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a b s t r a c t

The rigid-block equilibrium (RBE) method uses a penalty formulation to measure structural infeasibility
or to guide the design of stable discrete-element assemblies from unstable geometry. However, RBE
is a purely force-based formulation, and it incorrectly describes stability when complex interface
geometries are involved. To overcome this issue, this paper introduces the coupled rigid-block
analysis (CRA) method, a more robust approach building upon RBE’s strengths. The CRA method
combines equilibrium and kinematics in a penalty formulation in a nonlinear programming problem.
An extensive benchmark campaign is used to show how CRA enables accurate modelling of complex
three-dimensional discrete-element assemblies formed by rigid blocks. In addition, an interactive
stability-aware design process to guide user design towards structurally-sound assemblies is proposed.
Finally, the potential of our method for real-world problems are demonstrated by designing complex
and scaffolding-free physical models.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Discrete-element assemblies are structures formed by indi-
idual rigid units without glue or other joinery. The dimension
f these assemblies can range from small products to build-
ngs. In architectural contexts, designing such discrete-element
ssemblies that can stand under their self-weights has many
pplications. For example, the unit size can be relatively small
n some masonry structures but large in prefabricated housing,
s shown in Fig. 1. Besides architecture, assessing the stability of
iscrete-element assemblies can be used in designing furniture,
D puzzles, toys, or even robotic assembly planning.
Although recent advances in fabrication and construction tech-

ologies, such as large-scale additive manufacturing and robotic
abrication, have created new opportunities to design, fabricate,
nd assemble customised architectural units with complex ge-
metries, a proper tool to design discretised thin structures is
acking and assessing stability during the assembly process re-
ains a difficult task (see Fig. 1a and c). The main challenge

n designing such structurally-sound or scaffolding-free discrete-
lement assemblies is to interactively assess their stability at each
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design iteration and the modifications needed to redirect the ini-
tial design. Unfortunately, quick interactive tools are rarely used
in engineering practice due to insufficient accuracy, while more
accurate engineering software suffers from heavy computational
effort and complicated parameters tuning.

This paper, therefore, presents a new, fast methodology for
an interactive design process that correctly captures the stabil-
ity of complex discrete-element assemblies. Our method’s accu-
racy is benchmarked against widely used software in engineering
practice and demonstrated through physical models.

The study of structural equilibrium and complex assemblies
has been a core topic in many research fields, especially in com-
puter graphics, robotics, architecture, and structural mechan-
ics. In what follows, we mainly focus on some research topics
relevant to our goal.

The classic Finite Element Method (FEM) is the most commonly
used method for analysing structures in many engineering fields.
However, much research shows that the standard use of FEM
approaches does not provide accurate results when assessing
unilateral structures [4–7]. In recent works, FEM methods have
been used to assess unilateral assembly modelling each block as
a distinct element [8]. Nonetheless, they can only provide a yes-
o answer and, thus, cannot be embedded into other optimisation
rocesses such as gradient-based optimisation formulations.
Self-supporting structures are discrete-element assemblies that

an stably stand under their self-weight. In particular, much effort
as been devoted to exploring freeform self-supporting shapes
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Architectural design with discrete-element assemblies. (a) Armadillo Vault: a discrete shell structure constructed in stone without any mechanical joints
or reinforcements [1]; (b) Prefab modular building construction of Habitat ’67 by Safdie Architects [2]; (c) Buga wood pavilion during construction [3]; in (d) a
mechanical scheme that can be used to assess the local stability for the Buga wood pavilion (the two pink blocks are assumed fixed). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
such as masonry structures [9–11]. Much research is based on
Thrust Network Analysis (TNA), an equilibrium approach devel-
oped by Block and Ochsendorf [12]. In the architectural design
and fabrication community, RhinoVault, an interactive design
tool, has been popular and broadly used for designing funic-
ular structures [13]. However, TNA applies specifically to shell
structures. It is not the appropriate tool for designing general
discrete-element assemblies.

Physics-based simulations and robot grasp planning have been
studied intensively [14–21]. However, most research is devoted
to giving a visually convincing rather than a physically accurate
result. Contact problems with friction have been recognised as
challenging problems [22]. Much research points out that finding
an equilibrium solution of unknown contact forces is a necessary
but not sufficient condition [23–25], and determining the stability
is co-NP complete [18]. Kaufman et al. [26] proposed a staggered
algorithm to simulate rigid-body dynamics to realistically model
the sliding behaviour using the Maximum Dissipation Principle
(MDP) [27]. We, however, are interested in the static analysis as
it is easier to steer the structural design. Haas-Heger and Ciocar-
lie [28] gave good insights into coupling kinematics and static
equilibrium problems in the optimisation constraints using MDP.
However, their approach is based on Mixed-Integer Programming
(MIP) to distinguish between sliding and resting frictions and
requires a long computational time and does not apply to general
complex assembly problems with many elements.

Masonry structures have been standing for thousands of years,
and they were designed and constructed by ancient master
builders without the aid of modern engineering methods and
technologies. Much research has developed computational meth-
ods to understand its structural mechanics. Cundall [29] devel-
oped Discrete Element Modelling (DEM) to analyse structures
composed of discrete particles for granular materials, which was
2

later used in the software code for 3DEC [30]. Starting from the
work of Lemos [31], it became a popular tool to assess masonry
structures or to benchmark new methodologies [5,31–36]. How-
ever, DEM solvers require detailed mechanical parameter tunings
and a long computational time. Besides, simulating complex con-
cave shapes requires an additional convex decomposition step.
In general, historical masonry structures are not modelled using
complex block shapes.

Complex assemblies is also a popular research topic and much
effort has been paid to designing and creating different types
of objects using smaller units, such as toys, furniture, mecha-
nisms, and architectures. Such complex shapes are in some cases
designed from a pure geometrical perspective [37–42], while,
in other cases, the mechanical stability is also taken into ac-
count. Frick et al. [43] introduced a graph-based data structure
to handle complex assemblies for stability analysis considering
imperfections, but it requires convex decomposition for concave
shapes. Yao et al. [44] provided an interactive process to de-
sign joinery for furniture and consider structural stability at the
same time. However, their analysis result is over-conservative
and does not align well with well-accepted analytic or other nu-
merical solutions. Looking at structurally-informed LEGO design,
Luo et al. [45] presented a force-based approach that requires
physical experiments to tune the optimisation.

Assembly-aware design or stability during assembly is a new
research area that has received much attention recently. Kao
et al. [46] proposed a design process with a heuristic strategy to
assemble discrete shell structures stably without using falsework.
They utilised an existing game engine as a stability analysis tool,
which is not guaranteed to be reliable. Deuss et al. [11] pro-
posed using a sparse set of tensile chains in replacing dense sup-
ports. A more recent study showed the potentiality of using three
cooperative robots to achieve scaffold-free construction [47].
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The Rigid-block Equilibrium (RBE) method was developed by
Whiting et al. [48,49], based on the work of Livesley [50,51], who
proposed a formulation based on linear programming to anal-
yse the limit load of masonry structures. Whiting et al. [48,49]
added a penalty term to Livesley’s formulation that measures
structural instability such as to enable forward design. RBE has
since been successfully applied to a wide range of problems,
including forward-design tools and shape optimisation [11,52–
60]. In particular, Frick et al. [58] proposed its use for designing
discrete-element assemblies in an interactive CAD environment.
Shin et al. [7] gave a thorough comparison between RBE and FEM
approaches. Wang et al. [52,53] formulated a shape optimisa-
tion of topological interlocking for convex assemblies based on
an RBE stability analysis without using friction. Kao et al. [54]
gave some insights into RBE results from the masonry struc-
ture’s perspective. After proposing a thorough survey of the state
of the art methods, Wang et al. [61] stated that RBE repre-
sents one of the best tools in the design process. In general, the
RBE approach is preferable over FEM, DEM, or other dynamic
simulations because it can more intuitively guide the design
from unstable toward stable configurations. RBE’s strength is its
penalty formulation and the possibility of looking at the internal
stress state to understanding the structural response. The penalty
formulation provides the users with the localisation of unstable
regions instead of only collapse mechanisms that cannot give
meaningful structural hints for complex structures. Therefore,
it enables different structural design options, such as changing
discretisation or connection design (i.e. geometry, shape or using
rebar). Although RBE is widely used to design stable assemblies,
it suffers from its limitations when friction is involved. We will
address RBE’s limitation in Section 2.2.

