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Abstract

The life sciences of the digital era are driven by its most fundamental and irreplaceable cur-
rency: data. The advent of big data and machine learning (ML) algorithms has promised to
revolutionise biomedical sciences and medical practice by means of automated diagnostics,
data-driven disease subtyping and personalised treatments. However, whileML in health has
become a vibrant field, in many cases the translation into practice has turned out to be more
challenging than expected, or to put it more bluntly: the revolution is still pending. In this
dissertation, we identify a set of challenges that arise when trying to leverage ML on clinical
data, specifically for time series classification problems. Even though rawpatient data are now
being routinely collected in unprecedented amounts of electronic health records, typically,
this data first needs to be carefully curated, preprocessed and annotated in order to arrive
at a dataset that may be used in a ML pipeline to solve a down-stream prediction problem.
Due to the complexity of this process already for a single dataset, external validations—albeit
crucial—are frequently missing in existing studies.

In the first part of this thesis, we consider the classification of clinical time series, in par-
ticular the application domain of sepsis prediction, where the goal is to early detect sep-
sis, a potentially fatal complication to infections. We propose mitigation strategies to the
aforementioned issues by creating a large, multi-centric cohort of intensive care unit (ICU)
patients with temporally annotated sepsis labels. This allowed us to perform the first inter-
national development and validation of sepsis prediction models using ML. Along the way,
we found that federated learning and model sharing (as opposed to data sharing) leads to
convincing performance—without requiring to physically export sensitive patient data out-
side the source site. Moreover, we encountered clinical time series of vital and laboratory
measurements that were irregularly spaced and, for a given time step, incompletely obser-
ved. Throughout this thesis, we addressed informative missingness of data using Gaussian
process models.

After an application-focused first part, the second part of this dissertation considers the
model’s inner workings more closely. Starting with irregularly sampled time series, we inves-
tigate path signatures, a powerful transform (that can be used as a neural network layer) to
encode paths of data at virtually no loss of information. In particular, we explore how these
signatures may be used to learn time series representations that lead to beneficial classifica-
tion performance. We thereby uncover that the way the signature “interprets” raw data has
drastic implications that are reflected in down-stream performance.We then propose a novel
variant of Gaussian process adapters that lead tomore robustness in signature-basedmodels.

Finally, after having considered model’s implicit interpretation of data, in the final chap-
ter, we explore how models can learn and preserve structures that are available in the raw
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(and potentially high-dimensional) input data. For this, we leverage concepts from topolo-
gical data analysis, and propose topological autoencoders, a novel deep learning architectu-
re that can preserve complex structures and shapes of intangibly high-dimensional data in
low-dimensional visualisations. In summary, we hope that our contributions to clinical time
series classification will pave the way for the deployment of robust and validated models
that create clinical value for the monitored patients. Moreover, we envision that our findings
in temporal and topological representation learning will illuminate the analysis and under-
standing of the ever more accumulating wealth of large and high-dimensional biomedical
datasets.

v



Zusammenfassung

Die Lebenswissenschaften des digitalen Zeitalters werden von einer fundamentalen und
unersetzlichen Grundwährung vorangetrieben: den Daten. Die Erhebung immenser
Mengen an digitalen Daten und dessen Analyse mit neuen Methoden des maschinellen
Lernens (ML) versprach einen grundlegenden Paradigmenwechsel der biomedizinischen
Wissenschaften als auch der medizinischen Praxis. Dies mittels Automatisierungen in der
Diagnostik, Subtypisierungen von Krankheiten und schliesslich personalisierten Behand-
lungen. Obschon die Anwendung von ML in der Biomedizin und dem Gesundheitswesen
zu einem aktiven Forschungsfeld heranwuchs, haben verschiedene Tücken eine breite
praktische Umsetzung dessen Einsichten herausgezögert, oder kurzum: eine Revolution ist
bisher noch ausgeblieben.

In dieser Dissertation zeigen wir eine Reihe von Herausforderungen auf, die sich ergeben,
wenn man versucht, das maschinelle Lernen (ML) auf klinische Daten anzuwenden,
insbesondere bei Problemen der Zeitreihenklassifizierung. Obwohl Patientenrohdaten
heute routinemässig in noch nie dagewesenen Mengen in elektronischen Patientendossiers
gesammelt werden, müssen diese Daten in der Regel zunächst sorgfältig überprüft, ku-
ratiert, vorverarbeitet und annotiert werden, um einen Datensatz zu erhalten, der in
einer maschinellen Lernumgebung zur Lösung eines nachgelagerten Vorhersageproblems
verwendet werden kann. Aufgrund der Komplexität dieses Prozesses bereits für einen
einzelnen Datensatz, fehlen in vielen bestehenden Studien externe Validierungen, obwohl
diese von entscheidender Bedeutung wären.

Im ersten Teil dieser Arbeit befassen wir unsmit der Klassifizierung klinischer Zeitreihen,
insbesondere mit der Anwendungsdomäne der Sepsisvorhersage, bei der es darum geht,
Sepsis, eine potenziell tödliche Komplikation von Infektionen, frühzeitig zu erkennen.
Wir schlagen Strategien zur Entschärfung der oben genannten Probleme vor, indem
wir eine grosse, multizentrische Kohorte von Intensivpatienten mit zeitlich aufgelösten
Sepsis-Annotationen erstellen. Dies ermöglichte uns die erste internationale Entwicklung
und Validierung von Sepsis-Vorhersagemodellen durch maschinelles Lernen. Dabei haben
wir festgestellt, dass föderiertes Lernen und der Transfer von Modellen (im Gegensatz zum
direkten Datentransfer zwischen Spitälern) zu einer überzeugenden Sepsis-Früherkennung
führen—ohne dass sensible Patientendaten die vier Wände des Spitals verlassen müssen, in
welchem die Daten ursprünglich erhoben wurden. Im Laufe dieser Arbeit stiessen wir auf
klinische Zeitreihen von Vital- und Labormessungen, die in unregelmässigen Abständen
und für jeweilige Zeitschritte unvollständig beobachtet wurden. Dieses informative Fehlen
von Daten haben wir mit Hilfe von Gauß Prozessen modelliert und berücksichtigt .
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Nach einem anwendungsorientierten ersten Teil wird im zweiten Teil dieser Dissertation
die innere Funktionsweise der untersuchten Modelle (neuronalen Netze) näher betrachtet.
Ausgehend von unregelmässig beobachteten Zeitreihen untersuchen wir die Pfadsignatur,
eine mächtige Transformation (die als Baustein in neuronalen Netzen verwendet werden
kann), um Pfade im Datenraum praktisch ohne Informationsverlust zu kodieren, was inter-
essante Anwendungen für Zeitreihen birgt. Insbesondere untersuchen wir, wie diese Signa-
turen verwendet werden können, um Zeitreihenrepräsentationen zu lernen, die sich vorteil-
haft auf eine nachgeschaltete Zeitreihenklassifizierung auswirkt. Dabei stellen wir fest, dass
die Art und Weise, wie die Signatur die Rohdaten “interpretiert”, drastische Auswirkungen
hat, die sich in der Güte der Klassifikation wiederspiegeln. Anschliessend schlagen wir eine
neuen Ansatz von Gauß’schen Prozess Modellen vor, die zu mehr Robustheit in signatur-
basierten Modellen führt.

Nachdem wir uns mit der impliziten Interpretation von Daten durch ML Modelle
beschäftigt haben, untersuchen wir im letzten Kapitel, wie Modelle Strukturen lernen und
in internen Datenrepräsentationen bewahren können, die in den rohen (und potenziell
hochdimensionalen) Eingabedaten vorhanden sind. Dazu verwenden wir Konzepte aus
der topologischen Datenanalyse und entwickeln “Topological Autoencoders”, eine neue
Modell-Architektur, die komplexe Strukturen und Formen von hochdimensionalen Daten-
räumen in niedrigdimensionalen Visualisierungen bewahren kann. Zusammenfassend
hoffen wir, dass unsere Beiträge zur Klassifizierung klinischer Zeitreihen den Weg für den
Einsatz robuster und validierter ML Modelle ebnen werden, die einen klinischen Nutzen
für die untersuchten Patienten hervorbringen. Darüber hinaus erhoffen wir, dass unsere
Erkenntnisse im Bereich des Lernens von zeitlichen und topologischen Repräsentationen
die Analyse und das Verständnis der heranwachsenden Fülle an hochdimensionalen
biomedizinischen Datensätzen verbessern werden.
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� Introduction

Over the last three centuries, the practice of medicine has increasingly become a scientific
discipline based on empirical evidence, rather than an art as it had been before [49]. The
last century has then witnessed the birth of modern, evidence-based medicine as we know
it today. In essence, this means that we require knowledge about diseases—how to classify
them, how to diagnose and treat them, and how best provide care for the patients that are
plagued by them—to be backed by supporting data. Today, we may immediately associate
keywords like “data”, or “data-driven”with computers, algorithms, databases, tech companies,
the world-wide web, and so on. But the biomedical disciplines, and indeed natural sciences
in general, have been data-driven or “data-centric” long before personal computers found
their way into our private homes, our workplaces, or even our pockets. In the pre-digital
age, data was typically stored in manually registered records, where its creation depended on
the rare skill of literacy and it usability was fully at the mercy of the author’s handwriting and
of the physical integrity of the surrounding storage space [157]. In contrast, digitalised data
are scalable1, mobile, reusable, and offer a wealth of new opportunities.

Coming back to the 21st century, an on-going digital revolution keeps pulsating waves
of new technologies that are permeating hospitals, research institutions, and medical prac-
tises, thereby redefining the very essence of what it means to provide patient care. Posterity
may think of the medicine of the preceding century as the one that popularised an evidence-
based medicine, where for instance large scale clinical trials enabled the discovery of medi-
cal knowledge that goes beyond anecdotal expert opinions. In contrast, the current era may
likely be shaped and remembered for the wide-reaching digital transformation that creates
numerous ramifications throughout medicine by essentially redefining how we collect and
store medical information, how we subtype existing (or discover novel) diseases, and how
we discover or even synthesise remedies to illnesses that previously were believed to be in-
curable [198].

Over the last years, an ever more digital and computerised biomedicine has lead to sig-
nificant breakthroughs. For instance, in a pre-digital age it would have been absolutely un-
thinkable to develop, carefully test, and roll out highly effective vaccines, thereby supplying

1For instance, we may fit the contents of an entire library on a single USB stick.
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1 Introduction

almost 4 billion people with at least one dose, less than two years into a global pandemic,
that was caused by a newly emerged respiratory virus [91]. Nevertheless, the digitalisation of
medicine has broughtwith it certain pitfalls, that are holding back progress anddelay success-
ful translations and deployments of new digital solutions and algorithms that may improve
patient care. For instance, a lack of data interoperability between institutions—or even be-
tween the departments within an institution—can make the exchange and analysis of health
record data cumbersome [12]. Furthermore, current health information technology (IT)
systems may increase clinicians’ burden of stress and even lead to burnout [64]. Addition-
ally, while it used to be straight-forward to physically lock a room filled with sensitive patient
records, ensuring the safety of digital patient data is less obvious and nowadays poses a signif-
icant technical challenge and a potential legal hazard for any health care provider. This issue
is further exacerbated with the sharing of patient data which is encouraged by the trend to
collect ever larger, multi-centric datasets in the spirit of creatingmore globally representative
cohorts.

Even though a wealth of high-resolution and multi-modal patient data is being routinely
collected and digitally stored across hospital wards and high-tech intensive care units (ICUs),
a large portion of this valuable data is not analysed further—beyond the scope of immedi-
ate patient care. In ICUs, for example, caught in a continuous and almost overwhelming
stream of patient monitoring data, clinicians are challenged to identify which patients need
immediate attention, which available measurements are relevant, which data still need to be
collected, and how to proceed with the patient management.

We are living the futuristic times where even our wrist watches are smart enough to tell
us when to eat, or when to do sports, or where our entertainment system predicts the next
movie we would enjoy watching. One could therefore be tempted to assume that also when
entering a hospital, behind the curtains a smart and data-driven IT system would support
data-overwhelmed clinicians, by efficiently orchestrating the relevant flow of information
and by making evidence-based recommendations and predictions. In practice, however,
clinical medicine tends to limp behind other work sectors, technology-wise, which Topol
[198] referred to as shallow medicine. There are numerous efforts to integrate algorithms
into everyday practice, for instance to raise alarms for unstable patients [81]2 or to auto-
matically classify fundus images [127]. However, in non-academic institutions, an admitted
patient may not be treated with more algorithmic sophistication (in terms of automated pre-
dictions) than an alarm that triggers if certain vital parameters (like mean arterial blood
pressure) pass a threshold of predefined lower and upper bounds [174].

2Notably, the here deployed early warning score is rule-based, on not entirely data-driven.
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So why are we lagging behind in the medical equivalent of otherwise widely adopted rec-
ommender systems, e.g. in the form of clinical decision support systems? To grasp this ques-
tion, we first need to understand how the underlying predictive computational algorithms
work. Computational algorithms that learn to make predictions about a target of interest by
means of mining and exploiting correlations in large datasets can be subsumed under the
umbrella term machine learning. Irrespective of the nature of the prediction target—be it a
discrete class (like “cancerous lesion” versus “healthy tissue” in digital pathology), or a con-
tinuous target (like estimated time of survival)—typically, a machine learning (ML) model
is trained on a large amount of data samples in order to learn to make predictions about
previously unseen data. Depending on the application case, data samples are paired with
labels, and then the goal is learning to predict the corresponding label of an new data point.
This scenario is referred to as supervised learning. This can be juxtaposed with unsupervised
learning, where label information is not available during training, and where to goal is pre-
dict targets which are not predefined upon training time (e.g. clustering, or dimensionality
reduction).

It may have become straight-forward to train a ML system to detect and classify objects
in natural images [220], or to process and translate natural languages from text data [85].
However, to successfully leverage ML for medical prediction tasks still offers a distinct set of
challenges that may explain the years (if not decades) of delay we observe in ML solutions
being deployed in clinical workflows.

Datasets ML models excel in scenarios where data is abundant. By crawling the internet,
it has become possible to create enormous datasets comprising millions of images, videos,
text documents and so on. In contrast, the creation of large biomedical datasets is consider-
ably more delicate. For instance, to compile an electronic health record (EHR) dataset, we
need a data model, i.e., a concept on how to encode and store information in a way that it can
be efficiently queried and linked to other data. But before we can even start thinking about
the complexities invoked by health record data, we first need to get access to these data, which
remains a key limiting factor for the analysis of EHRs. Recent efforts to make deidentified
patient data publicly available for research has significantly facilitated ML studies on these
types of data [98]. However, the creation of datasets such as the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC-III) dataset is a tremendous effort, and the sharing
of sensitive patient data is inherently more hazardous than other non-sensitive types of data
that are regularly used in ML.
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Tasks and Utility Even when a large database of patient data is accessible, we cannot
directly train a model on these data, but need to carefully consider several viewpoints. To
list a few:

1. Which target do we aim to predict? For instance, patient mortality, length of hospi-
tal stay, adverse reactions to treatments, patient deterioration, readmission after dis-
charge, etc.

2. What entity refers to a data sample? To give an example, are we making predictions
about a specific culture sample (e.g., will there be an antibiotic resistance, or not?), or
are we predicting the outcome of a patient based on the admission state, or based on
sliding or expanding time windows of monitoring data?

3. How can a given prediction be useful, and who benefits from it? E.g., will it benefit
patients, will it support clinicians, orwill it facilitate insurances inmonitoring patients?

This enumeration illustrates that there are various study design choices to be made, and not
many of them will lead to a clinically useful prediction output. Sometimes, the tasks that
can be defined and implemented most easily (e.g. predicting patient mortality or predicting
a billing code related to a disease) may not be the ones that will ultimately lead to clinically
useful insights or actionable warnings.

Labels Now, given a dataset and a prediction task, a next challenge is to obtain ground-
truth labels. For instance, were we to analyse thoracic X-ray images in order to detect abnor-
malities (pneumonia, cancerous lesions andmore), a typical approach would requiremanual
annotations of each image by a radiological expert. However, expert annotations of patient
data are usually labour-intense and come at high costs [214]. The scarcity of high-quality
labels has been a core topic in ML research well beyond health applications [222]. But espe-
cially in health applications, were predictions are generally required to be reliable, the lack
of high-quality labels remains a core hindrance.

Validity As a next obstacle for clinical applications of ML, data distributions can differ
drastically between centres and even change within the same centre over time, or between
retrospective and prospective data collections [153]. Reasons for such distribution shifts
are manifold. They may be rooted in different devices that record data, different policies
(that lead to distinct diagnostics and therapeutics), or just different cohorts with distinct
characteristics. In any case, heterogeneity within and between patient datasets pose a key
problem forMLmodels that are tasked to learn patterns and signals that allow for predictions
that are generalisable to previously unseen data.
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Missingness Anext challenge, that frequently arises amongst various types of patient data,
is data missingness. For example, in longitudinal clinical data, time series of laboratory mea-
surements are only sparsely observed, where the missingness itself can be informative [176].
To properly handle missing data has become an entire subdiscipline of statistics with a broad
area of applications [66, Chapter 25]. Furthermore, how exactly we account for missing val-
ues, carries implicit information about howwe interpret both the underlying data generating
process as well as the way we observe a discrete set of measurements from it.

We now have enumerated a battery of problems that illustrate why it is challenging to
properly organise and process patient data, and that this is necessary for leveraging ML to
obtain clinically useful predictions. In this dissertation, we aim to explore and by part address
these open problems. From a high-level perspective, in this thesis we consider three steps of
the ML pipeline that can be sequentially arranged:

data → model → predictions.

Over the chapters of this thesis, our focus traverses these concepts, from back to front. We
start out by attending to model outputs in the application context of clinical prediction mod-
els. Next, we focus on internal states of the model, i.e., learned representations and how
they may effect downstream predictive performance. Lastly, we arrive at the front of the
above paradigm and explore a class of models that are capable of capturing and preserving
properties and structures of the input data in order to learn faithful representations and vi-
sualisations. Subsequently, we give more low-level details about the individual challenges to
be addressed.

The first part of the thesis focuses on clinical time series classification. Here, we consider
the challenges of arriving at a clinically meaningful prediction task, to create large-scale an-
notated datasets which in turn allow for the elaborated tasks to be solved using ML. In this
context, we further explore how missingness information may be leveraged and how we can
learn to generalise to new datasets despite distribution shifts. In a second part, zooming
away from model outputs (clinical predictions, predictions under distribution shift), we at-
tend to the internal representations that are learned by ML models and observe that implicit
modelling choices not only determine missing data handling, but also affect the way models
handle unobserved continuous data processes, more generally. Finally, we explore a scenario
where learned representations may not be required to maximise class separability, but where
the aim is to merely reduce the dimension of high-dimensional data while preserving shapes
and structures that are present in the intangible data space. Having outlined a rough blue
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1 Introduction

print of this thesis, we now briefly introduce and motivate both parts and their respective
chapters.

�.� Clinical time series classification

Since before the dawn of the digital age, medical practitioners have been challenged with the
intricate task to observe and care for patients. Clinical practicemay nowadays be spiked with
a plethora of technical devices that measure and collect a multifarious range of parameters
and data modalities. As if straight out of a science-fiction novel, we employ machines to
count and sort our cells [69], to conjure actual annihilation events (via PET scanners) [8],
and to produce images of living organs at the resolution of cellular structures [207]. But
behind all this high-tech equipment, teams of doctors and nurses are observing, interacting
with, and providing care to patients. Inherently, their task is of a temporal nature. This holds
true both for the intensive care unit (ICU) specialist who continuously monitors the mean
arterial pressure of her patient that went into shock, as well as for the general physician that
follows up with his patient to assess whether the prescribed antidepressants showed an effect
over the last month.

When taking a patient- and clinician-focused perspective, even in a modern and digi-
talised medicine, the temporal component remains essential. For comparison, imaging dis-
ciplines such as radiology or pathology have been curating and analysing digital imaging
records using machine learning (ML) for decades. In contrast, even though the collection of
temporally resolved electronic health records (EHRs) has been going on for decades, the cu-
ration and analysis of this complex, unstructured, noisy, and increasingly multi-modal data
presupposes layers of preprocessing [148] which altogether has grown into a core discipline
among digital health research. It is this type of data, clinical time series from EHRs, that we
consider in the first part of this dissertation. Specifically, we focus on the data-rich environ-
ment of intensive care units (ICUs), and formulate an early warning problem, namely the
detection of sepsis. Using this running application example, we consider several points of the
aforementioned list of challenges. Before diving into these chapters, Chapter 2 gives a more
in-depth introduction to Part I by introducing time series, providing some basic notation
and defining the application domain, sepsis.

�.�.� Uncertainty-aware recognition of sepsis with Gaussian Process
Temporal Convolutional Networks

In Chapter 3, we conduct a pilot study for the early prediction of sepsis, a potentially fatal
condition that describes a dysregulated host response to infection [185] (see Section 2.2.1).
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1.2 Temporal and topological representation learning

For this, we created the first publicly available sepsis dataset equipped with hourly labels.
We then propose a new model for sepsis prediction which in an end-to-end differentiable
fashion combines uncertainty-awareness of Gaussian processes with dilated causal convo-
lutions, i.e., temporal convolutional networks (TCNs), which exhibit a powerful inductive
bias for temporal data [7]. In this study, we conduct a retrospective single-centre analysis
and demonstrate that our proposed method, MGP-TCN exhibits beneficial predictive per-
formance compared to several baselines.

�.�.� Predicting sepsis in multi-site, multi-national intensive care
cohorts using deep learning

Chapter 4 can be seen as the logical consequence of the insights we took from Chapter 3, i.e.
the corresponding sepsis prediction study [142], as well as our subsequent systematic review
of sepsis prediction [143]. In this review, we found that the vast majority of sepsis prediction
studies were not externally validated. In fact, they could not be validated, since access to
publicly available sepsis datasets—other than theMIMIC-III dataset (whichwas already used
in roughly half of the included studies)—was lacking. This rather dicey state of the literature
motivated the studywe present in this chapter. Our goal was to collect and harmonise a large,
multi-centric intensive care unit (ICU) cohort, in order to develop and externally validate
sepsis prediction approaches. Bymaking this cohort publicly available3, we aimed to facilitate
further validations of sepsis prediction models by the research community—which up until
nowwere practically impossible to externally validate due to the lack of public and annotated
datasets. Furthermore, we address another limitation of the study in Chapter 3, namely that
the considered models were not directly applicable in online prediction scenarios, which any
early warning system ultimately would face upon deployment. In this multi-centre study,
we address this issue by carefully formulating the prediction task as an online prediction
problem, and even confront the included models with an online learning scenario during
training. We then conduct an exhaustive internal and external validation and showcase a
federated learning strategy to overcome dataset and label shifts upon external testing.

�.� Temporal and topological representation learning

During the second half of the last century, machine learning (ML) has emerged as a subdis-
cipline of computer science and statistics that may be interpreted as the marriage of scalable
computing algorithms with statistical learning. While over the last decades a large bouquet

3The code used in this study to create the cohorts and conduct the analyses will be made public upon publica-
tion.
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of ML techniques have been developed, at the core of any ML pipeline is essentially the aim
to make predictions based on a set of input data. This framework is quite generic in that this
input data may describe any kind of objects: for instance, natural images of cats and dogs,
users in a social media application, patients being monitored in a hospital, and so on. Con-
ventional ML approaches compute predictions about the data objects of interest by means
of features that quantify and encode properties of the data objects. For instance, were we to
predict if a hospitalised patient will survive her stay, we could encode the patient’s state as a
vector that accounts for various information that could be relevant for making the desired
prediction, be it the time since admission, the patient’s age, measurements of vital signs, ex-
isting comorbidities, etc. Or, if wewant to detect a cat in a greyscale image, we could compute
various image descriptors such as local summary statistics, texture features or edgemaps and
evaluate if based on these hand-crafted features, cats may indeed be detected. This process
of encoding data objects (that itself may be intangible) into numeric feature vectors that can
be used in a downstream learning algorithm, is referred to as feature engineering.

While in classical ML, feature encodings (or data representations) were typically manually
engineered and then kept fixed during the learning process, with the era of deep learning the
concept of automated feature learning, or representation learning has been popularised [10].
In contrast to a setting where we learn tomake predictions based on a set of hand-crafted fea-
tures, here, the new task is to learn both the feature representations, as well as the predictions
based on said features, jointly.

The automated learning of representations has beenmade possiblewith the introduction of
end-to-end differentiable learning algorithms by means of the backpropagation algorithm,
which was popularised in the late 1980s [177]4. In an in-depth review, Bengio et al. [10]
elaborated on this concept, exploring what makes up for “good” learned representations,
and put this idea into a larger context, subsuming elements from probabilistic modelling,
dimensionality reduction and manifold learning. In the two chapters of Part II, we take two
perspectives on representation learning, which we briefly sketch in the following sections.

�.�.� Path signatures for time series representation learning

In Chapter 5, we focus on the learning of representations of temporal data, and equip our-
selves with a non-parametric method, the path signature [38], that allows for the encoding
of path-valued data at almost no loss of information. After introducing and motivating the
path signature as a powerful transform for temporal data, we highlight the neglected issue
that models employing this transform implicitly interpret discrete time series data as con-

4However, earlier versions of backpropagation have been around since the 1970s [128].
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tinuous paths. We demonstrate this path construction is indeed relevant for learning time
series representations that lead to competitive performance in downstream tasks, in partic-
ular when working with irregularly spaced time series. Furthermore, we propose a prob-
abilistic approach, using Gaussian processes, that facilitates the creation of beneficial path
representations. Albeit this chapter specifically focuses on representation learning with path
signatures, its findings can be embedded in the larger paradigm inML that manymodels op-
erating on discrete data are actually rooted in (and are approximating) continuous processes
and dynamical systems5.

�.�.� Topological representation learning

Chapter 6 considers representation learning from a topological perspective. Learned repre-
sentations are frequently optimised for a downstream classification task, which implies that
representations exhibiting high class-separability are sought after. However, in cases where
the potentially high-dimensional input data is of interest itself and its structure and shape
are yet to be explored, conventionally learned low-dimensional representations (arrived at
by means of dimensionality reduction) typically do not preserve complex structures in the
data space. While linear dimensionality reduction methods (such as principal component
analysis (PCA)) may preserve global structures of the input space, they tend to underfit the
data manifold due to limited flexibility (as they merely apply affine transformations to the
data). Non-linearmethods, such as t-distributed stochastic neighbour embedding (t-SNE) or
uniform manifold approximation and projection (UMAP), are more flexible and are able to
learn local structures in the data, but do so at the cost of losing global structural information.
In this chapter, we develop a novel deep learning-based dimensionality reduction method
that learns to preserve global structures and shapes of the data space in low-dimensional
encodings. This is achieved via a novel topological loss term that can be integrated into end-
to-end differentiable autoencoder pipelines. We show that the resulting method, topological
autoencoders (TopoAEs), enables the learning of faithful representations that preserve com-
plex structures that can be visually inspected and which are lost in the latent encodings of
existing methods.

5This school of thought has recently brought forth a rich family of continuous analogues of establishedmethods,
e.g. NeuralODEs that generalise residual neural networks [37], orNeural CDEs generalising recurrent neural
networks [110].
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�.� Organisation of the thesis

This thesis is organised in two parts. Part I is dedicated to the classification of clinical time
series. It comprises three chapters: Chapter 2 introduces some basic notation, formalises the
problem of classifying time series, and introduces the application domain of interest in Part I,
the prediction of sepsis. Then, in Chapter 3, as a proof-of-concept study we conduct a single-
centre analysis and propose a novel end-to-end differentiable method for the prediction of
sepsis that is combining the uncertainty-awareness of Gaussian processes with the inductive
bias and efficiency of temporal convolutional networks. Chapter 4 concludes the first part of
this thesis with an international, multi-centre study for sepsis prediction using deep learning.

After having focused on clinical predictions (i.e., the ML model’s outputs) in Part I, in the
subsequent Part II, we consider internal representations of ML models. For this, we shift our
focus to representation learning, a core aspect of deep learning that is relevant well beyond
the deep neural network classifiers that appear throughout Part I.

In Chapter 5, we consider representation learning on time series via path signatures, a
powerful framework for encoding paths of data. Chapter 6 then takes another perspective
on representation learning, namely one from the angle of unsupervised dimensionality re-
duction. In this chapter, we explore topological methods for learning faithful representations
that reveal and preserve shapes and structures in high-dimensional data, that are hard to di-
rectly access.

Contributions This dissertation is partially based on the following publications (ordered
by chapter). Additionally, for studies that were included in the thesis, we detail the contribu-
tions of individual authors.

• M. Moor†, B. Rieck†, M. Horn, C. R. Jutzeler‡, and K. Borgwardt‡. “Early Predic-
tion of Sepsis in the ICU using Machine Learning: A Systematic Review”. Frontiers in
Medicine 8, 2021. doi: 10.3389/fmed.2021.607952
Michael Moor, Bastian Rieck, and Catherine R. Jutzeler performed the data acquisi-
tion, extraction, analysis, and interpretation. They drafted the review article. Max
Horn substantially contributed to the data interpretation (i.e., quality assessment) and
contributed to revising the article. Karsten Borgwardt made significant contributions
to the study conception and contributed to the revision of the article. All authors con-
tributed to the writing of the article.

• C. Bock†, M. Moor†, C. R. Jutzeler, and K.M. Borgwardt. “Machine Learning for
Biomedical Time Series Classification: From Shapelets to Deep Learning”. In: Artifi-
cial Neural Networks - Third Edition. Ed. by H.M. Cartwright. Vol. 2190. Methods in
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1.3 Organisation of the thesis

Molecular Biology. Springer, 2021, pp. 33–71. doi: 10.1007/978-1-0716-0826-
5\_2
Christian Bock, Michael Moor, Catherine R. Jutzeler and Karsten Borgwardt con-
ceived this book chapter. Christian Bock, Michael Moor, and Catherine R. Jutzeler
substantially contributed to the writting of the manuscript draft. All authors con-
tributed to the critical revision and finalisation of the manuscript.

• M. Moor, M. Horn, B. Rieck, D. Roqueiro, and K. Borgwardt. “Early recognition
of sepsis with Gaussian process temporal convolutional networks and dynamic time
warping”. In: Machine Learning for Healthcare Conference. PMLR. 2019, pp. 2–26
Michael Moor and Karsten Borgwardt contributed to the conception of the study.
Michael Moor and Max Horn contributed to the development and the implementa-
tion of the method. Michael Moor preprocessed the data and ran all experiments. All
authors substantially contributed to the experimental design, and the interpretation of
the empirical results. Bastian Rieck and Damian Roqueiro contributed to the creation
of visualisations and illustrations in the manuscript. Michael Moor created the first
draft of the manuscript. All authors contributed to the writing, revision, and finalisa-
tion of the manuscript.

• M. Moor†, N. Bennett†, D. Plečko†, M. Horn†, B. Rieck, N. Meinshausen, P.
Bühlmann, and K. Borgwardt. “Predicting sepsis in multi-site, multi-national inten-
sive care cohorts using deep learning”. arXiv preprint arXiv:2107.05230, 2021
Michael Moor, Nicolas Bennett, Drago Plečko and Karsten Borgwardt conceived the
study. Nicolai Meinshausen, Peter Bühlmann, and Karsten Borgwardt supervised the
study. Michael Moor, Nicolas Bennett, Drago Plečko, Max Horn, Bastian Rieck, Peter
Bühlmann, and Karsten Borgwardt designed the experiments. Nicolas Bennett and
Drago Plečko performed the cleaning, harmonisation and label annotation. Michael
Moor and Max Horn implemented the filtering and feature extraction. Max Horn
and Michael Moor implemented the deep learning models. Michael Moor, Nicolas
Bennett, Drago Plečko implemented the baseline ML models. Nicolas Bennett im-
plemented the clinical baselines. Michael Moor designed the patient-focused eval-
uation. Michael Moor and Bastian Rieck implemented the patient-focused evalua-
tion plots. Bastian Rieck and Michael Moor implemented and designed the perfor-
mance plots. Bastian Rieck and Max Horn implemented the Shapley value calcula-
tion. Bastian Rieck designed, implemented, and performed the Shapley value analy-
sis. Michael Moor ran the internal and external validation experiments for all meth-
ods. Michael Moor ran the hyperparameter search of the deep learning models and

11

http://dx.doi.org/10.1007/978-1-0716-0826-5\_2
http://dx.doi.org/10.1007/978-1-0716-0826-5\_2


1 Introduction

LightGBMmodel. Bastian Rieck ran the hyperparameter search of Logistic regression.
Nicolas Bennett investigated different feature sets. Michael Moor implemented and
ran the federated (pooling) prediction strategy. Michael Moor designed the pipeline
overview figure. Drago Plečko designed the figure regarding unit harmonisation. Bas-
tian Rieck designed the figure regarding the prediction task. Nicolas Bennett designed
the risk score illustration and the study flow chart. Drago Plečko devised the dataset
table. Peter Bühlmann, and Karsten Borgwardt advised on the algorithmic modelling,
statistical interpretation and evaluation. All authors contributed to the interpretation
of the findings and to the writing and revision of the manuscript.

• M. Moor, M. Horn, C. Bock, K. Borgwardt, and B. Rieck. “Path Imputation Strate-
gies for Signature Models”. In: ICML Workshop on the Art of Learning with Missing
Values. 2020
Michael Moor and Bastian Rieck contributed to the conception of this study. Michael
Moor implemented the methods and conducted the experiments. Max Horn imple-
mented the code for the datasets. Christian Bock designed the overview figure. All
authors contributed to the design of the study and the interpretation of the findings.
Michael Moor and Bastian Rieck created the first draft of the manuscript. All authors
contributed to the revision and finalisation of the manuscript.

• M. Moor†, M. Horn†, B. Rieck‡, and K. Borgwardt‡. “Topological Autoencoders”.
In: International Conference on Machine Learning. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 7045–7054
Michael Moor, MaxHorn, and Bastian Rieck conceived the study. Michael Moor, Max
Horn, and Bastian Rieck designed the method. Max Horn and Michael Moor con-
tributed to the implementation of the different neural network modules. Max Horn
and Bastian Rieck implemented the topological loss term. Bastian Rieck (Theorem
1) and Michael Moor (Theorem 2) contributed to the theoretical results. Michael
Moor and Bastian Rieck implemented several evaluation metrics. Max Horn and Bas-
tian Rieck designed and implemented the density-based evaluation metric. Michael
Moor designed the nested Spheres dataset and implemented the other datasets. Max
Horn and Michael Moor implemented and conducted the training and the hyperpa-
rameter search. Bastian Rieck substantially contributed to all visualisations in the
manuscript. Bastian Rieck provided expertise in topological data analysis. Bastian
Rieck and Michael Moor created the first draft of the manuscript. All authors con-
tributed to thewriting and to the revision of themanuscript. BastianRieck andKarsten
Borgwardt supervised the project.
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The author of this thesis also contributed to the following publications, that were not
prominently reflected in any chapter.

