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Abstract

Antimicrobial resistance has emerged as one of the most severe infectious disease

threats in the 21st century, with the World Health Organisation declaring it one of the

ten major global public health challenges facing humanity. With ample usage of an-

timicrobial drugs both in farming and healthcare along a rise in the occurrence of new

resistances threatening human lives, early characterisation of an infection in a patient

alongwith targeted administration of antimicrobial drugs is of utmost importance. This

has led to the credo of antimicrobial stewardship, which works towards the goal of

quantifying and improving the usage of antimicrobials, targeting both prescription by

physicians as well as intake by patients. These steps are critical for effective treat-

ment of infections, reducing harms resulting from unnecessary antimicrobial admis-

sion, and combating the development of new resistances. Matrix-Assisted Laser Des-

orption/Ionization Time-of-Flight (MALDI-TOF) mass spectrometry (MS) is the most

widely-used technology for rapid microbial species characterisation in clinics. The ex-

tensive information contained in MALDI-TOFmass spectra has the potential to provide

knowledge beyond pathogen identification and to predict antimicrobial resistance by

harnessing the power of machine learning. A systematic literature review at the be-

ginning of this thesis concludes that efforts towards large-scale machine learning for

resistance prediction on MALDI-TOFmass spectra are rare, stymied by the lack of ma-

chine learning model development tailored to MALDI-TOF MS and an absence of large

benchmark databases.

This thesis presents several advancements towards the goal of clinically-applied an-

timicrobial resistance prediction based solely on rapidly-available MALDI-TOF mass

profiles. At the outset, we introduce DRIAMS, a newly curated dataset of unprece-

dented size that combinesmore than 300,000MALDI-TOFMSmass profiles withmore

than 750,000 antimicrobial resistance labels, allowing for large-scale machine learn-

ing analysis of MALDI-TOF MS based phenotype prediction. We establish a predic-

tive performance baseline employing several widely-used machine learning models—

logistic regression, light gradient boosting machines and multi-layer perceptrons—on

the following prediction tasks: ceftriaxone resistance prediction in E. coli and K. pneu-

moniae and oxacillin resistance prediction in S. aureus. Auxiliary analyses indicate

that recent samples and resistance prediction stratified by species lead to the most

favourable performance results. The models reach high predictive performances with

an AUROC of 0.74 for ceftriaxone resistance prediction both in E. coli and K. pneumo-

niae and 0.80 for oxacillin resistance in S. aureus.

After establishing the rich potential of MALDI-TOF mass spectra, we present GP–

PIKE, the first machine learning model tailored to phenotype prediction from MALDI-

TOFMSprofiles, using a novel kernel—PIKE—combinedwith aGaussian Process classi-
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fier. The kernel is designed to exploit the properties of MALDI-TOF profiles and to take

a reduced data representation of MALDI-TOFmass spectra as input. GP–PIKE outper-

forms the baseline methods, logistic regression and a Gaussian Process classifier with

an RBF kernel, by a large margin. Furthermore, a behavioural analysis of GP–PIKE’s

maximum class probability indicates its usefulness as a well-calibrated confidence

estimate. The results obtained with GP–PIKE suffer from a large standard deviation

between train–test splits. We conjecture that this variation stems from some underly-

ing phylogenetic structure that was previously not considered in the stratification. In

this thesis, we introduce a stratification procedure enhancedby hierarchical clustering,

aiming to infer phylogenetic relatedness fromMALDI-TOFmass spectra and to enforce

a similar distribution of the inferred structure between train and test. While we do not

observe a decrease in standard deviation, the results indicate improved prediction re-

sults through our hierarchical stratification procedure.

Further, we evaluate the transferability of predictors trained at a specific source site

to profiles collected at specific other medical institutions. Our results suggest that

all models require retraining on samples native to the prediction site; however, large

MALDI-TOF MS datasets collected at other sites can improve predictive performance

further. The low transferability likely stems from distribution shifts between datasets

fromdifferent collection sites. Tomitigate these distribution shifts, we introduce a new

method based on adversarial representation learning. The presented approach is able

to balance out separations between distributions, however, it has not been shown to

be able to improve the predictive performance at the target site. Lastly, we outline the

steps necessary for the full development of a clinically applicable predictor and the

potential of antimicrobial phenotype prediction based on other data types.

Byproviding thefirst large-scale, publicly availabledatabase forMALDI-TOFMSbased

clinical antimicrobial resistance prediction, demonstrating the potential of established

machine learning models as well as developing a new kernel tailored to this data type,

this thesis constitutes amajor step towardsMALDI-TOFMSbased clinical antimicrobial

resistance prediction and more generally leveraging digital approaches for antimicro-

bial stewardship.
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Zusammenfassung

Resistenz gegen antimikrobielle Substanzen hat sich zu einer der größten Gefahren

durch Infektionskrankheiten des 21. Jahrhunderts entwickelt. Die Weltgesundheits-

organisation zählt diese Resistenzen zu den zehn größtenBedrohungen für die öffentli-

cheGesundheit. DaantimikrobielleMedikamenteumfangreicheingesetztwerden (vom

landwirtschaftlichen Sektor bis zum Gesundheitswesen) und gleichzeitig immer neue

lebensbedrohlichen Resistenzen auftreten, ist eine frühzeitige Charakterisierung der

Infektionundeine gezielteVerabreichung vonantimikrobiellenMedikamenten vonhöchs-

ter Wichtigkeit.

Diese Problematik hat zum Credo des Antimicrobial Stewardship geführt. Sie zielt

darauf ab, den Einsatz von antimikrobiellen Substanzen zu quantifizieren und zu ver-

bessern, sowohl die VerschreibungdurchÄrzte als auchdie EinnahmedurchPatienten.

Dies ist entscheidend für die effektive Behandlung von Infektionen, Vermeidung von

Schäden durch unnötige Antibiotikaeinnahme, und Bekämpfung von sich neu entwi-

ckelden Resistenzen. Die Matrix-Assisted Laser Desorption/Ionization Time-of-Flight

(MALDI-TOF) Massenspektrometrie (MS) ist die meistverwendete Methode zur Spe-

ziesidentifikation in der Klinik. Die MALDI-TOF-Massenspektren bilden die Zellen so

umfassend ab, dass sie neben der Erregeridentifikation das Potential haben weiter In-

formationen zu liefern, zum Beispiel die Vorhersage von Antibiotikaresistenzen durch

Methoden des maschinellen Lernens (Machine Learning). Eine systematische Über-

sichtsarbeit zu Beginn der dieser Arbeit kommt zu dem Schluss, dass die Entwicklung

vonResistenzvorhersagemodellen anhand vonMALDI-TOFMassenspektrendurch feh-

lende auf MALDI-TOF MS zugeschnittene Machine-Learning-Modellen oder großen öf-

fentlich zugänglichen Datensätzen eingeschränkt wird.

Diese Doktorarbeit stellt mehrere Weiterentwicklungen in Richtung einer klinisch

anwendbaren Vorhersage von Antibiotikaresistenzen durch MALDI-TOF Massenpro-

filen vor. Zu Beginn steht DRIAMS, ein neu kuratierter Datensatz von noch nie dage-

wesener Größe. Dieser verknüpft mehr als 300000 MALDI-TOF MS Massenprofile mit

über 750000antimikrobiellenResistenzen, die eine großeAnalysederMALDI-TOFMS-

basierten Phänotypvorhersage ermöglichen.Wir analysierenDRIAMSmit drei weit ver-

breiteten Lernmodellen—logistische Regression, LightGBM und das sogenannte multi-

layer perceptrons—im Hinblick auf drei Vorhersageaufgaben: die Vorhersage von Re-

sistenz gegen Ceftriaxon bei E. coli und K. pneumoniae und der Oxacillin Resistenz-

vorhersage bei S. aureus. Zusätzliche Analysen zeigen, dass zeitnahe Daten und Re-

sistenzvorhersage auf Speziesebene zu den besten Vorhersagen führen. Die Modelle

führen zu starken Vorhersagenmit einemAUROCWert von 0,74 für die Vorhersage von

Ceftriaxon-Resistenz bei E. coli undK. pneumoniae und0,80 für dieOxacillin-Resistenz

bei S. aureus.
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Als nächstes stellen wir GP–PIKE vor, das erste Machine-Learning-Modell welches

auf die Vorhersage von Phänotypen aus MALDI-TOF MS Profilen zugeschnitten ist und

einen neuartigen Kernel—PIKE—mit einem Gaußschen Prozess-Klassifikator kombi-

niert. Der Kernel ist konzipiert um die Eigenschaften von MALDI-TOF Massenprofilen

auszunutzen und eine reduzierte Darstellung von MALDI-TOF Massenspektren als Ein-

gabe zu verwenden. Vorhersagen durch GP–PIKE übertreffen die Vergleichsmetho-

den, logistische Regression und ein Gaußschen Prozess-Klassifikator mit einem RBF-

Kernel, massgeblich. Außerdem wurde das Verhalten der maximalen Klassenwahr-

scheinlichkeit von GP–PIKE analysiert und auf seine Nützlichkeit als gut kalibrierter

Schätzer der Glaubwürdigkeit von Vorhersagen hin bewertet. Die mit GP–PIKE erziel-

ten Resultate leiden unter einer großen Standardabweichung zwischen den verschie-

denen Trainings-Test-Splits. Wir vermuten, dass diese Varianz von einer zugrundelie-

genden phylogenetischen Struktur herrührt, die in bisherigen Stratifizierungen nicht

berücksichtigtwurde.Wir führeneindurchhierarchischesClustering verbessertesStra-

tifikationsverfahrenein, dassdarauf abzielt phylogenetischeVerwandtschaft ausMALDI-

TOFMassenspektren abzuleiten undeine ähnlicheVerteilungder resultierendenStruk-

tur zwischen Trainings und Testdaten zu erzwingen. Obwohl wir anhand der Resultate

keine Verkleinerung der Standardabweichung beobachten können, deuten die Ergeb-

nisse dennoch auf verbesserte Vorhersage durch unser hierarchisches Stratifikations-

verfahren hin. Darüber hinaus bewerten wir die Übertragbarkeit der Vorhersagegüte

von Klassifikatoren, die auf Daten einer medizinischen Einrichtung trainiert und evalu-

iert wurden, auf MALDI-TOF Massenprofile einer anderen Einrichtung. Unsere Ergeb-

nisse deuten darauf hin, dass alle Modellemit Proben aus dem gleichen Labor neu trai-

niertwerdenmüssen; ein großerMALDI-TOFMSDatensatz, der an anderen Standorten

gesammelt wurde, kann die Vorhersageleistung jedoch weiter verbessern. Die geringe

Übertragbarkeit istwahrscheinlich auf unterschiedlicheVerteilungen innerhalb derDa-

tensätze von verschiedenen Orten zurückzuführen.Wir stellen einen neuen Ansatz vor,

der auf dem “feindlichem” (adversarial) Lernen neuer Datenrepräsentationen basiert,

umdieseVerschiebungen in der Verteilung zumildern. Der vorgestellte Ansatz ist in der

Lage eine Diskrepanz in der Datenverteilungen auszugleichen, hat sich jedoch nicht als

fähig erwiesen die Vorhersageleistung am Zielort zu verbessern.

AmEndederDoktorarbeit skizzierenwir die Schritte, die für die vollständigeEntwick-

lung eines klinisch anwendbaren Klassifikators erforderlich sind, sowie das Potenzial

der Vorhersage antimikrobieller Phänotypen auf der Grundlage anderer Arten von Da-

ten.

Durch die Bereitstellung des ersten großangelegten, öffentlich zugänglichen Daten-

satzes für MALDI-TOF MS-basierte Vorhersage antimikrobieller Resistenzen in der Kli-

nik, die Demonstration des Potenzials etablierter Machine-Learning-Modelle und die

Entwicklung eines neuen, auf diesen Datentyp zugeschnittenen Kernels, stellt diese

Arbeit einen wichtigen Schritt in Richtung MALDI-TOF MS-basierter Vorhersage von

Antibiotikaresistenzen und im Allgemeinen der Nutzung digitaler Ansätze für Antimi-

crobial Stewardship, also den Umgang mit antimikrobiellen Mitteln, dar.
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Part I

Defining the current state and obstacles of

rapid antimicrobial resistance prediction

using MALDI-TOF MS based machine

learning techniques

1





1 Introduction to MALDI-TOF MS based

antimicrobial resistance prediction

1.1 The thread of antimicrobial resistance to global health

Antimicrobial resistance (AMR) has been recognised as amajor epidemiological thread

for decades [131], and poses a continuously growing threat to public health [42]. An-

timicrobial resistance is the resistance to antimicrobial drugs presented by infectious

agents—e.g. , bacteria, viruses, fungi and parasites—which can be inherent or acquired

by the inappropriate use of medicines [42]. For the last two decades, the World Health

Organization (WHO) has lead the global response to the risk posed by AMR and de-

clared it one of the top 10 global public health threats to humanity in 2019 [42]. In

their 2021 report on ‘Global antimicrobial resistance and use surveillance system’,

they identify two factors to be crucial indicators for the severity of the threat, namely

(i) prevalence of bloodstream infections (bacteremia), and (ii) trends in antibiotic con-

sumption.

In 2017, the WHO published a list of priority pathogens defining the 12 bacterial

familieswhich pose the greatest threat to human health [41]. The list of families receiv-

ing the rating critical includes the Enterobacteriaceae group, which includes both Es-

cherichia coli (E. coli) and the Klebsiella genus. Infections with these strains cause se-

vere (and often fatal) infections such as pneumonia and infections in the bloodstream.

The second tier, rated high, includes Staphylococcus aureus (S. aureus), the leading

cause for bacteremia and infective endocarditis (infections of the endocardial surface

of the heart) among a number of other infections [116].

The terms antibiotic and antifungal drug refer to drugs treating infectious caused by

either bacteria or fungi respectively, while the overarching term for both types of drugs

is antimicrobial drugs.

Antimicrobial stewardship. Antimicrobial stewardship refers to an approach with

the goal to quantify and improve the usage of antibiotics, both prescription by physi-

cians and intake by patients. Improving these aspects is critical for effective treatment

of infections, reducing harms resulting from unnecessary antimicrobial admission, and

combat development of resistances.
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1 Introduction to MALDI-TOF MS based antimicrobial resistance prediction

1.2 MALDI-TOF mass spectrometry

In recent decades,Matrix-Assisted LaserDesorption/IonizationTime-of-Flight (MALDI-

TOF)mass spectrometry (MS) has revolutionized clinical diagnostics by facilitating rapid,

reliable and cost-effective microbial detection [23] [78] [71]. The technique produces

MALDI-TOF mass spectra, which will be the main data type analysed in this thesis. In

the following, a brief introduction into the technique and properties of the MALDI-TOF

mass spectra is given.

Mass spectrometry for proteomics. Mass spectrometry is a technology that charac-

terizesmolecules by ionizing individual particles anddetermining theirmass-to-charge

ratio (m/z–ratio). The measurement output is a mass spectrum, depicting the ion sig-

nal as a function of the m/z–ratio and thereby providing information about the possible

content of a probe. MALDI—the technique to obtain charged particles containing in-

tact biomolecules—was developed to expand the applicability of mass spectrometry

to large molecules such as biopolymers including proteins. The MALDI matrix solu-

tion keeps the large molecules mostly intact through desorption, with most ions only

receiving a single charge, which makes the inference of the original protein relatively

easy. The high throughput and speed associated with complete automation has made

MALDI-TOF MS the preferred technique for large-scale proteomics [109].

MALDI-TOF MS. MALDI-TOF MS is an analytical technique which decomposes and

ionises a biological sample into charged molecules with a laser and determines the
m/z–ratio of the ions [89]. Before a MALDI-TOF mass spectrometry measurement can

be performed, the microbial sample must be cultured for around 24h overnight to en-

rich enough bacterial cell amount for measurement. For one spectrum, material from

a single culture is then transferred to a MALDI-TOF target plate, where thematrix solu-

tion is added, allowing for the largermolecules to stay stable while the laser fragments

and ionises the sample. In most cases, the lasers used for MALDI are within the ultra-

violet (UV) range, e.g. nitrogen lasers, but infrared lasers are used also [89]. The laser

beam irradiates the isolate on the target plate, causing desorption and ionisation of the

particles which are then accelerated by an electric field generator. The intensity and
m/z–ratio of molecules are measured by the time-of-flight analyser. Assuming equal

charge, light molecules reach the detector earlier than heavy molecules [48].

Despite the fact that fragmentation is an inherently stochastic process, the output

spectrum over the m/z–ratio of the particles is known to be highly characteristic for

different microbial species. Each recording typically contains several ten thousand

measurement points in a range of 2 kDa to 20 kDa. The results are summarised in a

so-called MALDI-TOFmass spectrum or MALDI-TOFmass profile. An example MALDI-

TOF mass spectrum is depicted in Figure 1.1. MALDI-TOF mass profiles provide an

overview of the microbial composition and therefore lay a foundation for predicting

bacterial phenotype, such as species or antimicrobial resistance properties [129]. The

current application of MALDI-TOF MS lies in rapid species identification. The twomain
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1.2 MALDI-TOF mass spectrometry
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Figure 1.1: Exemplary MALDI-TOF MS spectrum depicting an E.coli sample. The spectrum

is in its raw form as it was extracted from the MALDI-TOF MS instrument, i.e., no

spectral preprocessing has been performed. The MALDI-TOF MS baseline signal is

clearly observable up until 11.5 kDa. The mass spectrum was trimmed to 2 kDa to

12 kDa for illustration purposes.

MALDI-TOF MS instrument manufacturers, Biomérieux and Bruker Daltonics [9, 12],

provide the customer with a full analysis pipeline, providing both the instrument as

well as the software performing species identification. While the specific methodol-

ogy and algorithms are kept private by the manufacturing companies, the species are

determined through a similarity comparison between the spectrum of interest and a

reference database employing statistical methods.

The fact that the x–axis depicts the m/z–ratio of a measured molecule leads to a note-

worthy property of mass spectra: particles corresponding to a specific molecule can

showupat several positions at themass spectrum, dependingon thenumber of charges.

Although most particles will receive a single charge during ionisation, ions with multi-

ple charges can occur and thus confound the signal in the resultingmass spectrum [65,

89]. For instances, a molecule with mass 6,000Da receiving a double charge appears

at the same m/z–ratio as a molecule weighting 3,000Da with a single charge [65]. Con-

sidering this property of MALDI-TOF mass spectra during phenotype prediction has

the potential to improve classification performance, which will be discussed in Sec-

tion 5 for model development. The likelihood of multiple charges decreases with the

number of charges received, and the most likely one being a single-charge. Therefore

that a MALDI-TOF mass peak corresponds to a particle with exactly the mass of its
m/z–ratio. In order to reduce noise and to accentuate peaks, a single output MALDI-

TOF MS measurement was constructed through repeated measurements merged into

one MALDI-TOFmass spectrum. Additionally, the output profiles all include a baseline

signal produced by thematrix solution and slightly varying measured intensities which

contributes to an increased noise level. The reduction of these noise signals will be

addressed by preprocessing described in Chapter 3.
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1 Introduction to MALDI-TOF MS based antimicrobial resistance prediction

1.3 MALDI-TOF MS based phenotype prediction

Phenotype prediction from MALDI-TOF mass profiles is an active and expanding field

of research. Despite MALDI-TOF MS being widely-employed for species identification,

several research fields aim to exploit further signals displayed in MALDI-TOF mass

spectra for a more fine-grained characterisation of microbial isolates. In the follow-

ing, we briefly discuss a number of current research topics.

Conventionally, the analysis of MALDI-TOF mass spectra relies on a small number

of attributes, such as peak height and area under the peak, that have been empiri-

cally linked to microbial species. While this is a valid approach and works fairly well

at species level, there is a wealth of information contained in these spectra that re-

mains unused. To fully exploit the information contained in MALDI-TOF mass spec-

tra, researchers have been implementing machine learning algorithms in their efforts

to refine species identification. This information has proven useful for identification

and differentiation of species, particularly those that are phylogenetically proximal, as

well as sublineages within species [13, 39, 69]. Moreover, it has been recently recog-

nized that information contained in MALDI-TOF mass spectra can also aid antibiotic

resistance profiling [13, 39]. However, while species prediction provides reliable iden-

tification applicable in the clinic, machine learning methods predicting antimicrobial

resistance face several challenges preventing swift progress, such as few data sources

and lack of proper validation. This thesis commences with a comprehensive assess-

ment of the current state-of-the-art of MALDI-TOF MS based phenotype prediction in

Chapter 2, focusing on both species and resistance prediction.

Subspecies characterisation. The furthest advanced application of phenotype pre-

diction onMALDI-TOFmass profiles is the subspecies identification frombacterial spe-

cimen [20, 112, 129]. A number of microbial phylogenetic lineages are known to cause

serious infections. For these lineages in particular, a fast and high-throughput identi-

fication method is needed. Quick, robust and cheap subspecies identification method

are essential for infectious disease control. Applying and developing machine learn-

ingmethods to MALDI-TOFmass spectra is generally cheaper than current subspecies

identification methods such as multi-locus sequence typing (MLST) [20, 112]. Prior re-

search in subspecies discrimination includes typing ofMycoplasmapneumoniae [133],

discrimination between contagious and environmental strains of Streptococcus uberis

[32] and strain typing ofStaphylococcus haemolyticus [20]. Additionally, MALDI-TOFMS

has been shown useful for rapid and cheap identification of clonal complexes, e.g.,

methicillin-resistantStaphylococcus aureus (MRSA), vancomycin-intermediately resis-

tant Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) [15, 138]. Further-

more, research into single-cell MALDI-aerosol TOF MS has shown potential to reduce

the initial 24 h culture step, which is necessary to acquire sufficient biomass for the

MALDI-TOF MS analysis [81].
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1.3 MALDI-TOF MS based phenotype prediction

guided
antimicrobial 

therapy

12-24hrs 24-72hrs

resistance
profile

sample 
collection

MALDI-TOF
MS

specified
antimicrobial 

therapy

predicted 
resistance

Figure 1.2: The current usage of MALDI-TOF MS in the clinic and the potential inclusion

of a resistance predictor. The upper timeline (following the black arrow) depicts

the antimicrobial species and resistance workflow as it is currently implemented

in many clinics, including the culture growth waiting times between steps and the

point of MALDI-TOF MS measurement. The lower part (following from black to

dashed and red arrow) depicts the vision of a machine learning driven prediction

approach running in parallel to the establisheddiagnostics path. Antimicrobial ther-

apy guidedby aMALDI-TOFMSbasedpredictor could lead to an informed treatment

decision 24h to 72h earlier than in the current workflow focused solely on diagnos-

tics. All icons are listed in the Noun Project [1].

Antimicrobial resistance prediction. In recent years, the field of MALDI-TOF MS

based machine learning has shifted towards the prediction of antimicrobial resistance

[129]. These resistance predictors hold the potential to reduce the time required to de-

termineeffective antimicrobial treatmentby24h to72handoptimise theuseof broad-

spectrum antibiotics [126]. Antimicrobial resistance prediction based on MALDI-TOF

mass spectra has been shown to be effective for several antimicrobial–species scenar-

ios, including carbapenem resistance in Klebsiella pneumoniae [52], intermediate re-

sistance to vancomycin in Staphylococcus aureus [120] and carbapenem resistance in

Bacteroides fragilis [49]. A full systematic evaluation of the literature onMALDI-TOFMS

based phenotype prediction is part of Chapter 2.

Extending the current clinical workflow through guided treatment. A depiction of

the current antimicrobial susceptibility testing workflow can be found in Figure 1.2.

The upper timeline illustrates the current clinical workflow, from collecting amicrobial

sample of an infected patient to the obtaining the resistance profile from antimicrobial

resistance testing andmaking a treatment decision. The timeframes indicate the dura-

tion of each step, i.e. 12 h to 24h needed for the culture phase before MALDI-TOF MS

and 24h to 72h growth phase before the resistance is determined. The lower part de-

picts the vision driving this thesis—a MALDI-TOF MS based predictor guiding early an-

timicrobial treatment decisions. Such a predictor would be inserted into the pipeline

at the time of obtaining the MALDI-TOF mass spectrum, providing a machine learning

based treatment recommendation 24h to 72h before obtaining the phenotype testing

7



1 Introduction to MALDI-TOF MS based antimicrobial resistance prediction

based resistance profile. In a clinical setting, the rapid and reliable identification of

potential pathogens is of utmost importance for a timely initiation of appropriate an-

timicrobial treatment. In this thesis, we envision a reliable predictor for antimicrobial

resistance based on MALDI-TOF MS aimed at guiding the early treatment decisions.

We hypothesise that such a tailored antimicrobial treatment would result in improved

patient outcomes and a decrease of unnecessary use of broad-band antimicrobials.

1.4 Contributions of this thesis

The aim of this dissertation is to improve antimicrobial resistance prediction based on

MALDI-TOF MS data, moving the field towards a clinically-applicable treatment guid-

ance model. Previous studies have recognized the potential of advancing MALDI-TOF

mass spectrum based phenotype prediction through machine learning, specifically for

antimicrobial resistance prediction.

I Defining the current state and obstacles of rapid antimicrobial resistance
prediction using MALDI-TOF MS based machine learning techniques

In the second chapter of Part I, as a first step, we establish the current state-of-the-art

with a systematic literature review, which is based on the author’s systematic review

C. Weis, C. R. Jutzeler, and K. Borgwardt. “Machine learning for microbial identification and

antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review”.

Clinical Microbiology and Infection 26:10, 2020, pp. 1310–1317.

doi: https://doi.org/10.1016/j.cmi.2020.03.014

This work is the first study accumulating all publications onMALDI-TOFMS based phe-

notype prediction and providing a structured assessment of the factors limiting the

field. The comprehensive assessment of the current literature identifies several short-

comings, specifically (i) the lack of studies analysing large datasets, (ii) only few efforts

exist to developmachine learningmodels tailored for the datatype ofMALDI-TOFmass

spectra, and (iii) a large number of studies omit validating their findings on an external

dataset. This chapter provides the foundation for the entire thesis, with the remaining

parts addressing different aspects of the identified shortcomings.

II Large-scale full-spectrum MALDI-TOF MS based clinical antimicrobial
resistance prediction

Starting off the second part of this thesis, Chapter 3 introduces DRIAMS, the dataset

curated by the author, which marks the largest database collected for MALDI-TOF MS

based phenotype prediction to date. Further we describe the curation and properties

of this database, made publicly available, to facilitate further research and progress

in the field (V Software Availability). Chapter 4 applies established machine learning

models to resistance prediction based onDRIAMS, setting up a predictive performance
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baseline and demonstrating the benefits of the large dataset. The models are com-

prised of logistic regression, LightGBM andmulti-layer perceptrons (MLP), which could

reach predictive performance baselines of 0.74 AUROC for ceftriaxone resistance in

E. coli (LightGBM), 0.74 AUROC for ceftriaxone resistance in K. pneumoniae (MLP) and

0.80 AUROC for oxacillin resistance in S. aureus (LightGBM). In addition to building

a well-established machine learning pipeline, we (i) build a species-stratified single-

antimicrobial prediction scenario as a simple but effective machine learning set-up,

(ii) apply probability calibration using Platt scores to obtain outputs that can be readily

interpreted by clinical staff and used for sample rejection, (iii) conduct a biological liter-

ature validation by calculating Shapley values and interpreting the highest-contributing

features with resistance-associated peaks described in the MALDI-TOF MS literature,

and (iv) assess the potential impact a antimicrobial resistance predictor onMALDI-TOF

mass spectra through a retrospective clinical case study on 63 patients. Both Chap-

ter 3 and Chapter 4 are based on the study published as a preprint

C. Weis, A. Cuénod, B. Rieck, F. Llinares-López, O. Dubuis, S. Graf, C. Lang, M. Oberle,

K. K. Soegaard, M. Osthoff, M. Brackmann, K. Borgwardt, and A. Egli. “Direct Antimicrobial

Resistance Prediction from clinical MALDI-TOF mass spectra using Machine Learning”.

accepted in Nature Medicine, 2021. doi: https://doi.org/10.1101/2020.07.30.228411

III Improving the predictive performance and transferability of MALDI-TOF
MS based resistance prediction through kernel methods and representation
learning

In the next and final part, this thesis introduces several machine learning concepts

tailored specifically to the data type of MALDI-TOF mass spectra. The two chapters 5

and 6 employ a reduced but more accurate representation of the MALDI-TOF mass

spectra for prediction, namely only a set of signal peaks determined for each spectrum.