Our research contributions are summarised as follows. Firstly,
we recognise and overcome issues of the state-of-the-art RBE
implementation. To have an accurate tool for designing struc-
turally informed assemblies with complex shapes and interfaces,
we propose a new mathematical formulation that allows for the
correct assessment of complex assemblies and excludes RBE’s
physically unrealisable solutions. Our numerical results are accu-
rate and align well with analytical (whenever these are available
or possible) and engineering software solutions. Secondly, we
demonstrate that our approach is flexible and can be used beyond
simple convex shapes. Specifically, we extend an existing graph-
based data structure to handle information for complex discrete-
element assemblies with concave shapes. This extension is easy to
use and does not require any convex decomposition step. Thirdly,
our approach is explicit and does not need complicated parameter
tuning, which is critical when detailed information about material
properties and their translation into numerical parameters is not
available. Additionally, it is worth mentioning that our method
is static and does not require simulating the movement of the
objects, such that there is no additional time parameter to tune.
Fifthly, we extend our optimisation with a penalty formulation,
which enables the formulation to go beyond non-feasible solu-
tions and provides meaningful information about which part of
the assembly is not in equilibrium, as in Whiting et al. [48,49].
Lastly, our formulation can be easily integrated into an interactive
design workflow to help designers understand structural stability
on the global, local scale and find the stable assembly sequence
during the early design phase.

2. Theoretical background

To provide the reader with a sufficient amount of information
to go through our method, we briefly illustrate the state-of-the-
art Rigid-Block Equilibrium (RBE) method and the used assem-
bly data structure. After that, we address what RBE is missing
conceptually through three simple 2D examples.
3

2.1. Rigid-Block Equilibrium (RBE) method and Assembly Data Struc-
ture

The RBE method is based on the seminal contributions of
Livesley [50,51]. The unilateral contact among blocks is modelled
through compressive forces occurring on the interface vertices.
In Fig. 2, an assembly A is composed of a finite set of blocks B
and contact interfaces C. Each block is a compact closed subset
of R3 whose boundary is defined as the union of finite planar
polygons. The interface Cjk between the block j and k is defined
as the intersection of Bj and Bk, and it is a compact polygonal
subset of R2. Therefore, for an assembly A with l blocks B = {Bj |

j ∈ {1, . . . , l}}, the set of all interfaces is: C = {Cjk = (Bj ∩ Bk) |

∃j, k ∈ {1, . . . , l}, with j ̸= k ∧ C̊jk ̸= ∅}. Let mjk be the total
number of vertices cijk of the interface Cjk with i ∈ {1, . . . ,mjk}.
(ûjk, v̂jk, n̂jk) denotes the unit basis vector representing the local
reference system of the planar interface Cjk where n̂jk is the
unit normal vector pointing towards the block Bk. Note that
although Cjk and Ckj denote the same interface, the corresponding
reference systems are not the same. The unknown reaction force
fijk ∈ R3 acting on the vertex cijk can be decomposed into three
components f ijkn n̂jk, f ijku ûjk, and f ijkv v̂jk. The requirement that only
compressive forces are admitted is modelled as a non-negativity
constraint on the normal force component:

f ijkn ≥ 0 , ∀i, j, k . (1)

For simplicity, we use bold symbol fijkn ∈ R3 to represent f ijkn n̂jk.
Similarly, we consider the nodal friction force fijkt ∈ R3 com-
bining the two arbitrary, mutually-orthogonal, in-plane shear
components f ijku ûjk + f ijkv v̂jk, where f ijku, f

i
jkv ∈ R.

To have all blocks in static equilibrium, external forces need
to be balanced by all internal unknown net force and torque. In
particular, for each block six equilibrium equations have to be
written. We can compactly summarise all these equations in a
matrix form:

Aeq f = −p , (2)

where the coefficients of the equilibrium equations are collected
in the matrix Aeq ∈ R6·l×3·s, being s =

∑l
k=1

∑l
j=1 mjk the

total number of interface corners; f ∈ R3·s collects all interface
unknown forces, and p ∈ R6·l the external forces lumped on each
block’s mass centre. We refer the reader to Appendix A for further
details.

To have stable assemblies, Eq. (2) is the necessary condition
that needs to be satisfied. If we cannot find any solution f, we can
claim that the structure is not stable. Typically, Aeq is not a square
matrix because of the structure’s indeterminacy, and we have less
equations than unknowns; in general, 6 · l < 3 · s. Therefore,
the solution f is not unique, and it does not necessarily represent
the actual force distribution on the interface. For these reasons,
optimisation approaches represent a valid strategy to select one
of the possible internal stress states.

For unstable assemblies, Eq. (2) does not admit any solution.
To extend the solution space and to measure the corresponding
infeasibility, Whiting et al. [48,49] allowed for tensile capacity
through the introduction of a penalty formulation. Specifically,
they decoupled the normal force f ijkn into its positive f i+jkn and
negative f i−jkn parts, such that ∀i, j, k, f ijkn = f i+jkn − f i−jkn , with
f i+jkn, f i−jkn ≥ 0. Therefore, an additional unknown for each vertex
was introduced. All the unknowns can be collected in the vector
f̃ ∈ R4·s and the equilibrium of the entire assembly can be written
using the same equilibrium matrix in Eq. (2) as:

A B f̃ = −p , (3)
eq
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Fig. 2. Notations adopted to describe the equilibrium equations of the assembly. The pink colour represents supports, i.e. fixed blocks, and grey is used to denote free
locks. Assembly data structure is a directed graph G(V , E), where vertex Vj stores information of Bj information while edge Ejk stores all interface Cjk information.
i
jk represents the unknown nodal force acting on the vertex i of interface jk: it can be decomposed into three mutually orthogonal vectors using the local reference
ystem of the interface (ûjk, v̂jk, n̂jk). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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here B is a matrix that maps f̃ to f. For more details, we refer
he reader to Appendix A.

To model the Mohr–Coulomb friction cone constraint, the
riction is bounded by the positive part of the normal force:⏐⏐ f ijkt ⏐⏐ ≤ µ f i+jkn , ∀i, j, k . (4)

standard strategy to speed up the solving process is to linearise
he original Mohr–Coulomb friction cone with a given number
f planes. The linearised equations have to be written on all
nterface vertices and can be collected in the following matrix
orm:

fr B f̃ ≤ 0 , (5)

here Afr collects all coefficients in a large sparse matrix. For a
etailed explanation, we refer the reader to Appendix B.
Combining the equilibrium condition (Eq. (3)) with the lin-

arised friction constraint (Eq. (5)), the entire optimisation
roblem can be expressed as a quadratic programming (QP)
roblem:

in
f̃

1
2
f̃⊺ H f̃

s.t. Aeq B f̃ = −p
Afr B f̃ ≤ 0
f i+jkn , f i−jkn ≥ 0 , ∀i, j, k ,

(6)

here H is the diagonal square matrix that collects all weights
ttributed to different force components [49], with the tensile
4

orces highly penalised. Compared to a linear objective function,
he quadratic one returns a linear-elastic force distribution on the
nterface. For more detailed discussions we refer the reader to
he work of Kao et al. [54]. Optimisation problem (6) represents
he original RBE formulation as in Whiting et al. [48,49]. It is
orth noting that RBE is a strictly force-based approach, without
oupling internal stress states with corresponding displacements.
s in Whiting et al. [48,49], an assembly is assumed stable if
roblem (6) returns a solution without tensile forces.
To efficiently handle RBE information, we utilise the assembly

ata structure proposed in Frick et al. [43]. The assembly data
tructure is a graph-based data structure where a directed graph
(V , E) is used to represent the entire assembly A. The vertices

V store block geometries information B, and the directed edges E
store all contact information C. The graph edge is directed. Indeed,
although interfaces Cjk and Ckj collect the same vertices, the
unknown forces corresponding to the same corner are reversed
for Newton’s third law. This shows the reason why the axes of
the Cjk and Ckj local reference system are pointing in the opposite
direction. For a more detailed discussion about the assembly data
structure, we refer the reader to Appendices A and B.