• C. Bock, T. Gumbsch, M. Moor, B. Rieck, D. Roqueiro, and K. Borgwardt. “As-
sociation mapping in biomedical time series via statistically significant shapelet min-
ing”. Bioinformatics 34:13, 2018, pp. i438–i446. issn: 1367-4803. doi: 10.1093/
bioinformatics/bty246

• B. Rieck†, M. Togninalli†, C. Bock†, M. Moor, M. Horn, T. Gumbsch, and K.
Borgwardt. “Neural Persistence: a Complexity Measure for Deep Neural Networks
Using Algebraic Topology”. In: International Conference on Learning Representations.
2019

• S. L. Hyland†, M. Faltys†, M. Hüser†, X. Lyu†, T. Gumbsch†, C. Esteban, C. Bock,
M. Horn, M. Moor, B. Rieck, M. Zimmermann, D. Bodenham, K. Borgwardt‡, G.
Rätsch‡, and T.M. Merz‡. “Early prediction of circulatory failure in the intensive care
unit using machine learning”. Nature Medicine 26:3, 2020, pp. 364–373

• M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt. “Set functions for time
series”. In: International Conference on Machine Learning. PMLR. 2020, pp. 4353–
4363

• T. Gumbsch, C. Bock, M. Moor, B. Rieck, and K. Borgwardt. “Enhancing
statistical power in temporal biomarker discovery through representative shapelet
mining”. Bioinformatics 36:Supplement_2, 2020, pp. i840–i848. doi: 10 . 1093 /
bioinformatics/btaa815

• Z. Wu, Y. Yang, Y. Ma, Y. Liu, R. Zhao, M. Moor, and V. Tresp. “Learning Individu-
alized Treatment Rules with Estimated Translated Inverse Propensity Score”. In: 2020
IEEE International Conference on Healthcare Informatics (ICHI). IEEE. 2020, pp. 1–11

• M. Horn†, E. De Brouwer†, M. Moor, Y. Moreau, B. Rieck†‡, and K. Borgwardt‡.
“Topological graph neural networks”. arXiv preprint arXiv:2102.07835, 2021

• J. Born†, N. Wiedemann†, M. Cossio, C. Buhre, G. Brändle, K. Leidermann, A.
Aujayeb, M. Moor, B. Rieck, and K. Borgwardt. “Accelerating detection of lung
pathologies with explainable ultrasound image analysis”. Applied Sciences 11:2, 2021,
p. 672

• F. Hensel, M.Moor, and B. Rieck. “A Survey of TopologicalMachine LearningMeth-
ods”. Frontiers in Artificial Intelligence 4, 2021, p. 52
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Clinical time series classification
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� Problem formulation

In the first chapter of the part Clinical time series classification, we outline two prelim-
inary aspects which will build the foundation of the subsequent sections. We first introduce
i) our prediction task: time series classification, and then ii) our application domain: sepsis
prediction . This first chapter builds on the content of the following publications:

C. Bock†, M. Moor†, C. R. Jutzeler, and K.M. Borgwardt. “Machine Learning for
Biomedical Time Series Classification: From Shapelets to Deep Learning”. In: Artificial Neu-
ral Networks - Third Edition. Ed. by H.M. Cartwright. Vol. 2190. Methods in Molecular
Biology. Springer, 2021, pp. 33–71. doi: 10.1007/978-1-0716-0826-5\_2

M. Moor†, B. Rieck†, M. Horn, C. R. Jutzeler‡, and K. Borgwardt‡. “Early Prediction of
Sepsis in the ICU using Machine Learning: A Systematic Review”. Frontiers in Medicine 8,
2021. doi: 10.3389/fmed.2021.607952

�.� Time series classification

�.�.� What is a time series?

Over the last decades, propelled by an ongoing digital revolution, there has been a surge in the
collection, curation and distribution of large datasets of biomedical time series. This includes
the advent of electronic health record (EHR) databases such as MIMIC [98] or eICU [158],
as well as a multiplicity of biosensor data used in remote health monitoring as collected via
smartphone apps, wearable sensors or implantable devices [111]. But first off, what is a time
series and how is it different from other data?

Time series represent a particular kind of data that typically arise from repeated measure-
ments of a variable of interest. In contrast to sequential data in general, such as DNA se-
quences in biology or bit strings in computing, measurements in a time series represent data
sequences that are equipped with a temporal dimension. Depending on the domain of appli-
cation, absolute measures of time are required, for instance when modelling infection count
trajectories in a pandemic wave, or when investigating meteorological time series to forecast
the weather. However, there are also domains where relative measures of time are more in-
teresting, for instance the relative timing of waves and intervals in an electrocardiogram. In
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2 Problem formulation

this work, we will focus on the second type of time series, where the temporal component
can be interpreted as a relative measure of delay between subsequent measurements.

Adding temporal information to a sequence of data points conveys two main implica-
tions: i) the data now has a temporal order (or directionality), and ii) the temporal spac-
ing between subsequent data points introduces a notion of distance between them. At first
glance, the first point may strike us as a straight-forward observation. However, when work-
ing with time series, being vividly aware of this directionality is crucial. For instance, there
are various prediction problems where it is not permissible to utilise data from the future, for
instance when trying to predict future movements of stock prices, as this may lead to trivial
or circular prediction setups. We henceforth refer to this family of problems as future data
leakage. While it may be easy to prevent such a degenerative scenario when using simple and
interpretable models for modelling time series, with an increasing complexity of the current
state-of-the-art deep learning architectures, detecting future data leakage may not be easy
to spot. Regarding the second point, i.e., the temporal spacing between measurements in a
time series, this offers an entire battery of challenges an opportunities when working with
time series where the temporal spacing is not uniform, i.e., the measurements are not sam-
pled at a fixed time interval like one minute or one hour. Both aspects, temporal ordering
and irregular spacing, will resurface throughout the sections of Part I.

�.�.� Time series notation

Having introduced times series from an eagle’s view perspective, we next define time series
data in a more formal way in order to clarify basic notation that will reappear throughout
this thesis.

Definition 1 (Time series). Let t ∈ R denote a parameter of time, and let f(t) : R → Rd

denote a data generation process with d ∈ Nwith d ≥ 1. For a set of discrete times {t1, . . . , tl},
we consider xi = f(ti) as a measurement value vector observed from f at time ti. Next,
we gather the entries of xi for i ∈ {1, . . . l}, such that xij denotes the measurement value of
the j-th dimension at time ti. We collect both the observed values and times in vectors x =

(x11, . . . , xl1, . . . , x1d . . . , xld)
> and t = (t1, . . . , t1, . . . , tl . . . tl)

>, where each of the l · d
entries of the two vectors represent corresponding inputs and outputs of f . For x, t ∈ Rl·d,
we then define T = (x, t) ∈ T to be a time series of length len(T ) = l and dimension
dim(T ) = d.

Definition 2 (Time series dataset). LetT ∈ T be a time series as introduced inDefinition 1. A
(labeled) time series dataset is then a setD = {(T1, y1), (T2, y2), . . . , (Ti, yi), . . . , (Tn, yn)},
where n refers to the number of time series instances, and the pair (Ti, yi) represents the time
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2.1 Time series classification

series Ti and its corresponding target yi of instance i. yi is an element of the target space Y
which is specified by the considered prediction problem and domain.

Definition 3 (Subsetted time series). Let T ∈ T be a time series as introduced in Definition 1.
By selecting the values x and times t only up to an index p, where p refers to largest index
of t such that tp < k, we recover a subsetted time series T<k where all times tj < k for
j ∈ {0, 1, . . . , p}.

Definition 4 (Sparse time series). Let T ∈ T be a time series of length l and dimension d

as introduced in Definition 1. For a non-empty set of indices I , we discard the corresponding
entries from both x and t to recover a sparse time series T ′ ∈ T ′ with values and times x′, t′ ∈
Rq with q < l · d. In contrast to T , the value x′ij of T ′ (corresponding to the ith point in time
ti and the jth dimension) is only at most at position l(j − 1) + i of x′.

Using the Definition 1, we refer to a time series as univariate if d = 1, and multivariate if
d > 1. In general, there are several ways how time series are formalised. The utility of a par-
ticular choice typically depends on the type of time series that are considered as well as on the
specific methods that are applied to them. For instance, if a time series were assumed to have
no missing values and consistently shows evenly-spaced time intervals, a matrix notation
may be sufficient. When working with time series where not all dimensions are consistently
observed, i.e., containing incomplete observations, or additionally exhibiting irregular time
intervals between subsequent time steps, definitions that consider time series as a collection
of “time, dimension, and measurement”-tuples may be more appropriate. Here, we chose a
notation that naturally allows for missing observations (by leaving out an element in both
vectors, x and t) as well as irregular spacing (by incrementing the time values accordingly),
but still keeps a vector structure of the observedmeasurements which will turn out to be use-
ful notation-wise when working with methods such as Gaussian processes in the following
chapter.

In Definition 2, we define a time series dataset to be equipped with prediction targets
yi, which can represent a class label or a continuous target from some target space Y . In
principle, time series datasets could also be consideredwithout target information. However,
since we only encounter labeled time series datasets in this thesis, we follow this convention
for the sake of notational convenience. Next, for different time series prediction problems,
we formulate the task at hand and identify the corresponding input space T and target space
Y , respectively.
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2 Problem formulation

�.�.� Time series prediction tasks

Our digitalised times have led us to monitor almost every aspect of modern everyday life. Be
it with electronic health records [98], smart watches [164], social networks [71], weather sen-
sors [44], or high-frequency trades [3]; time series data have gained an omnipresence across
disciplines and industries. Analysing this data and inferring accurate predictions about tar-
gets of interest nowadays can build fortunes and even save lives. However, seemingly similar
problems may categorically differ. Therefore, we here introduce and classify a set of fre-
quently employed time series prediction tasks. First, we observe that these tasks can be dis-
tinguished by answering the following two questions: i) What exactly is being predicted?
ii) Which part of a time series is used as input data for a given prediction?

Whole-series classification To answer the first question, we first consider the most
basic setting: whole series classification [2]. Here, an entire time series T ∈ T is associated
with a single class label y ∈ Y . In the most simple scenario, Y = {0, 1}, which means we
have binary class labels. However, in many real-world applications, multiclass classification
tasks may be encountered with c classes: Y = {0, 1, . . . , c − 1}. The goal in whole series
classification is to learn a mapping f ∈ F , f : T → Y such that for a loss function `, a
given time series Ti, and a single associated class label yi, we aim to find a mapping f∗ that
minimises the empirical risk R(f):

f∗ = argmin
f∈F

R(f), where (2.1)

R(f) =
1

n

n∑
i=1

`(f(Ti), yi). (2.2)

As a practical example of whole series classification, Boles et al. [16] developed a biometric
authentification system based on speech signal.

Window-based classification Next, we introduce a related family of tasks that we refer
to as window-based classification. Similar to whole series classification, we are provided with
a time series Ti and a corresponding, single class label yi. Additionally, the class label has
a direct temporal relation to the time series, in that the class label corresponds to an event
and is therefore equipped with a time stamp τi. Depending on the application, in order to
predict an event that occurs at time tj , it may or may not be admissible to employ the entire
time series including future data at any time tk > tj . In medical applications, for instance, it
is typically most useful to predict an event using data from the past. Therefore, we consider
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2.1 Time series classification

only time windows up to the event of interest in order to make predictions. For this, we can
use the learning objective of Equation 2.1, where we modify the risk calculation to:

R(f) =
1

n

n∑
i=1

`
(
f
(
T<τi
i

)
, yi
)

(2.3)

As a representative example of window-based classification, we refer to a prediction model
thatmonitors patient time series in order to raise an alarm if a complication is inbound [142].
Here, during training, a model was provided with a subsetted time series up until the event
of interest, as well as the event itself, i.e., the time-stamped class label.

Per-timepoint classification As a third type of time series classification problem, we
consider per-timepoint classification. Here, each available time step is associated with a pre-
diction target yit, which we collect per instance in a vector yi. The goal is then to solve
Equation 2.1, where we the risk calculation needs to account for the per-timepoint predic-
tions:

R(f) =
1

n

n∑
i=1

1

mi

mi∑
k=1

`
(
f
(
T<tk
i

)
, yik

)
, (2.4)

where we emphasise that different instances may have varying-length time series by setting
mi = len(Ti). To give an example of a per-timepoint classification setting, clinical early
warning systems have been trained to either raise or not raise an alarm at each point of a
patient time series [95]. Finally, we visually highlight the differences between these three
types of time series classification tasks in Figure 2.1.

Further time series tasks Since this chapter aims to give an introduction to time series
classification, here we collect and only briefly mention an non-exhaustive list of other types
of prediction tasks that may be encountered when analysing time series. In time series fore-
casting, the goal is to predict future time series values based on the present and past ones.
Here, the goal is to learn a mapping f : T → T . Forecasting has been widely used in fi-
nancial time series analyses such as stock market predictions [163], as well as for weather
forecasting [25]. As another task, in time series dimensionality reduction, the goal is to find
a latent representation of the time series that captures the relevant signal while discarding
noise and redundant information. This may be intended for reducing the dimensions (and
noise) along the time axis [105], or along the time series channel dimensions in multivari-
ate time series [150]. In time series regression, the goal is to predict a continuous target,
for instance y ∈ R, based on an input time series T . In the most simple case, we learn a
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Figure 2.1: Illustration of three types of time series classification tasks. Time-varying variables are
written as vectors in bold. Panel a: Whole series classification. The time series values x are
provided with a label y. Panel b: Window-based classification. The time series values x are
provided with a time-stamped label y (red). Panel c: Per-timepoint classification. Both
the input time series x and the labels y are sequences. Three predictions are highlighted
where all data up until the given point in time is used for prediction. The filled boxes
(green) indicate which windows of time series data are used for prediction.
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2.1 Time series classification

mapping f : T → R. Assuming continuous time series values (as opposed to discrete ones),
other tasks such as forecasting and dimensionality reduction may also be subsumed as spe-
cial cases of regression, however with varied specifications of the target space Y . From a
mathematical viewpoint, regression may even be subsumed as a special case of multiclass
classification where the number of classes c → inf. However, in practice the categorical dis-
tinction is well justified. For instance, while classifiers may have an internal representation of
each class (as a neuron in the output layer of neural network), this may not be feasible when
c → inf.

�.�.� Methods for time series classification

After having familiarised ourselves with different types of time series prediction problems,
and this with a particular focus on time series classification, we next give an introduction
to methods that are used to solve time series classification tasks. This involves both data
mining and classical machine learning techniques as well as deep learning methods. Time
series classification algorithms can be subdivided into feature-based and distance-based ap-
proaches [14].

Feature-basedmethods Feature-basedmethods first extract temporal statistical proper-
ties of the time series to collect them in feature vectors, such that a time series, or an extracted
time window thereof, can be represented as an element of a vector space. Subsequently, a
generic classifier may be trained directly on the feature representations, potentially oblivious
to the sequential nature of the raw time series data. Examples of such feature mappings in-
clude basic summary statistics like mean, median, maximum, minimum, and variance of the
time series over multiple look-back windows [95, 138]. Furthermore, more involved feature
mappings have been employed, that are based on the discrete Fourier transform [212], the
wavelet transform [116, 144], path signatures [38], or topological data analysis (TDA) [133],
to name a few.

Distance-based methods Conventionally, feature-based methods have been contrasted
by distance-based methods, where instead of an explicit feature mapping, distances or dis-
similarities between time series are used to classify them. As a famous and powerful ex-
ample of such a distance measure, in dynamic time warping (DTW), two time series are
aligned using dynamic programming [11], where the “cost” of alignment determines the
resulting distance between two time series. Combining DTW with a k-nearest neighbour
classifier (DTW-kNN) turned out to become a strong baseline for time series classification
ever since [106]. Gudmundsson et al. [73] investigated combining DTW with kernel-based
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classifiers such as the support vector machine (SVM), however as DTW is not a metric, in-
cluding it in kernel methods requires some additional care. In more recent works, optimal
transport has been used to derive distances by measuring the cost of transforming one time
series into another one, for instance in terms of matching the distributions of their subse-
quences, as proposed with the Wasserstein time series kernel (WTK) [14]. Also here, the
distance measure does not fulfill the criteria of a metric, potentially resulting in indefinite
kernel matrices, which has been addressed via the usage of Kreĭn SVMs [149].

This categorisation of time series classification methods into feature-based and distance-
based can be criticised for being an oversimplification. For instance, a k-nearest neigh-
bor (kNN) classifier can be applied to feature representations of time series in order to predict
the class label of a time series in terms of its nearest neighbours with respect to some distance
measure. Conversely, distance measures may also be used to construct feature representa-
tions. The fuzziness of this distinction becomes even more evident when considering deep
learning techniques.

Deep learning methods The advent of deep learning methods has drastically changed
the playing field for time series classification. As one striking advantage, neural networks
allow for an automatic and learnable feature extraction step. So they can be seen as
feature-based methods, where the feature mapping itself is also learned. Various types of
deep neural network architectures have been optimised for sequential data, and have found
wide adoption in time series classification. For example, this includes recurrent neural
networks (RNNs) such as long short-term memory networks (LSTMs) [86], temporal
convolutional networks (TCNs) [7], and attention models [201]. Interestingly, also for deep
learning methods distance-based learning can play a role, for instance when performing
contrastive learning [107], where pairs of similar or dissimilar instances are sought to be
encoded similarly or dissimilarly, respectively.

�.� Early prediction of sepsis

Part I of this thesis is concerned with clinical time series classification. As the first part of
this chapter has more generally outlined time series classification tasks and methods, in the
following sections, we introduce ourmedical application case, sepsis. We then formulate our
clinical prediction problem of interest and give an overview to existing approaches.

24



2.2 Early prediction of sepsis

�.�.� What is sepsis?

History of sepsis Infectious diseases have been a leading cause ofmortality by rampaging
through communities world-wide throughout the history of human civilisation. Sepsis refers
to a potentially fatal complication of a severe, typically bacterial infection, and was most
recently defined to be a dysregulated host response to infection [185]. Even millenia before
the Black Death Plague has wiped out roughly a third of the population of medieval Europe
and Asia, ancient scholars have already been aware and afraid of sepsis [60]. The word sepsis
itself stems from σηψις which is Greek for the “decomposition of animal or vegetable organic
matter in the presence of bacteria.” [68]. The word sepsis was first encountered in a medical
context in Homer’s poems approximately 2,700 years ago where it appears as derived from
the verb sepo (σηπω) which translates to “I rot” [68]. Even though sepsis kept a presence
over the centuries, for instance by appearing in the writings of Hippocrates and Galen, only
with the golden age of germ theory in the 1800s its microbial origins were starting to get
unravelled [60].

Defining sepsis: from Sepsis-� to Sepsis-� While the ancient depiction of sepsis was
mostly characterised by decaying flesh, wounds, and fever, the advent of modern microbi-
ology and immunology allowed researchers to draw a refined picture of sepsis. First, this
involved the clarification that contagious bacterial infections were the foundation of a septic
complication. Then, during the 20th century, scholars gained deeper insights into the molec-
ular processes of sepsis uncovering the roles of cytokines and the coagulation system [60]. In
the early 1990s, the first international consensus definition of sepsis, Sepsis-1, described sep-
sis as an infection-induced systemic inflammation [17]. Due to systemic inflammation being
not specific enough for sepsis, i.e., by also presenting in patients without infection that have a
better prognosis, Sepsis-2 was proposed to extend the first definition by considering further
inflammatory, hemodynamic, and organ dysfunction parameters [122]. The newly proposed
term for sepsis aimed to increase specificity by including indicators of organ injury. Never-
theless, the previous criteria for defining sepsis were kept in use, which led to confusions, for
instance whether to diagnose “sepsis” by the new diagnostic criteria, or “severe sepsis” by the
old ones [74]. A long-awaited reconsideration of sepsis finally occurred with the Sepsis-3
definition in 2016 [185], where sepsis was defined as a life-threatening, dysregulated host re-
sponse to infection. This was operationalised by the evaluation of the sequential organ failure
assessment (SOFA) [204], where the clinical diagnostic criteria of sepsis comprise an acute
increase of at least two points in SOFA combined with a suspected infection [185]. Through-
out this thesis, we will consider the most recent definition, Sepsis-3. That being said, also
this most recent definition has its limitations. Compared to previous definitions, Sepsis-3
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by design implies organ dysfunction, making it a more narrow definition describing a more
severe cohort. Next, as a relevant limitation to Sepsis-2 and Sepsis-3, the requirement of a
suspected (or proven) infection introduces a strong dependence of these definitions on the
clinicians diagnostic interventions (e.g. blood culture sampling). Finally, the complexity and
multi-modality of Sepsis-3, which employs the SOFA score, renders this definition most ap-
plicable in the intensive care unit (ICU). However, defining sepsis in settings with scarcer
data remains challenging.

Sepsis: a persistent dilemma Even though sepsis has worn many faces over the past
centuries, one essential property has been preserved. In fact, one which was already known
to Niccolo Machiavelli, a political writer during the 16th century. In a famous quote of his
contemporary physicians he stated: “As the physicians say of hectic fever, that in the begin-
ning of the malady it is difficult to detect but easy to treat, but in the course of time, having
been neither detected nor treated in the beginning, it becomes easy to detect but difficult
to treat.” [186]. Despite the groundbreaking advances of modern medicine such as antimi-
crobial and immunomodulatory therapies or intensive care monitoring, clinicians today are
still facing the same crux. In the hard-to-identify early stages of sepsis, organ damage may
still be reversible such that an effective antimicrobial therapy leads to improved outcomes.
However, each hour of delayed intervention leads to a measurable increase in mortality [54].

�.�.� Related work on the early prediction of sepsis

Over the last decades, clinicians and researchers have been searching for biomarkers that
would allow for an early recognition of sepsis, albeit with little success [21, 200]. Now, amidst
an ongoing digital revolution in healthcare, and driven by the routine collection of patient
data in patient data management systems and electronic health record databases, there is
a new hope for tackling the problem of early recognition by uncovering digital biomarkers
of sepsis. For this, the idea is to mine the plethora of streaming patient data using machine
learning (ML) techniques in order to leverage early signals that are predictive of an imminent
sepsis.

Early studies employing ML in sepsis patients focused on predicting sepsis-related clin-
ical outcomes such as mortality [75, 168]. Even though such a hard endpoint as mortality
is clearly defined and a natural choice for a clinical prediction target, one may wonder to
which degree the accurate prediction of in-hospital mortality in sepsis patients is actually
clinically actionable in that it supports the decision-making of clinicians. In particular since
sepsis management is a highly time sensitive situation, where each hour of delayed antibiotic
treatment and fluid resuscitation can lead to potentially irreversible organ damage, there is a
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strong practical argument in favour of predicting if and when exactly sepsis will occur, rather
than foreseeing its terminal outcome.

Propelled by a previously unseen availability of large EHR databases such as MIMIC [70,
98], initial studieswere conducted that considered sepsis prediction as an earlywarning prob-
lem. Henry et al. [82] developed a targeted real-time warning score (TREWScore) for pre-
dicting septic shock with a cox proportional hazard model. Next, a risk model named “In-
Sight” was developed to predict future onsets of sepsis [24]. These initial studies still relied
on conventional statistical modelling techniques, and Calvert et al. [24] considered only a
small set of nine vital signs. In the subsequent years, more large-scale approaches using deep
learning would gain considerable attention [61, 101]. At this point in time and at this stage of
the literature, my doctoral studies have begun. Following a chronological order, in the next
chapter, we elucidate the first sepsis prediction project of my doctoral studies.
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� Uncertainty-aware recognition of
sepsis with Gaussian Process
Temporal Convolutional Networks

In this chapter, we present Gaussian process temporal convolutional networks (MGP-
TCNs) [142], a deep learning approach for the early prediction of sepsis. The content of this
chapter is based on the following publication:
M. Moor, M. Horn, B. Rieck, D. Roqueiro, and K. Borgwardt. “Early recognition of sepsis
with Gaussian process temporal convolutional networks and dynamic time warping”. In:
Machine Learning for Healthcare Conference. PMLR. 2019, pp. 2–26

After having introduced sepsis in Section 2.2, this chapter provides a more in-depth treat-
ment of the prediction task at hand, as well as the gaps in the previous literature before eluci-
dating the proposed method and the conducted experiments. Due to an immense affluence
of data, the projects of this thesis evolving around the application of sepsis prediction, that
is, the chapters of Part I, are focusing on data from the intensive care unit (ICU). The re-
maining chapter is organised as follows: In Section 3.1, we give a brief introduction to our
prediction problem and the related literature. Then, in Sections 3.2 and 3.3, we familiarise
ourselves with Gaussian processes and temporal convolutional networks, respectively. Next,
in Section 3.4 we introduce the method MGP-TCN and in Section 3.5, we outline the exper-
imental setup and present and discuss the empirical results. Section 3.6 discusses the results
and concludes the chapter with final remarks.

�.� Introduction

Despite decades of research, sepsis remains a public health crisis with significant mortality,
morbidity and associated health costs [47, 94, 103]. There ismounting evidence that effective
sepsis management requires an early diagnosis followed by a rapid initiation of an effective
antimicrobial therapy [167]. However, recognising sepsis patients in the early stages, where
organ damage is still reversible, is a notoriously difficult task for clinicians. While early signs
and symptomsmay still be vague and unspecific, and the clinician is still absorbed in a broad
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differential diagnosis, too often there is a delay in the potentially life-saving initiation of an-
timicrobial and resuscitation therapy [134].

Given the above disposition and the urgent clinical need for early and accurate warnings,
sepsis prediction has gained attention from the machine learning community [61, 101]. For
this, the task of predicting sepsis was commonly formulated as a multi-channel time series
classification task based on vital, demographic, and laboratory patient data. Due to irregu-
larly observed and noisy time series data, a set of hand-crafted preprocessing steps including
the resampling of time series into bins of fixed size, carry-forward imputation of missing
values, and smoothing of noisy time series via rolling means have been employed [24, 48].
However, the process of how one arrives at the exact preprocessing strategy and correspond-
ing hyperparameters is typically not evident. Furthermore, imputing missing values could
lead to the loss of valuable information about informative data missingness. For instance,
the presence or absence of certain measurements could be associated with the patient state.
Futoma et al. [61] proposed the first sepsis prediction model that accounted for irregular
sampling using Gaussian process adapters. This framework enabled the imputation of miss-
ing values while preserving uncertainty (due to missingness) in the down-stream classifier,
a LSTM model, which was then used to predict sepsis.

Variants of recurrent neural networks (RNNs) have been exerting dominance in various
time series and sequence modelling tasks over the previous decades [86]. However, convolu-
tional neural networks have recently gained attention for these tasks. In particular, temporal
convolutional networks (TCNs) [117], a class of convolutional models, have been shown to
be able to outperform conventional recurrent neural networks (RNNs) in several sequential
tasks in terms of performance metrics, memory efficiency, and parallelism [7]1.

Building on these developments, in this chapter we propose MGP-TCN, an end-to-end
trainable deep learning model for sepsis prediction on irregularly-sampled, multivariate
time series, that combines the uncertainty awareness of multi-task Gaussian process (MGP)
adapters with TCNs. In addition, we present a lazy learner multi-channel ensemble based
on dynamic time warping k-nearest neighbor (DTW-kNN), an established data mining
technique. Furthermore, we propose the first fully-accessible benchmark for sepsis early
detection by making temporally resolved Sepsis-3 labels publicly available2. Finally,
in a thorough experimental evaluation, we empirically demonstrate how the proposed
approaches outperform the hitherto state-of-the-art method for sepsis prediction. Before

1It is worth mentioning at this point, that in the mean time, inspired by natural language processing, attention
models [189, 201] have become a go-to solution for many sequential tasks (see Chapter 4).

2See https://github.com/BorgwardtLab/mgp-tcn
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3.2 Gaussian processes

diving into the methods and experiments, we pave the way by giving some background on
Gaussian processes and TCNs.

�.� Gaussian processes

Gaussian processes represent a powerful and flexible class of statistical models that over the
last decades have found wide adoption throughout technical disciplines and the natural sci-
ences. In this section, we first give an introduction to Gaussian process (GP) regression as
based on the book by Rasmussen et al. [162]. Then, we consider their extension tomulti-task
learning [209], and conclude with GP adapters [125].

�.�.� Gaussian process regression

Definition 5. A Gaussian process is a collection of random variables, any finite subset of which
is jointly Gaussian.

Consequently, a Gaussian process is fully determined by its mean function m(t) and co-
variance function k(t, t′), so that we can write:

f(t) ∼ GP
(
m(t), k

(
t, t′
))
. (3.1)

Here, the random variables represent the values of a function f evaluated at locations t. For
our intended purposes, the index set of these random variables can be interpreted as time,
which is why we use t to denote the location. In general, however, the location or input
space of a GP may take other forms, and could for example be Rd. Equation 3.1 illustrates
that a GP can be interpreted to be modelling a distribution over functions. For notational
and computational convenience, the mean function is often assumed to be zero: m(t) = 0.
Then, the specification of a covariance function allows us to draw sample functions for a
given vector of r queried locations t∗ with

f∗ ∼ N (0,Kt∗t∗), (3.2)

where f∗ = (f(t∗1), . . . , f(t∗r))
> collects the function evaluations at the times t∗ and Kt∗t∗

refers to the r× r covariance matrix evaluated at the query locations t∗ using the covariance
function k(·, ·). As those function draws carry little information of interest, they are referred
to as samples from the GP “prior”. It becomes more interesting when extending our set of
query times with training data (x, t), where x refers to observed values, and t refers to the
corresponding locations in time (we follow the notation introduced in Section 2.1.2, Defini-
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tion 1). Assuming a noise-free scenario with xi = f(ti) + ε with ε → 0, we have x = f,
which means we can model the following joint distribution[

f
f∗

]
∼ N

(
0,

[
Ktt Ktt∗

Kt∗t Kt∗t∗

])
, (3.3)

where Ktt∗ refers to the n× r covariance matrix evaluated between the n training locations
t and the r query points t∗, and so on. Making use of Gaussian identities (see Rasmussen
et al. [162, Section A.2]), we can derive the conditional distribution f∗|t∗, t, f that represents
the distribution of function values at query times t∗ when conditioning on the information
of the observed data (x, t). This distribution is therefore referred to as the “posterior” and
can be written as:

f∗|t∗, t, f ∼ N
(
Kt∗tK

−1
tt f, Kt∗t∗ − Kt∗tK

−1
tt Ktt∗

)
(3.4)

In amore realistic scenario, we consider noisy observations using additive independent iden-
tically distributedGaussian noise εwith variance σ2. This leads to the followingmodification
in the covariance of the observed values

cov(x) = Ktt + σ2I, (3.5)

where I represents the n × n identity matrix. Accordingly, the predictive distribution then
evaluates to:

f∗|t∗, t, x ∼ N
(
Kt∗t

(
Ktt + σ2I

)−1x, Kt∗t∗ − Kt∗t
(
Ktt + σ2I

)−1Ktt∗

)
(3.6)

While GPs regression models are lazy learners that produce predictions directly as a func-
tion of the training data and the queried locations, the covariance function still has hyper-
parameters that may be learnt. For instance, this may include a length scale, as well as signal
and noise variances. Conventionally, hyperparameters of GPs are tuned by maximising the
marginal likelihood p(x|t), the model’s probability of the observed values given the locations
andmarginalised over the functions f. Themarginal likelihood is an integral of the likelihood
(of the observed data given the function f) times the prior of f:

p(x|t) =
∫

p(x|f, t)p(f|t) df. (3.7)
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Conveniently, the log marginal likelihood can be expressed in closed form (see Rasmussen
et al. [162, Section 2.2]):

log p(x | t) = −1

2
x>
(
Ktt + σ2I

)−1x− 1

2
log
∣∣Ktt + σ2I

∣∣− n

2
log 2π (3.8)

Upon implementation, the matrix inversion is commonly replaced by a Cholesky decompo-
sition for numerical stability [162]. Nevertheless, in this so-called exact inference setting, we
can expect a runtime complexity ofO

(
n3
)
. The cubic runtime can quickly become excessive

in real-world data. Therefore, over the last decades, various approximative inference strate-
gies have been proposed to reduce this cost. For instance, inducing point methods [160]
use only a small number of m < n inducing points to learn a rank m approximation of the
covariance matrix leading to O

(
nm2

)
[187]. Furthermore, structured kernel interpolation

even leads to O(n+m logm) for a grid of m inducing points [210].

While GPs can be used to perform regression (or classification) tasks in general, in both
Part I and Part II of this thesis, we are mainly interested in using GPs to model the data gen-
erating process which then can be used to impute missing values of irregularly-sampled time
series while preserving the model’s Bayesian uncertainty at each imputed point. In our ap-
plications, we are generally interested in multivariate time series of dimension d > 1. There-
fore, we next consider a useful extension to GPs that allows for modelling high-dimensional
processes.

�.�.� Multi-task Gaussian processes

Multi-task Gaussian processes (MGPs) were proposed as an extension of GP inference to
multi-task learning [18]. To build intuition from the start, in the following description, tasks
can be interpreted to correspond to channels of a multivariate data generating process of
which we only observe discrete measurements as a multivariate time series.

Given n distinct inputs t1, . . . , tn, we gather the complete set of responses (or time series
values) for m tasks (or channels) in a vector x = (x11, . . . , xn1, . . . , x1m, . . . , xnm). Here,
x can be interpreted as the vector of observed values, consistent with Definition 1. We place
a GP prior overm latent functions {f1, . . . , fm} in order to induce correlations between the
different tasks. Assuming a mean function of zero, we have

cov
(
fp(t), fq

(
t′
))

=
(
Kf
)
pq

· k
(
t, t′
)
, (3.9)
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whereKf is am×m positive semi-definite matrix representing the similarities between the
tasks and therefore between the latent functions, and k(·, ·) represents a covariance function
over the inputs (or time locations). Further, we model xip, the ith observation of task p, as

xip ∼ N
(
fp(ti), σ

2
p

)
, (3.10)

where σ2
p indicates the noise variance of task p. To conform with the single-task GP formu-

lation in the preceding Section 3.2.1, we collect the covariances over the inputs in matrices
as follows and indicate the used location vectors:

(Ktt′)ij = k
(
ti, t

′
j

)
. (3.11)

Then, in the fully-observed case, the responses x at locations t follow

x ∼ N (0, Σ), (3.12)

with

Σ = Kf ⊗ Ktt +D⊗ I, (3.13)

where ⊗ denotes the Kronecker product, Ktt is the n× n matrix of covariances between all
training locations, andD represents anm×m diagonal matrix with the (p, p)th entry being
σ2
p . Due to the Kronecker product,Σ is anmn×mn covariance matrix, from which we can

already see that its naive inversion will cost O
(
m3n3

)
.

