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Abstract

In the country of Switzerland, there have been numerous attempts to
introduce internet voting in the past two decades. Current approaches
rely on purpose-specific complex cryptography to resolve the seem-
ingly contradictory security requirements of verifiability and privacy.
This results in systems which are very expensive to understand, proof,
develop and review.

We performed a survey of the literature and of history, law and poli-
tics in Switzerland concerning vote électronique. Based on this back-
ground, we reach conclusions how the situation can be improved to
lead to securer systems. This culminates into a new proposal for a
vote électronique system using code voting, drastically reducing the
complexity of the involved cryptography while reaching stronger se-
curity properties. We present formal definitions for the requirements
set forward by law, and prove our construction to fulfil these formal
definitions using a computational proof.
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Chapter 1

Introduction

In Switzerland, there exist two ordinal voting channels: Postal voting and
in-person voting at the polling place. Around 90% of voters use the postal
channel [99]. Additionally, Switzerland is attempting to introduce an inter-
net voting channel, primarily due to its advantages regarding usability and
availability [37, 47]. Serious efforts started as early as 2001 [54], and a clear
solution has not yet established.

This work takes a holistic approach to internet voting for Switzerland. We
first survey relevant international literature and then summarize the history,
politics and legal situation of internet voting in Switzerland. Based on this
understanding, we propose a new internet voting system: While simpler
than existing proposals, it achieves even stronger security guarantees. Its
core mechanism, previously not considered for Switzerland, is code voting:
Instead of entering their choice directly, like ”Yes” or ”No”, voters enter
codes corresponding to their choice, like ”2” for ”Yes” or ”3” for ”No”.

Whether this results in an overall favourable system is then again - as well
as whether an internet voting channel should be provided at all - a political
decision which we do not aim to to answer in this work.

Structure of this work To let the reader easier navigate this more work
more easily, and find what is important to them, we provide a short overview
of each chapter. All chapters approach electronic voting from their own per-
spective, and could be considered independent contributions. Together, they
form one larger, informal argument: The proposal we define and prove as
part of this work is optimal within the constraints imposed by literature and
reality in Switzerland.

In chapter 3, we survey literature. We first focus our attention on the privacy
and verifiability properties commonly achieved by electronic voting proto-
cols, how these properties are understood differently by different authors
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1. Introduction

and how the properties might interact with each other. Then, we survey no-
table electronic voting schemes, with a particular focus on remote schemes
proposed by research as well as industry. We then classify and describe
mechanism which are in use to reach the privacy and verifiability security
properties.

In chapter 4, we observe how electronic voting impacts Switzerland. We
reconstruct the history of electronic voting. We then analyse the current leg-
islation and set it in context with international law. We collect arguments
in favour and against vote électronique from the current political debate
in Switzerland. Lastly, we summarize the three conceptually different ap-
proaches of multiple cantonal administrations to provide an electronic vot-
ing system to their respective citizens.

In chapter 5, we summarize the setting of an internet voting system in
Switzerland. We first define the restrictions imposed by law and reality
in Switzerland, concerning involved parties and legally required security
properties. We then argue what minimal trust assumptions cannot be elim-
inated, what maximal security properties we might aim for, and how one
could reduce the overall complexity of such a system.

In chapter 6, based on the insights of the previous chapter, we iteratively
construct a protocol we argue to be optimal under the aforementioned con-
straints. Focusing on the voting phase, we establish a verifiable and a
privacy-preserving proposal. Then, we join these two proposals together
and define an appropriate setup and tally phase.

In chapter 7, we formally describe our proposal at a level of detail sufficient
for an implementation. We describe the infrastructure we rely on, which
simplifies the description of our protocol. Then we describe the protocol,
split into setup, voting and tally phases. For each non-trivial operation, we
provide pseudo-code. Finally, we argue how the protocol can further be
extended.

In chapter 8, we describe a formal model for electronic voting protocols and
security properties. We first define the roles, terminology and syntax of this
formal model. Then we provide game-based definitions of verifiability and
privacy guarantees, which match the requirements put forward by Swiss
law.

In chapter 9, we prove our proposal secure. We describe how the infrastruc-
ture we rely upon impacts our proofs. Then we instantiate the formal model
we defined in the previous chapter, implementing the syntax the formal
model requires. Further, we instantiate the security properties and provide
tight bounds on the attacker’s advantage.

In chapter 10, we reflect on the work as a whole, discuss future work.

2



Contributions The thesis is comprised of several contributions:

• A literature survey about properties, notable schemes and mechanisms
in electronic voting.

• An analysis about how electronic voting impacts Switzerland.

• A discussion on whether and how the current setting of internet voting
in Switzerland can further be improved.

• An iterative construction of the resulting protocol, which clearly shows
why certain messages are added to the protocol.

• A precise proposal using code voting which turns out to be much
simpler than previous proposals for Switzerland.

• A formal model which precisely specifies the requirements detailed by
Swiss law.

• A computational proof of the proposal in that formal model.

The thesis as a whole is further one large argument that the proposal is
optimal under the imposed constraints.
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Chapter 2

Motivation

The history of internet voting in Switzerland is a turbulent one. Since the
first trials run in 2003, Switzerland has seen many legislative changes and
no less than five different internet voting systems. At its height, half of
the cantons had legally binding votes for a fraction of their citizens. The
systems and the applicable legislation evolved multiple times, continuously
requiring more and more rigid security properties. In 2019, the last two
remaining systems found an end: The parliament of Genève denied a fi-
nancing required to continue development of its system, and the system of
Swiss Post was taken offline after it failed a public scrutiny test. Thus, after
almost 20 years of trials, Switzerland has now much stronger legislation, but
no available system able to fulfil it.

Research has to build around unsolved problems to fulfil the seemingly
contradictory requirements (like ensuring the server correctly stores one’s
own vote, without jeopardizing its secrecy), and resorts to propose largely
unrealistic schemes with lacking usability, excessive performance demands,
overly high complexity or a combination of all three. Politics has failed so
far to set a stable legislative basis and provide sufficient support for internet
voting projects to emerge and flourish. Meanwhile, industry and adminis-
tration struggle to implement such a complex system under continuously
changing requirements while choosing the right tradeoff between quality,
transparency and economic considerations.

In time, the issues in research, politics and industry might be resolved. In
the meantime, however, internet voting will stay in demand, which might
provoke only partially satisfying solutions to be deployed. This master’s
thesis therefore searches for an alternative: Given the internet voting litera-
ture, and the experiences with internet voting in Switzerland, what tradeoffs
exist and how can they be chosen to lead to a both simpler and more secure
voting system?
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Background
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Chapter 3

Literature

In its most general understanding, E-Voting includes all forms of voting
where some electronic device is involved, notably voting facilitation devices
or devices to speed up tallying [209]. Research around e-voting explores
how one can vote using electronic aids, while providing Privacy (ensur-
ing the vote stays secret) and Verifiability (ensuring the vote is processed
as expected) under realistic assumptions. Additionally, general literature
to secure systems applies; specifically concerning Availability, Usability and
Transparency.

We focus here on the system the voter uses to cast their vote, starting with
the setup of said system, and ending where the tallied votes are output. For
the schemes used by these voter casting systems, we differentiate between
supervised and remote voting schemes. For Supervised Voting, it is assumed
the voter can be forced to follow a specific process, like at the local polling
station of their municipality. For Remote Voting, the voter may (ab)use the
provided system in any way they can, while not being constrained to specific
polling places. We focus on the latter, even more specifically Internet Voting,
where the vote is cast over the internet.

History of e-voting research In 1981, Chaum introduces mixes, and men-
tions e-voting as one of the applications [73]. In 1985, the first e-voting
scheme using encrypted ballots is introduced [77], then a second category
using anonymous channel follow in 1988 [67]. In 1992, the first scheme based
on blind signatures is published [124]. In 1994 and 1995, two fundamental
e-voting specific properties are introduced for privacy and verifiability, re-
spectively: Receipt-freeness and universal verifiability [22, 259].

First, the community focused on hardening the privacy of voting schemes
[220]. An example is the FOO scheme based on blind signatures already
proposed 1992 [124]. The property of receipt-freeness, proposed in 1994 [22],
motivated additional schemes [220]. Privacy notions further strengthened
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3. Literature

with the proposal of coercion-freeness in 2005 [157] and everlasting privacy
in 2006 [194]. At the same time, the focus of the community began shifting
towards strengthening the verifiability of the systems [220].

Motivated by Chaum proposing visual cryptography (hence executable by
the average voter) in 2004 [69], these schemes aimed at being practical, be-
sides strong verifiability guarantees [220]. An example of a verifiable scheme
with a very simple concept is Prêt-à-voter from 2005 [72] which would then
be gradually improved over nearly a decade. In this period also the inter-
net voting scheme Helios is proposed, including an implementation easily
accessible to the public [2].

Finally, the first systems with strong verifiability guarantees developed by
researchers were starting to be used in real-world governmental elections.
Examples for electronic voting machines include Scantegrity, first used in
2009 [70], and vVote, used in 2014 [62, 90], with both based on the Prêt-à-
voter idea [220]. Internet voting schemes were tested on student associa-
tions, such as in Switzerland [140, 103, 102] and Austria [165], but then did
not find their way into governmental elections.

In 2011, the first protocol developed by industry with some notion of veri-
fiability was published and then used in elections in Norway [7]. Although
criticised as of low quality [217], similar systems (facing similar critique)
by the same vendor Scytl were then introduced in Switzerland and Aus-
tralia (see section 3.2.3), besides other countries.1 Estonia is the only country
which has been able to provide internet voting for more than a decade, hav-
ing continuously adapted its system to the new developments in research
[282]. In Switzerland, multiple different systems were used over time, with
often changing functionality and applicable legal base (see chapter 4).

In 2016 and 2017, an effort was made to clearly list and define properties
required of an e-voting system [84, 26, 168]. Further, over the last years
cryptographic and symbolic proofs have become more common, both for
existing systems used in industry (e.g. [88, 262]) as well as directly published
together with new schemes [169, 14, 141].

3.1 Properties

We start by reviewing properties an e-voting system should provide.

We categorize these properties into privacy, verifiability and general secu-
rity requirements. Privacy is concerned with keeping the voter’s intention
private, to protect its vote from coercion. Verifiability ensures the voting sys-
tem works as expected, to bolster trust in the system and prevent or enable

1Scytl remains the only international firm providing internet voting to governments.
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3.1. Properties

detection of tampering. The general security requirements are not specific
to e-voting but apply to all secure systems, to enable convincingly secure
development, review, operation and maintenance.

Verifiability and privacy properties may conflict with each other, making it
difficult if not impossible to fulfil all of them at the same time [74, 286]. In
general, it can be summarized that absolute privacy (no information leaked)
cannot coexist with verifiability (sufficient information available to verify the
result) [155].

Which selection of properties are important, and their exact definition, is
unfortunately not established yet. We choose as our primary source in this
chapter a survey from 2017, with the authors being a who’s who in electronic
voting [26]. However, these definitions are not very exact, and the list is
not complete (notably, fairness is missing). We therefore refer to additional
surveys [155, 84, 168, 123, 249], and papers discussing specific properties.

High Stakes and Strong Attacker Simple and feature-rich e-voting sys-
tems could be easily designed if some parties were to be assumed trust-
worthy. However, depending on the magnitude of decisions taken by the
system, such strong trust assumptions become unrealistic: For decisions of
national or international relevance, nation state attackers must be assumed,
with their respective enormous resources and influence. Further, voters
might not agree upon which authorities are trustworthy and hence might
distrust an election result supervised by the ”wrong” authority.

To counter malicious authorities, Distribution of Trust is proposed: Multiple
authorities perform crucial tasks together, such as to decrypt the election
result. The property in question is then only broken if all or a significant
portion of the authorities work together on the subversion. Choosing suf-
ficiently many, sufficiently heterogeneous authorities ensures collaboration
becomes extremely unlikely, and therefore the property remains preserved.

Besides untrustworthy parties, the used tools could be malicious or simply
faulty. The Secure Platform Problem recognises this unobservable black-box
fashion in which hardware and software operate [244]. This holds for the
devices employed by the authorities, but also for the personal devices used
by the voter. Indeed, even a cautious voter cannot reasonably defend its per-
sonal device against a targeted attack by a properly motivated and funded
attacker.2 The voting authority devices pose an even more valuable attack
surface, while not having access to much stronger defence mechanisms.

To counter bad tools and devices, a concept called Software Independence was
proposed. It requires that an (undetected) change or error in software can-
not cause an undetectable change or error in an election outcome. Weak

2For a recent example, see the Pegasus leaks https://www.nzz.ch/ld.1640310 (2021).
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software independence is achieved when misbehaviour is detected, while
strong software independence allows to correct the detected error without
having to rerun the election [246, 248]. Necessarily, all data required to
calculate the end result must be published.

3.1.1 Privacy

Privacy properties ensure the vote stays private to the voter. This enables
free expression of opinion, without fear of retaliation before, during or after
the election. Even voters intending to prove their vote to an attacker (for
example, to win some cash prize) are not convincingly able to do so when
the strongest privacy properties are fulfilled.

There are however inherent limits to how far privacy can go; the stronger
the privacy notion, the more complex (or even impossible) it becomes to
reach verifiability properties. Acceptable privacy notions may also differ
depending on the electorate and the stakes of the election.

Ballot Privacy, hence that the vote is not revealed to anyone, seems to be
the absolute minimum privacy property to aim for, already recognised by
the first schemes in 1985 [77].3 The first schemes claiming to implement the
property opted for anonymous channels [67] or encryption of the vote [77].

Over time, the privacy properties got stronger and stronger. Receipt Freeness
was introduced in 1994, and guarantees the voter cannot prove how they
voted (even if they wanted to) [259]. In 2005, Jules et al. propose Coercion
Resistance, which essentially requires the voter actions to be indistinguish-
able to the attacker [157].

Benaloh argues in 2013 that the strong privacy notions literature aims for at
that time might be too strong. When using the (physical or virtual) voting
booth, coercing voters could simply create video proof of their vote, de-
fying any mighty privacy mechanism implemented within. He argues the
attack to be scalable, as the attacker can probabilistically check the video
proof.4 Benaloh observes pre-registration coercion as practically impossi-
ble to defend against, and declares it a ”lost element”. Instead, protocols
should focus on preventing post-election coercion, and avoid unnecessary
complexity archiving close to no benefit [20].

