
 1 

DISS ETH NO. 28067 
 
 
 
 

Investigation of the protein correlated 
motion and allostery based on NMR 

structural ensembles 
 

 
A thesis submitted to attain the degree of 

 
DOCTOR OF SCIENCE OF ETH ZURICH 

(Dr. Sc. ETH Zurich) 
 

presented by 
 

Dzmitry Ashkinadze 
 

M.Sc. ETH Zürich 
 

born on 15.05.1994 
 

citizen of Belarus 
 

accepted on the recommendation of: 
 

Prof. Dr. Roland Riek   (Examiner) 
Prof. Dr. Gunnar Jeschke  (Co-examiner) 
Prof. Dr. Peter Güntert    (Co-examiner) 

 
 

2021  



 2 

  



 3 

«… 

Do what you should, and come what may 
…» 

Marcus Aurelius, 121AD 



 4 

  



 5 

Acknowledgments 
 

I would like to thank my direct supervisor, Prof. Roland Riek, for guiding me throughout 

my Ph.D., for continuous support in my various projects and for his intuition that helped 

me find significance. I am grateful for the opportunity to travel to Japan and participate 
in a collaborative nanodiamond project with Prof. Shirakawa and Dr. Segawa. I am also 

grateful that I was given a second chance and a computational project for a personal 

reason. Despite his principal investigator status, he always had time to teach me about 
protein assignment and shape together my developing projects. His approach in the 

validation of multi-state protein structures acted as a blueprint for most of the 

contributions that I was able to create during my Ph.D. 

I would like to thank Prof. Peter Güntert for his involvement and continuous support in all 

of my structural biology projects. His vast expertise with protein structure calculation and 

program CYANA of his creation helped me to improve my understanding of both what is 

a good quality protein structure and what is valued by researchers in the whole structural 
biology field. 

I would like to thank Prof. Gunnar Jeschke for accepting to be my co-examiner and Prof. 

Beat H. Meier to be a chairperson during my Ph.D. examination. 

I would like to thank Dr. Harindranath Kadavath for his expertise in the field of NMR and 

protein allostery. On numerous occasions, he assisted me with NMR measurements or 

even performed them for our shared projects. Our discussions allowed me to improve 
my scientific writing as well as my biological understanding of protein allostery and NMR. 

I would like to thank Dr. Piotr Klukowski for his machine learning expertise that allowed 

me to deepen my understanding of computational algorithms and possibly find my future 
job. 

I would like to thank Prof. Shirakawa for the hospitality and hosting of my research in 

Japan. 

I would like to thank Dr. Lukas Frey who introduced me to the protein purification 

techniques and supervised my laboratory lipid nanodisc project during the first year of 



 6 

my Ph.D. and Dr. Jason Greenwald who knew how to fix problems that I and Lukas could 

not solve. 

I would like to thank the rest of the Riek group for the discussions and good working 

atmosphere. 

I would like to thank my family for their moral support and words of encouragement. The 
financial support of my parents, their love, and their persistent belief in my abilities 

enabled me to fulfill my dream of going to study abroad and becoming a researcher. My 

wife, Anastasia who is a doctoral student herself shares with me all of the personal and 
professional ups and downs, together we are more than a sum of us and it would not be 

an understatement that all of my Ph.D. achievements are her achievements as well. My 

late grandfather Vladimir Reutsky was a pronounced academic researcher and a 

professor in the field of tree biology, he gave me the idea to go and study at the ETHZ. 
He was always an example of a true researcher to me and he continued to amaze me 

with the sheer range of his scientific curiosity and imagination. Once he sent a proposal 

to reverse climate change to a billionaire Richard Branson. He wanted to convert the 
Sahara Desert green with help of the hydroponic system developed by him and his 

colleagues for the submarines. As an alchemist, he also treated rare skin diseases with 

help of nuts, alcohol, and ginseng root. My Ph.D. thesis is dedicated to him. He would 
be proud. 

Translation to Russian of the last paragraph: 

 “Отдельное спасибо моей семье за их постоянную помощь и поддержку. 
Благодаря финансовой помощи моих родителей, их любови и непоколебимой вере 

в мои возможности мне удалось поехать заграницу и стать настоящим ученым. 

Вместе с моей женой, Анастасией, которая заканчивает аспирантуру, как и я, мы 
делим все личные и профессиональные свершения и неудачи, вместе мы сильнее 

чем по отдельности, и я с уверенностью могу сказать, что все мои достижения, 

которые я смог добиться за свою аспирантуру были бы невозможны без нее. Мой 
дедушка, Владимир Григорьевич Реуцкий был выдающимся ученым, академиком 

и профессором биологии деревьев Белорусской Академии наук, именно он подал 

мне идею про обучение в Швейцарском Техническом Институте Цюриха. Он всегда 
был для меня примером настоящего ученого. Я не раз удивлялся его научному 



 7 

любопытству и масштабу его воображения включая тот случай, когда он послал 

свое предложение по борьбе с глобальным потеплением миллиардеру Ричарду 
Бренсену. Он предлагал озеленить Сахару с помощью гидропоники, созданной им 

и его коллегами для подводных лодок. Также он как древний алхимик успешно 

лечил редкие кожные заболевания с помощью орехов, водки и корня женьшеня. 
Ему я посвящаю свою аспирантскую работу, он бы гордился.” 



 8 

  



 9 

Abstract 
Protein dynamics and protein correlated motion are the key for understanding of most 
mechanisms behind target recognition, enzymatic activity and signal transduction. 

Recent advances based on exact Nuclear Overhauser Effect (eNOE) developed by the 

group of Prof. Riek in the field of protein structure determination using liquid-state nuclear 
magnetic resonance (NMR) enable the elucidation of multi-state protein conformations 

of atomic resolution that sample protein conformational space. However, so far eNOE 

approach was applied to the limited number of proteins mostly by the group of Prof. Riek.  

As an extension of eNOE dataset the protein allostery, correlated motion and 

ligand binding mode of the protein PDZ2 was investigated and two-state protein 

structures were calculated for both free form and bound to the RA-GEF2 peptide with 
eNOEs. Apo-holo structural rearrangements allowed to reconstruct protein allostery that 

validates previously published allosteric interactions from groups of Ranganathan and 

Lee [1, 2]. A novel allosteric conformational preselection step was detected and apo 

protein states were identified to be “open” and “closed” due to the obstruction of the 
binding site by sidechains of residues Lys38 and Lys72.  

In order to quantify the correlated motion involved in the conformational 

selection allosteric mechanism of the PDZ2 multi-state structure an automated and 
unbiased method PDBcor was developed. PDBcor is a software for the detection and 

analysis of correlated motions from experimental multi-state protein structures using 

torsion angle and distance statistics that does not require any structure superposition. 
Clustering of protein conformers allows us to extract correlations with high sensitivity in 

the form of mutual information based on information theory. With PDBcor we elucidated 

correlated motion in the PDZ2 domain, WW domain of PIN1, the protein GB3, and the 
enzyme cyclophilin in line with reported findings. As a guide for the interpretation of 

PDBcor results, we provide a series of protein structure ensembles that exhibit different 

levels of correlation, including non-correlated, locally correlated, and globally correlated 
ensembles.  

Correlations extracted with PDBcor can be utilized in subsequent assays 

including NMR multi-state structure optimization and validation. So far, NMR derived 
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multi-state structures were typically evaluated by means of visual inspection of structure 

superpositions, target function values that quantify the violation of experimented 
restraints and root-mean-square deviations (RMSD) that quantify similarity between 

conformers. As an alternative or complementary approach, we present here the use of 

a recently introduced structural correlation measure, PDBcor, that quantifies the 
clustering of protein states as an additional measure for multi-state protein structure 

analysis. It can be used for various assays including the validation of experimental 

distance restraints, optimization of the number of protein states, identification of key 
distance restraints, NOE network analysis and semiquantitative analysis of the protein 

correlation network. We present applications for the final quality analysis stages of typical 

multi-state protein structure calculations. 

Extensive testing of the new tools developed for extraction and investigation of 
protein correlated motion in form of structural correlations led us to the discovery that 

even conventional single-state liquid NMR protein structures that by design average out 

all state-dependent information contain valid structural correlations. Here we provide a 
potential mechanism for retention of such structural correlations on example of minimal 

systems and validate it with synthetically prepared data. We also show valid structural 

correlations on an example of experimental single-state liquid NMR structure of the 
protein cyclophilin A. Furthermore, we present structural correlation results for the whole 

PDB database and evidence that suggests that structural correlations of the single-state 

liquid NMR protein structures overlap with protein allosteric sites and might give insights 
into protein allostery. 
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Zusammenfassung 
Proteindynamik und Proteinbewegung sind essenziel zum Verständnis der meisten 
Mechanismen hinter der Zielerkennung, der enzymatischen Aktivität und der 

Signalübertragung. Der exakte Nuclear Overhauser Effekt (eNOE), der in der Gruppe 

von Prof. Riek für die Proteinstrukturbestimmung mittels Flüssigzustands-NMR 
entwickelt wurde, ermöglicht die Aufklärung von Mehrzustands-Proteinkonformationen 

mit atomarer Auflösung, die den Konformationsraum von Proteinen abtasten. Bisher 

wurde der eNOE-Ansatz nur auf eine begrenzte Anzahl von Proteinen angewendet. 

Als Erweiterung des eNOE-Datensatzes wurden die Proteinallosterie, die 

korrelierte Bewegung und der Ligandenbindungsmodus des Proteins PDZ2 untersucht 

und Zweizustands-Proteinstrukturen sowohl für die freie Form als auch für die Bindung 
an das RA-GEF2-Peptid mit eNOEs berechnet. Apo-Holo-Strukturumlagerungen 

ermöglichten die Rekonstruktion der Proteinallosterie, die zuvor veröffentlichte 

allosterische Wechselwirkungen von Gruppen von Ranganathan und Lee validiert [1, 2]. 

Ein neuer allosterischer Konformationsvorselektionsschritt wurde entdeckt und Apo-
Proteinzustände wurden als „offen“ und „geschlossen“ aufgrund der Blockierung der 

Bindungsstelle durch die Seitenketten der Reste Lys38 und Lys72 identifiziert. 

Proteinkorrelierte Bewegung wurde mit Temperaturtitrationsexperimenten untersucht. 
Allosterischen Reste überlappten weitgehend mit Resten, die an der Proteinkorrelierten 

Bewegung beteiligt sind. 

Um die korrelierte Bewegung aus der PDZ2-Mehrzustandsstruktur mit atomarer 
Auflösung zu quantifizieren, wurde eine automatisierte und unverzerrte Methode PDBcor 

entwickelt. PDBcor ist eine Software zur Erkennung und Analyse korrelierter 

Bewegungen aus experimentellen Mehrzustands-Proteinstrukturen unter Verwendung 
von Torsionswinkel- und Distanzstatistiken, die keine Strukturüberlagerung erfordert. 

Das Klustern von Proteinkonformeren ermöglicht es uns, Korrelationen in Form von 

gegenseitiger Information basierend auf der Informationstheorie zu extrahieren. Mit 
PDBcor haben wir die korrelierte Bewegung in der PDZ2-Domäne, der WW-Domäne von 

PIN1, dem Protein GB3 und dem Enzym Cyclophilin in Übereinstimmung mit den 

berichteten Ergebnissen aufgeklärt. Als Leitfaden für die Interpretation der PDBcor-
Ergebnisse zeigen wir eine Reihe von Proteinstruktur-Ensembles die unterschiedliche 
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Korrelationsniveaus aufweisen, einschließlich nicht-korrelierter, lokal korrelierter und 

global korrelierter Ensembles. 

Mit PDBcor extrahierte Korrelationen können auch in der NMR-

Mehrzustandsstrukturoptimierung und -validierung. Bisher wurden NMR-abgeleitete 

Mehrzustandsstrukturen typischerweise durch visuelle Inspektion von 
Strukturüberlagerungen, Targetfunktionswerten, die die Verletzung experimenteller 

Beschränkungen quantifizieren, und quadratischen Mittelwertabweichungen (RMSD), 

die die Ähnlichkeit zwischen Konformeren quantifizieren, bewertet. Als alternativen oder 
ergänzenden Ansatz präsentieren wir hier die Verwendung eines kürzlich eingeführten 

strukturellen Korrelationsmaßes, PDBcor, das die Clusterbildung von Proteinzuständen 

als zusätzliches Maß für die Mehrzustands-Proteinstrukturanalyse quantifiziert. Es kann 

für verschiedene Assay verwendet werden, einschließlich der Validierung 
experimenteller Distanzbeschränkungen, der Optimierung der Anzahl von 

Proteinzuständen, der Identifizierung von Schlüsseldistanzbeschränkungen, der NOE-

Netzwerkanalyse und der semiquantitativen Analyse des Proteinkorrelationsnetzwerks.  

Umfangreiche Tests der neuen Werkzeuge zur Extraktion und Untersuchung 

von Protein-korrelierten Bewegungen in Form von Strukturkorrelationen führten uns zu 

der Entdeckung, dass konventionelle flüssige NMR-Proteinstrukturen im Einzelzustand, 
die alle zustandsabhängigen Informationen konstruktionsbedingt ausmittelt, gültige 

strukturelle Korrelationen enthalten. Hier stellen wir einen möglichen Mechanismus zur 

Beibehaltung solcher strukturellen Korrelationen am Beispiel von Minimalsystemen vor 
und validieren ihn mit synthetisch aufbereiteten Daten. Wir zeigen auch gültige 

strukturelle Korrelationen am Beispiel einer experimentellen Flüssig-NMR Einzustands-

Struktur des Proteins cyclophilin A. Darüber hinaus präsentieren wir 
Strukturkorrelationsergebnisse für die gesamte PDB-Datenbank und Indikationen, die 

darauf hindeuten, dass strukturelle Korrelationen der Einzustands-Flüssig-NMR-

Proteinstrukturen sich mit allosterischen Proteinstellen überlappen und Einblicke in die 
Proteinallosterie geben könnten. 
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Protein dynamics 

One of the most relevant topics in the field of structural biology is the elucidation of the 

molecular mechanisms behind enzyme activity, protein target recognition and 

transduction of biological signals enabling various cellular pathways. Those fascinating 
topics have one thing in common, they rely on protein fold and dynamics [3]. Thermal 

protein motion gives rise to the random protein vibrations and non-random conserved 

correlated protein motion spanning across the scaffold that gives rise to the protein states 
and equilibrium [4, 5]. 

A particularly complex example of the correlated protein motion is a ligand-

induced synchronized motion between distant sites, termed allostery. Several 
mechanisms for such motions have been proposed including the dynamic allostery 

model [3] and population shift model [2]. The dynamic allostery model is based on a 

statistical thermodynamics model able to quantify allosteric communication in the 
absence of a conformational change by investigating the effect of ligand binding on 

thermal fluctuations within a protein. The population shift model is based on ligand-

induced structural rearrangements between two distinct protein conformations.  

Detailed investigation of the allosteric ligand-protein interaction with the 
population shift model allows us to further distinguish between the induced-fit model and 

conformational selection model [6] depending on the time, when the protein 

rearrangement happens as shown in the Figure 1.1. If the protein rearrangement is 
happening before the ligand binding, then according to the conformational selection 

model free protein form exists in equilibrium between two distinct states from which only 

one is selected by the ligand. If the protein rearrangement is happening after the ligand 
binding, then according to the induced-fit model the protein allostery can be explained 

as a difference between free and bound protein conformations. 

Despite the high importance of the protein dynamics, investigation of the protein 
motion at protein conformational states the absolute majority of the protein structures 

deposited in the protein databank PDB depict proteins in single state resembling a rigid 

molecule [7]. 



