc some distribution on Rd . This is a “contamination” of P by Hc with λ determining the contamination 
strength. Here, we take Hc to be another independent (d − c)-variate Gaussian together with c components that are in turn 
independent Binomial(100, 0.5) distributed. We thereby choose parameters such that the Binomial components in Hc have 
the same mean and variance as the Gaussian components and such that differentiating between Binomial and Gaussian is 
known to be difficult. Fig. 4 displays two realizations of a Gaussian and Binomial component respectively. We take d = 200
and c to be 10% of 200, or c = 20.

This problem is difficult; the Binomial and Gaussian components can hardly be differentiated by eye, the contamination 
level varies and the contamination is only detectable in c out of d components. Moreover, the combination of discrete 
and continuous components means the optimal kernel choice might not be clear, even with full information. Thus even 
for 300 observations for each class, no test displays any power until we reach a contamination level of 0.5. However, for 
higher contamination levels, Fig. 5 clearly displays the superiority of the RF-based tests: None of the kernel tests appear 
to significantly rise over the level of 5%. On the other hand, the two proposed tests slowly grow from around 0.05 to 
almost 0.4 in the case of the hypoRF test. Interestingly, while relatively close at first, the difference in power between the 
Binomial test and the hypoRF grows and is starkest for λ = 1, again demonstrating the benefit of using the OOB error as a 
test statistic. Although slightly worse than the hypoRF, the CPT-RF is also clearly beating the Binomial test, highlighting the 
benefit of using the permutation approach with (in-sample) classification probabilities.
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Fig. 4. (Contamination) Illustration of the difference in marginals in the c columns of Hc .

Fig. 5. (Contamination) A point in the figure represents a simulation of size S = 200 for a specific test and a λ ∈ (0.5, 0.55, ..., 1). Each of the S = 200
simulation runs we sampled 300 observations from the contaminated distribution with λ ∈ (0.5, 0.55, ..., 1) and c = 20. Likewise 300 observations were 
sampled from d = 200 independent standard normal distributions. The Random Forest used 600 trees and a minimal node size to consider a random split 
of 4.

Finally, we consider the case d = c, so that Hc simply consists of d independent Binomial distributions. The result is 
displayed in Fig. 6 and all RF-based tests are now extremely strong, while the kernel tests fail to detect any signal.

More simulation examples can be found in Appendix B.

4.3. Real data

As a first application, we consider a high-dimensional microarray data set from Ramey (2016). The data set is about 
breast cancer, originally provided by Gravier et al. (2010). They examined 168 patients with 2905 gene expressions, each 
over a five-year period. The 111 patients with no metastasis of small node-negative breast carcinoma after diagnosis were 
labeled as “good”, and the 57 patients with early metastasis were labeled as “poor”.

The application of the hypoRF to the two groups is summarized in Fig. 7. The test detects a clear difference between the 
groups “good” and “poor” with “8p23”, “8p21” and “3q25” being the most important (and significant) genes. There seems 
to be a high correlation between the genes that are located close to each other (especially within the same chromosome). 
This has the effect that the Random Forest takes a more or less arbitrary choice at a split point between those highly 
correlated genes. This in turn is reflected in the variable importance measure. For this reason, one should be careful when 
interpreting the variable importance measure on a gene level. It appears that chromosomes 8 and 3 play an important role 
in distinguishing the two groups. This finding is in line with Gravier et al. (2010, Figure 2, p. 1129).

In the second example, we are interested in the relative importance of financial risk factors (asset-specific characteristics). 
We claim that a financial risk factor has explanatory power if it contributes significantly to the classification of individual 
13
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Fig. 6. (Contamination) A point in the figure represents a simulation of size S = 200 for a specific test and a λ ∈ (0.5, 0.55, ..., 1). Each of the S = 200
simulation runs we sampled 300 observations from the contaminated distribution with λ ∈ (0.5, 0.55, ..., 1) and d = c. Likewise 300 observations were 
sampled from d = 200 independent standard normal distributions. The Random Forest used 600 trees and a minimal node size to consider a random split 
of 4.

stock returns above or below the overall median. We use monthly stock return data from the Center for Research in Security 
Prices (CRSP). Our sample period starts in January 1977 and ends in December 2016, totaling 40 years. Additionally, we 
obtain the 94 stock-level predictive characteristics used by Gu et al. (2020) from Dacheng Xiu’s webpage - see, http://
dachxiu .chicagobooth .edu. Between 1977 and 2016 we only use stocks for which we have a full return history. This leads to 
501 stocks with 94 stock-specific characteristics. The group “positive” contains stocks and time points for which the return 
was above the overall median and vice versa for the “negative” group. The two groups are balanced and contain more than 
120,000 observations each.

The application of the hpyoRF test on the two groups is summarized in Fig. 8. The ordering of the different risk factors 
is in line with the findings in Gu et al. (2020, Figure 5, p. 34), 1-month momentum being the most important characteristic.

One could argue that stocks that are at time point t close to the overall median are more or less randomly assigned to 
one of the two groups. Hence, a possible option is to only assign a stock and time point to a certain group if the return 
is above (below) a certain threshold, i.e., overall median ±ε . However, we observed that the result is robust for different 
values of ε .

5. Discussion

We discussed in this paper two easy-to-use and powerful tests based on Random Forest and empirically demonstrated 
their efficacy. We presented some consistency and power results and showed a way of adapting the Bayes classifier to obtain 
a consistent test. This adaptation consisted simply of changing the “cutoff” of the classifier. Especially the test based on the 
OOB statistics (hypoRF) proved to be powerful and additionally delivered a way to assess the significance of individual 
variables. This was demonstrated in applications using medical and financial data.

After our first publication on arXiv, Cai et al. (2020) developed an approach based on a smooth transformation of the 
in-sample probabilities. Interestingly, experiments using their approach with OOB probability estimates, as a hybrid of their 
and our methodology, delivered promising results. Investigating this further could lead to a further improvement in power 
for RF-based tests.

Appendix A. Proofs

A.1. Proofs to Section 2

Proposition 2 (Restatement of Proposition 1). The decision rule in (2) conserves the level asymptotically, i.e.

lim sup
Ntest→∞

P
(
δB(ĝ(D Ntest )) = 1

)≤ α,

under H0 : P = Q .

Proof. Let HN = {D Ntrain , n1,test} and assume P = Q . Note that, n1,test , n0,test contain the same probabilistic information, so 
it does not matter which we condition on. We first prove that,
14
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Fig. 7. (Genes) The variable importance (gene importance) combined with the average gene expression is illustrated. The test rejects the null hypothesis 
that the two groups “good” and “poor” come from the same distribution with a p-value of 0.0099. The 3 most important genes are “8p23”, “8p21” 
and “3q25” (marked in red). The green triangles represent the important genes reported by Gravier et al. (2010). Additionally, the plot of the first two 
principal components highlights the fact that there seem to be no obvious clusters. Note: only 15% of the total variance is explained by the first 2 principal 
components. The Random Forest used 1000 trees and a minimal node size to consider a random split of 4. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

n j,test L̂(ĝ)

j |HN ∼ Bin(n j,test, L(ĝ)

j ), (A.1)

for j ∈ {0, 1} and L̂(ĝ)
0 , L̂(ĝ)

1 are conditionally independent given D Ntrain , n1,test . To prove (A.1) first note that by exchangeabil-
ity (due to iid sampling),

∑
i:�i= j

I{ĝ(Zi) �= �i} D=
n j,test∑
i=1

I{ĝ(Zi) �= j},

j ∈ {0, 1}. Conditional on HN , the above is a sum of n j,test iid, elements I{ĝ(Zi) �= j}, with

I{ĝ(Zi) �= j}|HN ∼ Bin(1,P (ĝ(Zi) �= j|HN)).