Chapter 5 introduces the first kernel specifically tailored to MALDI-TOF mass spectra,

the Peak Information Kernel (PIKE), and is based on the author’s publication

C. Weis, M. Horn, B. Rieck, A. Cuénod, A. Egli, and K. Borgwardt. “Topological and

kernel-based microbial phenotype prediction from MALDI-TOF mass spectra”. OUP

Bioinformatics 36, 2020, pp. i30–i38.

doi: https://doi.org/10.1093/bioinformatics/btaa429

This kernel demonstrates superior prediction performance in comparison to logistic re-

gression and the established RBF kernel. Further, we demonstrate its property to pro-

vide class probabilities that work as reliable and easily interpretable confidence esti-

mates, which are imperative to clinical applications of machine learning models. This

work is the first study to address reliability estimation in MALDI-TOF based phenotype

prediction.

Chapter 6 explores whether prior knowledge specific to MALDI-TOF mass spectra

training datasets—namely that themass spectra depictmicrobial samples that are part

of strains related to each other—can be utilised to create improved stratification splits
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1 Introduction to MALDI-TOF MS based antimicrobial resistance prediction

for training. This analysis was motivated by the large standard deviation observed be-

tween the data splits in the GP–PIKE experiments. To this end, hierarchical clustering

is employed to facilitate an informed train–test split and its benefit to the classification

performance is assessed. This chapter is based on unpublished study

C. Weis, B. Rieck, S. Balzer, A. Cuénod, A. Egli, and K. Borgwardt. “Improved MALDI-TOF MS

based antimicrobial resistance prediction through hierarchical stratification”. Unpublished,

2020

While the results indicate that the approach does not decrease the standard devia-

tion between data splits, they report higher classification performance through the in-

troduced hierarchical stratification procedure, e.g. improving piperacillin-tazobactam

resistance prediction in K. pneumoniae from 0.36 to 0.41 AUPRC.

Chapter 7 is dedicated to the transferability of antimicrobial resistance prediction

from one site to another. In a first step, the transferability between all sites in DRIAMS

is assessed. The results suggest that the prediction models require regular retraining

on spectra native to the prediction site. Further we show that large MALDI-TOF MS

datasets from other medical institutions can increase the predictive performance. We

conjecture that the low transferability is most likely caused by distribution shifts be-

tween different datasets. A new approach is introduced that leverages complex ma-

chine learning methods inspired by adversarial deep learning frameworks to mitigate

domain shifts between sites. We explore an adversarial learning framework to learn

site independent representations in Chapter 7. The assessment of cross-site trans-

ferability is again based on the aforementioned preprint [126], while the adversarial

learning framework in this chapter is based on the unpublished study

C. Weis, M. Horn, B. Rieck, A. Cuénod, A. Egli, and K. Borgwardt. “Domain adaptation for

transferable antimicrobial resistance prediction from MALDI-TOF mass spectra”.

Unpublished, 2021

We conclude the thesis with an summary and outlook in Chapter 8. Here we sketch

a roadmap summarising all tasks that need to be tackled in order to develop an antimi-

crobial resistance predictor fit for clinical deployment, formed on the collected experi-

ence from all studies performed in this thesis. We propose several research directions

with potential to improve antimicrobial resistance prediction from MALDI-TOF mass

spectra. Further, we briefly discuss another type of antimicrobial resistance prediction

rapidly developing in recent years: applying machine learning models to genomic data

from bacteria to infer phenotypes such as resistance properties.

Specific contributions to each publication. With regard to Weis et al. [126], C.W. de-

signed and implemented all machine learning experiments in collaboration with co-

author B.R., contributed to the implementation of the DRIAMS-A and DRIAMS-B cura-

tion and preprocessing pipeline together with co-author A.C., solely performed the im-

plementation of the curation and preprocessing pipeline of DRIAMS-C and DRIAMS-D,

designed twelve out of sixteen display items, and wrote major parts of themanuscript.
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1.4 Contributions of this thesis

In Weis et al. [129], C.W. contributed to the data acquisition, data analysis, quality

analysis, interpretation and writing themanuscript. All contributions are in equal parts

to the co-author C.J..

Both inWeis et al. [128] andWeis et al. [127], C.W. contributed to the data preprocess-

ing. C.W. contributed to the design and implementation of all machine learning exper-

iments and writing the manuscript in equal proportion to co-authors B.R. and M.H..

C.W. designed and contributed to the implementation of all machine learning ex-

periments in Weis et al. [130]. Further, C.W. contributed to the data preprocessing and

drafting the manuscript.
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2 Systematic review of machine learning

for microbial identification and

antimicrobial resistance prediction on

MALDI-TOF mass spectra

C. Weis, C. R. Jutzeler, and K. Borgwardt. “Machine learning for microbial identification and

antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review”.

Clinical Microbiology and Infection 26:10, 2020, pp. 1310–1317.

doi: https://doi.org/10.1016/j.cmi.2020.03.014

Before diving into the novel research work and contributions of this thesis, we estab-

lish the current state-of-the-art, compile the current literature, and identify any short-

comings in the field. To ensure completeness and in order to adhere to the current

standards of literature reviews, we conduct a systematic review with the aim to anal-

yse and evaluate all studies that employ machine learning for phenotype prediction

based on MALDI-TOF mass spectra. Each study is assessed with respect to two ob-

jectives: (i) compile information on each study regarding the species investigated, ma-

chine learning algorithms employed andmodel performance, and (ii) assess the repro-

ducibility, robustness, generalisability and clinical significance of the presented ma-

chine learning models.

2.1 Preferred reporting items for systematic reviews and

meta-analysis

This study was conducted in accordance to the state-of-the-art recommendations for

systematic literature reviews. To that effect, we follow the guidelines provided by the

Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) state-

ment [69] and registered the study in the International prospective register of system-

atic reviews (PROSPERO) at CRD42020165579.

Searchmethods for identification of studies. A thorough search of original research

articles was performed using the scholarly search platforms PubMed/Medline, Sco-

pus and Web of Science. The search string was constructed to include publications

analysing MALDI-TOF mass spectra using machine learning:
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2 A systematic review

(‘machine learning’ OR ‘classification algorithm’ OR
‘support vector machine’ OR ‘random forest’ OR
‘logistic regression’ OR ‘neural network’) AND

‘maldi-tof’

Additionally, a manual search was performed by reviewing references and review

articles. All studies published in the time range of the platforms respective inception

dates to the 31st of January 2020 were included.

Selection of studies. The author of this thesis carried out the initial screening of re-

trieved articles and applied the inclusion and exclusion criteria (as listed in the next

paragraph). Then a co-author on the study independently reviewed all studies to sat-

isfied the inclusion criteria. In case of disagreements, a consensus decision wasmade

through a common discussion.

Inclusion and exclusion criteria. To be included in the review, a study is required

to meet the following criteria: (i) presentation of an original research article, (ii) appli-

cation of machine learning methods to MALDI-TOF mass spectra for microbial species

and antimicrobial susceptibility identification, (iii) provide information on the machine

learning algorithms, and (iv) provide information on the studied species. We exclude

(i) studies that do not analyse antimicrobial phenotypes, e.g. MALDI-TOF mass spec-

tra analysis of single proteins and peptides, cancer or genomics, (ii) paediatric studies,

(iii) case studies, and (iv) review articles.

Data extraction and synthesis. We extract the following information from all stud-

ies (main text and supplemental material if available): (a) publication characteristics

(first author’s last name, publication time), (b) studyobjectives (species discrimination,

identification or antimicrobial susceptibility testing), (c) cohort selection (genera, sam-

ple size), (d) technical information onMALDI-TOF instrument used, (e)model selection

(algorithm, platforms, software and software and packages, model parameters), (f) re-

portedmodel performance (themetrics reported formodel evaluation,mean andmea-

sure of variance), and (g) regularization methods ensuring generalization and external

validation strategies.

Quality assessment of machine learning studies. We choose a list of criteria to

judge the quality of the included studies, based on a previous review [90] and the rel-

evance to our study objective: (a) unmet needs addressed in study, (b) reproducibility

(feature engineering, hyperparameters, software and hardware), (c) robustness (valid

methods to address model overfitting, stability of results), (d) generalisability (valida-

tion on external data), and (e) clinical significance (interpretation of predictors, sug-

gested clinical use). These criteria were assessed for presence or absence (‘yes’ or

‘no’) and summarised in Table 2.3.
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2.1 Preferred reporting items for systematic reviews and meta-analysis

960 studies identified
(PubMed/Medline,

Scopus and Web-of-
science keyword search)

1 study identified
(manual search)

961 studies

329 studies
fulfill format requirements

62 studies
relevant by title and abstract

36 studies
included in literature review

632 studies excluded
(criteria: non-full text article,
review articles, or duplicates)

267 studies excluded
(off-topic; e.g. genetics,

proteomics, cancer,
or method not defined)

26 studies excluded
(no machine learning applied)

Figure 2.1: PRISMA flowchart illustrating the complete literature search pipeline. In total,

960 studies were found using the search phrase and one additional publication was

identified by manual search of references. 632 studies are excluded based on their

article type or being duplicates in the search results. We exclude 267 studies as

their research topic was not among the topic of antimicrobial phenotype prediction.

Reading through the articles revealed that 26 studies do not apply machine learn-

ing methods. The remaining 36 studies are included in the review. Figure adapted

from Weis et al. [129].

15
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machine learning algorithm abbreviation n %

support vector machine SVM 18 50.0

genetic algorithm GA 15 41.7

artificial / supervised neural network ANN / SNN 13 36.1

quick classifier QC 11 30.5

random forest RF 9 5.0

clustering / hierachical cluster analysis HC 8 22.2

k-nearest neighbors kNN 5 13.9

decision tree DT 4 11.1

logistic regression LR 3 8.3

Aristotle classifier - 1 2.8

linear discrimant analysis LDA 1 2.8

naïve Bayes - 1 2.8

Table 2.1:Machine learning algorithms applied in the 36 reviewed studies. Multiple algo-

rithms can be applied in a single study.

Results. The full literature search—including screening studies, eligibility assessment

and articles reviewed—is depicted in Figure 2.1. Out of 36 published studies chosen

for assessment, 27 analysed microbial species identification [16, 17, 21, 25, 27, 33, 35,

51, 56, 59, 61, 62, 63, 74, 75, 85, 96, 100, 102, 103, 113, 121, 122, 123, 134, 139, 140]

and nine analysed antibiotic resistance prediction [3, 4, 26, 50, 53, 67, 110, 115, 120].

A total of 924 studies are excluded, as they do not meet all inclusion criteria.

2.2 Summary of literature

Tables 2.4 and 2.5 give an overview over all the 27 studies analysingmicrobial species

identification and nine studies investigating antibiotic resistance prediction, respec-

tively.

Bacterial species and antimicrobial drugs. The bacterial genera primarily investi-

gated are Staphylococcus (n = 14), Streptococcus (n = 6), Escherichia (n = 4), and Kleb-

siella (n = 3). Among the papers focusing on antimicrobial resistance prediction, van-

comycin (n = 3) and carbapenems (n = 1) are the most widely-used broad-spectrum

antibiotics studied. Further, the narrow-spectrum antibiotic methicillin (n = 3) and the

antifungal drug fluconazole (n = 1) were also studied in the literature. Additionally, we

observe a high variance in the number of samples included in each study, ranging from

less than 50 [33, 63, 96, 115] to 787 isolates [122].

Machine learning models. Table 2.1 provides an overview of the wide range of ma-

chine learning algorithms that were used in the literature, with the most commonly

applied model being support vector machines (SVM, n = 18), genetic algorithms (GA,

n = 15), artificial/supervised neural networks (ANN, n = 13) and quick classifiers (QC,
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n = 11). As these algorithms will not be revisited later on in this thesis, a brief de-

scription is given in Table 2.2. We observe a substantial overlap between studies in

terms of applied machine learning algorithms, namely that the classifiers GA, SVM,

SNN, and QC are applied most frequently, and are frequently applied together in the

same study. This trend is caused by most analyses being performed on manufacturer-

provided software, such as flexAnalysis and ClinProTools from Bruker Daltonics,

employing preprogrammed machine learning algorithms. ClinProTools provides the

fourmost frequently employed algorithms, namely GA, SVM, SNN, andQC [17], causing

the described behaviour. Other algorithms applied in the literature are clustering/hi-

erarchical cluster analysis (UHCA), random forests (RF), decision trees (DT), k-nearest
neighbors (kNN), multiple logistic regression (MLR), naïve Bayes and Aristotle classi-

fiers.

Software. The most frequently employed software to perform mass spectra analy-

sis was the ClinProTools Software by the MALDI-TOF MS instrument manufacturer

Brucker Daltonics (n = 17). Notice that when selecting the ‘SVM’ or ‘genetic algorithm’

option in ClinProTools, the software only employs the respective algorithms for peak

selection, while classification itself is performed using a kNN algorithm based on the

selected peaks. The remaining studies employed R or R Studio (n = 9), MATLAB (n
= 7), Python (n = 1), MALDI Biotools 3.0 (n = 1), Statistics Program for Social
Sciences (n = 1), Mathematica (n = 1) or a combination thereof to perform their analy-

ses.

Model generalisationandexternal validation. All studies reviewedappliedone form

of cross-validation to avoid their models overfitting to the training data; either 5-fold,
10-fold or leave-one-out. Validation on out-of-distribution data usually requires exter-

nal MALDI-TOF data and was only performed in four studies: (1) Wang et al. [122] col-

lected their main dataset from the biobank of a teaching hospital in northern Taiwan.

They obtained an independent external validation dataset fromabacterial biobank and

two teaching hospitals inmiddle and southern Taiwan. (2) The study by Esener et al. [33]

aims at discriminating contagious from environmental strains of Streptococcus uberis

in dairy herds. Data was collected from 29 farms; the data of 19 farms was used for

the main analysis and data from the remaining ten farms were held-out for external

validation. (3) Fangous et al. [35] collected 40Mycobacterium abscessus isolates across

France for the main part of the analysis. The subsequent external validation was con-

ducted on another 40 M. abscessus isolates, obtained from the French National Ref-

erence Centre for Mycobacteria and Resistance of Mycobacteria to Antituberculosis.

(4) Rodrigues et al. [96] aimed at precisely identifying different species within the Kleb-

siella group, basing their analysis on 46 strains collected fromdifferent sources around

the globe (e.g. human, environment, water, plant). For validation, 49 isolates belonging

to K. pneumoniae phylogroups derived from 49 faecal samples of humans in Madagas-

car were analysed.
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machine learning algorithm description

genetic algorithm (GA) Genetic algorithms aim to select a combination of peaks

that separate the classes in a way that maximizes the

variance between classes. The steps in the algorithm

are inspired by biological processes, such as mutations,

crossover and selection, by evolving a collection of candi-

date solutions towards a better performing solution.

artificial neural network (ANN) Artificial neural networks were developed drawing inspi-

ration from the structure of mammalian brain neural net-

works. The network consists of several stacked layers of

relatively simple mathematical units, which combine the

input information of the previous layer’s neurons and di-

rect the output to neurons in the next layer. Models la-

belled ‘supervised neural networks’ or ‘back propagation

neural networks’ are instances of ANNs.

support vector machine (SVM) Support vector machines are a supervised learning algo-

rithm that finds the best separating maximum margin hy-

perplane between the classes in a higher dimensional rep-

resentation of the instances. During optimization the hy-

perplane maximizing the gap between the plane and the

instances is determined. The data ismapped into a higher-

dimensional space using a kernel function, e.g. the radial

basis function kernel or the polynomial kernel.

quick classifier (QC) The Quick Classifier calculates the average area of each

peak together and provides a p-value per class. During

classification, the peak areas are sorted by the univariate

sorting algorithm and an average over all peaks is calcu-

lated which indicates class membership.

k-nearest neighbor (kNN) The k-nearest neighbor classification algorithm bases its

classification of unseen instances on the similarity be-

tween the instance and each training data point. The as-

signed class is chosen to be the majority class of the clos-

est k training data point classes. A frequently used similar-

ity measure is the Euclidean distance.

Table 2.2: Description of the most frequent machine learning algorithms employed in the

current literature [129].
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2.3 Identified shortcomings and discussion

2.3 Identified shortcomings and discussion

In this section, we conduct a systematic quality assessment of the machine learning

analyses we find in the literature and discuss several shortcomings, while aiming for

the development of a clinically applicable phenotype prediction tool to be incorporated

in the routine diagnostics.

Quality of reviewed studies. The results obtained through the quality assessment

are included in Table 2.3. The resulting quality scores range from poor (<60%) to very

good (100%). Only one study fulfilled all quality criteria and obtained a quality score of

100%. Four quality requirements were met by more than 97% of the studies (35 out

of 36), namely (i) highlighting the limits in current non-machine learning approaches

in the introduction (ii) providing information on hardware and software used in the

study, (iii) employing valid methods to avoid model overfitting (i.e. cross-validation),

and (iv) providing information on the clinical relevance. However, only 11%of the stud-

ies validated their machine learning models on an external dataset.

Externalmodel evaluation. Robustness, reliability and validity are critical evaluation

factors when developing a machine learning framework intended for clinical applica-

tion. The quality assessment (Tables 2.4 and 2.5) reveals that the majority of the re-

viewed studies assess the robustness of their models using k-fold cross-validation and

report standard deviation, confidence intervals, or other stability metrics. However,

39% of the reviewed studies do not provide the hyperparameters obtained through

cross-validation, impeding replication and comparison with other studies.

Generalization of models’ results is essential to allow for comparisons and appli-

cation sharing between hospitals. MALDI-TOF mass spectra measured on different

MALDI-TOF MS instruments and at different locations are known to suffer from batch

effects [79, 126], likely stemming fromdifferences in laboratory routine ormachine set-

tings. As a result, models trained onMALDI-TOFmass spectra collected at one hospital

display decreased predictive performance on out-of-hospital (i.e. out-of-distribution)

data. This topic will be discussed in more detail in Chapter 7. The generalization ca-

pabilities of a model are best assessed through so-called external validation in which

the model is presented with unseen, out-of-distribution data. With only 1̃1% of the

reviewed studies including an external validation, we want to highlight this aspect as

a massive shortcoming in assessing the validity of reported predictive performances

and the potential of MALDI-TOFMS based phenotype prediction in general. We specu-

late that the cost and large-scale effort required to curate datasets frommultiple sites

poses too large a challenge and proves infeasible for most studies.

Interpretability of predictors. Being able to understand the decision-making pro-

cess and functionality of a machine learning predictor is crucial to building tools that

are meant to be applied in clinical care. Confidence in the model is built by identify-

ing the MALDI-TOF MS peaks that contribute most of the information to the predic-
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tion. Practically all reviewed studies provide an investigation into the predictive peaks.

For instances, Esener et al. [33] cross-references the mass of identified proteins with

the NCBI protein database to identify corresponding proteins. This analysis uncov-

ered that peak predictors in their study correspond to bacteriocins and ribosomal pro-

teins. Another study [110] compared predictive peaks reported by their model with

known fragments of themethicillin resistance-causing penicillin-binding protein (PBP)

in methicillin-resistant Staphylococcus aureus (MRSA). Generally however, biological

interpretation of feature peaks is limited by the lack of prior knowledge as most resis-

tance mechanisms have not been previously analysed through MALDI-TOF MS.

MALDI-TOF MS tailored machine learning. The development of machine learning

models specifically designed for input of the datatype MALDI-TOF mass spectra is still

very much in its beginning stages, demonstrated by the lack of any MALDI-TOF MS tai-

lored algorithms listed in 2.4 and 2.5. The systematic literature review reveals three

limitations that prevent the advancement of machine learning techniques: (i) small

sample size, (ii) lack of external validation, and (iii) poor reproducibility. The sample

sizes employed in the reviewed studies were noticeably low for amachine learning ap-

plication, with numbers ranging between dozens to hundreds of isolates, which then

had to be further split for training and testing. Even the largest study reviewed, includ-

ing 787 isolates, can hardly reflect themicrobial diversity that is present in a population

and would occur in the clinical routine. Small samples sizes, which cannot cover and

represent the entire data distribution, lead to machine learning models with low gen-

eralisability and large false discovery rates [14]. The severity of this problem is further

increased by the second limitation, as external validation is crucial to reliably judge

the generalisability of a trained model. With the lack of external validation in many re-

viewed studies, it is difficult to assess whether the reported predictive performances

and significance of specific MALDI-TOF mass peaks can be reproduced for new data.

These two limitations could be addressed through combining available MALDI-TOFMS

datasets and making them publicly available for other researchers, to be used as ex-

ternal validation datasets. Many of the currently available public MALDI-TOF datasets

can be found in the ‘MassIVE’ repository [84], a community database for mass spec-

trometry datamainly focusing on proteomics. Alternatively, a largeMALDI-TOFdataset

is provided by the Robert Koch Institute, including 6264 MALDI-TOF mass spectra of

highly pathogenic microbes [60]. However, (i) both data sources do not provide the

AMR profiles corresponding to the MALDI-TOF mass spectra, and (ii) many studies do

not make their datasets public after publication. In addition to posing a drawback to

increase the number of publicly available datasets, withholding the dataset renders

any attempt to reproduce the study results impossible. The systematic review reveals

that only nine studies [3, 21, 26, 27, 53, 100, 113, 120, 122] provided the MALDI-TOF MS

(and AMR information if applicable) and only four studies [3, 26, 27, 100]made the ma-

chine learning code available after publication. Additional information facilitating re-

producibility is contained in the model hyperparameters selected during training. We
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find that most studies also do not provide details on the optimized hyperparameters

(Table 2.3).

Exacerbating the problem,most analyses are performedon software provided by the

manufacturer, such as flexAnalysis and ClinProTools from Bruker Daltonics [16, 17,

33, 35, 50, 51, 56, 74, 75, 84, 110, 113, 122, 123, 134, 139]. Therefore the employed anal-

ysis workflows are not accessible, obstructing any external attempts to review and po-

tentially improve the state-of-the-art pipelines. In conclusion, to unleash and assess

the full potential of MALDI-TOF MS based phenotpye prediction, a joint effort between

clinicians and machine learning reseachers is needed, where code and clinical data

are shared and made publicly available to foster study reproducibility and foster the

development of new and advanced machine learning algorithms.

Limitations of this systematic review. To conclude the systematic review, we ad-

dress the limitations hampering the review process. The literature search was re-

stricted to articles listed in the scholar databases PubMed/Medline, Scopus andWebof

Science (complemented by a publication discovered through reference search). Con-

sidering that none of these platforms have a strong focus onmachine learning publica-

tions and the pace of research in the field, it is likely that the list of reviewed papers has

grown significantly since conducting the systematic review. The literature search also

excluded preprints, reports and conference proceedings, which commonly precede

journal publication in the research field of machine learning. The lack of any studies

reporting poor ormediocre predictive performance likely indicates a strong publication

bias, caused by preferential submission and publication of positive research results.

In summary, the application of machine learning to microbial phenotype prediction

is still in its infancy. Themain limitations to swift progress are (i) lack of large datasets,

(ii) lack of external validation and information on generalization, and (iii) poor repro-

ducibility and code sharing, which drives the development of new task-specific ma-

chine learning algorithms.
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2 A systematic review

Number Availability Machine

Species of code / learning Analysis Generalization

of interest isolates data algorithms platforms

[3] Staphylococcus au-

reus

171 yes / yes RF Brucker l.o.o.

(varSeIRF), R cross-validation

[4] Staphylococcus au-

reus

727 no / no GA, SVM not reported cross-validation

[26] Candida albicans 33 yes / yes LDA, LR, RF R cross-validation

[50] Bacteroides fragilis 424 no / no GA, QC, ClinProTools cross-validation

SNN, SVM

[53] Klebsiella pneumo-

niae

95 no/ yes kNN, LR, naïve Mathematica l.o.o.

Bayes, RF, SVM cross-validation

[67] Staphylococcus au-

reus

80 no / no SVM R 10-fold

cross-validation

[110] Staphylococcus au-

reus

160 no / no SVM Biotools 3.0 10-fold

cross-validation

[115] Staphylococcus au-

reus

20 no / no RF, SVM-RFE R l.o.o.

cross-validation

[120] Staphylococcus au-

reus

125 no / ask kNN-DT, R 5-fold

RF, SVM cross-validation

Table 2.5: Summary of reviewed studies addressing antimicrobial resistance prediction.

Abbreviations: Algorithm abbreviations follow Table 2.1. ‘ask’ indicates that the

study authors claim to give out code or data upon request. l.o.o. for ‘leave-one-out’.

The depicted columns address the limitations discussed in Section 2.3. A compre-

hensive version of this table can be found in Weis et al. [129].
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Part II

Large-scale full-spectrum MALDI-TOF MS

based clinical antimicrobial resistance

prediction
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3 DRIAMS: Database of ResIstance

against Antimicrobials with MALDI-TOF

Mass Spectrometry

C. Weis, A. Cuénod, B. Rieck, F. Llinares-López, O. Dubuis, S. Graf, C. Lang, M. Oberle,

K. K. Soegaard, M. Osthoff, M. Brackmann, K. Borgwardt, and A. Egli. “Direct Antimicrobial

Resistance Prediction from clinical MALDI-TOF mass spectra using Machine Learning”.

accepted in Nature Medicine, 2021. doi: https://doi.org/10.1101/2020.07.30.228411

The systematic review in Chapter 2 reveals that the major limitation to advancement

and novel algorithm development for MALDI-TOF MS based phenotype prediction is

the lack of large-scale MALDI-TOF MS datasets, both for model development and ex-

ternal validation. Consequentially, we embark on the journey towards a clinically appli-

cable antimicrobial resistance classifier by collecting a clinical routine MALDI-TOF MS

dataset suitable for phenotype prediction such as species prediction and antimicro-

bial resistance prediction. This dataset constitutes the largest database of its type at

the time of writing this thesis, and includes MALDI-TOF mass spectra, species infor-

mation, antimicrobial resistance profiles and clinical meta-data spanning four differ-

ent diagnostic laboratories in Switzerland. We term this datasetDRIAMS (Database of

ResIstance against Antimicrobials with MALDI-TOF Mass Spectrometry) and make it

available to the public to advance the entire field of MALDI-TOF MS based phenotype

prediction. The raw dataset comprises a total of 303,195 mass spectra and 768,300

antimicrobial resistance phenotypes, representing 803 different species of bacterial

and fungal pathogens. The dataset can be accessed here1. This chapter will be de-

voted to the collection and content of DRIAMS, starting off with a description of the

collection sites in Section 3.1, followed by a detailed walk-through of the preprocess-

ing and quality control steps taken when building the database in Section 3.2. Sec-

tion 3.3 includes a short discussion on the confounding factors in the dataset and we

conclude with a summary of all contents in DRIAMS in Section 3.4. Figure 3.1 depicts

all steps to obtain the raw and preprocessed DRIAMS datasets giving an overview of all

steps described in chapters 3.1 and 3.2.

1doi:10.5061/dryad.bzkh1899q
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3 DRIAMS: A database for MALDI-TOF MS based resistance prediction

(3) baseline     
      removal

(1)  variance 
       stabilising
(2)  smoothing

(5) trimming

2,000 20,000

(4) intensity
      calibration

intensity intensity

intensity intensity

m/z

m/z

m/z

m/z

clinical routine data collection

oxacillin: resistant         R
ceftriaxone: intermediate  I
cefepime: susceptible    S
       ….

MALDI-TOF MS

intensity

m/z

oxacillin: resistant
ceftriaxone:    intermediate
cefepime:       susceptible
….

class 1
resistant

intermediate
positive

class 0
susceptible

negative

oxacillin: 1
ceftriaxone:     1
cefepime:        0
….