 21 

Figure 1.1: Allosteric binding models 

explaining conserved ligand-induced changes 

in the protein fold. 
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Experimental methods probing protein dynamics 

Typically, protein allostery is studied for larger systems including enzymes or multimeric 

proteins with X-ray crystallography or cryogenic electron microscopy (cryo-EM) by 

quantification of the structural differences between a ligand-free and a ligand-bound 
protein fold [8]. Extensive studies of allosteric proteins and enzymes allowed to construct 

an independent allosteric database (ASD) that is primarily populated by the X-ray 

crystallography and cryo-EM protein structures [9-12].  

The use of liquid-state nuclear magnetic resonance (NMR) allows to investigate 

proteins at their native state giving access to the numerous ensemble-averaged 

parameters not only for the ligand-free and a ligand-bound proteins, but also for their 
intermediates. Recent studies were able to show allosteric communication within a 

protein fold even for proteins with less prominent ligand induced structural changes with 

NMR [1, 13-15]. However, the use of NMR is limited by the short NMR signal relaxation 
time of larger proteins and restricts allosteric studies to small protein or individual protein 

domains below 35 kDa [16].  

Multiple techniques that are not based on protein structure were developed to 

study protein dynamics using NMR as shown in the Figure 1.2. The first type of such 
techniques is based on NMR relaxation. Protein side-chain rotations can be probed by 

determination of different relaxation rates including spin-lattice relaxations T1, spin-spin 

relaxation T2 or heteronuclear NOEs [17]. Those model-free relaxation methods provide 
order parameters (S2) that quantify the degree of the angular amplitude of the internal 

motion and correlation times (𝜏e) that quantify the local protein dynamics. Both 

parameters are sensitive to a sub-nanosecond motions that are typically associated with 

rotation of the residue sidechains [17]. Backbone rearrangements can be probed with T2 
measurements, most notably with Carr-Purcell-Meiboom-Gill (CPMG) methods [18]. The 

second type of NMR methods probing protein dynamics is based on specific protein 

labeling including paramagnetic relaxation enhancement (PRE) and pseudocontact 
chemical shifts (PCS) that can indicate the paramagnetic label environment interactions 

that are longer than the Nuclear Overhauser Effect (NOE) limit of 5 Å [19-21]. The third 

type of NMR methods probing protein dynamics is based on the description of the 
protein-ligand interactions by titration of the ligand and observing protein complex 
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intermediates with heteronuclear single quantum coherence spectroscopy (HSQC) that 

is used for the studies of protein allostery as it accurately probes dynamic differences in 
atomic environment of the protein backbone upon addition of the binding partner and 

therefore captures ligand-induced protein scaffold rearrangements and allosteric 

interactions. However, NMR can also be used to produce protein structural ensembles 
using NOEs that sample protein conformational space and allow to study protein 

correlated motion. 

 

Figure 1.2: Overview of the experimental techniques probing protein 

structure and dynamics 
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Paradigm shift for protein NMR 

Recently, the introduction of the direct electron detectors and general improvement of 

the optics and data analysis software for the cryo-EM allowed to significantly enhance 

the resolution of the experimental protein structures and revolutionized the field of 
structural biology [22]. Starting by the year 2012 the pace of protein structure elucidations 

with cryo-EM has been exponentially increasing. At the same time came remarkable 

advances in the computational prediction of the protein structures with AlphaFold [23]. It 
allowed to make highly accurate prediction of protein structures. Aforementioned 

advancements in the field of protein structure determination affect conventional protein 

structure elucidation methods using NMR. Protein NMR field moves towards protein 
dynamics field that allows to fully exploit unique advantages of NMR as it can investigate 

proteins, protein complexes, and their intermediates in their native state with an 

abundance of the experimental techniques probing protein dynamics from which the 
eNOE technique is of a particular interest.  
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Time scales of protein motion 

The nature of the protein dynamics and protein motions is ultimately dependent on the 

time scale of the observation. Protein dynamics can be separated in the fast mode 

including side chain rotations covering the picosecond and nanosecond time scale and 
slow mode including protein-ligand interaction, backbone rearrangement, protein folding 

and unfolding and protein allostery covering second, millisecond and microsecond time 

scale [24]. Fast protein dynamics on the nanosecond and picosecond time-scale can be 
probed with NMR relaxation methods including T1, T2 and heteronuclear NOE 

measurements [17]. Slower, millisecond time-scale can be probed with CPMG methods 

based on the T2 relaxation [18]. However, this relaxation methods leave a gap at 
microsecond time-scale that can be observed with PRE NMR measurements [19-21].  

Protein motion encoded into the NOESY-derived multi-state NMR structures 

does not strictly depend on the time-scale as conformers are calculated independently. 
However, the fast-exchange assumption invoked by the NOESY cross-peak analysis 

limits the observable motion to be under the low millisecond time-scale. Since protein 

backbone in NMR ensembles is better resolved than sidechains the major state-

dependent observations of protein motion are coming from the backbone rearrangement 
motions which further limits the protein motion time scale to be above the nanosecond 

range. Taken together it is possible to predict the most probable time-scale of the visible 

protein motions from the multi-state NMR protein ensembles to be in the microsecond 
range. 
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Exact NOE structure calculations 

NMR is a leading technique for experimental studies of dynamics and multi-state 

structural information of biomolecules because it provides information at atomic 

resolution and can be measured in aqueous solution. Development of the 
multidimensional nuclear Overhauser effect spectroscopy (NOESY) allowed to resolve 

numerous NOEs present in multiple dimensions and use the NOE-based average 

distances to solve protein structure [19, 25]. Followed by the emergence of the concept 
of the protein structure solving with liquid NMR an automated software for the protein 

structure solving CYANA was developed [26]. 

Recent advances in the field of protein NMR allow us to gain insights into the 
protein motion at atomic resolution by determining multiple protein states using NMR 

supplied with a plethora of experimental restraints including residual dipolar couplings 

(RDC), cross-correlated relaxation (CCR), paramagnetic relaxation enhancement (PRE) 
and NOE restraints [19, 26-32]. Remarkable advancement in the field of the NOE-based 

protein structure determination including eNOEs can yield experimental time-averaged 
1H-1H distances with the resolution of up to 0.1 Å that  together with the structure 

calculation of multiple protein states, correction of spin diffusion with eNORA and an 
automated implementation in the eNORA2 package within CYANA allows a straight 

forward execution of eNOE based structure calculations [33-35] yielding multiple protein 

states at atomic resolution. So far eNOEs were successfully applied to WW domain, 
protein GB3, cyclophilin A, and protein ubiquitin [35-38]. 
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Multi-state structure calculations 

Distance restraints that are obtained during the analysis of the cross-peaks from NOESY 

spectrum provide the ensemble-averaged distances. However, if the protein is in 

exchange between multiple conformations the average distances cannot be 
simultaneously valid for a single protein state. Therefore, assuming multiple coexisting 

protein conformations a simultaneous optimization of multiple protein states is performed 

with the software CYANA. The multi-state structure calculation is based on the 
minimization of the target function calculated by comparing the simulated distance back 

calculated from all optimized protein states with experimental upper and lower limit 

restraints extracted from the NOE cross-peak. Individual protein states are kept in 
proximity of each other by symmetry restraints, but local movements with amplitude 

below 1.2 Å are allowed. Such approach provides an additional flexibility to the protein 

fold and allows to observe concerted protein motion. 

 Additional degrees of freedom provided by introduction of multiple protein states 

allow to minimize the overall violation of the experimental restraints and therefore the 

value of the CYANA target function. On the local level the network of the NOE distance 

restraints minimized for multiple states allows individual residues or local protein features 
to split between local minima represented by distinct combinations of residue dihedral 

angles or relative position of a certain local feature of the protein fold. On the global level, 

collective state-specific minima give rise to protein correlated motion that carries 
important biological information. 
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Spin diffusion correction 

Spin diffusion is a major factor causing inaccuracy in deriving distances from the NOEs 

[39]. Spin diffusion can be theoretically corrected if all NOE cross and diagonal peaks 

can be measured unambiguously, which is unrealistic given a limit to NMR sensitivity 
[40]. Therefore, an alternative version of the spin diffusion correction called exact NOE 

by Relaxation matrix Analysis (eNORA) was implemented as a part of the eNOE 

technique that relies on the given 3D protein structure [33]. Furthermore, spin diffusion 
effects are suppressed by shorter NOE mixing times. 

The full-relaxation matrix approach can be used to correct magnetization 

buildups for spin diffusion [33]. In this approach, we calculate the NOE magnetization 
transfer on the protein scaffold with and without spin-diffusion. Then, for each cross-peak 

and for each mixing time we will calculate the correction factor as a ratio between two 

theoretical cross-peak intensities and apply it to the experimental data. 

The time evolution of the NOESY intensities 𝐼(𝜏!"#) can be described by the 

multispin Solomon equations [34, 41, 42] as follows: 

𝐼(𝜏!"#) = 𝐼(0)𝑒$𝑹&!"# , 

where 𝑹 is a relaxation matrix containing auto and cross-relaxation rate 

constants 𝜌" and 𝜎"'. 

𝑹 = ,
𝜌( ⋯ 𝜎()
⋮ ⋱ ⋮
𝜎)( ⋯ 𝜌)

0 

Under assumption of ideal two-spin system it is possible to fit the intensity 

buildup with non-linear isolated spin-pair approach (ISPA) [33]. Intensity dependence on 

the mixing time of the NOESY cross-peak can be described as following: 

𝐼"'(𝑡)
𝐼"'(0)

=
𝐼'"(𝑡)
𝐼'"(0)

=
−𝜎"'

𝜆* − 𝜆$
[𝑒$+$, − 𝑒$+%,] 

with  

𝜆± =
𝜌" + 𝜌'
2 ± 9:

𝜌" − 𝜌'
2 ;

.
+ 𝜎"'.  
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As an approximation we assume that NOESY diagonal peaks decay as single-

exponential functions: 

𝐼""(𝑡)
𝐼""(0)

= 𝑒$/", 

In context of the aforementioned formalism, it is possible to fit individual auto-

relaxation rates 𝜌" from the experimental decays of the NOESY diagonals and use them 

to fit all apparent cross-relaxation rates 𝜎"' with an ISPA approach from the experimental 

cross-peak buildups. Cross-relaxation rates 𝜎"' acquired with this approach does not 

negate the influence of spin diffusion.  

In order to calculate spin diffusion correction factors with an eNORA2 simulation 

previously determined protein structure is used. For this a theoretical relaxation matrix is 

populated with theoretical NOE cross-relaxation values: 

𝑹∗ = ,
𝜌( ⋯ 𝜎()∗
⋮ ⋱ ⋮
𝜎)(∗ ⋯ 𝜌)

0, 

where the theoretical cross relaxation rates are calculated from the distances 

between spins and rotational correlation time: 

𝜎"'∗ = :
𝜇1
4𝜋;

. 𝛾2ℏ.

10
𝜏3
𝑟"'4
C

6
1 + 4𝜔1.𝜏3.

− 1F 

This allows to simulate theoretical magnetization buildups through all possible 

magnetization pathways: 

𝐼∗(𝜏!"#) = 𝐼(0)𝑒$𝑹∗&!"# 

and compare resulting cross-peak intensities to those extracted under the 
assumption of the isolated two spin system from the theoretical auto and cross-relaxation 

rates: 

𝐼(𝜏!"#) = 𝐼(0)
−𝜎"'∗

𝜆*∗ − 𝜆$∗
[𝑒$+$∗ &!"# − 𝑒$+%∗ &!"#] 

to correct experimental cross-peak intensities for spin diffusion: 

𝐼356
7#8(𝜏!"#) = 𝐼7#8(𝜏!"#)𝐹(𝜏!"#), 



 30 

where the correction factor is: 

𝐹(𝜏!"#) =
𝐼(𝜏!"#)
𝐼∗(𝜏!"#)

 

In some cases, measurement of multiple NOESY spectra is not practical. In 
cases where only a single NOESY spectrum is available it is not possible to fit 

exponential decays for NOESY diagonal peaks and buildups for the NOESY cross-peaks 

as it is done in eNORA2 for the spin diffusion correction [34]. However, methods for the 
spin-diffusion correction from a single NOESY spectrum are available [43, 44] and the 

Riek group actively investigates alternative spin diffusion correction algorithms based on 

a single NOESY spectrum. 
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Machine learning application in protein NMR 

The adoption of the eNOE approach by the NMR community does not happen with a 

rapid pace presumably due to the long NMR acquisition time necessary to acquire 

multiple 3D-NOESY spectra and high required spectrum quality as is necessary to 
resolve large number of cross-peaks at relatively low NOE mixing times and generate 

large number of the distance restrains that would overdetermine the NOE network and 

allow for the resolution of multiple states. Furthermore, demanding and highly specialized 
computational procedure are required to calculate multiple protein states. However, the 

Riek group attempts to automatize multiple steps of the demanding multi-state NMR 

structure calculation with help of artificial intelligence (AI) and machine learning. Recent 
advances hint that in the near future it might be possible to solve an NMR protein 

structure with a single click and in a fully autonomous fashion by the application of the 

automated and spectrometer-integrated protein structure calculation software. Those 
advances are based on the application of the artificial intelligence for the peak picking 

from the various multi-dimensional spectra, automated protein assignment using FLYA 

and protein structure calculation using CYANA [31, 45].  
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Qualitative description of the protein correlated motion 

There are two levels of complexity associated with multi-state NMR protein structure 

elucidation. First, the ensemble of the protein coordinates should be calculated according 

to the exact NOE approach and second, meaningful biological information should be 
extracted from the ensemble. So far, protein state interpretation was performed manually 

by repeated selection of key residues, separation of conformers into states according to 

the Ramachandran statistics of the selected residue or according to some local features 
of the protein ensemble that allow to separate protein conformers in equally populated 

states and observing to which protein sites this conformer separation spreads without 

randomization along the aligned 3D structures of the protein ensemble. With this method 
correlated motion was successfully evaluated and reported for all previous eNOE 

structures including WW domain [36], protein GB3 [35] and cyclophilin A [37]. However, 

this method is based on the demanding and subjective evaluation of small differences 
between calculated multi-state conformers. Therefore, a novel objective and automated 

method for the extraction of the correlated motion from the protein ensembles, PDBcor, 

was introduced [46]. 
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Chapter 2: PDBcor: An Automated Correlation 
Extraction Calculator for Multi-State Protein 

Structures 
 

This chapter is an adaptation from the following manuscript: Ashkinadze, Dzmitry, et al. 
"PDBcor: An automated correlation extraction calculator for multi-state protein 
structures." Structure (2021). 
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Introduction 

Protein motion including correlated motion can be extracted from protein structural 

ensembles generated under assumption of multiple protein states. Multi-state protein 

structures are typically determined by experimental methods including NMR using 
previously mentioned eNOE approach [27, 28, 33, 47], by different class selections in 

cryo-EM-derived structure determination [48], or by the presence of distinct X-ray 

structures due to different crystal packings or the same crystals exposed to a strong 
electric field [49]. Alternatively, such protein ensemble structures could be generated 

with molecular dynamics (MD) canonical ensemble simulations in presence or absence 

of experimental data [50-52]. Conventionally, correlated motion is extracted in the form 
of residue-based cross-correlation matrices from MD trajectories [53-56] or alternatively 

from the superimposed structural ensembles either with principal component analysis 

(PCA) [55, 57] or normal mode analysis (NMA) [58] based approaches. According to the 
PCA-based or NMA-based approach extracted residue cross-correlation values are 

calculated as covariances between residue coordinate vectors. However, the use of the 

absolute Cartesian coordinates requires the conformer superposition that is impossible 

to do objectively if multiple protein motions are present. 