Finally, since the event ĝ(Zi) �= j is independent of n j,test ,

P (ĝ(Zi) �= j|HN) = P (ĝ(Zi) �= j|D Ntrain)

= P (ĝ(Zi) �= j|D Ntrain , �i = j)

= L(ĝ)

j ,

where we again used the independence of �i and Zi under H0.
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Fig. 8. (Riskfactors) The sorted variable importance of the 94 stock-specific characteristics are illustrated. More information on the 94 characteristics are 
listed in Table C.1 of Appendix C. The Test rejects with a p-value of almost zero. Nevertheless, the only significant characteristic is the 1-month momentum.
16
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Let σ̃ 2
c := L(ĝ)

0 (1 − L(ĝ)
0 ) + L(ĝ)

1 (1 − L(ĝ)
1 ) and recall that

σ̂ 2
c = 1

4

(
L̂(ĝ)

0 (1 − L̂(ĝ)
0 )

n0,test
+ L̂(ĝ)

1 (1 − L̂(ĝ)
1 )

n1,test

)
.

We additionally define, σ̂ 2
j = L̂(ĝ)

j (1 − L̂(ĝ)

j )/n j,test , j ∈ {0, 1}. Moreover, set for all Ntest :

εNtest := ε · 1

Nν
test

,

for some ε > 0 and ν ∈ (1/2, 1). Note that we assume Ntest → ∞, while Ntrain might also increase to infinity at any rate, or 
stay constant. Let for the following

E :=
{

n1,test

Ntest
→ π

}
.

Then P (E) = 1, as n1,test
Ntest

→ π a.s.

First assume for a realized sequence of D Ntrain , Ntest σ̃
2
c → ∞ holds. Then for a realized sequence of n1,test , with the 

property that n1,test/Ntest → π (i.e. on E), it holds that

lim sup
Ntest→∞

P (δB(D N) = 1|HN) ≤ �(�−1(α)) = α.

Indeed in this case, conditional on HN ,

L̂(ĝ)
1/2 − 1/2

σ̂c

D→ N(0,1). (A.2)

This is essentially a consequence of the Lindeberg-Feller Central Limit Theorem, but we provide the exact steps now. The 
key is the following decomposition:

L̂(ĝ)
1/2 − 1/2

σ̂c
= σ̂0

2σ̂c

(L̂(ĝ)
0 − L(ĝ)

0 )

σ̂0
+ σ̂1

2σ̂c

(L̂(ĝ)
1 − L(ĝ)

1 )

σ̂1
, (A.3)

and (
σ̂0

2σ̂c

)2

+
(

σ̂1

2σ̂c

)2

= σ̂ 2
0 + σ̂ 2

1

4σ̂ 2
c

= 1, (A.4)

by the definitions of σ̂0, σ̂1, σ̂c . If Ntest L(ĝ)
0 (1 − L(ĝ)

0 ) → ∞ and Ntest L(ĝ)
1 (1 − L(ĝ)

1 ) → ∞, then it follows directly from the 
Central Limit Theorem that, conditional on HN ,

(L̂(ĝ)
0 − L(ĝ)

0 )

σ̂0

D→ N(0,1) and
(L̂(ĝ)

1 − L(ĝ)
1 )

σ̂1

D→ N(0,1). (A.5)

Thus in this case, (A.2) follows immediately from (A.5) combined with (A.3) and (A.4). If only Ntest L(ĝ)
1 (1 − L(ĝ)

1 ) → ∞, while 
Ntest L(ĝ)

0 (1 − L(ĝ)
0 ) → ∞ is not true, then only the asymptotic normality of L̂1 in (A.5) holds. In this case, the variance is 

driven by L̂1, while the variation in L̂0 is negligible. More formally, using that under the null L(ĝ)
1 = 1 − L(ĝ)

0 , we may write

L̂(ĝ)
1/2 − 1/2

σ̂c
=
⎛
⎜⎝√

n1,test(L̂(ĝ)
0 − L(ĝ)

0 )√
L(ĝ)

1 (1 − L(ĝ)
1 )

+
√

n1,test(L̂(ĝ)
1 − L(ĝ)

1 )√
L(ĝ)

1 (1 − L(ĝ)
1 )

⎞
⎟⎠
√

L(ĝ)
1 (1 − L(ĝ)

1 )
√

n1,test2σ̂c
. (A.6)

Then, √
L(ĝ)

1 (1 − L(ĝ)
1 )

√
n1,test2σ̂c

p→ 1. (A.7)

Moreover, for all δ > 0,
17
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P

⎛
⎜⎝ √

n1,test√
L(ĝ)

1 (1 − L(ĝ)
1 )

∣∣∣L̂(ĝ)
0 − L(ĝ)

0 | > δ | HN

⎞
⎟⎠≤ n1,test

δ2L(ĝ)
1 (1 − L(ĝ)

1 )
V (L̂(ĝ)

0 | HN)

= n1,test

δ2L(ĝ)
1 (1 − L(ĝ)

1 )

L(ĝ)
0 (1 − L(ĝ)

0 )

n0,test

≈ L(ĝ)
0 (1 − L(ĝ)

0 )

L(ĝ)
1 (1 − L(ĝ)

1 )
,

on E . Since Ntest L(ĝ)
1 (1 − L(ĝ)

1 ) → ∞ is still true, this means that

L(ĝ)
0 (1 − L(ĝ)

0 )

L(ĝ)
1 (1 − L(ĝ)

1 )
= Ntest L(ĝ)

0 (1 − L(ĝ)
0 )

Ntest L(ĝ)
1 (1 − L(ĝ)

1 )
→ 0,

on E and thus,

√
n1,test(L̂(ĝ)

0 − L(ĝ)
0 )√

L(ĝ)
1 (1 − L(ĝ)

1 )

p→ 0. (A.8)

Combining the asymptotic normality of L̂(ĝ)
1 as in (A.5), (A.6), (A.7) and (A.8), (A.2) remains true. The same argument can 

be made analogously if Ntest L(ĝ)
0 (1 − L(ĝ)

0 ) → ∞, but Ntest L(ĝ)
1 (1 − L(ĝ)

1 ) → ∞ does not hold. Finally note that εNtest is of too 
small order to make a difference in this case, since 

√
NtestεNtest → 0.

Now assume that Ntrain , D Ntrain are such that lim inf Ntest σ̃
2
c → ∞ does not hold. In this case, using again Markov’s 

inequality,

Ntest(L̂1/2 − 1/2) = OP (1),

conditionally on HN , i.e. limM→∞ lim supNtest
P (Ntest(L̂1/2 − 1/2) > M|HN ) = 0. Thus,

P (δB(D N) = 1|HN) ≤ P
(

Ntest(L̂(ĝ)
1/2 − 1/2) > ε · N1−ν

test |HN

)
→ 0,

as ε · N1−ν
test → ∞.