AMR profile

AMR binarisation

preprocessing

bin size 3Da

m/z

intensity

m/z2,000 20,0002,000 20,000

feature vector of length 6000
for bin size 3Da

intensity

sample collection

quality control

DRIAMS-D

       24,191 spectra         80,796 spectra               
       54,318 labels                                               112,545 labels    

DRIAMS-BDRIAMS-A

DRIAMS-C

         186,098 spectra      12,110 spectra            
         563,826 labels         37,611 labels        

DRIAMS

binning

(i) filter according to exclusion criteria

(ii) matching of mass spectra and 
resistance profiles

Figure 3.1: DRIAMS data collection and curation. The upper row indicates the steps taken to

collect and filter samples, consisting of MALDI-TOFmass spectra and AMR profiles.

The lower row is a depiction of the creation of both the preprocessed and binned

MALDI-TOF mass spectra, which (along with the raw spectra and AMR profiles)

comprise all four subdatasets of DRIAMS. Figure adapted from Weis et al. [126].
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3.1 Clinical routine data

3.1 Clinical routine data

The data contained in DRIAMS was collected during daily clinical routine treatment

at ISO/IEC 17025 accredited diagnostic routine laboratories and extracted from hos-

pital records for the purpose of this thesis. All medical laboratories are located in

Switzerland. For easy reference, we assign the four subdatasets constituting DRIAMS

their own labels, DRIAMS-A to DRIAMS-D. The four diagnostic laboratories sites in this

study are (1) University Hospital Basel-Stadt (providing DRIAMS-A), (2) Canton Hospi-

tal Basel-Land (providingDRIAMS-B), (3) CantonHospital Aarau (providingDRIAMS-C),

and (4) laboratory service provider Viollier (providing DRIAMS-D). For each site a col-

lection timeframe was chosen and all extracted data (passing quality control, see Sec-

tion 3.2) from that time frame was included in DRIAMS. The collection time frames for

each site are (1) DRIAMS-A: 34 months (11/2015–08/2018), (2) DRIAMS-B: 6 months

(01/2018–06/2018), (3) DRIAMS-C: 8 months (01/2018–08/2018), and (4) DRIAMS-

D: 6 months (01/2018–06/2018).

MALDI-TOF mass spectra measurements. All MALDI-TOF mass spectra in DRIAMS

weremeasured using theMicroflex Biotyper SystembyBruker Daltonics (Bremen, Ger-

many), a widely-employed MALDI-TOF MS system in microbiological clinical routine

diagnostics both in Europe [44, 94] as well as North America [28]. Both hospitals in

Basel-Land and Aarau use the Microflex Biotyper LT/SH System, while Viollier uses the

Microflex smart LS System. The diagnostic laboratory at the University Hospital Basel-

Stadt uses both systems in parallel. These two systems employ a different type of

laser gas but use the same reference spectra database for species identification, in-

dicating a close similarity between the produced MALDI-TOF mass spectra, therefore

we included spectra from both Microflex Biotyper systems.

Along with the MALDI-TOF mass spectra themselves, the species assigned to each

spectrum was extracted from the hospital records. The species were identified at the

time of measurement using the Microflex Biotyper Database (MBT 7854 MSP Library,

BDAL V8.0.0.0_7311-7854) provided by the flexControl Software (Bruker Daltonics

flexControl v.3.4).

Antimicrobial susceptibility testing profiles. The antimicrobial resistance profiles

were routinely acquired at the same four microbiological laboratories and during the

same time frames as the MALDI-TOF MS data. The phenotypic resistance in bacte-

rial strains was determined by either (i) microdilution assays (VITEK® 2, BioMérieux,

Marcy-l’Étoile, France), (ii)minimal inhibitory concentration (MIC) stripe tests (Liofilchem,

Rosetodegli Abruzzi, Italy), or (iii) disc diffusion tests (ThermoFisher Scientific,Waltham,

USA). The resistance of yeast isolates was determined through Sensititre Yeast One

(Thermofisher). All breakpoint measurements were categorized to be either suscep-

tible, intermediate, or resistant following CLSI (2015 M45; 2017 M60) and recom-

mendations by the European Committee on Antimicrobial Susceptibility Testing (EU-

CAST) [34] at the time of measurement (EUCAST v6-v8). Collecting a dataset by ac-
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3 DRIAMS: A database for MALDI-TOF MS based resistance prediction

cessing clinical records retrospectively allows for the aggregation of an unprecedented

amount of data, as MALDI-TOF MS has been employed by many clinics along with an-

timicrobial susceptibility testing for years. However, real-world clinical routine data

is impaired by the constantly fluctuating measurement environments it was collected

in and the missing information that cannot be retrieved retrospectively. These factors

can cause both the over- or underestimation of predictive performance, e.g. through

confounding factors linked to the phenotype of interest, or throughmeasurement noise

hindering the detection of predictive signals. A number of confounding influences will

be discussed in detail later in Section 3.3.

3.2 Preprocessing and quality control

This section is devoted to the steps required to convert the raw data extracted from the

hospital file storage systems into a dataset ready for machine learning analysis. Curat-

ing the new MALDI-TOF MS database comes with a number of challenges. Due to the

nature of real-world clinical routine data collection, the raw data contains failed instru-

ment calibration and other measurements not suitable for inclusion into the database.

Additionally, we face a major challenge when combining two types of measurements

performedon the samemicrobial sample, sinceMALDI-TOFMSmeasurements and an-

timicrobial susceptibility testing were not intended to be matched in the clinical rou-

tine. Therefore, the records do not always archive all information needed to match

measurements unambiguously. As we combine data from four different diagnostics

site, requirements are different for all four raw input datasets and the data aggrega-

tion process has to be adjusted accordingly. Lastly, we discuss the conversion into the

final data representation using in the machine learning analysis.

Mass spectra exclusion criteria. We excluded mass spectra files that were either

empty (due to e.g. faulty execution or an empty sample plate) or measured during

the calibration process of the MALDI-TOF MSmachine. During this calibration process

an E. coli probe modified with chemicals producing specific mass peaks is repeatedly

measured while the instrument parameters are adjusted.

Matching two data sources. A dataset suitable for MALDI-TOF MS based antimicro-

bial resistance prediction must consist of entries representing microbial isolates, with

both the mass spectrum and the antimicrobial resistance label known for a large num-

ber of instances. In order to construct such a dataset from clinical records, theMALDI-

TOF MS and resistance profile measurements belonging to the same microbial isolate

have to be matched. We face the same challenge at all medical sites: the mass spec-

tra and antimicrobial susceptibility testing of the same isolate are carried out in sep-

arate procedures in the clinical routine, and as both measurements do not need to be

matched for clinical diagnostics, are not recorded in a way that allows one to identify

the resistance profile record and mass spectrum file stemming from the same isolate.
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3.2 Preprocessing and quality control

For ease of communication, here we term the report documenting antimicrobial re-

sistance profiles as the ‘laboratory report’. The species of the isolate is determined

through MALDI-TOF MS species identification and is also added to the laboratory re-

port. By only transferring the species identified throughMALDI-TOFMS, the laboratory

report entry is decoupled from the mass spectrum file. Each laboratory report entry is

identified by a code, which we refer to as the ‘sample ID’, linking the entry to a pa-

tient or a unique sample taken from a patient. If multiple probes have been taken from

the same patient, multiple entries with the same sample ID may occur. The spectra

measured by the Bruker Microflex systems are labelled with an ambiguous code corre-

sponding to the non-unique sample ID in the laboratory report, linking MALDI-TOF MS

measurements to patients. We construct a new code by combining the sample ID and

the determined genus of a sample to identify the MALDI-TOF mass spectrum corre-

sponding to each laboratory report entry. The new code allows for unambiguous iden-

tification inmost cases, as the primary reason for repeated sample IDs is the presence

of several genera samples in the patient sample, leading to several measurements.

Samples for which the new sample ID-genus code was not unique are omitted.

Antimicrobial nomenclature. The antimicrobial drugs are labelled by their German

name in the DRIAMS ID files and are anglicized during data read-in by our machine

learning pipeline. Additionally, inconsistencies are unified between sites as well, in-

cluding spelling variants and different names for the same drugs, such as cotrimoxazol

and trimethoprim/sulfamethoxazole. DRIAMS-A has an additional suffix nomenclature

structure: (i) high level indicates the higher of two dosages listed for gentamycin (intra-

venous administration) in EUCAST, with the standard dose being 5 mg/kg and the high

level dose 7 mg/kg, (ii) meningitis, pneumoniae, endocarditis, and uncomplicated UTI

(urinary tract infection) indicate an infection-specific breakpoint for the respective in-

fection in EUCAST, (iii) screen in cefoxitin indicates that this test is used as a MRSA

screen in the clinical routine diagnostic at University Hospital Basel, (iv) GRD stands

for ‘glycopeptide resistance detection’ used at University Hospital Basel in very rare

cases to detect glycopeptide intermediateS. aureus, and (v)1mg_l indicates rifampicin

concentration in liquid culture, typically for Mycobacterium tuberculosis. If this suffix

is entered for other species, it is a mistake made when entering information into the

laboratory information system.

Spectral representation. TheMALDI-TOFmass spectra areextracted from theBruker

Flex machine in the Bruker Flex data format. The following standard MALDI-TOFmass

spectra preprocessing protocol is applied: (1) intensity transformation with a square-

root method to stabilize the variance, (2) Savitzky-Golay smoothing with half-window-

size 10, (3) baseline estimation is removed in 20 iterations using the SNIP algorithm,

(4) intensity calibration using the total-ion-current (TIC), and (5) spectra trimming to

values in2 kDa to20 kDa. All stepswere implemented in Rusing thepackageMaldiQuant
[43] v1.19, with detailed parameter values given in the code. Raw MALDI-TOF mass

spectra constitute a list of a number of tuples, each containing a m/z–ratio and the re-
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3 DRIAMS: A database for MALDI-TOF MS based resistance prediction

spective intensity. The number ofmeasured tuples varies betweenmass spectra. Most

machine learningmodels process input data in the formof a fixed-length feature vector.

Therefore, we convert the raw MALDI-TOFmass spectra into vectors of fixed length by

partitioning the measured intensities ranging from 2kDa to 20 kDa into a feature grid

of disjoint, equal-sized bins, and summing up all intensities falling into the same bin.

Initial exploratory experiments indicate that a bin size of 3 Da provides a suitable fea-

ture vector representing the mass spectrum, allowing for separation and distribution

of mass peaks with similar m/z–ratio values, while being large enough not to cause re-

dundancies between features. Therefore, we obtain a vector of dimensionality 6,000.

In the public version of DRIAMS, the raw, preprocessed as well as the binned spectra

representations are included.

Antimicrobial resistance phenotype binarisation. Throughout this thesis we repre-

sent the prediction as a binary classification problem. Therefore, the values reported

in the antimicrobial resistance profiles were assigned to two classes. The profiles are

already represented by EUCAST and CLSI [22, 34] based resistance categories. For an-

timicrobial resistances that are reported by RSI values, the positive class was assigned

when the category indicated a resistant (R) or intermediate (I) sample and the negative

class was assigned to susceptible (S) samples. The choice for grouping samples with

the intermediate category to the resistant sample class was made deliberately in ac-

cordance to their ultimate effect in patient treatment: both resistant and intermediate

samples prevent the prescription of an antibiotic.

3.3 Confounding factors in real-world clinical data

In this sectionwediscuss several aspects that affect the population covered inDRIAMS

and potentially confound the signal for antimicrobial resistance.

Patient clientèle. The mark-up of patients and respective infections treated at each

medical location is reflected in the microbial population captured by each dataset in

DRIAMS. Samples included in DRIAMS-A (University Hospital Basel-Stadt) originate

primarily from patients residing in the city of Basel and its surroundings seeking out-

or inpatient treatment. The patient population in DRIAMS-B mostly stem from towns

surrounding the city of Basel, while patients from the entirety of the Swiss canton Aar-

gau are included in DRIAMS-C. DRIAMS-D differs substantially from the other medi-

cal institutions in the sense that its collection site Viollier is a service provider per-

forming species identification from samples collected in medical practices and hospi-

tals originating from all over Switzerland. The implications include a shift in infections

depicted—milder infections will be overrepresented in DRIAMS-D due to the medical

practice data, while highly complex infections will appear at a lower ratio.
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3.3 Confounding factors in real-world clinical data

hospital deep

dataset total hygiene blood tissue genital respiratory stool urine varia

E. coli n = 4961 659 1190 1073 24 364 5 1473 173

(ceftriaxone) % = 100 13.3 24 21.6 0.5 7.3 0.1 29.7 3.5

K. pneumoniae n = 2860 229 273 204 5 268 15 1790 76

(ceftriaxone) % = 100 8 9.6 7.1 0.2 9.4 0.5 62.6 2.7

S. aureus n = 3790 379 708 1356 34 517 0 187 609

(oxacillin) % = 100 10 18.7 35.8 0.9 13.6 0 4.9 16.1

Table 3.1: Distribution of samples over workstations for three species–antibiotic datasets

from DRIAMS-A.

Clinical research. As DRIAMS-A was collected at a hospital with a university affilia-

tion, laboratory equipment is used for research experiments in parallel to the clinical

routine measurements. The spectra were not specifically labelled when originating

from non-routine experiments and the DRIAMS dataset was not filtered for them. As

we cannot identify these spectra, we can only speculate in regards to the implications:

strains that are subject of local research projects might be overrepresented, or only

therefore included, and therefore bias the dataset.

Workstations. DRIAMS-A clinical routine isolates are analysed at one of nine work-

stations categorised by isolationmaterial or procedure: (i) urine isolates, (ii) blood cul-

ture isolates, (iii) stool isolates, (iv) genital tract isolates, (v) isolates with a polymerase

chain reaction (PCR)-based test, (vi) respiratory tract isolates, (vii) isolates from deep

(usually sterile) material, (viii) isolates from a hospital hygiene department, and (ix) re-

maining isolates. Specifically, the isolates collected by the hospital hygiene depart-

ment create substantial confounding. The purpose of these measurements is to pre-

vent within-hospital (nosocomial) transmissions of multidrug-resistant pathogens, by

testing samples collected from within the hospital (e.g. door handles and other sur-

faces). As the objective is to detect resistant pathogens, the collected isolates are

cultured on selective growth media (i.e. growth media containing antimicrobial drugs)

that only allow for the growth of resistant strains. The growth medium affects the mi-

crobial proteome, and is therefore reflected in its MALDI-TOFmass spectrum [104] and

could confound antimicrobial resistance prediction if amass peak indicating a selective

growth medium is used as a signal for antimicrobial resistance. The individual sample

sizes per workstation are listed in Table 3.1.

Patient cases. TheDRIAMS-A laboratory report includes information on patient case

affiliation. A clinical case defines a single hospital stay, i.e. the duration between hos-

pital entry and exit of a specific patient. Repeated hospital stays of the same patient

are identified as separate patient cases. MALDI-TOF mass spectra affiliated with the

same patient case number likely stem from the same infection, i.e. the samemicrobial

strains with identical resistance profiles. Clinical cases should be considered during

machine learning experimental design to avoid information leakage and confounded
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3 DRIAMS: A database for MALDI-TOF MS based resistance prediction

results. For the three remaining subdatasets, DRIAMS-B, DRIAMS-C and DRIAMS-D,

no information on patient cases is provided.

3.4 Summary of the DRIAMS datasets

Tables3.2 to3.6provide statistics for eachantimicrobial drug contained in thedatasets

DRIAMS-A to DRIAMS-D respectively. For each drug, the number of available spectra

n, the positive (resistant/intermediate) class ratio and the threemost frequent species

with their number of spectra are listed. These tables allow one to judge the vast pos-

sibilities of species-antimicrobial scenario combinations that can be studied with our

curated and publicly available dataset DRIAMS.
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3 DRIAMS: A database for MALDI-TOF MS based resistance prediction
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3.4 Summary of the DRIAMS datasets
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3.4 Summary of the DRIAMS datasets
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As this thesis is the first work to have access to a dataset as comprehensive as DRI-

AMS, no baselines exist establishing (i) the predictive performances achieved by out-

of-the-box machine learning algorithms, (ii) whether non-linear and complex models

outperform simplermodels, or (iii) task-specific properties and requirements for a suc-

cessful antimicrobial resistance prediction workflow. This section explores different

approaches to antimicrobial resistance prediction to provide a foundation for exper-

iments in the field. Initially, a species-specific antimicrobial resistance predictor is

built and the behaviour of predictions is analysed when the training samples are out-

of-date, calibrated, or are a combination of MALDI-TOF mass spectra of species. We

further build an understanding of the decision-making process of the predictors by cal-

culating the Shapley values of feature bins and cross-referencing highly-contributing

feature bins with known resistance associated MALDI-TOF mass peaks. All analyses

of Chapter 4 are based on DRIAMS-A.

4.1 Species-stratified antimicrobial resistance prediction

4.1.1 Machine learning analysis framework

During this chapter, we continuously employ the data representation as provided in

DRIAMS, with the 6,000-dimensional fixed-length feature vector data representation

using a bin length of 3 Da. For more details on data preprocessing and representation

in DRIAMS, please refer to Section 3.2. In order to establish the baseline, we focus

on one collection site representing the largest subdataset in DRIAMS— DRIAMS-A. The

loaded dataset is split into train and test datasets, while keeping a similar antimicrobial

class ratio in both. In order to avoid that themachine learning classifier recognises cul-

ture medium-specific peaks in the MALDI-TOFmass spectra from the selective media,

samples that were collected for the hospital hygiene department from DRIAMS-A are

excluded from further analysis. For DRIAMS-A, this split also ensures that all samples
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4 Large-scale species-specific antimicrobial resistance prediction

associatedwith a specific patient case are either part of the training dataset or the test-

ing dataset, but not both. We apply three machine learning models for antimicrobial

resistance classification: (i) logistic regression (LR), (ii) gradient-boosteddecision trees

(LightGBM), and (iii) a multi-layer perceptron (MLP). The three models were selected

based on their different model complexity. Throughout this thesis, the three models

use the sklearn [82] implementation in Python. The predictive performances are re-

ported in the commonly used metrics ‘area under the receiver operator characteristic

curve’ (AUROC) and ‘area under the precision-recall curve’ (AUPRC) as performance

metrics. In the following paragraphs, we explain both the applied machine learning

algorithms and the metrics used throughout this thesis (Chapters 4 to 7) in detail.

Logistic regression. Logistic regression is a widely employed classification model

p(y|x; θ), where x is a fixed-dimensional input vector x ∈ R, y defines the class la-

bel y ∈ {1, ..., C}, and θ refers to the model parameters [72]. Throughout this thesis,

labels consist of two classes only i.e. y ∈ {0, 1}, hence a ‘binary logistic regression’.

The full model of a binary logistic regression is given by

p(y|x; θ) = Ber
(

y|σ
(

βTx + b
))

, (4.1)

where Ber is the Bernoulli distribution, σ is the sigmoid function, β are the weight pa-

rameters, and b is a real-valued bias term. Themodel parameters consist of θ = (β, b).
The sigmoid function is defined as

σ(a) =
1

1 + e−a , (4.2)

where

a = βTx + b (4.3)

is called log-odds, logit or pre-activation function [72]. The sigmoid function states the

probability that the class label is positive, or y = 1, hence it corresponds to p(y =
1|x; θ). If the probability of the positive class p(y = 1|x; θ) is higher than for the

negative class p(y = 0|x; θ), then class 1 is predicted, which converts to a > 0 or

p(y = 1|x; θ) > 0.5. The parameters in the logistic regression are estimated through

maximum likelihood estimation.

LightGBM. The Light Gradient Boosting Machine (LightGBM) [55] [68] is an optimized

implementation of the gradient boosted decision tree, a frequently applied machine

learning algorithm, popular due to its efficiency, accuracy, and interpretability. In con-

trast toprevious implementations, LightGBM introducedgradient-basedone-side sam-

pling and exclusive feature bundling accelerating the training process and improving

memory usage [55]. Gradient boosting employs ensembles of weak prediction mod-

els in a boosting framework, i.e. sequential training, with a learner working to improve
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Figure 4.1:Multi-layer perceptron model (a) Activation functions used in neural networks,

such as a heaviside step function H(x) and rectified linear units ReLU(x). (b)

Structure of multiple layers of node in a multi-layer perceptron model, where all

nodes in hidden layers take the output of previous layers as their input.

mistakes of the previous learner in the ensemble. In the case of a gradient boosting

decision tree these weak learners consist of decision trees [46].

Multi-layer perceptron. A multi-layer perceptron (MLP) model constitutes a simple

neural network, consisting of a stack of perceptrons [72]. Perceptrons are simplemod-

els inspired by biological neurons, defined by

f (x; θ) = H(βTx + b),

where x is the input feature vector, the model parameters are θ = (β, b), and H ∈
{0, 1} is the heaviside step function. H acts as a linear threshold activation function

as depicted in Figure 4.1a. However, perceptrons are hard to train as the heaviside

step function is non-differentiable. Hence, most neural networks employ activation

functions, such as sigmoid or, most frequently, rectified linear units (ReLU) ReLU(x) =
max(0, x) (Figure 4.1a). Layers of perceptrons are connected in multiple layers, where

perceptrons take the output of the previous layer as inputs, as depicted in Figure 4.1b.

4.1.2 Evaluating the binary classification performance

In binary classification problems, the classifier assigns each instance a class, either

positive (which corresponds to the resistant/intermediate antimicrobial resistance cat-

egory) or negative (susceptible antimicrobial resistance category). Regarding the clas-

sification outcome, there are four possibilities: (1) an instance that is positive and clas-

sified as positive is regarded as a true positive, (2) an instance that is positive and clas-

sified as negative is regarded as a false negative, (3) an instance that is negative and

classified as negative is regarded as a true negative, and (4) an instance that is negative
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Figure 4.2: Confusionmatrix and resultingmetrics (a) two-by-two confusionmatrix depicting

the four possible outcomes in a binary classification, defined by the actual and pre-

dicted class (b) commonly reportedmachine learning metrics that are derived from

the confusion matrix, including true and false positive rate (required for AUROC),

precision and recall (AUPRC), and accuracy.

and classified as positive is regarded as a false positive. Given a test dataset consisting

of a set of instances, the assignment of one of the four cases described above forms

a two-by-two matrix, termed a confusion matrix or contingency table. A depiction of

the table and a number of metrics can be found in Figure 4.2. The confusion matrix

forms the basis of many commonly used machine learning metrics. The subsequent

paragraphs introduce and explain these metrics.

Area under the receiver operating characteristic (AUROC). The area under the re-

ceiver operating characteristic (AUROC) graphs can be understood as the probability of

correctly classifying a pair of instances, i.e. a positive instance and a negative instance.

Receiver operating characteristic (ROC) graphs provide a depiction of a classifier and

allow one to compare and select models based on their performance [37]. ROC graphs

plot the true positive rate (tpr) on the y–axis against the false positive rate (fpr) on
the x–axis of a discrete classifier, depicting the trade-off between detection of desired

samples (true positives) and cost (false positives) in a single point in the plot. A clas-

sifier is considered discrete if it unambiguously predicts a class for each instance, i.e.

either the positive or negative class in the binary classification setting. Generally, clas-

sifiers are not discrete, but will assign a score between 0 and 1. The assigned class

is determined through a decision threshold, which is often assigned to 0.5 by default.

Therefore a classifier can be represented in the ROC graph by varying a threshold from

−∞ to ∞ and tracing a curve through ROC space. The predictive performance is bet-

ter if a point lies further to the top left corner (tpr = 1 and fpr = 0), while points on

the diagonal represent classifiers with a random performance. These scenarios cor-

respond to AUROC values of 1.0 and 0.5 respectively. Please note that generally, the

best predictive performance occurs at a classification threshold other than 0.5.
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4.1 Species-stratified antimicrobial resistance prediction

Area under the precision recall curve (AUPRC). The area under the precision recall

curve (AUPRC) quantifies the ability to correctly classify instances from the less fre-

quent of two classes while minimising the false discovery rate. Precision-recall graphs

plot the precision on the y–axis against the recall on the x–axis of a discrete classifier.

Similarly to ROC curves, the curve is built by varying the decision threshold from −∞
to ∞ and drawing a curve in the graph. The AUPRC value of a perfect classifier is 1.0,

while a random classifier will take the class ratio of the minority class.

4.1.3 Building antimicrobial resistance predictors specifically for one species
and one antimicrobial drug

The next section devotes itself to constructing the first antimicrobial resistance classi-

fiers onDRIAMS, employing out-of-the-box (i.e. not tailored to the data type of MALDI-

TOFmass spectra) machine learningmodels and introduce some analyses to establish

the characteristics of MALDI-TOF MS based antimicrobial resistance prediction.

MALDI-TOF mass spectra contain more predictive information than species infor-

mationalone. First, we reiterate thepremise of large-scaleMALDI-TOFMSbasedan-

timicrobial resistance prediction by demonstrating the superior predictiveness of infor-

mation contained in MALDI-TOFmass spectra compared to species information alone.

A predictive performance based on MALDI-TOF mass spectra higher than based on

species information alone is evidence that a MALDI-TOF MS based predictor provides

additional information for clinical decision-making, and at an earlier time point than

antimicrobial susceptibility testing results. Knowledge of the originating species of a

MALDI-TOF mass spectrum is a large indicator towards possible antimicrobial resis-

tances, as resistance prevalences vary widely amongst microbial species. We ensure

that MALDI-TOF mass spectra contain more information useful towards antimicrobial

resistance prediction than just the species they represent. To this end, we compare the

predictive performance of separate logistic regression classifiers trained to predict re-

sistance to 42 antimicrobial drugs in DRIAMS-A based on (i) MALDI-TOF mass spectra

information alone, and (ii) species information (previously identified through MALDI-

TOF MS) alone of each instance. DRIAMS-A was selected for this analysis as it is the

most comprehensive dataset in terms of the number of MALDI-TOF mass spectra and

collection timespan. The resulting AUROC values are depicted in Figure 4.3. For 31

of the 42 antimicrobial drugs investigated, the respective logistic regression classifier

had an AUROC value above 0.80, implying accurate resistance predictions based on

MALDI-TOF MS. For 22 antimicrobial drugs, the results indicate a statistically signifi-

cant improvement in prediction performance when predicting from MALDI-TOF mass

spectra as compared to using only species information. The results clearly show the

superior predictiveness of information captured in MALDI-TOF mass spectra.

Focusing to species-stratified training data yields superior predictions. Previous

work indicates that the resistancemechanism against a specific antimicrobial drug dif-
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Figure 4.3: Predictive performance increase through MALDI-TOF MS compared to species

information. For each antimicrobial drug resistance prediction task in DRIAMS-A,

two logistic regression classifiers are trained: one predicting resistance for MALDI-

TOF mass spectra and one based on species information alone. Note that for each

drug, the dataset is comprised of all samples with a resistance label available for

the respective drug and contains a number of different species. The red bars de-

pict the AUROC when basing prediction on MALDI-TOF MS information, the grey

bars indicating the predictive performance based on species information alone. The

percentages of positive class (resistant/intermediate) samples in the training data

are stated in brackets after the antibiotic name. The AUROC values and error bars

depict the mean and standard deviation of ten random train-test-splits, while the

asterisks indicate a significance level of less than 5% between the reported met-

rics of both approaches determined by a non-equal-variance Welch’s t-test. Figure

adapted from Weis et al. [126].
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4.1 Species-stratified antimicrobial resistance prediction

fers between different species of bacteria. Looking at the example of beta-lactam an-

tibiotic resistance: gram-negative bacteria (such as E. coli and K. pneumoniae) pro-

duce beta-lactamses such as CTX-M, TEM, and SHV or carbapenemases [8, 57, 86, 88],

while gram-positive bacteria (such as S. aureus) produce a penicillinase (blaZ) [83] or

have an alteration within the penicillin-binding protein (PBP2a) [64]. In the next step,

we train classifiers separate for different species. Requiring species information to

build the antimicrobial resistance prediction workflow is in line with the development

of a clinical application, as (a) the species is identified along with MALDI-TOF MSmea-

surement and is therefore available along with every MALDI-TOF mass spectrum, and

(b) antimicrobial drugs considered for treatment, and thus the resistance of interest

that shall be investigated, differ for each species. The following analysis focuses on

three pathogens — S. aureus, E. coli, and K. pneumoniae — which are all on the WHO

list of priority pathogens (see Chapter 1).