When looking at the schemes employed by industry, receipt freeness after
finishing the voting phase is indeed provided, although by sacrificing ver-
ifiability properties. Concretely, only the election result is published, but

3Note that the formulation ”not revealed to anyone” is clearly too strong, as the vote has
to be at least revealed to the tallying authority in some form.

4When randomly auditing 5% of all supposedly coercing voters, then watching their
video proof at 5 times the recording speed, the attacker is 100 times faster at verifying than
the voters were at proving.
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3.1. Properties

no individual recorded votes. Auditors ensure that the individual recorded
votes actually sum up to the election result, but the general public is not
able to.5

Somewhat separate - and uncontested - is Fairness, which requires no one
learns (parts of) the election result until the count. It essentially enforces that
votes must be encrypted if they are transferred over an insecure network or
to an untrusted authority during the voting phase.

Also somewhat separate, but much more difficult to achieve, is Everlasting
Privacy, which requires the privacy guarantees to not erode over time. Con-
cretely, the encryption (or whatever binds the vote to a voter) being used
must not be based on a cryptographic hardness assumption.

Ballot Privacy

A voter’s vote is not revealed to anyone [267].

No outside observer can determine for whom a voter voted [155].

This most basic privacy definition was how privacy started in e-voting [155].
Even the earliest schemes from the 1980s achieve this property, and see it
necessary to do so [77, 67]. It can be directly translated from article 25 c) of
the UN human rights pact II [97]. While also accredited by Switzerland, a
secret vote is not required by its constitution [105], and it depends on the
canton whether this is implemented.6

The property provides privacy in intimidation-free environments and is con-
sidered the de-facto standard privacy requirement [267]. Most recent schemes
aim for stronger privacy properties, to support voting even in environments
with coercion.

Exactly defining ballot privacy can be tricky; definitions might be too weak
or strong, or simply not apply to a wide area of protocols [23]. Formal
privacy proofs were for example done for sElect [169] or Helios [23].

As demonstrated by the first schemes claiming to implement this property,
anonymous channels are enough to support this property [67], even under
strong verifiability guarantees. Alternatively, of course encrypting the vote
also ensures its contents stay private [77].7

Receipt Freeness

A voter cannot prove after the election how it voted [155].

5Like the Swiss Post protocol from 2021 (see section 3.2.3).
6Some cantons have Landsgemeinde where the electorate votes publicly by show of hands.
7Assuming the decryption keys are properly managed.
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A voting system is receipt free if a voter is unable to prove how
she voted even if she actively colludes with a coercer and devi-
ates from the protocol in order to try to produce a proof [26].

Receipt freeness was proposed in 1994 to counter what is now known in the
literature as Italian attacks or a failure of the short ballot assumption: With many
potential voting options available, voters can be coerced to vote a specific
combination. If this combination does not appear in the final tally, then the
voter did not comply [22, 247, 26].

It is difficult to achieve, as it often conflicts with verifiability (notably ac-
countability) guarantees, which might require providing a receipt to the
voter. These receipts must therefore be designed in such a way that they do
not reveal the voter’s intention, which introduces complexity and hard-to-
spot edge-cases.8

Coercion resistance

A voter cannot interact with a coercer during the election to
prove how she is voting [155].

A voting scheme is coercion resistant if there exists a way for a
coerced voter to cast her vote such that her coercer can not dis-
tinguish whether or not she followed the coercer’s instructions
[26].

Coercion resistance was introduced in 2005 to account for more powerful at-
tacks previously not considered: Besides forcing a specific vote, the attacker
might also force abstention or randomization of the vote, or even surrender
of credentials [157]. The voter should be able to submit its true preference,
even when being monitored by the attacker [75, 166]. Or differently for-
mulated, the coercer should not be able to distinguish whether the voter
followed the instructions of the adversary or not [277].

Various approaches exist to fulfil this property, such as revoting, or faking
credentials, votes or receipts [166]. However, the complexity introduced is
usually considerable, and it is very difficult to provide usability and verifia-
bility nonetheless. Consider the JCJ/Civitas scheme, which is usually used
as a prime example of a scheme archiving this property: In a usability study,
90% of the voters failed to understand how the fake votes worked [198].
Further, concerning verifiability, it can be argued that cast-as-intended is not
provided as the voter does not (and indeed must not) get feedback whether
it cast a fake or valid vote [158].

Fairness

8For example, ThreeBallot receipts still allow to trace the vote in large electorates [245].
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No participant can gain any knowledge, except his vote, about
the (partial) tally before the counting stage [249].

This property is recognised to be necessary for even longer than receipt
freeness. Already in the paper for the FOO scheme of 1992, the authors
consider fairness an important property and lament previous work that does
not achieve it [124]. The property ensures voters voting late have no more
information available about what is in the tally than those voting early.

The property is not particularly hard to achieve, for example using a thresh-
old decryption schemes on the encrypted votes in the end. However, it
might still prevent some particularly inefficient schemes to reach produc-
tion: Counting procedures of multiple days might be unacceptable to the
electorate, while fairness prevents the counting to start before the election
ends [272].9

Everlasting Privacy

A voting scheme has everlasting privacy if its privacy does not
depend on assumptions of cryptographic hardness [26].

The idea was introduced in 2006 with a corresponding fulfilling voting
scheme [194]. The idea is to keep a vote secret indefinitely, avoiding any
consequences for the voter even in the far future. It can be argued cur-
rent voting reasonably offers this property, as the votes are destroyed after
the count. Voting schemes that rely on destruction of data to uphold the
property were proposed to be referred to as archiving the weaker Practical
Everlasting Privacy [9].

A core observation is that a future attacker might has access to much more
computational power, but to less data (due to its permanent destruction)
[9]. Another observation is that only privacy has to hold unconditionally;
verifiability guarantees may erode over time (as long as they do not break
until after the election is permanently decided) [91].

This feels like a perfect example of applying a perfectly hiding / compu-
tationally binding commitment scheme! However, in these proposals the
vote still requires encryption and, if this encryption is based on compu-
tational assumptions, only authorities must learn the vote that are trusted
to destroy it after the election [195, 96]. Other schemes may rely on an
anonymous channel to the voting authority [177, 180], but an implementa-
tion of an anonymous channel might again use computational assumptions
[92]. Another primitive which unconditionally preserves privacy and might
therefore prove itself useful is perfect encryption.

9Note that simply detaching the vote from the voter is not enough (for example by using
anonymous channels [67]); the votes themselves have to stay intransparent to any untrusted
authority until the end of the voting phase.
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3.1.2 Verifiability

Verifiability properties ensure the votes are processed as expected. There
should be no doubt that the election result is correct, with placing as little
trust as possible in authorities, implementations or hardware. The full elec-
torate should be convinced of this fact, both winners and losers, so everyone
accepts the election outcome.

Verifiability notions were first introduced in 1995, as Individual Verifiability
and Universal Verifiability [259]. As terminology implies, it was somewhat
focused on who performs which checks. The voter verifies that their vote
reached the destination, and everyone else verifies that all votes are summed
up correctly.

After almost a decade, the notion of End-To-End Verifiability started to es-
tablish [155]. It seems to be first mentioned in 2004 [197], although it is not
explicitly explained there. Nowadays, besides different understandings how
end-to-end verifiability is supposed to be defined [84, 26], research seems to
agree that this is the verifiability notion to be pursued (rather than ”only”
individual and universal verifiability) [168, 26, 84].10

However, there is still something missing: Voter authentication. Only eli-
gible voters should participate, else the election result does not represent
anything useful [127]. The formalization is known as Eligibility Verifiability,
and, together with end-to-end verifiability, recognised as another must-have
of verifiable elections [26].11

Depending on the voting scheme, additional properties might be applica-
ble than those described here.12 For example, if the protocol tallies using
homomorphic encryption, Ballot Verifiability - ”all ballots that are confirmed
contain correct votes” [24] - is additionally required, so voters cannot for
example include negative values for candidates [168].

Individual Verifiability

A sender can verify whether or not his message has reached its
destination, but cannot determine if this is true for the other vot-
ers [259].

Each eligible voter can verify that his vote was really counted
[249].

A voter can verify that the ballot containing her vote is in the
published set of ”all” (as claimed by the system) votes [155].

10Note that indeed most impactful researchers are included in these references.
11Some authors imply that it is part of their definition of end-to-end verifiability [84].
12Again, some authors include all properties required for a correct election result already

in their end-to-end verifiability definition [84].
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The concept was introduced in 199513 [259]: Voters should be guaranteed
the vote actually reached its intended destination. This can only be done
by the voter, as no one else could (or should) know how which vote was
cast. Mapped to the physical space, this property is trivially fulfilled when
a paper vote is put into the ballot.

Some definitions explicitly state the ”published set” as a bulletin board [162,
268]. These authors are usually concerned primarily with proving, and the
way ”published sets” are usually implemented there is by bulletin boards.

In practice, this property is achieved by providing the voter with a receipt
depending on the cast vote. The system would ensure that if the receipt
is successfully constructed, then some honest authority had to be involved.
This mechanism might be combined with another round-trip for the voter
to confirm that indeed the receipt was received successfully. Depending on
the receipt, these may even be used later by the voter to complain if their
vote is not found within the set of accepted votes (which however somehow
contradicts receipt freeness).

Universal Verifiability

In the course of the protocol the participants broadcast informa-
tion that allows any voter or interested third party to at a later
time verify that the election was properly performed [259].

Any participant or passive observer can check that the election is
fair: the published final tally is really the sum of the votes [249].

Anyone can verify that the result corresponds with the published
set of ”all” votes [155].

Introduced in 1995, it was to ”audit an election, checking it was fair, without
getting back in touch with all of the voters” [259]. Essentially, it requires
all collected votes are counted correctly, and that this fact can be observed.
This is comparable to the physical setting where the ballot is opened and
everything inside is counted, under the watch of auditors. The definitions
usually require the slightly stronger notion that anyone (not just the auditors)
can verify the tally.

This property is trivial to implement if all collected votes can be published.
Depending on the scheme however, the collected votes are still associated to
voter identifications. Then, verifiable shuffles can be used to separate this

13Note that some authors claim [155] it was already introduced in 1981 by Chaum [73],
although we do not see this connection.

17



3. Literature

connection, or, if an applicable encryption scheme was used, the votes can be
counted homomorphically (and then only the final result is decrypted).14,15

End-To-End Verifiability

A voting system is end-to-end verifiable if it has the following
three kinds of verifiability:

• Cast-as-intended: Voters can independently verify that their
selections are correctly recorded.

• Collected-as-cast: Voters can independently verify that the
representation of their vote is correctly collected in the tally.

• Tallied-as-collected: Anyone can verify that every well-
formed, collected vote is correctly included in the tally.

[26]

End-to-end verifiability ensures (...) voters that followed the pro-
cedure are guaranteed that their vote is counted in the final result
[82].

The first definition, by Bernhard et al., explicitly states individually prov-
able sub-properties, and then defines the system end-to-end verifiable. The
idea was around for some time, already Prêt-à-Voter used a very similar
structure to motivate its security [72].16 The definition exists in many slight
variations [155, 221], both concerning terminology (for example, collected
is sometimes referred to recorded [221]), and meaning (for example, some
require tallied-as-collected only to be verified by the voter [155]). The three
properties implying end-to-end verifiability is sometimes called the chain-of-
custody [24].

The second definition stems from the more formal camp. It is more high-
level, and explicitly captures the end goal. They argue that the combination
of the three properties as given by the first definition is not yet proven to
imply end-to-end verifiability, and therefore should not be used [84].

As to the relationship to individual verifiability and universal verifiability:
Küsters has proven that they are neither necessary nor sufficient to imply
end-to-end verifiability [168]. They are only sufficient with two additional
assumptions: When no clashes can be produced (hence the attacker cannot

14Note that both of these approaches have performance and/or expressiveness draw-
backs. When a voting system is not practically viable, usually this is the step where it shows.

15Separating the voter identification from the voter might not be enough to preserve
privacy, as discussed already in the context of the short ballot assumption.

16With ideas about the sub-properties going back to SureVote [68] and MarkPledge [4] as
described in [155].
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use the same vote to convince multiple voters of individual verifiability) and
when the bulletin board can be parsed uniquely as a list of ballots (hence
there exist no partial ballots which could be combined in multiple ways, as
for example it is the case in the ThreeBallots scheme) [82].

Eligibility Verifiability

Anyone can verify that each vote in the published set of “all”
votes was cast by an eligible voter, and anyone can verify that
each eligible voter cast at most one vote [155].

Anyone can check that each vote in the election outcome was
cast by a registered voter and there is at most one vote per voter
[162, 268].

Introduced was the property only as recent as 2010 [162, 268], although it
is merely a rebranding of Democracy which has been known already 1992
[124, 123]. It captures the missing piece in the chain-of-custody definition of
end-to-end verifiability: Voter authentication [127, 26]. Only the votes of
eligible voters must be counted, and for each eligible voter only a single
vote must be considered.

This property seems to be little researched in the literature, and few schemes
explicitly claim it. Notable exceptions include an extension of Helios (2015)
[167], and the Electryo scheme (2021) [252], with both implementing the
property by simply publicly allocating each vote to a voter.

Accountability / Dispute Resolution

Accountability is fulfilled when, for a judge J:

• Fairness: J (almost) never blames protocol participants who
are honest, i.e., run their honest program.

• Completeness: If, in a run, some desired goal of the protocol
is not met — due to the misbehaviour of one or more pro-
tocol participants — then J blames those participants who
misbehaved, or at least some of them.

[171] (slightly paraphrased)

A voting system is said to have dispute resolution if, when there
is a dispute between two participants regarding honest partici-
pation, a third party can correctly resolve the dispute [26].

Introduced in 2010, it is a stronger notion of verifiability: When something
goes wrong, it is not only detected, but additionally it is established who
misbehaved. Global Verification, where ”the published result exactly corre-
sponds to the votes cast by eligible voters”, is shown to be a special case of
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Accountability [171]. For practical schemes, the authors argue it a must-have
[168].

The idea of Accountability was picked up by other authors, and extended
to additionally require also some way to process the consequences. The
resulting property is then called Dispute Freeness and guarantees disputes
are settled (implying the protocol can continue afterwards) [26].