Regarding the predictive distribution, for notational convenience, we use the abbreviation
z := f∗|t∗, t, x. Then, for queried points t∗ the predictive distribution becomes

z ∼ N (µz, Σz), (3.14)

where

µz =
(
Kf ⊗ Kt∗t

)
Σ−1x, (3.15)

and

Σz =
(
Kf ⊗ Kt∗t∗

)
−
(
Kf ⊗ Kt∗t

)
Σ−1

(
Kf ⊗ Ktt∗

)
. (3.16)

Bonilla et al. [18] showed that also for MGPs, a closed-form expression for the marginal
likelihood can be derived. Interestingly, the noise in MGPs is crucial for enabling the shar-
ing of information across tasks: When considering noise-free observations in a block design
(i.e., considering the same locations for allm tasks), it has been shown that uponmaximising
marginal likelihood, there is no transfer between the tasks [18], leaving us with m indepen-
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dent single-task GPs. This phenomenon is also known as autokrigeability in the geostatistics
literature [205].

�.�.� Gaussian processes adapters

Building on the previous sections on Gaussian processes, we now consider Gaussian process
adapters, a framework proposed by Li et al. [125] for the classification of irregularly-sampled
and sparse time series. While Li et al. [125] introduced GP adapters using single-task GPs,
we directly introduce their multi-task extension [61]. To start with an informal summary,
in a first step, GP regression is used to derive a predictive distribution over evenly-spaced
imputations of an irregularly-sampled time series. These imputed time series are then used
for time series classification. Here, the GP hyperparameters are optimised end-to-end using
the downstream classification task [125]. Having roughly sketched the main idea, we now
give a formal introduction to GP adapters.

FollowingDefinitions 1 and 2, letD = {(T1, y1), . . . , (Tn, yn)} be a dataset of time series.
We assume the time series to be of varying length, that is, len(Ti) 6= len(Tj) for some i, j ∈
{1, . . . , n}. Further, we assume that the time series Ti is irregularly spaced, i.e., there are
time indices j in ti for which tj− tj−1 6= tj+1− tj . Note that since we allow for multivariate
time series, the time vector ti can have repeated time values such that at the kth position of the
time vector (ti)k = tk′ , the corresponding time index k′ generally satisfies k′ ≤ k. Thus, the
above triplet refers to subsequent time indices and not positional indices in the time vector
ti. Next, we consider instance i and for notational convenience omit the instance index, e.g.
T := Ti. Then, we fix a set of r evenly-spaced reference locations t∗ = (t∗1 , . . . , t∗r)

>. The
goal is then to represent our d-dimensional time series T as the MGP posterior distribution
of d tasks queried at those r reference locations. For this, we employ a zero-mean MGP
prior and use a covariance function k(·, ·). Using Equations 3.9 to 3.16, the MGP allows us
to model a latent time series T∗ = (z, t∗), where z refers to the imputed time series values
that follow the MGP posterior distribution as shown in Equations 3.14 to 3.16. While the
covariance matrices over the inputs are computed for each instance i individually, the task
similaritymatrixKf , the task-specific noise variances {σ2

1, . . . , σ
2
d}, as well as the parameters

η of the covariance function k(·, ·) are shared across all instances and treated as the MGP
hyperparameters θ to be learned

θ = vec
(
Kf
)
⊕
(
σ2
1, . . . , σ

2
d

)> ⊕ η, (3.17)

where ⊕ denotes the vector concatenation operation and vec(·) denotes the vectorisation of
a matrix. This rather general parametrisation of the MGP may in practice be simplified (in
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terms of the number of free parameters), for instance by using a Cholesky decomposition
Kf = LL> where L is lower triangular [18].

Next, we address how the GP posterior z is used to actually impute time series data at
evenly-spaced times in order to classify the time series while preserving uncertainty about
data missingness. We wish to learn a mapping f : T ′ → Y that allows us to classify an
irregularly-observed time series T ′ ∈ T ′. GP adapters address this problem via the com-
position of two mappings gθ : T ′ → T and hφ : T → Y such that f = hφ ◦ gθ where
θ,φ refer to the parameters, respectively. Here, gθ : (x, t) 7→ (z, t∗), i.e., given a irregular
input time series T ′ = (x, t)3, gθ returns regular grid of query times t∗ and a corresponding
vector of imputed time series values z which is drawn following the MGP posterior distri-
bution4. hφ may be realised with any black-box classifier that can leverage evenly-spaced
multivariate time series to output a predicted class label. For the sake of notational conve-
nience, given instance i, we assume that hφ can directly use the “flattened” vector zi, that
is, it internally applies the reshaping operation, in case a r × d matrix format is required.
Were zi directly observed, given a loss function `, we could directly apply the classifier hφ
to evaluate `(hφ(zi), yi). However, in our case zi is a Gaussian random vector, making the
loss ` also a random variable given a target yi. This is accounted for by using the expectation
Ezi∼N

(
µzi ,Σzi ;θ

)[`(hφ(zi), yi)] as the overall loss for optimisation. The learning problem
then becomes

φ̂, θ̂ = argmin
φ,θ

n∑
i=1

Ei︷ ︸︸ ︷
Ezi∼N

(
µzi ,Σzi ;θ

)[`(hφ(zi), yi)], (3.18)

where both the parameters θ of the MGP imputation gθ as well as the parameters φ of the
classifier hφ are optimised jointly. Notably, for many choices of hφ the above expectation
(abbreviated with Ei) is analytically not tractable [61, 125]. Therefore, this term is approxi-
mated with Monte Carlo sampling using sm samples

Ei ≈
1

sm

sm∑
s=1

`
(
hφ

(
z(s)i

)
, yi

)
, (3.19)

3For notational convenience, irregular sampling is not explicitly indicated for x and t.
4The query locations can actually be considered as an argument of gθ , since the MGP conditions its posterior

on the queried locations t∗. However, for notational convenience we define gθ to simply map from the space
of irregular time series to the space of regular (evenly-spaced) time series.

36



3.3 Temporal convolutional networks

where each

z(s)i ∼ N
(
µzi ,Σzi ;θ

)
. (3.20)

Having introducedGaussian processes, theirmulti-task extensions, as well as GP adapters,
we next focus our attention on hφ, i.e., the downstream classifier of the end-to-end learning
pipeline.

�.� Temporal convolutional networks

Temporal convolutional networks (TCNs) describe a neural network architecture that is
based on convolutional neural networks (CNNs) [118], a popular class of neural networks
that have contributed to significant breakthroughs in computer vision, machine translation,
and audio synthesis throughout the last decade [65, 79, 151]. CNNs may be most famous
for being widely adopted in various prediction tasks involving image data. However, CNNs
have also been successfully applied to sequence modelling tasks, even as early as the late
80s [84]. While the term TCN was first used in Lea et al. [117], we consider a generic
formulation of TCNs similar to the one presented in Bai et al. [7]. A TCN can be seen as a
simple extension to a conventional 1D-CNN that fulfills three properties:

1. Causal convolutions: TCN outputs are a non-linear function of present and past se-
quence inputs. This imposes a notion of temporal ordering on the input data, whereas
prediction outputs are not allowed to be influenced by data from the future.

2. Long-term memory: by employing dilated convolutions (see Definition 6), very long
effective memory can be realised since the receptive field grows withO

(
2l
)
for a layer

at depth l in the network (assuming each layer applies a dilation factor of δ = 2l).

3. Sequence to sequence: similar to an RNN, the output and each hidden layer of a TCN
share the same length as the input sequence. This is achieved via the combination of
causal convolutions with a padding of (kernel size −1) zeros before the start of the
input and each hidden layer.

Definition 6. For s ∈ Z, let Ωs = [−s, s] ∩ Z. Then, for a discrete function χ : Z → R and
a discrete filter h : Ωs → R of length 2s+ 1, following Yu et al. [216], we define the δ-dilated
discrete convolution operator ∗δ such that

(χ ∗δ h)(k) =
∑

k=i+δ·j
χ(i) · h(j). (3.21)
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With δ = 1, we recover the regular 1D convolution operation. In practice, we treat the
values x of a fully-observed time series T per channel as the function valuesχ(i) evaluated at
position i and refer to the length of the filter as the kernel size. A TCN is organised in residual
temporal blocks, where in a given temporal block a sequence of operations (convolutions,
activations, normalisations and drop out) is applied to the input and the resulting output is
again added to the input (residual connection). For more details, we refer to Figure 3.2.

�.� MGP-TCN: Gaussian Process Temporal Convolutional
Networks

Having introduced the individual building blocks, we can now consider Gaussian process
temporal convolutional networks (MGP-TCNs), our sepsis predictionmethod that combines
uncertainty awareness in irregularly-spaced time series with causal dilated convolutions, a
powerful inductive bias for modelling sequences and time series. In Figure 3.1, we give
an overview of the entire pipeline. For a given patient encounter i, we observe irregularly-
sampled and multivariate time series data that comprise measurements from laboratory and
vital parameters. We collect these data Ti = (xi, ti) in a vector xi of values and a vector ti
of times according to Definition 4. Next, a multi-task Gaussian process (MGP) predicts a la-
tent time series zi at evenly-spaced times t∗i while uncertainty is retained with zi following a
multivariate normal distribution conditioned on the observed data. Next, zi is fed into a tem-
poral convolutional network (TCN) to predict the class label yi of the patient, i.e., whether or
not the patient will develop sepsis. Internally, the TCN assumes a reshaped input Zi ∈ Rr×d

for the imputed time series at r times and of d dimensions. For a given classification loss
`(·, ·), the GP adapter framework allows us to optimise both the parameters θ of the MGP
and the parameters φ of the TCN jointly using gradient descent (see Equation 3.18). Thus,
both the imputation of the latent time series as well as the classification of the evenly-spaced,
imputed time series are learned end-to-end.

Figure 3.2 provides further details about the TCN architecture. Following Section 3.3, we
employ causal and dilated convolutions as organised in temporal blocks that combine two
layers of convolution and normalisation with a residual connection. As for the normalisation
layer for stabilising the gradients (and therefore the training), we follow Lee [119] by using
a layer normalisation [6] instead of a weight normalisation [179] employed in Bai et al. [7].
In order to achieve a long effective memory size, even when using exponentially growing
dilation factors, the resulting networks can become very deep, which can lead to unstable
training. This is the main reason why normalisation layers are a key ingredient to TCNs.
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Measurements
{(xi, ti)}Ni=1

MGP
zi ∼ P(zi|xi, ti, t∗i ;θ)

TCN
pi = fφ(zi)

Loss
`(pi, yi;θ,φ)

∇θ,φ`
ch

an
ne

ls

observed times queried times

Figure 3.1: Pipeline overview of the MGP-TCN model. Irregularly-spaced time series (xi refer to
observed values, ti to observed times) are provided to the multi-task Gaussian pro-
cess (MGP). zi represents the latent time series sampled at evenly-spaced query times (i.e.,
every hour) and follow the MGP posterior distribution (with parameters θ). Draws from
zi are then fed to the temporal convolutional network (TCN) (with parameters φ) which
returns a prediction pi. Finally, the loss function ` compares the prediction pi with the la-
bel yi. The green arrow indicates that both the MGP and the TCN are trained end-to-end
using the gradient of the loss. Figure recreated from [142] under retained copyrights.

We can compute the reach of the receptive field in terms of how far in the past (in terms
of number of time steps) an input can affect a current output as the sum

∑L
l=0 j2

l where l
enumerates the temporal blocks, j indicates the number of stacked convolution layers within
a block, and where the lth block employs a dilation factor δ = 2l. Even when using j =

2 as in our case (see Figure 3.2), that is, applying each dilation factor twice, we require a
network 9 blocks deep in order to reach inputs 1,000 time steps into the past. However, due
to the exponential setting, adding an additional 10 blocks allows us to reach more than a
million steps into the past, which could be interesting for learning with very long sequences
as encountered, for instance, in reinforcement learning problems with video games. Now
that we have introduced MGP-TCN, in the next section we outline our experiments.

�.� Experiments

We structure our experimental section in the following way: Section 3.5.1 presents the in-
vestigated dataset. Then, Section 3.5.2 specifies the sepsis prediction task, and Section 3.5.3
details the data filtering steps. In Section 3.5.4, we introduce further comparison methods.
Finally, we outline our training and evaluation strategy in Section 3.5.5 and present the em-
pirical results in Section 3.5.6.
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Figure 3.2: Illustration of a temporal convolutional network (TCN) processing evenly-spaced samples
(values zk at evenly spaced times tk for k = 1, . . . , r) of a latent time series (blue), which
was predicted by the multi-task Gaussian process (MGP) as conditioned on the sparsely
observed data points (yellow). Theoutput of theTCN is denotedwith pk. In each temporal
block, the dilation factor δ is doubled, leading to the convolution skipping an (exponen-
tially) increasing number of outputs from the previous layer, respectively. Within a given
temporal block, we apply causal δ-dilated convolutions (Causal Conv. (δ)), followed by a
rectified linear unit (ReLU), a Layer normalisation (Layer Norm.), and a dropout layer.
This sequence of operations is repeated twice, followed by a residual connection (adding
the input of the temporal block), followed by a final ReLU activation. The figure was orig-
inally inspired by Bai et al. [7] and recreated from [142] under retained copyrights.

�.�.� Dataset and sepsis label

Dataset In this chapter, we make use of the MIMIC-III dataset, version 1.4 [98]. MIMIC
(Multiparameter Intelligent Monitoring in Intensive Care) is a large, freely accessible single-
centre database featuring electronic health record (EHR) data from patients admitted to the
critical care units of the Beth Israel Deaconess Medical Center, a large tertiary care hospital
in Boston, Massachusetts. MIMIC-III includes data associated with roughly 60,000 distinct
hospital admissions and approximately 45,000 unique patients (mostly adult) that was col-
lected between the years 2001 and 2012. During the collection period, two different clinical
information systems were in place: Philips CareVue Clinical Information System, which we
refer to as CareVue, and iMDsoft MetaVision ICU, which we abbreviate to MetaVision [98].

Sepsis label We annotate each hour of a patient stay with a binary sepsis label follow-
ing the most recent international consensus definition, Sepsis-3 [185]. As outlined in Sec-
tion 2.2.1, Sepsis-3 defines sepsis as a dysregulated host response to infection. Furthermore,
the authors propose a set of clinical criteria for identifying sepsis patients using the frame-
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Figure 3.3: Illustration of the Sepsis-3 definition [185]. suspected infection (SI) time is determined
according to Seymour et al. [181], requiring the timely co-occurrence of body fluid sam-
pling and antibiotics administration. In a window from 48 hours before until 24 hours
after SI time, the sequential organ failure assessment (SOFA) score is monitored, where
an increase of at least 2 points fulfills the Sepsis-3 criteria, which was used to define the
sepsis onset (tsepsis). This figure was recreated from Moor et al. [138].

work of Sepsis-3 [185]. This involves two conditions, both of which a patient needs to ful-
fill: 1) a suspected (or documented) infection, and 2) signs of organ dysfunction. For the
first condition, we follow the suspected infection (SI) cohort as introduced in Singer et al.
[185] and further elaborated on in Seymour et al. [181]. This SI definition requires the co-
occurrence of body fluid sampling and the administration of systemic antibiotics. If the cul-
ture sampling occurred first, then the drug had to be administered within 72 hours. Oth-
erwise, if the antibiotic was given first, the body fluid sampling is required to follow within
24 hours. In this study, building on the query code of Johnson et al. [99], we use the culture
sampling time to define the SI time, i.e., the onset of the suspected infection. Next, a SI win-
dow is defined as the 72 hour window surrounding the first SI time starting 48 hours before
SI time and ending 24 after SI time.

To measure organ dysfunction, Singer et al. [185] propose to assess the sequential organ
failure assessment (SOFA) score [204]. Specifically, an acute increase of at least 2 points in
SOFA is required during the SI window, that is, between 48 hours before and 24 hours after SI
time. While SOFA is computed based on the assessment of 6 vital organ systems, by design
the worst values of the previous 24 hours are used, respectively [204]. In order to register
an increase in SOFA, we repeatedly evaluate SOFA in hourly intervals. To define a sepsis
onset, we then check for a 2 point increase in SOFA during the SI window and use the SOFA
increase to define the onset time tsepsis. Figure 3.3 illustrates the Sepsis-3 definition.
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�.�.� Prediction problem

Our goal is to learn a model that given a patient time series predicts its associated binary
class label for sepsis. During training, we implement this as a window-based time series
classification problem (see Section 2.1.3), where for a given classifier f : T → {0, 1}, we aim
to minimise the empirical risk as defined in Equation 2.3:

R(f) =
1

n

n∑
i=1

`
(
f
(
T
<tsepsis
i

)
, yi

)
(3.22)

As a crucial difference to whole-series classification, here we restrict the input time series to
time steps earlier than an instance-specific time stamp τi (see Equation 2.3). Since wewish to
predict sepsis early, that is, based on data collected before the sepsis onset, in sepsis cases the
time stamp τi from Equation 2.3 is set to the sepsis onset time τi = tsepsis of patient i. As a
default choice for setting tsepsis in controls without sepsis, Futoma et al. [61] used tsepsis = ∞,
i.e., no subsetting of the control time series was applied [61]. Later on in this chapter (see
Section 3.5.3), we will see that τi needs to be chosen very carefully in time series of controls.

�.�.� Data filtering

Cohort selection The following exclusion criteria were applied: Patients were excluded
if

1. they were pediatric patients under the age of 15,

2. no chart data was available, or

3. no ICU admission or discharge time was available.

Furthermore, following the recent literature, we excluded patients logged via the CareVue
system as in this logging system negative culture samplings were underreported [48]. Fi-
nally, we define an ICU encounter to be a case if a sepsis onset occurs during the ICU stay.
Otherwise, the encounter is defined to be a control. To not artificially simplify the predic-
tion task, controls were defined in an inclusive manner such that patients fulfilling only one
of the two criteria (SI or SOFA) would still be deemed a control. However, to ensure that
the control cohort included no patients treated for sepsis (where for instance the onset oc-
curred before ICU admission, or where the clinical criteria of Sepsis-3 were not fulfilled), we
required that control stays were not labelled with any sepsis-related ICD-9 billing codes (In-
ternational Classification of Diseases, Ninth Revision).
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Table 3.1: Summary statistics of the used cohort.

Variable Sepsis Cases Controls

n 570 5,618
Female 236 (41.4%) 2,548 (45.4%)
Male 334 (58.6%) 3,070 (54.6%)

Mean time to sepsis onset in ICU (median) 16.7 h (11.8 h) —
Age (µ± σ) 67.2 ± 15.3 64.2 ± 17.3

Ethnicity

White 411 (72.1%) 4,047 (72.0%)
Black or African-American 41 (7.2%) 551 (9.8%)
Hispanic or Latino 7 (1.2%) 147 (2.6%)
Other 57 (10.0%) 493 (8.8%)
Not available 54 (9.5%) 380 (6.8%)

Admission type

Emergency 504 (88.4%) 4,689 (83.5%)
Elective 60 (10.5%) 872 (15.5%)
Urgent 6 (1.1%) 57 (1.0%)

Using all of the above criteria, we start out with 1,797 cases and 17,276 controls. As we
are interested in detecting sepsis early, we exclude sepsis cases where the onset occurs during
the first 7 hours into the ICU stay. We will see in Section 3.5.5 that this allows for a predic-
tion horizon 7 hours into the future. To preserve the original class imbalance (around 10%),
this final exclusion step was applied only after the case-control onset matching, which will
be introduced in the next paragraph. Thus, our final cohort comprises 570 sepsis cases and
5,618 controls. Further summary statistics about this cohort are collected in Table 3.1. As
for input variables, we included 44 vital and laboratory parameters as listed in Table 3.2 and
excluded variables that were measured very rarely, i.e., fewer than 500 observations in the
initial cohort (of 1,797 cases and 17,276 controls). Additionally, to address a technical lim-
itation in one of the baselines, encounters with fewer than 10 observed measurements were
excluded (for more details, please refer to Moor et al. [142, Section A.8]).

Case-control onset matching When framing sepsis prediction as a (window-based)
time series classification task, it becomes an intriguingly impactfulmodelling choice to deter-
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Table 3.2: Table of used input variables.

Vital Parameters

Systolic Blood Pressure Tidal Volume Set
Diastolic Blood Pressure Tidal Volume Observed
Mean Blood Pressure Tidal Volume Spontaneous
Respiratory Rate Peak Inspiratory Pressure
Heart Rate Total Peep Level
SpO2 (Pulsoxymetry) O2 flow
Temperature Celsius FiO2 (Fraction of Inspired Oxygen)
Cardiac Output

Laboratory Parameters

Albumin Blood Urea Nitrogen
Bands (Immature Neutrophils) White Blood Cells
Bicarbonate Creatine Kinase
Bilirubin Creatine Kinase MB
Creatinine Fibrinogen
Chloride Lactate Dehydrogenase
Sodium Magnesium
Potassium Calcium (free)
Lactate pO2 Bloodgas
Hematocrit pH Bloodgas
Hemoglobin pCO2 Bloodgas
Platelet Count SO2 Bloodgas
Partial Thromboplastin Time Glucose
Prothrombin Time (Quick) Troponin T
INR (Standardized Quick)
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mine exactly which time windows of a patient are used. This problem has been characterised
beforewith the prediction of in-hospitalmortality and hypokalemia [182]. For the prediction
of sepsis, cases have been aligned to control patients by assigning a matched pseudo-onset in
control patients, i.e. patients without sepsis. For instance, Futoma et al. [62] demonstrated
a drastic drop in predictive performance (almost halving the area under the precision-recall
curve (AUPRC)) of the same method on the same dataset by merely changing the control
onset from discharge time [61] to a matched onset time [62]. In terms of our formalisation
of the prediction problem, the first choice of matching, that is, setting the pseudo-onset to
the discharge time refers to Equation 3.22 with setting tsepsis = ∞ for controls [61]. The
authors noted in the follow-up paper, that this choice may have rendered the problem too
easy, as controls shortly before discharge would be expected to be in an overall better health
state than a critically ill patient developing signs of sepsis [62]. Thus, to address this, they
matched a given case to 4 controls (roughly preserving their prevalence of around 20%) by
assigning a pseudo-onset (they refer to it as “prediction time”) at the same fraction of the
stay duration as the real sepsis onset occurred in the matching case [62].

Motivated by this, and to avoid an overly simplified classification task, here we also employ
case-control onset matching. However, given our class imbalance, we match each case to
10 controls and assign the absolute time of sepsis onset since admission (as opposed to a
relative onset time calculated via the fraction of the stay at which sepsis onset occurred) to
derive matched control onsets at the same number of hours after admission. We changed
this relative matching to an absolute matching since we observed that cases and controls did
not necessarily show a similar length of stay, which could have led to biases in the alignment
that a sufficiently powerful classifier could have plausibly exploited. Finally, for each case and
matched control, we extracted up to 48 hours of in-ICU input data preceding the (matched)
sepsis onset and succeeding the time of ICU admission.

�.�.� Comparison methods

We compare MGP-TCN to a set of comparison methods. This includes 1) Gaussian pro-
cess recurrent neural networks (MGP-RNNs), 2) temporal convolutional networks (TCNs),
and 3) dynamic time warping k-nearest neighbors (DTW-kNNs). MGP-RNN represents
the first multi-task Gaussian process adapter model for predicting sepsis [61, 62]. As MGP-
TCN was motivated by MGP-RNN (we empowered the uncertainty aware framework with
the inductive bias of TCNs), we deem the comparison to this baseline most interesting.
Next, as an ablation of the MGP component of MGP-TCN, we compare to a TCN that
workswith an evenly-spaced time series thatwasmanually preprocessed using carry-forward
imputation (for more details, please refer to next paragraph). Finally, we also employ a
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DTW-kNN classifier, a powerful data mining method based on dynamic programming that
has shown competitive time series classification performance [45]. Also, in contrast to many
other (non-deep learning) classifiers, DTW can be directly applied to time series of vary-
ing lengths. To our knowledge, DTW-kNN has not been applied to sepsis prediction be-
fore. For DTW-kNN, we reuse the same carry-forward imputation that was created for the
TCN model. DTW distance matrices were computed for each time series channel such that
channel-wise kNN classifiers were ensembled via soft votes, i.e., by averaging the prediction
score over all channels (as opposed to a hard vote, where the most frequently predicted class
would be chosen).

Imputation schemes Here, we give more details about the imputation scheme that was
used in the comparisonmethods that did not employ anMGP that could directly process the
irregular time series. As the MGP was queried every hour of the patient stay, for maximal
comparability we collected the raw time series in hourly bins, where each bin was assigned
the mean as computed from all available observations inside the bin. Then, we filled empty
bins using the value of the last non-empty one (carry-forward imputation). Any remaining
missing entries at the start of the time series were imputed using the mean of the respective
channel as computed on the entire training dataset.

�.�.� Experimental setup

Training We randomly divide the data into 80% data for training, and each 10% for vali-
dation (to tune the hyperparameters) and for testing (to report the final performance evalu-
ation). This splitting strategy was applied in three independent iterations to enable an assess-
ment of performance variability. In each iteration of data splitting, the respective training set
was used to estimate sample mean and standard deviation of each channel in order to then
apply channel-wise z-scoring to the entire dataset. This means that a time series value xij
observed at time ti for the channel (or dimension) j is mapped to zij =

xij−µj

σj
where µj , σj

indicate the training set-wide mean and standard deviation of channel j.
For hyperparameter tuning, to avoid expensive evaluations over a large grid of hyperpa-

rameters, we instead used a Bayesian optimisation framework [80] and ran 20 calls (each cor-
responding to one hyperparameter configuration) for each method and split iteration. Hy-
perparameters and model checkpoints were selected to maximise area under the precision-
recall curve (AUPRC) as computed on the validation split. For each method and split itera-
tion, the best model checkpoint was then applied to the respective test set for evaluation. To
keep the parametrisation of the deep models comparable, we constrained the hyperparame-
ter configurations of the deep models such that the resulting number of trainable parameters
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ranged between 20,000 and 500,000 parameters. To prevent overfitting, we stopped training
when the validation AUPRC did not improve over 5 epochs. In order to make it feasible to
tune deep neural networks over multiple iterations of random splitting (also referred to as
Monte Carlo cross validation), we restrict each run to train for atmost 2 hours. Furthermore,
to counteract underfitting due to this temporal constraint, each best parameter configuration
was retrained for a longer period (50 epochs for the MGP-based methods that would only
train for 5 to 15 epochs, otherwise). For DTW-kNN, we precomputed the distance matrices
on the entire dataset to evaluate different values of k ∈ {1, 3, . . . , 13, 15} on the same val-
idation set as used in the other methods. For further details regarding the hyperparameter
search, please refer to Moor et al. [142, Section A.5 and Table A.2].

Evaluation To evaluate classification performance, due to a significant class imbalance
(only 9.2% sepsis cases) we focus on area under the precision-recall curve (AUPRC). In or-
der to conform with the recent sepsis prediction literature, we also report area under the
receiver-operating-characteristic curve (AUROC), albeit being aware of the shortcomings
of this measure when dealing with imbalanced datasets, i.e., that AUROC becomes more
meaningless with increasing class imbalance [178]. As we ultimately care about the early
identification of sepsis, we perform an horizon analysis where we assess classification per-
formance going back in time up to 7 hours before onset and matched onset, respectively.
Specifically, for each hour up to 7 hours before onset we restrict the model input data to only
contain data up until the current hour to arrive at a measure of how good would the model
have predicted sepsisn hours before the onset. To give an example, to evaluate the prediction
horizon 4 hours in advance, all fittedmodels (including theMGP imputation) were only pro-
vided patient data up until 4 hours before sepsis onset and matched onset in order to make
a prediction. It is worth emphasizing that the models were not retrained for specific time
horizons in order to squeeze out even better numerical results, since the goal of this study
was to learn a single, potentially deployable model, and to assess how well it could detect
sepsis when querying predictions during early windows before sepsis by gradually removing
information before sepsis onset.

�.�.� Results

Figure 3.4 displays the classification performance over the different prediction horizons. On
the x-axis, the prediction horizon, i.e., the number of hours the prediction step precedes
sepsis onset, is shown. This is plotted against two measures of classification performance on
the y-axis: 1) area under the precision-recall curve (AUPRC), an evaluation metric that is
suitable for classification under class imbalance (left panel), and 2) area under the receiver-
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Figure 3.4: All methods were tuned and evaluated in terms of area under the precision-recall
curve (AUPRC). Additionally, we display area under the receiver-operating-characteristic
curve (AUROC).

operating-characteristic curve (AUROC), an evaluationmetric that is less informative under
class imbalance, however widely adopted in the literature of clinical predictionmodels (right
panel). The error bands indicate the observed standard deviation when computing the met-
rics for each iteration of splitting. When considering our main evaluation measure, AUPRC,
we observe that MGP-TCN as well as the DTW-kNN ensemble, both novel methods for
sepsis prediction, perform favourably compared to the previous state-of-the-art sepsis de-
tection method MGP-RNN. Considering prediction horizons earlier than 4 hours ahead of
sepsis, both MGP-TCN and DTW-kNN outperform MGP-RNN by a substantial margin.
Approaching sepsis onset, the performance curves of these three methods intertwine with
overlapping variability estimates. At 4 hours before onset, the AUPRC mean curve of the
two best performing methods, MGP-TCN and DTW-kNN, cross such that earlier than 4

hours in advance, DTW-kNN shows a higher mean AUPRC, whereas later than 4 hours in
advanceMGP-TCNdisplays the highermeanAUPRC.Nevertheless, the error bands of these
twomethods are overlapping in all horizons except for hour 0. Furthermore, we observe that
the TCN does not show a competitive performance at any prediction horizon. Finally, we
find that methods that work with evenly-spaced time series (here after preprocessing with
carry-forward imputation), i.e., DTW-kNN and TCN, compared to the uncertainty-aware
methods upon approaching sepsis onset show a flatter increase in the performance curves.
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�.� Discussion

In this chapter, we presented MGP-TCN, a novel model for predicting sepsis that combines
uncertainty-awareness of MGP adapters with causal and dilated convolutions of TCNs. To
develop and empirically test this method, we have built the first publicly available sepsis early
prediction pipeline that includes hourly sepsis annotations as derived from the Sepsis-3 def-
inition. In our experiments, we compare MGP-TCN against its predecessor MGP-RNN,
which previously achieved state-of-the-art performance in sepsis prediction [61]. Further-
more, we compared against a classic TCN as an ablation to evaluate if MGP-TCN actually
benefits from leveraging the raw, irregularly-sampled time series with an MGP adapter. Fi-
nally, to juxtapose these three deep learning approaches with a non-deep learning method,
we also investigate a channel-wise ensemble of DTW-kNN classifiers. We found that both
MGP-TCN and DTW-kNN exhibit competitive performance and outperform MGP-RNN.
Our findings in Figure 3.4 entail that MGP-TCN improves performance over both the MGP-
free classic TCN as well as the TCN-freeMGP-RNNbaseline, thereby showcasing that recent
progress in sequence models (using causal dilated convolutions) can be successfully trans-
ferred to medical time series datasets with incomplete and irregularly spaced observations.
Interestingly, we observe that DTW-kNN performs surprisingly well, outperforming several
of the deep learning methods in terms of AUPRC. However, we caution against overinter-
preting this specific finding, as it may partially be an artefact of the limited sample size which
could restrict the performance of the deep learning approaches that typically excel in the very
large sample size regime.

Scaling behaviour While for the investigated deep learningmethods the runtime cost of
predicting a single instance is constant with increasing sample size (i.e., number of patients),
for DTW-kNN this is generally not the case making it much harder to scale this method to
large cohort sizes. When using exact inference, drawing samples from the MGP posterior
involves a Cholesky decomposition of the (d · ti)× (d · ti) covariance matrixΣi of instance
i (as computed in Equation 3.13) which for ti = len(Ti) observed time steps and d channels
(or dimensions) leads to a runtime of O

(
(d · ti)3

)
. However, since the MGP imputation is

computed per instance individually (under shared hyperparameters), the cost is cubic only
in the dimensionality and in the number of time steps of the current time series Ti, making
it possible to scale this method to larger sample sizes. If necessary, this cost can be reduced
by approximating the posterior, for instance with the Lanczos method where the runtime
is cubic only in a parameter that is chosen to be a small constant [125]. By contrast, the
DTW-kNN ensemble is much harder to scale. Even though as a lazy learner it has a negligi-
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ble runtime during training (O(1)), the runtime complexity during prediction is substantial.
For an unseen instance, the DTW distance to all n training instances needs to be computed
where one pair-wise distance computation already costs O

(
d(ti)

2
)

with ti again referring
to the number of time steps (although in our case, DTW-kNN processed hourly sampled,
evenly-spaced time series). In total, already for computing the distances for a single new in-
stance upon prediction time this involves a cost ofO

(
nd(ti)

2
)
. For our dataset ofmid-range

size, predicting at a single horizon already requires the alignment of hundreds of millions of
pairs of time series (univariate), followed by the storing of the distances, which can lead to
significant runtime and memory overheads.

Limitations and future work In the following, we discuss limitations to this study as
well as opportunities for future work. First, the empirical performance assessment was re-
stricted to a single dataset, MIMIC-III, whereas an external validation of the models could
not be conducted due to the lack of an accessible and annotated validation dataset. We con-
tacted the authors of several related works: Futoma et al. [61] could notmake the patient data
used in their paper available. Furthermore, the authors of the papers introducing and vali-
dating the “InSight” method for sepsis prediction would not share their code nor the queried
data due to proprietary interests, even though in their papers they used MIMIC-III, a pub-
licly available dataset distributed under an Open Database License that requires derived data
that was publicly used to be made reproducible [24, 48]. Already the labelling of a single
dataset was very labour-intense due to the complexity of interpreting and implementing the
Sepsis-3 definition. Therefore, for as long as labelling code and data keeps being unavailable,
the sepsis prediction literature will continue being in dire need of accessible and annotated
datasets for validation. In this study, we retrospectively investigated whether the hours pre-
ceding sepsis onset carry signals predictive of the inbound sepsis onset by comparing said
time windows with time windows in control patients. While such a binary classification set-
ting is interesting in that it reveals whether there are actually signals predictive of sepsis, this
approach is retrospective by design, i.e., we start out by knowing when sepsis starts and in-
vestigate how early in advance the model could have predicted it. However, when deploying
a sepsis early warning system, it would prospectively monitor patients and repeatedly output
predictions. This limitation is in line with previous work on clinical prediction models that
found that temporally aligning the prediction task with the clinical event of interest may be
insufficient for evaluating a model with regard to clinical usability [182].