In this work we present a method that does not require any structure 

superposition and therefore is unbiased due to the fact that it is based solely on distance 

and angle statistics of individual structural entities. PDBcor performs an objective and 
automated correlation analysis of multi-state protein structures, which can be used for 

the elucidation of biologically important correlated motion. With the help of information 

theory, it is possible to extract residue-based protein correlations in fully automated 
fashion. Information about such biologically relevant correlations is vital for our 

understanding of proteins. PDBcor is publicly available as a Python executable at 

https://github.com/dzmitryashkinadze/PDBcor or as a web server at 
http://pdbcor.ethz.ch. 
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Theory 

 

The workflow of the correlation extraction procedure with PDBcor is shown in Figure 2.1. 

First, an input structure bundle is subjected to significance thresholding that filters out 
spurious correlations. Second, interresidual distances are used to cluster conformers. 

Finally, residue clusterings are compared to obtain a correlation matrix.  

 

Objective extraction of correlated motion 
PDBcor relies on structure comparison based on a statistical analysis of interresidual 

distances or dihedral angles within individual conformers that does not require any 
superpositions. Conventionally a superimposed ensemble of protein conformations is 

visually sorted based on certain local protein features. For example, if protein conformers 

are sorted according to the relative position of a particular α-helix, neighboring regions 
might be sorted correctly and therefore correlate to the α-helix, but such sorting is 

typically not coherent throughout the whole protein scaffold [14]. In order to 

systematically study those correlations an ensemble of multistate protein conformations 
is repeatedly clustered for each residue with the aim to extract correlations between 

protein residues. Residue correlations are evaluated by computing a similarity between 

two arbitrary conformer clusterings.  

 

Significance thresholding 
Correlations extracted with PDBCor are based exclusively on similarity between residue 
clusterings (see below). As such, they are largely independent of the degree of 

separation between states. In some well-defined structural bundles individual states 

might therefore be identified that are closer to each other than the amplitudes of random 
thermal motion. This might lead to spurious distance correlations. To avoid such artifacts, 

a small amount of Gaussian noise is added to the atomic coordinates: 
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𝑟′"!
(') = 𝑟"!

(') + 𝛿"!
(') (1) 

where 𝑟"!
(') is the position of atom m in residue i of conformer j, which is obtained with 

Biopython [59], and 𝛿"!
(') is a vector of three independent, normally distributed random 

numbers with zero mean and standard deviation σ. This leads to random mixing of 

insignificantly separated protein states and suppresses spurious distance correlations. 

The noise amplitude σ should be set such that it is sufficient to remove 
background correlations with amplitudes below that of thermal motions and experimental 

uncertainties but does not exceed the separation between significantly different protein 

states that would remove correlations of interest. A standard value of 0.5 Å was used for 
all presented experiments as a value that resembles the fast (ps) order parameter of 0.8 

that has been measured in proteins by NMR [60]. However, PDBcor allows also to switch 

off the noise generator completely.  

 

Residue-based conformer clustering 
For the purpose of clustering, each residue i is represented by a single point, given by 
its centroid coordinates in conformer j 

𝑥"
(') =

1
𝑀"

L
;"

!<(

𝑟′"!
(') (1) 

where 𝑴𝒊 is the number of atoms of residue i that are considered for the correlation 

calculation. The scope of input atoms can be predefined to be either the backbone atoms, 
the sidechain atoms, or all atoms of the residue (see below). From the centroid 

coordinates, we construct a distance matrix D with elements 

𝐷">
(') = |𝑥"

(') − 𝑥>
(')| (2) 

Each row of the distance matrix contains the distances between the center of a given 
residue i and the centers of the other residues k and thus defines the relative location of 
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the residue that can be used as a fingerprint of a given conformer. In the case of 𝑁 

distinct residue-based protein conformations, we expect that interresidual distances of 

all conformers from a given structure ensemble can be grouped into 𝑁 clusters. Using 

this assumption, conformers are clustered based on their interresidual distances into 𝑁 

groups for each residue using the Gaussian Mixture Model (GMM) algorithms [17]. This 

yields, for each residue i, a distance clustering vector 𝑐" with elements 𝑐"' ∈ {1,… ,𝑁} that 

stores the cluster labels of all conformers 𝑗 = 1,… ,𝑁. The total set of protein interresidual 

distances that is used as input to the PDBcor is highly redundant as number of distances 
is proportional to the number of residues squared. However, conformers are clustered 

independently for each residue and for a selected residue a non-redundant set of 

distances from the selected residue to the rest of the protein is used. 

As an alternative to distance-based clustering, the clustering can also be based 

on the backbone 𝜙,𝜓,𝜔 and side chain 𝜒(, 𝜒., 𝜒?, 𝜒2, 𝜒@ torsion angles. For residues with 

less than five side chain torsion angles, the undefined 𝜒 values are set to zero. As in the 

distance case an angular matrix 𝛷(') is formed by the eight dihedral angle values of each 

residue in the conformers 𝑗 = 1,… ,𝑁. It is used to cluster conformers into N groups using 

GMM. In complete analogy to the distance-based case, this yields, for each residue i, an 

angular clustering vector 𝑐"A with elements 𝑐"'A ∈ {1,… ,𝑁} that stores the cluster labels of 

all conformers 𝑗 = 1,… ,𝑁.  

 

Evaluation of correlated motion 
Correlation extraction from the clustering matrix is possible using information theory [18-

20]. Two arbitrary clustering results are represented by two discrete variable vectors 𝑋 

and 𝑌. One of the most extensively studied measures specifying the amount of 

correlation between two discrete variable vectors is the mutual information 𝐼(𝑋, 𝑌) [21]: 

 𝐼(𝑋, 𝑌) = ∑)#,C<( 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 8(#,C)
8(#)8(C)

 , (3) 

where 𝑥 and 𝑦 are cluster labels of clusterings 𝑋 and 𝑌 with probabilities 𝑝(𝑥) = 𝑝(𝑋 = 𝑥), 

𝑝(𝑦) = 𝑝(𝑌 = 𝑦) and joint probability 𝑝(𝑥, 𝑦) = 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦). The mutual information 
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tells us how much the conformer clustering of one residue tells us about the conformer 

clustering of another residue. A variant of the mutual information that was specifically 

developed for clustering comparison is the adjusted mutual information 𝐼⋆(𝑋, 𝑌) [22]: 

𝐼⋆(𝑋, 𝑌) =
𝐼(𝑋, 𝑌) − 𝐸{𝐼(𝑋′, 𝑌′)}

𝑚𝑎𝑥{𝐻(𝑋), 𝐻(𝑌)} − 𝐸{𝐼(𝑋′, 𝑌′)} 
(4) 

where 𝐸{𝐼(𝑋′, 𝑌′)} is the expected value of the mutual information for an ensemble of 

random, uncorrelated vectors 𝑋′ and 𝑌′, and 𝐻(𝑋) is the entropy of the variable 𝑋: 

𝐻(𝑋) = −∑# 𝑝(𝑥)	𝑙𝑜𝑔	𝑝(𝑥) , (5) 

where 𝑝(𝑥) is the probability of cluster 𝑥. Note that 𝐼⋆(𝑋, 𝑌) = 𝐼⋆(𝑌, 𝑋) for any pair of 

clusterings, and 𝐼⋆(𝑋, 𝑌) ≈ 0 between two random clusterings. The adjusted mutual 

information yields a correctly normalized value measured in bits that is a suitable 

measure for the correlation between protein residues. 

Given a clustering matrix (𝐶E or 𝐶F), all residue pair combinations are compared 
using the adjusted mutual information, describing similarity between residues. The 

adjusted mutual information scores for residues i and j form a symmetric correlation 

matrix 𝐴 with elements 𝐴"' = 𝐼⋆l𝑐" , 𝑐'm for distance-based clustering, or 𝐴"'A = 𝐼⋆l𝑐"A, 𝑐'Am 

for torsion angle-based clustering. Visual inspection of the correlation matrix heatmap 
(Figure 2.1) provides information about residues or subdomains that are involved in a 

correlated motion. In addition, the mean value of the elements of the matrix 𝐴 yields an 

overall correlation parameter for the structure ensemble. 

Both distance and angular correlation analyses are able to detect correlated 
motion. Nevertheless, distance correlation extraction is more sensitive to the protein 

motion. 
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Figure 2.1 Overview of the correlation extraction procedure. First, an input structure bundle (PDB ID 6SVC 
[23]) is subjected to the noise generator that filters out spurious insignificant correlations. Here an 
illustrative example is depicted, where conformers existing in two states are shown as points in a scatter 
plot of two arbitrary distances (for example first is a distance between residues X and Y and second is a 
distance between residues X and Z). During significance thresholding random displacement of atoms 
broadens the edges of states so that states separated by less than the amplitude of the noise loose 
separation. Then, interresidual distances are used to cluster conformers for each residue with GMM (in 
this case it would be residue X). Finally, a pairwise comparison of the resulting clustering vectors based 
on their mutual information yields an interpretable correlation matrix.  

 

Global conformer clustering  
For visualization purposes, it is useful to get an optimal global (rather than residue-

specific) clustering of conformers that can be used for highlighting state-specific features 

in a protein ensemble superposition view. For example, the two sets of clustered 
conformers within a two-state structure ensemble can then be colored differently as 

shown in the Figure 2.2 below.  

To this end, we cluster the conformers according to the clustering 𝑐" of the residue 

i that has the highest average correlation to the other residues of the protein. Since the 
protein ensemble superposition is made according to the protein coordinates, the 

distance correlation matrix 𝐴 is used to calculate the average residue correlations. 

 

Versatility of PDBcor for backbone and sidechain correlations 
The correlation extraction procedure allows to control the protein region from which 

correlations are extracted by filtering the input data. In particular, backbone correlations 
can be extracted by utilizing only backbone atom coordinates and backbone dihedral 

angles. Similarly, sidechain or total (backbone and sidechain) correlations can be 

extracted. This possibility might be in particular interesting for some experimental 
methods including NMR for which the backbone structure is better resolved than side 



 40 

chains. Therefore, extraction of backbone correlations could be beneficial for the 

resolution and sensitivity of protein correlations. 
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Results 

 

Spatial correlations in protein structures 
Three different protein ensembles from the Protein Data Bank that have been determined 

by liquid-state NMR act as examples for a non-correlated protein ensemble (Figure 2.2a), 

a locally correlated protein ensemble (Figure 2.2b), and a globally correlated protein 

ensemble (Figure 2.2c). The structure bundles were analyzed by PDBcor with the 
assumption that an ensemble of structures samples the conformational space of a 

protein with residue-based two-state dynamics, regardless of the structure origin.  

Distance correlation matrix heatmaps of non-correlated systems do not show any 
significant correlations (visualized by yellow spots in the heatmap) (Figure 2.2d). 

Optimally clustered conformers of non-correlated systems are typically non balanced 

with one state dominating the other one. The most probable explanation for the absence 
of correlations in such structure ensembles is a violation of the two-state model 

assumption.  

As opposed to non-correlated systems, distance correlation matrix heatmaps of 
locally correlated systems show correlations that are localized to distinct regions of the 

protein structure. Optimally clustered conformers of locally correlated systems can be 

visually separated into two states in their corresponding protein correlation site. 
Correlation lights up as yellow spots in the heatmap (Figure 2.2e). This correlation 

between α-helix 2 (residues 42–51) and α-helix 3 (residues 70–78) can also be seen in 

the structure superposition and coloring according to the global conformer clustering 
(Figure 2.2b). 

Conformers from globally correlated protein ensembles can be unambiguously 

separated. It can be easily visually confirmed as protein states do not overlap well due 
to significant differences between protein states (Figure 2.2c). Since a global separation 

does not depend on the choice of the residue, there are pairwise correlations between 

most residues and consequently most of the distance correlation heatmap turns yellow 

(Figure 2.2f). 
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Figure 2.2 Distance correlation matrix heatmaps (bottom panel) and optimally clustered bundles of 
proteins (top panel) sorted in ascending order of structural correlations. (a) Solution structure of the C-
terminal domain of the human eEF1Bγ subunit (PDB ID: 1PBU) is depicted as an example of a non-
correlated protein system. The distance correlation matrix heatmap does not show any significant 
correlations (yellow spots) and a single state (cyan) dominates among the optimally clustered 
conformers. (b) Solution structure of the Sma0114 (PDB ID: 2LPM) is depicted as an example of a 
locally correlated system. The distance correlation matrix heatmaps shows correlations that are localized 
to α-helices 2 and 3, whereas its optimally clustered conformers correlate also only in the regions of α2 
and α3. (c) Solution structure of the PEA-15 Death Effector Domain in Complex with ERK2 (PDB ID: 
6P6C) is depicted as an example of globally correlated system. Its distance correlation matrix heatmap is 
mostly correlated with exception of few uncorrelated regions (visible as blue stripes) and its conformers 
are unambiguously separable. The conformer separation can be easily visually confirmed due to 
significant differences between protein states.  

 

Correlations of WW domain, protein GB3 and cyclophilin 
PDBcor was benchmarked on three model systems: WW domain of PIN1 (Figure 2.3a; 

PDB ID 6SVC; [23]), the protein GB3 (Figure 2.3b; PDB ID 2LUM; [24]) and cyclophilin 
A (Figure 2.3c; PDB ID 2MZU; [25]). For all three systems multi-state structure 

ensembles were determined by solution state NMR based on eNOEs [24]. The detailed 

time-intensive study of the multi-state structures using subjective superpositions of 
conformers and objective angular correlations yielded the presence of correlated motion 

at atomic resolution in all three systems [23-25].  
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The automated evaluation of the WW domain with PDBcor identifies a globally 

correlated network (Figure 2.3d). This shows that experimental restraints were able to 
separate two WW states. 

 
Figure 2.3 Automated correlation extraction results for the WW domain of PIN1 (a, d; PDB ID 6SVC; [23]), 
protein GB3 (b, e; PDB ID 2LUM; [24]) and cyclophilin A (c, f; PDB ID 2MZU; [25]). The top panels (a, b, 
c) illustrate the superimposed bundles of conformers, colored according to the optimal global distance-
based clustering. The bottom panels (d, e, f) illustrate the backbone distance correlation matrix heatmaps. 
For the WW domain, the optimally colored backbone bundle (a) and its distance correlation matrix heatmap 
(d) both identify a globally correlation network. The distance correlation matrix heatmap of GB3 (e) 
identifies a system that is weakly correlated everywhere except a region covering the α-helix (residues 
23–37) and its neighboring residues, highlighted with a pair of red dashed lines, as it was reported 
previously [24]. The backbone distance correlation matrix heatmap for cyclophilin (f) confirms five 
previously reported correlation sites, including site 1 (residues 9–16), site 2 (54–57), site 3 (64–78), site 4 
(101–107), and site 5 (118–127) highlighted in red [25]. Additionally, PDBcor identifies a previously 
undetected correlation site 6 (137–155), highlighted in green. 

 

The automated evaluation of the protein GB3 with PDBcor reveals a system that 

is (weakly) correlated everywhere except for the α-helix of residues 23–37 (Figure 2.3e). 
This finding confirms the previously reported observation of correlated motion across the 

β-sheet and a lack of correlated motion between the β-sheet and the α-helix [24]. It is 

noted that the GB3 protein is reported to comprise three states which was successfully 
analyzed with PDBcor as it generalizes to an arbitrary number of conformational states. 
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As an example of a larger system, the protein cyclophilin A was evaluated. 

According to the distance correlation matrix heatmap (Figure 2.3f) five previously 
reported correlations in regions 1 (residues 9–16), 2 (54–57), 3 (64–78), 4 (101–107), 

and 5 (118–127) were confirmed [25]. PDBcor did not only find all reported correlation 

sites, but also an extension of the correlation system to an additional region in the protein, 
site 6 (residues 137-155). Notably, sites 2–6 form a fully connected correlation network, 

whereas site 1 correlates only to site 6. In the case of cyclophilin A the strength of PDBcor 

is apparent: First, it elucidates all statistically significant structural correlations, yielding 
an extension of the correlation network that had been found manually. Second, in 

contrast to a tiresome selection by manual inspection, it is fully automated, objective and 

reproducible. 
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Conclusions and Outlook 

PDBcor can be used to get an optimal conformer separation for further analysis of protein 

states. Alternatively, further interpretation of PDBcor correlation matrices allows to 

quantify correlations, identify which part of the protein is involved in correlated motion 
and pinpoint most prominent correlations between protein sites. Careful examination of 

the correlation matrix may provide an information about the localization of correlated 

subsystems for a given protein. 