Performance results predicting a number of resistances along with their ROC and

precision-recall curves can be found in Figures 4.4, 4.5 and 4.6. Table 4.1 provides

a direct overview of the predictive performances reached in all three species. The

applied machine learning models are the aforementioned (i) logistic regression (LR),

(ii) gradient-boosteddecision trees (LightGBM), and (iii) amulti-layer perceptron (MLP).

Even with this reduction in studied species, antimicrobial drugs and machine learn-

ing models, the combinatorial explosion of cases that can be studied is evident in the

number of curves that can analysed. Detailed analysis later on in this thesis requires

further selection of antimicrobials and models. To this end, we select an antimicrobial

drug of interest for each species studied based on drugs frequently applied in the clinic

and good performance (Figures 4.4, 4.5 and 4.6 or Table 4.1). The selected antimicro-

bials are ceftriaxone resistance in E. coli and K. pneumoniae—as markers for extended

spectrum or other beta-lactamases (ESBL)—and oxacillin in S. aureus—as a marker for

methicillin-resistant S. aureus (MRSA).

The predictors for ceftriaxone resistance in E. coli and K. pneumoniae reach AUROC

values of 0.74 in both specieswith AUPRC values of 0.30 and 0.33, at a positive (i.e. re-

sistant/intermediate) class ratio of 10.0% and 8.2%, respectively. The oxacillin resis-

tance predictor in S. aureus reports an AUROC of 0.80 and AUPRC of 0.49 at a positive

class ratio of 10.0%. Oxacillin resistance prediction in S. aureus takes a particularly

important place in DRIAMS-A, as the reported susceptibility of resistance against all

beta-lactam antibiotics is inferred from the oxacillin resistance results. The selected

drugs represent clinically relevant treatment scenarios, and assessing the potential to

predict resistance against each antimicrobial drug in the respective species harbors

high impact on patient treatment. Note that the selected species-antibiotic scenario

will be frequently abbreviated in this thesis, namely E-CEF for ceftriaxone resistance

in E. coli, K-CEF for ceftriaxone resistance in K. pneumoniae, and S-OXA for oxacillin

resistance in S. aureus. We further select one machine learning model per scenario to

focus the analysis in the rest of this chapter on. Note that for the remainder of Chap-

ter 4, all analyses focus on interpreting and understanding the functionality of these

antimicrobial resistance predictors. Hence, fixing the machine learning model does

not restrain the development of the predictor. We select the models based on the pre-
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(a) E. coli logistic regression
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Figure 4.4: ROC and precision-recall curves of three machine learning models for resistance

in E. coli to various different antibiotics. Figure adapted from Weis et al. [126].
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(a) K. pneumoniae logistic regression
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Figure 4.5: ROC and precision-recall curves of three machine learning models for resistance

in K. pneumoniae to various different antibiotics. Figure adapted from Weis et

al. [126].
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(a) S. aureus logistic regression
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(b) S. aureus LightGBM

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate (1 - specificity)

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

 (s
en

sit
iv

ity
)

ciprofloxacin           AUROC: 0.72
fusidic acid            AUROC: 0.65
oxacillin               AUROC: 0.80

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
isi

on
AUPRC: 0.43 (14.1%)
AUPRC: 0.13 (5.7%)
AUPRC: 0.49 (10.6%)

(c) S. aureus MLP

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate (1 - specificity)

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

 (s
en

sit
iv

ity
)

ciprofloxacin           AUROC: 0.68
fusidic acid            AUROC: 0.65
oxacillin               AUROC: 0.79
penicillin              AUROC: 0.32

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

AUPRC: 0.37 (14.1%)
AUPRC: 0.13 (5.7%)
AUPRC: 0.46 (10.6%)
AUPRC: 0.62 (71.5%)

Figure 4.6: ROC and precision-recall curves of three machine learning models for resistance

in S. aureus to various different antibiotics. Figure adapted from Weis et al. [126].

50



4.1 Species-stratified antimicrobial resistance prediction

species antibiotic abbreviation model AUROC AUPRC

E. coli ceftriaxone E-CEF logistic regression 0.70 0.24

LightGBM 0.74 0.30

MLP 0.68 0.22

E. coli ciprofloxacin E-CIP logistic regression 0.73 0.51

LightGBM 0.76 0.60

MLP 0.72 0.51

E. coli cefepime E-PIME logistic regression 0.69 0.21

LightGBM 0.73 0.24

MLP 0.66 0.19

K. pneumoniae ceftriaxone K-CEF logistic regression 0.68 0.26

LightGBM 0.67 0.24

MLP 0.74 0.33

K. pneumoniae cefepime K-PIME logistic regression 0.70 0.26

LightGBM 0.68 0.22

MLP 0.76 0.31

K. pneumoniae tobramycin K-TOB logistic regression 0.69 0.23

LightGBM 0.64 0.22

MLP 0.74 0.29

S. aureus oxacillin S-OXA logistic regression 0.75 0.37

LightGBM 0.80 0.49

MLP 0.79 0.46

S. aureus ciprofloxacin S-CIP logistic regression 0.71 0.37

LightGBM 0.72 0.43

MLP 0.68 0.37

S. aureus fusidic acid S-FAC logistic regression 0.64 0.12

LightGBM 0.65 0.13

MLP 0.65 0.13

Table 4.1: Species-stratified antimicrobial resistance predictors for several antimicrobial

drugs in DRIAMS-A. Threemachine learningmodels are applied, with LightGBM per-

forming consistently best for E. coli and S. aureus and MLP for K. pneumoniae. The

scenarios selected based on predictive performance and clinical applicability are

marked.
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4 Large-scale species-specific antimicrobial resistance prediction

dictive performance displayed in Table 4.1. The selectedmachine learning models are

therefore the LightGBM for E-CEF and S-OXA and a MLP for K-CEF.

The AUROC values reported in Table 4.1 indicate a high predictiveness for resis-

tance in the respective scenarios. In the next step, we validate our initial assump-

tion that resistance prediction on a combination of MALDI-TOF mass spectra from dif-

ferent species will not improve predictive performance. Arguments can be made for

both an improvement or a decrease in prediction accuracy. As explained in the be-

ginning of the paragraph, different mechanisms cause resistances in different species.

Therefore, pooling MALDI-TOF mass spectra across species and predicting antimicro-

bial resistance through a jointmodel regardless of input species poses amore complex

learning task than merely predicting antimicrobial resistance for one specific species.

However, stratifying the training dataset by species reduces the number of instances

available formodel training and can therefore have a negative impact on generalisation

abilities of the trained predictor.

The following study is designed to analyse the trade-off between both arguments:

Wecomparemodels that are trainedoneither (i) samplespooledacross several species

(termed ‘ensemble’), or (ii) training sample stratified toonly contain onebacterial species

(termed ‘single’), while subsampling the number of instances. The curves depicting the

predictive performance of this ablation study are included in Figure 4.7, both in terms

of AUROC and AUPRC. Each point on the curve corresponds to one predictor trained on

the number of instances stated on the x–axis, with the rightmost point corresponding

to all instances available for the respective scenario. The curves indicate that training

on data stratified by species leads to performance improvement in all species when

comparing same number of training instances. When comparing the performance at

the largest possible number of samples, i.e. the rightmost point of each curve, the im-

provement persists for E. coli and K. pneumoniae, while converging to a similar value

for S. aureus. It should be emphasised that all training instances used for training the

predictor resulting in the rightmost point were also included in the pool of training in-

stances used to train the rightmost ensemble predictor. As illustrated in Figure 4.7,

despite having access to the same information and more than the rightmost predic-

tor in the single setting, the predictor learning on all instances in the ensemble setting

never reaches a higher performance for E. coli and K. pneumoniae. While the ensem-

ble curves seemingly reach a plateau in the large-sample size scenarios, the species-

stratified predictors increase more sharply with the last additions of more training in-

stances, demonstrating the higher complexity of antimicrobial resistance prediction in

the ensemble setting and the benefits of large numbers of training instances. Note

that this experiment compares the prediction of samples of one specific species that

is represented in the training data in high numbers.

It is not clear how a predictor is expected to predict resistance for an instances rep-

resenting a species and resistance mechanism not included in the training dataset.

The ablation study further consolidates the approach of focusing on species-stratified

training datasets for MALDI-TOF MS based antimicrobial resistance prediction.
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4.1 Species-stratified antimicrobial resistance prediction

Figure 4.7: Relationship between sample size and predictive performance for training data

consisting of a single species (dash-dotted line) vs. an ensemble (solid line) of

species. The test data only includes MALDI-TOF mass spectra from the target

species. The depicted species-antibiotic scenarios and models are selected based

on Table 4.1. Curves trained on single-species data increase much more rapidly

and often outperform even the full ensemble dataset. Figure adapted from Weis

et al. [126].
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(a) AUROC
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Figure 4.8: Sliding eight-month training window illustrates advantage of contemporary

samples. Each point depicts the performance of a predictor trained on all samples

collectedduring the eightmonthwindow, ending on thedate indicatedon the x-axis.

The test data is comprised of all instances sampled in the four months starting on

the rightmost date on the x-axis. The dates are given in the format dd.mm.yyyy. The

curves indicate a performance decrease with larger distance between the test and

training window. All instances stem from DRIAMS-A. Scenario abbreviations in the

legend follow Table 4.1. Figure adapted from Weis et al. [126].

54



4.1 Species-stratified antimicrobial resistance prediction

400 600 800 1000 1200
number of samples

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

AU
RO

C

E-CEF (LightGBM)
K-CEF (MLP)
S-OXA (LightGBM)

400 600 800 1000 1200
number of samples

0.00

0.05

0.10

0.15

0.20

0.25

AU
PR

C

E-CEF (LightGBM)
K-CEF (MLP)
S-OXA (LightGBM)

Figure 4.9: Connection between number of training samples and predictive performance.

Each datapoint corresponds to a eight month training interval and value in Fig-

ure 4.8, with arrows indicating the direction of time passing. The progression to-

wards the upper right corner indicates a correlation between increasing sample

size and an increase in predictive performance. All instances stem from DRIAMS-A.

Scenario abbreviations in the legend follow Table 4.1. Figure adapted from Weis

et al. [126].
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4 Large-scale species-specific antimicrobial resistance prediction

Impact of outdated mass spectra on prediction performance. MALDI-TOF mass

spectra are subject to various influences that change over time, e.g. changes influ-

encing the instrument (e.g. maintenance, laser replacement or adjustment of internal

spectra processing parameters throughmachine calibration) or changing hospital poli-

cies on using MALDI-TOF MS (e.g. increasing the number of hospital divisions that rely

on MALDI-TOF MS or acquiring a second instrument). The following experiment is de-

signed to assess the degree to which prediction results differ for outdated MALDI-TOF

mass spectra compared to contemporary ones. We studied how training on recently

collected instances compares to training on data collected at an earlier date over an

equal time range. To this end, we define a fixed test dataset comprised of all instances

collected in the latest four months at DRIAMS-A. Training is conducted on all instances

of an eight month time window sliding over the remaining months in DRIAMS-A. As the

eight month training window is increasing in temporal distance to the four month test

window, the results simulate the effects of using older instances for training. The in-

stances in each training window are oversampled to match the class ratio of the test

data. Due to oversampling dynamics and changes in MALDI-TOF MS usage over time,

sample sizes can vary between trainingwindows. Curves illustrating the predictive per-

formance for each training window are depicted in Figure 4.8. The results indicate a

slight decrease in predictive performance— both in AUROC and AUPRC—with increas-

ing temporal distance between the train and test collection window. The decrease is

particularly large for K. pneumoniae. Note that while the class ratio is constant for all

training datasets, two factors are varying: the temporal distance to the test data and

the number of instances. We add a more detailed analysis of the connection between

all three factors—AUPRC, number of instances, and sample time—in Figure 4.9, plotting

the progression of AUPRC and AUROC against the number of instances for each train-

ing window in Figure 4.8. The general trend of each line progressing to the upper right

indicates that increasing predictive performance is correlated with recently collected

samples and it is also connected to an increased sample size. The increased number

of instances collected inmore recentmonths is explained by an increased usage of the

MALDI-TOF MS technology at DRIAMS-A over time. Nonetheless, upon close inspec-

tion of the curves, we see that for K. pneumoniae, the number of instances decrease in

the most recent training windows, while both performance metrics increase. Overall

these results highlight that more recent samples are most advantageous for accurate

antimicrobial resistance prediction.

4.2 Calibrated classifiers for interpretable prediction scores

This section addresses amethod highly relevant in the development of machine learn-

ing predictors aimed at healthcare applications — calibrating probability scores of bi-

nary classifiers. In most supervised classification settings, the trained classifier will

assign a prediction score (or predicted probability) between 0.0 and 1.0 to each in-

stance it is presented with. When the class for an instance must be determined, the

class is assigned through a threshold t, often t = 0.5 by default, with the positive class
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4.2 Calibrated classifiers for interpretable prediction scores

AUROC AUROC accuracy accuracy

scenario model (calibrated) (calibrated)

E-CEF LR 70.22±3.36 70.22±3.36 81.74±3.95 89.47±0.60

LightGBM 74.02±1.93 74.02±1.93 89.86±0.74 89.91±0.72

MLP 67.52±3.40 67.52±3.40 87.66±1.20 88.57±0.94

K-CEF LR 67.65±4.15 67.65±4.15 89.18±1.51 92.15±1.02

LightGBM 66.96±2.92 66.96±2.92 91.97±1.21 91.98±1.32

MLP 74.07±3.94 74.07±3.94 91.90±1.36 92.14±1.20

S-OXA LR 74.89±4.06 74.89±4.06 82.78±6.93 89.78±1.14

LightGBM 79.86±3.41 79.86±3.41 91.02±1.01 91.29±1.20

MLP 78.72±3.05 78.72±3.05 89.69±1.05 90.12±1.06

Table 4.2: Predictive performance comparison between non-calibrated and calibrated

classifiers reported in AUROC and accuracy. Accuracy values are improved in all

cases through calibration. AUROC values are not affected by calibration (neither are

AUPRC values — not depicted). Scenario abbreviations follow Table 4.1; logistic re-

gression is abbreviated as LR.

assigned if the score is larger than t and the negative class otherwise (see Section 4.1.2

formore details). While one is intuitively led to interpret these scores as the probability

with which an instance belongs to the positive class, this assumption is often not cor-

rect [76]. Many machine learning models suffer from biases distorting the relationship

between prediction score and the true posterior class probability P(class|input), stem-

minge.g. frommodel assumptions that donot hold in reality [76]. Employingprobability

calibration can improve prediction accuracy, while also allowing formore precise inter-

pretation of model scores, which is of importance when assessing the uncertainty and

possible rejection of a model prediction. We briefly introduce the theoretical aspects

of probability calibration, before continuing on to the effects of calibrated prediction

scores in this chapter’s analysis.

Probability calibrationusingPlatt Scaling. Platt [87]proposeda transformation from

support vectormachine (SVM)prediction scores toposterior probabilities P(class|input)
by applying a sigmoid function. Let the output of a trained predictor be f (x), then the

output is passed through a sigmoid function

P(y = 1| f , x) =
1

1 + exp(A f (x) + B)
(4.4)

to obtain calibrated probabilities, with A and B being learnable parameters optimized

through maximum likelihood estimation. The parameters are learned on an indepen-

dent calibration dataset through 5-fold cross-validation. The need for an independent

calibration dataset does not constitute a disadvantage as the samedataset canbeused

for model and calibration parameter optimisation.
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4 Large-scale species-specific antimicrobial resistance prediction

Calibration improves classification accuracy. We analyse the influence of proba-

bility calibration on the three species-antibiotic scenarios chosen in the beginning of

the chapter—E-CEF, K-CEF and S-OXA. A comparison of AUROC and accuracy values

before and after calibration is depicted in Table 4.2. Neither AUROC nor AUPRC values

are affected by probability calibration (influence on AUPRC not depicted in Table 4.2).

This is easily explained, as both metrics are calculated by varying the decision thresh-

olds along all possible thresholds and calculating the performance metrics for each

possible threshold. The probability scores are only stretched and contracted along the

[0.0, 1.0] axis they all lie on with equal scores being transformed to the same calibrated

score, but not changed in order. Applying each possible decision threshold leads to the

samemetrics as before calibration. The considered thresholds are defined by all prob-

ability scores in the test dataset, so in relative terms, there is no change in the dataset

as the considered threshold changes along with the calibration. However, the case is

different for the metric accuracy, which is based on contingency tables. Here, a single,

fixed decision threshold is applied (by default t = 0.5) and the contingency table is cal-

culated. Instances change their class assignment if calibration changes the ‘side’ of t
they lie on. As the calibrated scores aim to reflect the true posterior class probability

P(class|input) more accurately, their confusion matrix values improve. This improve-

ment in accuracy is observed in Table 4.2 for all scenarios and models.

4.3 Interpreting mass peak contributions through Shapley

values

For many applications, understanding the functionality of a machine learning model

is equally important as accurate predictions, particularly in the context of clinical ap-

plications. Assessing information on not only what resistance label is predicted, but

also why it is predicted, is essential to (i) gaining (new) biological insights into which

signals in MALDI-TOF MS include information on antimicrobial resistance, (ii) ruling

out confounding signals in the MALDI-TOF mass spectrum being used for predictions,

and (iii) building trust in the predictions with medical professionals using the machine

learning-based decision support. Manymodels directly produce importancemeasures

that allow for direct analysis and interpretation as to which feature is given a certain

weight by the model. For instance, linear models such as logistic regression directly

weight each feature contribution to obtain an optimal output through parameters β.
However, complex models such as neural networks have the ability to model intricate

feature interactions. As a result, quantifying howeach feature contributes to themodel

output becomes more difficult. In the context of this thesis, an additional challenge

is that multiple prediction scenarios are analysed and model specific interpretation

methods may vary between scenarios. In this section we employ a method quantify-

ing the contribution of each feature to themodel output that is suitable for anymachine

learningmodel — Shapley values. Subsection 4.3.1 gives an overview over the theoret-

ical foundations continuing with results and a biological interpretation of MALDI-TOF

mass peak contributions in Subsection 4.3.2.
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4.3 Interpreting mass peak contributions through Shapley values

4.3.1 Shapley values

In game theory, a common problem statement addresses the question of how to dis-

tribute gain and cost fairly to several players working in coalition [70]. This question

can be transferred to the context of feature contributions in machine learning models

by assuming that each feature value within a specific instance is a player in a game

and the model output is the payout. Shapley values address how to fairly distribute

the payout among the features [107]. Their value quantifies the contribution that each

feature brings to the prediction made by the model. The Shapley value for feature j,
which is denoted by φj, is defined as

φj(ν) = ∑
S⊆
{

x1,...,xp
}
\
{

xj
} |S|!(p − |S| − 1)!

p!
(
ν
(
S ∪

{
xj
})

− ν(S)
)

(4.5)

where ν is a value function, and S is a subset of features used in the predictor on a

dataset X with p features
{

x1, . . . , xp
}
. It describes the value that feature j contributed

to the model outcome for the current sample compared to the overall model outcome

for the entire dataset. While other concepts from coalition theory address the same

problem (e.g. Banzhaf value [5]), Shapley values are the only method that satisfy all

four axioms of a fair payout, namely (i) efficiency, (ii) symmetry, (iii) null-player property,

and (iv) additivity [70]. Consider a dataset X with p features
{

x1, . . . , xp
}
with the value

function ν andmodel output function f : The efficiency axiom demands the the feature

contributions over all featuresmust addup to the overall differencebetweenprediction

output of x and the average prediction output:

p

∑
j=1

φj = f̂ (x)− EX( f̂ (X))

The symmetry axiom states that interchangeable players receive equal payoffs, i.e. if

for two features j and k

ν
(
S ∪

{
xj
})

= ν(S ∪ {xk}) ∀ S ⊆
{

x1, . . . , xp
}
\
{

xj, xk
}

,

then

φj = φk.

If feature j is a null-player in the sense that it does not change the predicted value in

any coalition then it should receive a Shapley value of 0, i.e.

ν
(
S ∪

{
xj
})

= ν(S) ∀ S ⊆
{

x1, . . . , xp
}

,

then

φj = 0.

Lastly, the additivity axiom states that if two models are applied to the same features,

the Shapley value of feature j of each individual model should add up to the value
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4 Large-scale species-specific antimicrobial resistance prediction

it would have received if the models would have been treated as a single combined

model. The main disadvantage to employing Shapley values for feature importance

interpretation is the high computation time.

4.3.2 Highly contributing feature bins can be associated with known
MALDI-TOF mass peaks in literature

TheShapley values aredetermined for all scenarios andmodels chosen inSection4.1.3.

Figure4.12depicts theaverage (barplot) and sample-specific (scatter distributionplot)

Shapley value for the 30 features receiving the highest average contribution. With the

quick drop of average contributions, seen in the barplots on the left of each column,

it is evident that three to ten m/z–bins contribute more to the model output than the

remaining features. In the distribution plots to the right, it can be observed that the

tails of each scatter plot for each feature are coloured with either the highest or lowest

feature value. The predictor is using either the presence of a high intensity value (dark

pink) or the absence of measured intensity (light blue) for positive class prediction. In

the case of S. aureus it is particularly the presence of a MALDI-TOF mass peak that in-

dicates a positive class prediction, while for E. coli and K. pneumoniae both presence

and absence of certain mass peaks are indicative. Further, most feature bins included

in Figure 4.12 stem from the lower half of the typical m/z–ratio of MALDI-TOF MS, i.e.

less than 10,000 Da. This is in linewith the properties ofMALDI-TOFMS, asmoremass

particles aremeasured in the lower m/z–regime and thusmore information is conveyed

in the corresponding feature bins.

The primary aim of the current analysis is to develop some biological interpretation

of the decision-making process of each antimicrobial resistance predictor. We there-

fore compare the feature bin contributing highly to the model outcome with MALDI-

TOF mass peaks that have been shown to be associated with resistance in the liter-

ature. Several feature bins that contributed substantially to the S. aureus (oxacillin)

and E. coli (ceftriaxone) classifiers can be annotated with proteins associated to the

respective resistance identified in prior studies (Table 4.3). The corresponding fea-

ture bins of all MALDI-TOF mass peaks are marked with an asterisk in Figure 4.12.

The largest number of mass peaks corresponding to feature bins are identified through

studies aiming to identify resistant bacterial strains for oxacillin resistance in S. aureus

based on MALDI-TOF MS. All prior work in Table 4.3 focused on either differentiation

of MSSA and MRSA or differentiation of MRSA sublineages [16, 54, 80, 101, 111, 132,

139]. A number of identified discriminatory peaks correspond to housekeeping genes

or other peptides, such as stress hormones or toxins [54]. Nine oxacillin resistance as-

sociated MALDI-TOF mass peaks described in the literature can be attributed to the

top twenty contributing feature bins. The spread of new multidrug resistant strains

in E. coli can be attributed to a few clonal lineages, e.g. sequence type (ST) 131 [66].

Three ST131-specific MALDI-TOF mass peaks have been identified in previous stud-

ies [58, 73], which can be attributed to five of the top ten most contributing feature

bins. This congruence of Shapley values and independent literature references con-
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firm the discriminatory power of highly contributing feature bins and underline their

generalisability.

4.4 Retrospective clinical case study

With the aim of developing a clinically-applicable resistance predictor, we have to con-

sider how the classifierwould integrate and interactwith theoverall treatmentdecision-

making progress. The process deciding on an antimicrobial therapy of a patient is in

any case highly complex and influenced by several factors, such as the species of the

infection, medical history and the current condition of the patient. In this section, we

estimate howmuch influence the presence of a clinical resistance predictor could have

on real-world hospital treatment and the resulting benefit.

The optimal way to analyse the effect of a MALDI-TOF MS based resistance predic-

tor would be a prospective clinical study. However, the DRIAMS-A based classifier is

not suitable for predictions on current patients, as accurate predictions require timely

samples (see Section 4.1.3). Therefore, our clinical collaborators performed a retro-

spective clinical case study: applying a predictor to the most recent data contained in

DRIAMS-A, analysing thepatient records at the timeofMALDI-TOFMS, judgingwhether

they would have changed patient treatment and comparing the result to the antimicro-

bial phenotype determined later on. Our collaborating infectious diseases specialist

(referred to as clinician) analysed patients with invasive and serious bacterial infec-

tions. The patients were in hospital care between May and August 2018; the last four

months of DRIAMS-A data. From that time period, 63 patient cases with blood culture

or deep tissue infections stemming fromeither E. coli, K. pneumoniae or S. aureuswere

reviewed by the clinician regarding antibiotic treatment. New classifiers were trained

for each of the three common scenarios, on all DRIAMS-A data until end of April 2018,

and applied to the MALDI-TOF mass spectra corresponding to the patient cases. For

each of these 63 cases, our collaborators retrospectively reviewed the medical files to

estimate whether a different antibiotic therapy would have been given, had the predic-

tion been available at the time of MALDI-TOF MS. The predicted and true antimicrobial

resistances, and the recommended treatments with and without the machine learning

depictions, are depicted in Figure 4.10.

For the vast majority of patients—54 out of 63—the presence of the prediction would

not have changed the antibiotic treatment recommendedat the timeofMALDI-TOFMS:

For 22 patients, a deescalation strategy towards a narrow-spectrum antibiotic was

suggested, while for 25 patients, the given antibiotic regimen would have continued,

and for seven patients an escalation of the antibiotic treatment to a broad-spectrum

antibiotic would have been ordered. These 54 patients include three cases in which

the classifier predicted the susceptible class, while the phenotypic testing concluded

an antimicrobial resistance later on. However, none of these false predictions would

have caused a treatment less effective than without the algorithm: Two patients had a

known MRSA colonisation, which our collaborating clinician prioritised higher than the

machine learning prediction. For the third patient, two species—E. coli and K. pneumo-
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4 Large-scale species-specific antimicrobial resistance prediction

(a) E–CEF (b) K–CEF (c) S–OXA

Figure 4.10: Retrospective clinical case study. The 63 patient cases are grouped by species.

Treatment recommendations are displayed in grey tones, with escalation (E) high-

lighted in black, deescalation (D) in light grey and continuation (K) of the current

treatment in grey. The resistance class is indicated by red panels, with the pos-

itive class (R/I) is highlighted in dark red. Both the predicted resistance and the

treatment decisions employing the prediction are highlighted in bold font. Figure

adapted from Weis et al. [126].
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no change (54) continuation (1)

deescalation (7)

unnecessary escalation (1)

Figure 4.11: Summary of clinical impact of predictor. In 54 cases the algorithm would have

made no difference to the treatment decision. For nine cases, the treatment rec-

ommendation by the specialist is influenced by the predictor: For seven patients

the antibiotic therapy was correctly deescalated and in one clinical case the clas-

sifier caused a changed in treatment decision from escalation to continuation of

therapy. For one patient however, the algorithm lead to an unnecessary escalation

of antibiotic therapy. In summary, the retrospective clinical case study indicates

that in eight out of nine cases (89%) the resistance predictor would have induced

a beneficial treatment decision.

niae—were found in the blood culture samples. The clinician recommended to keep

the antibiotic treatment for E. coli with or without the machine learning prediction, as

no indication for resistance is present in either case, and escalation to a broad-band

antibiotic was implemented after obtaining the phenotypic resistance.