Thus we have shown that for a realized sequence of D Ntrain , n1,test , with the property that n1,test/Ntest → π , it holds that

lim sup
Ntest→∞

P (δB(D N) = 1|HN) ≤ α.

On the other hand,

lim sup
Ntest→∞

P (δB(D N) = 1) = lim sup
Ntest→∞

E [P (δB(D N) = 1|HN) IE ]

≤E

[
lim sup
Ntest→∞

P (δB(D N) = 1|HN) IE

]

≤ α. �
Lemma 6 (Restatement of Lemma 1). Take X ⊂R and π �= 1/2. Then no decision rule of the form, δ(D N) = δ(g∗

1/2(D N )) is consistent.

Proof. We first show that if π �= 1
2 , one can construct (P , Q ) ∈ �1 that the Bayes classifier is not able to differentiate. 

Consider π > 1/2, d = 1 and Q being the uniform distribution on (0, 1), with density q(z) = I{z ∈ (0, 1)}. We write q =
I(0,1) for short. P is a mixture of Q and another uniform on R ⊂ (0, 1), so that

p = (1 − α)I(0,1) + α
IR

|R| .

Giving Q a label of 1 and P a label of 0 when observing (1 − π)P + π Q , and taking |R| = 1/2, the Bayes classifier is then 
given as g∗ (z) = I{η(z) > 1/2}, where
1/2
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η(z) :=
{
π/(π + (1 − π)(1 + α)), if z ∈ R

π/(π + (1 − π)(1 − α)), if z /∈ R
.

Simple algebra shows that for any 0 < α < min(π/(1 − π) − 1, 1), η(z) > 1/2 and thus g∗
1/2(z) = 1 for all z ∈ (0, 1). In 

particular, L
(g∗

1/2)

0 = 1 and L
(g∗

1/2)

1 = 0, such that L
(g∗

1/2)

0 + L
(g∗

1/2)

1 = 1 and L
(g∗

1/2)

π = 1 − π = min(π, 1 − π).
On the other hand, for any θ0 ∈ �0, η(z) = E[�|z] = π > 1/2, which shows that g∗

1/2(z) = 1 for all z. Consequently, for 
θ1 = (P , Q ) in the above example and θ0 ∈ �0 arbitrary, it holds that

Eθ0 [ f (g∗
1/2(D N))] =Eθ1 [ f (g∗

1/2(D N))],
for any bounded measurable function f : {0, 1}N → R. In particular, since the test conserves the level by assumption, 
φ(θ1) = φ(θ0) ≤ α and the test has no power.�
Lemma 7 (Restatement of Lemma 2). The classifier

g∗
π (z) = I {η(z) > π} , (A.9)

is a solution to (9). Moreover it holds that

1 − T V (P , Q ) = L
g∗
π

0 + L
g∗
π

1 , (A.10)

for any π ∈ (0, 1).

Proof. If Relation (A.10) is true, it immediately follows that g∗
π is a solution to (9). Indeed, let h# P be the push-forward 

measure of P through a measurable function h : X →R. Taking h = g , for an arbitrary classifier g , it holds that

1 − (L
g∗
π

0 + L
g∗
π

1 ) = T V (P , Q )

≥ P (g(X) = 0) − Q (g(Y) = 0)

= P (g(Z) = 0|� = 0) − P (g(Z) = 0|� = 1)

= 1 − (Lg
0 + Lg

1),

where the first inequality follows, because {x : g(x) = 0} and {y : g(y) = 0} are two Borel sets on X . Consequently, it also 
holds for any classifier g that

Lg
1/2 = 1

2
(Lg

0 + Lg
1) ≥ 1

2
(L

g∗
π

0 + L
g∗
π

1 ) = L
g∗
π

1/2.

It remains to prove (A.10): It is well-known that (one of) the sets attaining the maximum in the definition of T V (P , Q )

is given by A∗ := {z : q(z) ≤ p(z)}. It is possible to rewrite A∗:

A∗ =
{

z : πq(z)

(1 − π)p(z) + πq(z)
≤ π

1 − π

(1 − π)p(z)

(1 − π)p(z) + πq(z)

}

=
{

z : η(z) ≤ π

1 − π
(1 − η(z))

}
= {z : η(z) ≤ π}.

Thus

T V (P , Q ) = P (A∗) − Q (A∗) = P (η(z) ≤ π |� = 0) − P (η(z) ≤ π |� = 1)

= 1 − P (η(z) > π |� = 0) − P (η(z) ≤ π |� = 1)

= 1 − (P (η(z) > π |� = 0) + P (η(z) ≤ π |� = 1))

= 1 − (L
g∗
π

0 + L
g∗
π

1 ). �
Corollary 3 (Restatement of Corollary 1). The decision rule δB(g∗

π (D N )) in (2) is consistent for any π ∈ (0, 1).
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Proof. We restate here the decision rule in (2) for completeness,

δB(g∗
π (D N)) = I

{
L̂
(g∗

π )

1/2 − 1/2 < σ̂c�
−1(α) + εN

}
,

since Ntest = N .
First we show that the decision rule conserves the level, for εN = 0 for all N . Since, for any P , Q , P = Q , η(z) = π , 

L̂
(g∗

π )

0 = 0 and L̂
(g∗

π )

1 = 1 a.s., so that for all θ0 ∈ �0 and any sample size,

φ(θ0) = Pθ0(L̂
(g∗

π )

1/2 < 1/2) = 0.

Thus in particular sup�0
φ(θ0) = 0 ≤ α.

Assume θ ∈ �1, so that T V (P , Q ) > 0. We assume first that also T V (P , Q ) < 1. Since now the classifier itself does not 
need to be estimated, it holds that

N j L̂
(g∗

π )

j |N j ∼ Bin(N j, L
(g∗

π )

j ).

Since 1 > T V (P , Q ) > 0, 0 < L
(g∗

π )

0 + L
(g∗

π )

1 < 1, so that N L
(g∗

π )

j (1 − L
(g∗

π )

j ) → ∞ for j = 0 and j = 1. Conditional on any 
sequence of N0, N1, such that N0 → ∞ and N1 → ∞, as N → ∞,√

N0(L̂
(g∗

π )

0 − L
(g∗

π )

0 )
D→ N(0, L

(g∗
π )

0 (1 − L
(g∗

π )

0 )) and
√

N1(L̂
(g∗

π )

1 − L
(g∗

π )

1 )
D→ N(0, L

(g∗
π )

1 (1 − L
(g∗

π )

1 )),

and since L̂
(g∗

π )

0 , L̂
(g∗

π )

1 are conditionally independent, it holds that

L̂
(g∗

π )

1/2 − L
(g∗

π )

1/2

1/2

√
L̂
(g∗

π )

0 (1−L̂
(g∗

π )

0 )

N0
+ L̂

(g∗
π )

1 (1−L̂
(g∗

π )

1 )

N1

= L̂
(g∗

π )

1/2 − L
(g∗

π )

1/2

σ̂c

D→ N(0,1),

as in Proposition 1. Consequently,

P

⎛
⎝ L̂

(g∗
π )

1/2 − 1/2

σ̂c
< �−1(α)

∣∣∣N0

⎞
⎠= P

⎛
⎝ L̂

(g∗
π )

1/2 − L
(g∗

π )

1/2

σ̂c
< �−1(α) − L

(g∗
π )

1/2 − 1/2

σ̂c

∣∣∣N0

⎞
⎠ .