Due to its relative novelty, this concept has not received much attention yet.
Approaches would likely include signatures (due to non-repudiation), but
might also require help from the outside (for example, to counter a collec-
tion authority that simply drops all received votes). Formal analysis of the
property suggests primarily processes concerning the individual verifiabil-
ity checks may be difficult to protect from disputes [15].

3.1.3 General Security Properties

Some properties required for secure systems in general are described here.
While not strictly e-voting specific, some of their aspects nonetheless have
e-voting specific implications.

Availability For the voters to actually benefit from the system, it must be
operational, both for the voters as well as all other actors of the system.

Users may interpret an unavailable system as breached. Additionally, an
excessively slow system might hurt participation. Disruptions within the
fragile internet architecture are feasible, especially for state-level adversaries
[223]. Targeted disruptions (against specific voting times or locations) make
the problem even more serious, as the election result could be skewed into
a specific direction [26].

A related concept is robustness.

Faulty behaviour of any reasonably sized coalition of participants
can be tolerated. No coalition of voters can disrupt the election
and any cheating voter will be detected [249].

This looks at availability from the protocol perspective: Malicious actors may
disrupt the election by (ab)using the protocol specification. For example, a
trustee might prevent threshold-decryption of the election result by refusing
to share its partial key.

Usability

(Usability is the) extent to which a system (...) can be used by
specified users to achieve specified goals with effectiveness, effi-
ciency and satisfaction in a specified context of use [122].
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In this definition from ISO, effectiveness requires accuracy and completeness
when achieving specified goals, efficiency ensures the resources required
are low, and satisfaction necessitates comfortable usage. Therefore, usability
ensures the system is accessible in such a way that the user can actually
benefit from its intended purpose and properties.

Similar to availability, usability must also be fair in such a way that it does
not skew the result. For example, the system must be provided in all official
languages to not hinder participation of communities which do speak only
a subset of official languages.

An additional challenge is to help the voters understand the verifiability and
privacy properties, to ensure their motivation following proper procedures.
Especially verifiability has been found to not be easily understood [288, 187,
193, 210], similar results can be expected for the privacy properties.

Transparency When the system is transparent in its operation. Voters and
auditors can reasonably follow what is going on and attest correct proce-
dures. For this to be possible, all necessary information must be published
in an accessible way.

We interpret this term in a very general way: It applies to specification, im-
plementation, review and operation, but also to the surrounding processes
such as regulation and organisation. If all people involved with the e-voting
system would be replaced at the same time, and no introduction would be
given to the newly commissioned, could they pull off an election like before,
knowing what to do when, and why?

This motivates the second very important part required for transparency,
besides publishing all information: The information must also be under-
stood. While it cannot be expected that everyone understands all the details
- for example, cryptographic proofs do require very specific expert knowl-
edge - a ”reasonably high percentage” must understand ”sufficient”. While
this is unfortunately very fuzzy: A simple system - with few actors, pro-
cesses and cryptographic operations - clearly has an advantage over a more
complicated one.

3.2 Notable Schemes

We review selected e-voting schemes that have been proposed in the liter-
ature or industry. We consult various surveys [155, 199, 220, 158, 166] and
rely on our general overview of literature. We focus on schemes with novel
ideas, real-world usage or lasting impact on the research community. How-
ever, we by no means claim completeness, specifically having not considered
schemes which seem hardly applicable to the overall purpose of this work.
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We do not consistently compare properties, nor explain the cryptographic
building blocks. At this point of the work, we are only interested in re-
viewing the general ideas and mechanisms. We however align terminology
somewhat, naming authorities consistency Collection Authorities (those who
store the vote submitted by the voter), Tallying Authorities (those who tally
the stored votes) and Trustees (those who jointly possess key material to
decrypt the election result). Seldom, we also require Registration Authori-
ties (those who register voters and provide each a credentials over a secure
channel), Printing Authorities (those who print and send key material over
the (secret) postal channel to voters) or Authentication Authorities (those who
can authenticate individual voters)

3.2.1 Supervised Schemes

While we interest specifically in remote e-voting, much research has gone
into how supervised voting can be improved. Voting machines or specially
prepared paper ballots allow various kinds of interesting schemes with dif-
ferent privacy and verifiability tradeoffs. We look at these schemes as some
of their central ideas may also be applicable to remote voting schemes.

What separates supervised schemes from remote schemes is that they are
able to force a specific process on voters, due to the physical presence of the
voter in the voting area. By restricting voter behaviour, some strong verifia-
bility and privacy guarantees can be reached without using much cryptog-
raphy. Consequently, porting the central ideas from the supervised schemes
to the remote setting might not always be possible.

We separate here from (non-verifiable) direct-recording electronic voting
machines (DREs). Their setup is usually dead simple (touchscreen allowing
to compose the vote) as are their security mechanisms (some print a paper
receipt for manual recounts, some have video surveillance, ...) [134, 29].
While they promise to bolster trust in the election [135, 224] and improve
usability for voters [192], their quality is often lacking17 and financial incen-
tives might play a non-negligible role in vendor selection [71, 188]. As we
interest in this work primarily to build a suitable internet voting for Switzer-
land - which has never used DREs so far, and there are not plans to do so -
we consider a more detailed look at DREs as out of scope for this work.

We omit describing here several schemes we find nonetheless interesting.
Some clever techniques were presented by Punchscan [110], Aperio [109]
and its digital twin Eperio [111]. Primarily practical problems due to com-
plex votes were tackled by STAR-Vote proposed for Travis County, Texas
(US) [18] and EasyVote proposed for the State of Hesse (DE) [283].

17Many reports about broken DREs exist, for example https://politi.co/2K2OGOv/.
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Prêt-à-voter family The voter receives a printed two-part paper ballot. On
the left part, the candidates are printed in rows in some random order. On
the right part, the voter can mark its preferred row. Further, the right part
contains an encryption of the candidate order, which can be threshold de-
crypted by a set of trustees. Random audits ensure the order of the candi-
dates on the left actually conforms to the encrypted order on the right.18

The voter now marks its preferred row on the right side and then destroys
the left side with the printed candidates. The voter gets a copy of the right
side as a receipt before submitting the original to the collection authority.

The collection authority publishes for all received ballots the encryption of
the candidate order and which row was marked, for the voter to verify with
its receipt. The trustees then use this information to decrypt the candidate
order, and tally the votes [72].

Many variants have been proposed based on this simple design. They im-
prove on generation of the ballots, reduce assumptions on authorities, intro-
duce a human-readable paper trail or provide everlasting privacy [257, 253,
182, 170, 95]. A version of Prêt-à-voter called vVote [62, 90] was used in 2014
in Victoria (AU) in a binding election. It was available to visually impaired
voters, voters not proficient in English and voters from abroad. A total of
1121 votes were handed in using the system [63]. However, the system did
not convince [219] and was abandoned again [276].

The interesting idea from this voting scheme is, that not the voting choice
is cryptographically processed, but rather the context in which it was given
(concretely, the ballot sheet). While this is not cryptographically simpler
per-se (still, verifiable shuffles or homomorphic encryptions are needed by
the trustees to decrypt the vote while keeping verifiability and privacy guar-
antees [256]), from a voter perspective, this could be desirable: The vote is
published in clear text which may makes the check whether the vote was
collected as expected simpler and more intuitive for the voter.

Voters need to be supervised to ensure they do not get a full receipt19 and
to prevent the chain-voting attack20.

Scantegrity family The voter receives a paper ballot with a unique id, the
candidates, and an initially hidden code for each candidate. Random audits

18Some unused ballots would be randomly chosen, and the trustees would verify whether
their print matches their encrypted candidate order.

19For example, by not destroying the left part.
20An attacker smuggles out a ballot, then coerces a voter to use this specific ballot to

cast its vote (of which the attacker of course knows the candidate order). This attack can
be chained by additionally coercing the voter to smuggle out the new unused ballot they
received from the polling place.
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ensure the hidden codes are correctly committed to their respective candi-
dates and ballot ids. The voter uncovers the code for the favourite candidate
(hidden behind a seal) and notes it down together with the ballot id. Then
the voter passes the paper ballot to the collection authority.

The collection authority ensures only an appropriate number of candidate
codes are unsealed, then scans the ballot, and publishes online pairs of ballot
ids and their uncovered code. Voters check whether the correct uncovered
code appears, else can challenge the authority (knowing the uncovered code
is assumed sufficient proof). In the tallying phase, the uncovered codes
are then matched back to the candidates based on previously committed
assignments [70].

Scantegrity II was used in Takoma Park, Maryland (US) in 2009 to cast 1728
votes. It was used again in 2013 together with Audiotegrity and Remotegrity
[64]. Audiotegrity adopted the Scantegrity protocol to visually impaired vot-
ers; essentially giving them the choice to either cast or audit a Scantegrity
ballot produced by a computer [159]. Remotegrity adopted the Scantegrity
protocol to remote voters, giving them the possibility to audit the vote on-
line. The voter sends the code of the favourite candidate to a public bulletin
board, then checks the board updated accordingly. If this is the case, the
voter unseals the authentication code and sends it to the bulletin board,
too.21 However, the vote still needed to be sent in to the authorities to pro-
duce a paper trail. Two out of the five voters using the system forgot this
and invalidated their vote [287]. After 2013, Scantegrity was again aban-
doned [64]. Before Scantegrity, some of the authors were involved in the
Punchscan system, used in 2007 in student elections [110].

The scheme only requires a minimal change in voter behaviour: The voter
no longer places a cross besides a candidate but instead uncovers the can-
didate code. This already enables an end-to-end verifiable voting system,
notably including dispute-freeness, as the voter can successfully challenge
an authority that publishes the candidate code incorrectly.

The core mechanism is the destruction of seal behind chosen options, to
make the choice permanent (and the non-choice provable). Knowing what
is behind the seal, combined with a check only an appropriate number of
seals were uncovered, is enough proof. To execute this check, Scantegrity
needs voter supervision.

Remotegrity uses the seals the other way around to not require vote su-
pervision: By showing an untampered seal, the voter proves they have not
confirmed their vote. This however is no longer dispute-free, as the voter

21Note that the voter will not unseal if the bulletin board is incorrect. If an authority
confirms some voter’s invalid vote, then the voter can successfully challenge by showing its
still sealed confirmation code.
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cannot prove whether they attempted to vote. Additionally using seals for
the candidate codes does not strengthen this property, as the voter can still
not prove that they have actually sent the codes to the server.

ThreeBallots The voter receives a three-part paper ballot. Each part has its
own unique id and a full list of all candidates.

For each list having n candidates, the voter places n + 1 marks as follows:
Each candidate is marked on either one of the three parts, while the favorite
candidate is marked on either two of the three parts. The voter chooses one
of the three parts, and gets to keep a copy of it as a receipt. Then all three
parts are submitted to the collection authority (which does not learn which
part was kept as a receipt) and mixed with the parts of other voters.

The collection authority publishes all parts of all voters. Now any voter can
verify the part of which they own a receipt for is actually included in the
tally, and anyone can tally which candidate won.

The scheme achieves receipt freeness as the voter, with the receipt of a sin-
gle part, cannot convince anyone for how it voted.22 Still, the collection
authority dropping parts is discovered with probability of at least 1

3 .

The scheme uses no cryptography at all, it requires however supervising the
voter to prevent them getting a full receipt23. Further note that the receipt
freeness only holds with few candidates and many voters (else coercing
voters may agree on identifiable candidate marking patterns) [245].

3.2.2 Remote Schemes

Remote voting enables to vote from home, or in fact, anywhere the voter
pleases. While convenient, or even the only way the vote can be cast (for
example, for voters living abroad), additional difficult security challenges
arise.

Coercion of the voter becomes easier for the attacker. The voter no longer
enters a private voting booth, but the attacker can literally watch over the
voter’s shoulder while casting its vote. Further, the vote has to be cast on the
voters device, then sent over the internet, before it is digitally collected and
tallied. The voter cannot reasonably trust any of the involved devices, and
needs proof which verifies the vote has been cast, collected and tallied as
expected. Finally, the voter has to go through all these hurdles self-reliant.
And, from the point of view of the voting authorities, without them being
able to force some kind of process on the voter.

22This is why at least three ballots are required: With only two ballots, the voter could not
vote for its favourite candidate, but take home a receipt where the candidate is not marked.

23For example, by taking home a copy of more than one receipt.
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We focus here on a specific form of remote voting, namely where the vote
is transferred over the internet to its intended destination. While improve-
ments over postal voting would also be interesting and important to look
into, we focus on internet voting as we feel this is a more pressing issue.

We omit describing here several schemes we nonetheless find interesting.
In Switzerland, UniVote and related schemes were verifiable schemes used
in student elections [140, 103, 102]. The same researchers have also pro-
posed more theoretical schemes which fulfil very strong coercion resistance
and everlasting privacy properties [177, 180, 178]. Very interesting from a
formal perspective are fully verified proposals [169, 14, 141]. Also espe-
cially interesting in the context of this work are code-voting based schemes
[68, 151, 154, 153, 28, 201].

FOO scheme The voter prepares its vote and blinds it. The blinding en-
sures no conclusions about the plain vote can be drawn. Then, the voter
sends this blinded vote to the authentication authority, which ensures the
voter is eligible to vote and responds with a signature over the blinded vote.
The voter unblinds the vote, and sends it together with the - still valid -
signature to the collection authority through an anonymous channel.

The collection authority ensures the signature is valid, then includes the vote
into the public tally [124].

With the sole assumption of non-colluding authentication and collection au-
thorities a rather simple scheme results. Note that the voter can even proof
when the registration or the collection authority misbehaves. A drawback
however is the difficult practical implementation of the anonymous channel
[92] from the voter to the collection authority. Notably, when we opt for an
implementation using a verifiable shuffle, then we can design a verifiable
voting system without blind signatures at all [220].

Helios family The voter selects their favourite candidates, then the client-
side application uses a randomized encryption to create the vote. The ap-
plication commits to this vote (for example, by displaying a hash of its ci-
phertext) and leaves the voter two choices: Either audit the vote or cast it
to the collection authority. When the voter chooses to audit, the application
displays the randomness used for encryption, so that the voter can verify its
candidates were correctly encrypted into the vote. When the voter instead
chooses to submit, the vote is transferred to the collection authority without
the randomness revealed [19].