2.2. Issues of the RBE approach

To show when RBE fails to predict the stability when friction is
involved, we illustrate the following two paradigmatic examples,
called model H (shown in [44]) and A, in Fig. 3. After that, we
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Fig. 3. Two peculiar examples show some of RBE’s issues. The free block (grey) is always detected as in equilibrium.
xplain how we propose to overcome these issues looking at a
imple 2D wedge example, Fig. 4.
For model H, we can imagine one free block placed between

wo parallel fixed walls, which can also represent robot-hand
rippers. Regardless of the size of the central block and the
riction coefficient, RBE always finds a solution such that the free
lock is stable. Indeed, to be in static equilibrium, all forces have
o cancel out. In the vertical direction, the free block’s self-weight
is balanced by two tangential contact reactions ft . In the hori-

ontal direction, RBE finds two normal forces fn that cancel each
other out. Thus, for any tangential force distribution with any
friction coefficient, RBE always finds two large enough normal
forces that simultaneously satisfy the Mohr–Coulomb criterion
and cancel each other out. In other words, those valid static equi-
librium solutions always exist in the constraint solution space
defined by Eq. (2). However, if the middle block is not prestressed,
e.g. due to the robotic grippers, the normal forces should not
exist in the real-world scenario. In fact, such a bizarre equilibrium
solution is not wrong; it only comes from the original rigid-
body assumption that the normal force can occur without any
deformation. It is a physically unrealisable solution when the free
block is not prestressed, and generated by a pure force-based opti-
misation that does not take those considerations into account. In
the case of associative behaviour, the solution of the force-based
problem is linked to the solution of a dual displacement-based
problem as shown in [62,63] for a finite friction capacity, or
through an energy-based dualisation for an Heymanian material
model in [64,65]. RBE returns a force-based solution that assumes
its dual displacement-based solution exists, regardless if it needs
prestress or not. A simple way to avoid the H model’s problem is
to couple equilibrium with kinematics and allow for a negligible
numerical overlapping; since RBE assumes all blocks to be rigid
and non-deformable, having two simultaneous overlaps between
supports is impossible.

Comparable to model H, the reader can intuitively imagine
that in model A the free block would fall down if it is rigid and
not prestressed. However, if we try to solve this model in the
same way used for the H model, RBE would still provide the
solution shown in Fig. 3b. Therefore, something is still missing;
besides the deformation aspect, all reaction forces, particularly
tangential forces, have to be compatible with possible rigid-body
motions [66], and, all tangential forces are possible only if the
corresponding normal forces are activated. With these assump-
tions, model A without prestressing is no longer feasible. In other
words, all possible rigid-body motions have to be considered. In
model A, the only admissible movement is a downward vertical
displacement of the central block. Once the contact of one of
5

the two surfaces is lost, admissible force solutions are no longer
possible.

The RBE method is a pure force-based approach and it fails to
capture some scenarios as discussed in the H and A model. The
optimiser greedily finds physically unrealisable solutions (without
prestressing) as long as those solutions satisfy equilibrium and
friction cone constraints. In some cases, wrong solutions included
in the RBE’s solution space can be taken out by looking at the
admissible dual movements, but in many other cases it is not
possible to simply exclude them from the solution space.

Inspired by Omata and Nagata [67], we observe that not all
forces are physically realisable concerning rigid-body movements.
To be more specific, the reaction forces are realisable only if
we can find a compatible rigid-body motion. The friction force
occurs in the opposite direction of a potential relative movement
to prevent the object from sliding such that the acceleration
remains zero. Additionally, the normal reaction force is acti-
vated only if the two adjacent points are in contact. When there
is a detachment, the normal force has to be zero and, conse-
quently, the friction force must be zero as well (bounded by the
Mohr–Coulomb criterion).

Fig. 4 shows two possible equilibrated solutions of the wedge
model obtained with RBE. Both models share the same geometry
and boundary conditions but are inclined at a different angle.
In Fig. 4a, we depict a possible rigid-body motion defined by
an in-plane rotation and translation, collected in the vector δq3
describing the motion of block B3. The nodal friction forces f113t
and f123t found by RBE are compatible with nodal displacements
d1
13t and d1

23t . Similarly, if a contact point tends to detach, the
nodal normal force cannot be activated. Indeed, no reaction force
can occur on the vertex c223 because of the relative detachment
d2
23n.
Conversely, Fig. 4b illustrates how an admissible equilibrated

solution is not compatible with a potential rigid-body motion.
The contact forces obtained using RBE are in equilibrium as
they balance the block’s self-weight. However, these forces are
not compatible with a pure translation of the block B3. Indeed,
contact forces f123n and f123t are not compatible because of the
normal detachment d1

23n. Additionally, this equilibrated solution
is not compatible with the rigid-body motion depicted in Fig. 4a,
as f213n and f213t are not admissible because of the dual detachment.

Importantly, in the present paper, all friction forces are static,
while infinitesimal rigid-body motions represent virtual displace-
ments. The aim is to couple internal forces with infinitesimal
rigid-body motion in order to discard equilibrated solutions that
are not compatible with any rigid-body motion, and in this sense,
not realisable.
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Fig. 4. Model wedge: nodal forces have to be compatible with virtual rigid-body motion; otherwise, those nodal forces are not physically realisable.
The physical limitations highlighted on the H, A, and wedge
odels can frequently appear in 3D assemblies, and they are

ntrinsic in geometries with non-planar interfaces. Indeed, in
ig. 1d, the interface between free and fixed blocks is non-planar,
nd, upon closer inspection the reader can see a parallelism
ith model A. Even though the RBE provides proper solutions

n some cases, e.g. an arch subjected to in-plane loads (see
ig. 6), we cannot determine in advance if treating a specific
roblem with a pure force-based approach is sufficient. In the
orst case, when RBE fails, it falsely claims a non-prestressed
6

and unstable structure is safe, leading to wrong design choices or
assessment strategies. Thus, a procedure that correctly accounts
for these aspects is needed. This paper aims to tackle these
aspects through a nonlinear constrained optimisation problem to
discard unrealisable solutions and provide an accurate approach
for discrete-element assembly analysis. We call this approach
the Coupled Rigid-Block Analysis (CRA) method as it combines
the original equilibrium formulation of RBE with kinematics. In
Section 3, this new numerical formulation will be introduced and
discussed.
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. Coupled Rigid-Block Analysis (CRA) method

In Section 3.1, to introduce the CRA method, we first formulate
he pure force-based optimisation problem and then we couple
t with the kinematics through specific additional constraints.
fter that, we introduce the penalty formulation to measure
nstable structures (Section 3.2). The penalty formulation repre-
ents the extended version of the original RBE method proposed
y Whiting et al. [48,49]. Lastly, in Section 3.3, we extend the
ata structure used by Frick et al. [43] to account for complex
ssemblies.