Now for any realized sequence of N0, N1 such that N0 → ∞ and N1 → ∞, as N → ∞, this probability goes to 1, since 
L
(g∗

π )

1/2 − 1/2 < 0 and σ̂c → 0. Since N1/N → π , a.s., and N0 = N − N1, this will be true for almost all sequences. Thus 
applying dominated convergence to the above conditional result, one sees that

P

⎛
⎝ L̂

(g∗
π )

1/2 − 1/2

σ̂c
< �−1(α)

⎞
⎠→ 1.

If T V (P , Q ) = 1 on the other hand, L
(g∗

π )

1/2 = 0 and σ̂c = 0 a.s. and trivially the rejection probability becomes

P (L̂
(g∗

π )

1/2 < 1/2) = 1. �
A.2. Proofs to Section 3

Lemma 8 (Restatement of Lemma 3). E[hNtrain ((�1, ZNtrain ), . . . , (�Ntrain , ZNtrain ))] =E[L
(ĝ−i)

1/2 ].

Proof. First we note that

E[L
ĝ−i
1/2] = 1

2

(
P (ĝ−i(Zi) �= �i|�i = 1) + P (ĝ−i(Zi) �= �i|�i = 0)

)
.

Let B(i) ≤ B be the number of classifiers in the ensemble, not containing observation i. Since we assume that each 
classifier in the ensemble receives a bootstrapped version of D Ntrain , there is a probability p > 0, that any given classifier 
ĝνb will not contain observation i. Since this bootstrapping is done independently for each classifier, we have that B(i) ∼
Bin(p, B). Thus as B → ∞, also B(i) → ∞ a.s. and thus ĝ−i(Z) =Eν [ĝν(D−i

Ntrain
)(Z)], or

E[εoob
i ] = E[I{ĝ−i(Zi) �= �i}

(
1 − �i

n0,train
+ �i

n1,train

)
]

= E

[
I{ĝ−i(Zi) �= �i} 1 − �i

n0,train

]
+E

[
I{ĝ−i(Zi) �= �i} �i

n1,train

]
.
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Now, since �i = I{�i = 1}, it holds that

E

[
I{ĝ−i(Zi) �= �i} �i

n1,train

]
= E

[
1

n1,train
· P (ĝ−i(Zi) �= �i�i = 1|n1,train)

]

= E

[
P (�i = 1|n1,train)

n1,train
· P (ĝ−i(Zi) �= �i, |n1,train, �i = 1)

]

= E

[
P (�i = 1|n1,train)

n1,train

]
· P (ĝ−i(Zi) �= �i|�i = 1), (A.11)

since the event ĝ−i(Zi) �= �i is independent of n1,train given the event �i = 1. Finally,

E

[
P (�i = 1|n1,train)

n1,train

]
= 1

Ntrain
E

⎡
⎣Ntrain∑

i=1

P (�i = 1|n1,train)

n1,train

⎤
⎦

= 1

Ntrain
E

⎡
⎣E

⎡
⎣ 1

n1,train

Ntrain∑
i=1

�i

∣∣∣n1,train

⎤
⎦
⎤
⎦

= 1

Ntrain
. (A.12)

Combining (A.11) and (A.12), we obtain:

E

[
I{ĝ−i(Zi) �= �i} �i

n1,train

]
= 1

Ntrain
P (ĝ−i(Zi) �= �i, |�i = 1).

Similarly,

E

[
I{ĝ−i(Zi) �= �i} 1 − �i

n0,train

]
= 1

Ntrain
P (ĝ−i(Zi) �= �i, |�i = 0).

Thus indeed,

E[hNtrain ((�1,ZNtrain ), . . . , (�Ntrain ,ZNtrain ))] = NtrainE[εoob
1 ] = E[L

ĝ−i
1/2]. �

Lemma 9. hNtrain is a valid kernel for the expectation E[L
(ĝ−i)

1/2 ].

Proof. Unbiasedness was proven above. Symmetry follows, since for any two permutations σ1, σ2, there exists i, j such that 
σ1( j) = σ2(i) := u, and thus

εoob
σ1(i) = E[I{g(Zσ1(i), D−σ1(i)

Ntrain
, θ) �= �σ1(i)}

(
1 − �σ1(i)

n0,train
+ �σ1(i)

n1,train

)
|Dσ1

Ntrain
]

= E[I{g(Zu, D−u
Ntrain

, θ) �= �u}
(

1 − �u

n0,train
+ �u

n1,train

)
|Dσ1

Ntrain
]

= E[I{g(Zu, D−u
Ntrain

, θ) �= �u}
(

1 − �u

n0,train
+ �u

n1,train

)
|Dσ2

Ntrain
]

= εoob
σ2( j),

where Dσs
Ntrain

= (Zσs(1), �σs(1)), . . . , (Zσs(Ntrain), �σs(Ntrain)), s ∈ {1, 2}. But that means the sum in (12) does not change. �
We also need a well-known auxiliary result:

Lemma 10. Let (ξN)N , ξ be an arbitrary sequence of random variables. If every subsequence has a subsequence such that ξN(k(l))
D→ ξ , 

then ξN
D→ ξ .
21



S. Hediger, L. Michel and J. Näf Computational Statistics and Data Analysis 170 (2022) 107435
Theorem 2 (Restatement of Theorem 1). Assume that for N → ∞, Ntrain = Ntrain(N) → ∞ and K = K (N) → ∞,

lim
N

K N2
train

N

ζ1,Ntrain

ζNtrain,Ntrain

= 0, (A.13)

lim
N

√
K Ntrain

N
= 0. (A.14)

Then,

√
K (Û N,K −E[L(ĝ−1)

1/2 ])√
ζNtrain,Ntrain

D→ N(0,1). (A.15)

Proof. Let for the following ξi = (Zi, �i) for brevity and consider the complete U-statistics

Û N := 1( N
Ntrain

)∑hNtrain(ξi1 , . . . , ξiNtrain
), (A.16)

where the sum is taken over all 
( N

Ntrain

)
possible subsets of size Ntrain ≤ N from {1, . . . , N}. From the “H-Decomposition”, see 

e.g., Lee (1990), the variance of Û N can be bounded as,

V (Û N) ≤ N2
train

N
ζ1,Ntrain + N2

train

N2
V (h)

≤ N2
train

N
ζ1,Ntrain + N2

train

N2
ζNtrain,Ntrain ,

see also Wager and Athey (2017, Lemma 7). Thus it holds for all ε > 0 that

P

⎛
⎝

√
K |Û N −E[L ĝ−1

1/2 ]|√
ζNtrain,Ntrain

> ε

⎞
⎠≤ KV (Û N)

ε2ζNtrain,Ntrain

= 1

ε2

(
K N2

train

N

ζ1,Ntrain

ζNtrain,Ntrain

+ K N2
train

N2

)

→ 0,

by (A.13) and (A.14).
We now use the idea of Lee (1990, Lemma A) to prove (17): As in Mentch and Hooker (2016), we denote by SN,Ntrain =

{S j : j = 1, . . . , 
( N

Ntrain

)} the set of all possible subsamples of size Ntrain sampled without replacement. Let MN,Ntrain =
(M S1 , . . . , M S(N,Ntrain)

) be the number of times each subsample appears when sampling K times. Then MN,Ntrain |ξ1, ξ2, . . .
is multinomial distributed. Thus