PDBcor correlation amplitude can be interpreted as an information flow 

between residue pairs. Therefore, PDBcor is not only able to localize the correlation of 

interest, but also to quantify it. Strong correlation of a residue pair as in Figure 2.2f means 
that by knowing the state of the first residue we know the state of the second residue. 

Weak correlation of a residue pair as in Figure 2.3e means that by knowing the state of 

the first residue we can predict with some certainty the state of the second residue. 

Any protein structure ensemble can be analyzed with PDBcor. Nevertheless, 

meaningful correlations can only be extracted from structure bundles that have been 

generated with the aim to incorporate information about multiple protein states. 

Furthermore, a cautious use is indicated for proteins with disordered regions. 

The number of protein ensemble structures grows together with a rapid 

advancement in the field of structural biology [26]. A fraction of such deposited ensemble 

structures contains the information about correlated motion. The knowledge about such 
protein correlations is vital for the understanding of protein mechanism of action and 

should be systematically studied. 
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Supplementary Information 

Application of the PDBcor to MD trajectories 
In order to illustrate that PDBcor-based analysis can be applied to the protein structural 
ensembles originated from techniques other than NMR we analyzed a series of 

molecular dynamics (MD) trajectories. MD trajectories were downloaded from the 

MoDEL (Molecular Dynamics Extended Library) [61]. Compressed backbone MD 

trajectories for WW domain, protein GB3 and cyclophilin A, each consisting out of 10000 
frames simulating 10ns, 10ns and 80.5ns were downloaded as PDB IDs 1i6c, 2igd and 

2cpl. They were uncompressed with PCAsuite [62], sliced down to 100 conformations 

with MDTraj [63] and inputted to PDBcor. Resulting structural correlations are 
summarized in Figure S2.1. 

 

 
Figure S2.1 Structural correlation analysis with PDBcor of MD trajectories for the WW domain (a), protein 
GB3 (b) and cyclophilin A (c). 
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Comparison of the PDBcor to the PCA and NMA-based methods 
In order to illustrate high sensitivity of the PDBcor we compared it to the conventional 

PCA-based technique THESEUS [57] and NMA-based technique WEBnm@ [58]. 

THESEUS performs structure alignment with maximum likelihood algorithm followed by 

PCA of the aligned protein coordinates that optimizes a correlation matrix. Unlike 
PDBcor, PCA-based approaches require structure superposition and therefore they are 

biased to the way superposition was done. Furthermore, PCA-based approaches 

calculate correlations from atomic deviations from the mean structure that are deduced 
from atom coordinates, whereas in PDBcor no assumption of the mean structure is made 

and interresidual distances that are more sensitive to the less pronounced, but 

statistically significant protein rearrangements are used. In turn NMA-based approaches 
are based on analysis of torsion angles, whereas PDBcor is based largely on the 

interresidual distances and therefore PDBcor by design is more sensitive to the 

integrated correlated motion of secondary structure elements or protein domains.  

Structural correlation of the cyclophilin A, a known and reported allosteric 

molecule were analyzed with PDBcor, Thesaurus and WEBnm@ and compared in 

Figure S2.2. Whereas PDBcor results overlap with reported findings as discussed in 
Figure 2.3, THESEUS and WEBnm@ techniques failed to reproduce them. 

 

 
Figure S2.2 Structural correlation analysis of cyclophilin A with THESEUS (a), WEBnm@ (b) and PDBcor 
(c). 
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from the multi-state Structure of a PDZ domain 
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Introduction 

One of the most studied group of allosteric molecules are PDZ domains. The family of 

PDZ domains is crucial for protein-protein recognition and protein complex assemblies 

in multicellular organisms [64]. PDZ domains recognize carboxyl-terminus of various 
target proteins and take part in many cellular processes including cell growth and 

proliferation. Second PDZ (PDZ2) domain displays a compact fold out of six β-strands, 

two α-helices and a unique flexible loop at the bottom of the binding pocket [65]. The 
strands of the protein form an antiparallel β-sheet that serves as a platform for target 

molecule binding. Protein human tyrosine phosphatase 1E (hPTP1E) contains a PDZ2 

domain and mediates a series of crucial biological processes such as protein-protein 
interaction [66, 67], signaling [68] and apoptosis [69]. Solution NMR structures of the 

PDZ2 domain of hPTP1E were solved for a free form as well as for the form bound to 

the C-terminal peptide derived from the Ras-associated guanine nucleotide exchange 
factor 2 (RA-GEF2) [70, 71]. PDZ2 domain of hPTP1E binds RA-GEF2 by a β-strand 

addition between strand β2 and α-helix 2 similar to other PDZ domains [72]. PDZ2 

allostery was studied with various techniques including the use of evolutionary data [2] 

and protein dynamics data [1]. Both approaches underly the importance of residues 
Ile20, Val85 and Val61 for the protein allosteric network.  

In this study we use the eNOE approach to investigate multi-state structures of 

both free and bound forms of the PDZ2 domain of hPTP1E with aim to elucidate its 
correlated motion, ligand binding mode, protein allostery and correlated motion by 

investigating individual protein states at atomic resolution as enabled by eNOE 

approach. 
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Results 

Ligand-induced dynamic changes of PDZ2 domain 
Heteronuclear 2D NMR spectroscopy was applied in order to gain a qualitative 
understanding of the PDZ2 domain of hPTP1E binding to the C-terminal peptide derived 

from the Ras-associated guanine nucleotide exchange factor 2 (RA-GEF2; Ac-

ENEQVSAV-COOH) and allosteric interactions. A [1H,15N]-HSQC spectrum was 

acquired at 298 K for a uniformly enriched 15N-labeled PDZ2 domain both for a free form 
and bound to the peptide supplied in a two-fold excess. An overlay of the [1H,15N]-HSQC 

spectra together with a chemical shift perturbation (CSP) map are shown in Figure 3.1. 

Averaged atom-weighted chemical shift perturbations (nitrogen shifts were taken with 
weight of 0.3) were mapped on the later calculated apo protein structure to summarize 

a scope of the allosteric system of the PDZ2 domain. Absolute CSP values are shown in 

the Figure S3.1. In line with previous reports residues of the PDZ2 binding site showed 
significant chemical shift perturbations together with a number of allosteric residues as 

expected from a highly dynamic scaffold [1, 65]. In details, significant CSPs are observed 

for residues at the β-strand 2 and α-helix 2 which sandwich the ligand upon binding with 
less prominent CSPs in the flexible loop Gly24-Gly34, β-strand 3, and α-helix 1 of which 

the latter two are far away from the binding site and thus have been identified as allosteric 

sides [1]. 
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Figure 3.1: Ligand-binding induced conformational changes measured by chemical shifts. [1H,15N]-HSQC 
spectra for the PDZ2 domain in apo form (red) and bound to the RA-GEF2 peptide (blue) (a). Residues of 
the two PDZ2 apo states with lowest CYANA target function were colored according to the geometric mean 
of the chemical shift perturbation of 15N and 1H (with nitrogen shifts taken with weight of 0.3) (CSPs) as 
indicated by the bar on the right (b). 

 

Multi-state structure determination of the PDZ2 domain 
For apo PDZ2 experimental restraint collection included 1553 distance restraints from 
eNOEs extracted from a set of 3D [15N,13C]-resolved [1H,1H]-NOESY-HSQC spectra at 

8, 16, 24, 32, 40, 50 and 80ms NOESY mixing times (with 410 bidirectional distance 

restrains with highest precision of 0.1 Å). In addition, 65 scalar couplings were collected 
that resulted in ~17 restraints per residue as summarized in Table S3.1. Similarly for the 

complex PDZ2 1484 distance restraints from eNOEs and 65 scalar couplings that 

resulted in ~16 restraints per residue were collected as summarized in Table S3.2.  

In general, with this experimental input multi-state protein calculation with the 

program CYANA can be performed. CYANA simultaneously optimizes multiple protein 

states by minimization of the target function calculated by comparing the simulated 

distance back calculated from all optimized protein states with experimental upper and 
lower limit restraints extracted from the NOE cross-peak. Individual protein states are 

kept in proximity of each other by symmetry restraints, but local movements with 

amplitude below 1.2 Å are allowed. Such approach provides an additional flexibility to 
the protein fold and allows to observe concerted protein motion. Spin diffusion is a major 
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factor causing inaccuracy in deriving distances from the NOEs [39]. Spin diffusion can 

be theoretically corrected if all NOE cross and diagonal peaks can be measured 
unambiguously, which is unrealistic given a limit to NMR sensitivity [40]. Therefore, an 

alternative version of the spin diffusion correction called exact NOE by Relaxation matrix 

Analysis (eNORA) was implemented as a part of the eNOE technique that relies on the 
given 3D protein structure [33]. So far eNOEs were successfully applied to WW domain, 

protein GB3, cyclophilin A and protein ubiquitin [35-38]. Furthermore, a program PDBcor 

was developed to elucidate correlated motion in form of structural correlations in an 
unbiased and automated way from the distance statistics of individual structural entities 

in a multi-state structure [46]. It can quantify correlations in structural ensembles, 

uncover the protein regions that undergo synchronized motion, give insights into the 

biologically important correlated motion and optimally separate conformers into states. 
PDBcor uses information theory and systematic clustering of protein conformers with aim 

to extract mutual information between individual residues [46]. 

In the case of the PDZ2 domain both apo and holo multi-state protein structures 
were calculated following the established protocol introduced above [35-37] using 

eNORA2 for the spin diffusion correction [33, 34] and CYANA for the protein structure 

calculation with minor modifications [31]. Symmetry restraints that keep structural entities 
in proximity of each other were relaxed in the region starting from the Gly24 up to the 

Gly34 in order to allow for the additional motion amplitude for the PDZ2 flexible loop. The 

structure annealing algorithm was executed with 100’000 energy minimization steps for 
1000 two-state conformers. A series of 1-9 state structure calculations were performed 

(Figure S3.2) indicating that a single state structure does not fulfill the experimental data 

well due to its high CYANA target function (TF), which is a measure of restraint violations, 
while 2 states appear to be sufficient to describe the experimental data (Figure S3.2). 

However, the relative population of the two states could not be identified with the use of 

the CYANA target function due to the low target function contrast for both apo and holo 
PDZ2 forms (Figure S3.5). 

The twenty two-state conformers with the lowest TF were selected to represent 

the calculated two-state structure. They satisfy well the experimental restraints as 
indicated by the low CYANA target function (see Tables S3.1 and S3.2) and show well 

behaving Ramachandran plot statistics with less than 2% of the residues in the 
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disallowed regions (Table S3.3 and Figure S3.6). In addition, the resulting structures 

reproduce the known PDZ2 protein fold with root mean square deviation of 1.11 Å for 
apo and 1.34 Å for the complex from the corresponding reported crystal structures 

(Tables S3.1 and S3.2). Following a jack-knife procedure using the PDBcor software it 

was determined that the in the following presented correlations are experimentally 
overdetermined in the two-state apo structure as roughly 70% of the apo PDZ2 domain 

experimental distance restraints are required for the emergence of significant structural 

correlations (Figure S3.7). 

 

The two-state structures of the PDZ2 domain of the apo and holo 
forms 
The eNOE based two-state structures of the PDZ2 domain free (apo) and in complex 

with the peptide RA-GEF2 represented by twenty conformers for each state comprise 
overall the expected PDZ fold as expected (Figure 3.2a, 3.2b, 3.2d and 3.2e). When the 

two states are analyzed with the PDBcor software in standard settings [46] (Figure 3.2c 

and 3.2f) for apo and only in part also for the holo forms of the PDZ2 domain protein 

states are separatable for the β-sheet, α-helix 2, and the flexible loop Gly24-Gly34, and 
Chi1 angle values show for both apo and holo forms a characteristic variation between 

two state-dependent values reminiscent of local distinct configurations of the side chains 

(see Figures S3.3, S3.4). For both apo and holo PDZ2 forms the flexible loop exists in 
two conformations of which one is relatively loose and further apart from the binding site 

(dark blue state for the apo and red state for the holo form in Figure 3.2) and another 

one is relatively more confined and closer to the binding site (cyan state for the apo and 
yellow state for the holo form, please note for convenience the conformer separation and 

coloring will be kept consistent throughout the manuscript and we will refer to the state 

with the relatively more confined flexible loop that is closer to the binding site as state 1 
and the other state as state 2).  

The two separate states for the apo form are clearly separable from both the 

visual inspection (Figure 3.2a and 3.2b) as well as the correlation map of PDBcor (Figure 
3.2c). Almost 60% of the entire protein domain appears to shuffle between two states 

with the most prominent structural difference around the peptide ligand binding site 
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comprising β-strand 2, α-helix 2 and the loop comprising residues Gly24-Gly34 but 

comprise the entire β-sheet to be discussed in details below. Structural correlation of the 
holo PDZ2 domain are much less pronounced as PDZ2 holo states are not correlated 

globally showing mainly minor local correlations (Figures 3.2f and S3.4). The only visible 

correlation of holo PDZ2 between the protein N-terminus and flexible loop comprising 
residues Gly24-Gly34 is probably spurious in nature as it is detected between two 

relatively flexible protein sites. 
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Figure 3.2: Two-state ensemble structures of the PDZ2 domain in the ligand-free apo form (a, b) and 
bound to the RA-GEF2 peptide (holo) (d, e) in two different orientations calculated with eNORA2 [33, 34] 
and CYANA software. Two apo states are colored in cyan and dark blue whereas two holo states are 
colored in yellow and red. The secondary structures and the loop comprising residues Gly24-Gly34 are 
indicated. Structural correlations for both protein ensembles were calculated with PDBcor in standard 
settings [46] and shown as distance correlation matrix heatmaps for the apo (c) and holo (f) forms of the 
PDZ2 domain. 

 

Ligand induced conformational rearrangement of the PDZ2 
domain 
A systematic study of the conformational changes between the apo and holo PDZ2 

scaffolds allows to gain insights into the binding mechanism. Conformational changes 

were first quantified in terms of the average distance between the apo and holo PDZ2 
structures. For that both two-state structures were aligned to each other in UCSF 

Chimera [73], then Cα atom coordinates were extracted from all conformers and 

averaged to get a mean apo and mean holo structures where states A and B are 
averaged out. Next, a distance between Cα atom coordinates of the averaged apo and 

holo PDZ2 conformations was calculated for each residue. The residues that deviate 

more than 1.5 Å from each other were highlighted and mapped on the apo PDZ2 
structure as shown in Figure 3.3. The loop comprising residues Gly24-Gly34 and the N-

terminal flexible segment were excluded from the analysis due to their flexibility. 
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Conserved backbone conformational changes are concentrated to three sites. First site 

(S1) includes α-helix 1 and part of the β-strand 2 facing it. The second site (S2) includes 
the middle part of the β-sheet. The third site (S3) includes parts of the β-strand 5 and α-

helix 2 in proximity of the flexible loop as summarized in Figure 3.3. The PDZ2 allosteric 

network spans from the RA-GEF2 binding site including residues Val75 and Val22 to the 
α-helix 1 over the S1 site, to the Lys54 over the S2 site and to the Val58 over the S3 site. 