The collection authority publishes all received votes and who cast them.
After a cryptographic shuffle (to separate votes from voters), the votes are
decrypted and counted [2].
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As with other successful schemes, many variants have been proposed; to use
verifiable shuffles or threshold encryption, defend against ballot stuffing or
provide everlasting privacy [221]. The security has also been improved; for
example a replay attack has been discovered which could endanger vote
privacy [86]. In the context of Helios, the important difference between
weak and strong Fiat-Shamir24 has been studied [25]. A variant of Helios
called KTV-Helios provides private eligibility verification: Anyone can ver-
ify only eligible eligible voters have submitted votes into the tally, while it re-
mains unclear which vote was actually submitted due to the use of dummy
votes [167]. Another strain of Helios using weaker trust assumptions while
providing eligibility verifiability and receipt freeness is the Belenios family
[83, 66].

Helios has been available online since 2008 25, and has been used in univer-
sity elections [3], the IACR26 and others. This ”official” implementation has
been continuously updated, like the switch of the shuffle in Helios 1.0 to the
simpler and more efficient homomorphic tally in Helios 2.0 [221]. The Bele-
nios implementation is available since 2015 and has also undergone several
revisions since its release.27

The essential mechanism proposed of giving the use the option to either au-
dit the vote or cast is called the Benaloh challenge in the literature. It tries
to ensure the voter’s untrusted device is forced to perform correct computa-
tions: As it has to commit to the result of its computation, and said compu-
tation might be checked by the voter, wrong computations risk detection.28

However, if the computation is complex (as it is the case with Helios), ver-
ifying it might be challenging for the user: It may require a second device
and transferring the potentially long data required for verification onto this.
Little intuitive is also the fact that the audited vote cannot be submitted af-
terwards, but rather a new encryption has to be requested (our informed
reader of course understands that this is required for receipt freeness) [187].

JCJ/Civitas family The voter receives a private credential from the regis-
tration authority. During the voting phase, the voter encrypts the credential
as well as its preferred candidates, and submits both to the collection au-

24For zero-knowledge proofs of knowledge (ZKPK), to prove a statement the prover com-
mits to some value, then the verifier provides a challenge, to which the prover then answers
based on the commitment. If one would like a non-interactive ZKPK (hence without the
prover interacting with the verifier), this challenge is instead generated by hashing the com-
mitment (weak variant) or by hashing the commitment and the statement (strong variant).

25Reachable under https://vote.heliosvoting.org/.
26International Association for Cryptologic Research. The first vote using Helios was

conducted in 2010, see https://www.iacr.org/elections/2010/.
27Reachable under https://www.belenios.org/.
28Albeit this might be very hard to detect. How could the voter distinguish phony from

real randomness used for the encryption?
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thority. Voters also have access to forged credentials which they may use to
submit additional votes.

The collection authority publishes all received votes. After shuffling them,
and therefore anonymizing them, votes with forged credentials are filtered
out: The registration authority publishes a list of all valid encrypted creden-
tials, and using plaintext equivalence tests, the tallying authority discards
all votes with forged credentials. The remaining votes are decrypted and
counted [75].

Civitas’ predecessor was the JCJ scheme, proposed to tackle coercion re-
sistance as introduced in the same paper [157]. Civitas keeps the concept
of encrypted credentials such that real and forged credentials are indistin-
guishable, but relaxes the trust assumptions on single involved authorities
(for example, Civitas mandates multiple registration authorities instead of
just one) [75]. Further improvements to relax trust assumptions on authori-
ties have been proposed [266].

The essential mechanism used to achieve the coercion resistance relies on
valid and forged credentials, with the difference unobservable to the at-
tacker. The implementation of this idea as done by JCJ/Civitas requires com-
plex cryptography and multiple non-colluding authorities. The approach in
general has further theoretical and practical drawbacks. As the votes with
forged credentials are only filtered out after the shuffling, the voter has no
way to assert its intended vote was actually tallied, arguably breaking cast-
as-intended [158]. Initial performance of tallying was low, although this
was improved by other researchers [271]. The amount of forged credentials
a voter can produce must be bounded, to avoid flooding the bulletin board
with invalid votes [10, 160]. The handling of many credentials by the voter
might require assistance, for example using Civitas-specific smartcards, a
non-trivial expense for authorities [200, 202]. Further, the private creden-
tials must be exchanged on a secure channel without leaving any evidence,
likely requiring physical presence of the voter at some safe location.

Pretty Good Democracy Pre-election, (k + n) ∗ (m + 1) random codes are
generated, for k audits, n voters, and m candidates (the +1 is used for the
acknowledgment code). These are encrypted under the trustees public key
and then verifiably shuffled into the table P with k + n rows and m + 1
columns. The trustees help decrypt P for the printing authority, which sends
each voter the content of one row and the corresponding row index, and
uses the remaining k rows to audit the codes. Each trustee then shuffles the
first m entries of each row, storing the permutation homomorphically in an
additional value per row, resulting in the table Q (with n rows and m + 2
columns). Q is published on the bulletin board.
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The voter selects the code associated to their favourite candidate and sends
it together with the row index to the collection authority. The collection
authority encrypts the code and posts it on the bulletin board next to the
correct row of Q. The trustees run plaintext equivalence tests to find which
column index matches the encrypted code and mark the specific entry of Q.
Then, the trustees collectively decrypt the acknowledgment code and return
it to the voter.

After voting and for each row of Q, the trustees encrypt the index of the
marked column and homomorphically add it to the encrypted permutation.
These final values are decrypted, and determine the chosen candidate for
each row [258].

The security relies on non-colluding trustees as well as non-colluding print-
ing and collection authorities. Colluding printing and collection authori-
ties can break both privacy (undetectable) as well as vote on voter’s behalf
(detectable). This strong trust can be reduced with distributed printing (al-
beit not that practical) [254]. Through the initial shuffle resulting in P, the
scheme needs to place no trust in whoever generated the voting codes: The
code-candidate assignment is kept private and some of the codes intended
for the voter are audited.29

The main contribution of the scheme is the combination of code voting com-
bined with receipt freeness30, through encryption of the vote. No trust on
the voter device is required: Privacy is ensured through code voting, and
integrity (correct encryption of the vote) through the acknowledgment code
(which the trustees only publish when they ensured the vote is indeed an
encryption of one of the codes associated to the voter). However, individual
verification is not provided, as the returned acknowledgement code is not
tied to a specific vote (rather than just to some vote).

Selene family The voter encrypts its vote, and sends it to the collection au-
thority. The collection authority pairs the encrypted vote with an encrypted
tracking number and stores it on the public bulletin board. It then replies
with a commitment to the tracking number as a receipt for the voter. The
voter knows a trapdoor for this commitment, hence can open it to any track-
ing number they desire. After the election, the tallying authority shuffles
and then decrypts votes and their associated tracking numbers. All pairs
are posted on the public bulletin board.

29From a theoretical point of view, this does not implicate the security of the scheme: We
could instead task the printing authority with creating P, without any changes to our trust
assumptions. However, from a practical point of view, the additional introduced complexity
might be worth it: Generating much random data can be difficult, and may not be realistically
doable by an authority specialized on printing.

30Code voting avoids placing trust in the voter device for vote secrecy, while receipt
freeness limits opportunities for coercion.
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The voter, if coerced, can now choose a vote it wants to claim ownership,
and can fake a receipt using its trapdoor. Some time later, the tallying au-
thority opens the commitment to the voter, so they can check that their vote
was included correctly. Attackers cannot distinguish real from fake receipts,
hence why receipt freeness is preserved [255].

This mechanism can also be applied to other schemes [252] while the usabil-
ity has not been conclusively demonstrated [8, 288, 166]. Its implementation
and operation is complex: It requires verifiable shuffles, trapdoor commit-
ments and other complex cryptographic primitives, and - practically likely
the biggest problem - a private channel from the tallying authority to the
voter after each election.

The main idea is that trapdoor commitments are applied to internet voting:
The voter sends the ballot to the election authority which uses a trapdoor
commitment scheme to commit to its reception. The election authority can
only open the commitment to the specific vote, hence can convince the voter
it was included correctly. But as the voter knows the trapdoor, it can fake
a receipt to any vote, hence is not able to convince a third party how they
voted.

3.2.3 Industry protocols

Remarkably, industry never used directly the ideas from research, but in-
stead always proposed and implemented their own protocols. This could
however just be coincidence as the sample size is low: We identified only
two strains of protocols in use. One is made in and for Estonia, the other
is made in Spain by Scytl. Scytl remains to be the only international firm
providing internet votings for governments.

Estonia introduced internet voting in 2005, already at a national scale [184].
In almost yearly elections (municipal, national and european) internet vot-
ing gained more an more users [185]. In 2013, individual verifiability was
added assuming a non-colluding secondary device [150]. In 2017, auditabil-
ity of the server processes were improved, and based on this the system
was argued end-to-end verifiable [148, 145]. Further hardening the system
was again requested politically in 2019, with some concrete improvements
proposed in 2021 [145]. In general, the system is seen as an overwhelming
success, making voting safer, cheaper and more convenient [282, 164, 163].31

Scytl provided internet voting systems since 2005 [152]. Their first publicly
reviewed system was for the Norwegian elections 2011, with the protocol
published at a research venue [6, 176]. The essential (individual) verifiability

31However, it should be noted substantial critique has been raised towards over reliance
on the voter’s device (shortly before introducing individual verifiability) [146] and operation
procedures (before introducing universal verifiability) [270].
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mechanism was based on return codes, as explicitly chosen by the Norwe-
gian government [176], although it was not prominent in the literature at
the time. Since then, the essential idea behind the Scytl protocols stayed the
same, while over time more cryptographic operations were added to reach
stronger security guarantees.32

After the first contract in 2005 (since its foundation in 2001), Scytl quickly
grew. Besides internet voting, they provide voting services of various sorts,
including DREs [152]. The steep rise to 600 employees by 2015 in only a few
years [152] was followed by a evenly steep decent into bankruptcy in 2020
[173] and the acquisition by the Paragon group for only 5 million dollars
[218]. Whenever their systems were revealed to the public, controversies
arose: Almost matching experiences about a lack of implementation quality
were reported in their 2011 and 2019 reviews in Norway and Switzerland,
respectively [217, 179]. Their systems were cancelled a few days before the
vote as in Sweden 2019 [104], or abandoned after public support eroded as
in Norway 2013 [31] or France 2017 [243]. Only New South Wales (AU) is
still providing their internet voting system, where strong legal provisions
prohibit inspecting the system closely [276].

Estonia protocol Estonia started plans to introduce internet voting as early
as 2002 [282]. In 2003, a protocol was proposed primarily focusing on sim-
plicity, using the national electronic ID system for authentication and plac-
ing full trust in central servers [146]. The public tender 2004 won Cyber-
netica, the company still involved with further developing the system [185],
which already contributed to the national electronic ID system.33 The first
trial was held at the start of 2005, and the first nation-wide elections al-
ready at the end of the same year. The main motivation was to increase
voter turnout, although whether this was achieved was hard to tell, in part
because only 2% used the internet voting channel in that first election [184].

This first generation system used a simple ”double-envelope” mechanism
[184]: The vote is encrypted34, then signed by the voter using the national
electronic ID.35 Two online components are in operation: The first authen-
ticates the voters, while the second stores the votes. The offline component
receives all votes after the voting phase, stripped of their signature to pre-

32Compare for example the Norwegian system 2011 with the Swiss system 2019: The
cryptographic primitives are the same, as is the essential idea. However, the Swiss system
additionally achieves universal verifiability, essentially by attaching zero-knowledge proofs
to all computations (we simplify a bit, but overall this is the approach taken).

33See https://e-estonia.com/e-estonia-podcast-cybernetica/.
34Given an RSA election public key and a random seed r using RSA-OAEP.
35Signatures using that ID are in Estonia legally equivalent to hand signatures [183].

Malicious actors with access to voters ID could compromise other (arguably more valuable)
systems such as loan granting procedures.
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vent voter identification, to decrypt and tally [146].36 Both the application
the voter used to hand in the vote, as well as the involved servers, have
been hardened, but are nonetheless fully trusted in order to archieve cor-
rectness of the system [146]. Security was thus mainly achieved using clas-
sical risk analysis and mitigation by organisational measures. To improve
vote privacy, revoting over the internet was allowed37, with the postal vote
additionally overriding any internet vote [184].

In the 2007 national elections, the system was used for the second time,
tripling the number of votes cast to 31k [183]. This trend would continue,
with each election more and more voters choosing the internet channel [185].
Transparency efforts were increased; for example a public test system was
provided and a national information campaign done. During the vote, the
current number of internet votes cast was published, allowing a sanity check
whether the number is reasonable [183]. An increase in overall voter turnout
is not observed, although it is argued that the new voting channel manages
to include voters which otherwise would not engage politically [281].

In 2011, the fifth time using the first generation system, the strong trust
assumptions on the voting client sparked its first controversy: A modified
voting client was presented to the media (displaying different actions than
those actually executed), leading to a (denied) appeal to invalidate all inter-
net votes [146].

Until the next elections in 2013, after a long period of yearly elections, poli-
tics and implementation caught up to the inputs from the expert community
[282]. Following this discussion, the system was extended to support indi-
vidual verification and made open-source [185].

Individual verification was added on top of the already existing system,
and is again conceptually very simple. After casting the vote, the voter now
receives a voting reference. The voting reference and the random seed r
used for encryption of the vote are transferred to a secondary device (like
a smartphone) using a QR code. Then, the device downloads the vote us-
ing the voting reference. It encrypts all possible voting options using r38,
and checks which one of the resulting ciphertexts corresponds to the down-
loaded vote. The corresponding plain value is then shown to the voter [150].

The design explicitly avoids that the device learns the plain vote the voter
expects, so it cannot simply fake validation. Further, the smartphone apps
run on different operating systems as the voting application, hence forc-
ing the voter to use different devices. Arguably, coercion resistance does

36The offline component only receives the last internet vote of each voter, respectively no
internet vote if the voter has used the postal channel [146].

37The voter is notified if their to-be-cast internet vote overrides an existing vote [146].
38This was feasible due to the low number of voting options.
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not decrease, as revoting remains possible as before. It is however acknowl-
edged that the voting application could show the voting reference of another
voter’s vote (and then submit any vote it likes). This threat was mitigated by
making voting references valid only for a short time period (30min - 60min)
and limiting how often they can be retrieved from the server (3 times) [150].