.1. Problem formulation

The force-based formulation that we start from is:

in
f

∥fn∥2
2 (7a)

s.t. Aeq f = −p (7b)

Afr f ≤ 0 (7c)

f ijkn ≥ 0 , ∀i, j, k , (7d)

here Eq. (7b) enforces the equilibrium only using compres-
ive forces (Eq. (7d)) and Eq. (7c) the Mohr–Coulomb material
ailure criterion. The objective function represents the squared
orm of all contact forces based on Gauss’s principle of least
onstraint [68]. Nonetheless, as proved in Mattikalli et al. [18] and
ang and Trinkle [24], the equilibrium alone does not represent a
ufficient condition for the stability. To impose the compatibility
etween forces and rigid-body motion, we consider virtual dis-
lacements. In particular, the first aspect is to define the space
f all possible infinitesimal admissible rigid-body displacements.
e denote with δqk ∈ R6 the virtual displacement vector of

k, where the first three components of δqk are rigid transla-
ions

[
δqk,x δqk,y δqk,z

]⊺ and the last three the rigid rotations
δqk,rx δqk,ry δqk,rz

]⊺. The piecewise rigid displacement field
escribing the motion of the entire assembly is a function of the
agrangian parameters collected in the vector δq ∈ R6·l.
Based on the well-known duality relation for rigid bodies,

he kinematic matrix can be expressed as the transpose of the
quilibrium matrix A⊺

eq ∈ R3·s×6·l [69]. Therefore, the relative
isplacement δd ∈ R3·s of the vertices can be expressed through
he following relation:
⊺
eq δq = δd . (8)

imilar to the nodal force fijk, the relative virtual displacement
di
jk ∈ R3 of the vertex cijk and it can be decomposed into three

omponents δdi
jkn, δd

i
jku, and δdi

jkv , with δdi
jkn the relative normal

isplacement, δdi
jkt the relative tangential sliding displacement.

fterwards, we introduce two nonlinear constraints to exclude
hysically unrealisable forces.
Firstly, we need to enforce the compatibility between forces

nd rigid-body motion in two directions, tangential sliding and
ormal detachment. For a potential sliding motion, we enforce
he alignment among friction forces and corresponding virtual
liding movements using the following nonlinear constraints for
ach contact cijk:

i
jkt = −αi

jk δdi
jkt , αi

jk ≥ 0 , ∀i, j, k , (9)

here αi
jk is a non-negative scalar used to relate the friction force

i
jkt direction with the relative sliding displacement δdi

jkt . Note
hat friction and virtual sliding movements are aligned but point-
ng towards opposite directions. Also, when the virtual sliding
7

ovement is zero, the friction force is zero as well. From a phys-
cal perspective, constraint (9) ensures only that the direction of
he friction force has to be compatible with the corresponding
elative virtual tangential displacement. The need for such a re-
uirement was also pointed out in Omata and Nagata [67], which
tated that enforcing a static friction force to the opposite sliding
irection restricts the force solution space properly, as also shown
n Fig. 4.

Secondly, the compatibility among normal forces and cor-
esponding relative displacements has to be enforced. In other
ords, we need to ensure normal forces appear only if two
locks are in contact; otherwise, when detachment happens, they
ave to be zero. We model this behaviour as a complementarity
onstraint:

f ijkn (δdijkn + ε) = 0 ,

i
jkn , (δdijkn + ε) , ε ≥ 0 , ∀i, j, k ,

(10)

here ε is a very small numerical overlapping parameter,
.e. from 10−5 to 10−4 of the block dimension. The inclusion of
ε assures that the normal forces occur only when two blocks
slightly overlap.

Finally, combining the original equilibrium formulation (7)
with the additional constraints expressed in Eqs. (8)–(10) the new
QP formulation with nonlinear constraints is:

min
f, δq, α

∥fn∥2
2 + ∥α∥

2
2

s.t. Aeq f = −p
Afr f ≤ 0
A⊺
eq δq = δd

f ijkn (δdijkn + ε) = 0

fijkt = −αi
jk δdi

jkt⏐⏐ δdi
jk·

⏐⏐ ≤ η

f ijkn , αi
jk , (δdijkn + ε) , ε , η ≥ 0 , ∀i, j, k .

(11)

The objective function here includes the additional term α that
collects all αi

jk, and we solve the problem in a least square
formulation. For simplicity, we follow the RBE-style formulation
to model the linearised friction constraints. Alternatively, those
constraints can also be modelled with second-order cone con-
straints to reduce the computational cost [70,71]. It is worth
noting that problem (11) can be thought of as an optimisation
problem with equilibrium constraints. Ferris and Tin-Loi pro-
posed a nonlinear programming formulation to define limit states
of masonry structure composed of rigid blocks [72]. Several dif-
ferences between the two formulations can be pointed out: (i) the
objective function in (11) minimises the amount of the normal
contact forces and does not consider the minimum of the ‘‘load
factor solutions’’ as in [72]; (ii) problem (11) explicitly models the
alignment between tangential displacements and friction forces,
which is key when modelling the mechanics of sharp wedge
connections; and, (iii) as will be shown in Section 3.2, formulation
(11) represents an ideal base to implement a penalty formulation
in order to measure the structural instability. Additionally, al-
though small displacement fields are used, optimisation problem
(11) is nonlinear, so each displacement value δdi

jk· is bounded to
a small number η (i.e. 10−3

− 10−2 of the block dimension) to
avoid local minimum solutions that are far from the initial ref-
erence configuration. Note that problem (11) is infeasible when
a structure is unstable. The additional constraints combining
equilibrium and kinematics reduce the solution space excluding
unrealisable equilibrated solutions. As we will show, this is re-
flected in two aspects: (i) it allows for better capturing of the limit
states; and (ii) when the structure is in a stable configuration, it
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rovides more realistic results. As a consequence, it represents a
ood mathematical base to be used in a penalty formulation. In
ddition, optimisation (11) implicitly guarantees that the work
ue to external forces for the corresponding displacements is
on-negative:
⊺ δq ≥ 0 . (12)

or a detailed derivation of relation (12), we refer the reader to
ppendix C.

.2. Analysing infeasible structures

In comparison with other approaches, one of the true poten-
ials of the RBE method is that it can analyse unstable structures
s illustrated in Section 2.1. As the idea behind our formulation is
imilar to the RBE approach, we include the penalty formulation
n the same qualitative way. We also allow for tensile forces
nd decouple the normal force fijkn into its positive fi+jkn and neg-
tive fi−jkn parts. Thus, the fjkn in Eq. (10) can be replaced with
he positive part of normal force f i+jkn . Despite the previous RBE
ormulation, to avoid the simultaneous presence of both negative
nd positive parts on the same vertex, we introduce the following
omplementarity constraint:
i+
jkn f i−jkn = 0 . (13)

s f i+jkn and f i−jkn cannot coexist, Eq. (4) with constraint (13) im-
plicitly avoids friction when tension force occurs. By adding all
penalty forces and additional constraints, optimisation problem
(11) can be modified to measure unstable structures:

min
f̃, δq, α

f+n 2
2 + γ

f−n 2
2 + ∥α∥

2
2

s.t. Aeq B f̃ = −p
Afr B f̃ ≤ 0
A⊺
eq δq = δd

f i+jkn (δdijkn + ε) = 0

f i+jkn f i−jkn = 0

fijkt = −αi
jk δdi

jkt⏐⏐ δdi
jk·

⏐⏐ ≤ η

γ , ε , η ≥ 0

f i+jkn , f i−jkn , αi
jk , (δdijkn + ε) ≥ 0 , ∀i, j, k ,

(14)

he tensile forces are introduced in the objective function using
highly penalised weighting factor γ . As the RBE formulation,
q. (14) allows for the description of non-feasible stress states
till favouring solutions without tension.

.3. Extending assembly data structure for complex assemblies

We utilise the assembly data structure described in [43] and its
omputational implementation available through [73] to handle
ll information for complex assemblies efficiently. For assemblies
ith non-convex blocks, Frick et al. [43] proposed the use of mul-
iple convex blocks to discretise a non-convex compound block
arking the additional new interfaces as internal. This convex
ecomposition step of complex assemblies, e.g. freeform shapes,
s not straightforward, as it requires additional and specific
lgorithms.
In the present paper, we propose an alternative procedure that

oes not require any the additional convex decomposition step.
pecifically, the interface Cjk is approximated through wjk planar
ompact subinterfaces C with o ∈ {1, . . . , w } (see Fig. 5).
jko jk s

8

All subinterfaces along with their corresponding local reference
systems can be stored in the edge Ejk of the original directed
raph G(V , E). Therefore, constructing the equilibrium matrix
eq becomes straightforward, since all interfaces are indexed
n a compatible way. Our current implementation still requires
he interfaces to be discretised either manually or by using an
uto-triangulation algorithm. Compared to the existing assembly
ata structure that requires convex decomposition, our extended
ersion is more straightforward and easier to use.