To more closely reflect a deployment scenario, in Chapter 4, we will encounter an online
monitoring setting already during the (retrospective) training and evaluation of the models.
However, the best performingmethods in this studywill require some further considerations
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in order to train them for and apply them in an online monitoring setting. For instance, a
direct application of our used DTW-kNN approach would imply that for each new observed
measurement the distance of a patients time series to all training time series needs to be up-
dated or at least partially recomputed, which would be very costly either in terms of runtime
or memory. As extensions of DTW to an online setting are being investigated [152], online
extensions of DTW-kNN could become an exciting topic for future work. Moreover, it will
be interesting to reformulate MGP-TCN for an online scenario from the viewpoint of local
GPs [147, 218]. In the subsequent chapter, several open problems remaining after this first
study will be investigated, including external validations, an online prediction scenario, as
well as model explanations.
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� Predicting sepsis in multi-site,
multi-national intensive care
cohorts using deep learning

In this chapter, we present a multi-centre study for the development and validation of sepsis
earlywarning systems usingmachine learning. The content is based on the following preprint
which is currently under review:

M. Moor†, N. Bennett†, D. Plečko†, M. Horn†, B. Rieck, N. Meinshausen, P. Bühlmann,
and K. Borgwardt. “Predicting sepsis in multi-site, multi-national intensive care cohorts
using deep learning”. arXiv preprint arXiv:2107.05230, 2021

We start by putting this chapter into context with the previous sections of this thesis. First,
in Section 2.2, we introduced sepsis and sketched how the early recognition of this syndrome
is both clinically relevant as well as challenging, which given an abundance of monitoring
data leads to an interesting machine learning prediction problem. Then, in Chapter 3, we
elucidated the related literature and developed MGP-TCN a novel method for sepsis pre-
diction, and empirically investigated it together with several deep learning and data mining
methods in a retrospective time series classification task on the MIMIC-III dataset. While
we observed convincing results in terms of predictive performance, the study outlined in the
previous chapter faced several limitations that the current chapter is going to address. This
chapter is organised as follows: In Section 4.1, we elucidate the current gap in the literature
and summarise the contributions of this chapter. Next, in Section 4.2 we detail the study
design, the prediction problem, the employed prediction methods, the experimental setup,
as well as our evaluation strategy. Finally, in Sections 4.3 and 4.4, we present the empirical
results and discuss the impact, scope, and limitations of our findings.

�.� Introduction

For decades, sepsis has persisted to be a dominant cause of mortality and morbidity [47,
94, 103]. Even though an early identification would improve prognosis by enabling timely
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disease management [54], a long sought-after gold standard for the early diagnosis of sepsis
is still missing.

Given a wealth of routinely collected laboratory and monitoring patient data, the predic-
tion of sepsis from this data has become an attractive machine learning problem. However,
compared to more conventional clinical prediction targets, such as mortality, length of stay,
or time to hospital readmission, sepsis describes a complex and heterogeneous clinical en-
tity that is challenging to consistently define. Even though the last few decades have wit-
nessed several refinements and reevaluations of the international consensus definitions for
sepsis [122, 185], the problem of how to best define sepsis and sepsis-related outcomes is far
from being solved. This is also reflected in the current literature where a bewildering number
of definitions and ad-hoc approaches are used to determine the time of sepsis onset [143].

Even though recent years brought forth a considerable body of literature investigating the
early predictability of sepsis using machine learning (refer to Fleuren et al. [56] and Moor
et al. [143] for a systematic overview), there are several factors that hinder a straight-forward
comparison of these approaches, rendering a direct juxtaposition of numerical results largely
futile. Besides heterogeneous sepsis definitions, previous studies have also framed their pre-
diction problem in heterogeneous ways. For instance, pseudo-onsets in matched controls
were either assigned to the discharge time [61], to a time after a relative proportion of the
hospital stay [62], to a time after an absolute number of hours into the stay [142], or as in the
most cases, not explicitly reported at all [143].

The limited comparability between existing studies is further exacerbated by only a small
fraction of studies having employed an external validation [143]. As a foundational issue
underlying these phenomena, there is a lack of consistently annotated data originating from
different centres. In fact, currently the majority of publications predicting sepsis in the ICU
were developed on the MIMIC-III dataset, plausibly due to ease of access and the high qual-
ity of the data [143]. Lacking access to open-access, annotated data for validation is a core
driver of the problem that most sepsis prediction studies lack external validations. On top
of that, a recent study found a widely deployed proprietary sepsis prediction model to per-
form surprisingly poorly when validated externally [211], which begs the question whether
proprietary prediction models ought to be better validated as opposed to being rushed into
deployment. Currently, however, this can not be easily implemented, since multi-centre,
annotated validation data is lacking. Motivated by these circumstances, in this chapter we
present a multi-centre study unifying data from five EHR databases to conduct the first in-
ternational external validation of sepsis prediction using machine learning. Specifically, the
contributions of this study are as follows:
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• We harmonise, clean, and filter data from five databases to create the first international
benchmark comprising over 150, 000 ICU stays.

• We derive hourly sepsis labels using the Sepsis-3 definition [185].

• We develop sepsis predictionmodels using state-of-the-art machine learningmethods
and compare them against several clinical baselines.

• We devise an evaluation strategy that captures both alarm accuracy and earliness.

• Using this unique benchmark, we perform an extensive external validation across cen-
tres, and for the first time across nations and continents.

�.� Methods

�.�.� Study design and data sources

We conducted an observational and retrospective study employing multiple centres. First,
this involved the creation of a multi-centre ICU cohort comprising sepsis patients and con-
trols. For this, Figure 4.1 gives an initial overview of the data flow and the preprocessing
steps that we further detail in the subsequent sections. Next, we developed, internally vali-
dated, and externally tested sepsis warning systems that aim to detect sepsis during the acute
first week of an ICU stay. The investigated study cohort comprises ICU patients across three
countries and two continents as collected in the following databases (versions provided in
parentheses whenever available): i) HiRID [95] (1.1.1), ii) AUMC [196] (1.0.2), iii) MIMIC-
III [98] (1.4), iv) eICU [158] (2.0), v) and Emory [166]. In all datasets, the Sepsis-3 definition
was used. The Emory dataset was made available in a preprocessed stage as part of the 2019
PhysioNet Computing in Cardiology Challenge [166]. Since the public dataset was not ac-
companied with the necessary information to derive the label, and since this challenge data
was already equipped with a sepsis label based on Sepsis-3, for this dataset we used the exist-
ing Sepsis-3 annotations as provided in the challenge data. Furthermore, since the published
PhysioNet challenge data is composed of two sets corresponding to data from Emory and
MIMIC-III, to prevent redundancy in our cohort, here we only use the Emory set. The data
was for the most part collected during the last decade: AUMC from 2003 to 2016, eICU be-
tween 2014 and 2015, MIMIC-III from 2001 to 2012, HiRID from 2008 to 2016, and Emory
“during the last decade” (while the Emory data was made available in early 2019) [166]. No-
tably, the data underlying this multi-centre cohort was collected before the COVID-19 pan-
demic started.
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Figure 4.1: An illustration of the preprocessing pipeline. Panel a): We collected, cleaned, and har-
monised ICU data from five EHR databases. Panel b): Next, on the left we illustrate how
sepsis labels were derived following Sepsis-3. On the right side, we visualise the prepro-
cessing steps that were applied to extract features that are used for prediction. Figure
recreated from [138].
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In this study, we continuously monitored laboratory measurements and vital parameters
while considering demographic patient information. As for input variables, by design we
restricted ourselves to variables that were i) plausibly related to sepsis1 ii) consistently ob-
served, and iii) not a direct indicator of sepsis treatment, in order to prevent spurious situa-
tions where a model would merely wait for the attending clinician to detect and treat sepsis.
Such a dependence could become problematic upon deployment, as in the worst case both
the clinician and the early warning system would await each other’s actions. To account for
this last criterion, we excluded therapeutic variables such as administrations of intravenous
fluids, antibiotics, and vasopressors from the collection of input variables used for predicting
sepsis. To facilitate interoperability between the available datasets, we undertook harmon-
isation steps along two axes: First, we harmonised the temporal resolution by resampling
all datasets to hourly bins by reporting the median of each bin. Second, based on the above
mentioned criteria, and by trading off variable overlap between the datasets with still having
a sizeable number of variables, we devised a consensus set of 59 time series variables and 4

static covariates (see Table 4.1).

Exclusion criteria We applied to following filtering steps to create our study cohort:

i) pediatric patients under the age of 14 were excluded, and

ii) hospitals that showed a very low prevalence in patients fulfilling Sepsis-3 (< 15%)
were removed as they would have lead to false-negative control patients due to poor
data availability.

Furthermore, fulfilling at least one of the following criteria led to exclusion. Specifically, we
excluded an ICU stay if

iii) it showed a length of stay of less than 6 hours,

iv) it contained fewer than 4 distinct hourly bins with measured observations,

v) there was a missing data window longer than 12 hours, and

vi) sepsis onset occurred before 4 hours into ICU stay, or later than 168 hours after ICU
admission.

We further illustrate the individual steps and the corresponding number of excluded pa-
tient stays in Figure 4.2.

1Even indirect relations could be helpful. For instance, certain demographics such as weight or height may not
be directly related to sepsis but could still potentially carry information about the constitution of the patient
that could affect how vital signs are to be interpreted and could have implications about the intubatability of
the patient.
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n = 339,307
(M: 61,532; E: 200,764;
H: 33,905; A: 23,106;

P: 20,000)

age < 14 years 
n = 8201

(M: 8,100; E: 0; H: 0; A: 101;
P: 0)

n = 208,067
(M: 53,432; E: 77,624;
H: 33,905; A: 23,106;

P: 20,000)

sepsis-3 prev < 0.15
(144  eICU centers) 

n = 123,039

onset not during ICU stay
n = 12,217

(M: 4,861; E: 5,636; H: 1;
A: 1,706; P: 13)

onset not in [4h, 168h]
n = 27,316

(M: 10,359; E: 7,788; H: 5,403; 
A: 3,688; P: 78)

stay length < 6h
n = 8,289

(M: 486; E: 6,687; H: 707;
A: 436; P: 0)

< 4 in ICU measurements
n = 2,102

(M: 472; E: 392; H: 9;
A: 1,163; P: 66)

missing data window > 12h
n = 1,852

(M: 681; E: 356; H: 507;
A: 296; P: 12)

n = 156,309
(M: 36,591; E: 56,765;
H: 27,278; A: 15,844;

P: 19,831)

Figure 4.2: Study flowchart to illustrate the number of excluded patient stays due to the applied filter-
ing steps. Figure recreated and adapted from [138].
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Figure 4.3: Illustration of harmonised data distributions exemplified for four variables.

Data harmonisation We manually inspected the included variables and plotted distri-
butions of observed values for all datasets. This was particularly necessary in order to har-
monise units across the different data sources. In Figure 4.3, we display the distribution of
observed values for four different variables, and find that they neatly align across the datasets
after unit harmonisation.

In summary, the conducted preprocessing steps were designed to maximise interoperabil-
ity and harmonisation across the datasets. For instance, extracting hourly bins of measure-
ments effectively leads to a lower data resolution in the HiRID dataset, where many variables
are recorded every 2minutes. However, in the original paper of this dataset, we found that the
transfer of models to datasets with hourly resolution is facilitated when adopting the hourly
frame already when training on HiRID [95]. Thus, there is an inherent trade-off between
leveraging the wealth of a dataset versus preparing it in an interoperable and generalisable
manner. Furthermore, all preprocessing steps of the input data may be applied as real-time
transformations, which is relevant when considering deployment scenarios.
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�.�.� Outcome and prediction problem

Outcome definition In this study, the onset of sepsis as defined by the Sepsis-3 defini-
tion was considered the primary outcome of interest [185]. Sepsis-3 requires the fulfillment
of two clinical criteria: i) a suspected infection (SI), defined as the co-occurrence of system-
ically administered antibiotics2 and sampling of body fluid cultures, and ii) signs of organ
dysfunction as determined by an increase of at least two points of the sequential organ fail-
ure assessment (SOFA) score.

We followed Seymour et al. [181] to implement the SI definition: if antibiotics were ad-
ministered first, the body fluid sample needed to be obtained within the next 24 hours. In
the other case, if culture sampling preceded the antibiotics, the antibiotics were required to
be ordered within the following 72 hours. The earlier of the two events was used to define
the SI time. Next, we defined the SI window from 48 hours before until 24 hours after SI
time [181]. During this window, an increase of SOFA by at least two points defined the time
of sepsis onset. The SOFA score was extracted as originally proposed by Vincent et al. [204].
To prevent false-low values of the Glasgow Coma Scale (GCS), we set the GCS score in se-
dated patients to 15, i.e., its maximal value. Additionally, the 24-hour urine output variable
(part of the kidney function component of SOFA) was only evaluated starting at 12 hours
after ICU admission, where up until hour 24 the values were properly scaled to approximate
a 24-hour estimate.

In two datasets, the original SI definition was hard to implement: for eICU, only a small
number of body fluid records were reported; for HiRID, no body fluid samples were reported
at all. Therefore, on those two datasets, we employed an alternative definition to identify sus-
pected infections. Specifically, for the alternative SI definition we required multiple antibi-
otics to be administered simultaneously. To test the validity of the alternative SI definition,
we compared it against the original SI definition on the AUMC and MIMIC-III datasets,
where both definitions can be derived. In Figure 4.4, we show Venn diagrams illustrating the
overlap between the two definitions in terms of number of ICU stays fulfilling each defini-
tion, where the original SI definition is indicated as the combination of fluid sampling with
antibiotics (ABX) and the definition based onmultiple antibiotics is indicated as multi-ABX.

In Panel 4.4a, when comparing the two variations of SI on MIMIC-III, we observed a
Jaccard similarity3 of 0.69. Panel 4.4b shows a smaller overlap for AUMC with a Jaccard
similarity of 0.42, however most patients of the original SI definition are included in the
alternative definition. Due to a frequent use of prophylactic antibiotics in surgical patients,

2Here, “systemic” refers to oral or parenteral applications, as opposed to topical applications.
3The Jaccard similarity of two finite sample setsA,B is defined as the ratio of the cardinalities of the intersection

and the union between A and B, i.e., J(A,B) = A∩B
A∪B

.
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a) b) c)

Figure 4.4: Venn diagrams to compare the two alternative definitions for a suspected infection. Panel
a) shows a large overlap of the two definitions on the MIMIC-III dataset. In Panel b),
we found a considerably smaller overlap on the AUMC dataset. However, the AUMC
dataset was the only used dataset which predominantly consists of surgical patients, in
which a prevalent use of prophylactic antibiotics could explain the small overlap with the
original SI cohort. In Panel c), confirming this hypothesis, we find a large overlap of the
two definitions for the non-surgical cohort in AUMC. Figure recreated from [138].

and since AUMC, among the used datasets, is the only one representing a foremost surgical
cohort, we hypothesised that this could explain the lower overlap in AUMC. Indeed, when
performing the comparison only on the non-surgical cohort of AUMC (see Panel 4.4c), we
again observe a strong overlap with a Jaccard similarity of 0.78.

Prediction problem Given 59 sequentially observed laboratory and vital parameters to-
gether with 4 demographic covariates, at each hour of an ICU stay we aim to predict, whether
a sepsis onset occurs during the next 6 hours. In Figure 4.5, we illustrate how we imple-
mented this online prediction scenario during training. For controls, each hour is assigned
the label 0. In sepsis cases, we start with the hourly label 0 and six hours before sepsis onset
it switches to 1. After onset, we allow for 24 hours of further data to maximise the chance
of encountering signals indicative of sepsis during training. As outlined in Section 4.2.1, we
consider sepsis onsets that occur at most one week, or 168 hours, into the ICU stay. Ac-
counting for the 24-hour window included after sepsis onset, to achieve comparable time
series lengths, we only consider the first 168 + 24 = 192 hours of ICU stay for control pa-
tients. Our sepsis label, which is based on Sepsis-3, partially relies on the SOFA score which
incorporates treatment information (such as vasopressors), which is relevant to assess organ
dysfunction, and therefore sepsis. However, as outlined in Section 4.2.1, by design we are in-
terested in models which do not rely on therapeutic variables. Therefore, even though SOFA
would be predictive of a future Sepsis-3 event, we did not directly include SOFA as an input
feature that can be used for prediction. We give more details about all the variables used for
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Case ICU stay

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1Labels

Sepsis onsetSepsis onset

6 h 24 h

Control ICU stay

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Labels

Figure 4.5: Overview of the prediction problem illustrated for a single sepsis case and control. The
vertical red line indicates the sepsis onset. We assign time steps 6 hours before up until
24 hours after onset the label 1, incentivising a positive prediction shortly before sepsis
onset. Positively labeled time steps after onset are included during training as they could
potentially contain signals indicative of sepsis. As we focused on sepsis onsets during
the first week in ICU and due to the 24-hour follow up after onset in cases, to achieve a
comparable maximal length of ICU stay, data after 168 + 24 hours, i.e. eight days into
ICU stay is discarded (grey bar). Figure recreated and adapted from [138].

prediction in Table 4.1 and further detail features that were extracted from those variables in
Section 4.2.4.

Table 4.1: Variables provided to the models for predicting sepsis. For each dataset, we indicate the
available variables. MIMIC stands for MIMIC-III.

Name Description MIMIC eICU HiRID AUMC Emory

age patient age 3 3 3 3 3

alb albumin 3 3 3 3 7

alp alkaline phosphatase 3 3 3 3 3

alt alanine aminotransferase 3 3 3 3 7

ast aspartate aminotransferase 3 3 3 3 3

basos basophils 3 3 7 3 7

be base excess 3 3 3 3 3

bicar bicarbonate 3 3 3 3 3

bili total bilirubin 3 3 3 3 3

bili_dir bilirubin direct 3 3 3 3 3

bnd band form neutrophils 3 3 3 3 7

bun blood urea nitrogen 3 3 3 3 3

ca calcium 3 3 3 3 3
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Table 4.1: Variables provided to the models for predicting sepsis. For each dataset, we indicate the
available variables. MIMIC stands for MIMIC-III. (continued)

Name Description MIMIC eICU HiRID AUMC Emory

cai calcium ionized 3 3 3 3 7

ck creatine kinase 3 3 3 3 7

ckmb creatine kinase MB 3 3 3 3 7

cl chloride 3 3 3 3 3

crea creatinine 3 3 3 3 3

crp C-reactive protein 3 3 3 3 7

dbp diastolic blood pressure 3 3 3 3 3

eos eosinophils 3 3 7 3 7

esr erythrocyte sedimentation rate 3 7 3 3 7

etco2 endtidal CO2 3 7 3 3 3

fgn fibrinogen 3 3 3 3 3

fio2 fraction of inspired oxygen 3 3 3 3 3

glu glucose 3 3 3 3 3

hbco carboxyhemoglobin 7 3 3 3 7

hct hematocrit 3 3 7 3 3

height patient height 3 3 3 3 7

hgb hemoglobin 3 3 3 3 3

hr heart rate 3 3 3 3 3

inr_pt
prothrombin time/international
normalized ratio

3 3 3 3 7

k potassium 3 3 3 3 3

lact lactate 3 3 3 3 3

lymph lymphocytes 3 3 3 3 7

map mean arterial pressure 3 3 3 3 3

mch mean cell hemoglobin 3 3 3 3 7

mchc
mean corpuscular hemoglobin
concentration

3 3 3 3 7

mcv mean corpuscular volume 3 3 3 3 7

methb methemoglobin 3 3 3 3 7

mg magnesium 3 3 3 3 3
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Table 4.1: Variables provided to the models for predicting sepsis. For each dataset, we indicate the
available variables. MIMIC stands for MIMIC-III. (continued)

Name Description MIMIC eICU HiRID AUMC Emory

na sodium 3 3 3 3 7

neut neutrophils 3 3 3 3 7

o2sat oxygen saturation 3 3 3 3 3

pco2 CO2 partial pressure 3 3 3 3 3

ph pH of blood 3 3 3 3 3

phos phosphate 3 3 3 3 3

plt platelet count 3 3 3 3 3

po2 O2 partial pressure 3 3 3 3 7

pt prothrombine time 3 3 7 3 7

ptt partial thromboplastin time 3 3 3 3 3

rbc red blood cell count 3 3 7 3 7

rdw erythrocyte distribution width 3 3 7 3 7

resp respiratory rate 3 3 3 3 3

sbp systolic blood pressure 3 3 3 3 3

sex patient sex 3 3 3 3 3

tco2 totcal CO2 3 3 7 7 7

temp temperature 3 3 3 3 3

tnt troponin t 3 3 3 3 7

tri troponin I 3 3 7 7 3

urine urine output 3 3 3 3 7

wbc white blood cell count 3 3 3 3 3

weight patient weight 3 3 3 3 7

�.�.� Prediction methods

Next, we give an overview of the prediction methods included in this study. Specifically,
for machine learning methods we considered i) a deep self-attention model (attn) [201],
ii) a recurrent neural network with gated recurrent units (gru), iii) a light gradient boost-
ing machine (lgbm) [104], and iv) a LASSO-regularised [197] logistic regression (lr) model.
These ML methods can be grouped into deep learning (DL) methods (attn and gru) and
classical ML methods rooted in statistical learning (lgbm and lr). Furthermore, we included
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several clinical scores as baselines to test their usefulness for predicting sepsis. This in-
volves v) sequential organ failure assessment (SOFA) [204], vi) quick SOFA (qSOFA) [185],
vii) systemic inflammation response syndrome (SIRS) [17], viii) National Early Warning
Score (NEWS) [100], and ix) Modified Early Warning Score (MEWS) [190].

All ML models were trained to minimise the binary cross-entropy (BCE) loss between
the predicted score and the binary prediction target (which was defined in Section 4.2.2)
computed over all hourly time steps. As the non-DL models were cheap to fit (in terms of
required compute), we ran a randomised search over 50 iterations (each corresponding to a
hyperparameter configuration) of a 5-fold cross-validation (CV). The CV was stratified for
sepsis cases, i.e., preserving the class imbalance in all folds, while we additionally ensured
that subsequent observations from the same ICU stay were not subdivided across folds. For
the DL methods, hyperparameters such as the learning rate, width, depth, batch size, weight
decay, dropout, as well as model checkpoints were selected by minimising the BCE loss on
a hold-out set which was created on-the-fly by withholding 10% of the samples from the
training set. We refer to this loss as our “online validation loss”.

All DL models were trained for at most 100 epochs, where we stopped training early if the
online validation loss did not improve for 20 epochs. Instead of an out-of-the-box 50 itera-
tions of randomised search, since theDLmodels were a bitmore delicate to properly tune, we
divided this contingent of 50 hyperparameter configurations to be tested into two parts: In a
first coarse search, we evaluated 25 random configurations of a pre-defined hyperparameter
grid (see Table 4.2). Then, we configured tighter ranges surrounding the best performing
configuration of the coarse search to run a fine hyperparameter search, which evaluated an-
other 25 hyperparameter configurations. For the second step, we kept the architecture fixed
(depth, width and batch size) in order to fine-tune the regularisation, in terms of weight
decay and dropout, as well as the learning rate. Even though regularisation was the main
focus of the fine tuning step, we also applied dropout and weight decay in the coarse search
to prevent a scenario where heavily parametrised models (that after fine-tuning could per-
form very well) are discarded in the coarse search step due to overfitting upon being trained
without any regularisation.

For all ML models, we employed class weights inversely proportional to the prevalence
of the positive class (on the time step-level). This enabled a loss function, which overall as-
signs the same weighting to the few positively labelled observations as it does to the many
negatively labelled ones. All hyperparameter searches were performed on the training set
of the first repetition of splitting the derivation set (see Section 4.2.5) into training and val-
idation data. After tuning the hyperparameters, the best hyperparameter configuration was
reused in all five training sets (corresponding to the five repetitions of splitting) in order
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Hyperparameter Coarse search values

Depth gru: 1, 2, 3, attn: 2
Width 32, 64, 128, 256
Learning rate log uniformly in range e−9 – e−7

Dropout 0.3, 0.4, 0.5, 0.6, 0.7
Weight decay 0.0001, 0.001, 0.01, 0.1

Table 4.2: Hyperparameter grid and ranges for the coarse hyperparameter search of the recurrent
neural network with gated recurrent units (gru) and the self-attention model (attn).

to fit five repetition models to assess performance robustness under varying training data.
Each repetition model was then applied to the test split for evaluating and reporting the final
performance metrics. This procedure was applied on each dataset independently.

Next, we providemore specifications about the fourMLmodel architectures, starting with
the self-attention model.

Self-attentionmodel For the attentionmodel, we apply positional encoding (PE) to the
relative observation times that are measured as the number of hours since ICU admission.
Each time step t is mapped to a 10-dimensional encoding such that

PE(t, 2i) = sin(t · si), and (4.1)

PE(t, 2i+ 1) = cos(t · si), (4.2)

where i ∈ {0, . . . , 4} enumerates the five different time scales that are used. The actual time
scalings si were computed as

si = a · exp

(
− log

(
b
a

)
· i

S − 1

)
, (4.3)

where a, b represent the minimal and maximal time scales and S denotes the number of
employed time scales. Here, we used a = 1, b = 500, and S = 5. The ten dimensions of
positional embedding are then concatenated with the 59 dimensions of time series data. An
initial linear layer maps the above sequence to a sequence of model dimension d. Next, we
sequentially apply two Transformer layers, where each layer contains the following sequence
of transformations:

1. a multi-head attention layer using causal masking to prevent future data leakage,
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2. a residual connection adding the above output to the input of the attention layer,

3. a multilayer perceptron (MLP) using one hidden dimension of size 4d and rectified
linear unit (ReLU) activations, and

4. another residual mapping to combine the outputs of step 2 and 3.

Finally, after the causally-masked Transformer layers (or sequential Transformer layers), a
final linear layer maps the d-dimensional representation to a one-dimensional output, which
we treat as the logits of the binary classification problem.

gru model For our recurrent neural network, we provide the 59 time series variables as
input to the recurrent architecture. Furthermore, we used the four static variables to initialise
the model state (via a linear projection to the model dimension). To allow for a comparable
number of parameters to the attn model, besides the width (or model dimension,) we also
varied the number of layers to allow for a depth up to three layers (see Table 4.2).

lgbm model For the LightGBM model, we used the following grid of hyperparameters
of which 50 random configurations were then evaluated during the hyperparameter
search. For the number of estimators, we allowed the values 100, 300, 500, 1,000, 2,000.
Further hyperparameters include the boosting type (“gbdt” or “dart”), the learning
rate (0.001, 0.01, 0.1, 0.5), the number of leaves used (30, 50, 100), and finally the L1
regularisation strength (0, 0.1, 0.5, 1, 3, 5).

lr model For training the logistic regression model, we considered two alternative opti-
misers: “saga” and “liblinear”. For the LASSO penalty (L1 regularisation), we log-uniformly
partitioned the range (10−3, 102) into 50 values to choose from in the hyperparameter
search.

�.�.� Feature engineering

Instead of merely providing the current observations to the models, we extracted a diverse
set of features that accounts for data missingness and incorporates knowledge about past
measurements but also infuses the models with clinical domain knowledge. For this, we ac-
company the 59 observed time series variables with 59 binary missingness indicators and
measurement counts each. Also, we compute 9 clinically derived features that are composed
of ratios of variables (such as the shock index) and partial scores (e.g. SOFA), but only includ-
ing vital and laboratory measurements as part of the set of input variables. Adding the four
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static variables, the DL models were therefore provided 190 features. In preliminary tests,
we observed that incorporating the static variables to the attn model led to a minor decrease
in performance (not so with other models such as gru). In a first approach, static variables
were either linearly projected to themodel dimension to become an additional token preced-
ing the time series tokens in the attention layer. In a second approach, we concatenated the
static variables to the time series channels and repeated them accordingly. In both cases, we
observed a slight detrimental effect, therefore we disregarded the statics in the attn model.
The non-DL models (lr and lgbm) are not directly intended for streams of input data, but
rather typically expect fixed-sized vectors. Thus, to make the temporal dynamics governing
the patient data available to those two methods, we extracted an additional battery of tem-
poral features from the 59 sequentially observed input variables as well as from the 9 derived
features. This includes look-back statistics (median, mean, variance, minimum, and max-
imum) that were computed over time windows at multiple scales (16, 8, and 4 hours). As
these methods were merely provided the feature vectors of individual time steps, to further
increase the availability of past information at the current prediction step, in addition to the
temporal features, we added a carry-forward imputed channel for each of the 59 time series
channels. Thus, adding together all of the above, the classical ML models were provided a
rich set of 1,269 features.

�.�.� Experimental setup

For each included dataset, we define a derivation set (90% of the data) and a hold-out test
set (the remaining 10%). In five independent runs, the derivation set of each dataset was
split into a training set (80% of the full dataset) that makes up the actual training data, and
a validation set (10% of the full dataset) that was used for tuning the models. To preserve
the prevalence of sepsis cases in the splits, we applied stratified splitting. All models were
optimised on the training and validation split (of the five partitions). After having fixed the
model hyperparameters, we fittedmodel repetitions on all five training splits in order to char-
acterise performance variability under varying training data. Performancemetrics were then
evaluated by applying these model repetitions to the hold-out test split. To achieve a maxi-
mal comparability between internal validations, and external validations (see Section 4.2.6),
we quantify the performance metrics on the identical hold-out test splits in both settings.
In order to make the performance metrics comparable across datasets, we harmonised the
sepsis prevalence to the across-dataset mean of 17%. This was implemented by means of
subsampling: for increasing the prevalence, we subsampled the controls. Conversely, to re-
duce the prevalence, we subsampled from the cases. To further ensure that we do not discard
large parts of the case cohort, which is of particular interest, we repeated the random sub-
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sampling process ten times and confirmed that the vast majority of sepsis cases (over 98.3%)
were covered in those sets that were then used in the evaluation.

�.�.� Evaluation

Patient-focused evaluation strategy In our analysis, we consider an online predic-
tion scenario, where patients are continuously monitored and predictions are being made in
hourly intervals. However, even though the models employed in this analysis consider pa-
tients on a time point-level, in order to arrive at a clinically meaningful evaluation strategy,
we consider performance metrics on the patient-level. This includes:

i) area under the receiver-operating-characteristic curve (AUROC), and

ii) positive predictive value (PPV) and alarm earliness at a prediction threshold fixed at
80% sensitivity.

First, we use the unnormalised prediction scores (logits) and, for sake of robustness, con-
sider the innermost 99 percentiles4. Then, we partition the remaining range of scores into
100 evenly-spaced thresholds. For each threshold, we then swept through the ICU stay and as
soon as the models prediction score surpasses the current threshold, we trigger an alarm for
sepsis and register the alarm time. After having triggered a single alarm for a given threshold,
the alarm system is stopped, and we evaluate the next threshold. Motivated by its clinical use
case, this evaluation strategy is not exhaustive in the sense that no second alarms are consid-
ered after sepsis has been suspected by the alarm system. This is in line with previous work
considering clinically useful evaluation strategies of prediction models [208]. Next, the set
of alarms for a given threshold were used to fill a corresponding confusion matrix, where
having raised an alarm for a sepsis case is considered a true positive, raising an alarm in a
control patient would be counted as a false positive, and not raising an alarm in a control
would count as true negative, and so on. Receiver operating characteristic (ROC) curves
were then computed using the entries of the confusion matrices, over all thresholds.

For the second evaluation metric, again making use of the confusion matrices, we first
determine the threshold (and the corresponding confusion matrix) that leads to a sensitivity
of 80%. For the identified threshold, we then reported PPV (or precision) as well as alarm
earliness which was defined as the median number of hours that the alarm was raised ahead
of sepsis onset. We deliberately chose themedian as themore robust summary statistic, since
a few very early alarms could otherwise lead to overly optimistic results and interpretations,

4This step is done merely for defining thresholds in the evaluation, so we do not actually discard predictions
that were made.
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e.g. when reporting mean earliness. If no threshold exactly coincided with 80% sensitiv-
ity, we instead used the two closest thresholds (above and below the target sensitivity) and
linearly interpolated the sought-after performance measures. Stopping the alarm evaluation
after the first raised alarm leads to a conservative evaluation in that no repeated alarms are
admissible. While repeated alarms would improve sensitivity for sepsis, it would also come
at the heavy cost of false positives that could lead to alarm fatigue. While this scenariomakes
the prediction task more challenging, it also upper bounds the number of false alarms in a
control stay to at most 1.

We reportedmean and standard deviation (SD) for all performancemeasures by first com-
puting themean over the ten subsamplings and then reporting themean and SD over the five
repetition splits. Additionally, we computed 95% confidence intervals (CI) by considering
all 50 iterations (5 repetition splits and 10 subsamplings) as bootstrap samples in order to
calculate percentile intervals.

Internal and external validation As a first step, for a given method we trained a sep-
aratemodel on the derivation set of each dataset. This was repeated for all investigatedmeth-
ods. Next, as an internal validation, we evaluated the performance metrics on the hold-out
test set of the same dataset that the model was trained on, respectively. As for an external
validation, we considered a given dataset and method and pool all models that were trained
on the remaining datasets by choosing the maximal predicted score at each hourly predic-
tion step. We refer to this scenario as pooled predictions. Additionally, we also report the
performance that is observed when applying a model that was trained on one dataset and
then applied to another one, and refer to this scenario as pair-wise predictions, where “pair”
refers to the two considered datasets.

Calibration Model calibration was assessed by means of reliability diagrams that were
computed on the hold-out test splits. In order to calibrate the models, we used Platt scaling
as tuned on the respective validation split. To conform with the analysis regarding model
discrimination, we also consider predictions on the patient-level for model calibration. The
reliability diagrams are computed using the patient-level sepsis labels to derive the fraction
of positives (or true risk) in a given bin of ICU stays. Furthermore, we considered the average
predicted score of a stay as the predicted risk, in order to estimate the mean predicted risk
over a bin of ICU stays.

Variable importance Finally, we determined the relevance and contributions of individ-
ual variables to the overall predictions via the calculation of Shapley values [129] using the
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integrated gradients method [191]. For this, we considered the raw measurements of lab-
oratory and vital measurements (as opposed to other extracted features such as counts or
missingness indicators) in order to potentially retrieve pathophysiological signals that are
indicative of sepsis. To reduce the memory footprint of the integrated gradients method, we
randomly sampled 500 ICU stays from the hold-out test set of each dataset and repeated this
process five times. For each stay, we considered the time step with the maximal predicted
score as the potentially most interesting anchor point, i.e., the point of time where the model
is most suspicious about an imminent sepsis. Then, for each stay we assessed how the model
is affected by changes in the value of individual observations and channels up to 16 hours
preceding these anchor points, resulting in a Shapley value for each variable and for up to
16 hourly time steps ahead of the maximal predicted score. We designed this procedure in
this way in order to focus on interesting time windows amidst potentially long ICU stays that
could swamp this analysis with noise. For the same reason, we considered only recent time
steps ahead of the maximal predicted score to ensure that we attend to time steps that plau-
sibly contain interesting signals, as opposed to unrelated time points that could stem from
up to one week in the past.