In 2013, no problems with verification were reported. In 2014, few problems,
which could be traced to bugs in the verification apps, were reported. Over-
all, the high verification rate of 3-4%, with no real issues detected, results in
a very low probability of large-scale attacks [150]. Log analysis attested the
new system overall very stable operation, with most of the few anomalies
conclusively explained [149].

However, new trouble arose with the strong trust assumption in the server-
side components and national ID system. Researchers from the US observed
the voting procedure of 2013. They identified procedures followed inade-
quately (like executing four-eye-principle tasks by a single user, skipping
consistency checks or generally improvising in case of unexpected failures)
and lax operations of the servers (like downloading software over HTTP or
logging in as root). They demonstrated a range of attacks, however each
attack relied on broken trust assumptions either on the voter side39 or the
trusted server side40 [270]. The paper concludes with a recommendation to
abandon the internet voting channel.41 The Estonia Election Committee re-
jected the recommendation, claimed the described attacks as unfeasible and
regretted the circumstances of its publication42 [80].

In 2016, further development of the system was initiated to relax the strong
trust assumptions on the server. The largest threats identified for the cur-
rent system were that votes could be removed from the collection server, and
that the tally had no verification mechanisms so far. The new system called
IVXV introduces the new server component Registration Service (RS), which
would work in tandem with the collection server to prevent tampering with
the recorded votes (essentially both keeping a ledger of all collected votes).
Further, the RSA-OAEP encryption of the votes is replaced with ElGamal,
enabling privacy-preserving verifiable shuffling and proofs of correct de-
cryption [148].

IVXV slightly extends the voting process: After voting, the voter receives,
additional to the voting reference, a signature of the RS over a hash of the

39The Ghost Click Attack revotes by having access to the ID and the Bad Verify Attack
assumes the secondary device colludes with the vote casting device.

40Various forms of malware on the servers and their potential impact were demonstrated.
41The tone of the paper is rather alarming and sensational, with a corresponding webpage

published https://estoniaevoting.org/. The paper remains widely cited.
42The webpage disclosing the findings went online less than week before the next election.

As described in [270], election officials suspected a political plot behind its creation.
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collected vote and the voter identity. This signature is checked by the sec-
ondary device, which notably now learns the voter identity during verifi-
cation. The security of the system is hardened as an attacker would now
need to compromise both the collection server as well as the RS. It was also
argued as an advantage of the new design that the collection server, as not
fully trusted any more, could now be operated by an external provider [148].

The tallying is extended to add proofs over correct decryption. All other pro-
cesses, notably from the tallying component, can be audited by executing the
same algorithms over the same data. Auditing however reveals which voters
have revoted and even the vote - voter relation. The latter could be avoided
by introducing a verifiable shuffle.43 Further, effectively auditing requires
expert knowledge of the underlying cryptographic protocol and likely even
an independent implementation. It was thus proposed that trustworthy au-
ditors would be appointed by specific stakeholders (like political parties)
rather than making auditing open to the general public [148].

With these changes, the system is argued end-to-end verifiable [148]. It was
used for the first time in 2017 [145]. In 2019, political efforts were again
made to continue developing the system. Besides overall hardening the
system, it should also be examined whether voting from mobile devices is
feasible. So far no conclusion has been reached, but small changes have
already been proposed, for example an independent notification channel to
the voter (confirming whenever a vote has been cast). It is made clear that
the system will continue to undergo changes [145].

Using the published logs, over the years some conclusions about internet
voting behaviour was drawn. Some voting in pairs is observed, both parent-
child as well as between spouses, indicating the secrecy of the vote becoming
more of a (free) choice to voters [279]. It was further found that verification
indeed improved confidence in the system, and verification was executed
predominately by the more risk-aware population44 [269].

In Estonia, the internet voting system (and their digitalized government in
general) is clearly seen as a wide success, both as an indispensable service
to its voters, and also a source of national pride. From an efficiency point
of view, internet voting also prevails: It was both in 2017 as well as in 2019
the most cost-effective voting channel, with the bulk of its resources spent
on operations [164, 163].

Scytl in Norway (2011-2013) In 2008, Norway started the e-valg project,
which aimed to introduce internet voting in the municipal elections in 2011.

43The verifiable shuffle was declared optional (depending on the degree auditing would
be open to the public), and it remains unclear whether it was considered in the final imple-
mentation.

44Identified as male, 18-40 years old, Linux users.
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In 2009, the core strategic decisions were made: A single central system was
aimed for, using an eID to authenticate the voters. It was to be tried in some
selected municipalities. A dedicated team of around 10 people supervised
the project, while experts, users, politicians and administrations were in-
cluded in feedback groups. The whole cost of the project was estimated at
123 million kr (around 12 million EUR), with an 85% chance to stay under
220 million kr [203, 205]. A public tender was held in 2009, for the system
to be implemented in 2010 and afterwards tested [204].

The protocols were to use return-code voting45: The voter enters the vote
in cleartext, sends it to the server (possibly encrypted) and receives back
return codes. The voter ensures these codes match with what was previously
received over a secure channel (e.g. postal mail). Compared to the code
voting approach, the voter does not need to input codes for their selection,
but only needs to compare, which is argued to be much easier [6]. However,
the voter now must trust their voting device in order to achieve privacy, as
the vote is entered in clear text. The Norwegian authorities ”strongly felt”
that the usability advantages of return-code voting are more important than
the security advantages of code voting [176].46

In the implemented municipality elections, the voter chooses a party, then
adds specific candidates to the list of the party. The vote therefore consists
out of a single party selection, plus up to 99 candidates, while no write-ins
are possible. Revoting is allowed, while the last submitted ballot is counted.
Voters can override a remote vote using postal mail voting. Universal verifia-
bility is argued impractical as traditionally, only very few information about
the count is published, and as many different ballots are possible with the
same effect on the count, Italian attacks would complicate implementation
[132].47

The tender received two submissions [176]. One submission pioneered
the oblivious-transfer idea later on used in CHVote, submitted partially
by members of the same firm that also developed the Estonia voting sys-
tem [147]. However, their proposal was prohibitively inefficient, while still
requiring non-collusion assumptions on the two involved servers for both
correctness and privacy [176]. The winning bid by Scytl was much more
efficient with arguably weaker security assumptions, although it required
an additional trusted setup phase [132].

45Sometimes also referred to verification code voting.
46We could not reconstruct the reasoning leading to that conclusion. The provided secu-

rity guarantees are different for code voting and return-code voting, as is the mental model
important for usability, hence a one-on-one comparison may compare apples to oranges.

47However, some form of verified count was implemented in the tallying procedure, al-
though only auditors of the government could check this [273]. The government saw verifi-
ability also as a useful tool to ensure correctness of their system, besides being a necessary
evil to get support of academia and for the system [128].
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The protocol was initially designed by Scytl [6, 176], then modified by
Gjøsteen which also performed a computational proof [132, 133, 7]. This
modification was formally proven by Cortier et al. in two stages, 2012 and
2016 [87, 88]. The final implemented protocol was again different, primarily
to improve performance by moving operations from the voting client to the
servers [7]. However, the core ideas - to rely on two non-colluding servers
and how return-code voting was implemented - stayed the same through-
out all proposals. We will only describe the last approach, as this one was
actually used during the election in 2011 [7] and then continued to be used
in future Scytl protocols.

First, two public/private keypairs are generated: One for the vote collector
server (VCS) and one for the return code generator (RCG). Shares of the
private keys are distributed among electoral board members. The election
public key is generated out of the two public keys of VCS and RCG.48. The
election private key is not constructed yet, but will be after the election using
the shares of the electoral board members. Throughout the whole protocol,
it is assumed that VCS and RCG do not collude for vote privacy. Intuitively,
VCS stores the vote identities, and RCG the return codes. Further, VCS and
RCG must not collude for integrity, as they could freely add, alter or remove
votes.

For each voter Vi, VCS applies a pseudo-random function49 to get the voter
secret s. All possible selections of the voter are raised to the power s to result
in the partial selection codes SPij. All SPij are passed to the RCG together
with Vi. The RCG applies another pseudo-random function50 over each of
the partial selection codes to result in the final selection codes Sij. For each
Sij, a return code is chosen, and then a hash table is built up: The key is given
by H(Sij), while its value is an encryption of the corresponding return code,
using Sij as an encryption key. Finally, VCS and RCG share their private
keys and the hash table with the printing authority, which constructs for
each voter a voting card with all selections and the respective return codes.

In the voting phase, the voter makes their selection and encrypts it using
the election public key. The vote is sent to VCS which stores it for tallying.
Then, VCS partially decrypts it using its private key, re-encrypts it using s,
then forwards the resulting value to RCG.51 RCG further partially decrypts
it using its own private key.52 RCG can now repeat what has been done in
the setup phase to retrieve the corresponding return code. The code is sent
to the voter, who ensures it is valid [7].

48As ElGamal is used, this is easily possible due to its homomorphic properties.
49AES in CBC mode with an VCP-private key KVCS: s = AES-CBC(KVCS, Vi).
50HMAC with an RCG-private key KRCG: Sij = HMAC(KRCG, SPij||Vi).
51With Zero-Knowledge proofs for RCG that the two operations were performed correctly.
52Note that by now, the election public key encryption has been fully reversed, while the

vote is still raised to the power of s: Neither VCS nor RCG learn the voters intention.
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To tally, VCS and RCG send their encrypted votes to the tallying service.
Consistency is checked, and votes from voter which have also submitted a
postal vote are removed. Then the votes are shuffled, which is verified by
an auditor. Finally, the election private key is constructed out of the private
key shares of the members of the electoral board. With this key, the votes
are decrypted and counted [273].53

Out of usability concerns, and limitations of the used SMS channel to de-
liver the return codes to the voter in the voting phase, the return codes had
to be much shorter than what is stored in the hash table. Consequently, an-
other mapping was defined at RCG which mapped the long return codes to
short 4-digit numbers. Further, not for all voter selections return codes were
issued: Instead of every party and every candidate having its own return
code (which would have resulted in a few thousand codes), in the election
only each of the around 25 parties got its own code [7].54

In previous specifications of the protocol, RCG additionally returns a sig-
nature of seen ballots to VCS. VCS verifies and stores that signature, then
sends it to the voter as a receipt [132, 133, 6]. It is not described why this part
of the protocol was not implemented. It would have improved accountabil-
ity, as in case VCS and RCG do not agree on collected ballots, the existing or
non-existing signature would clearly place blame. But returning the receipt
to the voter would have reduced privacy, as the voter can now prove how
they voted.55

Entirely missing in the specification is how revoting is tackled. In previous
specifications, a sequence number was determined by VCS and attached to
the vote; then only the vote with the highest sequence number would have
been counted [133].

Operated was the system by the government, with the components all devel-
oped by Scytl. VCS and RCG were run by different departments in different
locations, as was the system that implemented the tally [273, 176]. The voter
authentication was done over MinID (the Norway eID system), which re-
quired the voter to additionally place trust in their system to avoid ballot
stuffing and similar attacks [273]. An additional component, besides VCS
and RCG, was introduced to do the setup (up and until the printing author-
ity step) [206]. Further detailed architecture of all systems were published,
and most of it is preserved (although not the source code) [206].

53We explicitly note that this description is provided by authors not directly involved in
the project, and no description of the tallying procedure is provided in the paper which
describes the actually deployed version of the protocol [133].

54This usability / security tradeoff was deemed appropriate as 98% of voters only select
a party list. The paper incorrectly claims on page 5 to additionally use codes for candidate
positions, but clarifies on the last page this is not the case [7].

55The encryption of the vote is not randomized, hence the voter can prove its content.
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When printing the voting cards, it had to be ensured the return codes were
not attributable to identified voters (else, an attacker in control of the SMS
channel could break vote privacy). To ensure not even the printer learns
this association, printing was done in two isolated stages. First, the voting
card was printed, folded and sealed. Only the voter id (which is required
to identify the return code set by the VCS) was still exposed. Second, in a
physically separate area, some eligible voter was bound to that id and the
voting card appropriately shipped. The binding was wrongly attributed in
rare cases [128].

In 2011, over ten municipalities 170k voters were eligible to vote [128]. 25%
of the votes cast were over the internet voting system. The transparency ef-
forts of the government were received positively, although operation details
of the system were missing, and external audits and certifications were for-
gone [215]. The return codes were found to not be receipts, and hence com-
patible with the Council of Europe’s Recommendations on E-Voting [13]. How-
ever, researchers found numerous bugs using off-the-shelf analysis tools in
the source code after the 2011 election. Besides being hard to compile, the
code base is huge (160k LoC) and was perceived as complex and generally
of low quality [217]. This feedback would be largely repeated in the 2019
review of the same company’s source code for the system in Switzerland
[45]. The SMS channel was seen as inappropriate to deliver the return codes
due to reliability issues of both GSM and the voters phone, which enabled
undetectable revoting attacks [161].

In 2013, followed after a ”contentious” debate, a slightly larger electorate of
12 municipalities with 250k voters was chosen for the trials [213]. Changes
include a simpler printing process, a public bulletin board with hashes of
submitted ballots56 and some technical changes such as the switch from Java
to JavaScript [31]. Due to a bug in the JavaScript implementation, 29k ballots
were submitted with very weak encryption [213]. The bug was criticised as
easily detectable with even rudimentary testing or code review [31]. Even
though this was a critical failure of the system, it was not picked up much
by local media [31].

After the vote of 2013, the newly elected government immediately stopped
all projects related to internet voting [31]. In 2016 and 2018, in some munic-
ipalities internet voting was used again in local referendum57 [30], but for
elections no country-wide efforts were made again.

56Hence likely the proposal in early specifications, that RCG should send a receipt of the
vote to VCS, with said receipt also shared with the voter, was finally implemented.

57See http://www.evalg2016.com/, deployed by the team at http://www.nvtc.no/.
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Scytl in Neuchâtel (2015) Already back in 2005, Neuchâtel provided over
its Guichet unique58 internet voting for the first time [121, 55]. This system
was already built by Scytl, in fact Neuchâtel was their first customer ever
[152]. Little is known about the used protocol, it was before verifiability
and other transparency measures were considered important in Switzerland
[56].