. Numerical benchmarks

We implemented CRA in a Python-based code using Pyomo
s an open-source modelling language [74] and IPOPT as a
olver of the nonlinear constrained optimisation problem [75].
dditionally, we utilise COMPAS (An open-source computational
ramework for collaboration and research in Architecture, Engi-
eering, Fabrication, and Construction) [76] as our base for the
ata structure such that our method can be easily integrated into
ny desired CAD software. The results are visualised with OpenGL.
ll examples and benchmarks are performed on a MacBook Pro
ith a 2.9 GHz 6-Core Intel Core i9 Processor and 16 GB memory.
In this section, looking at geometric models with increasing

omplexity, we benchmark the CRA method against widely used
ngineering software such as 3DEC (DEM) [30] and nonlinear FE
nalysis using Sofistik [77]. In particular, the benchmarks will
onsider the limit state scenarios, such as finding the maximum
ilting angle for which a structure is still stable. We will show
ow the use of CRA allows a correct evaluation of the limit state
nd aligns with the results obtained with commercial software.
The first benchmarks regard the three simple examples shown

n Yao et al. [44] and Shin et al. [7]. Table 1 reports the results
rom these previous works along with the ones obtained using
RA, 3DEC and an in-house implementation of RBE. All numerical
ethods, except for Variational Static Analysis (VSA) proposed by
ao et al. [44], return the same limit tilting angle obtained from
nalytic solutions. For the 3-legged π example, the RBE results
roposed by Shin et al. [7] are a bit lower (0.4◦) than the one ob-
ained from our RBE implementation, which might relate to small
ifferences due to remodelling. While VSA is still conservative
ompared to other numerical methods, Yao et al. [44] justified
ts conservative results as they are closer to small-scale model re-
ults, and they attributed the RBE overestimation to the improper
reatment of the sliding. Conversely, Shin et al. [7] stated the
ifference between physical and numerical results was related
o the imperfections on small-scale 3D-printed models, which
ight be taken into account through an arch thickness reduction
f 13% [78]. Small-scale physical models are always affected by
mperfections that, according to their size, can drastically redirect
he internal stress state and can consistently lower the stability
alues [33,79]. In Remark 1, we will show that the failure of the
emicircular arch of Table 1 is not due to the improper treatment
f the sliding in RBE, meaning that the RBE result is theoretically
orrect in that specific case, i.e., for the perfect geometry. In
ddition, RBE results about the maximum tilting angle of masonry
rch are aligned with well-known ones available in the literature
80–84]. For evaluation of the theoretical limit state, CRA pro-
ides users with accurate numerical results that align well with
ngineering software 3DEC.

emark 1. Here, we discuss the arch thick model reported in
able 1. The semicircular arch (Fig. 6a) having a thickness-to-
adius ratio t/r = 0.150 is discretised with 36 voussoirs, and the
riction angle is assumed equal to 43◦ as Shin et al. [7]. The RBE
ilting test shows a maximum tilting angle of 8.2◦. The internal

tress state is represented through resultant forces (in green) as
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Fig. 5. The freeform interface Cjk can be approximated through many sub-interfaces Cjko .
Fig. 6. Arch thick model. (a) With a friction angle equal to 43◦ , RBE returns a maximum tilting angle of 8.2◦; (b) while using a reduced friction angle of 21.8◦ , the
aximum tilting angle is 3◦ . The red spheres denote the interface where a potential sliding motion is allowed. (For interpretation of the references to colour in this

igure legend, the reader is referred to the web version of this article.)
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rom the combination of nodal forces over each interface. We
abel interfaces with red spheres when the nodal forces are in the
imit state, i.e. lying on the boundary of the Mohr–Coulomb fric-
ion cone. As the reader can note, the resultants are everywhere
ithin the friction cone as no interface is labelled in red. Thus,
he limit friction capacity of the arch is not reached, and sliding
oes not occur. To show how the friction capacity can influence
he result, we consider a reduced friction angle equal to 21.8◦

Fig. 6b). In this case, the RBE analysis shows that the maximum
ilting angle is 3.0◦. As the reader can notice, in this case, the
nterface among the right support and the arch is labelled in red,
eaning that the maximum friction capacity is reached, sliding
an occur. The lower friction capacity restricts the solution space
esulting in a lower maximum tilting angle. These analyses were
arried out also with CRA and 3DEC obtaining the same results.
ote that for these specific cases, RBE is able to correctly capture
he failure mode. The difference with physical models is only due
o imperfections and tolerances always affecting by small-scale
odels.

To show how our methodology can correctly capture non-
easible solutions and suggest non-stable regions, we perform
he analysis of the shelf example provided in Yao et al. [44]
Fig. 7). Similarly to 3DEC, VSA correctly captures the sliding
ehaviour of two unstable elements. RBE, however, incorrectly
9

redicts the shelf as a stable structure. Differently from RBE,
RA without the penalty formulation (Eq. (11)) correctly clas-
ifies the model as non-stable, being the optimisation problem
s infeasible. Applying the CRA penalty formulation (Eq. (14)),
he model becomes feasible. Additionally, its result indicates the
nstability regions providing extra tensile forces required to make
he structure stable. Fig. 7d shows that by providing a given
mount of tensile capacity, represented by the red vector, the
xisting shelf design is in equilibrium. Therefore, CRA provides:
i) a correct assessment of unstable assembly, unlike RBE; (ii) in
ddition to VSA, quantitative information on what could be done
o stabilise the design thanks to its penalty formulation.

Classic rigid-block models have been developed for planar
nterfaces and have not been applied to non-planar interfaces,
articularly for sharp wedge connections. To the best of the au-
hors’ knowledge, these scenarios were not previously addressed
n any study. However, real structures are often designed with
omplex and non-planar interfaces. With the third benchmark
ase, we want to address this problem. Fig. 8 shows four types
f 3-block wedge models, similar to the one presented in Fig. 4:
ype-a and type-b have sharper wedge angles compared to type-
and type-d. Respectively, type-a and type-d have a lower the

entre of mass compared to type-b and type-c. We perform tilting
ests among three different axes to get maximum tilting angles in
able 2. All models are rotated counterclockwise and results are
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Table 1
Benchmark table provided in Yao et al. [44] and Shin et al. [7], here extended to also include 3DEC, CRA, and in-house version of
RBE as solvers. We use the same friction angle 43◦ as in all previous works. In these three examples, CRA aligns well with both
analytic and engineering software solutions.
provided considering two different friction coefficients (µ = 0.2
and µ = 0.84). We want to point out that wedges with sharp
angles (e.g. type-a and type-b) cannot be analysed with classic
rigid-block models such as RBE, as they always return a feasible
solution even in an upside-down configuration, e.g. model A.

In the comparison table, CRA aligns well with 3DEC results
except for type-c rotate-xy30. We observe the different limit
tilting angle is coming from the fundamental difference at the
base of these two solvers. 3DEC is a dynamic solver, and it
can capture the equilibrium on newly deformed configurations.
Specifically, in the 3DEC analysis, between 40◦ and 48◦, the free
block slides slightly and settles reaching equilibrium in a new,
deformed configuration. Performing a CRA analysis of the 3DEC
deformed configuration, we get the same results, confirming that
10
it is stable. In this sense, CRA is slightly conservative because it
only considers the static equilibrium on the initial configuration.
RBE, in contrast, seems to have bad predictions for sharp wedge
angles and standard friction coefficients, as also pointed out in
Section 2.2 with the A model.

The last two examples look at simple assemblies with concave
and curved interfaces in order to benchmark CRA when the
extended version of the data structure is used. Fig. 9a and b
show two concave shape joint geometries with the same interface
but different cantilever lengths. We compare CRA results against
3DEC in a tilting test considering two friction values, i.e. friction
coefficients 0.10 and 0.84 correspond to friction angles equal
to 5.71◦ and 40.03◦, respectively. As from Table 3, a very good
agreement can be noted. In particular, the positions of the centre
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Fig. 7. Shelf model. (a) 3DEC analysis shows 2 unstable pieces with their sliding directions. (b) VSA shows similar results as 3DEC (image taken from Yao et al. [44]).
(c) RBE incorrectly identifies the structure as stable. (d) the designer can use CRA not only to correctly identify unstable parts, but also to define the extra forces
needed to make the assembly stable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. 3-blocks wedge models. All models are initially placed vertically on the XY -plane with gravity pointing in the negative Z-axis and are viewed with a camera
point towards the XZ-plane.