Ligand binding yields a shift of the α-helix 1 and a part of the β-strand 2 facing it to 

allocate the ligand with a shift of the middle part of the β-sheet away from the binding 
site quantifiable also by the distance between the Cα atoms of residues Val22 and Val75 

which is in the apo state 2 6.5 ± 0.3 Å, in the apo state 1 6.8 ± 0.4 Å versus 7.1 ± 0.5 Å 

in the PDZ2 complex. Aforementioned structural rearrangements are allosterically 

coupled to the ligand binding site, as backbone rearrangements between apo and 
complex PDZ2 domain are ligand induced a-priori. Those findings correlate with one of 

the major findings of Ranganathan et. al. who showed a statistical coupling between 

His71 and distal residues Ala46 and Ile52 that are part of the α-helix 1 and to the findings 
of Lee et. al. that indicated a coupling between residue Ile20 of the binding site and 

residues Ala39 and Val40 of the β-strand b3 [1, 2]. Overall, a structural rather extensive 

and sophisticated correlation network of residues at atomic resolution in the coordinate 

space is identified that “feel” the ligand binding in line with previous indications [1, 2]. The 
mechanism is of induced fit-type as already previously reported by stopped-flow 

measurements [74]. 
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Figure 3.3: Ligand binding-induced structural changes of the PDZ2 domain. Top panel shows two views 
of the PDZ2 aligned apo-holo structural ensemble. All residues with apo-holo Cα-Cα distance of more than 
1.5 Å except flexible regions are highlighted on the 3D protein structure with the color coding according to 
Figure 3.2 with cyan and blue representing the apo form and yellow and red the holo form, respectively (a, 
b). Ligand-induced allosteric movement of the α-helix 1 is indicated by the arrow. Significant 
rearrangements in the α-helix 1 and part of the β-strand 2 facing it, the middle part of the b-sheet and parts 
of the β-strand 5 and α-helix 1 in proximity of the flexible loop are validating previously reported allosteric 
interactions in the PDZ2 domain [1, 2]. Bottom panel shows three sites S1-S3 of the aforementioned 
allosteric network (c, d). The elucidated allosteric network spans from the binding site to the α-helix 1 over 
the S1, to the Lys54 over the S2 or to the Val58 over the S3. 

 

Evidence for the conformational preselection in PDZ2 in terms of 
ligand binding 
A further detailed investigation of both the apo and holo two state structures with focus 
on the sidechains of residues Ala69, Thr70, His71, and Lys38 close to the binding site 

suggests in part a conformational selection mechanism as both holo states are 

overlapping with apo state 1 (Figure 3.4, cyan). Apo state 2 features the sidechain of 
residues Ala69 and His71 pointing towards the flexible loop that is pushed further away 
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from the binding site and the sidechain of the residue Lys38 pointing directly to the 

binding site as shown in Figure 3.4a (blue). The role of Lys38 was further investigated 
by visualization of the PDZ2 molecular surface of the two representative states from apo 

and holo PDZ2 structures. Detailed analysis of the PDZ2 binding site conformation 

shows that the binding groove in the apo state 2 is obstructed by the sidechains of the 
residues Lys38 and Lys72 as shown in Figure 3.5. This finding suggests state 2 has to 

be a “closed” ligand-binding obstructing PDZ2 conformation while state 1 is the open 

ligand welcoming state that superimposes with the holo states indicating the presence 
of a conformational selection model for ligand binding.  

 

 

Figure 3.4: Conformational selection-based Ligand binding indicated by a structure comparison of the 2 
state apo and holo structures. Sidechains of residues Ala69, Thr70, His71 (b) and Lys38 of both the 2 
state apo and holo structures color coded as in Figure 3.2/3.3 (a) with inserts (b and c) show a super 
position of apo state 1 (cyan) with both the holo states (yellow and red) suggesting a conformational 
selection mechanism on PDZ2 for ligand binding.  
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Figure 3.5: The apo form comprises an open ligand welcoming (a) and a closed ligand obstructing state 
(b). The surface views of the two states of the PDZ2 of the apo form with state 1 (a) and state 2 (b) are 
shown with a ribbon representation and the important side chains of Lys38 and Lys72 shining through. 
The position of the RA-GEF2 peptide is visualized with a violet cylinder. It is visible that the access of the 
binding groove is obstructed in PDZ2 apo state 2 by sidechains of the residues Lys38 and Lys72 (b), which 
hints towards state preselection upon ligand binding giving raise to apo state 2 being the closed (b) and 
apo state 1 (a) the open conformation, respectively. This definition is in line with the super position of the 
apo states with the holo states shown in Figure 3.4 where apo state 1 is super imposing with the two states 
of the holo form. 

 

An extensive correlation network within the apo PDZ2 domain 
steered by the dynamic loop 
The above identification of an open ligand welcoming and a closed state of the apo PDZ2 
is now analyzed within the entire protein domain by objective extraction of correlation 

with the PDBcor in standard settings [46]. The distance correlation matrix heatmap 

shown in the Figure 3.2c indicates that apo PDZ2 is a strongly correlated protein with 
correlations spanning throughout the protein fold with exception of the β-strand 1 and α-

helix 1. The strongest correlations of the apo PDZ2 structural ensemble are concentrated 

to the RA-GEF2 binding site, β-strand 3 including residues Lys38, Lys72 and other 
residues involved in the conformational preselection including Ala69, Thr70 and His71 

as shown in the Figure 3.6, but ca 60% of the entire protein domain is involved.  

The analysis thereby indicates that the presence of the two states originates 

from the loop comprising residues Gly24-Gly34 which through its partial flexibility 
enabled by the two double glycine hinge motives Gly23-Gly24 and Gly33-Gly34 and its 

location at the edge of the protein structure comprising thermal intrinsic local dynamics, 
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moves such that in the apo state 1, the loop pushes sterically the side chain of Thr70 

and His71 away enabling a shift of helix 2 closer to the loop. In addition, in its state 1 a 
steric push of the C-terminal end of the loop along with Ile35 induces a shift of the β-

sheet via Val58/Leu59.  

Within this context it is interesting to note that also in the case of the proline cis-
trans isomerase human cyclophilin A, a loop having two hinge motives with each a 

double glycine motive is key for the two-state structure of the protein comprising more 

than 2/3 of the protein [37, 74] as in the case of the PDZ2 domain. While a generalization 
cannot be made from two cases only, the proposed mechanism of allostery, that is based 

on a dynamic loop feed by the thermic energy of the environment, which is sterically 

perturbing the folded part of the domain appears to be plausible. Because of its simplicity 

it thus also may be well presented in the protein world, which remains to be 
demonstrated. 

Figure 3.6: Core residues that are responsible for 
the two state correlations of the apo state are 
localized around the ligand binding site and the 
hydrophobic core of the protein.  Fifteen highest 
correlated residues from the correlation matrix 
shown in the Figure 3.2c are highlighted as a 
single volume entity on the two-state apo PDZ2 
structure including state-dependent ribbon 
coloring and side chain representation. As it is 
visible from the protein 3D structure highest 
correlations are concentrated to the protein 
binding site and all sites involved in the mentioned 
conformation preselection mechanism of Figures 
3.4 and 3.5.  
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On the multi-level allosteric mechanism of the PDZ2 domain 
The multi-state structures of the apo and holo form of the PDZ2 domain indicate at least 

two levels of protein allostery. The structural correlation of the apo form comprising an 

extensive structural correlation network between an open ligand welcoming and a closed 

ligand destructive state comprising roughly 60% of the entire domain are in line with the 
presence of a conformational selection allostery mechanism of ligand binding (Figure 

3.6). In particular, the ligand binding site with α-helix 2 and β-strand 2, and the β-strand 

3 are involved. Then, the ligand binding to the open state induces an extensive 
conformational change covering ~25% of the protein including again the binding site by 

definition as well as prominently α-helix 1 and the β-strand 4. Hence, with the induced fit 

step allosteric changes over the PDZ2 fold are spread. Interestingly the two allosteric 
networks are only partly overlapping. While both share the binding site, the apo form 

comprises an allosteric network with the entire β-sheet, while the holo form has with α-

helix 1 and the β-strand 4 another allosteric network. Moreover, while both allosteric 
networks comprise the binding site they are structurally distinct also within the binding 

site. Finally, it is worth mentioning that the holo form comprises mainly one global 

structure with local plurality in the side chain configurations (i.e. distinct rotamers, Figure 
S3.4), which means that the ligand binding blocks long range structural correlations and 

plasticity (highlighted in Figure 3.7 by the same circle shape of the yellow and the red 

state). 

 

Figure 3.7: Cartoon on the multi-level allosteric mechanism of the PDZ2 domain, which can be 
summarized as a conformational selection between closed and open in the apo PDZ2 conformations 
followed by the induced fit mechanism upon binding to the one state that propagates allosteric 
rearrangements throughout the protein fold into the yellow/red state, which are distinct from each other 
mainly by local side chain rotamers and thus show the same shape in the cartoon. The color code of the 
PDZ2 domain as in the Figure 3.2 is followed and the ligand is indicated by a grey triangle. 
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Conclusions and Outlook 

 

The presented work on the well-studied PDZ2 domain showcases the power of NMR 

with the high accuracy of the eNOEs that allows to solve multiple protein states at atomic 
resolution under physiological conditions in solution for the studies of protein allostery. It 

elucidated a two-level allosteric network at atomic resolution and pinpoints to the 

existence of structural rather extensive and sophisticated correlation networks of 
residues that in principle could be used for ligand binding regulation or signaling, that 

can “feel” the ligand binding, and that can be lost by ligand binding. In the context of the 

system of interest the PDZ2 allosteric binding mechanism was found to be combined 
from the broadly accepted induced-fit and conformational selection mechanisms. In more 

general terms, the presented work validates also in part previously reported allosteric 

indicators using a genetic algorithm [2] or experimental data [1]. It is furthermore obvious 
that such properties are to be expected in almost any biomolecular system awaiting to 

get explored. 
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Methods 

 

Expression and purification of PDZ2 Domain 
The DNA shuttle vector harboring PDZ2 sequence from human tyrosine phosphatase 1E 

(hPTP1E) was used for the bacterial expression of PDZ2 domain. The gene of interest 
included an N-terminal polyhistidine tag separated by an HRV-3C protease cleavage 

site. Expression and purification was carried out according to the previously reported 

procedures with minor modifications [1, 75]. Expression was performed in BL21 (DE3) 
Escherichia coli cells. The protein expression was induced after reaching OD600 of 0.8 

with 1 mM IPTG. Stable isotope labeling was performed by resuspending cells in growth 

media supplemented with 15N-enriched ammonium chloride and 13C-enriched glucose. 
After overnight incubation with shaking, cells were harvested, resuspended and lysed 

with a Microfluidizer. The protein of interest was purified from the lysate with Ni-NTA 

chromatography. Then, the polyhistidine tag was cleaved with HRV-3C protease and the 
protein of interest was further separated by passing through the Ni-NTA column. The 

eluted protein was concentrated to 2 mM and the buffer was exchanged to a desired 

buffer for NMR (150 mM sodium chloride and 50 mM phosphate buffer at pH 6.8). A 
peptide (Ac-ENEQVSAV–COOH, BACHEM), or eight C-terminal residues from Rap 

Guanine Nucleotide Exchange Factor (RA-GEF2), was added to the final sample in 

concentration of 2 mM (1:1) for measurements of the PDZ2 domain bound to the ligand. 

 

NMR experiments 
The NMR measurements were performed on a 700 MHz Bruker spectrometer equipped 
with a triple resonance cryoprobe at 298 K. Processing and analysis of all NMR spectra 

was done with NMRPipe [76] and XEASY [77]. Structure calculations were done with 

eNORA2 within CYANA [34]. The rotational correlation times 𝜏c was calculated from the 
15N-relaxation experiments as described previously [60]. It was also optimized using a 
systematic screening approach with the goal of target function minimization in the 

structure calculations. Scalar couplings 1JHNHβ were recorded as previously described 

[78] from a series of intensity-modulated HMQC spectra with 80(t1,max(15N) = 28.2 
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ms)*512(t2,max(1H) = 52.3 ms) complex points with an interscan delay of 1 s and 32 scans 

per increment. Scalar couplings 1JHαHβ were recorded as previously described [79] from 
a 3D 13Ca-separated HACAHB-COSY experiment with 50(t1,max(13C) = 14.2ms)* 54 

(t2,max(1H) = 7.5 ms)* 2048 (t3,max(1H) = 204.9 ms) complex points, 16 scans per increment 

and 1s of interscan delay. Scalar couplings for aromatic side chain heavy atoms 1JNCγ 

and 1JCOCγ were recorded as previously described [80] from intensity-modulated HSQC 

spectra with 200(t1,max(15N) = 150.0 ms)*512(t2,max(1H) = 51.2 ms) complex points, and 

interscan delay of 1.2 s and 16 scans per increment for 1JNCγ couplings and with 
100(t1,max(15N) = 75.0 ms)*512(t2,max(1H) = 51.2 ms) complex points, and interscan delay 

of 1 s and 32 scans per increment for 1JCOCγ couplings. 

 

Structure calculation 
The single and multistate protein structure calculation was done according to the 

previously reported procedure [35-37] using eNORA2 [33, 34] and CYANA [31]. Lower 

and upper distances from eNOEs, backbone, Hβ, and aromatic side-chain scalar 
couplings were used as inputs for the structure calculation. Calculations were done with 

200’000 torsion angle dynamics steps for 100 conformers by simulated annealing. 

Identical heavy atoms from multistate conformers were kept together by a potential well 

with a bottom width of 1.2 Å as previously described [37]. 

 

eNOE dataset for PDZ2 domain in apo form 
An exhaustive set of experimental restraints for the PDZ2 in the apo form consisted out 

of 1143 unidirectional distance restraints, 410 bidirectional distance restrains with 

highest precision of 0.1 Å and 65 scalar couplings that results in 17 restraints per residue 
as summarized in Table S3.1.  

 

eNOE dataset for PDZ2 domain in holo form  
For the PDZ2 in complex with RA-GEF2 peptide the experimental set of restraints 

consisted out of 995 unidirectional distance restraints, 489 bidirectional distance 
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restrains and 65 scalar couplings that results in 16 restraints per residue as summarized 

in Table S3.2.  
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Supplementary Information 

Tables 

NMR distance and dihedral constraints 

Distance constraints 

Total eNOEs 1553 

eNOEs from one pathway 1143 

eNOEs from two pathways 410 

Intra-residue, |𝑖 − 𝑗| = 0 529 

Sequential, |𝑖 − 𝑗| = 1 411 

Short-range, |𝑖 − 𝑗| ≤ 1 940 

Medium-range, 3 < |𝑖 − 𝑗| < 5 206 

Long-range, |𝑖 − 𝑗| ≥ 5 407 

Dihedral angle restraints 

³𝐽𝐻𝑁E scalar coupling 65 

³𝐽𝐻E𝐻G scalar coupling 55 

³𝐽𝐻𝑁𝐶𝐺 scalar coupling (aromatic) 5 

³𝐽𝐻𝑁𝐶𝑂𝐶𝐺 scalar coupling (aromatic) 5 

¹³𝐶E chemical shifts 86 

 One-state ensemble Two-states 
ensemble 
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Structure statistics 

Average CYANA target function value 
(Å) 

29.41 ± 0.05 7.81 ± 0.21 

Violations  

Distance constraints (>0.5Å) 11 0 

Dihedral angle constraints (>5°) 0 0 

Deviations from idealized geometry 

RMSD (Å)   

Backbone to mean 0.42 ± 0.10 0.65 ± 0.09 

Heavy atoms to mean 0.94 ± 0.11 1.27 ± 0.09 

RMSD to X-ray structure (PDB ID 3LNX) / Å 

Backbone 1.32 1.11 

Heavy atoms 1.79 1.86 

Table S3.1 Structural statistics and CYANA input data for the apo PDZ2 domain. 