�.� Results

Wefirst present a description of the investigatedmulti-centre ICU cohort in Section 4.3.1. In
the remaining sections, we report the empirical results of all included methods, with a par-
ticular focus on the best performing (and also most flexible) model: the deep self-attention
model (attn).

�.�.� Dataset characteristics

After preprocessing and filtering, our harmonised cohort consisted of 156,309 unique ICU
stays that correspond to over 783 years worth of ICU data. Out of these ICU stays, 26,734
(17.1%) developed sepsis (as defined by Sepsis-3). In Table 4.3, we characterise our ICU
cohort in terms of summary statistics. Four of the used datasets, MIMIC-III, eICU, HiRID,
and AUMC, were processed in this study and showed a large overlap in the availability of a
core set of 63 variables. Therefore, we subsequently refer to them as the core datasets. The
remaining dataset, originating from the Emory hospital, showed a smaller overlap to the
core set of variables, reporting only 35 out of the core set of 63 variables. Due to this, and
also since the Emory dataset was the only dataset that was provided with precomputed sepsis
labels (that could not be validated due to the non-availability of the necessary data), we report
analyses from this dataset separately (see Section A.1.1).
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Variable MIMIC-III eICU HiRID AUMC Emory
Cohort size (n) 36,591 56,765 27,278 15,844 19,831
Sepsis-3 prevalence (n (%)) 9,541 (26) 4,708 (8) 10,170 (37) 1,275 (8) 1,050 (5)
Age, years (Median (IQR)) 65 (52-77) 65 (53-76) 65 (55-75) 65 (55-75) 62 (50-72)
Ethnicity (%)

African American 9 10 - - -
Asian 2 1 - - -
Caucasian 71 82 - - -
Hispanic 3 2 - - -
Other 15 5 - - -

In-hospital mortality (%) 8 7 5 5 -
ICU LOS, days (Median (IQR)) 1.99 (1.15-3.63) 1.71 (0.95-3.01) 0.97 (0.8-1.95) 0.97 (0.81-1.82) -
Hospital LOS, days (Median (IQR)) 6.43 (3.82-11.14) 5.53 (2.99-9.89) - - -
Gender, female (%) 44 45 37 35 46
Gender, male (%) 56 55 63 65 54
Ventilated patients (n (%)) 16,499 (45) 24,534 (43) 14,021 (51) 10,469 (66) -
Patients on vasopressors (n (%)) 9,669 (26) 6,769 (12) 7,721 (28) 7,980 (50) -
Patients on antibiotics (n (%)) 21,598 (59) 21,847 (38) 17,152 (63) 11,165 (70) -
Patients with suspected infection (n (%)) 16,349 (45) 9,739 (17) 15,160 (56) 1,639 (10) -
Initial SOFA (Median (IQR)) 3 (1-4) 3 (1-5) 5 (3-8) 6 (3-7) -
SOFA components (Median (IQR))

Respiratory 1 (0-2) 1 (0-2) 3 (2-4) 2 (1-3) -
Coagulation 0 (0-1) 0 (0-1) 0 (0-1) 0 (0-1) -
Hepatic 0 (0-1) 0 (0-0) 0 (0-1) 0 (0-0) -
Cardiovascular 1 (1-1) 1 (0-1) 1 (1-4) 2 (1-4) -
CNS 0 (0-1) 0 (0-2) 0 (0-1) 0 (0-1) -
Renal 0 (0-1) 0 (0-1) 0 (0-0) 0 (0-1) -

Admission type (%)
Surgical 38 19 - 80 -
Medical 61 79 - 15 -
Other 1 3 - 5 -

Table 4.3: Dataset description of our ICU cohort. The different datasets vary in the amount of available metadata to characterise the cohorts. While
a majority of the data entries are available for the four core datasets that were preprocessed in this study (MIMIC-III, eICU, HiRID, and
AUMC), many entries are missing in the Emory dataset, the one dataset that was reused in a preprocessed state [166].
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�.�.� Internal validation

For the internal validation, we assessed the performance of each model on an out-of-sample
test set that originates from the same database as the data used for training said model. We
display the performance metrics of the internal validation analysis in the left panels of Fig-
ures 4.6 to 4.9, respectively. For the best performing method, the self-attention model (attn)
model, we observe an average AUROC of 0.847 (95% CI, 0.840 to 0.853) on the dataset-
internal hold-out test set, where the average is computed over the four core datasets that
share the harmonised set of 63 core variables (see Table 4.1). Furthermore, at a sensitivity
of 80%, this model recognised septic patients with a PPV of 39.3% (95% CI, 37.6 to 41.1)
and a median alarm earliness of 3.7 hours (95% CI, 3.0 to 4.4) before onset. In other words,
this corresponds to raising 1.5 false alarms per true alarm, on average. Notably, we deem the
SOFA score as a strong baseline, since it plays a central role in the Sepsis-3 definition, while
it also incorporates further information that was not made available to the ML models such
as vasopressor administrations (and dosages) or neurological examinations as summarised
in the GCS score. Nevertheless, on all datasets, we observe substantial improvements in
terms of AUROC when comparing the deep self-attention model with this baseline. Finally,
in Figure A.7 we display an auxiliary analysis where we pooled the actual data (as opposed
to only pooling the prediction scores) such that for a given testing dataset the data of the
remaining datasets were pooled for training. Interestingly, we did not observe improved per-
formance when pooling the data as compared to our federated learning setting using pooled
predictions, where instead of sensitive patient data only trained prediction models need to
be shared across the centers.

�.�.� External validation

In our external validation, we apply previously trained models to independent databases for
testing. Results regarding pair-wise predictions, i.e., training on one dataset and predicting
on another one, are shown in Figure 4.10 for the deep self-attention model (attn) and in Fig-
ures A.8 toA.17 of the SupplementaryMaterials inmore detail for allmethods. Furthermore,
the external validation performance of pooled predictions is shown in the last row of the heat
map in Figure 4.10, whereas pooled predictions for all methods are shown in the right pan-
els of Figures 4.6 to 4.9, respectively. Using the proposed pooling strategy in our external
validation, our deep self-attention model on average achieves an AUROC of 0.76 (95% CI,
0.747 to 0.770). Fixing the prediction threshold at a sensitivity of 80%, we observe a PPV of
29.3% (95% CI, 28.0 to 30.9) at a median earliness (lead time to onset) of 1.75 hours (95%
CI, 0.88 to 2.81). Figure 4.10 suggests that applying the pooling strategy to a given dataset
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Figure 4.6: Performance plots for the AUMC dataset and all considered methods. The left panels dis-
play the internal validation performance, evaluated on the hold-out test set of the database
that was used for training. The right panels show the external validation performance us-
ing pooled predictions (see Section 4.2.6). In row a), ROC curves are shown, whereas in
row b) positive predictive value (PPV) and alarm earliness are shown when fixing sensi-
tivity at 80%. We report the following ML approaches: a deep self-attention model (attn),
a recurrent neural network using gated recurrent units (gru), a light gradient boosting
machine (lgbm), and a logistic regression (lr) model. Furthermore, we display the fol-
lowing clinical scores: Modified Early Warning Score (MEWS), National Early Warning
Score (NEWS), sequential organ failure assessment (SOFA), quick SOFA (qSOFA), and
systemic inflammation response syndrome (SIRS). For theMLmodels, we show themean
± standard deviation (SD) over the five repetitions of splitting the derivation set, whereas
the clinical scores were not affected by varying training data (hence no variation). In
row a) means are shown as lines, SDs as faded bands; in row b) results for the individ-
ual split repetitions are shown as tilted and faded crosses, whereas SDs are shown as solid
horizontal and vertical lines surrounding the means (round solid dots).

74



4.3 Results

a)

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

0.80

1.00

1 - Specificity

Se
ns
iti
vi
ty

attn, AUC = 0.803±0.004
gru, AUC = 0.793±0.006

lgbm, AUC = 0.772±0.001

lr, AUC = 0.775±0.002
mews, AUC = 0.646±0.000
news, AUC = 0.648±0.000

sofa, AUC = 0.707±0.000

qsofa, AUC = 0.616±0.000

sirs, AUC = 0.652±0.000

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

0.80

1.00

1 - Specificity

attn, AUC = 0.760±0.007
gru, AUC = 0.752±0.009

lgbm, AUC = 0.719±0.006

lr, AUC = 0.722±0.002
mews, AUC = 0.646±0.000
news, AUC = 0.648±0.000

sofa, AUC = 0.707±0.000

qsofa, AUC = 0.616±0.000

sirs, AUC = 0.652±0.000

b)

02468

0

20

40

60

Median Earliness (hours before onset)

Po
sit
iv
e
Pr
ed
ic
tiv

e
Va

lu
e
at
80
%
Se
ns
iti
vi
ty attn gru lgbm lr mews

news sofa qsofa sirs

02468

0

20

40

60

Median Earliness (hours before onset)

attn gru lgbm lr mews

news sofa qsofa sirs

Figure 4.7: Performance plots for the eICU dataset and all considered methods. The left panels dis-
play the internal validation performance, evaluated on the hold-out test set of the database
that was used for training. The right panels show the external validation performance us-
ing pooled predictions (see Section 4.2.6). In row a), ROC curves are shown, whereas in
row b) positive predictive value (PPV) and alarm earliness are shown when fixing sensi-
tivity at 80%. We report the following ML approaches: a deep self-attention model (attn),
a recurrent neural network using gated recurrent units (gru), a light gradient boosting
machine (lgbm), and a logistic regression (lr) model. Furthermore, we display the fol-
lowing clinical scores: Modified Early Warning Score (MEWS), National Early Warning
Score (NEWS), sequential organ failure assessment (SOFA), quick SOFA (qSOFA), and
systemic inflammation response syndrome (SIRS). For theMLmodels, we show themean
± standard deviation (SD) over the five repetitions of splitting the derivation set, whereas
the clinical scores were not affected by varying training data (hence no variation). In
row a) means are shown as lines, SDs as faded bands; in row b) results for the individ-
ual split repetitions are shown as tilted and faded crosses, whereas SDs are shown as solid
horizontal and vertical lines surrounding the means (round solid dots).
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Figure 4.8: Performance plots for the HiRID dataset and all considered methods. The left panels dis-
play the internal validation performance, evaluated on the hold-out test set of the database
that was used for training. The right panels show the external validation performance us-
ing pooled predictions (see Section 4.2.6). In row a), ROC curves are shown, whereas in
row b) positive predictive value (PPV) and alarm earliness are shown when fixing sensi-
tivity at 80%. We report the following ML approaches: a deep self-attention model (attn),
a recurrent neural network using gated recurrent units (gru), a light gradient boosting
machine (lgbm), and a logistic regression (lr) model. Furthermore, we display the fol-
lowing clinical scores: Modified Early Warning Score (MEWS), National Early Warning
Score (NEWS), sequential organ failure assessment (SOFA), quick SOFA (qSOFA), and
systemic inflammation response syndrome (SIRS). For theMLmodels, we show themean
± standard deviation (SD) over the five repetitions of splitting the derivation set, whereas
the clinical scores were not affected by varying training data (hence no variation). In
row a) means are shown as lines, SDs as faded bands; in row b) results for the individ-
ual split repetitions are shown as tilted and faded crosses, whereas SDs are shown as solid
horizontal and vertical lines surrounding the means (round solid dots).
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Figure 4.9: Performance plots for the MIMIC-III dataset and all considered methods. The left pan-
els display the internal validation performance, evaluated on the hold-out test set of
the database that was used for training. The right panels show the external validation
performance using pooled predictions (see Section 4.2.6). In row a), ROC curves are
shown, whereas in row b) positive predictive value (PPV) and alarm earliness are shown
when fixing sensitivity at 80%. We report the following ML approaches: a deep self-
attention model (attn), a recurrent neural network using gated recurrent units (gru), a
light gradient boosting machine (lgbm), and a logistic regression (lr) model. Further-
more, we display the following clinical scores: Modified Early Warning Score (MEWS),
National EarlyWarning Score (NEWS), sequential organ failure assessment (SOFA), quick
SOFA (qSOFA), and systemic inflammation response syndrome (SIRS). For the ML mod-
els, we show the mean ± standard deviation (SD) over the five repetitions of splitting the
derivation set, whereas the clinical scores were not affected by varying training data (hence
no variation). In row a) means are shown as lines, SDs as faded bands; in row b) results
for the individual split repetitions are shown as tilted and faded crosses, whereas SDs are
shown as solid horizontal and vertical lines surrounding the means (round solid dots).
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Figure 4.10: External validation results illustrated for our deep self-attention model (attn). Rows in-
dicate the dataset used for training, columns indicate the testing dataset. The cell en-
tries represent the area under the receiver-operating-characteristic curve (AUROC) that
was measured on the hold-out test set. The bottom row displays the performance of the
pooled predictions where for a given testing dataset the predictions frommodels individ-
ually trained on the remaining datasets were aggregated by taking themaximal predicted
score. In the first four rows, on-diagonal entries correspond to internal validation per-
formance; off-diagonal entries refer to pair-wise predictions, i.e., the pair-wise transfer
of a model trained on one dataset and tested on another one.

achieves better or on-par performance when compared to the single best performing model
that was trained on one of the remaining datasets and which could only be determined ex
post hoc (i.e., only after evaluating all models individually on the dataset of interest).

�.�.� Model inspection

After having presented the internal and external validation results, next we further investi-
gate and inspect the deep self-attention model. First, we aim to explain the model’s predic-
tions using feature attributions. Second, we present ablations where we evaluate predictive
performance on subcohorts as well as on different feature categories.

Variable importance To assess the relevance and the impact that individual variables
had on the attention model’s predictions, we present a Shapley analysis in Figure 4.11. Mean
absolute Shapley values are shown averaged over all datasets in Figure 4.11a, where we ob-
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Figure 4.11: Variable importance using Shapley values. In Panel a), we display the mean absolute
Shapley values as computed and averaged over all datasets. Error bars indicate the stan-
dard deviation across datasets. Here, we show the 20 variables with the largest mean
absolute Shapley value, where larger values represent larger contributions to the predic-
tion of sepsis. In Panel b), distributions of Shapley values are illustrated for the eICU
dataset. For that, the features were sorted in descending order according to their con-
tribution to the model’s predictions. Positive values on the x-axis indicate an increase in
the model’s predicted score, i.e., the predicted risk of sepsis, and vice versa for negative
values. Additionally, the points are colored to indicate high (red) or low (blue) feature
values. For instance, low values in mean arterial pressure is associated with an increase
in the model’s predicted risk of sepsis. In Panel c), we show the distribution of Shapley
values that were computed for the mean arterial pressure variable on the eICU dataset.
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serve that the variables mean arterial pressure and heart rate contribute most to the model’s
predictions. Interestingly, this aligns well with clinical domain knowledge, since clinicians
frequently assess these parameters jointly in order to monitor hemodynamic stability, a key
determinant of prognosis in ICU patients. Additionally, in Figures 4.11b and 4.11c, for the
eICU dataset we display Shapley value distributions that explain whether high or low values
of a given variable increase (large Shapley values) or decrease (small Shapley values) the pre-
dicted risk of sepsis. The corresponding plots for all datasets are provided in Figures A.1 to
A.4 in the Supplementary Materials. While we observe that the exact ranking of variables
varies across the different datasets, mean arterial pressure as well as heart rate consistently
appear among the top ten variables. Finally, we repeated the Shapley analysis to include all
feature types that the attention model uses for prediction (e.g., also measurement counts and
missingness indicators) and display the corresponding Shapley values in Figure A.5.

Ablation analyses In Figure 4.12, we investigated whether the foremost surgical compo-
sition of the AUMC cohort (as opposed to the other datasets) could be partially responsible
for the generally higher performance observed on this dataset. To test this, we reuse the at-
tention models (one for each repetition split) that were trained on the derivation set of the
entire AUMC cohort (medical and surgical) and apply them individually to the medical and
surgical patients of the hold-out test set of AUMC, i.e., in-distribution data, and to the test
set of MIMIC-III, i.e., out-of-distribution data. We found that the surgical cohort of AUMC
was indeed easier to classify, however, this pattern did not generalise to the external testing
site. Furthermore, given that in Figure A.5 we found that count features frequently appeared
in the top ranking variables, we further investigated the performance of models that only use
count features or raw observations for prediction, as shown in FigureA.6. While we found no
striking difference in performance, we observed a tendency that laboratory measurements
(that are less frequently measured) counts are indeed informative, while this was less the case
for frequently monitored vital signs.

�.�.� Calibration

Figure 4.13 shows a reliability diagram for the attention models that were trained on the
four core datasets without applying any calibration technique. Since the curves skew below
the diagonal (which indicates perfect calibration), this suggests that the uncalibrated models
tend to be overconfident in that the predicted risk of sepsis (in terms of predicted scores) is
higher than the true risk of sepsis (i.e., the sepsis prevalence in a given bin of patients). In
Figure 4.14, we display the corresponding reliability diagram upon calibrating the models
with Platt scaling. Here, we find that the reliability curves closely track the diagonal, sug-

80



4.4 Discussion

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.20

0.40

0.60

0.80

1.00

1 - Specificity

Se
ns

iti
vi

ty
AUMC (medical), AUC = 0.840±0.004

AUMC (surgical), AUC = 0.937±0.004

MIMIC-III (medical), AUC = 0.689±0.010

MIMIC-III (surgical), AUC = 0.682±0.016

Figure 4.12: ROC plots for the ablation of the subcohorts (medical and surgical patients). For this,
attention models trained on AUMC (both admission types) were applied individually to
the surgical and medical cohort of the hold-out test set of AUMC (in-distribution) and
MIMIC-III (out-of-distribution). While surgical patients in AUMC indeed seem easier
to classify correctly, this finding did not generalise to the external testing site.

gesting that these models can be successfully calibrated on a desired target hospital upon
deployment.

�.� Discussion

Key findings In this chapter, we have presented the largest international and harmonised
ICUdataset to date. Leveraging EHR records fromfive publicly available ICUdatabases gath-
ering patient data from three countries, we developed a sepsis early warning system based on
a deep self-attention model and performed an extensive external validation across countries
and continents. In the internal validation, we observed excellent predictive performancewith
1.5 false alarms at a sensitivity of 80%. In the external validation, we also observe a convinc-
ing performance, in particular when pooling predictions from models trained on different
databases. These findings suggest that our models are leveraging signals that are generalis-
able and may be used to predict sepsis in unseen hospitals in countries different from the
training site.

Relationship to the literature Sepsis represents a major global burden and a leading
cause of mortality in critically ill patients [67]. Given that each hour of delayed recognition
and intervention increases mortality [54], there is a strong motivation for the data-driven
search for biomarkers and signals that are predictive of sepsis. Even though a variety of stud-
ies have tried to address sepsis prediction usingmachine learning, themajority of studies lack

81



4 Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 p

os
iti

ve
s

Reliability diagram
eICU
AUMC
MIMIC-III
HiRID
Perfectly calibrated

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted risk

0

250

500

750

1000

Co
un

t

Figure 4.13: Reliability diagram for the attention models trained on the four core datasets before cal-
ibration, i.e., we display the reliability of the uncalibrated models. Below, a histogram
indicates the size of each bin. The reliability curves below the diagonal indicate that the
models are overconfident. Figure recreated from Moor et al. [138].
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Figure 4.14: Reliability diagram for the attention models trained on the four core datasets after ap-
plying Platt scaling to calibrate the models. Below, a histogram indicates the size of each
bin. Here, the reliability curves lie close to the diagonal, indicating that they are well
calibrated. Figure recreated from Moor et al. [138].
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an external validation, and either use the same public dataset, MIMIC-III, or use restricted-
access data which further exacerbates the problem of lacking validation data [56, 143]. Most
recently, a proprietary tool for sepsis prediction that has been widely adopted across US hos-
pitals performed poorly when externally validated [211], which again emphasises the impor-
tance as well as the scale of the problem. By creating a freely available, multi-national ICU
dataset with sepsis labels, a key goal of this study was to complement the literature exactly to
address the above mentioned challenges, i.e., to enable international external validations, be
it before or even after deployment of the models. Furthermore, we showcased a battery of
state-of-the-art ML models and found that in particular, a deep self-attention model outper-
formed its comparison partners as well as clinical baseline scores. Finally, by carrying out
an extensive external validation, we observed that this model can generalise to previously
unseen hospitals.

The majority of previous studies framed sepsis prediction as an intrinsically retrospective
question: Given a sepsis onset at hour t, how early could a model have predicted it? This
question was then answered by comparing time windows before sepsis onset with time win-
dows in control patients. However, in our systematic review on sepsis prediction [143], we
found that a) the particular choice of control windows can drastically affect the performance
and the interpretation of the prediction task, and that b) in the majority of studies, this crit-
ical detail is not reported. This means that high AUROC values may be reported without a
guarantee that it would translate to a real-time monitoring scenario. To address this, and to
more closely align the retrospective development of the model with a potential deployment
scenario, here, we considered an online prediction scenario where both during training and
testing, we made repeated predictions in hourly intervals.

Implications of the study As one major implication of this study, we showed that it is
possible to train deep learning-based sepsis predictionmodels that can generalise to newhos-
pitals in different countries. Moreover, we found that pooling predictions across datasets can
lead to better generalisability when compared to transferring a model from a single dataset
to another one. While a single model developed on one dataset may perform poorly on a
different dataset due to various types of domain shifts (differences in patient cohorts, ethnic-
ities, treatment policies, monitoring devices, etc.), our findings suggest that these effects are
to some degree levelled out when aggregating predictions across different databases. Inter-
estingly, we also observed that our federated learning setup, i.e., combiningmodels that were
trained on different cohorts, led to superior performance when compared to pooling of the
actual patient data to train a single model on the joint data. This finding is highly encourag-
ing since the pooling of patient data has two significant drawbacks: a) It leads to the costly
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and repeated retraining of models on much larger datasets. In our external validation, this
corresponds to a k-fold cross validation where each of the k folds represent a dataset to be
tested, where the remaining folds are merged for training. b) It implies that potentially sen-
sitive data needs to be shared across centres which poses a data security risk, and in practice
requires a significant effort for properly anonymising the data.

Given our international, harmonised and annotated dataset, clinicians and researchers
will be able to externally validate newly developed early warning systems for sepsis when
considering the deployment in a new hospital. Compared to the internal validations, in our
external validations we observed only a moderate decrease in PPV (or precision). However,
alarm earliness did indeed suffer when applying a model to an unseen data distribution.
Therefore, for deploying such an early warning system in a new site, we advise to fine-tune
and recalibrate the model to the new target hospital, to already account for a changed (and
plausibly unknown) prevalence of sepsis.

Strengths and limitations Our study shows the following strengths. First, our multi-
centre cohort includes a large sample size of ICU stays across three countries. Second, this
cohort is composed of heterogeneous subcohorts. For instance, AUMC predominantly con-
tains surgical patients, where the majority of patients in MIMIC-III and eICU represent
medical patients. A third strength of this study was the depth of the conducted external
validation, where we showcase that by using a federated learning approach, our models can
generalise to unseen testing sites in new countries. Fourth and finally, we also consider the
formulated prediction task a strength of our study. By simulating an online prediction sce-
nario where a model is continuously updated with new input data in order to repeatedly
output predictions, our scenario is more closely aligned and can be more realistically com-
pared to a prospective deployment, in contrast to the retrospective horizon analyses that
were conducted in the majority of the previous studies investigating the early prediction of
sepsis [143]. Next, we discuss the limitations of this study. In this chapter, we presented an
observational and retrospective study. This means that in order to derive clinical implica-
tions, we need to prospectively validate our findings by means of deploying the models in
order to evaluate the clinical applicability and utility of bed-side predictions for sepsis. Next,
due to poor data quality, a large number of patients (and even sites in the eICU dataset) were
excluded, which could lead to selection effects. In two databases (eICU and HiRID), body
fluid sampling was severely underreported, therefore an alternative definition of suspected
infection (SI) was used. Even though we validated this definition, this modification may
introduce a certain label shift between the centres which is hard to measure. Nevertheless,
this could even increase the value of the external validation, since a good performing model
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may then be interpreted as also generalising despite minor label shifts. The harmonisation
of variables across the datasets has the following limitations. In order to ensure interoper-
ability, highly similar (but technically not identical) concepts were pooled5. Furthermore, to
enable an interoperable setup allowing for the direct transfer of models across datasets, we
determined a common ground in terms of time resolution as well as variable selection.

Furthermore, despite the broad inclusion criteria (essentially all non-pediatric ICU stays
with recorded data) and the heterogeneity of the included cohorts, overall, our multi-centre
dataset predominantly reflects a caucasian cohort. This deficit in ethnic diversity stems from
the non-availability of non-caucasian ICU datasets, a pressing issue that needs to be urgently
addressed by the global research community.

Finally, all the used patient data was collected before the outbreak of the global COVID-
19 pandemic. Karakike et al. [102] found that the majority of hospitalised COVID-19 pa-
tients fulfil the clinical criteria of Sepsis-3. However, Sepsis-3 was neither developed nor
validated (in terms of being prognostic of poor outcomes) for this cohort. This implies that
in newly collected datasets (starting in 2019 or 2020, depending on the geographical region),
COVID-19 patients fulfilling Sepsis-3may need to be considered separately, and current sep-
sis prediction models need to be assessed in their ability to detect viral sepsis in COVID-19
patients.

�.� Conclusion

In an international cohort of over 150,000 patient admissions to the ICU, we developed a
deep learning-based early warning system for the early prediction of sepsis, that relies on
routinely-collected data such as monitored vital signs and laboratory measurements. For
the first time, in an extensive external validation across two continents, we demonstrated
that a sepsis prediction model can indeed generalise to unseen hospitals internationally. It is
our hope that the harmonised dataset as well as our conducted experiments will ultimately
pave the way for the deployment and prospective validation of more robust and externally
validated sepsis prediction systems.

5For instance, we did not differentiate between invasive and non-invasive blood pressure measurements.
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� Path signatures for time series
representation learning

We begin Part II of this thesis with a first chapter that considers representation learning on
time series with path signatures. The content of this chapter is based on the following peer-
reviewed workshop contribution:
M. Moor, M. Horn, C. Bock, K. Borgwardt, and B. Rieck. “Path Imputation Strategies for
Signature Models”. In: ICML Workshop on the Art of Learning with Missing Values. 2020

�.� Introduction

Time series represent a class of data objects that are vested with a rich and complex struc-
ture, where subsequent measurements as well as different dimensions (or channels) can be
correlated, and where streams of (incomplete) observations may arrive after irregular time
intervals. Many machine learning (ML) models that try to leverage these data in order to ar-
rive at predictions—be it a weather forecast, an alarm for a clinical complication, or a stock
market price prediction—learn representations that summarise the irregular time series data
in a vector that can be easily used for downstream tasks, e.g. to classify the time series. How-
ever, to properly encode a time series into vectors is non-trivial. To give an example, we may
not be able to recover a time series from a set of summary statistics that were computed on
its values (minimum, maximum, mean, variance, skewness, etc.).

In this chapter, we therefore consider path signatures, a framework that can be used to en-
code streams of temporal data at a negligible loss of information (see Section 5.2.1). However,
the signature (or signature transform) is defined for continuous paths of data, as opposed
to discrete time series samples. Specifically, the signature transform represents a universal
non-linearity on the space of continuous paths that evolve in some Banach space such asRn.
Provided such a continuous path, the signature returns a graded sequence of statistics that
uniquely determines the path up to some negligible equivalence class [78]. It was first de-
scribed by Chen in the 1950‘s [34, 35, 36], and then popularised in the theory of rough paths
and controlled differential equations [59, 130, 131]. Over the last years, this transform has
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gained attention by the machine learning community for being a powerful feature extractor
for analysing time series data [5, 124]. Recently, a model employing the signature won the
2019 PhysioNet Computing in Cardiology Challenge, showcasing the potential of applying
the signature to clinical time series problems [145, 166].

When analysing real-world data processes, as opposed to continuous paths, we typically
observe time series that are sampled merely at discrete points in time. Thus, to compute
the signature, discrete time series measurements first need to be converted into a continuous
path. Previouswork treated this as an embedding problem, while considering it as a technical
side note [19, 53]. In practice, this discrepancy is further disguised by the (sensible) way that
software packages compute the signature: an input time series is interpreted as the knots of
a piecewise linear path. Thus, when computing the signature, it is easy to mistakenly think
of it as a function acting on discrete time series.

By contrast, in this work we show that the path construction can be relevant for achiev-
ing competitive performance when applying signature-based models to irregularly sampled
time series. We consider the task of constructing a continuous path from discretely sampled
input data as an imputation problem and refer to it as path imputation. While previous work
has elaborated on various excellent theoretical properties of the signature [19, 38], we show
that this does not necessarily translate to empirical performance. In our experiments, we
investigate a variety of imputation strategies and compare several neural network architec-
tures that may or may not employ the signature. Furthermore, motivated by coarseness of
the default embedding (treating data as knots of a piecewise linear path), and given that data
missingness itself can carry information1, we also considered the flexible end-to-end learn-
ing framework of Gaussian process (GP) adapters, and propose an extension that enables
uncertainty information to be exploited at individual prediction steps, which is beneficial for
signature-based models.

�.� The path signature

Before acquainting ourselves with the path signature, we first familiarise ourselves with some
underlying concepts and notations.

Definition 7 (Path). A path X describes a continuous mapping from an interval to a real-
valued vector space:

X : [a, b] → Rd

t 7→ X(t)
(5.1)

1Already in this thesis, we have observed this in Chapter 3 and 4.
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for some t ∈ [a, b] ⊆ R. For notational convenience, we allow for the decomposition of high-
dimensional vector-valued paths into a collection of d real-valued paths: X =

(
X1, . . . , Xd

)
,

where Xi : [a, b] → R. Additionally, we abbreviate X(t) := Xt.

Definition 8 (Path integral). Let f : R → R be a function of a one-dimensional path
X : [a, b] → R, then we define the path integral of X against f as

∫ b

a
f(X) dX =

∫ b

a
f(Xt)

dXt

dt
dt, (5.2)

where the differential dX = dXt
dt dt can be intuitively understood as the rate of change of the

path (w.r.t. t) that is applied for each infinitesimal increment dt.

Intuitively, the path integral measures (and accumulates) the changes in f as we “walk”
along a pathX . Next, we consider a d-dimensional pathX . We can then integrate along the
dimension i ∈ {1, . . . , d} to obtain

S(X)ia,t :=

∫
a<s<t

1 dXi
s = Xi

t −Xi
a, (5.3)

where for clarity we indicate the integrand, the constant function 1, which is typically
(and subsequently) omitted. Crucially, S(X)ia,· : [a, b] → R is itself also a real-valued
path, t 7→ S(X)ia,t, that is parametrised through t ∈ [a, b]. Therefore, we can iterate the
integration along a dimension j ∈ {1, . . . , d} and with

S(X)i,ja,t :=

∫
a<s<t

S(X)ia,s dXj
s =

∫
a<r<s<t

dXi
r dXj

s . (5.4)

This can be further generalised to a collection of indices i1, . . . , ik ∈ {1, . . . , d} with

S(X)i1,...,ika,t :=

∫
a<s<t

S(X)
i1,...,ik−1
a,s dXik

s , (5.5)

:=

∫
a<tk<t

. . .

∫
a<t1<t2

dXi1
t1
. . . dXik

tk
, (5.6)

where S(X)i1,...,ika,b is called a k-fold iterated integral ofX along the indices {i1, . . . , ik} [38].

Definition 9 (Path signature). Following Definition 7, let X =
(
X1, . . . , Xd

)
: [a, b] → Rd

be a path that is piecewise smooth. Then, the path signature, or simply the signature, is defined
as the infinite collection of all its iterated integrals

Sig(X) :=
(
1, S(X)1a,b, . . . S(X)da,b, S(X)1,1a,b, S(X)1,2a,b, . . . S(X)d,da,b , . . .

)
, (5.7)
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where the superscripts increment over the set I of all multi-indices

I = {(i1, . . . ik) | k ≥ 1, i1, . . . , ik ∈ {1, . . . , k}} (5.8)

in a specific order as indicated in Equation 5.7.

Even though in Equation 5.7 we collected the terms of the form S(X)i1,...,ika,b in a flattened
vector2, the signature can actually be seen as an infinite collection of tensors, where each
tensor comprises all components of Equation 5.7 that share the same number of indices in
the superscript. The zeroth term belongs to R, the first term to Rd ⊗Rd, the second term to
Rd ⊗ Rd ⊗ Rd and so on, where ⊗ denotes the tensor product. This can be abbreviated as(
Rd
)⊗k where the product consists of k terms, and by convention

(
Rd
)⊗0

:= R. Following
this notation, the signature can be seen as an element of the tensor algebra of Rd which is
defined as the direct product

T
(
Rd
)
=
∏
k≥0

(
Rd
)⊗k

. (5.9)

In practice, we truncate the signature at depth n by only computing the first n tensors (with-
out counting the constant zeroth term), that is, the first

∑n
k=0 d

k entries of Equation 5.7.

Definition 10 (Truncated signature). Following Definition 9, we define the truncated signa-
ture of depth n (or up to the nth term) as

Sign(X) :=

(∫
. . .

∫
a<t1<···<tk<b

dXt1 ⊗ · · · ⊗ dXtk

)
0≤k≤n

. (5.10)

�.�.� Properties of the signature

The signature is rooted in a rich theoretical foundation, and is equipped with properties that
make it an interesting transform for analysing time series. In the following, we state three of
its key properties.

Lemma 1 (Uniqueness of the signature [78]). LetX be a path (see Definition 7) that is piece-
wise smooth. Further, let X̂ denote the time-augmented path of X with

X̂ : [a, b] → Rd+1,

t 7→ (t,Xt).
(5.11)

The signature of the time-augmented path, Sig(X̂), uniquely determinesX (up to translation).
2This is also how software typically represents the truncated signature (see Definition 10).
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5.2 The path signature

Lemma 1 tells us that the signature allows us to embed a continuous path (in the tensor al-
gebra) such that essentially no information is lost. Bonnier et al. [19] showed that in order to
recover a target path X using a randomly initialised template path Y , it is sufficient to min-
imise a norm between the signatures of X and Y by updating Y via gradient descent. Nev-
ertheless, certain aspects of an input path may not generally be recovered from its signature.
For instance, the speed at which a path is traversed is not captured in the signature which is
invariant under time reparametrisations. Additionally, the signature is blind with regard to
certain degeneracies. For instance, it does not distinguish between a constant path and the
concatenation of a path with its time-reversal [38]. Hambly et al. [78] established the unique-
ness property demonstrating that the signature determines a path of bounded variation up
to a “tree-like” equivalence class, a concept that makes the aforementioned degeneracies of
self-intersecting paths precise.

Lemma 2 (Factorial decay of higher-order terms [131]). Let X : [a, b] → Rd be a path, and
let π be a finite partition of [a, b]

π = {a = π0, π1, . . . , πl = b} with πi ≤ πj for i < j. (5.12)

Furthermore, let X be of bounded p-variation varp, i.e.,

varp(X,π) = sup{
l−1∑
i=0

‖X(πi+1)−X(πi)‖p} < ∞. (5.13)

Then, the kth term of the signature decays factorially with regard to some tensor norm ‖·‖T∥∥∥∥∫ . . .