11
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Fig. 9. The maximum tilt of two concave shape joint geometries with different lengths of cantilever. (a) and (b) are CRA results corresponding to the friction
oefficient µ = 0.84 in (c).
Table 2
Benchmark table for 3-blocks wedge models in Fig. 8. rotate-x, rotate-y, and rotate-xy30 represent the results of the
tilting tests using (1, 0, 0), (0, 1, 0), and (

√
3, 1, 0) as rotation axes.

Type Rotation axis µ = 0.20 µ = 0.84

Angle (deg) 3DEC CRA RBE 3DEC CRA RBE

rotate-x 21.8 21.8 25.0 59.2 59.2 180.0
type-a rotate-y 71.3 71.3 71.3 100.0 100.0 180.0

rotate-xy30 24.8 24.7 28.0 62.7 62.9 180.0

rotate-x 21.8 21.8 25.0 58.7 58.5 180.0
type-b rotate-y 67.4 67.4 67.4 109.1 109.1 180.0

rotate-xy30 24.8 24.7 28.0 63.1 62.0 180.0

rotate-x 13.0 13.0 13.0 44.1 44.1 47.0
type-c rotate-y 41.3 41.3 41.3 64.5 64.4 65.7

rotate-xy30 14.9 14.9 15.0 48.1 40.2 51.0

rotate-x 13.0 13.0 13.0 44.1 44.1 50.0
type-d rotate-y 41.3 41.3 41.3 70.0 70.0 70.0

rotate-xy30 14.9 14.9 15.0 49.0 48.5 54.0
Table 3
Benchmark table for concave joints in Fig. 9.
Type Rotation axis µ = 0.84 µ = 0.10

Angle (deg) 3DEC CRA 3DEC CRA

concave-short rotate-x 40 40 5 5
concave-long rotate-xy 56 54 10 9

of mass of these two models affect the results. Indeed, while in
the concave-short model, the failure is due to the friction capacity
n the two lateral contact sides, the concave-long can activate
n additional contact on the back that makes it more stable.
oreover, as soon as the model is tilted to the limit angle, the

ow friction angle configuration starts to slide as expected.
Lastly, we benchmark CRA on three types of freeform as-

emblies with curved interfaces against 3DEC and Sofistik. The
odels and the corresponding results are reported in Fig. 10a,
, and Table 4. CRA directly discretises the original curved in-
erface as described in Fig. 5. Conversely, 3DEC cannot take the
urved interfaces into account directly; to analyse assembly with
urved interfaces, we proceeded with a preprocessing modelling
hase cutting each block into convex sub-blocks, which were
oined together later. As this is not common, we also decided to
enchmark CRA against Sofistik FE software. Sofistisk can simi-
arly handle curved interfaces, but it needs additional meshing
12
steps for generating triangular surface elements and tetrahedral
volume elements. Moreover, Sofistik considers only one nor-
mal versor for each vertex averaging the normal versors of the
neighbouring faces.

Table 4 illustrates the tilting tests performed considering
three qualitatively different models and assuming various distinct
tilting directions.

In Fig. 10a, the curve-3-blocksmodel consists of three vertically
stacked blocks with interfaces curved in the X-axis. In this case,
we perform five tilting tests around different axes, and all CRA
results align well with both 3DEC and Sofistik. In Fig. 10b and
c, we model curved interfaces in both X-axis and Y -axis. Both
cube-curve-short and cube-curve-tall have the same interface and
discretisation. They are different in terms of their centre of mass
positions. Due to the symmetry of the shape, we perform only
three different tilting directions for both cube-curve models. For
the cube-curve-short model, CRA seems to align well with 3DEC
results. On the other hand, Sofistik seems slightly more conser-
vative, especially for the rotation-xy axis. For the cube-curve-tall
model, CRA gives a more conservative angle in the rotation-xny
axis.

In general, CRA nicely captures the limiting state of different
geometries and aligns well with engineering software solutions.
The correct prediction of stability greatly enlarges the design
space of discrete-element assemblies. In the next section, we will
show some examples using CRA in the forward design process.
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Fig. 10. The maximum tilting angle of three types of non-standard assembly shapes with curved interfaces.
Table 4
Benchmark table for non-standard assembly with curved interface in Fig. 10. All
tilting angles are rotated anticlockwise according to a specific rotational axis, e.g.
the rotate-xy represents the rotational vector (1, 1, 0) and rotate-xny represents
he rotational vector (1, −1, 0).
Type Rotation axis µ = 0.84

Angle (deg) 3DEC Sofistik CRA RBE

rotate-y 8 8 8 8
rotate-ny 53 53 53 53

curve-3-blocks rotate-x 24 24 24 26
rotate-xy 11 12 12 12
rotate-xny 46 47 47 48

rotate-x 72 70 70 180
cube-curve-short rotate-xy 68 64 69 180

rotate-xny 80 79 79 180

rotate-x 41 38 40 180
cube-curve-tall rotate-xy 39 38 39 180

rotate-xny 59 58 51 180

5. Interactive stability-aware design process using CRA

As we stated in previous sections, CRA can assess stability
orrectly, and its penalty formulation can provide users with
dditional information. Section 5.1 shows how CRA can be inte-
rated into an interactive stability-aware design workflow, while
ection 5.2 shows its potential in guiding the designer towards a
elf-supporting shape.

.1. Workflow

We propose a stability-aware design process and summarise
t as an algorithm workflow in Fig. 11. The algorithm input is
he user-provided assembly that includes geometry, mechanical
arameters, boundary conditions, etc. Note that the defini-
ion/choice of the boundary condition allows selecting which
locks are considered as supports. In this sense, its use enables
he possibility to assess local stability. After set up, the central
nalysis consists of two CRA formulations, with and without
he penalty formulation, i.e. using optimisations (Eq. (11)) and
Eq. (14)) respectively. The algorithm first assesses the stability
f the assembly using the optimisation problem (Eq. (11)). If the
ssembly is unstable (i.e. infeasible), the algorithm further anal-
ses it with the CRA penalty form (Eq. (14)) to identify unstable
egions. Once the unstable parts have been defined, the user can
hange the geometry accordingly to remove tensile forces until a
atisfactory degree. In the next section, we will show how to use

tability-aware design workflow to redirect design choices.

13
Fig. 11. CRA integration with stability-aware design workflow.
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Fig. 12. The local instability can be understood better by isolating the unstable parts from the shelf model (Fig. 7). Tension forces on the top indicate the specific
interface is not loaded, and the light grey rectangle shows the virtual displacement as potential sliding movement (a). The unstable element can be resolved by
adding a supporting element (b), changing bottom interface geometry (c), or changing upper interface geometry (d).
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5.2. Interactive process towards stability

In this section, looking at the shelf model, we demonstrate
he effectiveness of the proposed workflow. Optimisation prob-
ems (11) is infeasible, meaning that the shelf is not stable.
RA with penalty formulation (Eq. (14)) shows two unstable
lements (Fig. 7). After that, we apply CRA on each local element
ndividually. E.g. looking at the top-right element, we set all its
eighbouring parts as support. The tensile forces above the upper
nterface indicate that the region is not activated (Fig. 12a). In
ddition, the virtual displacement (light grey rectangle) shows
he potential sliding direction. To prevent the element from
liding down and provide the uplifting force, we provide three
ossible modifications: adding an element as support (Fig. 12b)
r changing the bottom (Fig. 12c) or the upper (Fig. 12d) interface
eometry to enforce the resultant inside the friction cone. For
ach modification, CRA provides real-time feedback about the sta-
ility of the new configuration. The users can learn from the force
eedback and modify their initial design by choice toward better
ocal stability-aware design. After the instability of a specific
ocal element is resolved, the user can resolve different unstable
egions locally one by one until the entire structure reaches global
quilibrium.

. Results

In this section, we demonstrate that the accuracy of CRA
nables a wide range of design possibilities. The analysis in Sec-
ion 6.1 aims at illustrating that, even though it is based on a
 m

14
nonlinear programming optimisation, CRA can be used to assess
real structures composed of many elements.

The second and the third examples in Section 6.2 show two
simple but meaningful design cases where CRA is used to as-
sess and design self-supporting structures that can be assembled
scaffold-free during assembly. Our designs are validated through
scaled physical models that are 3D-printed with a Stratasys
Objet500 Connex3 3D Printer.