 

NMR distance and dihedral constraints 

Distance constraints 

Total eNOEs 1484 

eNOEs from one pathway 995 

eNOEs from two pathways 489 
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Intra-residue, |𝑖 − 𝑗| = 0 545 

Sequential, |𝑖 − 𝑗| = 1 373 

Short-range, |𝑖 − 𝑗| ≤ 1 918 

Medium-range, 1 < |𝑖 − 𝑗| < 5 162 

Long-range, |𝑖 − 𝑗| ≥ 5 404 

Dihedral angle restraints 

³𝐽𝐻𝑁E scalar coupling 65 

³𝐽𝐻E𝐻G scalar coupling 55 

³𝐽𝐻𝑁𝐶𝐺 scalar coupling (aromatic) 5 

³𝐽𝐻𝑁𝐶𝑂𝐶𝐺 scalar coupling (aromatic) 5 

¹³𝐶E chemical shifts 80 

 One-state ensemble Two-states ensemble 

Structure statistics 

Average CYANA target function value 
(Å) 

25.87 ± 0.05 7.64 ± 0.19 

Violations  

Distance constraints (>0.5Å) 7 1 

Dihedral angle constraints (>5°) 0 0 

Deviations from idealized geometry 
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RMSD (Å)   

Backbone to mean 0.35 ± 0.07 0.65 ± 0.07 

Heavy atoms to mean 0.87 ± 0.12 1.21 ± 0.08 

RMSD to X-ray structure (PDB ID 3LNY) / Å 

Backbone 1.57 1.34 

Heavy atoms 2.26 1.94 

Table S3.2 Structural statistics and CYANA input data for the PDZ2 domain in complex with RA-GEF2 

peptide. 

 

 Apo Complex 

Most favored regions 64.9% 52.6% 

Additionally allowed 

regions 

31.5% 42.9% 

Generously allowed 
regions 

2.5% 3.3% 

Disallowed regions 1.1% 1.2% 

Table S3.3 Ramachandran statistics 
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Figures 

 

Figure S3.1: Ligand-binding induced chemical shift change versus the amino acid sequence of PDZ2 
indicate the ligand binding site and allosteric sites. Ligand-induced 15N and 1H chemical shift changes 
(geometrically weighted with nitrogen shifts taken with weight of 0.3) measured in [15N,1H]-HSQC spectra 
of free PDZ2 domain and in a 1:1 complex with the ligand peptide RA-FEF2. 
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Figure S3.2: Two state validation of apo PDZ2 domain (a) and PDZ2 domain in complex with RA-GEF2 
peptide (b). The CYANA target function (TF) values, which is the (weighted) sum of the squared violations 
of the conformational restraints versus number of simultaneously calculated states, is shown for 1-9 state 
structure calculations in blue. The importance of the ensemble-based structure determination is evident 
from the decrease of the TF with an increasing number of states and indicates that two states are sufficient 
to describe the experimental data well. In yellow the correlation value peak determined by the PDBcor 
calculator [46], which is also an indicator for the number of states of the system is shown. In the case of 
apo PDZ2 also 2 states are suggested as in the case of the CYANA TF, while in the case of the complex 
PDZ2 more states are predicted.  
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Figure S3.3: Chi1 angles of all the residues of the 40 conformers of the apo PDZ2 ensemble are shown 
in a circular plot. 
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Figure S3.4: Chi1 angles of all the residues of the 40 conformers of the complex PDZ2 ensemble are 
shown in a circular plot. 
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Figure S3.5: Population analysis of apo PDZ2 domain (a) and PDZ2 domain in complex with RA-GEF2 
peptide (b) showing that the population could not be determined within the structure calculations. The 
graphs show the CYANA target function (TF) of the two-state structure calculations versus various 
populations. For this a pseudo ten-state structure calculation was set up allowing only two distinct states 
with various populations between 1:9 to 9:1 through symmetry restraints. From the Figure it is evident that 
the TF cannot determine the populations between 1:9 and 9:1.  

 

 

Figure S3.6: Ramachandran statistics of apo PDZ2 domain (all 2*20 conformers) (a) and PDZ2 domain 
in complex with RA-GEF2 peptide  (all 2*20 conformers) (b). 
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Figure S3.7: NOE network analysis and multi-state structure calculation stability studies. A series of two-
state structure calculations of the PDZ2 domain in apo (green) and complex (red) form was performed with 
fractional distance restraint datasets and analyzed for structural correlations. Roughly 70% of the apo 
PDZ2 domain experimental distance restraints are required for the emergence of significant structural 
correlations between free PDZ2 states, whereas significant structural correlations in PDZ2 complex are 
not observed. 

  



 78 

 

  



 79 

 

 

 

 

 

Chapter 4: Optimization and Validation of Multi-
state NMR Protein Structures using Structural 

Correlations 
 

This chapter is an adaptation from the manuscript under review in Journal of 
Biomolecular NMR: Dzmitry Ashkinadze, Harindranath Kadavath, Roland Riek*, Peter 

Güntert* Optimization and Validation of Multi-state NMR Protein Structures using 

Structural Correlations  
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Introduction 

Recently, we have developed the PDBcor software for the analysis of structural 

correlations in multi-state protein structures.[46] Within the PDBcor software, structural 

correlations indicating correlated motion are evaluated based on distance statistics in the 
protein bundle. These can be expressed as a matrix of correlation values between all 

residue pairs or alternatively as an overall correlation parameter (average correlation 

over the matrix). The correlation values calculated based on information theory represent 
the amount of information shared between protein residues in terms of their 

correspondence to the protein states. Correlations extracted with PDBcor are objective 

in the sense that they are not based on subjective structure superposition. 

 This work introduces structural correlations using PDBcor as a valuable quality 

control measure for multi-state protein structures in the context of NMR-based protein 

structure calculation.  

An eNOE-based multi-state NMR structure calculation is based on the 

assumption that the protein of interest undergoes conformational exchange between 

different states. Under this assumption, the protein states are fitted to the data such that 

distances averaged over these states match best their experimentally measured values. 
The best fit corresponds to a minimal value of the target function, which is a weighted 

sum of the squared violations of the experimental distance restraints. In an initial step, a 

single-state NMR structure is calculated following standard procedure.[32] In single-state 
NMR structure calculations the target function along with bundle root-mean-square 

deviation (RMSD) and a list of violated distances in the calculated structure are good 

indicators to evaluate the accuracy of the protein structure and thus valuable tools for 
finding incorrect assignments/distance restraints.[26, 81] Next, multi-state structures are 

calculated that lead to the emergence of locally-split protein sites and networks. 

However, for multi-state structure calculations, the aforementioned tools lose their 
prominent role in finding erroneous restraints, because they may get “dissolved” in the 

additional degrees of freedom that come along with the multiple states. As we shall 

demonstrate, structural correlations provide an alternative additional quantitative 
parameter for multi-state structure validation that can be used for the final check of multi-

state protein structures. As opposed to the target function that quantifies violations of 
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experimental restraints, structural correlations quantify the clustering separation 

between protein states and can be used to assess and quantify the features of the final 
multi-state protein structure. Therefore, structural correlations can be used to monitor 

and optimize the clustering separation between protein states that are not strictly 

dependent on the target function.  

Selected assays together with corresponding demonstration examples were 

deposited at http://www.cyana.org/wiki/index.php/Tutorials 
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Results 

Structural correlation value 
All structural correlations in future sections are average correlation values that were 
extracted using PDBcor with default settings and the number of protein states set 

corresponding to the original CYANA protein calculation unless mentioned otherwise. 

The average correlation is the mean value of the elements of the distance correlation 

matrix 𝐴F that is given as an output from the PDBcor software.  

 

Optimization of the number of states 
For a multi-state structure determination, the number of protein states that can be 

resolved meaningfully by the experimental restraints must be determined. The 

established procedure uses the target function decrease with the number of states 
calculated. The number of protein states is assessed by calculating protein ensembles 

with 1 to 9 states. The optimal number of states is then set according to the multi-state 

ensemble that achieves a minimum of the normalized target function or in other words 
to the minimum required number of states necessary to explain the experimental data. 

This is illustrated here for two previously reported model proteins, the WW domain of 

PIN1, yielding a two-state system, and GB3, yielding a four-state system, by multi-state 
calculations with previously reported procedures using CYANA and the published 

experimental restraints[36, 82] (Figure 4.1). We evaluated the ensembles with 1 to 9 

states in terms of structural correlations using PDBcor. Structural correlations of the 
single-state ensembles were set to zero per definition as at least two states are required 

for the meaningful extraction of structural correlations. As it is clearly visible in Figure 4.1 

the normalized target function reaches a minimum at the reported number of states in 

both cases and levels off with increasing number of states[36, 82]. As opposed to the 
target function, structural correlations of calculated structures do not plateau but show a 

maximum at the reported number of states. Arguably, structural correlations increase 

approaching the optimal number of states due to convergence of the protein bundle as 
required degrees of freedom become available and decrease afterwards as extra states 

start to fuse with existing states and make them statistically inseparable. Hence, 
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structural correlations provide an alternative method to determine the optimal number of 

states for multi-state structure calculation that can give more clear-cut results than the 
conventional target function-based analysis and are best used in concert with each other. 

 

 

Figure 4.1 Results of the procedure to determine the optimal number of states for the WW domain (a) and 
the protein GB3 (b). The blue line represents the normalized target function and the orange line the 
average structural correlation as a function of the number of protein states. The correlation value peak at 
two states for the WW domain and four states for GB3, as determined previously on the basis of the 
normalized target function values. Nevertheless, structural correlations values are easier to interpret due 
to the prominent maximum at the optimal number of states.  

 

Estimation of Protein State Populations 
The large majority of documented multi-state protein structures feature a two-state 

model.[4] For such two-state models populations of individual states can be evaluated 
empirically by conducting a series of ten-state CYANA structure calculations in which the 

10 individual states are separated in two controlled groups A and B.[36] Protein states in 

each group are tightly bound to each other. By varying the size of group A from 1 up to 
9 conformers we can simulate a protein structure with population of state A rising from 

10% up to 90%. In the established procedure optimal protein state populations are 

determined according to the minimum of the normalized target function.[82] Here, we 
present an estimation of protein state populations for two previously reported model 

proteins, the WW domain of PIN1 and cyclophilin A. In addition, for both systems protein 

ensembles calculated with varying population parameters were evaluated in terms of 
normalized target function values and structural correlations using PDBcor (Figure 4.2). 
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For the latter, two protein conformations representing both protein states were selected 

from each ten-state structure calculation and used as input to PDBcor making population 
analysis equivalent to the analysis of a series of two-state protein structures. Figure 4.2 

shows that the target function approaches its minimum in range of 40–60% for both 

systems. Structural correlations for cyclophilin A exhibit a maximum at a state population 
of 50% with a slight shoulder at 20% and (equivalently) 80%. According to these 

observations the two protein states of cyclophilin A are populated equally or 20/80 

judging by the correlation shoulder. Despite target function minimum at 40% structural 
correlations of the WW domain show a maximum at 10/90. However, it was also 

previously reported, that the estimation of protein state populations using the target 

function appears to be difficult for the WW domain.[36] While the correlation appears to 

be an alternative predictor of populations, it remains a difficult task. 

 

 

Figure 4.2 Results of population estimation studies for the WW domain (a) and protein cyclophilin A (b). 
The blue line corresponds to the normalized target function and the orange line to the average structural 
correlation as a function of the protein state A population.  

 

Identification of Key Distance Restraints for Validation Purposes 
In a multi-state structure determination, the identification of key eNOE distance restraints 

that reveal structural correlations is important in order to check their validity individually 
by inspection of the NMR spectra and analyses such as the NOE build-up rate quality. 

In order to find these key restraints individual distance restraints can be evaluated 

empirically in terms of structural correlations by calculating structures omitting a 
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particular distance restraint. As an example, a complete series of two-state structure 

calculations missing a particular long-range distance restraint was performed for the 
previously mentioned WW domain. Subsequently, each calculated bundle was evaluated 

for structural correlations and distance restraints were sorted in ascending order of the 

average structural correlation (Figure 4.3). A decrease in structural correlation caused 
by the removal of a particular distance restraint can either indicate that it is a key folding 

NOE restraint or a NOE restraint orchestrating correlated motion and protein states 

splitting. On the contrary, correlation increase due to removal of a particular eNOE could 
indicate potential structure calculation problems including distance restraint inaccuracy 

or misassignment. Distance restraints which removal contributed either to the twenty 

highest or twenty lowest correlation values were selected for further evaluation. In Figure 

4.3b, key NOEs that were mapped onto the 3D structure are concentrated in the WW 
allosteric site and domain termini.[36] Nevertheless, since this approach evaluates 

contributions of individual NOEs, a possible contribution by distance restraints that are 

part of a redundant NOE subnetwork might be underestimated.  
 

 

Figure 4.3 Results of the key distance restraint assay for the WW domain. (a) Long-range distance 
restraints from the WW domain were sorted according to the average structural correlation value obtained 
after their removal. The correlation level of the structure with all distance restraints is indicated by the black 
dashed line. Distance restraints corresponding to the twenty highest and twenty lowest correlation values 
are highlighted in red and green, respectively. (b) Twenty eNOEs invoking the biggest allosteric reduction 
(key eNOEs) are further illustrated on a two-state WW domain structure.  
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Validation of Individual Experimental Distance Restraints 
In addition to the listing of key distance restraints that are important for the structural 

correlations, structural correlations obtained by the software PDBcor can also be used 

for the validation of individual distance restraints as illustrated for the two-state WW 

structure that was calculated once with and once without an upper limit distance restraint 
of 3.85 Å connecting the backbone amide H of Trp11 and HB2 of Asn26 (Figure 4.4). 

Structure bundles clearly indicate that the inclusion of this particular distance restraint 

affects locally the two-state separation of the side chain of Asn26. Nevertheless, the 
average target function value of the structure bundle including this distance restraint 

(6.52) does not favor it over the structure bundle lacking it (target function of 6.43). As 

opposed to the target function, the average structural correlation values clearly favor the 
calculation with this distance restraint (0.552) over the calculation without it (0.276).  
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Figure 4.4 Selected region of the two-state WW domain structure bundles calculated with the previously 
reported protocol using CYANA and a set of experimental restraints acquired by liquid-state NMR.[36] 
Both structure bundles are colored according to the optimal two-state clustering deduced with PDBcor. 
Left structure bundle (a) was calculated using a full set of distance restraints, whereas a distance restraint 
of 3.85 Å connecting H of Trp11 and HB2 of Asn26 was excluded from the calculation of the structure 
bundle on the right (b). This distance restraint is depicted in both bundles as a red dotted line. Inclusion of 
the previously mentioned distance restraint clearly induces a local two-state separation for the involved 
residues. A positive effect of the inclusion of this distance restraint was detected by monitoring structural 
correlations, but not by the target function values.  

 

Degree of Overdetermination of the NOE  
In this section we discuss the collective effect of the NOE network as well as the degree 

of system overdetermination by monitoring structural correlations of protein bundles 

calculated from reduced distance restraint datasets. The three previously mentioned 
model systems (i.e. WW domain, protein GB3, and cyclophilin A) were evaluated for 

stability of the multi-state protein structure determination. All three models were 

calculated and analyzed for their reported number of 2, 4, and 2 states, respectively. A 
series of random subsets of the original experimental distance restraint dataset 

comprising from 20% to 90% of all available restraints was used as input for the structure 

calculations. Each experiment was repeated 10 times, always with new random fraction 
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of the dataset in order to counter the fact that not all distance restraints are equally 

important for the splitting of protein states. Calculated structure bundles were then 
evaluated for structural correlations. The correct fold was found for all three model 

proteins when supplied with 20% or more of the original distance restraints. Average 

structural correlations and their standard deviations for each dataset slice of the three 
model systems are shown in Figure 4.5. It is clearly visible that the WW domain has the 

most stable and most overdetermined NOE restraint system compared to other two 

proteins. Structural correlations or statistically significant splitting between protein states 
can be observed for any random fraction of the WW distance dataset that includes more 

than 50% of the original WW dataset, whereas for both cyclophilin A and GB3 more than 

90% of original dataset are required for that.  