In the remainingninepatients, thepresenceof themachine learningpredictionwould

have changed the treatment recommendation by the clinician at the time of MALDI-

TOF MS: For seven patients (cases 3, 4, 5, 17, 18, 49 and 50 in Figure 4.10), consid-

ering the prediction would have caused the clinician to recommend a deescalation of

therapy. In one other patient (case 48), the prediction led the clinician to keep the

current antibiotic therapy, whilst the clinician would have suggested escalation to a

broad-band antibiotic without the classifier. Together, these eight patients would have

benefited from the presence of the MALDI-TOF MS based classifier. However, for the

one remaining patient (case 19), a false-positive prediction of the resistance prediction

would have led to an unnecessary escalation of antimicrobial therapy. In summary, in

eight of the nine patients the machine learning guidance led to a better adjusted an-

timicrobial treatment, while for one patient an unnecessarily extensive antibiotic ther-

apy would have been administered. This impact of the predictor is summarized in Fig-

ure 4.11.

4.5 Summary and discussion

This chapter introduced the first MALDI-TOF MS based antimicrobial resistance pre-

diction study applying a comprehensive machine learning analysis pipeline on a large-

scale clinical dataset. The results demonstrate that commonmachine learningmodels
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4 Large-scale species-specific antimicrobial resistance prediction

lead to accurate results on species-stratified single-antimicrobial resistanceprediction

tasks. Further, both focusing the task on species-specific prediction and increasing the

number of samples leads to an improvement in predictive performance. Probability

calibration was introduced to further improve prediction accuracy and steer the ma-

chine learning pipeline towards the development of a clinically-applicable tool. Lastly,

Shapley values confirm that biologicallymeaningful signals are contributing to the pre-

dictions and indicating generalisability as the same MALDI-TOF mass peaks were de-

tected to be associated to resistance in independent studies.

After establishing this baseline, several directionsof researchemergeor remainopen.

As good predictive accuracy could be reached with out-of-the-box machine learning

models, development of MALDI-TOF MS specific classifiers hold the promise of cap-

turing additional information and lead to further performance increases. Specifically

the information loss during MALDI-TOF mass peak binning is of interest, and model

working on a peak-based spectral representation should be investigated. Further, a

comprehensive assessment of the generalisability of antimicrobial resistance predic-

tion across hospital sites is necessary.

The Shapley values in Section 4.3.2 determined highly contributing feature bins for

which the discriminatory potential has not been identified in previous studies. An in-

vestigation into the protein identity of these uninterpreted feature bins requires addi-

tional experimental research, but would be desirable in future work.
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(a) E-CEF LightGBM (b) K-CEF MLP (c) S-OXA LightGBM

Figure 4.12:MALDI-TOFMS featurebinswith highest Shapley values for the three antibiotic-

species scenario and model selected in 4.1.3. The feature bins were cross-

referenced with mass peaks described to be associated with the respective resis-

tance in the literature. Bins corresponding to a known MALDI-TOF mass peak are

marked with a red asterisk and can be found in Table 4.3. Note that there were

no ceftriaxone resistance associated MALDI-TOF mass peaks for K. pneumoniae

found in the literature. Scenario abbreviations follow Table 4.1. Figure adapted

from Weis et al. [126].
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4 Large-scale species-specific antimicrobial resistance prediction

feature bin rank m/z value target as identified

scenario m/z range [Da ] Shapley reference and stated in reference

S-OXA 2,759 to 2,762 12 2,762 Da dominant lineages

within MRSA (ST5) [139]

2,760 Da discrimination between MSSA

and MRSA [111]

S-OXA 3,005 to 3,008 7 3,007 Da main clonal lineages (CC1) [54]

S-OXA 3,890 to 3,893 3 3,891 Da CC5, CC97 [80]

3,891 Da main clonal lineages (CC5, CC25) [54]

S-OXA 4,508 to 4,511 14 4,511 Da major lineages within

MRSA (CC45, CC30) [132]

4,511 Da CC30, CC45, CC398, ST88 [54]

S-OXA 4,514 to 4,517 15 4,514 Da MRSA clonal complexes (CC398) [16]

S-OXA 4,640 to 4,643 2 4,641 Da major lineages within

MRSA (CC8, CC22) [132]

4,641 Da discrimination between MSSA

and MRSA [111]

S-OXA 5,003 to 5,006 4 5,002 Da major lineages within

mMRSA (CC22) [132]

5,004 Da MRSA clonal complexes (CC22) [16]

5,002 Da CC22 [80]

5,002 Da main clonal lineages (CC22) [54]

S-OXA 5,432 to 5,435 6 5,437 Da major lineages within MRSA [132]

5,435 to 5,438 5 (CC5, CC45, CC22,

CC8, ST1, ST15, ST80)

5,440 Da MSSA CC98 [101]

E-CEF 8,501 to 8,504 8 8,496 Da ST131 [58]

E-CEF 8,444 to 8,447 7 8,448 Da ST131 [73]

8,447 to 8,450 5

8,450 to 8,453 2

E-CEF 11,780 to 11,783 1 11,783 Da ST131 [73]

Table 4.3:MALDI-TOF mass peaks found to be correlated with resistance in literature can

be attributed to highly contributing feature bins. The column ‘rank amongst Shap-

ley’ states the position among the 30 highest contributing feature bins regarding

Shapley values in Figure 4.12. The rightmost column states the specific target,

through which the MALDI-TOFmass peak is associated with the resistance. In most

cases, this target is a species substrain that harbours a resistancemechanism. Note

that only for E. coli (ceftriaxone resistance) and S. aureus (oxacillin resistance) rele-

vant studies couldbe found in the literature. Abbreviations: Clonal complex is abbre-

viated with CC and sequence type with ST; scenario abbreviations follow Table 4.1.
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Part III

Improving the predictive performance and

transferability of MALDI-TOF MS based

resistance prediction through kernel

methods and representation learning
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5 Kernel-based microbial phenotype

prediction from MALDI-TOF mass

spectra

C. Weis, M. Horn, B. Rieck, A. Cuénod, A. Egli, and K. Borgwardt. “Topological and

kernel-based microbial phenotype prediction from MALDI-TOF mass spectra”. OUP

Bioinformatics 36, 2020, pp. i30–i38.

doi: https://doi.org/10.1093/bioinformatics/btaa429

From this chapter onward, the nature of our analyses transitions towards leveraging

MALDI-TOF mass spectra specific properties and tackling shortcomings hindering the

clinical applicability of our resistance classifiers. We direct these efforts by referring

to Chapter 2, which established the current state-of-the-art and research direction in

MALDI-TOF MS based antimicrobial resistance prediction. The systematic review con-

cluded that several important aspects of prediction pipelines are not addressed in any

of the studies examined. These factors include the preprocessing of raw MALDI-TOF

mass spectra and subsequent feature representation, the developmentMALDI-TOFMS

specific machine learning models and confidence analysis of predicted resistance la-

bels.

In this chapter, we take thefirst strides toward addressing the aforementioned short-

comings: (i) a new peak detection algorithm based on persistent topology is intro-

duced, and different preprocessing techniques are compared and evaluated on several

species and antibiotic resistance prediction scenarios in Section 5.1, (ii) a novel kernel,

PIKE, specifically developed for MALDI-TOF MS based resistance classification is in-

troduced in Section 5.2, and its application together with a Gaussian Process classifier

is examined in Section 5.2.1, which enables (iii) reliable confidence estimates, which

are compared of those of other classifiers when providedwith out-of-distribution sam-

ples in Section 5.4. Contrasting the analysis of the previous chapter, MALDI-TOF mass

spectra are represented by their individual mass peaks, not a vectorised representa-

tion. This has the advantage that the MALDI-TOF mass spectra representation retains

its full accuracy in terms of m/z and intensity value, which would be reduced during the

vector binning step. As a downside, the mass peak representation is high-dimensional

and not of fixed length, rendering many machine learning approaches infeasible. The

code for the methods newly introduced in this chapter is publicly available. Please

refer to Appendix V Software Availability for more details.
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Figure 5.1: Schematic illustration of the influence of the proposed persistence transforma-

tion onMALDI-TOFmass spectrum. The top graph depicts a rawMALDI-TOFmass

spectrum without any alignment or preprocessing. The bottom graph shows a per-

sistence transformed spectrum produces a simplified and clean spectral represen-

tation, with the y-axis changing from an intensity to a persistence. Figure adapted

from Weis et al. [128].

5.1 Topology-based peak detection

MALDI-TOFmass spectra preprocessing is commonly conducted using one of two soft-

wares for this task, either the commercial software provided by MALDI-TOF MS man-

ufacturers ClinProTool [12] or the open-source R software MaldiQuant [43]. Among

the literature, a ‘standard’ preprocessing pipeline has transpired, consisting of several

steps requiring a number of parameter choices. This pipeline is described in Chapter 3

andwas employed to transformMALDI-TOFmass spectra for the preprocessed spectra

in DRIAMS, which is used for all analysis in Chapter 4. In general, preprocessing and a

subsequent binning steps produces feature vectors of fixed length, the required input

format for the majority of standardmachine learning techniques. However, during bin-

ning close-by MALDI-TOF mass peaks are summarized and information about precise
m/z values is lost. This section introduces a new peak detection algorithm, based on

the concept of persistence from computational topology. We compare the influence

of the established preprocessing pipeline and the simpler persistence transformation

on the task of antimicrobial resistance prediction, both employing logistic regression

(requiring a binning before data read-in) and a Gaussian Process able to handle varying

length inputs.

Peakcallingemployingpersistence transformation. Inspiredby the concept ofper-

sistence from computational topology [30], a simple peak detection algorithm deter-

mines the intensity of each peak above baseline signal. Formally, let D ⊆ Rd be a

compact domain and f a scalar function f : D → R. Critical points of f , i.e. maxima,
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5.1 Topology-based peak detection

minima, and saddle points, are paired up with each other using the principle of per-

sistence. Each maximum is paired with a minimum or saddle point, depending on the

relation of the critical points to each other. The principle is best illustrated by deter-

mining the prominence of every mountain peak in a mountain range, where each peak

is paired with the highest valley between the itself and an higher peak. In order to for-

mally determine the pairing for each peak, the superlevel sets of f have to be analysed,

i.e. sets of the form L+
f (c) := {x ∈ D | f (x) ≥ c} for c ∈ R. If the superlevel set L+

f (c)
is not empty, two points (x, f (x)) and (x′, f (x′)) are said to be connected in L+

f (c) if

the path between them is a subset of L+
f (c). The connection is denoted by x ∼c x′.

Considering that L+
f (c) ⊆ L+

f (c
′) for c′ ≤ c, all points that satisfy x ∼c x′ also satisfy

x ∼c′ x′ for all c′ ≤ c. Therefore, it is sufficient to find the largest value of c that con-

nects the two points, which is then referred to as the partner of x. Each point (x, f (x))
is paired to its partner by evaluating the following pairing function π f : D→ R:

x 7→ sup
{

c ≤ f (x) | ∃x′ 6= x : f (x′) ≥ f (x) ∧ x ∼c x′
}

. (5.1)

While π f maps each point x ∈ D to a c such that a point with a higher function value

from x within L+
f (c) exists, at the global maximum no such point can be reached and

we set sup ∅ := minx f (x). Circling back to the intuitive image of calculating the to-

pographic prominence of a peak in mountaineering: a point x has a low prominence if

π f (x) ≈ f (x), and a point x has high prominence if π f (x) � f (x).
For d = 1, a prominence map D f : D→ R×R can be constructed via

x 7→
(

f (x), f ◦ π f (x)
)
, (5.2)

mapping each x ∈ D to a point in the Euclidean plane. Letting x be a point in D and

D f (x) = (a, b), its persistence is defined through |a − b| and we denote it by pers(x).
The case for MALDI-TOF MS data (where d = 1) has two advantages, namely (i) the

calculations are of computational complexity O(n log n), with n denoting the number

of measurement points in the MALDI-TOF mass spectrum, and (ii) the persistence val-

ues can be seen as a direct transformation of the MALDI-TOF mass spectrum. For any

spectrum f : R → R, most of the points will be mapped to the trivial values, i.e. di-

rectly to the diagonal byD f — only critical points of f , i.e. maxima, minima, and saddle

points, will receive non-trivial, i.e. non-zero, persistence values.

Persistence transformation. Let x ∈ R be a point in the domain of a (MALDI-TOF

mass) spectrum f , we transform it to its persistence values so that we obtain a new

transformed spectrum f̃ with f̃ (x) := pers(x). A illustration of this persistence trans-

formation is depicted in Figure 5.1. This process automatically produces a peak detec-

tion because local maxima get assigned a large persistence value. A sparse spectral

representation can be constructed by considering only the k largest peaks and their m/z

position. This representation forms a nested sequence of subsets for increasing values

of k; each subset is a set of k tuples with values from R2. Sections 5.2 and 5.2.1 will
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introduce a classifier specifically developed for MALDI-TOF mass spectra that utilizes

sparse input representations.

5.2 GP-PIKE: A kernel method designed for MALDI-TOF mass

spectra

Representing the spectra by individual mass peaks, instead of a binned and vectorised

representation, has the advantage of retaining its full accuracy in m/z and intensity val-

ues. Therefore, machine learning techniques that are capable of handling a sequence

of mass peak pairs as input may lead to gains in classification performance. However,

this spectral representation is of varying length, rendering many machine learning ap-

proaches non-applicable. This section introduces a new kernel specifically developed

for MALDI-TOF mass peak input—PIKE, the Peak Information Kernel—which will be

combinedwith aGaussian Process classifier in a later section. To the best of our knowl-

edge, this is the first machine learning method specifically developed for the task of

antimicrobial resistance prediction from MALDI-TOF MS.

A kernel is a function that quantifies the similarity of objects by evaluating the inner

product in a reproducing kernel Hilbert space (RKHS) [105]. Kernelmethods are popular

in numerous application domains, including computational biology [10, 106], due to

their versatility and expressivity. Their application context ranges from classification

to regression, data formats from graphs to text, since the infinite-dimensional RKHS is

able to capture the nuances in the data.

While kernel approaches have been developed to be prominent in many domains,

few kernel methods exploit information in mass spectrometry data. Several kernels

designed for metabolomics information from mass spectrometry measurements ex-

ist [136], but their input format is restricted to structured feature vectors. Another ker-

nel [11]was designed for comparing spectra, but requires additional information in the

form of fragmentation trees, i.e. details about the molecule’s mass spectrometry frag-

mentation process. Many other kernels rely on the existence of such a tree [29, 47,

108]—however, this information cannot be obtained in the domain of MALDI-TOF MS.

The kernel introduced in this chapter can employ spectral peaks (or peak subsets) di-

rectly and does not require any additional information beyond the spectra themselves.

PIKE: the Peak Information Kernel. PIKE is motivated by heat diffusion on struc-

tured objects [6, 93] and is capable of capturing interactions between spectral peaks.

The kernel is designed to process sets of tuples and does not required a fixed-length

feature vector. Each (MALDI-TOF mass) spectrum is denoted by a set of tuples S :=
{(x1, λ1), (x2, λ2), . . .}, where x ∈ R>0 is a m/z value, and λi ∈ R>0 an intensity. Let δx
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be a Dirac delta function centred at x and u(x, t), where u : R×R>0 → R. The solution

to the following heat diffusion partial differential equation is:

∂u
∂t

= ∇2u (5.3)

lim
t→0

u(x, t) = ∑
i

λiδxi , (5.4)

While Dirac delta functions are not L2(R) functions, they can be approximated by them.

Therefore, we write the boundary condition in Equation 5.4 as a limit, meaning that

each spectrum is represented as a sumofDirac delta functions, where the scale factors

λi ∈ R>0 correspond to the intensity of a peak. This partial differential equation affords

a closed-form solution [97]

u(x, t) =
1

2
√

πt ∑
i

λi exp

(
− (x − xi)

2

4t

)
, (5.5)

where u(x, t) ∈ L2(R) as each individual functions is square-integrable and L2(R) is
a Hilbert space, closed with respect to addition of functions. u(x, t) can also be seen

as a feature map of the kernel, i.e. a map from a function space into L2(R). Let S be

a (MALDI-TOF mass) spectrum and t ∈ R, this feature map is described by Φt(S) :=
uS(x, t), where the indexed S indicates that the spectrum was used as an input. The

parameter t acts as a smoothing factor in Φt(S) that controls the influence peaks in the

spectrum, as illustrated in Figure 5.2. With larger values of t, the spectrum becomes

increasingly smooth, with individual measurements becoming less pronounced. The

feature map is used as a kernel for calculating the similarity between two spectra by

calculating the inner product of L2(R). For two given spectra S and S′, potentially of

different lengths, with m/z values xi and x′j and the respective intensities λi and λ′
j, the

inner product is

kt(S, S′) :=
〈
Φt(S), Φt(S′)

〉
L2(R)

:=
∫
R

Φt(S)Φt(S′)dx, (5.6)

for which the closed-form solution is

kt(S, S′) =
1

2
√

2πt
∑
i,j

λiλ
′
j exp

−

(
xi − x′j

)2

8t

. (5.7)

Equation 5.7 is a sum of exponential functions of a squared Euclidean distance with

positive weights λi and λ′
j. It is positive definite, and thus a valid kernel [38]. Addi-

tionally, we need to ensure that each intensity λ ≥ 1; otherwise, the value of λiλ
′
j de-

creases gradually, thereby decreasing the similarity between two spectra. In practise,

a normalisation step can be applied to prevent this issue.
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Figure 5.2: Influenceof kernel parameter t on featuremap u(x, t) of aMALDI-TOFmass spec-

trum in its mass peak representation. The rawmass peaks are slowly diffused over

the whole x-axis. With an increasing t the influence of a single peak is reduced.

Figure adapted from Weis et al. [128].
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A key property of PIKE is its capability to capture interactions between peaks in the

spectrum. In Equation 5.7 the distances between all pairs of peaks, with one peak

stemming from S and the other from S′, are added. As a result, PIKE achieves the

desired property of not requiring fixed-length feature vectors, but rather being able to

operate on a flexible spectra representation of a set of tuples with potentially different

cardinalities. This pairwise calculation reduces the kernel’s scalability andPIKE cannot

be readily applied to spectra consisting of thousands of mass peaks. However, this

limitation does not arise in practice for MALDI-TOF mass spectra, as most of these

spectra depict only hundreds of ‘valid’, i.e. non-noisy, mass peaks.

An additional advantage of PIKE is that it involves only one single parameter, the

smoothing parameter t. Equation 5.7 is differentiable with respect to t. Therefore pa-

rameter t can be optimised by any classificationmodel to obtain a kernel customized to

the given problemdomain. Keeping one spectrum S fixed, t canbe optimised efficiently

through

∂ kt(S, S′)

∂t
= ∑

i,j

((
xi − xj

)2 − 4t
)

8t2 kt(S, S′)[i,j] (5.8)

A step-by-step derivation of Equation 5.8 can be found in the next paragraph. In prac-

tice, having only a single parameter also simplifies the choice a final PIKE model: the

overall model can be constructed by taking the mean t over all optimised t of the dif-

ferent training splits in a dataset. The benefit of this property is demonstrated in the

next section.

Calculation of kernel derivative. The partial derivative Equation 5.8 is calculated by

using the product rule formula. With definition of f (t) and gij(t) in Equation 5.7

kt(S, S′) =
1

2
√

2πt︸ ︷︷ ︸
f (t)

∑
i,j

λiλ
′
j exp

−

(
xi − x′j

)2

8t


︸ ︷︷ ︸

gij(t)

, (5.9)

the product rule states the following:

∂ kt(S, S′)

∂t
= ∑

i,j

(
∂ f (t)

∂t
gij(t) + f (t)

∂gij(t)
∂t

)
. (5.10)

We calculate the partial derivatives

∂ f (t)
∂t

= − 1

4
√

2πt
3
2

(5.11)
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and

∂gij(t)
∂t

=
(xi − x′j)

2

8t2 gij(t). (5.12)

By applying the product rule, we obtain

∂ kt(S, S′)

∂t
= ∑

i,j

(
−

gij(t)

4
√

2πt
3
2
+

gij(t)(xi − x′j)
2

16
√

2πt
5
2

)
. (5.13)

We now observe that t
3
2 =

√
tt and t

5
2 =

√
tt2, permitting us to rewrite (5.13) with the

same denominator by multiplying the left term by 4t:

∂ kt(S, S′)

∂t
= ∑

i,j

((
xi − xj

)2 − 4t
)

gij(t)

16
√

2πt
5
2

. (5.14)

Notice howwe switched the order of the two terms from (5.13) in order to obtain a nicer

numerator. Finally, we split the denominator into a product containing f (t) = 1/2
√

2πt:

∂ kt(S, S′)

∂t
= ∑

i,j

((
xi − xj

)2 − 4t
)
· gij(t) · 1

8t2 · 2
√

2πt
(5.15)

= f (t)∑
i,j

((
xi − xj

)2 − 4t
)

gij(t)

8t2 (5.16)

Equivalently, writing k(S, S′)[i,j] to denote only those terms of the kernel function that

depend on i and j, we obtain the final derivative, as stated in Equation 5.8:

∂ kt(S, S′)

∂t
= ∑

i,j

((
xi − xj

)2 − 4t
)

8t2 kt(S, S′)[i,j]

5.2.1 The GP–PIKE method

Section 5.2 introduces a new kernel specifically designed to quantify the similarity be-

tween MALDI-TOF mass spectra, PIKE. We combine PIKE with a kernel based classi-

fication method, a Gaussian Process, to obtain a predictor tailored to MALDI-TOF MS

based antimicrobial resistance prediction. The choice to employ a Gaussian Process

for classification with the derived kernel is driven by its ability to (i) optimize the ker-

nel hyperparameters through type II maximum likelihood, and (ii) recognize out-of-

distribution samples due to well-calibrated confidence estimates. Flagging samples

from an unknown population is particularly relevant in patient applications, where a

method should notify practitioners if a prediction cannot be performed reliably.
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5.2 GP-PIKE: A kernel method designed for MALDI-TOF mass spectra

Gaussianprocesses for classification. AGaussianProcess (GP) constitutes a stochas-

tic process with every finite collection of variables following a multivariate Gaussian

distribution. GPs can be applied as lazy learners for classification based on a kernel,

i.e. a similarity measure between instances of the training data. Following Rasmussen

et al. [92], a GP describes a distribution over functions f (x) with f : X → Y , the data

domain being described by X and the prediction domain by Y . A GP is completely

characterized by its mean function m(x) and its covariance (or kernel) function k(x, x′).
These functions are defined as:

m(x) := E[ f (x)]
k(x, x′) := E

[
( f (x)− m(x))( f (x′)− m(x′))

] (5.17)

This definition can be represented by f (x) ∼ GP(m(x), k(x, x′)), defining a prior over

functions, with a kernel k that captures functional variation over its domain. The con-

ditional distributions in a GP are themselves Gaussian distributions and may thus be

computed in a closed form. The goal is to compute the posterior distribution of function

values f∗ at test points X∗ while conditioning on the training data X. In a regression

task, the predictive distribution f∗|X∗, X, f is computed. It can be can be written as

a normal distribution, parametrised by a covariance matrix and described by a kernel

function, between the samples in the training dataset and the test dataset, respec-

tively.

This results in the Gaussian Process regression, where kernel and noise parameters

are optimised according to the marginal likelihood of the model

p(y|X) =
∫

p(y|f, X)p(f|X)df,

which can be computed analytically. Subsequently, the predicted mean and variance

can be derived in closed form.

Next, we extend GPs to binary classification to be applicable in the given prediction

scenario. Similarly to the logistic regression andMLP in Chapter 4, a sigmoidal function

σ is laid over the latent function f∗ in order to obtain class probability estimates. This

results in a distribution of label predictions π∗. The prediction of a new sample is a

two-step process. In the first step, the distribution of f∗ at test points x∗ is determined

while conditioning on observed training data and labels

p( f∗|X, y, x∗) =
∫

p( f∗|X, x∗, f)p(f|X, y)df, (5.18)

with p( f |X, y) being the posterior probability over the latent variables. In the second

step, the actual prediction will be obtained by passing the f∗ values through σ and de-

termining the expected label distribution, such that

p(y∗ = 1|X, y, x∗) = E[π∗] =
∫

σ( f∗)p( f∗|X, y, x∗)d f∗ (5.19)
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5 Kernel-based microbial phenotype prediction from MALDI-TOF mass spectra

species antibiotic scenario # samples % positive

E. coli amoxicillin / clavulanic acid E-AMOXCLAV 1043 28.9

ceftriaxone E-CEF 1060 20.4

ciprofloxacin E-CIPRO 1051 29.7

K. pneumoniae ceftriaxone K-CEF 597 15.1

ciprofloxacin K-CIPRO 596 16.8

piperacillin / tazobactam K-PIPTAZO 576 13.9

S. aureus amoxicillin / clavulanic acid S-AMOXCLAV 973 13.7

ciprofloxacin S-CIPRO 987 14.7

penicillin S-PEN 941 71.4

Table 5.1:MALDI-TOF mass peak dataset based on DRIAMS-A. Nine species–antibiotic sce-

narios are included, and their scenario abbreviation, sample size and positive class

ration stated. The positive class consists of resistant and intermediate samples.

However, these integrals cannot be computed in a closed form and therefore can only

be approximated. Following the literature [92], we employ Laplace approximation,

with the posterior p(f|X, y) in Eq. 5.18 being approximated by a Gaussian distribution

around the posterior maximum. The GPs are trained through type II maximum like-

lihood optimisation on the training data, using the non-linear L-BFGS-B optimisation

algorithm [82] for the kernel hyperparameters.

5.3 Evaluation of topological and kernel methods for MALDI-TOF

mass-peak based resistance prediction

A sparse MALDI-TOF mass peak dataset. The analyses in this and the following

chapter are based on a different data representation than the other ones in this the-

sis. This choice of data representation is based on several factors: (i) at a biological

level the primary information in MALDI-TOF mass spectra is displayed in the peaks

corresponding to proteins, (ii) the sparse spectral representation results in a com-

pressed and memory efficient data format, while (iii) being more accurate as mass

peaks tuples state the exact m/z–ratio value, as opposed to binned vectors. The cre-

ated dataset is a subset of DRIAMS-A: 2676 MALDI-TOF mass spectra collected in

the year 2018. It focuses on the same species as in previous experiments: E. coli,

K. pneumoniae and S. aureus. Table 5.1 provides an overview of the dataset charac-

teristics. The preprocessing followed the protocol described in Chapter 3. The antibi-

otic susceptibility phenotypes for the respective species are (i) amoxicillin/clavulanic

acid, ceftriaxone, and ciprofloxacin resistance in E. coli, (ii) ceftriaxone, ciprofloxacin,

and piperacillin/tazobactam resistance in K. pneumoniae, and (iii) amoxicillin/clavu-

lanic acid, ciprofloxacin, and penicillin resistance in S. aureus. In this dataset, the pos-

itive (resistant) class constitutes theminority class for all species–phenotype combina-

tions except for penicillin resistance in S. aureus. The list of antibiotics was expanded
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5.3 Evaluation of topological and kernel methods for MALDI-TOF mass-peak based

resistance prediction

to obtain a comprehensive overview during themany performance comparisons in this

chapter. Our aim is to provide a challenging classification scenario approximating real-

world clinical applications as closely as possible.

Logistic regressionandGP–PIKEexperiments. Allmodel performancesare reported

on a 5-fold cross validation using 80% training and 20% testing class-stratified splits.

For logistic regression a further 5-fold cross validation is applied to the training split

to determine the optimal model hyperparameters, which are then used to refit the

model on the complete training data. This procedure is not necessary to optimise the

GP hyperparameters, as they are derived through maximising the log marginal likeli-

hood of the training data. For both methods, the class ratio differences are mitigated

during training by oversampling the minority class, which in eight out of nine species–

antibiotic scenarios is the positive class. Note that no oversampling is applied to the

test data splits.

The logistic regression baseline requires a fixed-size feature vector for each MALDI-

TOFmass spectrum. Similar to the full-spectrum binning described in Chapter 3.2, the

feature vector is constructed through distribution of MALDI-TOF mass peaks into the

bins of a histogram. In case twomass peaks are assigned to the same bin, their weight

is accumulated. This results in a logistic regression classification pipeline consisting

of peak binning, standardisation to zero mean and unit variance, followed by training

the classifier using the following hyperparameter grid (i) number of bins (300, 600, 1800,
and 3600), (ii) model regularisation (L1, L2, elastic net, and none), and (iii) regularisation

penalty C (10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103 and 104). Our classification pipeline

is implemented in Python using the Pipeline and GridSearchCV modules provided by

the scikit-learn package [82].