6.1. Analysing complex structures

Fig. 13 shows the CRA analysis of the Armadillo Vault pre-
sented in Fig. 1a. The model consists of 399 blocks and 1014
interfaces. The built Armadillo Vault structure has a 16 metres
span with a minimum block thickness of 5 cm [85,86]. In our
numerical model, we approximate non-planar ruled surfaces to
locally planar interfaces and identify the first layer of blocks
as supports. Importantly, CRA correctly identifies the Armadillo
Vault as a stable structure, even with such thin structural thick-
ness. In addition, the internal resultant forces obtained from CRA
nicely capture the arching and ringing actions as illustrated in
Fig. 13.

6.2. Numerical analysis and physical models

The following example looks at the snake design, whose
rocess is summarised in Fig. 14. The snake is composed of
hree pieces plus the supporting base. The ability to accurately

odel sharp interfaces with friction enables the user to reach



G.T.-C. Kao, A. Iannuzzo, B. Thomaszewski et al. Computer-Aided Design 146 (2022) 103216

i

c
1
j
c
e
c
r
i
f
s
m
t
s
w
b
s
p
1
e
h

Fig. 13. CRA correctly identifies the Armadillo Vault (Fig. 1a) as a stable structure identifying arching and ringing actions correctly.
Fig. 14. Snake model: step-by-step construction sequence of both CRA analysis (bottom) and corresponding physical model (top). Friction value µ = 0.66 is applied
n the CRA analysis. Two images on the right highlight the detailed interface and forces of the assembled model.
Fig. 15. Sequential scaffolding-free construction of the bridge. CRA analyses on top and corresponding construction phases on the small-scale physical models on
the bottom.
cantilevered solutions that are not possible with only planar
interfaces. Note the parallels between the physical model and
CRA result in Fig. 14. Because of small tolerances, the head of the
snake moves slightly. However, the small movement emphasises
that equilibrium is reached through the transmission of reaction
forces on two contact points, which match the reaction forces
found with the CRA analysis.

The last analysis regards a bridge design, whose assembly pro-
ess together with the CRA results are summarised in Figs. 15 and
6. The bridge has been specifically designed to avoid interlocked
oints but still have an assembly sequence such that each piece
an stably stand without any additional scaffolding. To limit the
ffect of tolerances on the physical model, a connection (red
ircles in Fig. 16) is designed to have the first two pieces self-
egistered in the desired position. The friction coefficient adopted
n the analysis is 0.66. A parametric CRA analysis showed that
or friction values lower than 0.35, the bridge cannot be con-
tructed scaffolding-free. As the friction coefficient of the printing
aterial is around 0.3, we applied sandpapers to the interfaces

o guarantee that the actual friction value is above 0.66. The
andpaper with double-sided tape has a thickness of 0.58 mm,
hich was carefully considered in the 3D printed geometry. The
ridge stands under its self-weight, and as Fig. 16 shows, it can
upport additional loads. The bridge’s net mass (i.e. without sup-
orts) is 319 g, while the mass of the external distributed loads is
208 g. Fig. 16 shows the CRA results obtained considering these
xternal, additional loads (i.e. to this aim, the additional blocks

ave a higher material density). Lastly, looking at the physical

15
model in Fig. 16b, the keystone is touching and transmitting
forces only through the two upper interfaces. This phenomenon is
well captured by the CRA analysis in Fig. 16a, where the solution
returns only two resultants affecting those interfaces while the
lower ones are not reacting, as highlighted with green circles.

7. Conclusion

The equilibrium approach is a common strategy for analysing
the stability of rigid block assemblies. Nonetheless, existing meth-
ods are either too conservative or cannot provide realistic or
accurate results even on some simple scenarios. This paper in-
troduces a new method, named CRA, to assess the stability of
complex assemblies. The CRA method provides accurate results
that can push structural stability to the limit during assembly,
consequently saving material and allowing for thinner complex
structures.

Different from previous methods, CRA provides an accurate
evaluation of internal stress states and limit scenarios thanks
to a nonlinear programming formulation that couples equilib-
rium and kinematics. Beyond classical constraints representing
the equilibrium and the friction capacity of the assembly, two
additional and crucial constraints are considered. The first is a
complementarity condition that relates detachment and normal
forces: normal forces are not allowed when blocks are no longer
in contact. The second constraint aligns friction forces with virtual
sliding movements. Its use is particularly relevant to capture the
stability of non-planar and sharp wedge connections.
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Fig. 16. (a) Bridge in its final configuration and subjected to additional loads. (b) The span of the 3D printed model is 40 cm, the net mass of the bridge is 319 g,
while the mass of the external loads is 1208 g. The red circles denote two sharp wedges designed to guarantee that the two external elements are in the right
osition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Furthermore, this new nonlinear optimisation problem is
ewritten in a penalty formulation, allowing us to evaluate
on-equilibrated assemblies and thus explore a larger configu-
ation space. It allows for the detection of non-stable regions,
roviding additional information to stabilise the assembly. More-
ver, the existing graph-based assembly data structure has been
xtended to enable flexible analysis of complex shapes with
urved interfaces. Importantly, CRA can be integrated into a pro-
osed stability-aware design workflow to assist users towards
ore structurally-sound designs. The following essential aspects
llowed by the proposed methodology should be highlighted:

• CRA enables correct stability assessments of connections
with sharp wedge interfaces, which are not possible with
existing equilibrium methods;

• In order to consider fabrication defects or assembly toler-
ances, we can use a lower friction value or reduced interface
to obtain conservative results;

• The penalty formulation allows the user to redirect design
choices. In our physical models, we also used the penalty
formulation to obtain meaningful information about the dis-
cretisation process. CRA with penalty formulation not only
suggests if the structure is stable but also improves our
understanding of the structural response;

• The potential of our formulation is demonstrated on the can-
tilever bridge design, where the interfaces were iteratively
designed using the proposed stability-aware design work-
flow to achieve stable solutions, both for the final structure
and during assembly;

• An accurate description of the assembly internal stress state
when coupled with corresponding small virtual displace-
ments represents a robust overall strategy to understand the
structural behaviour during the design process; and,

• Even though it is based on a nonlinear programming for-
mulation, the computation time of CRA required for local
stability analysis is satisfactory. Taking the Armadillo Vault
– a real structure – as an example, we demonstrated that
CRA is able to solve problems of practically relevant sizes
and complexity.
Table 5 reports the computational burden listed for all the
performed analyses.

To conclude, the potential of the proposed methodology
as been demonstrated by designing some physical scale mod-
ls in surprising equilibrium configurations, where the physical
ontacts among real blocks match the CRA interface forces.
The present formulation is based on nonlinear constrained

ptimisation. Thus, it does not guarantee global convergence and
16
Table 5
Performance of all examples, all solving times of models are analysed at the rest
position without applying any tilting.
Fig Model #Blocks #(Sub)Interfaces Solving time (sec)

6 Arch thick 38 37 1.02
7 Shelf 11 19 0.50
8a type-a 3 2 0.05
8b type-b 3 2 0.05
8c type-c 3 2 0.05
8d type-d 3 2 0.05
9a concave-short 2 7 0.23
9b concave-long 2 7 0.15
10a curve-3-blocks 3 40 2.38
10b cube-curve-short 2 72 1.15
10c cube-curve-tall 2 72 1.04
13 Armadillo Vault 399 1014 2424.44
14 Snake 4 7 0.35
15 Completed bridge 11 33 1.27
16 Bridge with load 16 38 1.26

different starting points may result in different local optima.
Parallel programming and other nonlinear solving algorithms will
be investigated to speed up the solving time.

Two aspects can be further enhanced: i) use of a sequential
optimisation procedure superimposing small displacements at
each step to capture equilibrated solutions on a deformed but
still safe configuration; ii) the introduction of specific algorithms
to generate complex curved interface patterns to explore more
stable solutions.