√
K
(

Û N,K −E[L ĝ−1
1/2 ]

)
√

ζNtrain,Ntrain

D= √
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⎞
⎠ /

√
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D= 1√
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⎛
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Ntrain
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1√
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√
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⎛
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⎞
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ζNtrain,Ntrain

+

√
K

⎛
⎝ 1
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(M Si − K( N
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ζNtrain,Ntrain

⎞
⎠ . (A.17)
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Let ai = (hNtrain (Si) −E[L ĝ−1
1/2 ])/√ζNtrain,Ntrain , as in Lee (1990). Then

Û N,2 =
(

N

Ntrain

)−1 (N,Ntrain)∑
i=1

a2
i ,

is again a U-statistics with E[Û N,2] = 1 and

P (|Û N,2 − 1| > ε) ≤ 1

ε2

N2
train

N
V (E[(hNtrain(Si) −E[L ĝ−1

1/2 ])2|ξ1]) + N2
train

N2

= O

(
Ntrain

N

)

= o(K −1/2),

using Lemma 5. Thus, Û N,2
p→ 1 and this will be true for any given subsequence as well. Similarly,

(
N

Ntrain

)−1 (N,Ntrain)∑
i=1

ai ≤
√

K (Û N −E[L ĝ−1
1/2 ])√

ζNtrain,Ntrain

p→ 0.

For each given subsequence we can thus choose a further subsequence such that Û N,2
a.s.→ 1, as well as 

√
K (U −

E[L ĝ−1
1/2 ])/√ζNtrain,Ntrain

a.s.→ 0. Then it follows from (A.17) and the same characteristic function arguments as in Lee (1990, 
Lemma A) that,

lim
N→∞E[exp

(
ιt

√
K (Û N,K −E[L ĝ−1

1/2 ])/√ζNtrain,Ntrain

)
] =

lim
N→∞E

[
exp

(
ιt

√
K (Û N −E[L ĝ−1

1/2 ])/√ζNtrain,Ntrain

)]
· exp

(
− t2

2

)

= exp

(
− t2

2

)
,

where we suppressed the dependence on the chosen subsequence. Thus the subsequence converges in distribution to N(0, 1)

and by Lemma 10, so does the overall sequence. �
Corollary 4 (Restatement of Corollary 2). Assume the conditions of Theorem 1 hold true and that ζ̂Ntrain,Ntrain/ζNtrain,Ntrain

p→ 1. Then 
the decision rule in (19) conserves the level asymptotically and has approximate power

�

(
�−1(α) +

√
K

ζNtrain,Ntrain

(1/2 −E[L
(ĝ−i)

1/2 ])
)

. (A.18)

Proof. From Theorem 1 and the assumption that ζ̂Ntrain,Ntrain is a consistent estimator, it follows that

√
K (Û N,K −E[L

ĝ−i
1/2])√

ζ̂Ntrain,Ntrain

D→ N(0,1).

In particular, under H0, as E[L
ĝ−i
1/2] = 1/2:

√
K (Û N,K − 1/2)√

ζ̂Ntrain,Ntrain

D→ N(0,1),

so that the decision rule (19) attains the right level asymptotically. Moreover, under the alternative, for t∗ := �−1(α),

P

⎛
⎜⎝

√
K (Û N,K − 1/2)√
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< t∗

⎞
⎟⎠
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= P
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Appendix B. Further simulations

Additional simulation examples can be found in the next three subsections.

B.1. Gaussian mean shift

The classical and most prominent example of two-sample testing is the detection of a mean-shifts between two Gaus-
sians. That is, we assume PX = N(μ1, Id×d) and PY = N(μ2, Id×d) so that the testing problem reduces to

H0 : μ1 = μ2 vs H1 : μ1 �= μ2.

We will implement this by simply taking μ2 = μ1 + (δ/
√

d) · 1, for some δ ∈R.
It appears clear that our test should not be the first to choose here. For d much smaller than n, the optimal test would 

be given by Hotelling’s test (Hotelling, 1931). For d approaching and even superseding n, the MMD with a Gaussian kernel, 
or an LDA classifier as in Kim et al. (2021), might be the logical next choice. For this reason, we also included the LDA 
classifier in this example. For all the other examples, the simulated power of the LDA two-sample test is always no better 
than the level - as expected. Allowing the trees in the forest to grow fully, i.e., setting the minimum node size to a low 
number like 1, one observes a type of overfitting of the Random Forest. Thus we would expect our test to be beaten at least 
by MMDboot. Surprisingly this does not happen: As can be seen in Fig. B.1, all the RF-based tests display an impressive 
amount of power, where our hypoRF test is the strongest in all the provided mean shift scenarios. The Binomial test is 
even stronger than MMDboot and LDA, which seems surprising given the known strong performance of the MMD and LDA 
in this situation. The hypoRF test on the other hand towers above all others, together with MMD-full. In fact, the hypoRF 
and Binomial test almost appear to give respectively an upper and lower bound for the MMD-full in this example. Aside 
from the impressive power of our tests, it is also interesting to note the difference between MMD-full and MMDboot. While 
this seems not surprising, given that MMD-full is essentially the optimized version of MMDboot, we will see in subsequent 
examples that their power ranking is often reversed.

To make the example more interesting, one might ask what happens if the mean shift is not present in all of the 
d components, but only in c < d of them? This was noted to be a difficult problem in Chwialkowski et al. (2015). We 
therefore study a “sparse” case c = 2 (1% out of d = 200) and a “moderately sparse” case c = 20 (10% out of d = 200), now 
considering μ2 = μ1 + (δ/

√
c) · 1. Note that there is some advantage here, as we now scale δ only by a factor of 

√
c <

√
d. 

Thus, if a test is able to detect the sparse changes well, it should display a higher power than before. Indeed as seen in 
Fig. B.2, the performance of the kernel tests is remarkably stable (given the randomness inherent in the simulation), when 
changing from c = d = 200 to c = 20 to c = 2. On the other hand, the performance of the RF-based tests appears to increase. 
Thus the odds only shift in favor of our tests and the test of Cai et al. (2020): For c = 20 the optimized MMD, MMD-full, 
is still competitive, though MMDboot, ME-full, and LDA fall further behind. While the hypoRF, the CPT-RF and the fully 
optimized MMD test reach a power of close to 1, the remaining kernel tests and LDA stay below 0.7. The Binomial test, on 
the other hand, displays almost the same performance as MMD-full, ending with a power of a bit over 0.8. Its performance 
is amplified in the sparse case, in which the Binomial, CPT-RF and hypoRF test beat the other tests by a large margin. 
The power of both tests quickly increases from around 0.05 to 1, as δ passes from 0.2 to 1. While the performance of the 
Binomial test is impressive, the hypoRF test manages to pick up the nuanced changes even faster, at times almost doubling 
the power of the Binomial test. Though the price to pay for this is a much higher computational effort.

It should be said that both the sparse and moderately sparse case here are tailor-made for a RF-based classifier; not 
only are the changes only appearing in a few components, but they appear marginally and are thus easy to detect in the 
splitting process of the trees. Nonetheless, it seems surprising how strong the tests perform. We will now turn to more 
complex examples, where changes in the marginals alone are not as easy, or even impossible to detect.