In 2013, Neuchâtel extended the system to support federal elections [121].
In 2015, the system was further extended to incorporate an individual ver-
ifiability mechanism, likely to keep up with Swiss federal law requiring
verifiability for larger electorates.59 The cast-as-intended mechanism works
similar as what was provided by Scytl to Norway 201160, but revoting is not
allowed61 and some cryptographic operations are moved to the client [126].

First, the election public/private keypair is generated, with its shares dis-
tributed among trustees. Also, a signature keypair is generated. Then, the
code generation key K is created, which fixes a pseudo-random function F.62

For each voter V, a public/private keypair pk/sk and a confirmation value
CV is chosen. The secret sk determines a random function f .63 The finaliza-
tion code is given by FC = F(CVsk), and the return codes for each candidate
ci are given by RCi = f (ci). Finally, references values RFi = H(RCi) using
a hash function H are determined, and published together with pk and a
signature over FC on the bulletin board.

To end the setup phase, the servers are initialized: The vote collector server
(VCS) is provided with the election public key, and the return code generator
(RCG) receives K. Both receive read access to the bulletin board, while the
VCS can additionally append.

The voter receives a voting card with its keypair, CV, FC and all RC as-
sociated to the respective candidates. The voter now selects its favourite
candidates on the voting device. The candidates (represented as primes)
are multiplied together and then encrypted with ElGamal using the election
public key. Further, each chosen candidate is raised to the power sk resulting
in the list l. Zero-knowledge proofs are generated to prove the randomness
of the vote encryption is known, and that the encrypted vote contains the

58A ”one-stop counter” for all civilian affairs towards the government.
59Individual verifiability was a necessary precondition if more than 30% (and universal

verifiability if more than 50%) of voters were eligible [35].
60We explicitly state Norway 2011, as the RCG receipt allegedly used in 2013 [31] is not

part of the protocol any more [126].
61As mandated by federal law [35].
62Concretely, HMAC is used as a pseudo-random function, and K is used as the key.
63Concretely, HMAC is used as a pseudo-random function, and sk is used as the key.
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same candidates as the list l.64 The proofs, the encrypted vote and the list l
are sent to VCS.

The VCS ensures this is the first ballot cast by the voter, verifies the proofs
and stores the vote on the bulletin board. The RCG is notified of the update,
and uses l to construct the return codes as done in the setup phase. After
checking each return code has a corresponding reference value, the return
codes are forwarded to the VCS. The VCS relies the return codes to the voter.

The voter ensures the return codes match to what is printed on the voting
card, and enters CV. The voting device computes CM = CVsk and sends
this to the VCS, which forwards it to the RCG. The RCG verifies that FC =
F(CM) (using the signature published on the bulletin board), and then sends
FC back to the VCS. The VCS stores FC on the bulletin board, hence marking
the vote valid for tallying. The VCS further returns FC to the voter, which
again ensures it matches with what is printed on their voting card.

After the voting period, the tallying authority collects all encrypted votes
with valid finalization codes and shuffles them. The election private key is
reconstructed out of the shares of the trustees and the votes are decrypted.
As each candidate is represented by a prime number, the vote can be factor-
ized uniquely, and counted appropriately [126].

The protocol is extended with a ”usability layer” to shorten the length of
cryptography material compared by or typed in by the user. The long return
codes and the finalization code are mapped to shorter equivalents at the
VCS.65 Additionally, the user types in a PIN instead of its full private key,
and instead downloads the private key from the voting server66 [126].

As the private key of the voter is known by the voting server, clearly the
voter has to trust it for vote privacy, and to not cast a vote on their behalf.67

If the server casts a vote, the voter might detect such an abuse when they
attempt to cast their own vote. Further, the server-submitted vote would not
be counted as the finalization code is not attached (which can only be re-
constructed once the voter enters their confirmation code). However, the se-
crecy assumption of the finalization code relies on an abuse of the signature
primitive: A signature of each finalization code is published on the bulletin

64This is implemented by raising the encrypted vote to the power sk (this relationship is
proved, too), and then proving that the re-encrypted vote is the same as the multiplication
of the values in l.

65Each long representation C is mapped to its short equivalent sC using a key-value store
structured like [H(C), E(C, sC)] for E AES-128 encryption and H SHA-256 hash.

66It is not described whether the VCS or a separate component delivers the key. We as-
sume in the following the VCS provides this functionality, as an entirely separate component
would have likely been mentioned in the protocol description.

67In later proposals, the private key is instead contained in a key-store, unlocked by some
voter-held secret [263]. We do not know if this mechanism was already in use here.
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board, and it is therefore implicitly assumed, that the signature does not
reveal what was signed. According to the protocol specification, RSA-FDH
is used as a signature scheme [126], hence this assumption holds, but only
due to the hash function used inside RSA-FDH. Explicitly using a keyed68

pre-image resistant hash function as the primitive for this task would have
been more appropriate. It should be noted the protocol description does not
discuss the security implications of the ”usability layer” [126].

Compared to the Norway protocol, the voter gets weaker security guaran-
tees: For vote privacy, it has to fully trust the server delivering the private
keys (instead as before, only a coalition of two servers). For integrity, more
or less the same (weak) guarantees as before result. It should additionally
be noted that some keys are used multiple times within different context,
which is usually not a good idea.

Scytl by Swiss Post (2016-2019) Swiss Post announced in 2015 that it
would continue to provide internet voting for Neuchâtel [225], effectively
taking over the further development and operation of the Scytl platform.
In 2016, it was used for the first time [226], and in 2017 it was certified for
50% of the electorate (hence fulfilling individual verifiability) [227]. Post
continued to invest in development, and aimed for certification of 100% of
the electorate by 2019 (by fulfilling universal verifiability) [227].

The protocol is very similar to what was in use in Neuchâtel. More explicitly
described is how the shuffle before the decryption is performed: Using the
Bayer-Groth verifiable shuffle, which provides efficient proofs of correctness
[17].69 Further, the authentication mechanism was reworked, as the protocol
is no longer tied to Neuchâtel’s Guichet unique. The voter now instead
downloads a key storage with its private keys, unlockable with a password
received over mail [263].

While this system was in use in several cantons, Swiss Post aimed to add
universal verifiability to the system. Computational and symbolic proofs of
the further developed protocol were created (for both vote privacy [262, 264]
and verifiability properties [94, 93]). An early version of these proofs were
reviewed by Basin and Čapkun, both professors at ETH.70 Many documents
and accompanying material remain largely inaccessible.71 The approach
taken to fulfil universal verifiability seems to be to log all operations together

68With the key belonging to the code generator to make its involvement required when
generating the finalization code.

69Correctness was likely a concern with the previous implementation used in Norway, as
the authorities decided to let another verifiable shuffle run in parallel in 2013 [31]. Note that
the Bayer-Groth verifiable shuffle was published in 2012 [17].

70Their report was published in May 2017, while the proof documents are dated to 2018.
71The proofs without supporting files are published on https://gitlab.com/

swisspost-evoting/e-voting-system-2019.
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with zero-knowledge proofs of correct execution (like shuffling, decryption),
and then having auditors investigate these logs. Further, the RCG is divided
into multiple components, as is the tallying component when shuffling the
votes. We describe an evolution of this protocol in detail when we present
the Swiss Post scheme of 2021.

In 2019, a public intrusion test (PIT) was organised, besides the proofs an-
other necessary requirement to apply for the certification [35]. Issues con-
cerning the server configuration were uncovered 72 and old dependencies
were found73, but no issue of severity higher than ”LOW” was uncovered as
part of the PIT [228, 285].

However, as part of the PIT, Swiss Post was also required to publish their
source code [230]. To access the code, restrictive usage conditions had to be
signed. The code was criticised as badly documented and hard to read [45].
Nevertheless, three critical vulnerabilities were found [44]. The first two
compromised the verifiable shuffle (weak randomness generation instead
verified pseudo-random) and the decryption (weak Fiat-Shamir instead of
strong Fiat-Shamir) and therefore both impacted universal verifiability. The
third issue affected individual verifiability and therefore also impacted the
already deployed system, again through using weak instead of strong Fiat-
Shamir [251, 174, 175, 285, 142].74 As no malformed votes were found in the
past elections, it is unlikely that the attack on individual verifiability was
used [231, 285].

As a reaction to the found issues [59], the federal chancellery procured three
external audits over operations, implementation and cryptographic proto-
col of the Post system. In operations, the auditors found only minor issues
which remain unpublished [16]. The code review detected besides other
issues big deviations between the specification and the proofs, and found
that the server could violate vote secrecy. They also lamented that relevant
parts of the specification are confidential, and the published portion of the
code cannot be compiled and tested [179]. The audit on the cryptographic
protocol revealed an incomplete individual verifiability proof, gaps in the
specification which could lead to attacks, and formulations which seem to
imply stronger security guarantees than actually provided. To demonstrate
their claim of overboarding complexity, they propose an extremely simple
voting system based on the same assumptions which reaches the same se-
curity guarantees [222].

72Headers were wrongly configured, including the CSP-header, X-Forwarded-For header,
HSTS header, Expect-CT header, X-XSS-Protection header and the Content-Type header. Fur-
ther, old TLS cipher suites were allowed. One request end-point accepted text/plain, which
had the potential to allow for CORF (while no concrete issue could be shown.)

73An end-of-live AngularJS version was used, and an out of date bootstrap version
74We recommend the interested reader to focus on the reports from Haines et al. [142]

and Scytl [285].
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Due to the vulnerabilities, Swiss Post was not allowed to provide it as
planned for the next election in May 2019 [41]. These events also contributed
to the decision of the Bundesrat in June 2019 to postpone introducing inter-
net voting as a regular voting channel [42]. In July 2019, Swiss Post an-
nounced to focus solely on providing the system with universal verifiability
guarantees [229].75

Scytl in Australia (since 2015) New South Wales (AU) employs an internet
voting system from the same vendor, primarily targeted at foreigners and
voters with disabilities [143]. In general, New South Wales is intransparent
about its voting processes76, with revealing some of the details (like the
source code of the used systems) constituting a criminal offence [276]. New
South Wales operates the system for other states in Australia, notably for
Western Australia [1].

In 2015, a substantially different protocol than the Norway/Neuchâtel ap-
proach was employed, although only a high-level specification is published
(notably, verification is done by phoning the election authorities and hav-
ing the plain vote read back). Teague describes severe conceptual privacy
and verifiability limitations, that the implementation did not match even the
high-level specification, and how the server was vulnerable to recently pub-
lished and unpublished downgrade attacks during the live election [143].
The same system was reused in 2017 in Western Australia (AU), with addi-
tional problems introduced with the (essentially ineffective) usage of a DDoS
prevention service [89, 106].

In 2019, the system was used again in New South Wales (NSW), now using
a protocol similar to sVote of Swiss Post. It suffered from the same verifiable
shuffle issues, discovered while the election was active [78]. After the vote, it
was additionally revealed that the weak Fiat-Shamir issue also applied [280],
although NSW asserted the contrary at the time of discovery [79]. Scytl then
published a report how such an attack would have been detected (with the
same arguments as used in Switzerland) [156].

Swiss Post system (since 2021) After the failed public scrutiny test in
2019, resulting in Swiss Post having to unpublish their internet voting sys-
tem [41] and the Bundesrat to postpone introducing internet voting as a reg-
ular voting channel [42], Swiss Post announced to focus solely on providing
an internet voting system with universal verifiability guarantees [229].

75For timed artifacts around the several controversies of the Swiss Post internet voting
system consult https://cva.unifr.ch/content/swiss-post-e-voting-system-timeline.

76For a summary from the point of view of Prof. Teague see https://pursuit.unimelb.

edu.au/articles/where-s-the-proof-internet-voting-is-secure.
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In 2020, Scytl went in default, and while parts of it were being sold off in
its bankruptcy proceedings [173], Swiss Post bought the rights of the source
code. It announced to continue development in-house and to provide the
new system beginning 2021 [232]. The 2021 system is therefore again an
evolution of their 2019 system, respectively the Norwegian protocol. The
code base also remains largely the same, although some effort to clean up
has clearly been spent.77

We now describe this for now last evolution of the Scytl protocol. The pro-
tocol is rather long, so we only give a tight summary here. The detailed
protocol is described in the appendix (see appendix B).

The voter communicates over the voting device to the voting server, which in
turn handles communication between all server-side entities. Additionally,
a fully trusted printer is used to prepare the election key material together
with the server-side entities.78

First, each return code control component (CCR) chooses a secret, and agrees
on a shared key-pair with the other CCRs for each voting option. The printer
picks a secret key and a short secret for each voter. The printer uses the se-
cret key to generate the pre-return codes, and the secret to generate the
pre-finalization code. Then, the printer ”blinds” these pre-codes, to prepare
them for further processing by the CCRs. Each CCR uses its secret to homo-
morphically encrypt the (blinded) pre-codes. The printer multiplies the re-
sult of all CCRs and then unblinds and hashes them. Now the printer picks
random (user-friendly short) return codes and a finalization code, which
are associated to the hashes derived before, and encrypted under said hash.
Further, the printer picks a random (user-friendly short) password, and uses
it to encrypt the voter secret key into a key-store. Lastly, the printer and the
mixing control components (CCMs) jointly generate an election key, with
each CCM keeping a part of the secret key, and the printer’s secret key part
distributed to trustees.

Once the setup phase is finished, the voting phase can start. The voter
receives a voting card with the its voter secret, the user-friendly short return
codes and finalization code, and the password (which they use to access
their voter secret key from the key store). The voter picks their favourite
candidates, encrypts them under the secret key and then under the voting-
option public keys, and sends this to the CCRs. Each CCR stores the vote,
and partially decrypts it using their parts of the voting-option secret keys.
The CCRs combine the partial decryptions to first reconstruct the pre-return
codes, and then continue homomorphically encrypting it using their secret.

77The code base is still extremely complex, with around 160k lines of code (LoC) of Java,
30k LoC of JavaScript and more LoC for other technologies (estimated using cloc).

78The terminology ”printer” is used to comply with the Swiss regulation, which in its
version until 2021 does not know a setup component (but allows a fully-trusted printer).
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The voting server multiplies all these results and can then derive the (user-
friendly short) return codes. The voter ensures the codes match with their
selections, and then enters the voter secret. The CCRs reconstruct the pre-
finalization code, then again homomorphically encrypt it using their secret.
The voting server again multiplies the results, and then derives the (user-
friendly short) finalization code.