∫
a<t1<···<tk<b

dXt1 ⊗ · · · ⊗ dXtk

∥∥∥∥
T

≤ C(X)
k
p

(kp )!
, (5.14)

where C(X) is a constant that only depends on X .

Lemma 2 implies that the higher-order terms of the signature contribute increasingly less
to the signature. Finally, the signature exhibits the remarkable property of being a universal
non-linearity on the space of paths.

Lemma 3 (Universal non-linearity [4, 19]). Let X be a continuous path and X̂ its time-
augmented path (see Lemma 1). Let F be any continuous function F : X → R defined on
the space of continuous piecewise smooth paths X evolving in Rd. Additionally, let K denote a
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compact set of paths with X0 = 0, if X ∈ K . For any ε > 0, there exist a linear functional L
that fulfills ∣∣∣F (X)− L(Sig(X̂))

∣∣∣ < ε. (5.15)

Thus, the signature can approximate every function F up to a linear transformation.

�.�.� Computing the signature

The signature can be efficiently computed when using piecewise linear paths [109]. Algo-
rithms to compute the signature exploit Chen’s identity [131] which states that if Z is the
concatenation of two paths X,Y : [a, b] → Rd, with Xb = Ya, then

Sig(Z) = Sig(X)⊗ Sig(Y ), (5.16)

where⊗ denotes the tensor product on the tensor algebra T
((
Rd
))

. This can be achieved by
defining ⊗ such that for A = (A0, A1, . . . ) and B = (B0, B1, . . . ) with A,B ∈ T

((
Rd
))

A⊗B :=

 k∑
j=0

Aj ⊗Bk−j


k≥0

. (5.17)

If L : [a, b] → Rd is the linear interpolation between two points x, y ∈ Rd, then Sig(L) can
be shown to equal the collection of powers of the increment y − x [19, Section A.1], i.e.,

Sig(L) =
(
1, y − x,

1

2
(y − x)⊗2, . . . ,

1

6
(y − x)⊗3, . . . ,

1

k!
(y − x)⊗k, . . .

)
. (5.18)

By combining the Equations 5.18 and 5.16, we observe that the signature of a piecewise linear
path X with knots (x1, x2, . . . xn) can be directly computed using only tensor operations

Sig(X) = exp(x2 − x1)⊗ exp(x3 − x2)⊗ · · · ⊗ exp(xn − xn−1), (5.19)

where exp : Rd → T
((
Rd
))

denotes the exponential map on the tensor algebra

exp(x) =
(
x⊗k

k!

)
k≥0

. (5.20)

Equation 5.19 illustrates that the truncated signature can be computed by truncating the ex-
ponential map and then calculating the product ⊗ up to the available terms. Furthermore,
it shows that the (truncated) signature may be implemented using basic tensor operations
(without the need to invoke quadratures for high-dimensional integration), which has mo-
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Figure 5.1: Visualisation of the signature for the first and second order terms. First-order terms are
of the form Si

a,b and represent the increment of a path along dimension i. Second-order
terms of the form Si,j

a,b and for i 6= j correspond to signed areas above or below a path
and are related to the Lévy area, i.e., the signed area between the path (evaluated from a
to b) and the chord (or linear interpolation) of Xa and Xb.

tivated the development of libraries that allow for the computation of the signature as a dif-
ferentiable layer in neural networks [109].

�.� Path imputation of signature models

While the signature acts on continuous paths, we are typically only provided discrete mea-
surements of data that may be irregularly spaced and, for a given point in time, incompletely
observed. It is our working hypothesis, that the specific path construction from these data is
relevant to the signature computation, and therefore to models employing the signature. To
give a motivating example, Figure 5.1 depicts a geometric interpretation of the first and sec-
ond order terms of the signature. Considering Figure 5.1b, it is evident that modifying this
example path, for instance by only observing few discrete samples of it, and imputingmissing
values by carrying forward the last observed values, would affect the highlighted area—and
therefore the signature—considerably. We assess this hypothesis by explicitly considering
the path construction process as a path imputation problem.

Task Let T be the space of time series (following Definitions 1 to 4) that are of regular
spacing and fully observed, i.e., for each available point in time, each variable is observed.
Furthermore, let T ′ denote the space of irregular (or sparse) time series, that allows for ir-
regular spacing and potentially incomplete observations. Next, let P denote the space of
continuous and piecewise linear paths. For a time series dataset (see Definition 2), which for
some target space Y represents the finite subset D ⊂ T ′ × Y , we consider the task to learn
a composed mapping g : T ′ → Y , with g = f ◦ φ, where φ : T ′ → P represents the path
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imputation, and f : P × W → Y represents a classifier equipped with a parameter space
W3. Given a loss function ` and a set of p path imputation strategies Φ = (φ1, . . . , φp), our
task is to minimise

argmin
φi∈Φ,w∈W

E(T ′,y)∼P(T ′,Y)

[
`
(
g
(
T ′;φi,w

)
, y
)]
. (5.21)

Thus, our goal is to learn path representations that are beneficial to a downstream classifi-
cation tasks. To ensure a straight-forward computability of signatures, we treat a path impu-
tation φ as the composition φ = ξ ◦ λ, where ξ : T ′ → T represent an imputation function
mapping from the space of (potentially) irregularly spaced and incompletely observed time
series, T ′, to the space of regularly spaced, fully observed time series, T . λ : T → P maps
a time series to a piecewise linear path, where the knots are defined by the input time series.
For the scope of this work, λ is fixed and shared for all path imputation strategies, which we
introduce in the next paragraph.

Path imputation strategies In our analysis, we included a battery of path imputation
strategies, that are subsequently described.

1. Linear interpolation: to impute a given point of time, we linearly interpolate between
the previous and the next observation. If one of the two boundary points is missing,
we impute them with 0 which after standardisation is equal to a mean imputation.

2. Forward filling: here, missing values are imputed with the last observed value of the
given channel, whereas missing values at the start are imputed with 0.

3. Zero imputation: all missing values are imputed with 0, which equals a mean imputa-
tion when working with standardised data.

4. Indicator imputation: for each channel and point in time, we define a binary missing-
ness indicator which is 1 if a given value is missing, and 0 else. The actual missing
values are imputed with 0.

5. Causal imputation: here, we augment the time series by including additional observa-
tions such that we first update the time (of a new observation) while keeping the data
of the previous point, and only then update the data (while keeping the time fixed)4.

3This notation that classifier act on paths can be extended to classifiers that do not employ the signature, i.e.,
that do not by design act on paths, by considering the knots of the piecewise linear path as a sequence of
discrete inputs.

4This method is related to the time-joined transformation [121]. For more details, please refer to [139, Section
A.6].
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6. Gaussian process (GP) adapters: we include both conventional GP adapters [125] (see
Section 3.2.3), as well as an extension, GP adapter with posterior moments (GP-PoM),
that we subsequently introduce.

While Strategies 1-5 are fixed transforms, the GP adapters represent an end-to-end learn-
ing framework, where both the imputation and downstream task are learned jointly.

Gaussian process adapters with posterior moments To revisit the GP adapter for-
mulation, we refer to Chapter 3.2.3 and specifically to Equation 3.18. A drawback of existing
GP adapters is the prediction step. The approximation of the expectation outside of the loss
function in Equation 3.18 by means of Monte Carlo (MC) sampling is costly. To address
this, Li et al. [125] proposed to sacrifice the uncertainty upon test time, by simply passing
the GP posterior mean to the downstream classifier. However, since plugging a mean esti-
mate of the GP is generally not equal to the GP adapter training objective (see Equation 3.18,
our standard GP adapter follows Futoma et al. [61] by employing the more expensive (but
uncertainty-preserving) MC sampling also upon testing time. However, even though the
downstream classifier is called nm times (for nm MC samples), at each prediction step, the
model sees only a single draw and is therefore unaware of any uncertainty in the GP imputa-
tion. The uncertainty-awareness in the GP adapter that uses MC sampling only emerges on
a meta level: by making predictions for several independently drawn samples, the distribu-
tion of prediction scores can be interpreted as a measure of uncertainty about the classifiers
prediction.

Here, we address both points with a novel variant of a GP adapter where both moments
of the posterior distribution (mean and covariance) are provided to the classifier. On the
one hand, this prevents the cost of MC sampling, while on the other hand still providing
uncertainty information, and as opposed to the standard GP adapter, making uncertainty
directly available to the classifier when running a single prediction (without repeated sam-
pling). While the full covariance matrix may quickly become excessively large without the
guarantee that all interaction terms are actually relevant to a downstream classifier, we for
now simplify this approach by taking only the posterior variance at each location of the GP,
to concatenate it with the posterior mean in order to produce a path which also comprises
point-wise uncertainty information. Denoting the hyperparameters of the GP with θ ∈ Θ

for a hyperparameter space Θ, we define a mapping τ with

τ : [a, b]× T ′ ×Θ → T × T (5.22)

τ : t, T ′,θ 7→
(
µ(t, T ′;θ),Σ(t, t, T ′;θ)

)
. (5.23)
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Figure 5.2: Overview of the GP adapter with posterior moments (GP-PoM), our extension to GP
adapters that upon testing time leverages both posterior moments (mean and variance)
of a given test location. In comparison, to achieve uncertainty in the conventional GP
adapter, MC samples (faded colours in the background) are drawn from the GP posterior
and fed into the downstream classifier.

Using τ , we then solve

argmin
w∈W,θ∈Θ

N∑
k=1

`(F (τ( · , T ′
k,θ),w), yk). (5.24)

As stated above, we decompose path imputations such that φ = ξ ◦ λ. Therefore, in this set-
ting, to construct a time series imputation ξ, we evaluate τ only at discrete, regularly spaced
time steps. Finally, we call this method GP adapter with posterior moments (GP-PoM) and
illustrate it in Figure 5.2.

�.� Related work

A key motivation for considering the signature as a way to learn time series representations
is its increasing use in machine learning [19, 38, 113, 115, 124, 145] that is founded in its
favourable theoretical properties (see Section 5.2). While the signature was conventionally
employed as a non-parametric feature extractor, recent works have been investigating how
to integrate the signature into neural networks [109, 126]. Furthermore, Király et al. [113]
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showed how the truncated signature can be used to define a kernel, which led Toth et al.
[199] to define a Gaussian process using signature covariances. Most recently, Salvi et al.
[180] showed how even an untruncated signature kernel can be computed. The literature has
typically applied the linear interpolation in order to encode discrete data samples as paths.
While some slight deviations from this default have been considered [121], to our knowledge
no previous work has regarded and empirically investigated the impact of different choices
of path imputations.

Imputation schemes The imputation of missing data is a well-studied statistical problem,
see for example [66, Chapter 25]. However, imputation methods typically only fill in a dis-
crete set of missing values of data, and do not consider the problem of imputing a continuous
process that underlies the data. In contrast, Gaussian process adapters [125] are capable of
imputing a continuous path that can be arbitrarily sampled, which makes them particularly
amenable to be used in our analysis. There are also other approaches that learn to impute
missing data end-to-end with a downstream classifier [184], and methods that skip explicit
imputations altogether, be it with Neural ODE-like models [110, 175], recurrent neural net-
work architectures [32], or SeFT, a set functions approach to time series [93] (the last of
which was co-authored by the author of this thesis). Since the scope of this chapter was to
assess the impact of path imputations for the signature (and models employing the signa-
ture), the larger comparison including imputation-free scenarios will be interesting in future
work, while not essential to the central idea of this chapter.

Learning time series representations The signature transform exhibits a certain simi-
larity with other well-established transforms that are ubiquitous in signal processing and var-
ious application domains, such as theWavelet transform [136], or the Fourier transform [22].
In all of them, we compute integrals over paths to retrieve a representation of data in a new
domain (frequency domain, tensor algebra etc.). However, at a closer look, there are striking
differences between the signature and these classical transforms: The Fourier and Wavelet
transforms are linear transforms, and act on each channel of the input data separately, i.e.,
they model an input path as a linear combination of the elements of a basis. By contrast, the
signature is a non-linear transform (even a universal non-linearity), and actually combines
information between different channels. By doing so, instead of providing a basis for paths,
the signature can be seen as providing a basis for functions of paths.

In addition to these aforementioned transforms that may be seen as fixed feature extrac-
tors, recent advances in deep learning have brought forth a bouquet of model classes for
learning to transform time series data into representations that best serve a given downstream
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purpose. To name a few, this includes studies for learning time series representations using
convolutional autoencoders [90], temporal convolutional networks [195], GP-VAE [58], la-
tent ODEs [175], and most recently, score-based diffusion models [193]. Since the signature
can be directly integrated as a layer of a neural network, in principle, it could augment any
of the above approaches.

�.� Experiments

Datasets and preprocessing To evaluate different path imputation strategies, we con-
sider the classification of time series as our downstream task, which we present for two
real-world datasets: (i) PenDigits [50], and (ii) CharacterTrajectories [50]. For the
PenDigits dataset, we count 10,992 samples, featuring 2 channels and 8 time steps, and 10

classes. TheCharacterTrajectories dataset contains 2,858 instances, featuring 3 channel
dimensions, 182 time steps and 20 classes. We investigated two types of irregular sampling,
by subsampling the time series in the following manner:

a) ‘Random’ subsampling (Missing at random): on the instance level, we randomly dis-
card p% of all observations.

b) ‘Label-based’ subsampling (Missing not at random): for each class, we uniformly sam-
ple a class-specific missingness frequency between p− 10% and p+ 10%.

For CharacterTrajectories, we use p = 50, and for PenDigits which consists of short
time series, we use more moderate subsampling frequencies with p = 30. All time series
were z-scored using the empirical moment estimates that were determined on the entire
training split (for more details regarding the splits, please refer to the paragraph Training
and evaluation below).

Models In our experiments, we investigate the following model architectures:

a) Sig, a simple neural network that involves a linear augmentation, followed by the sig-
nature transform (signature block) and a final MLP of two dense layers (30, 30). This
architecture was inspired by the Neural-signature-augment model [19].

b) RNN, a recurrent neural network employing gated recurrent units (gru) [40],

c) RNNSig, where the signature transform is computed in a sliding window fashion re-
sulting in a stream of signatures, which is then processed by a gru, and
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d) DeepSig, a deep signature model that sequentially applies two signature blocks (each
comprising an augmentation step and one signature transform). This architecture was
inspired by the DeepSigNet [19].

To efficiently compute the signature transform on the GPU, we used the ‘Signatory’ pack-
age [109]. All GP adapterswere implemented based on (and compatiblewith) the ‘GPyTorch’
framework [63].

Training and evaluation For each dataset, we used the predefined training and testing
sets where 20% of the training set was held out as a validation set for tuning the hyper-
parameters. For each element of the grid (dataset × model × path imputation), we ran a
randomised search over 20 configurations of hyperparameters. Each run was trained until
convergence, i.e., training was stopped if the validation performance did not improve over 20
epochs, or if 100 epochs were reached. These datasets represent a multi-class classification
task which we optimised in terms of balanced accuracy (BAC). Additionally, we report accu-
racy and weighted AUROC (w-AUROC), where AUROC is calculated for each class (using
a one-versus-one strategy) and averaged with weights that correspond to the support of each
class. Having tuned the hyperparameters for each setting on the aforementioned grid of ex-
periments, we retrained 5model repetitions and selected the best model state in terms of the
validation BAC to finally report mean and standard deviation of the evaluation metrics on
the testing set.

Results We present our results in Tables 5.1 and 5.2 under label-based subsampling. For
the random subsampling, please refer to Tables A.1 and A.2 in the appendix. We find that
DeepSig as well as the RNN performwell in many scenarios, suggesting they are impervious
to the choice of path imputation strategy. While this robustness may be somewhat unsur-
prising for the RNN which does rely on paths, the robustness of the deep signature model is
less obvious. In contrast, when comparing the last rows across all table blocks, we observe
that the shallow signature model, Sig, is heavily impacted by the choice of path imputation
scheme.

We visualise this finding in Figure 5.3, where we depict the results for the
CharacterTrajectories dataset. Notably, exactly for shallow signature models,
that we find to be more sensitive to changes in the path construction, we also observe that
our GP-PoM strategy leads to more robust behaviour of the models in terms of a beneficial
performance. In PenDigits, for the standard GP adapter (but not so for GP-PoM) we
encountered numerical stability issues (which were addressed by jittering the diagonal in
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Table 5.1: CharacterTrajectories dataset under label-based subsampling. The top three meth-
ods are highlighted: bold & underlined, bold, underlined. All measures are reported as
percentage points. Balanced accuracy (BAC) is the metric we optimised for. We further
report accuracy and weighted AUROC (w-AUROC).

Imputation Model w-AUROC BAC Accuracy

GP-PoM

DeepSig 99.582± 0.671 95.155± 1.501 94.958± 1.716

RNN 99.973± 0.015 98.161± 0.664 98.273± 0.602
RNNSig 99.696± 0.089 92.778± 1.239 93.231± 1.133

Sig 99.516± 0.075 88.627± 1.416 89.011± 1.319

GP

DeepSig 99.290± 0.704 89.545± 2.996 89.368± 3.123

RNN 99.970± 0.011 97.712± 0.266 97.873± 0.251

RNNSig 96.669± 2.393 65.717± 13.691 67.052± 13.182

Sig 95.283± 1.602 62.423± 6.110 63.614± 5.958

causal

DeepSig 99.940± 0.024 97.272± 0.709 97.437± 0.620

RNN 99.960± 0.010 97.239± 0.516 97.409± 0.481

RNNSig 99.523± 0.155 89.922± 2.301 90.585± 2.186

Sig 95.747± 4.957 66.307± 21.794 68.259± 20.757

forward-filling

DeepSig 99.953± 0.041 97.956± 0.677 98.078± 0.656

RNN 99.942± 0.011 96.942± 0.486 97.159± 0.444

RNNSig 99.720± 0.071 92.568± 1.091 93.148± 1.011

Sig 94.828± 8.117 67.169± 26.338 68.649± 26.125

indicator

DeepSig 99.988± 0.013 98.591± 0.294 98.719± 0.263
RNN 99.916± 0.020 96.414± 0.406 96.671± 0.367

RNNSig 99.802± 0.032 93.787± 0.463 94.234± 0.442

Sig 91.661± 10.003 56.423± 22.796 58.384± 22.932

linear

DeepSig 99.970± 0.010 98.051± 0.743 98.217± 0.671

RNN 99.880± 0.059 96.906± 1.314 97.117± 1.196

RNNSig 99.876± 0.035 94.848± 0.916 95.292± 0.842

Sig 80.442± 18.228 31.193± 23.962 32.326± 24.679

zero

DeepSig 99.977± 0.010 98.030± 0.357 98.189± 0.358

RNN 99.967± 0.014 97.428± 0.572 97.549± 0.596

RNNSig 99.699± 0.132 91.752± 1.782 92.368± 1.662

Sig 77.727± 23.671 37.992± 34.456 38.955± 35.232
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5.5 Experiments

Table 5.2: PenDigitsdataset under label-based subsampling. The top threemethods are highlighted:
bold & underlined, bold, underlined. All measures are reported as percentage points. Bal-
anced accuracy (BAC) is the metric we optimised for. We further report accuracy and
weighted AUROC (w-AUROC)

Imputation Model w-AUROC BAC Accuracy

GP-PoM

DeepSig 99.930± 0.032 97.403± 0.300 97.381± 0.298
RNN 99.901± 0.016 96.349± 0.297 96.306± 0.302

RNNSig 99.669± 0.073 93.022± 0.765 92.967± 0.763

Sig 99.150± 0.144 88.090± 1.493 87.999± 1.499

GP

DeepSig 92.885± 1.455 60.593± 4.092 60.476± 4.067

RNN 95.170± 1.438 67.543± 4.782 67.426± 4.790

RNNSig 84.501± 1.307 42.184± 1.977 42.141± 1.913

Sig 80.312± 2.655 37.767± 3.611 37.725± 3.646

causal

DeepSig 99.241± 0.075 89.616± 0.749 89.514± 0.747

RNN 99.241± 0.098 89.496± 0.480 89.417± 0.501

RNNSig 99.298± 0.041 89.187± 0.476 89.137± 0.494

Sig 98.374± 0.065 83.205± 0.404 83.082± 0.426

forward-filling

DeepSig 99.007± 0.072 88.205± 0.434 88.090± 0.428

RNN 99.333± 0.046 89.747± 0.406 89.657± 0.419

RNNSig 99.274± 0.015 89.788± 0.384 89.743± 0.392

Sig 98.310± 0.045 83.739± 0.421 83.625± 0.398

indicator

DeepSig 99.960± 0.013 98.068± 0.184 98.056± 0.185
RNN 99.955± 0.009 97.266± 0.439 97.238± 0.447

RNNSig 99.747± 0.028 93.488± 0.616 93.408± 0.613

Sig 99.410± 0.031 90.591± 0.306 90.492± 0.308

linear

DeepSig 99.458± 0.052 91.567± 0.412 91.452± 0.416

RNN 99.489± 0.093 91.608± 0.609 91.492± 0.608

RNNSig 99.446± 0.039 90.259± 0.859 90.143± 0.869

Sig 98.963± 0.084 87.254± 0.437 87.141± 0.458

zero

DeepSig 99.391± 0.071 91.121± 0.406 91.012± 0.403

RNN 99.551± 0.031 91.765± 0.283 91.670± 0.304

RNNSig 99.321± 0.033 89.543± 0.412 89.457± 0.417

Sig 98.544± 0.069 84.269± 0.445 84.185± 0.454
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Figure 5.3: Visual depiction of the results for theCharacterTrajectories dataset. Thebars indicate
the performance in terms of balanced accuracy (BAC). The panels indicate the subsam-
pling strategy. Left: random subsampling, right: label-based subsampling.

the Cholesky decomposition). In general, we observed that GP-PoM tends to converge
more quickly to a better performance than the standard GP adapter (see Figure A.19).

�.� Discussion

In this chapter, we have considered the path signature, a theoretically well-founded trans-
form, that may be used as a neural network layer to learn representations of time series.
With regard to applying signatures—that act on continuous paths—to real-world discretely
sampled time series data, we stated the hypothesis that the exact choice of path construc-
tion could impact the resulting signature and models that use it downstream. To this end,
and given by the constraints to efficiently compute the signature (via piecewise linear paths),
we formulated this task as a path imputation problem, and included a battery of imputation
strategies including a novel extension of a Gaussian process adapter, GP-PoM.

In our experiments, we found that the choice of path imputation scheme can indeed dras-
tically affect the performance of signature-based models. Most prominently, we observed
this effect for shallow signature models, while deeper signature models were more resilient
and robust in tackling irregularly spaced and incompletely observed multivariate time series
over different path imputations.

Furthermore, we found that approaches that are aware of data missingness (GP-PoM and
indicator imputation) were beneficial for constructing paths from raw time series data. Our
experiments confirm that uncertainty information has to be accessible during the prediction
step. We highlighted that this is indeed not the case for the original GP adapter (despite
the name “uncertainty-aware framework”), since for each MC sample, the classifier cannot
access missingness information or uncertainty about the underlying imputation.

GP-PoM, our proposed end-to-end imputation strategy, lead to competitive performance,
and improved upon the conventional GP adapter. As a limitation, GP-PoM sacrifices the in-
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nate ability of the GP adapter to remain uncertain about its own prediction (via the variation
of predictions over different MC samples).

Recommendations The signature is a powerful transform that is able to encode paths
at almost no loss of information [38]. The recent literature brought forth examples, where
signature-based models lead to stellar empirical performance [19, 145]. Therefore, we rec-
ommend to consider this transform, when classifying time series. In this work, we demon-
strated that applying the signature to (irregularly sampled) time series comes a certain cost:
the necessary construction of a continuous path from discrete time series observations can
be a delicate task that can adversely impact the signature as well as downstream models. To
address this, we recommend GP-PoM, which explicitly captures a continuous degree of un-
certainty in the imputed path which is made available to the downstream model at each pre-
diction step. Furthermore, the indicator imputation exhibited convincing performance and
presented as a simple and promising go-to solution. However, we caution its use in shallow
signature models where we observed a detrimental impact on the performance.

Applying signature models in online prediction tasks, where to mimic the testing scenario
already during training data should not leak from the future, we recommend to consider
causal (or time-joined) path imputations. The main idea behind this approach is to prevent
future data leakage despite using piecewise linear paths, i.e., paths that are linearly interpo-
lated between observations.

�.� Concluding remarks

Thepath signature has gained attention in themachine learning community for being a pow-
erful feature extractor that can be seamlessly integrated into neural networks as a differen-
tiable layer. Here, we hypothesised and also empirically demonstrated that the application
of the signature to real-world time series is fraught with pitfalls—we found the choice of
the path imputation strategy to be essential for obtaining high predictive performance, in
particular in shallow models, whereas deeper signature models were more robust.

Furthermore, with GP-PoM, we made uncertainty information available to the prediction
step which has led to competitive performance in general, and improved the robustness of
shallow signature models, in particular.
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� Topological representation
learning

In this second chapter of Part II, the part of the dissertation that is concerned with repre-
sentation learning, we develop a novel deep learning framework that enables us to learn data
representations that preserve the structure of the original, potentially high-dimensional in-
put data. The content of this chapter are based on the following publication:

M. Moor†, M. Horn†, B. Rieck‡, and K. Borgwardt‡. “Topological Autoencoders”. In:
International Conference on Machine Learning. Vol. 119. Proceedings of Machine Learning
Research. PMLR, 2020, pp. 7045–7054

In the preceding Chapter 5, we have shifted our focus away from clinical applications of
time series classification (see Part I), in favour of attending more closely to the inner work-
ings and learned representations of deep neural networks that classify time series. In this
chapter, we go a step further and explore how we can learn meaningful data representations
in a more general context. Depending on the downstream use, learned representations need
to exhibit different properties. For instance, to maximise classification performance, repre-
sentations that maximise class separability are most useful. In contrast, when performing
dimensionality reduction, data visualisation, or data exploration, it can be more desirable to
learn representations that faithfully reflect the structure of potentially high-dimensional in-
put data. In this chapter, we follow the second route, and propose a novelmethod for learning
embeddings that preserve the multi-scale structural features of the input space as measured
with techniques from topological data analysis.

This chapter is organised as follows: Section 6.1 gives a high-level introduction to the
chapter. We continue by introducing some preliminaries in topological data analysis in Sec-
tion 6.2 and 6.3. Building on this, we then present our novel method, topological autoen-
coder (TopoAE), and elaborate on its theoretical properties in Section 6.4. Subsequently, we
put thismethod into context with the existing literature in Section 6.5, and conduct empirical
experiments in Section 6.6, followed by a discussion of our findings in Section 6.7.
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6 Topological representation learning

�.� Introduction

Multi-scale topological features, as computed via persistent homology (see Section 6.3), have
been increasingly used by the machine learning community [26, 77, 87, 88, 89, 161, 165].
However, while taking the topological perspective may add a rich set of structural informa-
tion to the machine learning pipeline, it has been notoriously hard to directly optimise a
model that includes topological computations. These circumstances are rooted in the fact
that topological computations are typically of discrete nature, which makes it challenging to
incorporate them in an end-to-end differentiable model. While conventionally, topological
signatures were treated as fixed features, initial efforts to differentiate through topological
calculations were made possible under specialised circumstances [33, 88, 159].

Here, we present a novel approach that allows us to compute gradients of topological sig-
natures that allows us to employ topological constraints during the training of deep neural
networks in order to learn low-dimensional representations that preserve the complex struc-
ture of the input data.

This chapter makes the following contributions:

• We propose topological autoencoder (TopoAE) that includes a novel topological loss
term that allows to harmonise the structure (in terms of topological features) of a learnt
latent space with the structure of the data space.

• By proving that the proposed loss term is robust on the level of mini-batches, our ap-
proach can be easily scaled to large datasets, where an explicit calculation of persistent
homology of the entire dataset becomes infeasible.

• We show that our novel loss term leads to favourable embeddings by learning to pre-
serve topological structures of complex input data in low-dimensional representations.

�.� What is topology?

Topology describes themathematical discipline that studies connectivity properties in a class
of spaces referred to as topological spaces. A topological space is a set of points that live in a
space such asRn while being equipped with a notion of distance (or connectedness) between
points. But before diving into more preliminaries, we first build some intuition what topol-
ogy is aboutwith a historic example. As probably one of the earliest contributions to this field,
Leonhard Euler’s “Seven brigdes of Königsberg” describe a famous problem where the ques-
tion is whether it is possible to traverse the city of Königsberg by crossing each bridge exactly
once such that one ultimately arrives at the starting point again. Euler exploited that most
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of the geometric information available on a map is actually irrelevant for solving this puzzle.
Therefore, he distilled the problem into an abstracted graph, where each vertex represents
a disconnected land mass of the city and each edge refers to a bridge, thereby considering
only the connectivity information of the problem. Euler then found that for a desired path to
exist, for a given land mass there needs to be one way in and one way out of it, thus requiring
an even degree for each vertex of the graph. However, since this was not the case (the vertices
had only odd degrees), Euler showed that the problem cannot have a solution [169].

Meanwhile, contemporary topology has grown into a rich field, but still, connectivity in-
formation is of central interest. Having laid the ground for what topology is about, we next
consider some preliminaries.

While the concepts we make use of in this chapter can operate over highly generic spaces,
for our purposes it is sufficient to think ofRn as the ‘prototypical’ topological space1. Topol-
ogy focuses on connectivity information. Therefore, objects (i.e., topological spaces) that
may geometrically look different, can from a topological perspective be considered equal, or
more precisely, homeomorphic.

Definition 11 (Homeomorphism). LetX,Y ⊆ Rn be two topological spaces. Then the map-
ping f : X → Y is a homeomorphism if f is bijective, continuous, and its inverse f−1 is also
continuous.

As a famous illustrative example for a homeomorphism, we may consider a solid torus
and a mug2. If the materials were flexible enough, we could transform the objects into each
other without tearing or cutting them at any place, making the two objects indistinguish-
able from a topological perspective. To characterise properties of topological spaces that
are invariant under smooth, homeomorphic transformations (as illustrated in the above ex-
ample), one can consider Betti numbers, a concept from simplicial homology. Informally,
Betti numbers count the number of d-dimensional holes a space has3, where d = 0 refers to
the number of connected components, d = 1 to the number of cycles, d = 2 to the num-
ber of voids, and so on. To give two examples considering the first three dimensions: the
2-sphere S2 = {x ∈ R3 | ‖x‖ = r} (for any radius r > 0) has the Betti numbers (1, 0, 1)
as it comprises one connected component that encloses a single void. The (hollow) 2-torus
T 2 = S1 × S1, which can be defined as the Cartesian product of two circles, shows the Betti
numbers (1, 2, 1), i.e., it contains one connected component, two cycles, and one enclosed
void. However, considering real-world datasets is fundamentally different from the discussed

1This way we do not need to introduce concepts like continuity in an abstract sense (via open sets), but may
use our usual understanding of continuity from analysis.

2Alternatively, we may use a torus and a hollow mug
3Formally, the dth Betti number represents the rank of the dth homology group.
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6 Topological representation learning

examples for two main reasons: 1. The data manifold is generally unknown, which is why in-
variants like the Betti numbers can not be directly determined from the manifold structure.
2. Real-world data typically consists only of discrete data samples that may be arranged close
to a smooth manifold.

The first problem can be addressed with simplicial homology, a method that allows for the
calculation of Betti numbers by applying matrix reduction algorithms to a particular repre-
sentation of the data, the so-called simplicial complex, which we subsequently introduce.

Definition 12 (Abstract simplex). Given a set of sets, any subset of cardinatlity k is called a
k-simplex. In contrast to a geometric k-simplex, which is a polytope fullfilling further properties
(affinely independent points), the abstract simplex is defined more generally for sets, i.e., any
constellation of vertices.

Definition 13 (Abstract simplicial complex). An abstract simplicial complex K is a finite set
of simplices that fulfils the following properties:

i) If A is a simplex of K, then every face (i.e., subset) of A is also in K.

ii) The non-empty intersectionA∩B of any two simplicesA,B ∈ K is a face of bothA and
B.

By representing data points as a simplicial complex where connectivity between points is
typically determined via some notion of distance or similarity, simplicial homology allows
for the computation of Betti numbers, also when the data manifold is not known. Formally,
the dth Betti number represents the rank of the dth homology group Hd(K) of the simpli-
cial complex K with respect to a boundary homomorphism. For more details, we refer the
technically interested reader to Moor et al. [141, Section A.1]. However, even if we could
compute Betti numbers from real-world data, we still have to address the second problem,
i.e., the fact that we are typically given only discrete data samples and not observing smooth
manifolds directly. In Figure 6.1, with the example of the torus we exemplify how this can be
problematic.

If instead of the torus (Fig 6.1a), we are provided with samples (Fig 6.1b), it is not a priori
clear which is the proper scale of the data, i.e., at which scale two neighbouring points should
be considered connected. For instance, were we to connect all points that are closer than
a threshold ε, then the specific value of ε determines whether or not we can capture the
interesting Betti numbers of the torus. If ε is chosen too small, the cycles and voids may
not be recovered due to too sparsely distributed simplices. In contrast, if ε is too large, the
resulting simplicial complex would become homeomorphic to a point, where again the voids
and cycles were lost.
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a) b)

Figure 6.1

This illustrates that simplicial homology is too brittle and unstable for applying it directly
to real-world data, since it is challenging to know the “proper” simplicial complex in advance.
This has motivated persistent homology [9, 51], a method that allows for the calculation of
topological features over multiple scales.

�.� Persistent homology: topology at multiple scales

In persistent homology, we aim to calculate topological features (such as Betti numbers) at
various scales. First, to intuitively motivate why multiple scales can be helpful, let us con-
sider a point cloud X = {x1, . . . , xn} ⊆ R3 of points that are uniformly sampled on the
2-sphere with some i.i.d. additive noise. Also, we equip ourselves with a metric such as the
Euclidean distance. As we have noticed in the previous section, for retrieving the charac-
teristic features (here the void), we need to consider the proper scale. For this, we use the
metric to define ε-balls Bε(xi) = {p ∈ R3| ‖p − xi‖ ≤ ε} around each point xi ∈ X . For
a given ε > 0, we consider all simplices (subsets of points) for which ε upper bounds the
diameter of the simplex (see Definition 14). By collecting all these simplices, we construct
a scale-specific simplicial complex, the Vietoris–Rips complex (VR) complex [203] for scale
ε which we denote as Rε(X) (see Definition 14). Now, if we grow ε from 0 to the value of
the largest pairwise distance in X and construct a Rε(X) at each ε and calculate its Betti
numbers, we find that the large void of the 2-sphere appears as soon as ε is large enough that
the void is fully enclosed by the included simplices. Also, once the ε scale is large enough that
the void vanishes, the corresponding Betti number becomes 0 again. It is generally assumed
that relevant topological features persist over a large range of scales, whereas features that
appear and disappear shortly thereafter, are considered as noise.
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6 Topological representation learning

Definition 14 (Vietoris–Rips complex). For a finite metric space (S, d), the Vietoris–Rips
complex at a scale ε is defined as the simplicial complex that contains simplices σ that fulfil:

Rε(S) := {σ ⊆ S | diam(σ) ≤ ε}, where (6.1)

diam(σ) = sup{d(si, sj) | si, sj ∈ σ}. (6.2)

In the above example, over varying scales ε we created simplicial complexes. This process
of constructing a nested sequence of simplicial complexes of the form

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K (6.3)

is called a filtration. To further complement the above description of such a filtration, Fig-
ure 6.2 gives a visual illustration of a filtration of a point cloud. Since we have Rεi(X) ⊆
Rεj (X) for any εi ≤ εj , a VR filtration fulfilling the properties of Equation 6.3 can be per-
formed by computing VR complexes at growing scales ε.