B.2. Changing the dependency structure

The previous example focused only on cases where the changes in distribution can be observed marginally. For these 
examples, it would in principle be enough to compare the marginal distributions to detect the difference between Q and 
P . An interesting class of problems arises when we instead leave the marginal distribution unchanged but change the 
dependency structure when moving from P to Q . We will hereafter study two examples; the first one concerning a simple 
change from a multivariate Gaussian with independent components to one with nonzero correlation. The second one again 
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Fig. B.1. (Mean Shift) A point in the figure represents a simulation of size S = 200 for a specific test and a δ ∈ (0, 0.0667, 0.1334, 0.2, . . . , 1). Each of the 
S = 200 simulation runs we sampled 300 observations from a d = 200 dimensional multivariate normal distribution with a mean shift of δ√

d
and likewise 

n = 300 observations from d = 200 independent standard normal distributions. The Random Forest used 600 trees and a minimal node size to consider a 
random split of 4.

takes P to have independent Gaussian components, but induces a more complex dependence structure on Q , via a t-copula. 
Thus for what follows, we set P = N(0, Id×d).

First, consider Q = N(0, �), where � is some positive definite correlation matrix. As for any d there are potentially 
d(d − 1)/2 unique correlation coefficients in this matrix, the number of possible specifications is enormous even for small 
d. For simplicity, we only consider a single correlation number ρ , which we either use (I) in all d(d − 1)/2 or (II) in only 
c < d(d − 1)/2 cases.

Fig. B.3 displays the result of case (I). Now the superiority of our hypoRF test is challenged, though it manages to at least 
hold its own against MMD-full and ME-full. The roles of MMD-full and MMD are also reversed, the latter now displaying a 
much higher power, that in fact dwarfs the power of all other tests. MMD-full displays together with the Binomial test the 
smallest amount of power, both apparently suffering from the decrease in sample size. ME-full on the other hand, which 
suffers the same drawback, manages to have a strong performance, on par with the hypoRF. This is all the more impressive, 
keeping in mind that the ME is a test that scales linearly in N . Case (II) can be seen in Fig. B.4. Again the resulting “sparsity” 
is beneficial for our test, with the hypoRF now being on par with the powerful MMD test, and with ME-full only slightly 
above the Binomial test.

In the second example, we study a change in dependence, which is more interesting than the simple change of the 
covariance matrix. In particular, Q is now given by a distribution that has standard Gaussian marginals bound together 
by a t-copula, see e.g., Demarta and McNeil (2005) or McNeil et al. (2015, Chapter 5). While the density and cdf of the 
resulting distribution Q are relatively complicated, it is simple and insightful to simulate from this distribution, as described 
in Demarta and McNeil (2005): Let x �→ tv(x) denote the cdf of a univariate t-distribution with ν degrees of freedom, 
and Tν(R) the multivariate t-distribution with dispersion matrix R and ν degrees of freedom. We first simulate from a 
multivariate t-distribution with dispersion matrix R and degrees of freedom ν , to obtain T ∼ Tν(R). In the second step, 
simply set Y := (

�−1(tv(T1)), . . . ,�
−1(tv(T p))

)T
. We denote Q = T�(ν, R). What kind of dependency structure does Y

have? It is well known that T ∼ tν(R) has

T
D= G−1/2N,

with N ∼ N(0, R) and G ∼ Gamma(ν/2, ν/2) independent of N. As such, the dependence induced in T, and therefore in Q , is 
dictated through the mutual latent random variable G . It persists, even if R = Id×d and induces more complex dependencies 
than mere correlation. These dependencies are moreover stronger, the smaller ν , though this effect is hard to quantify. One 
reason this dependency structure is particularly interesting in our case is that it spans more than two columns, contrary 
to correlation which is an inherent bivariate property. We again study the case (I) with all d components tied together by 
the t-copula, and (II) only the first c = 20 < d components having a t-copula dependency, while the remaining d − c = 180
columns are again independent N(0, 1).

The results for case (I) are shown in Fig. B.5. Now our tests, together with ME-full cannot compete with CPT-RF, MMD 
and MMD-full. However for the ME-full, this again depends on the chosen hyperparameters, for some settings ME-full was 
as good as MMD-full. Though there appears to be no clear way how to determine this. Both MMD-based tests manage to 
stay at almost one, even for ν = 8, which seems to be an extremely impressive feat. The CPT-RF test falls behind the two 
MMD-based tests, but has still an impressively high power, compared to our hypoRF test. Our best test, on the other hand, 
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Fig. B.2. (Mean Shift) A point in the figures represents a simulation of size S = 200 for a specific test and a δ ∈ (0, 0.125, 0.25, ..., 1). Each of the S = 200
simulation runs we sampled n = 300 observations from a d = 200 dimensional multivariate Gaussian distribution, where c columns have a shift in mean 
of δ√

c
and likewise n = 300 observations from d = 200 independent standard normal distributions. The Random Forest used 600 trees and a minimal node 

size to consider a random split of 4.

loses power quickly for ν > 4, while the Binomial test does so even for ν > 2. The results for case (II) shown in Fig. B.6, are 
similarly insightful. Given the difficulty of this problem, it is not surprising that almost all of the tests fail to have any power 
for ν > 3. The exception is once again the MMD, performing incredibly strong up to ν = 5. The performance of MMDboot 
is not only interesting in that it beats our tests, but also in how it beats all other kernel approaches in the same way. In 
particular, MMD-full stands no chance, which again is likely, in part, due to the reduced sample size the MMDboot has 
available for testing. Though hard to generalize, it appears from this analysis that a complex, rather weak dependence, is a 
job best done by the plain MMDboot.

B.3. Multivariate Blob

A well-known difficult example is the “Gaussian Blob”, an example where “the main data variation does not reflect the 
difference between P and Q ” (Gretton et al., 2012), see e.g., Gretton et al. (2012) and Jitkrittum et al. (2016). We study 
here the following generalization of this idea: Let T ∈N , μ = (

μt

)T
t=1, μt ∈Rd , and � = (�t)

T
t=1, with �t a positive definite 

d × d matrix. We consider the mixture
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Fig. B.3. (Dependency) A point in the figure represents a simulation of size S = 200 for a specific test and a ρ ∈ (0, 0.01, 0.02..., 0.15). Each of the S = 200
simulation runs we sampled 300 observations from a d = 60 dimensional multivariate normal distribution with ρ ∈ (0, 0.01, 0.02..., 0.15), representing Q . 
Likewise 300 observations were sampled from a d = 60 dimensional multivariate normal distribution using ρ = 0, representing P . The Random Forest used 
600 trees and a minimal node size to consider a random split of 4.

Fig. B.4. (Dependency) A point in the figure represents a simulation of size S = 200 for a specific test and a ρ ∈ (0, 0.025, 0.05..., 0.375). Each of the 
S = 200 simulation runs we sampled 300 observations from a d = 10 dimensional multivariate normal distribution with c = 4 values in the correlation 
matrix equal to ρ ∈ (0, 0.025, 0.05..., 0.375), representing Q . Likewise 300 observations were sampled from a multivariate normal distribution using ρ = 0, 
representing P . The Random Forest used 600 trees and a minimal node size to consider a random split of 4.

N(μ,�) :=
T∑

t=1

1

T
N(μt,�t).