5.3.1 MaldiQuant preprocessing pipeline performs more consistently than
persistence transformation

We now compare the newly developed persistence transformation to the widely em-

ployed preprocessing pipeline implemented in MaldiQuant. The MaldiQuant pipeline

is applied as described in Chapter 3.2. Additionally, we employ the provided peak de-

tection algorithmwith a signal-to-noise ratio of 2, with the noise estimated by theMAD

method using a half-window size of 20Da.
Thepersistence transformationpipeline consists of applying the topology-basedpeak

detection, a single normalisation step applying TIC normalisation (see Section 3.2),

and subsequent extraction of the k largest peaks, with k as the only hyperparameter

for the persistence transformation pipeline. We fixed the parameter to k = 200 peaks

in this analysis for a fair comparisonwith the MaldiQuant preprocessing, which defines

216 peaks on average.

The quality of the preprocessing method is quantified through the predictive perfor-

mance achieved by applying the same classification model to two differently prepro-

cessed MALDI-TOF MS datasets. We infer that the dataset resulting in a higher pre-
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5 Kernel-based microbial phenotype prediction from MALDI-TOF mass spectra

scenario PT / LR MQ / LR PT / GP–PIKE MQ / GP–PIKE

E-AMOXCLAV 0.36±0.03 0.41±0.07 0.39±0.02 0.47±0.04

E-CEF 0.58±0.03 0.63±0.06 0.63±0.03 0.71±0.03

E-CIPRO 0.55±0.04 0.61±0.09 0.54±0.04 0.68±0.03

K-CEF 0.56±0.06 0.58±0.10 0.72±0.09 0.77±0.07

K-CIPRO 0.35±0.08 0.42±0.10 0.40±0.13 0.55±0.10

K-PIPTAZO 0.39±0.09 0.32±0.07 0.49±0.10 0.56±0.10

S-AMOXCLAV 0.55±0.04 0.53±0.04 0.61±0.12 0.69±0.09

S-CIPRO 0.26±0.06 0.34±0.03 0.31±0.03 0.39±0.07

S-PEN 0.80±0.05 0.80±0.03 0.81±0.02 0.83±0.04

Table 5.2: Performance comparison of persistence transformation and tradition MALDI-

TOF spectral preprocessing through AUPRC±standard deviation using both logis-

tic regression and GP–PIKE model. The predictive performance of predictions on

MaldiQuant-preprocessed mass spectra is higher in most scenarios using the logis-

tic regression model, and consistently higher for GP–PIKE. Scenario abbreviations

follow Table 5.1. Other abbreviations: persistence transformation (PT), MaldiQuant
[43] v1.19 (MQ), and logistic regression (LR).

dictive performance has been processed in a way, that the information contained in

the spectrum is preserved and structured to a higher degree. The two models used

for this assessment are logistic regression and GP–PIKE. The comparison of both pre-

processing approaches are depicted in Table 5.2, reported by the mean and standard

deviation AUPRC over the cross-validation splits. The results indicate that the conven-

tional preprocessing pipeline produces spectra that are capable of high predictive per-

formances on the task of antimicrobial resistance prediction. The logistic regression

performance on the MaldiQuant preprocessed mass spectra (MQ–LR) leads to higher

AUPRC values inmost cases compared to our agnostic persistence transformation pre-

processing (PT–LR). It is to be noted that in themajority of scenarios, themean AUPRC

of PT–LR is only slightly below that of MQ–LR. For S-AMOXCLAV and K-PIPTAZO, the

topological method even outperforms MQ–LR. We note that the preprocessing by per-

sistence transformation is conceptually simpler and may provide an alternative, also

considering that additional steps can be combined with it. We conclude that the pre-

processing procedure has a high influence on the results of the subsequent prediction

task, and that the state-of-the-art pipeline can be outperformed. Further experiments

on the influence of MALDI-TOFmass spectra preprocessing on applied machine learn-

ing pipelines are necessary.

5.3.2 Superior antimicrobial resistance prediction with GP–PIKE

The predictive power of the newly introduced kernel will now be evaluated on the task

of MALDI-TOF MS based antimicrobial resistance prediction. Combined with a GP, the

kernel forms a model referred to as GP–PIKE. We compare our model to both a non-
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5.3 Evaluation of topological and kernel methods for MALDI-TOF mass-peak based

resistance prediction

scenario logistic regression GP–RBF GP–PIKE

E-AMOXCLAV 0.41±0.07 0.33±0.08 0.47±0.04

E-CEF 0.63±0.06 0.46±0.24 0.71±0.03

E-CIPRO 0.61±0.09 0.35±0.11 0.68±0.03

K-CEF 0.58±0.10 0.59±0.25 0.77±0.07

K-CIPRO 0.42±0.10 0.31±0.14 0.55±0.10

K-PIPTAZO 0.32±0.07 0.14±0.00 0.56±0.10

S-AMOXCLAV 0.53±0.04 0.14±0.00 0.69±0.09

S-CIPRO 0.34±0.03 0.23±0.12 0.39±0.07

S-PEN 0.80±0.03 0.74±0.03 0.83±0.04

Table 5.3: Performance evaluation of GP–PIKE classifier compared to two models: logis-

tic regression and a Gaussian Process with an established kernel, the RBF kernel

(GP–RBF). GP–PIKE outperforms both comparisonmodels in all scenarios. Scenario

abbreviations follow Table 5.1.

kernelmodel—logistic regression—and aGPwith an established kernel, the radial basis

function kernel (RBF). A comparison of all methods is depicted in Table 5.3.

Our kernel in combination with a GP outperforms all comparison models. Firstly, we

trace this back to the capability of PIKE to compare non-linear interactions between

peaks. The kernel was developed with this property, as some protein particles might

receive a higher (i.e. larger than one) charge during the MALDI ionisation step and are

detected at a smaller m/z–ratio. Secondly, we want to emphasize the compatibility of

PIKE and the Gaussian Process, which performs a continuous (i.e. non-discrete) maxi-

mum likelihood hyperparameter optimisation, as opposed kernel-basedmethods such

as SVMs, which optimise their hyperparameters by cross-validation over parameter

grids. These grids have to be predefined and therefore do not allow to find the best

values for continuous parameters.

A high variance (i.e. standard deviation) for the reported AUPRC values can be ob-

served independently of themodel, even though train–test splits are stratified by class.

A possible explanation for these differences could lie in the underlying phylogenetic re-

latedness between microbial samples in the dataset. Microbial species undergo con-

tinuous evolutionary change, and whole branches in the evolutionary tree of a species

candisplay anantibiotic resistance. If such latent structures aredisplayed in theMALDI-

TOFmass spectra but are not accounted for in the stratified train–test splits, the results

could be differences in the distribution of specific evolutionary branches associated

with a specific resistance. We investigate these structures and possible improvements

to the stratification in Chapter 6.

When we investigate the optimal hyperparameters chosen for each GP–PIKE sce-

nario, we observe that t takes on similar parameter values and therefore we can con-

struct a ‘common’ classifier by taking the mean of t for each split. The logistic regres-

sion optimisation results in diverging optimal parameters for each data split, with even

the regularisation method differing. This behaviour does not directly affect the classi-
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5 Kernel-based microbial phenotype prediction from MALDI-TOF mass spectra

fication performance on the individual split, but we have observed that a set of optimal

hyperparameterswill lead to convergence errorswhen applied to a different split. Such

incoherence between optimal hyperparameters can prevent training of a overall clas-

sifier with one final set of parameters.

The comparison of the two respective kernels combined with a GP illustrates the

importance of a good kernel choice to reach high predictive performance. The GP–

RBF is outperformed by GP–PIKE, and even the logistic regression, except in the case

of K-CEFwhere the standard deviation is too high to allow for a conclusive assessment.

5.4 Confidence analysis of predictions with GP–PIKE

Machine learning applications that ultimately target decision processes influencing pa-

tient treatment are required to satisfy a more elaborate and stringent set of evalua-

tions. When providing resistance prediction, the most crucial one being the need to

provide uncertainty estimates with each predictions, and if necessary, reject label as-

signment in cases of high uncertainty. The reasoning is that any predictor will be faced

with isolates stemming frommicrobial strain underrepresented in—or even completely

absent from—the training dataset. The classification result must not give an unin-

formed prediction in that case, which cannot be recognized as such by the user. A

classifier should therefore include the option to refuse the prediction if it cannot do so

reliably.

5.4.1 Maximum class probability rejection

In addition to measures assessing the classification performance, such as AUPRC, we

need a measure to estimate the confidence or reliability of each prediction. This as-

sessment is crucial in two scenarios; (i) when samples fall close to the decision bound-

ary of a classifier, and no unambiguous class decision can be performed, and (ii) for

samples not included in the training dataset distribution, so-called out-of-distribution

samples, for which no classification model can reliably predict a label and the desired

behaviourwould be to reject the prediction to notify the user, rather than performing an

uninformed guess. The first scenario applies to every classifier. The second scenario

is crucial in a settings where the input distribution cannot be controlled, e.g. clinical

patient treatment and in the case of performing antimicrobial resistance predictions.

Here, isolates collected from infected patients are not guaranteed to stem from the

same strains included in the training distribution and could stem from an infectious

strain thatwaspickedupduring travelling. In order to obtain a reliability estimateof the

classifier’s confidence, we employ the probabilities determined for the predicted class,

i.e. maxc p(c|x), where c is the class label and x is the a sample, i.e. the MALDI-TOF

mass spectrum. This value will be referred as the maximum class probability (MCP).

In principle, a well-trained classifier is highly confident for all for all samples stem-

ming from training distribution, while out-of-distribution samples should be assigned a

significantly lower probability in any prediction. In order to create a rejection scenario,
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Figure 5.3: Histogram depicting the maximum class probability distribution for in- and

out-of-distribution samples for logistic regression (LR) (left column) and GP–

PIKE (right column) trained on S. aureus. The first row depicts the MCP in-training

distribution from S. aureus, while the second and third rows depict the values

for out-of-distributions samples from E. coli and K. pneumoniae. Figure adapted

from Weis et al. [128].

a threshold θ ∈ [0.0, 1.0] is employed such that only predictions satisfyingmaxc p(c|x) >
θ are kept. In the following the choice for threshold θ is motivated and analysed.

First, the distribution of MCP values in different test sample distribution scenarios

is investigated in Figure 5.3, showing the difference in θ between in-distribution and

out-of-distribution samples. The classifier is trained to predict resistance against the

antibiotic amoxicillin-clavulanic acid in S. aureus. For in-distribution samples the test

S. aureus dataset is used, and samples from the two other species, E. coli and K. pneu-

moniae, are used as out-of-distribution proxies. Two distributions of MCP values are

depicted in Figure 5.3, LR (left column) and GP–PIKE (right column).

It can be observed that the MCP values in-training test sample received by the lo-

gistic regression classifier are distributed over the entire [0.5, 1.0] range, with a visible

skew towards values that are close to 1.0. However for out-of-distribution samples,

the logistic regression also assigns values close to 1.0, indicating that the classifier is
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5 Kernel-based microbial phenotype prediction from MALDI-TOF mass spectra

providing reliable predictions. The author attributes this strikingly incorrect behaviour

to the linear decision boundary of the logistic regression classifier—samples close to

the hyperplane are assigned maxc p(c|x) values≈ 0.5. Out-of-distribution samples are

likely to lie far away from the training data and therefore far away from the hyperplane,

resulting in the assignment of a MCP value close to 1.0. We conclude that the MCP can-

not be used for rejection of unreliable predictions in logistic regression, as maxc p(c|x)
values≈ 0.5 do not correspond to out-of-distribution samples. This behaviour also re-

stricts the applicability of logistic regression classifiers in application for clinical treat-

ment.

The right column in Figure 5.3 illustrates the behaviour of MCP values assigned to

in- and out-of-distribution samples by the newly introduced GP–PIKE method. For in-

training samples, the MCP values are evenly distributed over the [0.5, 1.0] range, indi-
cating that the GP–PIKE classifier does not report confidently on all samples of the test

dataset. Experiments in the next subsection verify that low MCP values by GP–PIKE in

fact correspond to less accurate predictions. Therefore, the classifier communicates

if a reliable prediction could be made. Further, the MCP values of out-of-distribution

samples are generally less than 0.7. We conclude that the GP recognises that no in-

formed decision can be made on these samples and assigns values closer to 0.5. This
behaviour can be explainedwith the non-linear decision boundary of GP–PIKE, caused

by maximising the marginal likelihood of the data by optimising t in PIKE. The GP pro-

vides a probabilistic classification of unseen samples and is undecided about the class

of out-of-distribution samples. We conclude that GP–PIKE MCP confidence estimates

shows the desired behaviour for clinical applications. We thus take the MCP values to

be suitable proxies for the confidence of a classifier and analyse the rejection rates in

more detail.

5.4.2 Influence of rejection on predictive performance

The previous subsection illustrated that MCP values, i.e. maxc p(c|x), show the desired

behaviour to be used as confidence estimates for GP–PIKE. While it is imperative to

recognize and reject instances stemming from a different distribution, it is also impor-

tant to reject in-distribution samples for which the classifier cannot give a reliable pre-

diction. Rejection can lead to performance improvements in both cases, as a reliable

classifier should increase its predictive performance if low-confidence samples are re-

moved. We verify this assumption by varying the rejection threshold θ and analyse

the development of the prediction accuracy on in-training test samples. The results

are depicted in Figure 5.4. In the small θ value regime, both logistic regression and

GP–PIKE improve in accuracy when the classifier can reject low-confidence samples.

However, the logistic regression accuracy improves at a lower rate than the GP–PIKE

and a sudden decrease in accuracy can be observed of θ > 0.95. These results indi-

cate that the samples receiving with the highest scores—closest to θ = 1.0—in fact are

assigned the wrong label, and rejecting all samples except the highest MCP results in

only inaccurate predictions remaining. This expands the observation in 5.4.1 that in-
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Figure 5.4: Improvement of predictive accuracy with increasing rejection threshold θ on

the task of amoxicillin-clavulanic acid resistance prediction in S. aureus. To allow

for comparability between test datasets with varying class ratios for each θ, the
predictive accuracy is reported. The coarseness for larger θ is due to small sample

size effects. Figure adapted from Weis et al. [128].

stances not following the training distribution receive a high MCP value, rendering the

logistic regression unsuitable for clinical applications.

5.5 Summary and discussion

This chapter introducedanovel approach for classification fromMALDI-TOFmass spec-

tra. The new kernel—PIKE–in combination with a GP classifier outperforms logistic re-

gression classifiers and traditional kernels on MALDI-TOF MS based antimicrobial re-

sistance prediction. The method was evaluated to stay reliable in a realistic clinical

application setting such as labelling unobserved bacterial strains. A newly developed,

streamlined preprocessing method based on persistence challenged the commonly

accepted pipeline.

Regarding the preprocessing pipeline, the introduced method did not improve pre-

dictive performance in the subsequent classification task. However, the complicated

andunderanalysedpreprocessingpipeline remains in need for further assessmentwhen

it comes to the influence of parameters. A large disadvantage of GP–PIKE is its high

computational complexity when computing the kernel. This complexity results from

the pairwise comparison of each peak in either compared spectrum. Thismakes its ap-

plication infeasible on large-scale data such as the full DRIAMS-A dataset, introduced

in Chapter 3. A possible extension of PIKE could include confining the kernel to com-

paring a peak to its corresponding close-by m/z peaks. This would reduce the kernel’s

complexity but come at the cost of not comparing far-away MALDI-TOF mass peaks to

each other. To avoid the loss of comparing peaks to its corresponding double-charge

value, the ‘close-by’ region would need to include the m/z region at half the value.
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5 Kernel-based microbial phenotype prediction from MALDI-TOF mass spectra

Further studies requiring additional laboratory experiments could assess how iso-

lates characterised by both DNA sequencing and MALDI-TOF MS provide insights into

phylogenetic connections within the dataset and influence prediction depending on

their distribution over train and test datasets. The gained insights could lead to new

approaches for better train–test split choices or separating the prediction problem for

different evolutionary strains. A computational approach to include phylogenetic in-

formation is introduced in Chapter 6.
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6 Mitigating the effect of phylogenetic

variance on MALDI-TOF MS based

phenotype prediction through

hierarchical stratification

C. Weis, B. Rieck, S. Balzer, A. Cuénod, A. Egli, and K. Borgwardt. “Improved MALDI-TOF MS

based antimicrobial resistance prediction through hierarchical stratification”. Unpublished,

2020

In this chapter, we conduct a deeper exploration motivated by the results observed in

experiments in the previous chapter. In Chapter 5, the results in Table 5.2 demonstrate

howmachine learning approaches tailored toMALDI-TOFmass spectra outperformes-

tablished methods. However, we observe that the prediction results are stymied by a

high standard deviation, regardless of the applied model. Therefore, the results indi-

cate highly different predictive performance reached for each train–test split, despite

having the same sample size and resistance label ratio. For ideal parameter optimisa-

tion, both train and test data should follow the structure of the total dataset. While the

experiments of Chapter 5 stratify the train–test split with respect to resistance label,

no stratification is performed for other structures within the train and test data, which

could be differently distributed.

In this chapter, we hypothesise that the observed variation is caused by an under-

lying phylogenetic relatedness between microbial samples, affecting the sample dis-

tribution between the train and test dataset. If the evolutionary relationship between

samples is implicitly reflected in their MALDI-TOF MS profiles, but not taken into ac-

count during the training of a model, this could potentially lead to highly dissimilar

train–test splits. As a result, the phylogenetic structure of the test datamight be under-

represented in the training data, causing lower predictive performance and high fluctu-

ations between train–test split results. We conjecture that this information could be in-

corporated into the stratificationprocess through an additional description step. In this

chapter, we introduce an approach to infer this structure from the dataset through ag-

glomerative hierarchical clustering and include the cluster information during the con-

struction of our train and test set. Ideally, the relatedness between microbial probes

could be determined through genetic information. However, genome information on

DRIAMS (and generally for clinical MALDI-TOFMS datasets) is not available to infer the

phylogeny in a dataset.
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6.1 Hierarchical clustering

As the evolutionary process follows a hierarchical tree structure, the method selected

to infer the underlying phylogenetic relatedness from the MALDI-TOF mass profiles is

hierarchical clustering. The labels assigned by clustering will be used in combination

with the resistance class labels during the train–test split for a stratification that con-

serves the ratio of of class–cluster labels in both datasets. This stratification ensures

that the distribution of samples in the test data resembles that of the training samples,

i.e. hindering the occurrence of distribution shifts between both, and that trainedmod-

els will generalise to new datasets. The question of dealing with distribution shifts will

be addressed inmoredetail in Chapter 7. Thehierarchical clustering algorithm requires

a dataset representation of either a distance matrix (between samples) or a feature

matrix. In our approach, we implemented the latter representation, using fixed-size

feature vectors by binning the MALDI-TOF mass peaks. For these experiments, we

remain with this simplification, which merges peaks within a certain m/z–range, and

analyse its power to infer the latent phylogenetic tree.

6.1.1 Clustering algorithm

We employed the hierarchical agglomerative clustering implementation provided by

the SciPy package [119] for Python. The agglomerative clustering [98] belongs to the

bottom-up clusteringmethods,meaning that at the start, each sample point belongs to

its own cluster. With each iteration of the clustering process, the two nearest clusters,

determined by a linkage and a distancemeasure, are merged into a single cluster. This

process continues until only one cluster remains, containing all data points. By em-

ploying hierarchical clustering, we can capitalize on the high flexibility intrinsic to the

approach: In a first step, themethod constructs a tree capturing the inferred hierarchi-

cal structure between all samples (referred to as the dendrogram). This step does not

require a fixed number of clusters k and therefore the dendrogram structure is inde-

pendent of k. The number of clusters can be defined a posteriori by a distance thresh-

old or by auxiliary visualisation. Figure 6.2 depicts the dendrogram for the dataset

S-AMOXCLAV. Both the distance metric and the linkage method selected for the clus-

tering algorithm influence the process and resulting cluster assignment. If not men-

tioned otherwise, we employ the Euclidean distance as a distance measure, dist(·),
as it is the established choice for numerical features. In the following paragraphs, we

introduce all employed linkage criteria d(·).

Ward’s linkage. Ward’s linkage is one of the most popular linkage methods. It em-

ploys theWard’s minimum variancemethod [124] and can only be used in combination

with the Euclidean distance. The initial distances are calculated through squared Eu-

clidean distances between the feature vectors u, v, i.e.d(u, v) = dist(u, v)2 = ‖u− v‖2
2,

as each cluster consists of only one sample. The two clusters with the lowest linkage
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criterion are merged and the new distance values are calculated in an iterative fashion

by

d(u, v) =

√
|v|+ |s|

T
dist(v, s)2 +

|v|+ |t|
T

dist(v, t)2 − |v|
T

dist(s, t)2, (6.1)

where the number of samples within the cluster is denoted by | · |, T = |v|+ |s|+ |t|,
and u is the cluster resulting from combining clusters s and t. We repeat this process

until all data points have been combined into one single cluster.

Average linkage. The average linkage value is calculated through the average dis-

tance between the data points of two clusters. The average linkage between clusters

u and v is calculated by

d(u, v) = ∑
ui∈u,vj∈v

dist(ui, vj)

|u| · |v| (6.2)

with |a| referring to the number of points in cluster a. This approach is called UP-

GMA (unweighted pair group method with arithmetic mean).

Weighted linkage. Weighted linkage determines the weighted mean of average dis-

tances between all cluster members. Specifically, we calculate the distance between

cluster u, formed throughmerging clusters s and t, and another cluster v by the follow-

ing formula:

d(u, v) =
dist(s, v) + dist(t, v)

2
(6.3)

Initially, distances are determined between clusters containing only one data point us-

ing the selected distance measure, i.e. d(a, b) = dist(a, b). The weighted linkage crite-

rion is computationallymore efficient than the average linkage criterion, with distances

not contributing equally. This approach is referred to as WPGMA (weighted pair group

method with arithmetic mean).

Single linkage. The most computationally efficient implementation for agglomera-

tive hierarchical clustering is the single linkage criterion. The criterion is defined as the

following for clusters u and v

d(u, v) = min
ui∈u,vj∈v

dist(ui, vj) (6.4)

for all respective members of cluster u and v, i.e. ui and vj. As the single linkage cri-

terion only considers the lowest distance between samples, its known to suffer from

chaining [77], where cluster shapes form “chains” and lead to clusters with exceed-

ingly imbalanced sizes. This opens up the possibility for two clusters to be considered

very close by the single linkage due to a few close outliers, even though many cluster

points are very far away from each other.
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Complete linkage. The complete linkage criterion is designed to avoid the aforemen-

tioned shortcoming of single linkage. It quantifies the largest distance between points

stemming from the two separate clusters, i.e.

d(u, v) = max
ui∈u,vj∈v

dist(ui, vj), (6.5)

with ui, vj denoting points in cluster u and v, respectively. However, analogously to

the single linkage, the complete linkage criterion also suffers from sensitivity to out-

liers [77].

6.1.2 Clustering output

After describing the clustering algorithm, we detail its output and how it is incorpo-

rated into an enhanced train–test stratification scheme. The output of the clustering

procedure is a linkagematrix Z of dimension (n− 1)× 4, with n referring to the number

of samples. Each row in Z contains the clustering step of one iteration, i.e. the cluster

connection formed in iteration i is stored in row i of Z. The indices of the clusters which

are combined into the new cluster (with index n + i) are stated in the first and second

column, Z[i, 0] and Z[i, 1]. Cluster indices smaller than n indicate singleton clusters.

The third and fourth columns, Z[i, 2] and Z[i, 3], state the distance between the two

clusters which are combined and sample count in the newly-formed cluster [119].

Combined with a cut-off parameter, a cluster assignment for all samples can be de-

termined via Z. For a predefined distance threshold, clusters are determined such that

the distance between the samples in each cluster assessed through the linkage crite-

rion is less than the threshold.

Ifwedefine thenumber of clusters apriori instead,wedetermine thedistance thresh-

old such that the wanted number is obtained. In this analysis, we define the number

of clusters k beforehand; this enables an intuitive interpretation of the number of phy-

logenetic branches.

6.1.3 Clustering metrics

Arguably the bigger obstacle in analyses employing clustering algorithms is to decide

on a number of clusters k. In our application—as in the case for most—no a priori infor-

mation is available regarding the true number of clusters (here, number of phylogenetic

branches) in the data. Numerous clustering validity measures have been developed to

assess the quality of a cluster assignment, without the availability of the true cluster la-

bels. We select clustering validitymetrics under the assumption that the feature space

does not construct highly-complex topological structures [95], e.g. cycles or voids. All

clustering validity metrics employed in this analysis are unsupervised methods and do

not incorporate resistance class labels. The twometrics employed are depicted in Fig-

ure 6.1 and discussed in the following paragraphs.
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(a) Silhouette score (b) Davies–Bouldin index

Figure 6.1: Illustration of the construction of Silhouette score and Davies-Bouldin index.

(6.1a) The mean distance between one point (marked by black edge) and all points

in the same cluster ismarked by a, while themeandistance to the points in the near-

est cluster is denoted by b. (6.1b) The mean distance of all points in a cluster to its

centroid point are denoted by si for cluster i and sj for cluster j. These intra-cluster

distances, e.g. si and sj, are compared with the inter-cluster distance between the

respective centroids dij.

Silhouette score. For the Silhouette score, the average distance between the data

point itself and all points belonging to the same cluster (referred to as a), is compared

to the average distance to all points from the nearest cluster (referred to as b). For a

single data point, the Silhouette coefficient is determined by

s =
b − a

max(a, b)
, (6.6)

with the overall score determined by the mean of all individual Silhouette coefficients.

This results in s ∈ [−1, 1], with an overall Silhouette score close to −1 indicating low

quality clustering, and an overall Silhouette score close to 1 signifying well-separated

clusters.

Davies–Bouldin index. The Davies–Bouldin index quantifies the mean similarity be-

tween each cluster and the cluster with the largest ratio of intra-cluster distances to

inter-cluster distances. With the cluster diameter, i.e. themean distance between each

point of the cluster and the respective centroid, denotedby si and thedistancebetween

centroids of two clusters i and j denoted by dij, the Davies–Bouldin index is determined

by

DB =
1
k

k

∑
i=1

max
i 6=j

si + sj

dij
, (6.7)

with k referring to the number of clusters. DB is strictly positive, with lower values

indicating a high quality clustering and 0 being the best score possible.

6.1.4 Incorporating cluster information to improve stratification

Regardless of the choice of linkage criterion, the hierarchical clustering algorithm will

assign clusters that contain different MALDI-TOF mass spectra. We hypothesise that
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these clusters are able to capture phylogenetic structures between the MALDI-TOF

mass spectra, i.e. two spectra that are assigned to the samecluster representmicrobes

that are more closely related to each other than those of any other cluster.

Each MALDI-TOF mass spectrum is assigned a meta-label (lr, lc), consisting of the

antimicrobial resistance class lr and the hierarchical cluster lc. This meta-label preva-

lence can be distributed equally over both the train and test set during the stratified

split. We conjecture that thismeta-label (lr, lc) contains auxiliary knowledge compared

to the resistance class information alone. Under the assumption that the cluster label

is implicitly informed by the phylogeny relatedness, the train and test dataset have a

similar distribution. This should result in (i) higher predictive performance, as the clas-

sifier will be faced with similar data distributions during training and evaluation, and

(ii) lower variance of performances of different splits, as the classifiers will have been

trained on enough representative samples to improve its generalisation capabilities to

unseen test samples. The proposed method is easy to implement and incorporates

directly into any classification workflow; only the clustering algorithm (incl. linkage cri-

terion and distance metric) and the number of clusters are required. The class labels,

i.e. the antimicrobial resistance labels, are not used for the clustering step, and are only

required during the train–test stratification. This allows for the general application of

our method, independent of the prediction task.