 

Figure 4.5 NOE network analysis and multi-
state structure calculation stability studies. 
The two-state structure calculation of the 
WW domain is more stable than those of 
GB3 and cyclophilin A (CYP) according to 
the structural correlations of fractional 
distance restraint datasets since roughly 
50% of the WW domain experimental 
distance restraints but over 90% of those for 
GB3 and cyclophilin A are required for 
comparable degrees of correlations.   

 

 

 

Distance Range of Structural Correlations 
We also studied how structural correlations derived from eNOE restraints depend on the 

distance between residues. Three deposited multi-state protein structure ensembles, 
including the WW domain of PIN1 (PDB ID 6SVC[36]), the protein GB3 (PDB ID 

2LUM[82]) and cyclophilin A (PDB ID 2MZU[37]), were analyzed for structural 

correlations. For each system, all residue pairs were sorted in ascending order according 
to their average Cα–Cα distance in the published structures and separated into ten equal 

groups. Then, the average interresidual distance and the average correlation value was 

calculated for each group and plotted in Figure 4.6. Results show that the average 
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correlation values decrease with increasing distance between residues as it would be 

expected for local correlations that are limited in their span. Nevertheless, a certain level 
of structural correlations is retained throughout all distance groups as it would be 

expected for global correlations that are independent of the interresidual distance. 

Results also clearly indicate that correlated motion spans significantly larger distances 
than a single NOE (i.e. 5 Å), which can only be attributed to a collective influence of the 

NOE network.  

 

Figure 4.6 The distance dependence of 
structural correlations for the WW domain of 
PIN1 (green), the protein GB3 (red) and 
cyclophilin A (blue). Structural correlations of 
the WW domain and cyclophilin A experience 
a steeper decline as compared with protein 
GB3, which makes them more locally 
correlated than protein GB3. Significant 
correlation for distances above 5 Å (the 
maximum range of a single NOE) can only be 
explained by the effect of the NOE network. 

 

 

Optimization of the CYANA Multi-State Structure 
During the extensive testing of the above validation concepts, we also noticed that an 
insufficient number of conformers calculated with CYANA and an insufficient number of 

torsion angle dynamics steps can affect the structural correlation values through a 

suboptimal sampling by the calculated conformers. In particular, the number of torsion 
angle dynamics steps can have a major influence as shown in Figure 4.7. In order to 

illustrate the undersampling issue a series of two-state structure calculations of the WW 

domain were performed varying the number of torsion angle dynamics steps and the 
number of calculated conformers. Convergence was observed on the basis of structural 

correlations. The structure calculation convergence results summarized in Figure 4.7 

indicated an adjustment of the CYANA calculation parameters to 200,000 torsion angle 
dynamics steps and 500 calculated conformers as optimal conditions for a multi-state 

structure determination. 
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Figure 4.7 Screening of multi-state structure calculation conditions for the WW domain. Structural 
correlations of multi-state WW domain protein bundles indicate that conventional calculation of 100 
conformers with 50000 torsion angle dynamics steps is not sufficient for convergence. Therefore, the basic 
structure calculation protocol was adjusted to 500 conformers with 200000 torsion angle dynamics steps. 
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Conclusions and Outlook 

NMR-based multi-state structure determination is established[31, 35, 37] and has been 

demonstrated for 4 systems using eNOEs.[36-38, 82] The major remaining challenge 

that we identified in the protocol is the validation of the multi-state structures because 
the usual approach in standard structure calculations using the target function along with 

the list of remaining restrained violations[26, 32, 83] appeared not be sufficient to find all 

erroneous restraints or eNOE build-up curves, requesting detailed extensive manual 
analysis of individual restraints and NOE build-up fits along with many test calculations 

resulting in manually adapted, time-consuming and non-standardized procedures. 

Here, we demonstrated that using the structural correlations obtained with the 
software PDBcor an additional tool for the validation of multi-state structure 

determinations that provide straight-forward information on the degree of 

overdetermination of the system is established, lists key restraints responsible for the 
identified structural correlations, and identified the number of states including their 

approximate populations necessary to fulfill the experimental restraints. Structural 

correlations are thus an important probe in the refinement stage of a multi-state structure 

calculation as they are sensitive to the protein state splitting, while the target function 
and the list of violated experimental restraints are important in earlier steps of the multi-

state structure determination (in particular at the single-state and initial two-state 

structure determination phase). Together they constitute a powerful tool for the validation 
of NMR-based multi-state structures.   

The PDBcor software for the calculation of structural correlations is freely 

available (https://github.com/dzmitryashkinadze/PDBcor).[46] PDBcor allows the 
straight-forward and objective determination of structural correlations in a given multi-

state protein structure. The assays and subroutines performed and demonstrated here 

together with corresponding demonstration examples were deposited at 
http://www.cyana.org/wiki/index.php/Tutorials and can be straightforwardly adopted to 

individual systems. Together with the software package CYANA[32, 83] including the 

eNORA software[33, 34] for NOE build-up rate determinations, multi-state structures can 
be determined efficiently given NOESY cross peak assignments and intensities as an 

input. With these tools multi-state structures can be determined readily using eNOE 
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restraints. The additional NMR measurement time to acquire several (i.e. 3-4) combined 
15N,13C-resolved [1H,1H]-NOESY experiments instead of one is only approximately one 
week in order to obtain a multi-state structure that comprises the correlated dynamics of 

the protein of interest at atomic resolution and as such a unique quantitative information 

of presumably high biological relevance that currently no other technique than NMR can 
produce. 
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Methods 

 

Protein structure calculations 
eNOE-based multi-state structure calculations have been performed as reported 

previously for three proteins, the WW domain of PIN1 (PDB ID 6SVC[36]), the protein 

GB3 (PDB ID 2LUM[82]) and cyclophilin A (PDB ID 2MZU[37]). The experimental dataset 

for the WW domain[36] consists of 686 eNOE-derived distance restraints (271 bi-
directional ones with 0% error and 415 uni-directional ones with 20% error) and 62 scalar 

couplings. The experimental dataset for the protein GB3[82] consists of 884 eNOE-

derived distance restraints, 90 RDCs, and 201 scalar couplings. The experimental 
dataset for the protein cyclophilin A[37] consists of the 3640 eNOE-derived distance 

restraints, 396 RDCs, and 281 scalar couplings. 

Structure calculations for this paper were executed following the established 
protocol[31, 35, 37] using eNORA2 for the spin diffusion correction[33, 34] and CYANA 

for structure annealing.[32, 83, 84] Upper and lower limit distance restraints produced by 

eNORA2, RDCs and scalar coupling restraints were used as input for multi-state 
structure calculations with CYANA. In each calculation 500 conformers were calculated 

with simulated annealing using 100,000 torsion angle dynamics steps per conformer. 

Corresponding heavy atoms from different  states were kept together with the help of 
symmetry restraints in the form of a weak harmonic well potential with a bottom width of 

1.2 Å.[31, 35] The twenty best conformers with the lowest final target function values 

were selected for structural correlation analysis. 

 

Structural correlations 
All structure correlations were extracted using the software PDBcor with default 
settings.[46] Each state of each conformer was provided as a separate protein entity as 

input for PDBcor. The number of states was set according to the CYANA calculation and 

the amplitude of thermal motion correction was set to 0.5 Å. Average correlation values 
were obtained as the mean value of the individual correlation values for each residue 

pair. 
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Chapter 5: Protein Allostery and Structural 
Correlations derived from Single-state NMR 

Structural Ensembles 
 

This chapter is an adaptation from the manuscript in preparation: Dzmitry Ashkinadze, 
Piotr Klukowski, Harindranath Kadavath, Peter Güntert*, Roland Riek* Protein Allostery 

and Structural Correlations derived from Single-state NMR Structural Ensembles 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Author’s contribution: D.A. conducted experiments and wrote manuscript P.K. motivated to analyze PDB 
database H.K. helped with scientific writing P.G. and R.R. supervised the project. All authors discussed 
the results and contributed to the final manuscript 

  



 96 

Introduction  

NMR-based protein structures are relying on NOE distances that are of ensemble nature 

[19]. Even though an access to high quality average distances over the population of 

protein molecules in solution provides information that is sufficient to solve a multi-state 
protein structure [31], the majority of NMR protein structures deposited in the Protein 

Data Bank [7] are of a single-state nature. Since the amplitude of the protein motion is 

limited by the protein fold and NOE distance range, protein states acquired from the 
multi-state protein structure are typically partially overlapping. Considering also a limited 

precision of protein states it might be impossible to unambiguously discriminate between 

them. It was shown that in such cases a statistical study of the multi-state protein 
ensemble using software PDBcore can be used to efficiently extract information about 

so called structural correlations [46]. Protein regions are called correlated to each other 

if they move in a synchronized fashion or switch together between distinct local 
conformations in case if discrete system conformations are sampled. 

The program PDBcor is able to elucidate structural correlations in an unbiased 

and automated way from the distance statistics of individual structural entities from the 

multi-state structure. It can uncover the protein regions that undergo synchronized 
motion, quantify correlations in structural ensembles and give insights into the 

biologically important correlated motion. PDBcor uses systematic clustering of protein 

conformers and information theory with aim to extract mutual information between 
individual residues [46]. 

Here we showcase that it is possible to extract meaningful structural 

correlations from the single-state protein NMR structures as the information about such 
interactions is not lost during conventional protein structure calculation despite the 

assumption of a single protein conformation. We also showcase the link between protein 

allostery and underlying protein motion by a systematic study of the correlated motion 
from the reported allosteric systems. 
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Results 

Deviations from the mean structure in a single-state protein NMR ensemble are typically 

viewed in terms of experimental error, non-specific protein movement or protein bundle 

resolution. Nevertheless, we will show that prominent structural correlations between 
protein sites are conserved even if the protein structure was created as a single state 

that by design averages all input states in a single conformation. First, we will show the 

principle of correlation retention on an example of a minimal system (Figure 5.1). Then, 
on example of a synthetically created protein (Figure 5.2). Finally, we will show 

correlation retention on an example of the real experimental NMR-based structures 

(Figure 5.3). 

 Furthermore, since all deposited NMR structures might potentially incorporate 

information about correlated motion, we also investigated a protein data bank PDB and 

a database of allosteric proteins ASD to study the relation of correlated motion and 
allostery (Figure 5.4) [7, 9-12].    

 

Principle of the Correlation Retention  
Correlation retention can be shown on series of examples starting with a simple system 

consisting of interconnected atoms where each atom is equivalent and all bonds are of 

unit length such that this system exists in an equilibrium between two states as in Figure 
5.1a. As shown in Figure 5.1a the system has a C2 symmetry along X-axis with an 

orange atom that can move horizontally and a varying angle 𝛼, which is a single degree 

of freedom of this hypothetical system and defines the configuration of the whole system 

by its value. In order to simulate the single-state protein structure calculation we need to 
assume that we have knowledge about the system architecture and that we have access 

to the average distances between all atom pairs. To simulate the final conformation, we 

need to calculate angle 𝛼 that minimizes the target function or a sum of distance 

violations calculated as a sum of squared differences between an actual distance 
between atom pairs and its average value from two input conformations. Due to the 

simplicity of the input system, it can be easily solved numerically (Figure 5.1b). It turns 

out that by defining input angles as 𝛼"H = ±0.39 the target function approaches minimum 
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at values 𝛼5I, ≈ ±0.12. This means that the final simulated conformations will be split 

between two solutions that are lying closer to each other than the input conformations, a 

situation that is typical for a real protein structure calculation. 

 So far, we described a single split structural element (Figure 5.1a). If we 

duplicate it as in Figure 5.1c and 5.1e we get a simplistic model with correlated orange 

atoms moving either in a synchronized (Figure 5.1c) or in an asynchronized (Figure 5.1e) 
mode. Both systems by design have two degrees of freedom as two angles that are 

coupled in the input data. Repeating the procedure that simulates protein structure 

solving we can numerically describe the target function as a function of two angles 𝛼( 

and 𝛼. (Figure 5.1d, 5.1f). It turns out that by defining input angles as 𝛼(. = ± J
K
 the target 

function approaches minimum at all four conformations with correct two conformations 
having a deeper minimum peak of target function. A simulated single-state conformation 

calculation of this minimal model was able to find two correct conformations and 

therefore to keep the correlation between orange atoms in both synchronized and 
asynchronized models. Two false conformations corresponding to the other model and 

breaking the correlation were also detected with higher target function and therefore with 

population that is limited by the Boltzmann factor with energy gap proportional to the 
difference between target function minima. Results of this hypothetical experiment 

explain the mechanism behind partial retention of structural correlations in a single-state 

protein structure. 
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Figure 5.1 Theoretical study demonstrating the principle of correlation retention on an example of minimal 
systems. Each minimal system is presented in a dynamic equilibrium between two conformations (a, c, e). 
A set of average distances from each minimal model is used to evaluate possible conformations in terms 
of the target function. First model system (a) has only one degree of freedom (𝛼) and a target function 
calculated for all possible values of 𝛼 reveals two minima representing two optimized conformations of this 
system that are closer to each other than the initial conformations of the modeled system (b). Second and 
third model systems (c, e) have two degrees of freedom (α1 and α2) that are correlated to each other in 
the input data. Those two models are moving in a synchronized (c) or in an asynchronized (e) mode. 
Distance averaging and target function calculation along those two degrees of freedom (d, f) shows two 
minima representing two states of the input system and therefore allows to correctly reconstruct the input 
system conformations. In both cases two false states (target function difference between true and false 
states accounts for 0.013 in both models) that would break the correlation were also detected with higher 
target function and therefore with population that is limited by the Boltzmann factor with energy gap 
proportional to the difference between target function minima. This experiment illustrates the mechanism 
behind partial retention of the correlations in a single-state protein structure. 
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Validation of the Correlation Retention  
In order to validate the retention of structural correlations a correlation model system on 

basis of protein cyclophilin A was constructed. For this a first PDB model was taken from 

the deposited liquid NMR bundle (PDB code: 2MZU) as a first state and a synthetical 

second state was created by manual tilting of two distant alpha-helices a1 and a2 and 
structure adjusting that removed a steric clash. Structure adjusting was made by 

calculating a synthetic set of distances in an adjusted cyclophilin A state and structure 

recalculation using CYANA and a standard structure calculation procedure [31]. The 
resulting synthetic dataset for protein cyclophilin A consisted of two protein states with 

correlated alpha-helices a1 and a2 (Figure 5.2a). Then, a synthetic peak list was created 

with CYANA covering all sidechain and backbone H1-H1 NOEs for distances in range 
between 0.1 Å and 5 Å such that peak intensities are corresponding to the state-

averaged distances. There was not a single NOE directly connecting alpha-helices a1 

and a2 in the generated peak list. Then, a conventional single state CYANA calculation 
was executed supplied with random selection of 500 NOESY sidechains peaks and 250 

NOESY backbone peaks with 20% uncertainty for peak intensities to mimic a real 

structure calculation. The simulated structural ensemble is depicted in Figure 5.2b. As it 
can be seen from the structural ensemble the alpha-helices a1 and a2 are moving less 

compared to the initial structure as it would be expected from an averaged single-state 

structure. Conformers were optimally sorted in two states with PDBcor software and the 
separation between states in both alpha-helices is partially retained. Furthermore, 

structural correlations of the resulting structure bundle were also extracted with PDBcor 

in standard settings and number of states set to two. Structural correlations were 
summarized as a correlation heatmap over the protein sequence in the Figure 5.2c that 

confirms the correlation between alpha-helices a1 and a2 that was synthetically designed 

in the input data. Thus, the retention of long-range structural correlations in the single-

state NMR protein structures was successfully validated. 
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Figure 5.2 Validation of the correlation retention mechanism with a correlated data set that was 
synthetically created on the basis of the deposited cyclophilin A structure (a; PDB code: 2MZU). Two 
distant helices (distance larger than a single NOE) from cyclophilin were tilted and adjusted protein 
structure was recalculated to remove the electrostatic clash. Those two states are correlated due to the 
fact that the tilt on helix a1 is coupled the tilt of helix a2. Average distances were calculated from those two 
states and a randomly selected part of those distances was supplied with noise and used as input for a 
conventional single-state structure calculation in CYANA. The movement of alpha-helices a1 and a2 of the 
resulting structure (b) is much smaller compared to the initial structure as it would be expected from the 
averaged single-state structure, but the separation between states is partially retained. The final structure 
was further analyzed for structural correlations and initial synthetic correlation between helices a1 and a2 
was detected (c). This validates that a single state structure calculation is able to retain information about 
the correlations between distant protein sites.  