For μ, we will always use a baseline vector of size d, w say, and include in μ all possible enumerations of choosing 
d elements from w ∈ Rd with replacement. This gives a total number of T = cd possibilities and each μt ∈ Rd is one 
possible such enumeration. For example, if c = d = 2 and w = (1, 2) then we may set μ1 = (1, 1), μ2 = (2, 2), μ3 = (1, 2), 
μ4 = (2, 1). We will refer to each element of this mixture as a “Blob” and study two experiments where we change the 
covariance matrices �t of the blobs when changing from P to Q , i.e.,

P = N(μ,�X ), Q = N(μ,�Y ).

Obviously it quickly gets infeasible to simulate from N(μ, �), as with increasing d the number of blobs explodes. Though, 
as shown below, this difficulty can be circumvented when �t is diagonal for all t . The example also considerably worsens 
the curse of dimensionality, as even for small d the numbers of observations in each Blob is likely to be very small. Thus 
for 300 observations, we have a rather difficult example at hand.
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Fig. B.5. (Dependency) A point in the figure represents a simulation of size S = 200 for a specific test and a v ∈ (1, 1.5, ..., 8). Each of the S = 200
simulation runs we sampled 300 observations from the Student-t Copula with R = Id×d , v ∈ (1, 1.5, ..., 8) and d = 60 standard normally distributed margins 
and likewise 300 observations from the multivariate normal. The Random Forest used 600 trees and a minimal node size to consider a random split of 4.

Fig. B.6. (Dependency) A point in the figure represents a simulation of size S = 200 for a specific test and a v ∈ (1, 1.5, ..., 8). Each of the S = 200
simulation runs we sampled 300 observations from a d − c = 180 dimensional multivariate Gaussian distribution and a d = 20 dimensional Student-t 
Copula with R = Id×d , v ∈ (1, 1.5, ..., 8) and standard normally distributed margins, representing Q . Likewise 300 observations were sampled from a 
multivariate normal distribution, representing P . The Random Forest used 600 trees and a minimal node size to consider a random split of 4.

Table B.1
(Blob) Power for different N , d and number of Blobs. Each power was calculated with 
a simulation of size S = 500 for a specific test.

N d Blobs ME-full MMD MMD-full Binomial hypoRF

600 2 22 0.056 0.054 0.072 0.204 0.306
600 2 32 0.064 0.048 0.070 0.070 0.190
600 3 23 0.052 0.040 0.060 0.088 0.116
600 3 33 0.056 0.060 0.060 0.064 0.084

We will subsequently study two experiments. The first one takes w = (1,2,3), �1,X = �2,X = . . . = �t,X = Id×d and 
�1,Y = �2,Y = . . . = �t,Y = � to be a correlation matrix with nonzero elements on the off-diagonal. In particular, we 
generate � randomly at the beginning of the S trials for a given d, such that (1) it is a positive definite correlation matrix 
and (2) it has a ratio of minimal to maximal eigenvalue of at most 1 − 1/

√
d. For d = 2, this corresponds to the original 

Blob example as in Gretton et al. (2012), albeit with a less strict bound on the eigenvalue ratio. The resulting distribution 
for d = 1 and d = 2 is plotted in Fig. B.7.
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Fig. B.7. (Blob) Illustration of the original Blob example. Below: Illustration for d = 2. Above: First marginals of P and Q respectively.

Fig. B.8. (Blob) Illustration of the second Blob example. Below: Illustration for d = 2. Above: First marginals of P and Q respectively.
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Fig. B.9. (Blob) A point in the figure represents a simulation of size S = 200 for a specific test and a d ∈ (2, 4, 6, 8, 10, 20, 40, 80, 120, 200). Each of the 
S = 200 simulation runs we sampled 300 observations from N(μ, �X ) and likewise 300 observations from N(μ, �Y ). The Random Forest used 600 trees 
and a minimal node size to consider a random split of 4.

Table B.1 displays the result of the experiment with our usual set-up and a variation of d = 2, 3 and the number of 
blobs being 2d and 3d . Surprisingly our hypoRF test is the only one displaying notable power throughout the example. 
MMD and MMD-full are not able to detect any difference between the distribution with this sample size. Interestingly, the 
ME which we would have expected to work well in this example is also only at the level. However, this again depends on 
the specification chosen for the hyperparameters of the optimization. For another parametrization, we obtained a power of 
0.116 for d = 2, blobs = 22 and 0.082 for d = 2 and blobs = 32, all other values being on the level.

The second experiment takes w = (−5,0,5) and for all t , �t,X , �t,Y to be diagonal and generated similarly to μ. That 
is, we take �t,X = diag(σ 2

t,X ), where each σt,X is a vector including d draws with replacement from a base vector v X ∈Rd , 
and analogously with �t,Y . In this case, it is possible to rewrite P and Q , as

P =
d∏

j=1

P X and Q =
d∏

j=1

P Y ,

with

P X = 1

3
N(w1, v2

1,X ) + 1

3
N(w2, v2

2,X ) + 1

3
N(w3, v2

3,X ),

and

P Y = 1

3
N(w1, v2

1,Y ) + 1

3
N(w2, v2

2,Y ) + 1

3
N(w3, v2

3,Y ).

As such, it is feasible to simulate from P and Q , even for large d, by simply simulating d times from P X and P Y . We 
consider w = (−5,0,5) and the standard deviations(

v1,X , v2,X , v3,X
)= (1,1,1) ,(

v1,Y , v2,Y , v3,Y
)= (1,2,1) .

The change between the distributions is subtle even in notation; only the standard deviation of the middle mixture compo-
nent is changed from 1 to 2. This has the effect that the middle component gets spread out more, causing it to melt into 
the other two. The resulting distribution for d = 1 and d = 2 is plotted in Fig. B.8. Unsurprisingly, P looks quite similar as 
in Fig. B.7. The marginal plots (d = 1) appear to be very different, though this is only an effect of having centers (−5, 0, 5)

instead of (1, 2, 3). On the other hand, while not clearly visible, it can be seen that the different blobs of Q display different 
behavior in variance; every Blob in positions (2, 1), (2, 2), (2, 3), (1, 2), (3, 2) on the 3 × 3 grid has its variance increased.

The results of the simulations are seen in Fig. B.9. The Binomial, CPT-RF and hypoRF test display a power quickly in-
creasing with dimensions, regardless of the decreasing number of observations in each Blob. This also holds true, to a 
smaller degree, for the ME-full, which due to its location optimization appears to be able to adapt to the problem structure. 
However, its power considerably lacks behind the RF-based tests. In contrast, the behavior of the MMD-based tests quickly 
deteriorates as the number of samples per Blob decreases. Indeed from a kernel perspective, all points have more or less 
the same distance from each other, whether they are coming from P or Q . Thus the extreme power of the MMD to detect 
30



S. Hediger, L. Michel and J. Näf Computational Statistics and Data Analysis 170 (2022) 107435
“joint” changes in the structure of the data (i.e., dependency changes) cements its downfall here, as it is unable to detect 
the marginal difference.

This example might appear rather strange; it has a flavor of a mathematical counterexample, simple or even nonsensical 
on the outset, but proving an important point: While the differences between P and Q are obvious to the naked eye if only 
one marginal each is plotted with a histogram, the example manages to completely fool the kernel tests (under a Gaussian 
kernel at least). As such it is not only a demonstration of the merits of our test but also a way of fooling general kernel 
tests. It might be interesting to find real-world applications, where such data structure is likely.