At the end of the voting phase, the votes are tallied. All confirmed votes
are extracted, and the CCMs one after the other shuffle-decrypt the votes,
with the last CCM using the secret key parts distributed among the trustees
[235].

At the start of 2021, Swiss Post initiated a private bug bounty program
over the system for selected researchers. In July, the federal chancellery
presented the eight parties which will review the system on their behalf
[48]. The general public was included in the review since September, when
Swiss Post published the proofs and source code [233, 234]. Overall, the
transparency efforts from Swiss Post have notably increased, and both the
specification as well as the source code have undergone revisions which
contribute to their improved auditability. A sign-up is no longer required to
access the material, the bug bounties have increased, and the provisions no
longer allow Post to keep issues private indefinitely79. However, the system
remains very complex, and Swiss Post likely did not have the capacity to
fully rework it.

Besides minor issues, researchers found an issue in the protocol which
would allow to break individual verifiability (see issue #2) and an issue
which broke vote privacy (see issue #11) [234].

CHVote The CHVote project was launched in 2016 by the canton Genève
to replace its first generation system [113] for CHF 4.5 million [265]. The
specification is developed at Bern University of Applied Sciences in their
E-Voting group located in Biel [139].80 It takes into account Swiss particular-
ities and provisions mandated by law, for example voting cycles, variating
eligibilities of voters, announcing whether a voter has participated or not,
and considering one of the trustees as ”administrator” to represent the can-
tonal administration.

The specification aims to be self-contained and fully-detailed, even pro-
viding necessary mathematical and cryptographic background information.
While an implementation of the protocol is fully described, ”(...) entirely
missing are proper definitions of security properties and corresponding for-
mal proofs that these properties hold in this protocol.” Since the last sym-
bolic and computational proof of the verifiability guarantees were made over

79All these issues were present in the 2019 review.
80The group’s webpage can be found at https://e-voting.bfh.ch/.
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version v1.3 [24], the specification has seen substantial updates. We describe
here version v3.2, published on 14.12.2020 [139].

The trustees first generate an threshold public/private key pair for the elec-
tion, with each trustee having its own share of the private key and the full
public key. Further, for each voter, two additional threshold public/private
key pairs are generated. Additionally, each trustee generates for each voter
a polynomial of degree k− 1 for k the number of candidates the voter can
vote for. Then, the polynomials are each evaluated at n points for n the total
number of available candidates. The trustees finally send the private key
shares of the voter private keys and the n points to the printing authority.

The printing authority now constructs a voting card for each voter: The
private key shares and the n points of each trustee are combined and result
in two credentials and n return codes for each voter. Further, out of all
return codes, the finalization code is generated. The printing authority now
prints the voting card and sends it over postal mail (assumed to be a secure
channel) to the voter.

The voter selects its candidates, then creates an encryption of its selection
with the election public key. The voter sends it, together with the first of
their credentials, to the trustees. They validate the credential and store the
vote. The vote also serves a double-purpose as a k out of n OT query: Each
trustee answers this query with k out of n points of the voter-specific poly-
nomial. This core idea of the protocol, namely to use oblivious transfer for
cast-as-intended verification, was also published independently and peer-
reviewed [138].

The voter combines these OT query responses into the return codes (in the
same way as the printing authority did), and ensures the expected return
codes match. The voter then reconstructs the polynomials out of the OT
query responses.81 The polynomials are each evaluated at 0, and this result
is sent, together with the second credential, back to the trustees.

The trustees confirm the polynomial evaluation matches their expectation,
and reply with the rest of the n points of each of the voter-specific polyno-
mials. The voter can combine these (same as the printing authority did at
the start of the protocol) into the finalization code. If this succeeds, then the
voter knows everything was successful, and no further actions from their
side is necessary. If the constructed finalization code does not match the
finalization code printed on the voting card, then the voter is instructed to
trigger an investigation. If any previous step of the voting procedure fails,
voters are instructed to abort and use a different voting channel.

81Note that this step only succeeds when k different candidates were selected, else the voter
cannot reconstruct the k− 1 degree polynomial. This step hence confirms the submitted vote
was properly constructed.
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Finally, after the election, the trustees shuffle and decrypt the votes. While
announcing the counted votes, the trustees also publish finalization codes of
those voter that did participate, and abstention codes for those voters that
did not.82 Any voter may now check they are correctly tracked as voters or
non-voters [139].

CHVote features individual verifiability, universal verifiability and ballot
privacy. Critical processes are jointly executed by trustees, which cannot
fake results, but any trustee may prevent further execution of the protocol
by refusing to participate. The single points of failure is the printing author-
ity (which can both impersonate voters, as well as break their privacy), and
the voting client (which can break voter privacy).

Up until at least v1.4.1, the canton Genève funded an implementation meant
to the be used in production [119], before the project was stopped due to fi-
nancial reasons in 2018 [114, 115]. Genève then proposed that the federal
government should continue developing and operating the system, which
was denied by both federal chambers [129]. The implementation [119] has
not received much attention, likely as there is no clear path how it is ever
going to be used. Superficially, it looks high quality and properly docu-
mented.83 Genève also published parts of the source code of the previous
generation system, which was actively used in elections, but had weaker
verifiability guarantees [112].

The E-Voting group continues to develop the CHVote specification and pub-
lishes an up-to-date reference implementation under the name OpenCHVote
[108]. The OpenCHVote implementation focuses solely on the protocol as-
pects, hence for example no user interfaces are provided [108]. Porting the
application to be production ready would require significant work.

3.3 Mechanisms

We review mechanisms we encountered in our literature review. While we
aim to give a broad overview of what mechanisms have been found useful,
we do not argue for completeness.

The mechanism usually have to balance between guaranteeing correctness
and confidentiality, or in electronic voting terminology, verifiability and pri-
vacy. Depending on the mechanism chosen, the necessity of trust assump-
tions or impossibility of security property automatically follow.

82Abstention codes were also generated in a distributed manner (essentially XOR-ed ran-
dom values of all trustees), and printed on the voting card.

83However, also this code base is very complex, with around 70k lines of code (LoC) of
Java, 40k LoC of JavaScript and more LoC for other technologies (estimated using cloc).
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3.3.1 Authentication mechanisms

We discuss mechanisms with which the voter can authenticate themselves.
For verifiability, authentication must not be easily forged. For privacy, the
authentication should not reveal the identity of the authenticated voter.

We name the authority which stores the cast and authenticated votes the
collection authority. Depending on the mechanism, we may also employ an
authentication authority which is able to authenticate individual voters.

Signatures The voter may simply sign the vote and then send it to the
collection authority (this is what is used in Estonia [148]). However, the
signature necessarily binds the vote to some public key, and if this public
key is attributable to the voter, then so is the vote.

To avoid attribution, the signature could instead stem from some (trusted)
authentication authority. The voter sends the vote to this authentication au-
thority and authenticates, and the authentication authority replies with a
signature over the vote. The voter then sends this voter-independent signa-
ture together with the vote to the collection authority.

To relax the trust assumptions on the authentication authority (which in the
scenario described above learns the vote of the voter), we may employ a
blind signature scheme. The voter only sends their ”blinded” vote (hence
with its content hidden) to the authentication authority and receives back a
signature over it. The voter then unblinds the vote (hence reveals its content)
and sends it together with the - still valid, as guaranteed by the blind sig-
nature scheme - signature to the collection authority. This mechanism was
originally proposed for the FOO scheme, one of the first voting schemes
ever [124].

Token-based authentication Instead of signatures, the voter may also sub-
mit some form of authentication token. If the token is not bound to some
identifiable voter, this easily preserves privacy.

If the token is not bound to some specific vote, then the voter has to be con-
vinced by some other mechanism that the appropriate vote was perceived
as authenticated by the collection authority (see the verification mechanisms
in section 3.3.3), else circumventing the authentication by submitting a dif-
ferent vote is likely trivial.

3.3.2 Casting mechanisms

We discuss mechanisms with which the voter can cast their vote. An op-
timal casting mechanism enables the voter to not reveal their preference to
anyone but the tally. We might however need to compromise out of usability
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concerns or because other mechanisms used in the voting protocol require
the cast vote in a specific format.

In this subsection, we only care about privacy properties. Whether the cast
vote has been received at the collection authority as intended is taken care
of by the verification mechanisms (see section 3.3.3).

We assume the voter uses a device to send the vote to the collection author-
ity. We discuss the mechanisms depending on whether the voter’s device is
trusted or not.

With trusted device When the voter has access to a trusted device, they
can enter the vote in plain. This might be an advantage from a usability
perspective, and further enables more complex transformations of the vote
until it is cast to the collection authority (e.g. encryptions). However, equip-
ping each voter with a trusted device might be prohibitively expensive, and
the trust assumption might be too strong.

Without trusted device Even without having access to a trusted device,
the voter may still be able to cast their vote while preserving privacy.

The voter might transform the plain vote into something which is not inter-
pretable by the adversary. In code voting schemes (like SureVote [68]), the
voter maps their plain vote to a voting code, with the association unknown
to the adversary. Voters might even be able to perform simple mathematical
operations like XOR or clock addition which enable perfect encryption.84

Besides encrypting the vote, another approach hides the context in which
the vote was cast. In Scantegrity, it is publicly published which boxes on
the ballot sheet were checked, but it remains hidden how the paper ballot
looked (hence which box belongs to which candidate) [64].

Another idea uses indistinguishability of values picked by the voting author-
ity and the voter: The voting authority assigns each candidate a value, then
sends this dictionary over a secure channel to the voter. The voter replaces
the value of their favourite candidate with a different value, then submits
the whole dictionary to the collection authority. As long as the adversary
cannot tell who picked which values, it will not learn the true vote. This
mechanism was proposed as Bingo Voting [27].

3.3.3 Verification mechanisms

We discuss mechanisms with which the voter can verify their vote was cast
and confirmed as intended. While the voter should be convinced the verifi-

84Possibly, using visual guides as proposed in [196].
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cation indeed guarantees the vote was cast correctly, ideally the voter cannot
convince third parties of this fact to guard their privacy.85

We assume the voter uses a device to send the vote to the collection author-
ity.

Verified cast When it can be ensured that the vote is cast exactly as in-
tended, then an explicit verification mechanism is not required. However,
this obviously requires strong trust in all involved parties, including in the
device used for casting the vote and the collection authority.

The Benaloh challenge (also called audit-or-cast mechanism) relaxes the
trust in the device used for casting. It works as follows: The device en-
crypts the vote, and then commits to the result. The voter can then decide
whether they want to cast the vote or choose to audit the vote. When choos-
ing the latter, the device uncovers proof that the computation was performed
correctly (for example, the randomness used in the encryption).86

Receipts The voter receives a receipt for the vote they have submitted. The
receipt might be the same for all votes (confirming only that some vote was
registered), or might be tied to a specific vote (for the stronger proof that the
specific intended vote was registered). In its trivial form, like a signature
over the received vote, or some pre-agreed token, this would make it easy
for the voter to also proof the fact to the adversary. There are many ideas
how to counter this privacy issue.

Forgeable receipts allow the voter to make a receipt look like it belongs to
a different vote (like Selene [255]). Masked receipts or votes, of which ei-
ther has been (re-)encrypted, cannot be decrypted by the voter, but their
validity can still be checked by auditors (like in BeleniosRF [66]). Proba-
bilistic receipts may only guarantee parts of the vote, but as the collection
authority does not know which part was handed over as the receipt, it must
still store the whole vote as expected (like Three Ballots [247] or Scantegrity
[70]). Floating receipts are receipts which are passed on to different voters,
hence voters ensure that the vote of some other voter is correctly stored by
the collection authority (like Floating Receipts [247]).87

Constructing the receipts is also a good opportunity to ensure multiple au-
thorities (of which possibly only a single one is trusted) have indeed seen
the same correct vote. For example, the receipts possibly need to be thresh-

85This is problematic as voters might be incentivized to sell their vote.
86Note that to verify the proof, the voter requires as second non-colluding device.
87This still prevents vote selling as the voter cannot prove their own vote, unless the

receipt is ”floated” to the adversary, against which the scheme has to defend appropriately.
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old decrypted (like in Pretty Good Democracy [258])88 or jointly constructed
(like in industry schemes [139, 235]).

Another approach to make the receipts useless to the adversary is to allow
fake votes. However, this has to be done in a way that the voter is still con-
vinced what their final submission is, which might be difficult to understand
for voters [198].

Another possibility is vote updating, hence the voter is able to change their
vote by casting another one (see [284] for a discussion). This may also be
enabled over conventional channels like postal voting or supervised voting.
In that case, the privacy of vote updating is guaranteed through the intrans-
parency of the conventional channel, although the problem persists how the
votes of the electronic voting channel are filtered out in a verifiable way
without the attacker noticing [137].

3.3.4 Tallying mechanisms

We summarize mechanisms used for tallying. The mechanism needs to en-
sure the tally is executed correctly. At the same time, the tally often also has
to establish or preserve privacy properties: Votes may still be attributed to
individual voters, hence a direct decryption of votes would break ballot pri-
vacy. Further, votes must not be decrypted before the voting phase finishes,
as this would break fairness.

Threshold and verifiable decryption To avoid early decryption of votes one
may employ a threshold decryption procedure. Instead of a single decryp-
tion key, shares of the decryption key are distributed to multiple authorities,
which are all required to decrypt the ciphertext. There exist even more
general k-out-of-n decryption schemes which ensure malicious authorities
cannot prevent decryption as only k out of n key shares are required.89

Some decryption schemes also support verifiable decryption: Besides the
result of the (partial) decryption, a proof is produced which guarantees
the decryption has been executed correctly. This proof might even be zero
knowledge, hence avoids revealing the used decryption key, or anything
more about the processed ciphertexts which was not known beforehand.

Privacy-preserving tally Depending on the voting scheme, individual vot-
ers are still connected to their votes. This link must be separated before
decryption or ballot privacy would be broken.

88Bonus points for Pretty Good Democracy: The trustees decrypting the receipts do not
learn what the cast vote represents, only that it represents a valid voting option.

89For example using Shamir’s Secret Sharing.
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Shuffles take a list of votes as input, and output them in a random order.
To avoid the adversary being able to trivially match input and output ci-
phertexts, the votes need to be reencrypted. If the authority performing the
shuffle cannot be trusted, verifiable shuffles produce proofs which guaran-
tee the output ciphertext represents the same plaintext as the input. Then,
the shuffle is executed by multiple authorities one after the other, each oper-
ating on the output of the previous shuffle. If at least one of the authorities
is honest, then the link between voter and vote is separated. Shuffles of this
kind are for example employed by the schemes used by industry [139, 235].