During a filtration, we keep track of the scales at which a topological feature appears (birth)
and disappears (death). For a given feature, e.g. the large cycle in Figure 6.2, this results in a
tuple (a, b) where a represents the value of ε where the feature was created, and b represents
the value of ε when it got destroyed again. As a common choice to summarise the topologi-
cal features that were extracted in such a filtration, we collect all such tuples in a persistence
diagram where the x-axis represents the birth scale, and the y-axis reflects the death scale of
the topological features. In Figure 6.3 we illustrate the persistence diagram that results from
the VR filtration that was shown in Figure 6.2. We denote the persistent homology calcu-
lation of a VR complex (at multiple scales) with PH(R(X)). As a result it returns a tuple
({D0,D1, . . .}, {π0, π1, . . .}). The first component contains a list of persistence diagrams,
whereDd contains the persistence tuples of the d-dimensional topological features. The sec-
ond component contains persistence pairings πd for dimension d ∈ {0, 1, . . .}. For each
tuple (a, b) of a persistence diagramDd, the persistence pairing πd collects the indices i, j of
the simplices σi, σj ∈ R(X) that triggered the birth and death events of the feature that the
tuple represents.

We can compare two diagrams D,D′ by computing the bottleneck distance that is given
by

db
(
D,D′) := inf

η : D→D′
sup
x∈D

‖x− η(x)‖∞, (6.4)

where η represents a bijection between the points in two diagrams and where ‖ · ‖∞ stands
for the L∞ norm. Finally, for ease of notation, we denote the set of persistence diagrams
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a) ε0 b) ε1

c) ε2 d) ε3

Figure 6.2: A visualisation of a Vietoris–Rips complex R(X) of a point cloud X , shown for four in-
creasing scales ε0 to ε3. By increasing the scale ε, the connectivity also increases. For in-
stance, around ε1 a cycle appears (captured via theH1 homology group), whereas around
ε2 the cycle feature disappears again. As a side note, for better readability we display balls
of radius 1

2ε.
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Figure 6.3: Persistence diagram of the Vietoris–Rips filtration shown in Figure 6.2. Here, we overlay
the birth (x-axis) and death (y-axis) events of topological features for connected compo-
nents (corresponding to the Betti number β0 and the homology group H0) as black dots,
and cycles (corresponding to the Betti number β1 and the homology group H1) as red
dots.
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Figure 6.4: Overview of the topological autoencoder. A mini-batch X is passed through an autoen-
coder, i.e., a deep neural network with a bottleneck, in order to reconstruct the input data
as closely as possible with X̃ . On top of the standard reconstruction loss, we compute a
topological loss term that tracks how well the topological features of the data space and
the latent space are aligned (calculated on the level of mini-batches). The idea behind this
loss term is to act as a regulariser, to constrain the encoder such that the topology of the
data space is preserved in the lower-dimensional latent space.

resulting from the persistent homology (PH) calculation of the point cloudX asDX . Having
introduced the preliminaries, we next introduce our new method.

�.� A topology-preserving autoencoder

We propose a novel method for learning representations with autoencoders that preserve the
topological features of the input space in the latent embeddings. In Figure 6.4, we give an
initial overview of the method, while in the subsequent paragraphs, we provide more details
about the individual steps and how they were implemented.

Vietoris–Rips complex calculation Let (S, d) be a finite metric space. Considering
S as a point cloud, and using the metric d : S × S → R, we compute the pairwise distance
matrix of all points in S and denote it withAS , where

(
AS)

ij
= d(si, sj) for si, sj ∈ S . AS

is sufficient for calculating the Vietoris–Rips complex (VR), and thanks to Observation 1 is
also sufficient for the PH calculation. Even though the Euclidean metric is frequently used,
persistent homology (as well as our method) is more general and can even be used with
measures of similarity that do not fulfil the metric properties [206].
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6.4 A topology-preserving autoencoder

Observation 1. For a finite metric space S , the persistent homology of its Vietoris–Rips fil-
tration is fully determined by the set of Vietoris–Rips complexes constructed at the finite set of
scales E = {ε | ε = d(si, sj), ∀si, sj ∈ S}. Since S is finite, we have x ∈ E =⇒ x ∈ AS .

Proof. During the Vietoris–Rips filtration, a new topological feature can only be created or
destroyed at a scale ε if the connectivity of the corresponding VR complex Rε is different
fromRε−δ such thatRε−δ ⊂ Rε for some δ with 0 < δ � 1. This implies that the birth and
death of a feature that appears as a tuple in the resulting persistence diagram can be mapped
to a threshold ε (that led to the birth or death) and a non-empty set of simplicesA for which
holds that A ⊆ Rε, A 6⊆ Rε−δ , and Rε = Rε−δ ∪A.

Following Definition 14, Rε contains all simplices σ ∈ S for which ε is an upper bound
of the diameter of σ. Since the diameter is determined by the supremum of the pairwise
distances of the vertices in σ, a “new” simplex can only ever be introduced at scales ε that
coincide with a distance d(si, sj) ∈ S that is observed in the finite metric space S .

�

Since the VR complex is a clique complex, which means that it is fully determined by its
vertices and edges [223], the PH calculation using a VR filtration can be interpreted as a
selection of edges that are deemed topologically “relevant”, i.e., responsible for the birth or
death of a topological feature. For our application, this detail matters, which is why we track
the edge indices corresponding to birth and death events in the persistence pairings πd.

�.�.� Topological autoencoder

LetX be a set, the data space. We consider the point cloudX ⊆ X to be a mini-batch of size
m. Next, we define an autoencoder to be the composition of two mappings h◦g. g : X → Z
represents the encoder that maps input data to a latent space; h : Z → X represents the
decoder thatmaps back from the latent space to the data space. For amini-batchX , we denote
the corresponding latent code as Z = g(X). Figure 6.4 indicates that during a forward pass
of our autoencoder architecture, the persistent homology is computed both for the mini-
batch in the data space and the latent code, resulting in persistence diagrams and pairings in
both spaces:

(
DX , πX

)
:= PH(R(X)), and

(
DZ , πZ

)
:= PH(R(Z)).

By subsetting the distance matrix AX with the edge indices provided by the persistence
pairings πX , we can recover the values of the persistence diagrams. We denote this by
DX ' AX [πX ], to indicate that both the diagram and the subsetted distance matrix es-
sentially contain the same information. Moreover, for ease of notation we treat AX [πX ] as a
vector inR|πX |. We construct a topological regularisation termLt := Lt

(
AX ,AZ , πX , πZ

)
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by comparing both diagrams DX and DZ and add it (weighted by some parameter λ ∈ R)
to the reconstruction loss term Lr of the autoencoder to arrive at our overall loss:

L = Lr

(
X, (h ◦ g)(X)

)
+ λLt . (6.5)

Next, we consider the differentiability of the persistence diagram entries in order to con-
struct the topological loss term Lt. Conventional approaches to compare two persistence
diagrams, for instance the bottleneck distance (see Equation 6.4), are too general in that they
allow for the comparison of two unrelated diagrams. In our case, however, we have a one-
to-one correspondence of individual data points betweenX andZ that we will subsequently
exploit.

Differentiable persistence diagrams Our PH calculation can be interpreted as a se-
lection of topologically relevant distances from the pairwise distance matrix. Moreover, each
entry of our persistence diagrams corresponds to a distance between two data points. As
a common assumption in the persistent homology literature [88, 159], we assume that the
encountered distances are unique. This implies that for each entry (a, b) of a diagram, its
infinitesimal neighbourhood contains only the point (a, b). While this assumption could in
principle be violated, in practice, uniqueness could be achieved via small perturbations of the
data. Given such a fixed4 persistence pairing, and assuming a differentiable distance function
d, the entries of the persistence diagram of the latent space, DZ , are also differentiable with
regard to the parameters of the encoder g. This implies the existence of the derivative of a
loss function that utilises the persistence diagrams, which permits us to obtain gradients for
backpropagation.

The topological loss term Having established that we can use persistence diagram en-
tries in a differentiable loss term, we now consider how to best construct a loss term that
allows us to preserve the structure of the data space (in terms of topological features) in the
latent encodings. A straightforward solution would be to directly compare the selected dis-
tances of the two spaces. However, such an approach would not be informative as it merely
compared the values of diagram entries without a pairwise correspondence between data
points and latent codes.

A more elaborate approach would be to enforce similarity of the those diagram entries
that correspond to the same VR complex edges in both spaces. However, the intersection of
the two persistence pairings would include very few edges upon initialisation of the model

4This means that small perturbations of the data do not affect which edges of the VR complex are selected in
the PH calculation.
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parameters, leading to unstable training due to uninformative gradients and biased estimates
of the alignment of the topological features between the two spaces. We overcome this chal-
lenges by considering the union of the selected edges in the data space as well as the latent
space. Our topological loss Lt comprises two directed components, where in each com-
ponent the topological features (in terms of the persistence pairings) are kept fixed for one
space:

Lt := LX→Z +LZ→X , (6.6)

where

LX→Z :=
1

2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2 (6.7)

and

LZ→X :=
1

2

∥∥AZ
[
πZ
]
− AX

[
πZ
]∥∥2. (6.8)

This formulation of the loss allows us to account for at least |X| topologically relevant dis-
tances. In case two spaces X ,Z were perfectly aligned, LX→Z = LZ→X = 0, since the
pairings as well as the selected distances coincide. However, the converse is not necessarily
true. Even though Lt = 0 implies that the compared distances are identical, the underlying
pairing still could differ. Therefore, sinceLt violates the identity of indiscernibles, it does not
meet the criteria for a metric. Having specified our topological loss term, we next showcase
how we can calculate its gradients.

Gradient calculation For an encoder g : X → Z , let a vector θ ∈ Rk denote its pa-
rameters. Letting ρ =

(
AX
[
πX
]
− AZ

[
πX
])

, we have

∂

∂θ
LX→Z =

∂

∂θ

(
1

2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2) (6.9)

= −ρ>

(
∂AZ

[
πX
]

∂θ

)
= −ρ>J, (6.10)

where J ∈ R|πX |×k represents the Jacobian with entries Jij = ∂AZ [πX ]i
θj

, |πX | represents
the cardinality of πX , and AZ [πX ]i denotes the ith entry of the vector of distances selected
from the distance matrix of the latent space using the pairing πX . Analogously, this can be
derived for LZ→X . In both cases, derivatives of entries of AX with respect to θ vanish since
the distances in the data space do not depend on the encoder (in contrast to the distances in
the latent space). Even though the persistence diagrams change during the training process
in a non-differentiable way, for a given loss calculation at an individual update step, the dia-
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grams are robust to infinitesimal perturbations [42], keeping the gradients of our loss term
well-defined.

�.�.� Stability

Even though persistence diagrams are stable with regards to perturbations in the data, in
this section we show that persistence diagrams are also robust under subsampling of the
underlying data, which in turn justifies the scalable computation of our loss on the mini-
batch level.

Theorem 1. For a point cloud X of size n, let X(m) ⊆ X denote a subset of X of size m that
we refer to as subsample. Comparing the persistence diagrams of X and X(m), we have the
following bound:

P
(
db

(
DX,DX(m)

)
>ε
)
≤ P

(
dH

(
X,X(m)

)
>2ε

)
, (6.11)

where db(·, ·) represents the bottleneck distance (see Equation 6.4) between the two persistence
diagrams and dH(·, ·) denotes the Hausdorff distance between the point cloud and its subsam-
ple, i.e.,

dH(X,Y ) := max{ sup
x∈X

inf
y∈Y

d(x, y),

sup
y∈Y

inf
x∈X

d(x, y)}
(6.12)

using a base distance d(x, y), e.g. the Euclidean distance.

Proof. Chazal et al. [30] proved the stability of the calculation of persistent homology in finite
metric spaces. Specifically, for two metric spaces X and Y , we have

db
(
DX ,DY

)
≤ 2 dGH(X,Y ), (6.13)

where dGH(·, ·) represents the Gromov-Hausdorff distance, which is defined as the lower
bound of theHausdorff distance evaluated over all isometric embeddings of the spacesX and
Y [23]. However, dGH is difficult to compute. Furthermore, since Y = X(m), both spacesX
and Y share the same metric, in our case. By definition, we have dGH(X,Y ) ≤ dH(X,Y ).
Together with Equation 6.13 we can bound the bottleneck distance of the diagrams directly
with the Hausdorff distance

db
(
DX ,DY

)
≤ 2 dH(X,Y ), (6.14)
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from which the claim in Equation 6.11 follows upon taking probabilities of both the left and
right hand side of Equation 6.14. �

Theorem 1 relates the comparison of persistence diagrams to the Hausdorff distance, a
distance measure on the underlying point clouds. In the following theorem, we further in-
vestigate theHausdorff distance between a point cloud and its subsample to provide an upper
bound of its expectation.

Theorem 2. Given a metric d, let A ∈ Rn×m denote the pairwise distance matrix between
a point cloud X and its subsample X(m) of size m. A is sorted such that the first m rows
coincide with them×m distance matrix ofX(m). We assume that elements aij for i > m are
randomly drawn samples of a distribution of distances FD with non-negative support. Further,
the row minima δi of rows i > m follow the distribution F∆. Let Z := max1≤i≤n δi follow a
distribution FZ . Then, the with respect to FZ expected Hausdorff distance between X and its
subsample X(m) for m < n can be bounded with

E
[
dH(X,X(m))

]
= EZ∼FZ

[Z] (6.15)

≤
+∞∫
0

(
1− F∆(z)

n−m
)
dz, (6.16)

where

F∆(z) ≈ −
m∑
k=1

(
m

k

)
(−FD(z))

m−k. (6.17)

We prepare the subsequent proof of this claim by first highlighting two observations.

Observation 2. Due to the relation X(m) ⊆ X , it follows that

sup
x′∈X(m)

inf
x∈X

d
(
x, x′

)
= 0. (6.18)

Therefore, the computation of the Hausdorff distance can be simplified such that

dH

(
X,X(m)

)
:= sup

x∈X
inf

x′∈Xm
d
(
x, x′

)
. (6.19)

Observation 3. As the point clouds of consideration represent finite sets, the infimum and
supremum operations coincide with the minimum and maximum, and for the sake of better
readability can be replaced, accordingly.
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Building on these observations, we can decompose the calculation of dH
(
X,X(m)

)
into

the following three steps:

1. Given a base distance d, we compute the n×m distance matrix A between the point
cloud X and its subsample X(m).

2. For each sample inX , we determine the minimal distance to them points ofX(m) via
the extraction of the row minimum of A in order to collect all minimal distances in a
vector δ ∈ Rn.

3. We retrieve the desired result as the maximal entry of δ, max(δ) = dH
(
X,X(m)

)
.

Proof. Leveraging Observations 2 and 3, we arrive at the following simplification for the
Hausdorff distance:

dH

(
X,X(m)

)
:= max

i,1≤i≤n

(
min

j,1≤j≤m
(aij)

)
. (6.20)

Since diagonal entries aii = 0 for 1 ≤ i ≤ m, the minimal distances of the first m rows
must be 0. Therefore, the outer bracket maximum in Equation 6.20 will be determined by
the last n − m row minima {δi | m < i ≤ n} of A where δi := min

1≤j≤m
aij . Those exact

minima were assumed to follow a distribution F∆(y) for which we have

F∆(y) = P(δi ≤ y) = 1− P(δi > y) (6.21)

= 1− P

(
min

1≤j≤m
aij > y

)
(6.22)

= 1− P

⋂
j

aij > y

 (6.23)

≈ 1− (1− FD(y))
m (6.24)

= −
m∑
k=1

(
m

k

)
(−FD(y))

m−k, (6.25)

where Equation 6.24 is approximated by assuming independent sampling from FD. Next,
considering Z := max1≤i≤n δi, we derive how Z is distributed:

FZ(z) = P(Z ≤ z) = P

(
max

m<i≤n
δi ≤ z

)
(6.26)

= P

 ⋂
m<i≤n

δi ≤ z

 (6.27)
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We continue by approximating Z with Z ′ where we impose that the row minima δi are
sampled i.i.d. from F∆. In practice, the entries of the last n−m rows of A are not indepen-
dent, but carry information about each value, for instance via themetric triangular inequality.
If we nevertheless assume i.i.d., we have:

FZ′(z) = F∆(z)
n−m. (6.28)

As Z ′ has non-negative support, the expectation evaluates to:

EZ′∼FZ′

[
Z ′] = +∞∫

0

(1− FZ′(z)) dz (6.29)

=

+∞∫
0

(
1− F∆(z)

n−m
)
dz (6.30)

Next, to understand how the assumption of i.i.d. sampled distance values (and therefore
row minima) affectsZ ′ compared toZ , we consider a set of points of the point cloud and the
metric d. Let x1, x2, x3 ∈ X be three points of the finite metric space (X, d). Furthermore,
we abbreviate dij = d(xi, xj). We further assume that d12 happens to be a row minimum δi

as defined above. The triangular inequality tells us that d23− d13 ≤ d12 ≤ d23+ d13. There-
fore, d12 does not represent a random sample from the empirical distributionF∆, but instead
a sample of the constrained distribution F∆| d23− d13 ≤ z ≤ d23+ d135, where both tails
of the distribution F∆ are cropped away. Since we construct Z ′ by assuming that the row
minima δi were sampled independently, the row minima underlying Z ′ would keep the tails
of the distribution F∆ which implies that the empirical (sample) maximum of the row min-
ima are overestimated in Z ′. Hence, the expectation of the maximal δi, i.e., E[Z ′], is (with
high probability) an upper bound for the actual E[Z], and therefore for E

[
dH(X,X(m))

]
.

�

In Moor et al. [141], Section A.3 of the Supplementary materials, we further investigated
empirical convergence rates of the Hausdorff distance between a point cloud X and its sub-
sample X(m). Finally, we conclude that subsampling a point cloud is stable and a suitable
approach for approximating the topological features available in the full point cloud.

5For the sake of the argument, we denote only one such constraint, however the metric induces numerous
constraints of this kind.
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�.�.� Scalability and runtime

We briefly discuss scalability considerations. For 0-dimensional features, i.e., connected
components, we only need to consider edges of the VR complex that lead to death events in
the persistence diagram, and are captured in π0. The computation of these edges is efficient
in that the worst-case runtime complexity is O

(
m2 · α

(
m2
))

, for a mini-batch size m and
where α(·) represents the inverse Ackermann function which grows extremely slowly [43,
Chapter 22]. For 1-dimensional features, i.e., cycles, we can obtain edges by pairing tri-
angles with its edge that has the largest weight (in our case, simply the largest edge). This
method can be generalised to higher dimensions by always pairing the corresponding sim-
plex with an edge. However, in preliminary tests the inclusion of 1-dimensional features was
not beneficial and only increased the runtime. Therefore, in our current setup we focused on
0-dimensional features.

�.� Related work

Topological data analysis and specifically persistent homology (PH) have gained attention
across multiple areas of machine learning research and applications. Conventionally, PH
was frequently used to analyse topological features of a dataset in a post-hocmanner. Several
works characterised the topological features of high-dimensional data as compared to em-
beddings [108, 154, 170, 171, 215]. PH has also been used to analyse the training as well the
decision boundary of deep neural networks [77, 161, 172]. Our work differs from these pre-
vious publications in that our differentiable regularisation term constrains the model during
training in order to preserve topological features. Furthermore, several publications have ex-
plored how to integrate topological features into classifiers in order to improve performance.
For instance, Hofer et al. [89] proposed a layer for neural networks to learn projections of
a persistence diagram. Several strategies to vectorise persistence diagrams have been pro-
posed, making it easier to include fixed-dimensional topological feature representations in
classifiers [1, 26, 27]. These approaches, however, treat a persistence diagram as a fixed ob-
ject, without the possibility of adjusting the input data in order to retrieve desired topologi-
cal features in the diagrams. Such adjustments were only recently introduced. For instance,
Poulenard et al. [159] optimised real-valued functions using their topology. While this can
be seen as the first method for aligning persistence diagram by means of changing the input
data, the method is limited by certain restrictions such as that the connectivity of the data
needs to be known, or that it requires scalar-valued functions. Working directly with dis-
tances using the VR complex, we side-step this issue. While Hofer et al. [88] also proposed
a differentiable loss, their formulations aims at enforcing a single scale η in latent encodings
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6.6 Experiments

that are used in a downstream classification task. In contrast to enforcing a single scale, we
learn latent codes that preserve topological features at multiple scales as available in the data
space.

�.� Experiments

In our experiments, we consider the unsupervised task to learn low-dimensional embeddings
from data that best preserves the their topological features.

�.�.� Experimental setup

In the following, we introduce the considered datasets, baselines, the training procedure, as
well as our evaluation strategy.

Datasets First, we create a Spheres dataset consisting of a set of 100-spheres living in 101-
dimensional space. Specifically, ten smaller spheres (each sampled at 500points) are enclosed
by one larger sphere (sampled at 5,000 points). The small spheres were defined by a radius
r = 5, whereas each sphere was translated by a vector of Gaussian noise that per sphere was
sampled once from the distribution N

(
0, I 10√

d

)
with d = 101. To make this dataset topo-

logically more interesting, we added a larger sphere that enclosed the smaller spheres with a
radius 5r. As for real-world datasets, we considered three image datasets, Fashion-MNIST,
MNIST and CIFAR-��, which could be of particular interest to our approach since natural
images have been shown to evolve along low-dimensional manifolds [156].

Baselines and training As for comparison partners, we include several techniques
for dimensionality reduction. This includes uniform manifold approximation and
projection (UMAP) [135], t-distributed stochastic neighbour embedding (t-SNE) [132],
Isomap [194], principal component analysis (PCA), and classical autoencoders (AEs). By
applying our topological regularisation term to the same autoencoder architecture, we
create a topological autoencoder (TopoAE).

For maximal interpretability and comparability, we restricted each method to a two-
dimensional latent space. If available, we used existing splits of the data and otherwise
split the data into a 90% training set and 10% testing set. On top, we held out 15% of the
training set as a validation set which was used to tune the hyperparameters. By dividing
the topological loss term by the batch size m, we disentangled the regularisation strength
λ from the batch size. All included neural networks employed batch normalisation [96]
and were fitted using ADAM [112]. Due to t-SNE not being intended for the application
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6 Topological representation learning

to unseen data, we evaluate this baseline only on the training split of the data. Due to
significant scaling issues with Isomap we were not able to perform a hyperparameter search
for this method on the real-world image datasets. Therefore, we included this approach only
in the analysis of the synthetic dataset. For further details regarding the model architectures
and hyperparameter tuning, please refer to [141, Section A.6].

Evaluation We measure the quality of latent embeddings in the following three ways.
We consider i) visualisations of the low-dimensional representations, ii) quality metrics for
dimensionality reduction, and iii) the reconstruction error (Data MSE) which is computed
between the input and reconstructed data, assuming amethod could return reconstructions6.

As for evaluation metrics contained in item ii), we investigate a battery of non-linear di-
mensionality reduction metrics [72] that can be obtained when comparing the data space
with the latent space. This includes the

1. root mean square error (`-RMSE) between the distance matrices of the data space and
the latent space,

2. mean relative rank error (`-MRRE), which quantifies changes in ranks of the distances
when comparing the input space with the latent space [120],

3. trustworthiness (`-Trust) [202], a measure that which measures how well neighbour-
hoods (in terms of k nearest neighbours) are preserved when moving from the data
space to the latent space, and

4. continuity (`-Cont) [202], which analogously to `-Trust measures to which degree
neighbourhood relations are preserved when moving from the latent space to the data
space.

All of the above measures are prefixed with an ` to emphasise that they compare the input
space with the latent space, i.e., reconstructions that are obtained by mapping back from the
latent space to the data space are not taken into account here. In addition, we compute a
Kullback–Leibler divergence of the distributions of densities compared between the input
space and the latent space. Inspired by the distance to a measure density estimator [29, 31],
for a point cloud X , we calculate the density of a point x ∈ X with

fσX(x) :=
∑
y∈X

exp
(
−σ−1 dist(x, y)2

)
, (6.31)

6This was the case for PCA and all autoencoder-based models.
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with σ ∈ R>0 indicating a length scale, and where for dist, we used the Euclidean distance,
normalised to the range [0, 1]. We then evaluate the mismatch between the density distribu-
tions of two point clouds X and Z with

KLσ := KL
(
fσX ‖ fσZ

)
, (6.32)

where it is desirable to recover a small divergence, indicating that the density estimates of the
low-dimensional encodings in Z are similar to the densities in X . Furthermore, to account
for different scales of the data, we report several choices of σ, where we minimised KL0.1 as
the objective of our hyperparameter search.

�.�.� Results

We organise this section such that quantitative results (Section 6.6.2) are followed by quali-
tative visualisations of the latent embeddings (Section 6.6.2).

Quantitative results

We report our quantitative results in Table 6.1. We find that TopoAE is able to preserve the
data density at multiple scales (in terms of KLσ). Also, we observe competitive values for
continuity (`-Cont) and the reconstruction error (Data MSE). The second measure reveals
that our imposed topological constraints do not lead to large impairments of the reconstruc-
tion quality. Further classical measures (starting with `) favoured the baselines, in particular
the training performance of the t-SNE baseline. Interestingly, in the following section wewill
observe how the classical measures can fail at detecting crucial structural information when
the manifold underlying the data is actually known.

Visualising the latent space

Figure 6.5 illustrates the latent spaces obtained for the Spheres dataset. We find that only our
method, TopoAE, was able to appropriately capture the nested configuration of the sphere
manifolds. In contrast, t-SNE, a baseline that on this dataset shows excellent results in terms
of the classical metrics of dimensionality reduction, fails to preserve this nesting relation-
ship by severing the outer sphere (shown in dark blue). Interestingly, we observe that the
KL-divergence is well aligned with the visual assessment that our method best preserves the
structure of the known manifolds underlying this dataset, which makes the KL term a mea-
sure of particular interest in datasets, where themanifolds are unknown. Notably, since base-
lines such as t-SNE and Isomap faired well with regard to several classical measures, the fact
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that these methods could not capture the global structure of the dataset (whereas the outer
sphere accounted for half of the dataset!) suggests that the classical measures may not faith-
fully track the relevant structural information at hand. For the Spheres dataset, we provide
additional results in Section A.3 of the Supplementary materials. This includes an ablation
of TopoAE by considering a linear autoencoder with a single hidden layer as well as a com-
parison to the PHATE method [137], both displayed in Figure A.20.

The visualisations for Fashion-MNIST are shown in the left column of Figure 6.6. When
comparing TopoAE with AE, its unregularised counterpart that focuses only on minimis-
ing the reconstruction error, we observe that TopoAE is additionally constrained to preserve
structure leading to a more organised latent space, resulting in visually similar patterns as
with UMAP, the one baseline which also takes a topological perspective on the data [135]. In
addition, t-SNE shows a tendency to fragment a cluster of one class into several subgroups.
As this type of artefact is commonly encountered with t-SNE, this pattern is likely not reveal-
ing interesting substructures of the underlying manifold. The center column of Figure 6.6
represent the embeddings for the MNIST dataset. Here, we observe that by means of pulling
apart clusters of distinct classes, in the embeddings of the non-linear baselines, some spatial
relationships between classes are lost, as compared to PCA or TopoAE. Finally, the right col-
umn of Figure 6.6 visualises the embeddings of CIFAR-��, where we observe that this dataset
is hard to embed into two dimensionswithout supervision. Nevertheless, we observe that our
method identified a linear structure potentially dividing the latent space. Since TopoAE is
designed to preserve shapes and structures of the input space, this pattern could be indicative
of the manifold structure underlying this dataset.

�.� Discussion

In this chapter, we introduced topological autoencoders (TopoAEs), a novel deep learning
method for learning low-dimensional representations of data that preservemulti-scale topo-
logical information, therefore revealing complex structures in otherwise intangible high-
dimensional data spaces. We demonstrated that under weak assumptions, our topological
regularisation term based on persistent homology can be integrated into an end-to-end dif-
ferentiable model trained using backpropagation. Furthermore, we showed that the persis-
tent homology of a dataset can be robustly approximated on the mini-batch level, indicating
that our scalable loss term (that only requires samples from a mini-batch) is theoretically
founded and actually tracks the topological features of the data space.

As for empirical results, we found that our method was uniquely capable of recovering
complex relationships between samples from nested sphere manifolds in high dimensions.
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Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

Spheres

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4 –
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
TSNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1 –
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3 –
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

F-MNIST

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844
TSNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3 –
UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7 –
AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020
TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

MNIST

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227
TSNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9 –
UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6 –
AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373
TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388

CIFAR

PCA 0.591 0.020 0.00023 0.119 0.931 0.821 17.7 0.1482
TSNE 0.627 0.030 0.00073 0.103 0.903 0.863 25.6 –
UMAP 0.617 0.026 0.00050 0.127 0.920 0.817 33.6 –
AE 0.668 0.035 0.00062 0.132 0.851 0.864 36.3 0.1403
TopoAE 0.556 0.019 0.00031 0.108 0.927 0.845 37.9 0.1398

Table 6.1: Quantitative evaluation of the latent embeddings in terms of how well they preserve the
structure and neighbourhoods of the high-dimensional input data (see Section 6.6.1 for a
description of the evaluation metrics). Hyperparameters were tuned by minimising KL0.1.
For each measure, shown in a separate column, we display the winner both underlined and
bold, whereas the runner-up is shown in bold. For a more detailed version of this table
(including variances and more scales), please refer to [141, Table A.2].
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This result is interesting also from a manifold learning perspective, where it remains chal-
lenging for models to seamlessly cope with multiple manifolds in the domain [52]. On real-
world image data, we found that our topological loss results in competitive performance as
measured with several quality metrics (for instance the preservation of densities at multiple
scales), while not impairing themodels ability to reconstruct data. Both in synthetic datasets,
where the to-be-learnedmanifold is known, aswell as in real-world datasets, TopoAE learned
faithful and interesting representations. Compared to several non-linear comparison part-
ners which focus on local scales, our method did not pull apart clusters of distinct classes,
but organised them in entangled structures, that plausibly reveal a more realistic depiction
of the underlying manifold (as could be validated in the case of the Spheres dataset).

To keep our experimental setup fair for non-topologicalmethods, we intentionally omitted
evaluation measures that specifically compare the topological features between the data and
latent spaces. However, in an auxiliary analysis, we empirically confirmed that our method
indeed preserves topological features in the latent space (see [141, Section A.10]).

Future work We formulated our topological loss in a highly generic manner. In essence,
wemerely require data objects (i.e., encoded as tensors that can be parsed by standard neural
networks) and distances between these objects. Therefore, thismethod can be integrated into
architectures different from the ones showcased in this chapter. To give a few examples, this
constraintmay be applied to variationalmodels ([141, FigureA.3]), or can evenmake simpler
methods, such as PCA, topology-aware ([141, Figure A.6]). Nevertheless, deploying our loss
term to settings with more involved architectures remains an exciting route to be explored
in future work. Furthermore, in our current formulation the loss term largely depends on
having chosen an appropriate distance function in the data space. Following up on this,
we found that the euclidean distance performs surprisingly well on image datasets when
compared to perceptually inspired distances [140].

As one limitation to our method, we currently focus on 0-dimensional features, while
including higher-dimensional features could lead to scalability issues if the mini-batch size
becomes large. However, in our current setup, we observed that for smaller batch sizes the
runtime even increases, i.e., the efficiency of larger batches still dominated the increased cost
of computing larger VR complexes. Effectively scaling to higher-dimensional features could
be achieved with approximations to the persistent homology calculation [41], or by means
of parallelism [123] and GPU acceleration [219].

Finally, we envision that topology-aware models will offer deep insights into challenging
and complex biomedical datasets by means of adding a structural perspective that is typi-
cally neglected by conventional methods. Initial works on topology-aware machine learning

128



6.7 Discussion

(e.g., topological autoencoders [141], topological graph neural networks [92], or topological
attention models [217]) have brought forth a rich toolbox of methods that will be exciting to
employ in biomedical datasets in order to uncover and fully leverage the shape and structure
of these data.
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a) PCA b) Isomap

c) t-SNE d)UMAP

e) AE f) TopoAE

Figure 6.5: Visualisations of the two-dimensional latent embeddings of the Spheres dataset. We ob-
serve that only our method, TopoAE was able to accurately capture the nested configura-
tion of the sphere manifolds. In comparison, t-SNE, a method that performs well on this
dataset in terms of classical dimensionality reduction metrics, tears the enclosing sphere
apart.
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Figure 6.6: Visualisations of the two-dimensional latent embeddings for the datasets
Fashion-MNIST (left column), MNIST (center column), and CIFAR-�� (right col-
umn). The corresponding method is indicated above each row.





� Conclusion

At the beginning of this dissertation, we outlined a set of challenges that arise when consid-
ering clinical prediction problems in a data-driven way using machine learning (ML). This
includes

â Datasets: the lack of accessible, and annotated large datasets,

â Tasks: the difficulty to identify a meaningful prediction task which can plausibly pro-
duce clinical value,

â Labels: the lack of ground-truth labels that can be used for training a ML model,

â Validity: the challenge to learn models that generalise to unseen data in spite of a
variety of distribution shifts at hand, and

â Missingness: the problem of accounting for missing data, as well the sampling infor-
mation its conveys.

Over the course of this thesis, we have encountered these problems, and have proposed
solutions tomitigate them. In the first part, whichwas focused on applications, we developed
clinical prediction models for the classification of patient time series, specifically in order to
detect sepsis. In a second, more method-focused part, motivated by the learning of robust
and uncertainty-aware representations during Part I, we consider model-internal states (as
opposed to predictions that themodels output), i.e., we focus on learned representations that
lead to beneficial downstream performance, or that more faithfully reflect the input data.

This chapter serves for collecting and summarising the findings of the individual chapters
of this dissertation. Finally, we conclude this thesis by envisioning future directions that build
on the foundations laid out by this work.