Appendix C. Financial riskfactors

Table C.1
(Riskfactors) This table lists the 94 financial characteristics we use in Section 4.3. We obtain the characteristics used by Gu et al. (2020) from Dacheng 
Xiu’s webpage; see http://dachxiu .chicagobooth .edu. Note that the data is collected in Green et al. (2017).

No. Acronym Firm characteristic Frequency Literature

1 absacc Absolute accruals Annual Bandyopadhyay et al. (2010)
2 acc Working capital accruals Annual Sloan (1996)
3 aeavol Abnormal earnings announcement volume Quarterly Lerman et al. (2008)
4 age Years since first Compustat coverage Annual Jiang et al. (2005)
5 agr Asset growth Annual Cooper et al. (2008)
6 baspread Bid-ask spread Monthly Amihud and Mendelson (1989)
7 beta Beta Monthly Fama and MacBeth (1973)
8 betasq Beta squared Monthly Fama and MacBeth (1973)
9 bm Book-to-market Annual Rosenberg et al. (1985)
10 bmia Industry-adjusted book-to-market Annual Asness et al. (2000)
11 cash Cash holdings Quarterly Palazzo (2012)
12 cashdebt Cash flow to debt Annual Ou and Penman (1989)
13 cashpr Cash productivity Annual Chandrashekar and Rao (2009)
14 cfp Cash flow to price ratio Annual Desai et al. (2004)
15 cfpia Industry-adjusted cash flow to price ratio Annual Asness et al. (2000)
16 chatoia Industry-adjusted change in asset turnover Annual Soliman (2008)
17 chcsho Change in shares outstanding Annual Pontiff and Woodgate (2008)
18 chempia Industry-adjusted change in employees Annual Asness et al. (2000)
19 chinv Change in inventory Annual Thomas and Zhang (2002)
20 chmom Change in 6-month momentum Monthly Gettleman and Marks (2006)
21 chpmia Industry-adjusted change in profit margin Annual Soliman (2008)
22 chtx Change in tax expense Quarterly Thomas and Zhang (2011)
23 cinvest Corporate investment Quarterly Titman et al. (2004)
24 convind Convertible debt indicator Annual Valta (2016)
25 currat Current ratio Annual Ou and Penman (1989)
26 depr Depreciation / PP&E Annual Holthausen and Larcker (1992)
27 divi Dividend initiation Annual Michaely et al. (1995)
28 divo Dividend omission Annual Michaely et al. (1995)
29 dolvol Dollar trading volume Monthly Chordia et al. (2001)
30 dy Dividend to price Annual Litzenberger and Ramaswamy (1982)
31 ear Earnings announcement return Quarterly Kishore et al. (2008)
32 egr Growth in common shareholder equity Annual Richardson et al. (2005)
33 ep Earnings to price Annual Basu (1977)
34 gma Gross profitability Annual Novy-Marx (2013)
35 grcapx Growth in capital expenditures Annual Anderson and Garcia-Feijóo (2006)
36 grltnoa Growth in long term net operating assets Annual Fairfield et al. (2003)
37 herf Industry sales concentration Annual Hou and Robinson (2006)
38 hire Employee growth rate Annual Belo et al. (2014)
39 idiovol Idiosyncratic return volatility Monthly Ali et al. (2003)
40 ill Illiquidity Monthly Amihud (2002)
41 indmom Industry momentum Monthly Moskowitz and Grinblatt (1999)
42 invest Capital expenditures and inventory Annual Moskowitz and Grinblatt (2010)
43 lev Leverage Annual Bhandari (1988)
44 lgr Growth in long-term debt Annual Richardson et al. (2005)
45 maxret Maximum daily return Monthly Bali et al. (2011)
46 mom12m 12-month momentum Monthly Jegadeesh and Titman (1993)
47 mom1m 1-month momentum Monthly Jegadeesh and Titman (1993)
48 mom36m 36-month momentum Monthly Jegadeesh and Titman (1993)
49 mom6m 6-month momentum Monthly Jegadeesh and Titman (1993)
50 ms Financial statement score Quarterly Mohanram (2005)
51 mvel1 Size Monthly Banz (1981)
52 mveia Industry-adjusted size Annual Asness et al. (2000)
53 nincr Number of earnings increases Quarterly Barth et al. (1999)

(continued on next page)
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Table C.1 (continued)

No. Acronym Firm characteristic Frequency Literature

54 operprof Operating profitability Annual Fama and French (2015)
55 orgcap Organizational capital Annual Eisfeldt and Papanikolaou (2013)
56 pchcapxia Industry adjusted change in capital exp. Annual Abarbanell and Bushee (1998)
57 pchcurrat Change in current ratio Annual Ou and Penman (1989)
58 pchdepr Change in depreciation Annual Holthausen and Larcker (1992)
59 pchgmpchsale Change in gross margin - change in sales Annual Abarbanell and Bushee (1998)
60 pchquick Change in quick ratio Annual Ou and Penman (1989)
61 pchsalepchinvt Change in sales - change in inventory Annual Abarbanell and Bushee (1998)
62 pchsalepchrect Change in sales - change in A/R Annual Abarbanell and Bushee (1998)
63 pchsalepchxsga Change in sales - change in SG&A Annual Abarbanell and Bushee (1998)
64 ppchsaleinv Change sales-to-inventory Annual Ou and Penman (1989)
65 pctacc Percent accruals Annual Hafzalla et al. (2011)
66 pricedelay Price delay Monthly Hou and Moskowitz (2005)
67 ps Financial statements score Annual Piotroski (2000)
68 quick Quick ratio Annual Ou and Penman (1989)
69 rd R&D increase Annual Eberhart et al. (2004)
70 rdmve R&D to market capitalization Annual Guo et al. (2006)
71 rdsale R&D to sales Annual Guo et al. (2006)
72 realestate Real estate holdings Annual Tuzel (2010)
73 retvol Return volatility Monthly Ang et al. (2006)
74 roaq Return on assets Quarterly Balakrishnan et al. (2010)
75 roavol Earnings volatility Quarterly Francis et al. (2004)
76 roeq Return on equity Quarterly Hou et al. (2015)
77 roic Return on invested capital Annual Brown and Rowe (2007)
78 rsup Revenue surprise Quarterly Kama (2009)
79 salecash Sales to cash Annual Ou and Penman (1989)
80 saleinv Sales to inventory Annual Ou and Penman (1989)
81 salerec Sales to receivables Annual Ou and Penman (1989)
82 secured Secured debt Annual Valta (2016)
83 securedind Secured debt indicator Annual Valta (2016)
84 sgr Sales growth Annual Lakonishok et al. (1994)
85 sin Sin stocks Annual Hong and Kacperczyk (2009)
86 sp Sales to price Annual Barbee et al. (1996)
87 stddolvol Volatility of liquidity (dollar trading volume) Monthly Chordia et al. (2001)
88 stdturn Volatility of liquidity (share turnover) Monthly Chordia et al. (2001)
89 stdacc Accrual volatility Quarterly Bandyopadhyay et al. (2010)
90 stdcf Cash flow volatility Quarterly Huang (2009)
91 tang Debt capacity/firm tangibility Annual Almeida and Campello (2007)
92 tb Tax income to book income Annual Lev and Nissim (2004)
93 turn Share turnover Monthly Datar et al. (1998)
94 zerotrade Zero trading days Monthly Liu (2006)
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