6.2 Data stratification based on inferred hierarchical structure

To allow for comparability with the results obtained in Chapter 5, we employ the logis-

tic regression classifier (LR) as the baseline and the Gaussian Process classifier com-

bined with PIKE (GP–PIKE) as the classification model tailored to sparse MALDI-TOF

mass spectra representations. Further, the same dataset is employed (see Table 5.1).

The classifiers are evaluated over the same random seeds as in Section 5.3 to de-

termine the stratified train (80% of samples) and test (the remaining 20% of samples)

portions. On each split, a 5-fold cross-validation determines the optimal hyperparam-

eters. Both the cross-validation and the overall predictive performance is reported

by the average precision (AUPRC) metric, as we are working with heavily-imbalanced

classes.

6.2.1 Inferring hierarchical structure

For each of the species, we cluster the dataset once with each linkage criterion intro-

duced in Section 6.1.1, namelyward, average,weighted, single, and complete. We vary

the number of clusters k from 1 (e.g. no clustering is performed) to 20, which should

represent a good biologically plausible upper limit. Figure 6.2 illustrates an exam-

ple output of hierarchical clustering with ward’s linkage criterion, using S-AMOXCLAV

as an example. For quality assessment, we report the two unsupervised clustering

validity metrics—the Silhouette score and the Davies–Bouldin index—for each cluster-

ing. Please note again, there are no ground-truth strain-type labels measured and we
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Figure 6.2: Dendrogram of the complete hierarchical clustering tree using ward’s linkage to

cluster the samples of the S. aureus (amoxicillin-clavulanic acid) dataset. All tree

tips represent a single sample in the dataset. The colors indicated the clustering

with choice k∗ = 10. Note that the clustering does not depend on a k; the cluster

labels are through a cut-off at the desired “height” of the determined dendrogram.

therefore require unsupervised validity metrics. The behaviour of the two cluster va-

lidity metrics with varying k is depicted in Figure 6.3. For each of the nine species-

antibiotic scenarios, a curve is drawn, leading to three curves per species, as each

species dataset consists of a varying list of samples depending on the antibiotic (see

Table 5.1). Generally, the results indicate that the best clustering validity index values

are reached with the lowest number of clusters, i.e. k = 2. Furthermore, different link-

age criteria show markedly different behaviours for the different validity scores. The

Silhouette score values when using single linkage are consistently decreasing; how-

ever they form a plateau for k larger than ten clusters with ward’s linkage. The results

indicate a high sensitivity of some linkage criteria to small differences in the dataset

construction—i.e. within the same species but subsampled for different antibiotics—

which can be observed for the Davies–Bouldin index with single linkage, or in both

scores with weighted linkage.

6.2.2 Choosing the number of clusters

In order to obtain the cluster labels for the enhanced train–test, a single clustering

model has to be selected. To define a model, an optimal number of clusters k∗ has to

be decided on. We make this choice in a unsupervised, data-driven fashion; no class

labels or predictive performance are considered in the choice of k∗. The parameter k is

evaluatedmerely on the clustering validity indices displayed in Figure 6.3, and one k∗ is
fixed for each species to use for hierarchical clustering. The final k∗ values are k∗ = 8
for E. coli and k∗ = 10 for S. aureus and K. pneumoniae. For this decision, we focus

on the commonly applied average and ward linkage criteria during subsequent analy-
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Figure 6.3: Behaviour of cluster validity scores with an increasing number of clusters using

five different linkage criteria. No scores are reported for k = 1 as at least two clus-

ters are required to compute these validity scores. For each of the nine species-

antibiotic scenarios, a curve is drawn, leading to three curves per species. The

dashed vertical line depicts the k∗ value chosen for the respective species.94
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LR LR LR GP–PIKE GP–PIKE GP–PIKE

scenario k = 1 k∗ k∗ k = 1 k∗ k∗

ward average ward average

E-AMOXCLAV 0.41±0.07 0.41±0.05 0.45±0.03 0.47±0.04 0.48±0.04 0.52±0.04

E-CEF 0.63±0.06 0.60±0.02 0.64±0.05 0.70±0.03 0.70±0.06 0.72±0.04

E-CIPRO 0.62±0.08 0.58±0.07 0.67±0.03 0.68±0.03 0.68±0.04 0.72±0.03

K-CEF 0.58±0.10 0.64±0.08 0.47±0.09 0.77±0.07 0.75±0.04 0.69±0.11

K-CIPRO 0.42±0.10 0.38±0.07 0.48±0.15 0.55±0.10 0.53±0.09 0.55±0.11

K-PIPTAZO 0.32±0.07 0.41±0.11 0.39±0.03 0.57±0.10 0.61±0.05 0.57±0.10

S-AMOXCLAV 0.53±0.04 0.60±0.08 0.55±0.03 0.69±0.09 0.73±0.06 0.77±0.07

S-CIPRO 0.34±0.03 0.34±0.02 0.31±0.07 0.40±0.07 0.40±0.10 0.40±0.08

S-PEN 0.80±0.03 0.82±0.03 0.83±0.04 0.83±0.04 0.84±0.04 0.83±0.03

Table 6.1: Improved predictive performance employing the hierarchical train–test split

compared to a standard random train-test split. Results are reported throughAUPRC

mean ± standard deviation on five test datasets. The methods include k∗ = 8 for E.

coli and k∗ = 10 for S. aureus and K. pneumoniae.

sis. For E. coli, a slight peak can be observed in the Silhouette score behaviour, while

the Davies–Bouldin value flattens out once k increases past 8 (note that the Davies–

Bouldin index optimal value is better the closer it is to 0, while the Silhouette score

should be maximised). For S. aureus and K. pneumoniae, no clear message can be

observed in the Silhouette score and the Davies–Bouldin values plateaus for k > 10.
Therefore, we consider the average linkage criterion, and pick k = 10, where we ob-

serve slight peaks in the Silhouette coefficient.

6.2.3 Resistance prediction with enhanced train–test splits

Employing the chosen number of clusters k∗, we determine the clusterings and incor-

porate the cluster labels for the enhanced train–test split based on the meta-label

(lr, lc) stratification. We then combine these enhanced train–test splits into two an-

timicrobial resistance classification scenarios: using both a logistic regression and a

GP–PIKE model [128]. The results are reported by the AUPRC mean with standard

deviation over all five random seeds. Results are reported with and without the hier-

archical clustering-enhanced stratification in Table 6.1. The results table focuses on

two of the linkage criteria, namely average and ward, as the average linkage criterion

provides a good trade-off between the single and complete linkage criteria and their

respective pitfalls, and ward is a frequently chosen criterion with Euclidean distance

metric. For either logistic regression and GP–PIKE, eight out of the nine scenarios

report increased performance with the novel hierarchical clustering-enhanced strat-

ification. In logistic regression, improvements are as high as 9.7 percentage points

for piperacillin-tazobactam resistance prediction in K. pneumoniae. GP–PIKE started

at a higher baseline performance, with increases in predictive performance from 0.69

to 0.77 for amoxicillin-clavulanic acid resistance prediction in S. aureus. To illustrate

the interaction between k, the clustering validity values, and AUPRC, we depict the
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predictive performance for all k ∈ {1, 2, . . . , 20}, for logistic regression in Figure 6.4

and for GP–PIKE in Figure 6.5. It should be emphasised that k has to be determined

prior to evaluating the predictive performance to avoid information leakage influencing

the choice of the clustering parameters—as we have done by choosing k∗ prior in this

analysis. The results do not indicate that the stratification enhanced by hierarchical

clustering results in robust results with a lower standard deviation. They do indicate,

however, that the enhanced stratification can result in a higher predictive performance.

In most of the scenarios, the curves display a similar behaviour for all five linkage cri-

teria. An exception is the prediction of ceftriaxone resistance in K. pneumoniae, as

ward linkage leads to high predictive performance for k < 10, with decreasing perfor-

mance for k > 10. However, a seemingly opposite development can be observed for

the weighted linkage criterion and average linkage criterion. Another exception can

be observed for ciprofloxacin and amoxicillin-clavulanic acid resistance prediction in

S. aureus—predictive performances are not consistent with changing k and large vari-

ations can be observed with no trend discernible. It can be observed that the choice

of k has a large influence on whether the enhanced stratification will lead to improved

predictive performance. For many scenarios, choosing a “bad” k leads to lower per-

formance than the baseline employing no hierarchical clustering, k = 1. For only a

few scenarios will any k lead to an increased predictive performance, e.g. amoxicillin-

clavulanic acid resistance prediction in E. coli using ward or complete linkage criterion

or penicillin prediction in S. aureus for all linkage criteria using logistic regression.

6.3 Summary and discussion

This chapter introduces a novel method to enhance the train–test stratification for

MALDI-TOFMS based phenotype prediction tasks, based on inferring hierarchical con-

nections within the dataset from the MALDI-TOF profile. This new stratification proce-

dure wasmodeled on the hypothesis that the inferred hierarchical clusters depict phy-

logenetic branches and relationships between the bacteria contained in the dataset.

We employ clustering validity scores to choose an optimal number of clusters k∗ to be

used as a cluster parameter. The results reveal that neither the Silhouette score nor the

Davies-Bouldin index indicate a clear choice of k that leads to well-separated clusters.

However, we can demonstrate a beneficial effect of the proposed enhanced train–test

stratification for MALDI-TOF MS based antimicrobial resistance prediction.

One general observation from our experiments is that the train–test stratification

technique affects the predictive performance considerably; despite the fact that for

each k, the same number of spectra are in the train dataset (although the train and test

distributions differ). Deviations of up to 20% in AUPRC values between the lowest and

the highest predictive performance were not expected, but they emphasise the poten-

tial of using auxiliary latent information (i.e. information that is not directly observable

or measured) of MALDI-TOF mass spectra. High predictive performance—higher than

employing no hierarchical stratification—can likely be explained by both the train and

test dataset following the “true” structure of the data closely. Therefore, each strati-
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Figure 6.4: Predictiveperformanceusing logistic regression illustrating the influenceof dif-

ferent linkage criteria and the number of clusters k of all nine antimicrobial resis-

tance scenarios. The results are given in mean average precision (AUPRC) ± stan-

darddeviation on the test data over 5 randomsplits. Thedashed vertical line depicts

the k∗ value chosen for the respective species.
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Figure 6.5: Predictive performance using GP–PIKE illustrating the influence of different

linkage criteria and the number of clusters k of all nine antimicrobial resistance

scenarios. The results are given inmean average precision (AUPRC)± standard de-

viation on the test data over 5 random splits. The dashed vertical line depicts the k∗

value chosen for the respective species.
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6.3 Summary and discussion

fied split (induced by each seed) is capable of training on a dataset that closely follows

the true distribution.

Albeit the observed benefit to predictive performance, the results do not support the

hypothesis that the enhanced stratification can reduce the standard deviation between

the prediction results of different splits. This observation could have several explana-

tions: (i) the hierarchical clustering cannot capture the patterns that cause the high

standard deviation, (ii) the stratification cannot mitigate a high classification complex-

ity for certain parts of the data, leading to over- or underestimation of predictive per-

formance, or (iii) the high variance between test data splits is due to small sample size,

as K. pneumoniae—the species with the fewest samples—displays the largest standard

deviation compared to E. coli and S. aureus. The results presented in this chapter high-

light the potential of inferring and including phylogenetic structure into the stratifica-

tion, but also indicate that such a method is fraught with obstacles to be overcome to

obtain a stable method, e.g. (i) in a regular experiment, no ground-truth samples are

available to validate the clustering, and (ii) obtaining a single optimal number of clus-

ters k∗ that is a good choice for all prediction tasks. The introduced hierarchical clus-

tering based stratification should be seen as a step towards improved MALDI-TOF MS

based resistanceprediction—while easy to implement and conceptually simple, further

improvement and research is necessary to increase the method’s stability. We pro-

pose two directions of future research: First, collecting future MALDI-TOFMS datasets

that include strain information about themicrobial specimenmeasuredwould allow for

analysing whether the inferred hierarchical tree in fact represents the phylogenetic re-

latedness or not. Other auxiliary latent information, such as the culture growthmedium

ormeasurement data, canbe reflected in theMALDI-TOFMSprofile. Comparisonof the

hierarchical tree and the aforementioned variables might provide additional insights

into their influence on the clustering output. Secondly, the influence of themetric cho-

sen for the clustering algorithm should be analysed. While the results in this chapter

are restricted to the Euclidean distance for conceptual simplicity, the application of a

MALDI-TOF MS-specific metric could be able to capture multi-scale nuances between

spectra. Methods based on optimal transport [118] could be particularily suited for

this application, as they have shown promising performance for classification tasks in

recent years.
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Theprevious chapters have focusedonestablishing thebaselineperformance, defining

an optimal classification scenario, and improving prediction accuracy through newma-

chine learning approaches. For all studies, theMALDI-TOFMSdata originated fromone

collection site, DRIAMS-A. Chapter 2 concluded that the current literature on MALDI-

TOF MS based phenotype prediction suffers from a lack of external validation of their

results. Further, MALDI-TOF MS datasets are known to suffer from domain differences

stemming from influences such as instrument settings and local laboratory procedures

[79]. Mitigating these differences forMALDI-TOFMSbasedmachine learningmodels to

allow for transferability and robustness of prediction has never been addressed before.

Hence in this chapter, we first determine the decrease in predictive performances

of predictors trained on the large number of samples contained in DRIAMS (see Sec-

tion 4.1) on MALDI-TOF mass spectra collected at different medical institutions, i.e.

DRIAMS-B to DRIAMS-D, in Section 7.1.1. Hereby the goal is to assess the general-

isability of an antimicrobial resistance predictor trained at a single site and to gain

insights into the decision making process. As this is an extension of the analysis in

Chapter 4, to utilize the information along the entire m/z–axis and for state-of-the-art

deep learning models to be applicable to the data, the full-spectrum binned feature

vector representation is employed throughout this entire chapter. While this fulfills

the requirement for a thorough machine learning validation, the need to obtain a pre-

dictor for sites with less available training data remains. To this end, we demonstrate

an easy-to-implement approach for improving predictions on sites with few training

samples by leveraging the vast amount of data in our dataset DRIAMS in Section 7.1.2.

Further, in Section 7.2 we investigate an approach aimed at learning a new data rep-

resentation for MALDI-TOF MS that is independent from batch-effects stemming from
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its collection site. We base this approach onmodels used in adversarial deep learning,

where two objectives—accurate resistance prediction and determining the collection

site of MALDI-TOF mass spectrum—are pitted against each other to obtain a data rep-

resentation that works well on the first objective, but fails on the second.

7.1 Leveraging large-scale multi-site data for improved local

prediction

7.1.1 Direct transferability of an antimicrobial resistance predictor trained on
external data

Three antibiotic resistance prediction scenarios were selected and evaluated on the

DRIAMS-A subdataset of DRIAMS in Section 4.1 (see Table 4.1), namely (i) ceftriaxone

resistance prediction in E. coli (referred to as E-CEF) using a LightGBM model, (ii) cef-

triaxone resistance prediction in K. pneumoniae (K-CEF) using a MLP, and (iii) oxacillin

resistance prediction in S. aureus (S-OXA), again using a LightGBMmodel. We continue

with these classification scenarios to evaluate the general transferability of predictive

performance from one DRIAMS subdataset to another. The added value of such an

analysis is two-fold, as it allows us to (i) obtain information on the variance of predictive

signals from different sites, and (ii) judge the feasibility of using a pretrained MALDI-

TOF MS based resistance classifier for prediction at other sites. In light of that, each

subdataset in DRIAMS is split into train and test, and a predictor is trained on each of

the train datasets respectively. Then, we determine the predictive performanceswhen

testing each predictor on each test dataset. This process is carried out for each classi-

fication scenario and the results are depicted in Figure 7.1. Overall the result indicate

that the best result on a test dataset is obtained when training on data collected at the

same site. Direct application of a predictor on a non-training site can result in drastic

decreases in performance to the point of hardly better-than-random predictions, such

as the DRIAMS-A trained K-CEF predictor reporting AUROC values of 0.53 on DRIAMS-

B and DRIAMS-C. Hence, additional investigation into the transferability of predictive

power to newsites is essential. Amongst the results obtained through training and test-

ing on the same site, DRIAMS-A performs consistently well, which can be attributed to

its large number of samples. The variability within the site-specific-test results is quite

high, ranging from 0.54 and 0.80, both for S-OXA on DRIAMS-C.

7.1.2 Empirical risk minimization on a union of datasets

With a baseline on inter- and intra-site predictive performance established, we fully

focus on the aim to improve prediction on a new site with few samples. Specifically, we

are interested if the data contained in DRIAMS, which includes large subdatasets such

as DRIAMS-A and represents MALDI-TOF mass spectra from multiple institutions, can

be leveraged to improve predictions at a new prediction site. This problem statement

mirrors the real-life objective of obtaining a new predictor for antimicrobial resistance
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target site *DRIAMS-D

DRIAMS-B *DRIAMS-D DRIAMS-C

DRIAMS-B DRIAMS-C DRIAMS-B

scenario model DRIAMS-A DRIAMS-B DRIAMS-A DRIAMS-A DRIAMS-A

E-CEF LightGBM 0.60±0.13 0.55±0.20 0.66±0.12 0.63±0.14 0.62±0.11

K-CEF MLP 0.23±0.12 0.29±0.14 0.37±0.17 0.20±0.11 0.33±0.18

S-OXA LightGBM 0.24±0.12 0.30±0.20 0.45±0.24 0.25±0.11 0.48±0.18

target site *DRIAMS-D

DRIAMS-C *DRIAMS-D DRIAMS-C

DRIAMS-C DRIAMS-B DRIAMS-B

scenario model DRIAMS-A DRIAMS-C DRIAMS-A DRIAMS-A DRIAMS-A

E-CEF LightGBM 0.31±0.06 0.34±0.06 0.39±0.05 0.35±0.06 0.40±0.06

K-CEF MLP 0.34±0.09 0.42±0.11 0.42±0.11 0.25±0.07 0.44±0.09

S-OXA LightGBM 0.21±0.09 0.08±0.02 0.27±0.12 0.21±0.12 0.27±0.14

target site *DRIAMS-D

DRIAMS-D *DRIAMS-C DRIAMS-C

DRIAMS-D DRIAMS-B DRIAMS-B

scenario model DRIAMS-A DRIAMS-D DRIAMS-A DRIAMS-A DRIAMS-A

E-CEF LightGBM 0.29±0.09 0.48±0.05 0.43±0.06 0.34±0.08 0.43±0.07

K-CEF MLP 0.09±0.03 0.23±0.06 0.21±0.05 0.11±0.04 0.20±0.04

Table 7.1: Combining data from several collection sites can improve predictions on a target

site with few training samples expressed through AUPRC. Predictive performance

increases on DRIAMS-A and DRIAMS-Bwhen training is performed on a union of the

respective training data with other sites. DRIAMS-D does not benefit from an ex-

panded training dataset with other collection sites.
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Figure 7.1: Direct transferability of DRIAMS subdataset trained classifier quantified by AU-

ROC. The y–axis presents the train datasets of DRIAMS-A, DRIAMS-B, DRIAMS-C

and DRIAMS-D, while the x–axis present the respective test datasets. Hence, the

values on the diagonal correspond to intra-site training and testing. No S. aureus

samples with oxacillin label are available in DRIAMS-D, causing gaps in 7.1c. Sce-

nario abbreviations follow Table 4.1. Figure adapted from Weis et al. [126].

at a newmedical institution, where too few training samples are available. We emulate

this scenario by selecting one site from DRIAMS-B, DRIAMS-C and DRIAMS-D, as the

target site. Subsequently, different combinations of train splits fromall four datasets in

DRIAMS are pooled, a predictor is trained and applied to the single target test dataset.

Recently, it has been shown [137] such an approach of empirical risk minimization can

outperform more complex models from the field of domain adaption.

We conduct this experiment for all three classification scenarios for each test site.

The results in Table 7.1 show that a union of target-site training data with samples

collected at external sites is beneficial for DRIAMS-B and DRIAMS-C. Predictions on

both test sites improve by addition of the large DRIAMS-A dataset compared to train-

ing exclusively on target-site samples. DRIAMS-C further benefits from including ad-

ditional collection sites as well. On test data from DRIAMS-D, the best performance

was reached when training solely on target-site samples. In no scenario do unions ex-

clusively containing external data outperform the combinations including target-site

samples. These results indicate a higher similarity between the subdatasets DRIAMS-

A, DRIAMS-B and DRIAMS-C than with DRIAMS-D. Combining several datasets suffer-

ing from large batch effects between them can lead to the dilution of relevant signal

and no common information can be inferred. One explanation for this variance could

be that DRIAMS-D is collected at a laboratory service provider, while the other stem

from hospital clinical routine (see Section 3.1). Further, the results indicate that this

approach of empirical risk minimization based on datasets union always requires site-

specific samples.
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7.2 Learning site-independent data representations

7.2.1 Domain adaptation

In real-world machine learning employment, we are often faced with the task of em-

ploying a predictor trained on one dataset—referred to as source domain—to another

dataset—the target domain. In a realistic scenario a so-called domain shift is present,

i.e., the samples from individual domains are not necessarily sampled from the same

distribution. In the context of MALDI-TOF MS phenotype prediction, the reasons for

domain shift include usage of different measurement instruments, or slight variations

in laboratory protocols, for instance.

The general aim of domain adaptation is to use additional, possibly unlabelled, data

from the target domain to boost the generalisation performance and thereby improve

the predictive performance on the target domain. Following Farahani et al. [36], the

problem of domain adaptation is defined by the following: A domain is composed of a

feature space X , a label space Y , and a joint probability distribution over both p(x, y),
such thatD = {X ,Y , p(x, y)}. The sourcedomain is denotedbyDS = {XS,YS, pS(x, y)},
and the target domain asDT = {XT,YT, pT(x, y)}.

We train a machine learning model h : X → Y , taken from the hypothesis space H,

byminimising the expected risk on the source dataRS with respect to the loss function

L : Y × Y → R.

RS(h) = E
(x,y)∼PS(x,y)

[L(h(x), y)] (7.1)

Therefore, the expected risk on the target domain can be written as

RT(h) = E
(x,y)∼PT(x,y)

[`(h(x), y)]

=
∫
X×Y

`(h(x), y)pT(x, y)dxdy

=
∫
X×Y

`(h(x), y)pT(x, y)
pS(x, y)
pS(x, y)

dxdy

= E
(x,y)∼PS(x,y)

[
pT(x, y)
pS(x, y)

L(h(x), y)
]

(7.2)

In the case where both data in the source and target domain follow the same distribu-

tion, the fraction in the last expression rescinds itself to

pT(x, y)
pS(x, y)

= 1.

Therefore the risk on the target domain is equal to the risk on the sourcedomain. This

formulation provides the foundation for representation learning based domain adap-

tation as the essential goal is to determine the suitable upper bounds for RT(h). We

conclude that the target domain error can be bounded by the sum of source domain

errors, for a specific task and a distance measure d̂ist between the distributions of

105



7 Learning domain independent MALDI-TOF mass spectrum representations

both domains. This distance measure was shown to be upper-bounded in Ben-David

et al. [7]. A simplified version of this bound is given by

RT(h) ≤ RS(h) + d̂ist(S, T) + C, (7.3)

where RS(h) is the empirical risk on the source domain S, d̂ist(S, T) is the domain di-

vergence between source domain and target domain and C is a set of data-specific

constants. This formula includes all necessary parts for domain adaptation. The term

RS(h) is determined through training a classification model on source domain data.

As an approximation for the domain divergence d̂ist(S, T) a classification model can

be trained to differentiate between source and target samples [7].

Since we are interested in ensuring that the performance on the target domain is

similar to the performance on the source domain, our aim is to learn a model that min-

imises the divergence between source and target domain andmaximises antimicrobial

resistance prediction performance. In light of that, in the next chapter we design an

adversarial representation learning setup, inwhich the input data is transformedbased

both on a classification and a domain discrimination objective.

7.2.2 Adversarial domain adaptation for MALDI-TOF mass spectra

Weset out todevelopa sample representationofMALDI-TOFmass spectra that (i) forms

a basis for accurate antimicrobial resistance prediction, (ii) mitigates any domain shifts

between source and target, and (iii) generalises to previously unseen domains. As de-

scribed in the previous subsection, we aim to achieve such a representation by follow-

ing an adversarial training setup, inspired by previouswork [2, 40]. Figure 7.2 illustrates

an overviewof the approach. The individual components are explained in the following.

Data input and encoder network. The data input format are preprocessed MALDI-

TOFmass spectra (see Chapter 3.2), as used for all analyses in Chapter 4. The MALDI-

TOF mass spectra are given as input to an encoder neural network. This encoder net-

work transforms the spectra into a new representation used for downstream classifi-

cation and domain discrimination tasks. The aim is to obtain a representation from the

encoder that fulfills all above-mentioned objectives. The encoder network is presently

amultilayer perceptron (MLP)with a single hidden layer and aReLU activation function.

During implementation each batch consists of sample triples of the form (x, yamr, yd),
where x is a preprocessed MALDI-TOF mass spectrum, yamr ∈ Y = {0, 1} is the an-

timicrobial resistance label, and yd ∈ {1, 2, . . .} is a domain label. For conducting the

experiments, we require three domains; two domains for training, and one domain for

the evaluation of our method.

Classifier and discriminator. To train the output of the encoder network towards

both objectives, we employ both a classifier neural network and a discriminator neural
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network. They use the encoder transformed spectrum, i.e. a high-dimensional repre-

sentation of a spectrum, as input to predict both the antimicrobial resistance pheno-

type and the domain, respectively. Both of these classifiers were chosen to be shallow

logistic regression models. While more complex architectures, e.g. with convolutional

layers, can be easily inserted, the model is intentionally kept simple in this study. The

focus of model complexity on the encoder framework, allows for studying the poten-

tial benefits of domain adaptation for classification performance. A highly-complex

classifier architecture would make it more difficult to disentangle the causes of any

improvements.

Adversarial loss terms. The total loss term combines two components, the classifier

loss Lc and the domain discriminator loss Ld. Both components use a cross-entropy

loss with a different target. For instance, the classifier employs a binary cross-entropy

loss (i.e. a logistic regression loss) on the antimicrobial resistance labels yamr ∈ Y =
{0, 1}, given by

Lc(h(x), y) = −(y log(h(x)) + (1 − y) log(h(x))), (7.4)

where h(x) represents the predicted positive class probability of the model. The dis-

criminator network calculates a (binary) cross-entropy loss according to the domain

labels of samples. While we only employ two domains here during training, the frame-

work is capable of training with more than two domains, in which case a multi-class

cross-entropy losswould be applied. Note that during the training, the classifier is only

aware of the antimicrobial resistance label (i.e. not the domain information), while the

discriminator only has access to the domain label (i.e. not the antimicrobial resistance

phenotype). This architecture also allows to take advantage of unlabelled samples—

i.e. samples for which no resistance phenotype could be retrieved—as these sample

could still inform the discriminator network. While we do not take advantage of this

possibility in the experiments, we have laid the foundation for this direction for future

studies. The joint loss term is of the form

L := Lc −λLd . (7.5)

λ ∈ R>0 controls the influence of the discriminator and λ = 0 results in no domain

adaptation during optimization.

7.2.3 Defining domain dataset and distribution shift characterisation

We conduct the domain adaptation experiments on the resistance classification sce-

narios employed throughout this thesis, namely predicting (i) ceftriaxone resistance in

E. coli (abbreviated to E-CEF), (ii) ceftriaxone resistance in K. pneumoniae (K-CEF), and

(iii) oxacillin resistance in S. aureus (S-OXA). Further, we need to form three datasets

representing real-world domain separation and suffering from distribution shifts to

evaluate the adversarial deep learning model on. A domain should comprise a set of
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Figure 7.2: Schematic illustration of adversarial domain adaptation framework. Prepro-

cessed MALDI-TOF mass spectra are transformed by the encoder network. The

encoder is trained in an adversarial fashion, by alternating between minimising the

joint loss (and training the classifier network) andminimising the discriminator loss.