�.� Part I: Clinical time series classification

The first part of this thesis was dedicated towards the classification of clinical time series.
First, we defined time series in a way that naturally extends to the intricacies encountered in
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real-world time series data (such as missingness, varying lengths of time series, incomplete
observations, multi-dimensionality etc.). Then, we introduced different types of time series
classification tasks. We distinguished between

1. whole-series classification, where a time series is classified as a whole (this was the case
in Chapter 5),

2. window-based classification, where only a time window up until a certain time is used
for classifying the time series (for example, a time window up until n hours before
sepsis onset, as described in Chapter 3), and finally

3. per-timepoint classification, where predictions are made at each time step of a time
series, which was represented in Chapter 4.

We then gave an overview of existing ML approaches for time series classification. Even
though we can organise these approaches into groups such as feature-based or distance-
based, given the modularity and flexibility that recent deep learning frameworks provide,
these boundaries have started to blur. Having introduced time series classification, we next
introduced our application case of Part I, sepsis prediction.

Sepsis, a potentially fatal complication to infection, has been an age-old medical conun-
drum and currently represents a public health crisis [103]. Clinicians are challenged to di-
agnose sepsis in its early stages, when organ damage is still reversible, and where early inter-
ventions still can save lives [54]. However, due to sepsis being a heterogeneous syndrome,
and since in its early stages, sepsis typically presents with unspecific signs and symptoms (e.g.
confusion or fever), it remains notoriously hard to detect sepsis early. These circumstances
make the early prediction of sepsis an interesting machine learning problem, that promises
to be a task which can plausibly lead to clinical value. This is contrasted by efforts to predict
endpoints that are easier to derive as well as easier to predict but may to some degree lack
the perspective to provide clinical utility. To give an example, the prediction of diagnoses de-
fined by billing codes is subject to several pitfalls: even though they are abundantly available
in EHR datasets, they generally lack a temporal specification (as the billing code is assigned
at the end or after the hospital stay)1, are subject to interpretation biases and obligemonetary
incentives [57, 155].

In Chapter 3 and 4, we presented two sepsis prediction studies. In the following, we reca-
pitulate their findings, and put them into context.

1This could render an early prediction scenario futile.
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7.1 Part I: Clinical time series classification

�.�.� Uncertainty-aware recognition of sepsis with Gaussian Process
Temporal Convolutional Networks

In Chapter 3, we presented a single-centre study for the early prediction of sepsis, that for the
purpose of this part of the dissertation served as a proof-of-concept study. We investigated
whether vital and laboratory measurements at time windows before sepsis onset, compared
to matched time windows in controls, are predictive of sepsis. Moreover, we addressed the
data missingness problem by employing Gaussian process (GP) adapters, an uncertainty-
aware neural network framework where as a first layer, a GP imputes the irregularly spaced
and incompletely observed time series at evenly spaced time locations, andwhere subsequent
layers2 classify the imputed (or latent) time series. By introducing dilated causal convolutions
to this framework, which exhibit a strong temporal inductive bias [7], we proposed MGP-
TCN. In our experiments, we found that MGP-TCN outperforms MGP-RNN, the previous
state-of-the-artmethod, in particular earlier than 4hours before onset. We also observed that
DTW-kNN, a classical distance-based classifier without employing deep learning achieved
convincing results, even slightly outperforming MGP-TCN in terms of AUPRC at certain
hours of the horizon analysis over 7 hours preceding sepsis onset.

In this chapter, we have encountered several core challenges: the creation of an annotated
and reusable sepsis dataset, the implementation of hourly resolved sepsis labels that make
an early prediction task possible, as well as methods to mitigate and leverage informative
missingness. Nevertheless, we noted that the presented study has limitations. Our prediction
setup, i.e., window-based classification using data up until n hours before (matched) sepsis
onset, reveals whether there are pre-onset signals predictive of sepsis. However, this setting
is different from a prospective evaluation, where we do not know in advance when a sepsis
onset will occur, and where models are tasked to continuously monitor patients in order to
raise early alarms. Second, the setting of this study allowed for the inclusion ofmethods such
as GP adapters or DTW-kNN that may be efficiently trained for time series classification
(whole series or window-based), but which do not scale beneficially when reformulating
the prediction problem into an online prediction task. Notably, even though MGP-TCN
is a sequence-to-sequence model that during training could output predictions at each time
location of the input data, these predictionswould not be causal in that theGPwould leverage
data from the future. As elaborated in Section 3.6, we expect that it could be an exciting route
for future work to develop and employ online variants of the methods investigated in this
chapter. We envision that the scalability of the DTW-kNN approach could be improved if
during training a disentangled subset of patients (or even latent time series templates) was

2They can be interpreted to represent a downstream classifier.
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learned that are used for the nearest neighbour search step upon prediction which could
achieve a runtime complexity constant in the number of time series (i.e., patients) in the
training set. The scalability ofGP adapters could be further improved by exploring alternative
GP formulations beyond standard approximation schemes, for instance with state-space GPs
that could lead to a runtime that is linear in the number of training points [188].

�.�.� Predicting sepsis in multi-site, multi-national intensive care
cohorts using deep learning

In Chapter 4, we conducted a multi-centre study for the prediction of sepsis. This involved
the harmonisation and annotation of five ICU datasets that together represent the first inter-
national multi-centre cohort for sepsis prediction. Among the previously listed challenges,
this chapter was foremost focused on validity and datasets. Specifically, we were wonder-
ing whether we can train ML models for the early prediction of sepsis that generalise to
new, previously unseen sites. This was motivated by our systematic review on sepsis predic-
tion [143], where we found that most sepsis prediction studies did not (and plausibly could
not) perform an external validation. In order to conduct this validation, we harmonised ICU
data from five databases, resulting in the to-date largest, international dataset for sepsis pre-
diction. In terms of prediction methods, we then devised a deep self-attention model and
included several baseline ML models, as well as several clinical baseline scores. In an exten-
sive internal and external validation, we found that the attentionmodel indeed can generalise
to unseen sites when leveraging a federated learning setting, where models trained on differ-
ent sites are pooled upon external testing on a new site. We further highlighted that given
certain non-reducible heterogeneities between the datasets (alternative suspected infection
implementation, differences in the cohort composition, etc.), it is not surprising that train-
ing and testing on pairs of datasets exhibitedmoremoderate performance than the federated
approach. Moreover, we observed that pooling on the model level even led to superior per-
formance than pooling on the dataset level, which required the costly retraining of models
for each combination of datasets to be pooled.

In this project, we provided a platform for performing external validations on a
multi-centric ICU cohort featuring data from three countries: the US, the Netherlands, and
Switzerland. It is the hope of the authors of this study, that this platformwill facilitate further
validation studies, which are urgently needed as even deployed models have been shown to
be insufficiently validated [211]. Furthermore, the findings of this study are well-aligned
with recent studies that employ federated learning to leverage multi-centric data in a
differentially private manner [46, 173]. Albeit we have created and analysed a multi-centric
cohort for sepsis prediction in this chapter, we still have only scratched the surface. For
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instance, given the employed online prediction task which was designed to closely reflect
a real-time deployment scenario, the next step will be to prospectively validate our models
to check whether early alarms for sepsis indeed lead to a benefit for the hospitalised
patients. Previously, a small randomised controlled trial indeed suggested a beneficial effect
on mortality and length of stay for the InSight model, a closed-source proprietary risk
model [183]. Furthermore, a relevant limitation of the presented multi-centre dataset is the
foremost Caucasian cohort, collected in western countries. Developing sepsis prediction
models on more inclusive cohorts and validating them also on data distributions from
non-western countries will considerably boost the global relevance, generalisability, and
applicability of such models. Another interesting line of follow-up research will be to more
closely consider the domain adaptation problem, and to characterise transfer failure modes,
i.e. to identify situations where model transfer does not work, in order to develop dedicated
mitigation strategies.

Regarding the experimental setup, one interesting area for future work will be the specifi-
cation of the prediction target. Morrill et al. [145] have proposed to replace binary prediction
targets with a continuous target (based on a domain-specific utility score) transforming the
sepsis prediction problem into a regression problem. While such continuous targets may
account for more granularity (e.g., how useful it would to raise an alarm at which time), the
underlying utility functions are essentially hand-crafted and are challenging to define in an
objective manner [166]. As a further obstacle, we observed that this existing utility score
for sepsis does not generalise to new datasets with different dataset statistics (prevalence of
sepsis, length of stay, etc.) [166]. It is a vision of the author of this thesis, to leverage the do-
main knowledge of clinical experts in a statistically sound way to create novel utility scores
that allow for more fine-graded supervision during training, while explicitly depending on
dataset statistics, such that it can be easily adapted to new data distributions. Furthermore, it
will be interesting to consider strategies to improve calibration already during training. For
instance, overconfident alarms could be counteracted with label smoothing strategies [146].

As a notable take-away from this study, we conducted a successful external validation de-
spite label shifts between the datasets. This suggests that our models exhibit a certain robust-
ness even under moderate changes in the label implementation. Counterfactually, this find-
ing could make it easier to generalise to new cohorts from countries not included in the cur-
rent dataset, where a certain label and dataset shift is to be expected. Given that our federated
learning strategy showed convincing results—even compared to the pooling of the underly-
ing data—we envision that clinical predictionmodels could be scaledmassively via the distri-
bution of i) a standardised protocol for collecting and preprocessing the data, ii) code for the
development of local models, and iii) pretrained models for local evaluations. As opposed to
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centralised multi-centre studies (as the one conducted in this thesis), in such a decentralised
scenario it would be drastically easier to guarantee the safety of patient data as it never had to
leave the walls of the respective source hospital. While a decentralised training and sharing
of models is rather straightforward, decentralised preprocessing and data harmonisationmay
turn out to be more challenging, as preprocessing and data cleaning strategies are frequently
devised on the fly to account for dataset-specific peculiarities and artefacts. Nevertheless, we
hope that our finding may serve as further piece of evidence to motivate federated learning
in order to better protect sensitive patient data.

�.� Part II: Temporal and topological representation
learning

In Part I we took an “application-centred” view, focussing on early predictions in the clinical
context. In contrast, Part II of this dissertation is taking a “model-centred” view. We explored
data representations that deep neural networks learn by considering two perspectives. First,
in Chapter 5 we investigated representations that are learned on time series. In Chapter 6,
we developed amore general framework for the learning of low-dimensional representations
that aim to preserve the structure of the data space. These two chapters are complementary,
not only in that the first one attends to time series, while the second one refers to any data
space equipped with a distance measure. Also, the first chapter considers representations
in an instrumental way, i.e., to optimise a downstream classification task, while in the sec-
ond chapter of Part II, we intrinsically want to learn faithful representations that reflect and
preserve the data space.

�.�.� Path signatures for time series representation learning

Our Chapter 5 was dedicated to path signatures, a rich and theoretically well-studied trans-
form rooted in rough path theory. We elaborated on several interesting properties of the
signature, such as i) uniqueness, i.e., any path is fully determined by its signature, or ii) the
signature being a universal non-linearity, in that every function of a path can be arbitrarily
well approximated by a linear map on the signature. Recent studies employing the signature
observed beneficial effects in terms of predictive performance [19, 145]. However, despite a
rich theory and successful applications, in this chapter we found that the signature is plagued
by an issue that has been neglected so far. Specifically, the signature acts on continuous paths,
but in practice is only provided discrete time series observations such that continuous paths
are constructed implicitly. We proposed tomake this step explicit by formulating this step as a
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path imputation, and considered several path imputation strategies. Experimentally, we clas-
sified irregularly spaced time series using signature models and found that signature models
are indeed impacted by the choice of path imputation, in particularmore shallowmodels. By
proposing a novel GP adapter variant, GP-PoM, which allows for the propagation of uncer-
tainty at each prediction step, we improved the robustness of signature models when dealing
with irregular time series, thereby proposing amitigation strategy for the identified problem.

In this chapter, we encountered the challenge of data missingness and showed that when
dealing with it implicit choices can have a drastic effect on performance, in particular when
imputing a continuous path of data. While the task of converting discretely observed data
into a continuous path in data space may seem particularly relevant when dealing with sig-
natures, one could argue that a related phenomenon is also occurring in the context of other
modelling architectures, such as convolutional or recurrent neural networks. For instance,
even though convolutions are frequently considered as discrete sums, in essence, theymerely
represent a numerical quadrature of the continuous integral cross-correlation between a path
in data space with some learnable filter. There is initial work to explore continuous formu-
lations to better model irregular data [55], but meanwhile, with regular convolutions we are
implicitly treating data observations as a continuous path in data space. Similar connections
between recurrent architectures and their continuous analogues can be made [110]. In con-
clusion, for signature-models as well as for non-signature models, the implicit usage of data
as a continuous path evolving through data space seems to omnipresent whilst also being
swept under the rug for convenience. While in this chapter, we have focussed on signature
models and the time series domain, we nevertheless have demonstrated that this reoccurring
pattern deserves further attention, beyond the analysis of temporal data.

For future work, it will be an exciting to route to apply signatures to paths in low-
dimensional latent spaces, to paths on time-varying graphs, or to paths that arise in
computer vision (changing poses) or computer graphics (paths of rendered objects). Initial
works relating the signature with persistent homology suggests that there is a rich interplay
to be further investigated [39], for instance to recover a fixed-dimensional representations
of paths in topological feature spaces. As a further area of development, signatures may
be used to construct time series kernels [113]. Given Chen’s property, i.e., the fact that
the signature of two concatenated paths (or time series subsequences) can be efficiently
computed using the signatures of the individual paths, we envision that kernels acting on
time series subsequences could be efficiently augmented using the signature [15].
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�.�.� Topological representation learning

In Chapter 6, we considered learned representations through the lens of topological data
analysis. We noted that representation learning may not only be directed towards optimis-
ing a downstream task, but that it can also be of interest to learn embeddings that reflect the
structure of the input space—be it to learn the structure of the data manifold, or to reduce
the dimensionality in high-dimensional datasets that are challenging to visualise. In this
work, we proposed a novel differentiable loss term that incentivises autoencoders to learn
low-dimensional embeddings that preserve topological features of the data space. By im-
posing the (weak) assumption that persistence diagrams have unique entries (i.e., we ob-
serve unique distances in the Vietoris–Rips complex (VR) filtration), we showed that this
loss term is indeed differentiable and can be integrated in a neural network architecture
that is trained using backpropagation. Our experiments showed that this method, topo-
logical autoencoder (TopoAE), was the only method that could preserve complex nesting
behaviours of sphere manifolds. On real-world image datasets, we observed that TopoAE
led to favourable embeddings that best preserved density estimates of the data space.

The presented method is defined in a generic way; we merely require data objects and a
distance function. Therefore, for future work it will be interesting to apply thismethod to dif-
ferent types of data such as time series, biological sequencing data, or graph-structured data.
While the topological loss of TopoAE considers the structure that emerges in point clouds
of data points, an interesting alternative view point will be to learn topological features of
individual data points. For instance, the author of thesis has contributed to a recent study
that proposed a topology-aware graph neural network layer that increases the expressivity of
conventional graph neural networks [92]. We further envision that topological representa-
tion learning will offer exciting new perspectives for machine learning on time series, be it
via visibility graphs, level set topologies, point cloud representations of time series (for in-
stance, via delay embeddings), or by directly integrating topological features into time series
models.

�.� Outlook

In this dissertation, wefirst investigated the classification of clinical time series usingmachine
learning. To this end, we considered the prediction endpoint, sepsis, the early identification
of which remains challenging and promises clinical value. Across the first part of this thesis,
we observed and addressed key challenges that the sepsis prediction literature has been fac-
ing. Most prominently, we presented a harmonised multi-centric dataset that allowed us to
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conduct external validations across countries which the sepsis prediction literature has been
systematically neglecting due to the lack of access to annotated validation data.

Moreover, in this thesis we have encountered data missingness problems, and have pro-
posed mitigation strategies by leveraging Gaussian processes that are trained by a down-
stream task. In the second part of the dissertation, we further investigated how models actu-
ally interpret and represent input data, first with the example of irregularly spaced time series.
For that, we learned time series representations using path signatures, a powerful framework
for encoding paths of data. Furthermore, we observed that the application of this transform
carries relevant but implicit decisions about how the raw and irregularly observed input data
is interpreted. Again leveraging the uncertainty awareness of Gaussian processes, we devel-
oped a strategy tomakemodels employing the signature, which thereby work on paths, more
robust. As a final outlook of this thesis, we aimed to learn representations that not only ac-
count for irregularities in the input data, but that actually preserves relevant structures in the
input data. For this, we leveraged tools from topological data analysis and devised a novel
autoencoder variant that naturally preserves structures (in the sense of topological features)
of high-dimensional data spaces in latent encodings, thereby revealing complex manifold
structures that were hard to access with existing methods.

In the following, we briefly outline future directions which were motivated by the con-
tent and findings of this dissertation. With increasing dataset sizes, it becomes harder to
manually examine a significant portion of the data. Thus, biases in the data may be further
amplified when training black-boxmodels on such datasets. The typical clinicalMLmodel is
unable to distinguish causation from correlation, and will exploit any correlation it can find
to optimise its training objective. However, spurious correlations and confounding can lead
to useless or even harmful models, which has become a foundational challenge across disci-
plines that employ ML. These challenges may be partially addressed using causal modelling
strategies. However, in particular for clinical time series, we argue that instead of inferring
causal effects from observational data (for instance via Granger causality), we hypothesise
that we need to enforce causality using domain knowledge. To give a practical example, a
model may have monitored hundreds of years worth of hospital stays, but is still oblivious to
the fact that vasopressors increase mean arterial blood pressure (MAP). As vasopressors are
typically administered to hemodynamically stabilise patients, it is possible that when MAP
would drop, an increased vasopressor dosage keeps MAP constant, i.e., these two variables
may not even appear correlated. Inferring this relationship from observational data alone—
which additionally is swampedwith noise and interactions—is nigh impossible. However, we
argue that this is not necessary. By including domain experts in the model development pro-
cess (i.e., “human in the loop”), we envisionmodels that know about established relationships
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between relevant variables before having observed a single training data point. This may be
achieved by means of encoding prior causal knowledge in a directed knowledge graph, that
a prediction model may consult during the prediction step.

Regarding the application domain sepsis, we see two main focus areas. First, given the
complexity of the Sepsis-3 definition, and the dependence on actions by the clinician (or-
dering of cultures, administration of antibiotics), a more data-driven definition of the onset
of sepsis would be desirable. This may be achieved by formulating the prediction task as an
unsupervised outlier detection problem, or by performing a weakly supervised classification
task, where only patient-level class labels are available during training and the goal is to cor-
rectly classify patients as early in their stay as possible, thereby elucidating early signs of sepsis
in a data-driven manner. Second, given its success in various other application domains, we
expect that self-supervised learning strategies could improve the learned time series repre-
sentations [97], for instance by means of learning to classify basic patient states (e.g. fever)
as auxiliary tasks, which could lead to beneficial downstream predictive performance.

For representation learning, a central focus for the futureworkwill be to translate our find-
ings into applications. For instance, the TopoAE could reveal insightful structures of high-
dimensional biological sequencing data. However, we expect that depending on the exact
application case, the loss term or the employed data space distance may need to be modified.
On a larger scale, the author of this thesis is eager to identify further representation learning
scenarios where topological features are relevant while currently being neglected due to their
non-trivial computation. Having employed different types of non-parametric layers inside
deep neural networks in this thesis (Gaussian process layers, signature layers, and topological
layers), it will be interesting to characterise in which cases they lead to beneficial representa-
tions, and in which scenarios they are actually detrimental.

Faithful visualisations of high-dimensional data have become an essential means to inter-
pret data in various disciplines of the life sciences. Therefore, we foresee that topology-aware
representationswill lead tomore interpretable embeddings and robust analyses, where global
structures in the data spaces are properly accounted for. In contrast, currently established and
widely used methods such as t-SNE or UMAP preserve foremost local neighbourhoods and
are sensitive to hyperparameter choices, which has sparked an on-going controversy about
the validity of biological analyses based on these methods [28].

Motivated by increasingly large, multi-modal and high-dimensional biological datasets,
several dimensionality reduction methods have been introduced over the last two years. To
name a few examples, this includes PHATE [137], a heat-diffusion based approach that al-
lows for embeddings that recover tree-like hierarchies in high-dimensional single-cell data.
Another work proposed ivis, a deep learning-based dimensionality reduction method that
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employs a contrastive triplet loss for learning structure-preserving embeddings of single-
cell data [192]. A next study leveraged Poincaré maps, a tool from hyperbolic geometry, to
account for hierarchies in biological data [114]. Most recently, Zhou et al. [221] proposed
GraphDR, a quasi-linearmethod that preserves neighbourhood relations in data represented
as graphs. Amidst a growing list of new dimensionality reductionmethods, it is currently not
clear which perspective or angle is useful or detrimental for which application in biomedical
datasets. Aggravatingly, these newmethods have been compared against established flagship
methods such as t-SNE and UMAP, but not against each other. Therefore, we envision that
a careful comparison of this wave of new dimensionality reduction techniques will be an ex-
citing and necessary effort for future work. Clarifying which framework (topology, diffusion
processes, contrastive learning, hyperbolic geometry, etc.) is indeed beneficial to which ap-
plication niche will greatly illuminate and advance the analysis of high-dimensional datasets
of biomedical systems.
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Supplementary materials

A.� Predicting sepsis in multi-site, multi-national intensive
care cohorts using deep learning

A.�.� Results on the Emory dataset

In Figure A.18, we display the internal validation results on the Emory dataset. Furthermore,
we also applied pair-wise external validations by retraining all models on the smaller set of
35 variables in order to transfer across datasets (from Emory or to Emory). These results are
shown as part of Figures A.8 to A.17.
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Figure A.1: Shapley value distributions on the AUMC dataset. The 20 variables with the largest mean
absolute Shapley values are shown.
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Figure A.2: Shapley value distributions on the eICU dataset. The 20 variables with the largest mean
absolute Shapley values are shown.
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Figure A.3: Shapley value distributions on the HiRID dataset. The 20 variables with the largest mean
absolute Shapley values are shown.
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Figure A.4: Shapley value distributions on the MIMIC-III dataset. The 20 variables with the largest
mean absolute Shapley values are shown.
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Figure A.5: Shapley analysis that includes all feature types that were used in the attention model, raw
measurements, measurement counts, missingness indicators, and derived features. While
Panel a) illustrates the 20 features with the largest mean absolute Shapley values averaged
across all core datasets, Panel b) exemplifies the Shapely value distributions on the eICU
dataset.
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Figure A.6: Ablation of features. Given that we observed that count features frequently appeared as
top ranking variables in Figure A.5, we investigate how well an attention model performs
when only trained on either raw observations or on measurement counts. We further
subdivide into only using vital signs, laboratory measurements, or both. This analysis
was performed on MIMIC-III (both training and testing). While we found no striking
difference in performance, we observe the trend that for irregularly measured lab values
counts are indeed informative, while this was less the case for frequently monitored vital
signs.
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Figure A.7: ROC plots for the auxiliary analysis, where the attention model was trained by pooling
the data from the different datasets already during training, in contrast to pooling only
the predictions of models that were trained on separate datasets. Here, for a given dataset
the remaining datasets were pooled for training.
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a) eICU b)HiRID

c)MIMIC-III d) Emory

Figure A.8: ROC curves for the pair-wise external validations. All displayed models were trained on
the AUMC dataset and applied to one of the remaining datasets, as indicated in the figure
heading.
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A.1 Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

a) AUMC b)HiRID

c)MIMIC-III d) Emory

Figure A.9: ROC curves for the pair-wise external validations. All displayed models were trained on
the eICU dataset and applied to one of the remaining datasets, as indicated in the figure
heading.
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a) AUMC b) eICU

c)MIMIC-III d) Emory

Figure A.10: ROC curves for the pair-wise external validations. All displayed models were trained
on the HiRID dataset and applied to one of the remaining datasets, as indicated in the
figure heading.
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a) AUMC b) eICU

c)HiRID d) Emory

Figure A.11: ROC curves for the pair-wise external validations. All displayedmodels were trained on
the MIMIC-III dataset and applied to one of the remaining datasets, as indicated in the
figure heading.
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a) AUMC b) eICU

c)HiRID d)MIMIC-III

Figure A.12: ROC curves for the pair-wise external validations. All displayed models were trained
on the Emory dataset and applied to one of the remaining datasets, as indicated in the
figure heading.
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A.1 Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

a) b)

c) d)

Figure A.13: Scatter plots for the pair-wise external validations. All displayedmodels were trained on
AUMC dataset and applied to one of the remaining databases, as indicated in the figure
heading.
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a) b)

c) d)

Figure A.14: Scatter plots for the pair-wise external validations. All displayedmodels were trained on
eICU dataset and applied to one of the remaining databases, as indicated in the figure
heading.
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A.1 Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

a) b)

c) d)

Figure A.15: Scatter plots for the pair-wise external validations. All displayedmodels were trained on
HiRID dataset and applied to one of the remaining databases, as indicated in the figure
heading.
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a) b)

c) d)

Figure A.16: Scatter plots for the pair-wise external validations. All displayed models were trained
on MIMIC-III dataset and applied to one of the remaining databases, as indicated in the
figure heading.
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a) b)

c) d)

Figure A.17: Scatter plots for the pair-wise external validations. All displayedmodels were trained on
Emory dataset and applied to one of the remaining databases, as indicated in the figure
heading.
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a) b)

Figure A.18: Internal validation on the Emory dataset. Panel a) displays ROC curves, Panel b) shows
the alarm earliness plot. This dataset was published in a preprocessed and annotated
stage, reporting only a smaller variable set. Therefore, due to missing information the
clinical baseline scores were not extracted on this dataset.

A.� Path signatures for time series representation learning

TablesA.1 andA.2 show additional results for theCharacterTrajectories andPenDigits
datasets under random subsampling of the time series.

0 10 20 30 40 50 60 70 80
# epochs

0.0

0.5

1.0

1.5

2.0

tra
in

in
g 

lo
ss

GP-Sig
GP-PoM-Sig

0 10 20 30 40 50 60 70 80
# epochs

0.2

0.4

0.6

0.8

va
lid

at
io

n 
BA

C

Figure A.19: Comparison of the training of the GP-PoM and the standard GP adapter, illustrated for
the CharacterTrajectories dataset and the Sig model.
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A.2 Path signatures for time series representation learning

Table A.1: CharacterTrajectories, under random subsampling, p = 50%

Imputation Model w-AUROC BAC Accuracy

GP-PoM

DeepSig 99.698± 0.393 94.011± 5.037 93.635± 5.335

RNN 99.970± 0.011 98.011± 0.512 98.106± 0.508

RNNSig 99.787± 0.074 93.308± 0.960 93.844± 0.903

Sig 99.578± 0.031 89.570± 0.938 89.930± 0.914

GP

DeepSig 98.994± 1.088 90.821± 2.361 90.471± 2.347

RNN 99.909± 0.032 96.276± 0.691 96.492± 0.715

RNNSig 99.400± 0.094 87.587± 2.054 88.141± 1.959

Sig 94.862± 1.779 61.280± 6.440 62.446± 6.493

causal

DeepSig 99.963± 0.023 97.774± 0.228 97.953± 0.182

RNN 99.953± 0.023 97.657± 0.720 97.813± 0.676

RNNSig 99.814± 0.044 93.268± 0.730 93.747± 0.743

Sig 96.736± 0.578 71.393± 3.784 73.245± 3.642

forward-filling

DeepSig 99.965± 0.030 97.974± 0.381 98.120± 0.365

RNN 99.954± 0.010 97.786± 0.308 97.939± 0.281

RNNSig 99.840± 0.047 94.110± 0.774 94.596± 0.745

Sig 54.308± 4.187 7.387± 2.995 7.117± 2.417

indicator

DeepSig 99.955± 0.033 98.626± 0.500 98.733± 0.481
RNN 99.953± 0.024 97.502± 0.527 97.660± 0.499

RNNSig 99.755± 0.078 93.091± 1.056 93.635± 0.952

Sig 66.917± 18.306 18.481± 18.692 19.067± 19.165

linear

DeepSig 99.984± 0.007 98.898± 0.205 98.997± 0.201
RNN 99.928± 0.043 97.668± 0.897 97.786± 0.802

RNNSig 99.767± 0.037 92.754± 0.662 93.273± 0.656

Sig 55.023± 6.655 9.436± 3.349 9.958± 4.097

zero

DeepSig 99.980± 0.013 98.337± 0.644 98.454± 0.616

RNN 99.887± 0.052 96.004± 1.074 96.253± 1.046

RNNSig 99.685± 0.063 92.154± 0.878 92.744± 0.820

Sig 96.997± 0.388 69.963± 4.208 71.699± 4.002
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Table A.2: PenDigits, under random subsampling, p = 30%

metric w-AUROC BAC Accuracy

GP-PoM

DeepSig 99.515± 0.078 92.151± 0.555 92.098± 0.548

RNN 99.564± 0.072 92.757± 0.735 92.699± 0.733

RNNSig 98.967± 0.253 88.148± 1.588 88.113± 1.579

Sig 99.028± 0.099 87.352± 0.898 87.290± 0.903

GP

DeepSig 90.509± 0.164 54.545± 0.426 54.513± 0.451

RNN 91.961± 0.856 57.930± 2.079 57.900± 2.088

RNNSig 86.740± 0.585 46.842± 1.255 46.867± 1.218

Sig 83.511± 0.485 41.747± 0.428 41.809± 0.425

causal

DeepSig 99.096± 0.116 89.480± 0.359 89.434± 0.362

RNN 99.288± 0.066 89.526± 0.535 89.474± 0.539

RNNSig 99.165± 0.067 88.807± 0.613 88.759± 0.617

Sig 97.870± 0.224 80.065± 0.980 80.011± 0.971

forward-filling

DeepSig 99.141± 0.068 88.974± 0.656 88.902± 0.644

RNN 99.311± 0.067 90.067± 0.247 90.029± 0.247

RNNSig 99.203± 0.063 88.930± 0.513 88.902± 0.528

Sig 98.425± 0.069 84.458± 0.468 84.374± 0.477

indicator

DeepSig 99.607± 0.059 93.156± 0.738 93.087± 0.751
RNN 99.733± 0.044 94.124± 0.412 94.071± 0.415
RNNSig 99.549± 0.041 91.604± 0.278 91.532± 0.268

Sig 98.708± 0.040 84.544± 0.538 84.505± 0.563

linear

DeepSig 99.407± 0.151 91.418± 1.075 91.366± 1.086

RNN 99.510± 0.041 91.862± 0.582 91.812± 0.594

RNNSig 99.591± 0.036 91.556± 0.518 91.521± 0.539

Sig 99.029± 0.094 87.116± 0.612 87.038± 0.612

zero

DeepSig 99.334± 0.077 89.774± 0.541 89.686± 0.553

RNN 99.403± 0.112 90.729± 0.618 90.698± 0.620

RNNSig 99.150± 0.046 87.948± 0.248 87.879± 0.243

Sig 98.623± 0.073 83.935± 0.382 83.905± 0.375

164



A.3 Topological representation learning

A.� Topological representation learning

In Figure A.20, the two-dimensional visualisations of the Spheres dataset are shown for all
the included methods. In addition, we depict two further approaches. First, as an ablation of
TopoAE, we apply our topological constraint to a linear autoencoder (TopoPCA) that has a
single hidden layer of two dimensions. We find that also TopoPCA was able to preserve the
manifold structure of the nested spheres to a certain degree, however less distinctively than
TopoAE. Second, we applied the PHATE method to the Spheres dataset [137]. For this, dur-
ing the hyperparameter search we varied the parameter knn between 5 and 30 (in 20 random
calls, same as the other methods) and otherwise used the default parameters: decay = 40,
γ = 1, knn_dist = euclidean, mds = metric, mds_dist = euclidean, mds_solver = sgd,
n_components = 2, n_jobs = 1, n_landmark = 2000, n_pca = 100, t = auto. In the hy-
perparameter search, knn= 5was found to perform best (in terms of KL0.1, the quantity we
sought tominimise for all methods). Here, we consistently observed the displayed triangular
pattern, where the surrounding sphere was severed, and multiple inner spheres were placed
at the outer border of the embedding. This pattern is most similar to the embeddings of the
classical AE.
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a) PCA b) Isomap

c) t-SNE d)UMAP

e) PHATE f) AE

g) TopoPCA h) TopoAE

Figure A.20: Visualisations of the two-dimensional latent embeddings of the Spheres dataset. We
observe that only our method, TopoAE was able to accurately capture the nested con-
figuration of the sphere manifolds. Additionally, we add our topological regularisation
term to a variant of PCA as implemented as a linear autoencoder (TopoPCA), which
also preserves the nesting structure, albeit less clear than TopoAE. Finally, we consider
an additional comparison partner, PHATE [137], which was published in the same year
as TopoAE. We find that PHATE does not preserve the nesting relation of the spheres.



Acronyms

kNN k-nearest neighbours
ABX Antibiotics
AE Autoencoder
attn Self-attention model
AUMC Amsterdam University Medical Centers Database
AUPRC Area under the precision-recall curve
AUROC Area under the receiver-operating-characteristic curve
BAC Balanced accuracy
BCE Binary cross-entropy
CI Confidence interval
CNN Convolutional neural network
CV Cross-validation
DL Deep learning
DTW Dynamic time warping
DTW-kNN Dynamic time warping k-nearest neighbour
EHR Electronic health record
GCS Glasgow Coma Scale
GP Gaussian process
GP-PoM GP adapter with posterior moments
gru Gated recurrent units
HiRID High time resolution ICU dataset
ICD-9 International Classification of Diseases, Ninth Revision
ICU Intensive care unit
IT Information technology
lgbm Light gradient boosting machine
lr Logistic regression
LSTM Long short-term memory network
MAP Mean arterial blood pressure
MC Monte Carlo
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Acronyms

MDS Multi-dimensional scaling
MEWS Modified Early Warning Score
MGP Multi-task Gaussian process
MGP-RNN Gaussian process recurrent neural network
MGP-TCN Gaussian process temporal convolutional network
MIMIC-III Multiparameter Intelligent Monitoring in Intensive Care
ML Machine learning
MLP Multilayer perceptron
NEWS National Early Warning Score
PCA Principal component analysis
PE Positional encoding
PH Persistent homology
PPV Positive predictive value
qSOFA Quick SOFA
ReLU Rectified linear unit
RNN Recurrent neural network
ROC Receiver operating characteristic
SD Standard deviation
SI Suspected infection
SIRS Systemic Inflammation Response Syndrome
SOFA Sequential Organ Failure Assessment
SVM Support vector machine
t-SNE t-distributed stochastic neighbour embedding
TCN Temporal convolutional network
TDA Topological data analysis
TopoAE Topological autoencoder
TREWScore Targeted real-time warning score
UMAP Uniform manifold approximation and projection
VR Vietoris–Rips complex
w-AUROC Weighted AUROC
WTK Wasserstein time series kernel
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