 

Single-dependent structural correlations of protein cyclophilin A 
On the basis of reported correlated systems it is possible to confirm whether or not 

structural correlations extracted from a single-state structure are overlapping with 

structural correlations extracted from the multi-state structure. For this we calculated 
single-state and two-state structures of the model protein cyclophilin A and analyzed 

them for structural correlations. In order to make structural ensembles visually 

comparable 40 best single-state conformers together with 20 best two-state structures 
resulting in 40 individual conformers were aligned and depicted side by side for a two-

state models of the cyclophilin. As it is visible from Figure 5.3, two-state ensemble of 

cyclophilin A has more deviation as it is expected from a multi-state structure due to the 

additional degrees of freedom. Conformers in presented ensembles were optimally 
sorted into states by PDBcor. Detailed examination shows that individual states have 

similar features in both single and multi-state ensembles. It is also visible that the states 

in multi-state simulation are equivalently populated as defined by the multi-state 
population, whereas in a single-state simulation states are not equivalently populated. 

Final examination of the correlation heat maps shows that correlations are highly similar 



 102 

with correlations in the single state ensemble being less intense as correlations in the 

multi-state ensemble as it is also expected from a single-state structures.  

 

Figure 5.3 Comparison of the single-state structure coordinates (a), two-state structure coordinates (b), 
structural correlation heatmaps extracted from single-state structure (c) and structural correlation 
heatmaps extracted from two-state structure (d) for the protein cyclophilin A. It is visible that the two-state 
ensemble has more deviation than a single state ensemble. The states in two-state structure bundle are 
equivalently populated, whereas in single-state structure bundles states are not equivalently populated. 
Correlation heat maps are highly similar between a single and two-state structures with the single state 
structural correlations being less intense as multi-state structural correlations. 

 

Exploration of the ASD Allosteric Database 
The Allosteric Database was explored with aim to extract and analyze allosteric proteins 
with associated liquid NMR protein structures [7, 9-12]. The whole ASD database 

including 1949 allosteric proteins was cross-referenced with the UniProt  database and 

46 unique proteins with associated liquid NMR structures that are deposited at the PDB 
were identified [7, 85]. Majority of allosteric proteins are enzymes of big size that cannot 

be directly targeted with the liquid NMR due to fast relaxation [28]. Therefore, individual 

domains of such allosteric enzymes are typically studied with liquid NMR. The quality of 
the liquid NMR structures and limited allosteric site coverage further reduced our 
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selection down to only 12 structures that were finally selected to showcase the link 

between allostery and structural correlations. 

 An example of bovine calbindin D9K is summarized in Figure 5.4. Reported 

allosteric sites including Ca2+ binding site, N-terminal region and alpha-helix a3 are 

visualized in Figure 5.4a by the X-ray structure comparison of the metal-ion free structure 
(PDB code: 3ICB) and calbindin bound to Ca2+ and Mg2+ (PDB code: 1IG5) [86]. Those 

sites overlap with prominent structural correlations extracted from the liquid NMR 

structural ensemble (PDB code: 2MAZ) of apo bovine calbindin with PDBcor (Figure 
5.4b). This example showcases that in some cases allosteric interactions that are based 

on protein correlated motion can be inferred by evaluation of the structural correlations 

directly from the single-state liquid NMR protein structures. 

 

  
Figure 5.4 Overview of the protein bovine calbindin D9K in apo form (a; dark blue ribbon; PDB code: 3ICB) 
and in complex with Ca2+ and Mg2+ (a; cyan ribbon; PDB code: 1IG5) and the correlations map calculated 
from the liquid NMR structural ensemble (PDB code: 2MAZ) of apo bovine calbindin (b). Two reported 
allosteric sites located in the protein N-terminus and in the alpha α-helix 3 together with calcium binding 
site are visible both in the 3d structure of the protein ensemble and in the apo protein correlations heatmap 
[86]. 

 

Exploration of the PDB Databank 
We analyzed 5077 liquid-state NMR structure ensembles from the protein data bank 

(PDB) that were represented as a bundle of at least 7 conformers [7]. All correlations 

were extracted with PDBcor using a two-state assumption. Extracted distance correlation 
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parameters show that a large population of deposited single-state NMR protein 

ensembles include structural correlations, as shown in Figure 5.5. This finding 
showcases that a majority of deposited structures encode an information about 

correlated motion that has to be systematically studied. 

  

Figure 5.5 Extracted correlation parameters from 
the liquid-state NMR structure ensembles 
represented by a set of at least 7 conformers and 
deposited in the protein data bank.  
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Conclusions and Outlook 

As it was shown on multiple examples of increasing complexity the single-state liquid 

NMR protein structures are able to describe proteins with conformational exchange. The 

limitation of the system degrees of freedom due to the faulty assumption of a single state 
makes protein states congested to each and reduces structure RMSD, but the 

information about the structural correlations between protein states is partially retained 

keeping prominent correlations encoded in the deviations of the single state structure. 
Further systematic investigation of the relation between protein correlated motion, 

structural correlations and protein allostery revealed that in some cases protein allostery 

can be inferred from structural correlations of the single state liquid NMR protein 
structures. The question of whether or not the analysis of a single domain of an allosteric 

enzyme acquired by liquid state NMR is relevant in the context of elucidating the global 

enzyme allostery remain unclear. In light of the potential link between protein allostery 
and structural correlations of the single-state liquid NMR protein structures we 

investigated structural correlations of all deposited liquid NMR structures from the protein 

data bank PDB and found that the majority of the deposited protein ensembles do have 

structural correlations.  
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Methods 

 
Dataset for the protein Cyclophilin A 
The multi-state eNOE-based structure calculation of the protein cyclophilin A have been 

reported previously (PDB ID 2MZU; [37]). The experimental dataset for the protein 

cyclophilin A consists of the 3640 eNOE-derived distance restraints, 281 scalar couplings 
and 396 RDC restraints.  

 

Single-state structure calculation 
Conventional single-state structure calculations were performed following the 

established protocol with software CYANA [31]. Upper limit distance restraints were 

produced with peak calibration procedure for a manually assigned peak list. In each 
calculation 500 conformers were calculated with simulated annealing using 100’000 

torsion angle dynamics steps per conformer. Forty best conformers with the lowest final 

target function values were selected for further structural correlation analysis. 

 

Exact NOE multi-state structure calculation 
Exact NOE structure calculations were done according to the established protocol [31, 

35, 37] using CYANA for structure annealing [32, 83, 84] and eNORA2 for the spin 

diffusion correction [33, 34]. Then a set of upper and lower limit distance restraints was 
produced by eNORA2. Distance restraints together with scalar coupling restraints were 

used as inputs for multi-state structure calculations. Each calculation resulted with 500 

conformers that were calculated with simulated annealing using 100’000 torsion angle 

dynamics steps per conformer. Same heavy atoms from different state entities were kept 
together by symmetry restraints in the form of a weak harmonic well potential with a 

bottom width of 1.2 Å [31, 35, 37]. The best twenty conformers with the lowest final target 

function were selected for the further structural correlation analysis. 
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Structural correlations 
Software PDBcor with default settings was used to extract all structural correlations 

(REF). Each protein entity was inputted to PDBcor as a separate PDB model. The 

number of states from the CYANA calculation was supplied to PDBcor and the thermal 

motion correction was executed at amplitude of 0.5 Å. Structural correlation values were 
obtained as the mean value from the distance correlation matrix outputted by PDBcor. 
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Conclusion and Outlook 
 

Protein mechanisms of action have always been a highly challenging research topic. 
Despite the broadly available phenomenological observations of protein binding partners 

and various intra and intermolecular interactions there is a lack of mechanistic 

understanding behind protein mode of action. Increasing resolution of the methods in the 

field of protein biology allows us to resolve increasingly more features of the protein fold 
and protein dynamics that allow to deepen our understanding of protein-ligand interaction 

from the rigid body key-lock principle to more complex models based on protein 

thermodynamics. 

Recent remarkable technological advancements of the cryo-EM allowed to 

bring down the resolution of the experimental protein structures and revolutionized the 

field of structural biology [22]. This led to the exponentially increasing pace of protein 
structure elucidations with cryo-EM. At the same time significant advances in the 

computational prediction of the protein structures with AlphaFold [23] allowed to make 

highly accurate prediction of protein structures. Aforementioned advancements in the 
field of protein structure determination drive the protein NMR research from the 

conventional structure elucidation towards protein dynamics field that allows to fully 

exploit unique advantages of NMR as it can investigate proteins, protein complexes and 
their intermediates in their native state with an abundance of the experimental techniques 

probing protein dynamics from which an eNOE technique is of a particular interest.  

The exact NOE approach provides a unique way to solve multiple protein states 
at atomic resolution and therefore interpret the protein conformation space and 

correlated motion. The exact NOE approach is an improvement over the conventional 

protein structure elucidation with NMR due to the correction of the spin diffusion and 
extensive usage of the various NMR restraints including eNOE spin diffusion corrected 

distance restraints, RDC restraints, J-couplings and dihedral angle restrains. The 

adoption of the eNOE approach by the NMR community does not happen with a rapid 

pace presumably due to the long NMR acquisition time necessary to acquire multiple 
3D-NOESY spectra and high required spectrum quality as is necessary to resolve large 

number of cross-peaks and generate large number of the distance restrains that would 
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overdetermine the NOE network and allow for the resolution of multiple states. 

Furthermore, demanding and highly specialized computational procedures are required 
to calculate multiple protein states. However, the Riek group actively investigates 

alternative spin diffusion correction algorithms based on a single NOESY spectrum and 

attempts to automatize multiple steps of the demanding multi-state NMR structure 
calculation with help of machine learning. For example, recent advances hint that in the 

near future it might be possible to solve an NMR protein structure with a single click and 

in a fully autonomous fashion by the application of the automated and spectrometer-
integrated protein structure calculation software. 

In my PhD work I studied the quantification of the correlated motion and protein 

allostery from existing highly accurate protein ensembles produced with exact NOE 

approach. The application of the machine learning allowed me to automatize the 
extraction of the valuable information about the correlated motion from the NMR protein 

ensembles and engineer the computational algorithm PDBcor that is more sensitive to 

the correlated motion compared to the conventional PCA-based algorithms.  

Using this algorithm, it was possible to validate previously reported allosteric 

findings and obtain some novel structural insights from the exact NOE PDZ2 structures. 

Specifically, comparison of the apo and holo PDZ2 structures showed an allosteric 
interaction between the residue binding site and alpha helix 1, that was observed before 

with evolutionary method [2] and can be explained with induced-fit allosteric mechanism. 

Additionally, analysis of the PDZ2 apo states indicates that one of the states corresponds 
to the “open” form of the PDZ2 domain and one to the “closed” form in which the binding 

site is obstructed by the sidechains of residues Lys38 and Lys72. Moreover, according 

to the sidechains of the residues Lys38, His71 and Ala69 it was shown that the “closed” 
form is destabilized by the ligand binding. This observation shows that observed 

correlations between “open” and “closed” free PDZ2 states can be explained with 

conformational-selection allosteric mechanism.  

Application of the PDBcor allowed to optimize some aspects of the liquid NMR 

multi-state protein structure elucidation as PDBcor provides an overall structural 

correlation value. If this value is zero it means that protein states are not correlated. It 
could indicate that either experimental restraints are not sufficient to separate protein 
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states or that there is absence of two states. High structural correlation value in turn 

means that it is possible to unambiguously distinguish between protein states. Therefore, 
it is possible to refer to the structural correlation value as a measure of separation 

between protein states that can be used as for a quantification of the multistate protein 

structures orthogonal to the CYANA target function. It was demonstrated that in some 
cases the CYANA target function is not sensitive towards certain key multi-state distance 

restraints, whereas the structural correlation value is. Furthermore, observation of the 

structural correlations enabled to find the optimal number of protein states easily due to 
the presence of the local maximum. 

Moreover, increased sensitivity to the correlated motion of the PDBcor allowed 

us to see that correlated motion is a broad phenomenon even among single-state 

deposited protein ensembles. We proposed a theoretical model that explains the 
potential mechanism behind the retention of the correlations in the single-state structures 

and supply evidence of the single-state correlations for the previously reported allosteric 

protein structures. Further systematic investigation of the correlated motion gathered 
from the broad spectrum of deposited soluble protein structural ensembles might provide 

us with better understanding of the mechanism behind the protein motion and allow us 

to predict the protein motion for X-ray structures. At the time of writing the PDB databank 
contains 13451 liquid NMR structures from which there are 5076 protein structures 

represented by more than 7 conformers. If our assumption that the correlated motion can 

be extracted from the single-state structures is correct than those thousands of protein 
structures can be subjected to the broad exploratory analysis that might provide us with 

better understanding of protein correlated motion. First, it might be possible to map 

averaged correlated motion networks to the major evolutionary protein folds. Second, it 
might be possible to sort secondary structure elements and their combinations for their 

contribution to the correlated motion. Last, but not least thousands of the deposited 

structures and their correlation maps could be used as a dataset for the potential 
machine learning project targeted to the prediction of the correlated motion from the 

protein fold. If successful it could predict protein correlated motion from deposited protein 

X-ray structures.  
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Moreover, if the information about the protein correlated motion becomes 

broadly available it might be possible to connect it to the industrial setting by prediction 
of the protein active sites and potential drug candidates. 

It was also shown that PDBcor is compatible with MD simulations. Further 

studies are required to understand whether or not PDBcor can improve the final protein 
trajectory analysis with its enhanced sensitivity over conventional PCA-based methods. 

However, since the current PDBcor implementation was created for the analysis of the 

NMR protein ensembles relatively high PDBcor computational cost might be a bottleneck 
for the analysis of the long MD trajectories and an alternative efficient MD-specific 

PDBcor alternative might be advantageous. 
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Appendix 

 Practical aspects of the exact NOE assignment 

All details of the exact NOE assignment are described in the dedicated CYANA-Wiki 

tutorial. 

 

Peak picking 
Peak picking is performed as a first step of the exact NOE structure elucidation. Typically, 

NOESY spectrum with highest mixing time is picked as it has highest cross-peak 
intensities. Due to the practical issue of the overlapping peaks, eNOE peak picking is 

typically done with software NMRPipe [76]. 

According to the relaxation matrix analysis the cross-peak intensity in the first 
approximation depends linearly on the NOE mixing time and distance between 

hydrogens to the power of minus six [33]. 

∆𝑀"'(𝑡)
∆𝑀"'(0)

~𝜎"'𝑡~𝑑"'$4𝑡 

Using this equation together with assumption that observed distances are in the NOE 

distance range as a prior knowledge it is possible to build an expectation model of a 

cross peak intensity as a function of the mixing time. Provided multiple NOESY spectra 
with different mixing times are measured it is possible to significantly purify the scope of 

peaked peaks by removing peaks with intensities that do not follow previously mentioned 

model as background peaks should not depend on the mixing time. 
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