The framework therefore ensures good predictive performance on the resistance

classification task, while learning spectral representations that are domain inde-

pendent. Figure adapted from Weis et al. [127].

properties that allows for drawing samples from a reasonably fixed distribution. The

vast amount of samples contains in DRIAMS are influenced by several characteristics

that can vary over time. We define data domains based on two factors, specifically

(a) the clinical routine mass spectra collection site, and (b) the MALDI-TOF MS instru-

ment type. We employ data from both DRIAMS-A and DRIAMS-B, as these datasets

represent different distributions but are still close in terms of geographical distance

and inter-site transferability (as seen in Figure 7.1). Further, samples collected at

DRIAMS-A are subdivided by the instrument type that was used to perform theMALDI-

TOF MS measurement. Both the Microflex Biotyper LT/SH System and the Microflex

smart LS System belong to the Bruker Daltonics [12] Microflex Biotyper System instru-

ments. While MALDI-TOF mass spectra collected on both machines are very similar

and are, in fact, analysed through the same reference database during the manufac-

turers species identification, we do see slight differences when comparing the mass

spectra. The full extent of the domain shifts will be illustrated in the next subsection

(see Figures 7.3 and 7.4). As DRIAMS-A and DRIAMS-B were collected over different

time periods, to minimise confounding distribution shifts caused by biological varia-

tions over time, we restrict the samples to those collected in years 2017 and 2018.

The rationale for these choices is that for an initial proof-of-concept of our model we

want to obtain fairly similar datasets, for which the domain shift can be mitigated rela-

tively easy. Note that the MALDI-TOFmass spectra are used in their preprocessed and

binned, fixed-length feature vector representation as input. We subsequently describe

each domain and its specific properties in more detail.
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DRIAMS-A_mtI. This set of MALDI-TOF mass spectra is a subset of DRIAMS-A. All

sampleswere collected in 2017 and2018. Themachine type used to acquire the spec-

tra was the Microflex Biotyper LT/SH System, which will we referred to as mtI.

DRIAMS-A_mtII. The samples in this domain dataset are also part of DRIAMS-A,

also collected in 2017 and 2018. The MALDI-TOF instrument used was a Microflex

smart LS System, referred to asmtII. This systemsdiffers in the laser gas used in the in-

strument, but as stated above, species identification can be performed using the same

database as mtI, i.e. its decisions are based on the same underlying data. We note

that the microbiology laboratory collecting both DRIAMS-A_mtI and DRIAMS-A_mtII

spectra are the same—as spectra were collected and processed in the same hospital—

and both dataset should only suffer domain shifts caused by different MALDI-TOF MS

instrument type.

DRIAMS-B_mtI. This set of mass spectra was collected in 2018 at the hospital site

of DRIAMS-B. DRIAMS-B employed a Microflex Biotyper LT/SH System, i.e. the MALDI-

TOF MS machine type mtI.

7.2.4 Domain shifts

Generally, MALDI-TOF MS datasets exhibit certain shifts that motivate the use of do-

main adaptation methods to allow for model transferability. Figure 7.3 illustrates the

differences between our definedMALDI-TOFdomains in termsof hospitals andMALDI-

TOFMSmachines. Clear differencesareobservable, expressing themselves as variably-

pronounced peaks and shifts along the m/z–ratio axis. Based on visual inspection, dif-

ferences betweenmeanMALDI-TOFmass spectra collected at different sites are larger

than differences stemming from different MALDI-TOF instrument types. This obser-

vation is also supported by low-dimensional tSNE representations of the spectra, as

depicted in Figure 7.4.

The visualisations inform our choice of which domains to use during training and

evaluation, respectively. The trainingononehospital site—regardlessofmachine type—

is realistic in the sense that lab environments, including standard operating procedures

andmachine operator training, coincide. In this scenario, domain adaptation would be

employed tomitigate differences stemming fromdifferentMALDI-TOFMS instruments.

For model evaluation, we emulate applying the model to a previously unseen site, i.e.

a different hospital. This scenario is alignedmost realistically with the intent to roll out

a trained prediction algorithm to a new hospital for application on local data.

7.2.5 Aligned distributions fail to retain their resistance information

In the following, we discuss our experimental set-up and the results achieved by our

model. For model evaluation, we compare our model to two baselines. First, we es-

tablish a baseline using a logistic regression without any encoding of MALDI-TOFmass
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Figure 7.3:Mean of all preprocessedMALDI-TOFmass spectra for each domain. Differences

in the mean spectra of different domains are clearly visible, expressing themselves

in variably pronounced peaks and slight shifts along the m/z–ratio-axis. The m/z

range of 2370 to 2580 m/z was chosen for illustrative purposes. Figure adapted

from Weis et al. [127].
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Figure 7.4: Two-dimensional tSNE representation of MALDI-TOFmass spectra for each do-

main. The tSNE was performed with a perplexity parameter of 30.0. Clear differ-

ences can be observedbetweendatasets collected at sitesDRIAMS-A (i.e. DRIAMS-

A_mtI andDRIAMS-A_mtII) andDRIAMS-B (i.e. DRIAMS-B_mtI). Spectra collected

at different instruments but at the same site, i.e. DRIAMS-A_mtI and DRIAMS-

A_mtII, are more similar to each other and additional subgroups of datapoints can

be observed for all three species. Figure adapted from Weis et al. [127].

experiment LR (src) λ = 0 (src) λ = 0.1 (src) LR (trgt) λ = 0 (trgt) λ = 0.1 (trgt)

E-CEF 72.3 ± 3.4 92.7 ± 1.7 92.8 ± 1.8 48.8 ± 5.8 48.0 ± 0.8 48.1 ± 1.5

K-CEF 72.8 ± 2.9 95.6 ± 2.5 94.5 ± 2.5 17.3 ± 5.7 17.1 ± 3.5 16.5 ± 4.1

S-OXA 77.8 ± 4.1 93.9 ± 0.6 94.2 ± 0.9 21.7 ± 2.8 20.9 ± 2.6 20.2 ± 2.7

Table 7.2: Evaluation of two baselines and adversarial domain adaptationmodel on source

and target reported by AUPRC.We apply (i) a logistic regression (abbreviated by LR),

(ii) our model with domain adaptation disabled (λ = 0), and (iii) our model with do-

main adaptation (λ = 0.1). The two evaluation domains are comprised of (i) both

training domains DRIAMS-A_mtI and DRIAMS-A_mtII, as the source (abbreviated

as src), and (ii) DRIAMS-B_mtI as target (trgt). Scenario abbreviations follow Ta-

ble 4.1. Figure adapted from Weis et al. [127].
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7 Learning domain independent MALDI-TOF mass spectrum representations

spectra based on domain knowledge. The samples from both training domains are

combined into one training dataset to train the logistic regression. We then evaluated

this non-domain adaptation model on both the test spectra from the train domain and

on the independent evaluation domain. For the second baseline, we use our encoding

model, but disable any form of domain adaptation by setting λ, and thereby the influ-

ence of the discriminator, to zero. Finally, we compare our domain adaptation model

with λ = 0.1 to both of these baselines. The results of both baselines and the intro-

duced domain adaptation framework are depicted in Table 7.2. Predictions reported

by the domain adaptation framework are superior on the test dataset of the source do-

main. As indicated by both versions of the presented model, with and without domain

adaptation (λ = 0.1 and λ = 0, respectively), classification improves over the logis-

tic regression baseline. This highlights the predictive power of our encoder architec-

ture. Moreover, including the domain adaptation element does not have any adverse

effects on generalisation, i.e. the performance on source domain test samples does not

decrease.

However, this predictive power does not translate to samples from the target do-

main. Unfortunately, we observe that both versions of our model are still performing

comparative to a logistic regression on the target domain. While themodels with either

λ = 0.1 or λ = 0 exhibit a lower standard deviation and thus indicate a slightly bet-

ter regularisation power, there are no significant differences in predictive performance

between the introduced approach and a logistic regression baseline without any do-

main adaptation. However, as Figure 7.5 illustrated, the domain adaptation procedure

results in a significantly better alignment of source and target domain samples in com-

parison to the raw tSNE depiction in Figure 7.4.

In conclusion, the experiments do not confirm a benefit of the introduced domain

adaptation scenario. We infer that mitigating differences between MALDI-TOF MS in-

struments is insufficient to provide high predictive performances generalisable to new

collection sites. These results match reports by another study [79], which observed a

lack of technical and biological reproducibility of MALDI-TOFMS laboratory workflows.

While the selection of collection sites mitigate some variance in biological variability—

both siteswill contain similar strainsdue to close spatial proximity—thedecrease in tar-

get domain evaluation performance is driven by other factors that the proposedmodel

cannot account for at present. In light of the distribution depicted in Figure 7.4, we

hypothesise that defining more heterogeneous domain datasets will help to improve

upon this issue in future work. Additionally, we see further insights into domain dif-

ferences between datasets as critical for a large-scale inter-site application of MALDI-

TOF MS based antimicrobial resistance prediction. One avenue of future research will

therefore be an analysis of different types of shifts to shed some additional light on

why target domain performance does not improve.
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Figure 7.5: Two-dimensional tSNE representation of the latent spectral representations.

The tSNE was performed with a perplexity parameter of 30.0. The distributions all

datasets (i.e. DRIAMS-A_mtI, DRIAMS-A_mtII, and DRIAMS-B_mtI) are aligned to

a higher degree compared to Figure 7.4. Figure adapted from Weis et al. [127].

7.3 Summary and discussion

In this chapter we have demonstrated that the transferability of an antimicrobial re-

sistance predictor trained at one medical site to an unseen target site is limited, and

comes at the cost of large decreases in predictive performance. This observation is in

line with previous work [79]. Low transferability is a severe limitation to the application

of such a predictor to a new medical site, where too little data is available to train a

new classifier. We introduced two approaches to improve predictive performance on

the target site.

The first technique boosts the model learning capabilities by combining target train-

ing data with external training data from other collection sites. We have demonstrated

this approach can lead to large performance gains in comparison to training on the

available target data alone, i.e. from0.08 to0.27AUPRC for oxacillin resistance inS. au-

reus on target site DRIAMS-C, and from 0.30 to 0.48 AUPRC for oxacillin resistance in

S. aureus on target site DRIAMS-B. These results demonstrate the power and bene-

fits of public databases such as DRIAMS—not only as a reference dataset for future re-

search, but also to improve predictions on datasets the users apply it to. Whilewe have

achieved great improvements on DRIAMS-B and DRIAMS-C through this approach, it

did not benefit predictions on target site DRIAMS-D. We hypothesise that combining

training data from several institutions only boosts predictive performance if the vari-

ance between individual collection sites is not too large. Shared underlying signal has

to exist in the unified datasets that can be learned and used to improve the predic-

tion. The degree to which the captured signal is similar will likely be influenced mostly

by the implementation of laboratory protocols. For future work, we propose to inves-

tigate whether the usefulness of an external dataset can be predicted and explained
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7 Learning domain independent MALDI-TOF mass spectrum representations

through similarity measures, such as a difference in spectral mean or quantifying the

distribution shift through Maximum Mean Discrepancy [45].

The second technique leverages the power of state-of-the-art machine learning in

the field of adversarial domain adaptation to learn domain independent representa-

tions of spectra. This is achieved by training an encoder network in an adversarial

fashion, to reach high performance in terms of resistance classification performance

and low differentiation performance by a domain predictor. Unfortunately, our results

indicate that the proposed framework is not able to cope with the distribution shifts

between domains. While the learned representation mitigated differences between

domains, it is not able to learn representations with a higher generalisability in resis-

tance prediction. For future work, we aim to address several limitations in the current

approach. The distributions shifts that affect MALDI-TOFmass spectra are highly com-

plex and likely originate from a number of different sources that all influence the data

in subtle ways. As the method in the current stage was developed to mitigate differ-

ences stemming frommachine types, it is unlikely that more fundamental shifts—such

as shifts arising from the fact that datasets are collected at different laboratories with

slight variations in protocols—can be easily mitigated by our domain adaptation proce-

dure. Covering these scenarios has to involve more sophisticated preprocessing and

encoder architectures. Moreover, our approach is bound to fail in the presence ofmajor

systematic shifts, for instance a translation of thewholeMALDI-TOFmass spectrumby

20Da. In case of such a prominent shift, we expect these shifts to be mitigated bet-

ter in preprocessing, as they can be corrected for quite easily. This architecture also

allows to take advantage of unlabelled samples (i.e. samples for which no resistance

phenotype could be retrieved), as these sample could still inform thediscriminator net-

work. While we do not take advantage of this possibility in the experiments, we have

laid the foundation for this direction for future studies. Lastly—and not directly linking

to transferability—the high prediction performance reached by the encoder architec-

ture on the source data implies that more complex deep learning models than used in

previous chapters (i.e. MLPs), harbour the potential to outperform the previously in-

troduced methods. For future work, we propose to employ deep learning models with

more layers, techniques to improve generalisation performance such as dropout and

early stopping, and extend the baseline further.
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Part IV

Outlook on the path to clinical MALDI-TOF

MS based antimicrobial resistance prediction
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8 Necessary steps to reach clinical

applicability

Developing a resistance predictor based on MALDI-TOF mass profiles—that is suitable

for application within the clinical routine—is a complex endeavor. It is forming its own

field withinmachine learning for healthcare research: tackling MALDI-TOF based phe-

notype prediction, requiring close-nit collaboration with clinical practitioners to deter-

mine the model can be merged neatly into the treatment decision flow and consider-

ation of a number of real-world practical aspects of algorithm deployment in a hos-

pital. In this thesis, we have defined the shortcomings hindering the process, laid a

broad foundation in data availability and model development, and took first strides to

explore several aspects that we regard as essential for clinically-applied antimicrobial

resistancemodels. This chapter summarises the collected experience and outlines the

stepswe deemnecessary to obtain a predictor that is ready to be employed in a clinical

setting.

Roadmap towards clinical applicability of a MALDI-TOF MS based resistance pre-

dictor. While thepredictiveperformance reachedshows thepotential to utilizeMALDI-

TOF mass profiles for resistance prediction, we see many promising research direc-

tions unexplored and therefore believe that the upper limit of possible predictive per-

formances is not yet reached. As this list is quite vast, we dedicate an entire paragraph

to a detailed description of the individual research directions, which can be found be-

low.

As explored in Chapter 5, a clinically applied prediction must be able to recognise

out-of-distribution samples. As a results, the model chosen in the end for deployment

has to provide reliable and well-calibrated confidence estimates along with its predic-

tions. This safety mechanism can then ward off two potential sources of errors: (i) low

quality MALDI-TOF MSmeasurements, i.e. owing to too little probe on the target plate,

and (ii) out-of-distributions fromMALDI-TOFmass profiles stemming non-local micro-

bial populations (e.g. imported through travelling), where no informed prediction can

be made. These reported confidences can the form the basis for an rejection option

within the implementation of the machine learning model.

We propose to create an asymmetric rejection scenario following Weis et al. [125]:

Two thresholds θ0 ∈ [0.0, 0.5] and θ1 ∈ [0.5, 1.0] are chosen to set the rejection bound-

aries for the negative and the positive class. If the predicted class score of a classi-

fied MALDI-TOFmass spectrum is higher than θ1 the spectrum is assigned the positive

class, while the negative class is assigned if the score is less than θ0. In cases where
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the predicted score lies between θ0 and θ1, the model refuses any prediction and indi-

cates that the predicted probability lies below theminimumconfidence required by the

classifier. A prediction model with this rejection option would correspond to the case

of setting θ0 = θ1 = 0.5, i.e. none of the spectra are rejected by the algorithm. Sensitiv-

ity and specificity are twomoremetrics frequently-used in the clinic and for evaluating

diagnostics tests, that are defined through the confusion matrix (Figure 4.2):

sensitivity =
TP

TP + FN
=

TP
all positives

, (8.1)

and

speci f icity =
TN

TN + FP
=

TN
all negatives

. (8.2)

Please note that the terms recall, true positive rate and sensitivity are all synonyms de-

scribing the samemetric. The rejection thresholds θ0 and θ1 can be chosen to optimise

the sensitivity and specificity values obtained on an internal validation dataset. Both

metrics are connected through their underlying confusion matrix values; a more strin-

gent threshold while predicting the negative class will be beneficial for the sensitivity

value, but lower the specificity.

Another process in needof implementations is regular updating, retraining and reeval-

uating. Our results indicate that regular retraining of the machine learning model with

the most recent data is necessary. We recommend a monthly updating protocol, con-

structed as the following: (i) define the data collected in the most recent month as

the new evaluation dataset, (ii) use all data from the time window ending at the eval-

uation dataset as as training data to update and retrain the antimicrobial resistance

predictor, and (iii) keep continuous monitoring of the performance of the predictor and

distribution of confidence estimates on the most recent evaluation dataset. Particu-

lar care has to be taken when major changes to properties of the MALDI-TOF mass

spectra are performed, i.e. recalibration of machine parameters through technicians

from the manufacturing company, or changing the diode of the laser etc. Note the this

protocol requires expert knowledge on machine learning and therefore, a person with

the right expertise would need to be responsible for executing this protocol and super-

vising the quality of predictions. We also want to reiterate the classifier’s sensitivity

to small discrepancies in the spectra (see low transferability in Chapter 7) stemming

from measurement on different MALDI-TOF MS instruments. As a result, the contin-

ued functionality of any predictor is highly dependent on the stability of the manu-

facturers spectral processing and software. For a long-term steady clinical machine

learning model, collaboration with the manufacturers might be require to be warned

of a changes head-on.

After implementation of this procedure, the usefulness of our approach for the pa-

tients can be evaluated through a prospective clinical study. These steps should cover

then all major topic necessary to obtain a clinically-applicable antimicrobial resistance

predictor.
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Further MALDI-TOF MS tailored method development. We envision several lines

of research to further increase the predictive performance: The high inconsistency in-

trinsic to MALDI-TOF MS measurements—which suffer from low peak reproducibility,

high variance in the intensities along the y–axis, high discrepancies between spectra

collected at different instruments—pose a large, and potentially the largest, challenge

for MALDI-TOF MS based phenotype prediction. While this variation (depicted in Fig-

ure 7.4) can be handled by certain machine learning methods, and we will discuss

approaches below, an improved preprocessing of MALDI-TOF mass spectra holds the

highest potential to mitigate these differences. While we have seen superior perfor-

mance for the well-established MaldiQuant preprocessing pipeline, we have not yet

explored how warping to a reference spectrum would influence both the MALDI-TOF

mass spectral distribution and subsequent prediction results. The challenge with this

approach would be how to define the golden spectrum, i.e. the mass spectrum that

serves as a reference for the warping algorithm. The golden spectrum has to be deter-

mined per species, whichwould then lead to a species-specific preprocessingmethod.

In order to calculate the warping function, a significant overlap between peaks in the

target spectrum and the golden spectrum is required. This could lead to the need

for excluding spectra with too little matching peaks from spectral preprocessing and

therefore prediction and inclusion into the dataset. While this could be seen as a pit-

fall of reference spectra calibration, this procedure could also provide an extra quality

control step, by requiring that MALDI-TOF MS spectra with too little similarity to the

reference spectrum is remeasured. While we see challenges with this approach for

large-scale MALDI-TOF MS data analysis, the potential for improving downstreamma-

chine learning prediction warrants its exploration.

The results inChapter 7 indicate thatmodels including state-of-the-artmoduleswith

a higher complexity, e.g. architectures with more layers, including early stopping and

dropout, could improve predictions. Further improvements could be reached from in-

cluding other types of networks, such as convolutional layers instead of solely fully-

connected layers. Convolutions are thought to be less sensitive to variations in peak

position along the m/z–ratio depicted on the x–axis.

We further believe in the goal of learning site-independent representation through

representation learning techniques. The experiments conducted in Chapter 7 indicate

that real-world clinical dataset suffer from a distribution shift too large to be mitigated

through our adversarial representation learning approach. However, we believe that

collecting a new dataset directly designed for this task will allow for learning of latent

encoding independent from collection site. We propose the collection of a biologically-

stable MALDI-TOF MS dataset, that includes measurements covering the exact same

set of microbial samples collected at several clinical laboratories. The dataset should

be sufficiently large to allow formachine learning analysis after stratification splits. We

estimate at least 2,500 MALDI-TOF MS are required (based on Figure 4.7) from each

collection site; however representation learning models could require higher numbers

of samples. Note that these measurements are still only approximations of the real

domain shifts, as they only capture differences at the specific time when all samples
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are measured, and do not cover variances that span longer time periods, such as dif-

ferences between laboratory staff.

Decreasing the time-to-MALDI-TOFMSusingbacterial enrichment. Next, webriefly

outline the current status of a research area that has the potential to further improve

the speed and efficacy of MALDI-TOF MS based phenotype prediction—shortening the

time until the MALDI-TOF mass profile can be determined, by employing bacterial en-

richment techniques. Traditional MALDI-TOF MS requires single bacterial colonies,

and thereby a culturing step that limits the speed of the bacterial identification [135].

Enrichment methods aim to speed up the analysis by shortening, or fully avoiding,

the bacterial culturing step. These methods often utilise nano- or microparticles for

affinity binding, e.g. Yi et al. [135] employ rabbit immunoglobulin G bound to Fe3O4

(IgG@Fe3O4). The immunoglobulin part of IgG@Fe3O4 binds to bacterial cells, after

which the bacteria@IgG@Fe3O4 conjugate can be collected and washed [135]. Then,

the material is directly applied to the MALDI-TOF MS target plate for measurement.

The authors [135] report that by using their method, one can obtain a MALDI-TOFmass

spectrum 40% faster than through the standard protocol for blood cultures and have

demonstrated that it is able to identify six different species. However, a disadvantage

of directly smearing the bacteria captured through enrichment materials onto the tar-

get plate is the confounding signal, producedby theenrichmentmolecules themselves.

The resulting MALDI-TOF mass spectra will differ from current reference databases,

which were measured through standard MALDI-TOF MS, thereby leading to a higher

error rate during species identification. In light of that, Sun et al. [114] propose a pro-

tocol to release the enriched bacteria from the capturing molecules before measure-

ment. Further reservations exist for implementing these approaches, as engineers

have expressed concerns that exposing to thesemagnetic beads would cause damage

to the MALDI-TOF MS detector over time [114]. Presently, none of these methods are

ready to be employed to the clinical routine. Nonetheless, the active research and swift

progress in the field of MALDI-TOFMS further increases the possibilities of MALDI-TOF

mass spectra based phenotype prediction.

Genomics based antimicrobial resistance prediction. In this paragraphwe explore

the current state of antimicrobial resistance prediction based on another datatype. In

2017, the an EUCAST subcommittee report concluded that “for most bacterial species

there is currently insufficient evidence to support theuseofwhole genomesequencing-

inferred antimicrobial susceptibility testing to guide clinical decisionmaking” [31]. Still,

inferring of antimicrobial resistance phenotypes based on whole-genome and geno-

type sequencing using machine learning is gaining momentum, with many of the de-

velopmentswithin the last two years. The field is currently at amore advanced stage of

development than MALDI-TOF MS based AMR prediction, with public databases pro-

viding a number of datasets specifically collected for genome based resistance pre-

diction in bacteria. The PATRIC database collects a multiplicity of data and a set of

analysis tools to build a foundation for researchers to study antimicrobial resistance
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and causal genetic determinants. Thedata includesbacterial genomesandgenome re-

gions togetherwith the corresponding antimicrobial resistance labels [24]. Single addi-

tions to the database are can reach substantial sizes, e.g. VanOeffelen et al. [117]provide

adataset comprisedof 67,000genomes frommore than100bacterial species. Further

software tools are provided for predicting antimicrobial resistance in bacteria, for ex-

ample Chowdhury et al. [18] [19] employ a feature selection based on the Banzhaf power

index. For its subsequent AMRclassification they use a SVMclassifierwith theRBF ker-

nel, reporting acetyltransferase, β-lactamase, and dihydrofolate reductase AMR pro-

tein sequences predictions for Gram-negative bacteria with an accuracy ranging from

0.93 to 0.99 [18] and classification accuracies between 0.87 and 0.90 for bacitracin

and vancomycin resistance in Gram-positive bacteria [19].

Nevertheless, theprocessof implementing antimicrobial resistancepredictionbased

ongenomics into the clinicalmicrobiology is progressing slowly. The technique is stymied

by the slow turnaround time, added costs to the clinics, and the lack of robust results

demonstrating effectivenes for patient treatment [91]. The time until a result is ob-

tained varies between sequencing technologies, with Illumina sequencing taking at

least 24h and PacBio between 0.5 h to 24h [91]. Rossen et al. [99] second this as-

sessment for whole genome sequencing, estimating that measurement of 16 to 20

bacterial isolates would cost around 200 euros per isolate in the clinical routine set-

ting and take 2.5 days to 3days to report sequences. For comparison, MALDI-TOF MS

measurements run within minutes after culture growth. Both studies [91] [99] see a

big disadvantage in the fact that genome analysis is currently not part of the standard

clinical laboratory.

In summary, antimicrobial resistancephenotypingbasedonwhole-genomeandgeno-

type sequencing is an intriguing opportunity to provide early antimicrobial susceptibil-

ity labels. However, we conclude that MALDI-TOF MS based resistance prediction can

be implemented much faster and at a much lower cost, due to the fact the MALDI-

TOF MS is already the most widely-used technique for species identification.
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Data availability

DRIAMS

The data is publicly-available at theDryad data repository1. For each site, the data con-

sists of MALDI-TOF mass spectra in the form of .txt files and a meta-data file: (i) The

meta-data, including species andantimicrobial resistance corresponding to each spec-

tra, is part of the id folder, and (ii) the remaining folders store the MALDI-TOF mass

spectra in various stagesof preprocessing; rawall spectra as extracted from theMALDI-

TOF MS instrument, preprocessed all spectra after the application of an established

preprocessing pipeline and binned_6000 all spectra after the application of an estab-

lished preprocessing pipeline and binning along the mass-to-charge-ratio axis with a

bin size of 3Da, resulting in 6000 feature bins.

We recommendusingour Pythonpackagemaldi_learn2, to loadandanalyseDRIAMS

data for MALDI-TOF preprocessing andmachine learning analysis. The github package

comeswith an elaborate README.md file, which gives details on installation and usage

examples. In order to use this package the locations of data files and folder structure

must be preserved. Please note that all four downloaded data packages should be

kept in one folder, serving as the DRIAMS root folder, which then needs to be set as the

DRIAMS_ROOT path in the .env file.

The folder structure obtained after download is depicted on the following page. Each

folder—id, raw, preprocessed, binned_6000—contains folders according to the collec-

tion year, which then contain all .csv files.

1doi:10.5061/dryad.bzkh1899q
2https://github.com/BorgwardtLab/maldi_learn
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Appendix Figure 1: DRIAMS data file structure
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Software availability

In order to encourage method development by the community, we make the code

used for the analysis and the Python-based MALDI-TOF MS processing libraries pub-

licly available.

DRIAMS analysis

All code1 relating to experiments in Weis et al. [126] was made publicly available.

A supporting software package for MALDI-TOF MS data processing was provided on

GitHub2 to facilitate DRIAMS read-in, exploration and filtering.

GP-PIKE

The code to replicate experiments in Weis et al. [128] is publicly available on GitHub3.

1https://github.com/BorgwardtLab/maldi_amr
2https://github.com/BorgwardtLab/maldi_learn
3https://github.com/BorgwardtLab/maldi_PIKE
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The dates are given in the format dd.mm.yyyy. The curves indicate a

performance decrease with larger distance between the test and train-

ing window. All instances stem from DRIAMS-A. Scenario abbreviations

in the legend follow Table 4.1. Figure adapted from Weis et al. [126]. . . 54
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Glossary

E. coli Shortened naming of the bacterium Escherichia coli

K. pneumoniae Klebsiella pneumoniae

S. aureus Staphylococcus aureus

tSNE Abbreviation for t-distributed stochastic neighbor embed-

ding, a technique for visualizing high-dimensional data
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