Finally, we want to point out that CRA with its penalty formu-
lation represents an ideal basis for automatic shape optimisation
of initially infeasible configurations.
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ppendix A. Equilibrium equations

Referring to Fig. 2, we detail the equilibrium equation using
he same notation adopted in Section 2.1. For the assembly A
ith l blocks and h interfaces to be in static equilibrium requires
hat every block has to be in equilibrium. In particular, six equilib-
ium equations can be written, three for the net force and three
or the torques. Looking at the block Bk, the equilibrium equa-
ions due to all nodal reaction forces fjk acting on the mjk-sided
olygonal interface Cjk can be compactly expressed as:

k,jk fjk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ajk,x ajk,x · · · ajk,x
ajk,y ajk,y · · · ajk,y
ajk,z ajk,z · · · ajk,z
b1
jk,x b2

jk,x · · · bm
jk,x

b1
jk,y b2

jk,y · · · bm
jk,y

b1
jk,z b2

jk,z · · · bm
jk,z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
f1jk
f2jk
...

fmjk

⎤⎥⎥⎥⎥⎦ ,

here ajk,ı = [n̂jk,ı ûjk,ı v̂jk,ı], bi
jk,ı = [(rikj × n̂jk)ı (rikj ×

ˆ jk)ı (rikj × v̂jk)ı], ı ∈ {x, y, z}, and fijk = [f ijkn f ijku f ijkv]
⊺.

articularly, n̂jk,x, ûjk,x, and v̂jk,x are the x coordinate of the Cjk’s
asis in global reference systems. The rikj is the torque arm vector
ointing from mass centre of Bk to cijk. The first three rows of Ak,jk
ollect the translational coefficients, while the last three rows
ollect the torque coefficients. These six equilibrium equations
ave to be written for all interfaces Cjk among Bk and each of its
eighbouring blocks Bj. Once collected all equilibrium equations
or all blocks, the global equilibrium of the entire assembly A
eads:

Aeq f = −p
A1,1 · · · A1,h

...
. . .

...

Al,1 · · · Al,h

⎤⎥⎥⎦
⎡⎢⎢⎣
f1
...

fh

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
p1

...

pl

⎤⎥⎥⎦ ,

here the row k and the column ȷ of sub matrix element Ak,ȷ
represent equilibrium equations of Bk as coming from interface Cȷ.
ote that all interfaces Cjk are collected in a given order through

the map g : Cjk ∈ C ↦→ Cȷ ∈ C and ȷ ∈ {1, . . . , h}. Typically,
eq is sparse. Indeed, each column ȷ only has at most two non-
eros sub-matrices Ak,ȷ as each interface is shared by two adjacent
eighbouring blocks. Besides, if the block Bk is a support, the
orresponding sub-matrix is zero. Specifically, the row k in the
quation,

[
Ak,1 · · · Ak,h

][
f1 · · · fh

]⊺
= −pk, represents the

quilibrium condition for Bk respective to all its neighbouring
nterfaces, where pk is the vector collecting the external loads
cting on the Bk. For Eq. (3), the different dimensional f̃ is repre-
ented element-wise f̃ijk = [f i+jkn f i−jkn f ijku f ijkv]

⊺ and B is a matrix
hat maps f̃ to f. We define this relation as Bi

jk f̃
i
jk = fijk with:

i
jk =

⎡⎣1 −1 0 0
0 0 1 0
0 0 0 1

⎤⎦ ∀i, j, k .

ppendix B. Linearised friction constraint

We detail the eight-sided linearised friction constraint of
q. (5). Theoretically, the Mohr–Coulomb criterion is represented
17
y a cone. Nonetheless, to speed up the process, it is common to
pproximate the original cone with a pyramid. Fig. B.17 shows
n eight-sided cone approximation and its vertex coordinates
oncerning two tangential axes fijku and fijkv .
Looking at an interface’s vertex, Eq. (4) can be rewritten

hrough the two following inequalities:

µ f i+jkn + f ijkt ≤ 0

µ f i+jkn − f ijkt ≤ 0 , ∀i, j, k .

f we replace f ijkt with f ijku and f ijku, we can define the eight-sided
pproximation of the Mohr–Coulomb criterion as:

Bi
jk f̃

i
jk ≤ 0 , ∀i, j, k ,

here G matrix is:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ 1 0
−µ 0 1
−µ −1 0
−µ 0 −1

−µ 1/
√
2 1/

√
2

−µ −1/
√
2 1/

√
2

−µ −1/
√
2 −1/

√
2

−µ 1/
√
2 −1/

√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bi
jk matrix is:

i
jk =

⎡⎣1 0 0 0
0 0 1 0
0 0 0 1

⎤⎦ ∀i, j, k ,

nd it can be stacked into a big diagonal matrix considering all
ertices of all interfaces:

fr B f̃ =

⎡⎢⎢⎣
G

. . .

G

⎤⎥⎥⎦
⎡⎢⎢⎣
Bi
jk

. . .

Bi
jk

⎤⎥⎥⎦
⎡⎢⎢⎣
f̃1
...

f̃s

⎤⎥⎥⎦ ≤ 0 ,

here
[
f̃1 · · · f̃s

]⊺
are all the nodal forces.

ppendix C. Positiveness of the external work

Not all rigid motions can be physically possible, meaning that
he space of kinematically admissible displacement has to be
efined considering specific constraints. Beyond the local con-
traints expressing the non-overlapping of interfaces, a global
equirement is that the work done by the external forces and
he corresponding displacements has to be positive as expressed
y Eq. (12). However, this requirement is implicitly taken into
ccount by the constraints of the problem (11). Indeed, it results
n:
⊺ δq = −(Aeq f)⊺ δq = −f⊺ Aeq

⊺ δq = −f⊺ δd ,

ith the last scalar product that can be decomposed into the sum
f the work done by the normal and tangential contact forces and
he dual contact displacements, as:

f⊺t δdt − f⊺n δdn .

ote that the first term is always positive because of Eq. (9), while
he normal coupling (Eq. (10)) the second term is close to zero.
hus it results in:
⊺ δq =

∑
i,j,k

αi
jk (δd

i
jkt )

2 ,

i
showing that Eq. (12) holds as all αjk are non-negative. ■
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Fig. B.17. Eight-sided linearised friction cone.
R

ppendix D. List of symbols

Symbol Description
A Assembly set
B Block set
C Interface set
Cjk Polygonal planar interface between block j

and k
cijk ith vertex of Cjk interface
G(V , E) Graph representing the assembly A data

structures
V Vertices of the graph G(V , E)
E Directed edges of the graph G(V , E)
w Self-weight of block
µ Friction coefficient
rikj The torque arm vector pointing from mass

centre of Bk to cijk
Aeq Equilibrium matrix
Afr Matrix enforcing the linearised

Mohr–Coulomb yield criterion
(ûjk, v̂jk, n̂jk) Local reference system of interface Cjk
mjk Total number of vertices cijk of interface Cjk
fijk Unknown nodal force vector acting on the

vertex cijk of the interface Cjk
fijku Interface’s force fijk tangential component in

ûjk direction
fijkv Interface’s force fijk tangential component in

v̂jk direction
fijkn Interface’s force fijk normal component in n̂jk

direction
fijkt Interface’s tangential force on cijk
p Vector collecting the external forces as acting

on the blocks’ centroids
f i+jkn Positive component of the normal force fijkn
f i−jkn Negative component of the normal force fijkn
18
f Vector collecting all interface force
components wrt the (n̂jk, ûjk, v̂jk) local
reference system

f̃ Vector collecting all interface force
components wrt the (+n̂jk, −n̂jk, ûjk, v̂jk) local
reference system

B Matrix mapping f̃ to f
H Diagonal square matrix collecting the force

components’ weights
δqk Vector collecting the six Lagrangian

parameters of Bk
δdi

jku Tangential component in the ûjk of the
relative virtual displacement between block j
and k on cijk

δdi
jkv Tangential component in the v̂jk of the

relative virtual displacement between block j
and k on cijk

δdi
jkn Tangential component in the n̂jk of the

relative virtual displacement between block j
and k on cijk

δdi
jkt Interface’s nodal tangential virtual

displacement on cijk
αi
jk Non-negative parameter to align friction force

fijkt direction with relative sliding
displacement δdi

jkt
ε Small numerical overlap parameter (i.e. 10−5

- 10−4 of the block dimension)
η Limit value defining the max allowable

displacement
γ Weighting factor for penalising negative

normal force
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