Instead of shuffling, one may also encrypt the votes using a homomorphic
encryption scheme, then calculate the tally result directly over the cipher-
texts. Only the final ciphertext is decrypted (representing the tally result)
and therefore no link to individual votes can be established. Homomorphic
tally has for example been proposed for Prêt à Voter [253].

Verifiable tally When one wants to ensure the tally is executed correctly,
but is able to trust the tally authority to preserve privacy, additional mech-
anisms become possible. In general, the tally authority is asked to tally, to
commit to partial results and only reveal the final result. Then, to ensure
the final result is indeed correct, the tally authority is asked to uncover (in a
manner unpredictable to the tallying authority) some of the partial results. If
constructed cleverly, besides proving correctness of the tally result publicly,
ballot privacy of voters remains preserved.

One mechanism allows the voters to submit multiple votes, which only to-
gether reflect the true intention of the voter. The tallying authority is then
forced to reveal randomly some - but not all - parts of the vote and prove
these parts were included correctly in the tallying result. This is similar to
the split-value representation by Rabin [239, 190] which has been developed
into a voting scheme [238]. Similar ideas are used in KTV-Helios [167] and
in a protocol proposed by Locher et al. [178].

Another mechanism specifies the tally authority to commit to three lists,
which each have the same number of entries: A list Lauth with the original
authenticated encrypted votes, a list Lrenc of re-encrypted votes (but without
the identifiable authentication), and a list Ldec of decrypted votes. After the
commit, the tallying authority is asked (in an unpredictable fashion) to show
for each entry in Lrenc that there exists either a corresponding entry in Lauth
or in Ldec. This idea was proposed originally in [21].

3.4 Summary

We have seen the various privacy and verifiability properties demanded
from an electronic voting system. Privacy ensures the vote stays private,
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depending on the level of privacy even if the voter colludes with the ad-
versary. Verifiability ensures the unmodified vote is indeed included in the
final result. Properties however often lack a universally agreed to definition.

Many different proposals for electronic voting systems exist. On-premise
schemes manage to reach very strong guarantees using simple mechanisms,
which however are not transferable to the remote setting. Remote schemes
from research are still able to provide strong guarantees, however the in-
volved cryptography leads to high complexity, and often also low usability.
Industry proposed their own schemes, focusing on verifiability and practi-
cality, although under weaker security guarantees and again involving com-
plex cryptography.

We further have seen various mechanism which enable a secure electronic
voting system. For authentication, signatures or tokens can be used, which
both have to be bound to the voter and the vote, but ideally without reveal-
ing this link publicly. Casting in a privacy-preserving way is possible even
without a trusted device, when the voter can be assumed to perform sim-
ple tasks. Verification almost always requires receipts, which are difficult
to construct in a privacy-preserving way. Verifiable tallying uses threshold
and verifiable decryption or revealing of partial results, and for additional
privacy guarantees, also verifiable shuffles or homomorphic encryption.
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Chapter 4

Internet voting in Switzerland

Introducing an internet voting is a long-running project with high initial
hurdles and insecurities, while it is closely observed as it impacts one of the
most important processes in a democracy. Both makes the project highly
vulnerable to reoccurring political debates, which might change policies to-
wards internet voting abruptly. In Estonia, some parties were reluctant in
introducing internet voting, as it might shift public participation (and there-
fore affect the voting results) [282].1 The newly elected government of Nor-
way in 2013 stopped internet voting as some of its first acts in power [31].
France abandoned internet voting in 2016 due to national security concerns
[243]. In the canton of Basel in 2018, the parliament suddenly shifted against
internet voting [261], then shifted back to supporting it only three months
later [260].

Further, implementation is tricky. Due to the complexity of the involved sys-
tems, this takes time, is risky and requires significant investment (which pro-
vokes another heated discussion of cost/benefit of the system as a whole).
In Germany in 2009, the federal constitutional court ruled against electronic
voting as the inner workings were not comprehensible without domain ex-
pertise, therefore arguably violating the principle of a public vote [242]. In
Norway in 2011, the system was operated by two different departments to
account for its non-collusion assumption of two servers [273]. In Sweden in
2019, the internet voting project was cancelled the evening before the release
date due to delays with testing the system [104]. In Switzerland in 2019, the
previously used (and certified) system was taken offline, as serious secu-
rity vulnerabilities were discovered in public review [41]. Internationally, so
far only the Spanish firm Scytl was able to win tenders, although it faced
repeated criticism over the quality of its solutions (e.g. [217, 179]).

1This aspect very likely affected the discussion in other countries as well, see for example
the first report to vote électronique of the Federal Chancellery [54].
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We analyse in this chapter the history, law and politics of internet voting in
Switzerland. We call it in this context vote électronique, how it is usually
referred to in the French part of Switzerland.2 While focusing on the Swiss
perspective, we give international context where appropriate.

Political debates about pros and cons of internet voting In general, there
are many unknowns about the benefits, risks and cost of such a system,
making a decision hard to take. Besides the arguments supported by con-
crete numbers (such as cost), influencing arguments may also be of a more
strategic nature. In Switzerland, it is argued that the currently most used
postal channel will lose trustworthiness over time as communication in gen-
eral shifts online [56]. In Estonia, providing an advanced electronic infras-
tructure to its citizen may also be a matter of national pride.3

The strongest arguments for internet voting usually revolve around the in-
clusion of more voters. The target is either to generally increase participation
as in Estonia [184], or to support voters not able to use the traditional chan-
nels (like expats, or voters with disabilities), which was the primary moti-
vation in both Switzerland and Australia [56, 219]. However, most studies
find participation to not change, rather that existing voters switch voting
channels [281, 131].

The counter-arguments to internet voting system usually stem out of a per-
ceived lack of security. In an area of active research with researchers being
at odds even over the definitions of the security properties, it is hard to tell
whether a system is appropriately secured or not. Some international ex-
perts even fundamentally oppose internet voting, and may stir the debate
by publishing exaggerated claims over found or perceived issues. National
security considerations, or the usual noise of self-proclaimed experts argu-
ing in either direction, may also influence the perceived security of a given
system. However, so far no attacks on internet voting have been reported, al-
beit this ”result” is obviously achieved with a small sample size, and might
simply be attributed to luck or secrecy.

Further hard to tell is the cost of such a system, also compared against other
voting channels. In Switzerland, for the various small-scale trials, the cost
was higher [56]. In Estonia, its large-scale internet voting is the cheapest
voting channel per vote [163].

So far only Estonia was able to set a stable political basis for internet voting,
and as a result to provide it uninterrupted at the national level since 2005
[183, 282]. Switzerland has seen multiple systems come and go [56, 58, 41,
115], and three major revisions of its applicable law [53, 34, 61].

2Note that electronic voting, how the term is understood internationally, includes not
only internet voting but all forms of electronic support during voting [209].

3For example, see how internet voting is described in [282].
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Implement and operate an internet voting system A suitable internet vot-
ing system does not exist of-the-shelf, but has to be adapted to the specific
organisational realities and the governing law of the country it is supposed
to be used in. Designing cryptographic protocols is notoriously difficult,
and even harder when the resulting protocol must satisfy seemingly contra-
dictory properties such as verifiability and privacy.

The international research community in general seems not particularly
helpful, proposing largely schemes unfit for big electorates4, or overly com-
plex schemes archiving some hardly motivated theoretical target for security
or privacy [20]. We know of no researcher-lead initiative which survived
more than two voting periods nor included an electorate of notable size.

The industry reacts with proposing their own protocols, with mechanisms
and tradeoffs previously not considered in academia (e.g. [6, 146]). In Es-
tonia, a very simple scheme enabled by their national ID infrastructure was
put in use, essentially signing the encrypted vote [184]. In other countries,
Scytl employed its protocol based on return codes: These would be returned
by the server for the specific selections a voter took, and the voter would
compare them to codes printed on a ballot sheet to attest the server cor-
rect operation [7]. Both systems were gradually extended over time to meet
stronger and stronger security guarantees, while the basic concept remained
largely the same.5

4.1 History

Switzerland already has an extensive history with vote électronique, having
run many trials on a variety of different systems and legal basis. We give an
overview primarily based on the reports of the Federal Chancellery.6

Pilots since 2002 The Swiss Federal Council published the first report
about how to introduce vote électronique as a major voting channel in as
early as 2002. It analysed potential political impacts, such as expected shifts
in the political landscape due to changes in who votes. It included a security
analysis declaring the target to reach similar security as existing channels,
identified several security challenges and defined technical minimal require-
ments to guarantee security. Further, financial impacts were analysed: It was
estimated that deploying vote électronique by the municipalities is about 20x
as expensive as deploying it by the federal government or the cantons [54].

4Due to performance constraints (e.g. [75]) or inherent usability issues (e.g. [2, 75, 255]).
5For Estonia, see [184, 150, 148, 145]. For Scytl, see [7, 126, 263].
6Timeline of the federal government: https://www.bk.admin.ch/bk/de/home/

politische-rechte/e-voting/chronik.html. Timeline of Zürich: https://www.zh.ch/de/
politik-staat/wahlen-abstimmungen/wie-stimme-ich-ab/e-voting.html
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The canton of Genève had the first legally binding vote électronique on
the 19th January 2003. Other pilot projects, financially primarily covered
by the federal government, were active in Neuchâtel and Zürich. Other
cantons updated the legal framework to allow vote électronique and started
to centralize their voter registers (which was seen as necessary precondition
for small municipalities unable to operate their own servers). While a much
higher voter turnout was not expected, vote électronique for foreign Swiss
Voters 7 would improve their voting conditions 8 [32].

Growth of trials 2006-2013 By 2006, the three pilot systems were fully
developed, and had all seen successful, legally binding votes. Neuchâtel in-
tegrated the vote électronique system into a digital counter with additional
capabilities (like tax matters or searching for license plates). Genève devel-
oped a stand-alone vote électronique system using its central voter register.
Zürich’s system worked with decentralized voter registers, and besides in-
ternet also offered voting over SMS. No big change in voter turnout was
observed. In Genève, around 22 percent of eligible online voters decided to
vote online [55].

The next report by the federal government was released in 2013. It described
that the system of Zürich was now used by six more cantons (together form-
ing the ”Consortium”), and the system of Genève by three more cantons.
Prioritised recipients of the vote électronique systems were foreign Swiss
voters and people with disabilities. While it was recognised that the trans-
parency of the systems should be improved, the trial runs were considered
a success, and were to be extended [56]. However, both Genève as well as
Zürich had realized the necessary next step was a fundamental shift of the
security concept towards verifiability [56, 274].

New legislation and push towards verifiability 2013-2019 At the end of
2013, the legislation was updated: The fixed limit of 10 percent of the elec-
torate able to participate over vote électronique was replaced by limits of
30 percent, 50 percent and 100 percent, with each higher limit enforcing
stronger conditions [53]. These conditions were worked out by the Fed-
eral Chancellery, which in its ordinance required individual verifiability for
over 30 percent and additionally universal verifiability for over 50 percent of
voter participation [35]. Cantons, parties and other organisations welcomed
the revision and largely agreed over its content [34, 33].

In 2015, the Federal Council did no longer allow the ”Consortium” sys-
tem to be used in the national election [290]: It had an unresolved issue
jeopardizing vote secrecy and it did not conform to the new legislation

71% to 5% of the voters depending on the canton.
8Sending voter documentation abroad was expensive, and often arrived too late.
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[58]. Shortly after, the ”Consortium” was dissolved [289]. Genève contin-
ued to use its system approved for usage below 30 percent of the electorate
[117]. Neuchâtel used its equally approved system for the last time, and an-
nounced its partnership with the Swiss Post for future elections [120]. Both
Genève and Neuchâtel had updated their systems before the election, and
now claimed their voting systems to be ”second generation” (hence provid-
ing individual verifiability) [116, 120].

Genève wanted to further improve verifiability and transparency, specifically
aimed to also provide universal verifiability. In 2016, funding of around
CHF 5 million was allocated to develop the next generation of its vote
électronique system [265]. To develop the specification, Genève then en-
tered a collaboration with the Bern University of Applied Sciences. Their E-
Voting group published the version v1.0 of the specification, called CHVote,
in 2017. It featured individual and universal verifiability and distribution of
trust between the server components (the only remaining fully trusted sin-
gle component was the printing authority) [139]. The involved researchers
notably developed UniVote already in 2013, which was an individual and
universal verifiable voting system used by student associations in Bern and
Zürich among others [102]. The canton Genève started to develop the new
system and published the source of a proof of concept on GitHub [118].
However, at the end of 2018, Genève again stopped the development due
to financial reasons [114]. The code developed until then was published on
GitLab [119].

New legislation and everything stops 2019 In 2017, the Federal Council
decided that the time is ready to introduce vote électronique as an ordi-
nal voting channel [37]. Following a report by an expert group deeming
Switzerland ready for this step [38], a consultation round starts at the end
of 2018. It aimed to introduce the legal foundations to transfer the trial vote
électronique into regular service. The limits on participation were to be re-
moved, but only both individual as well as universal verifiable systems were
to be deployed [39, 40].

During the consultation round in spring 2019, a public review was per-
formed on the Swiss Post internet voting system. The code was criticised as
badly documented and hard to read [45], and three critical vulnerabilities
were found [44]. One of the issues impacted the currently deployed system,
and Swiss Post was therefore not allowed to provide it as planned for the
next election in May 2019 [41].9 The results likely came as a surprise to pol-

9For timed artifacts around the several controversies of the Swiss Post internet voting
system consult https://cva.unifr.ch/content/swiss-post-e-voting-system-timeline.
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itics10, administrations11 and Swiss Post, although systems of the supplier
Scytl had experienced serious issues before (e.g. [217, 213]).

When the consultation round finished in June 2019, the political landscape
had changed drastically compared to the last consultation in 2013. Con-
siderable doubts had risen: While most cantons (20) still supported the
new legislation, all political parties and some major organisations were op-
posed. They felt the time for the decision is not ready and criticised the
lack of transparency and understanding of the current systems (including
for non-experts). Some also doubted the cost/benefit of vote électronique in
general, or wanted that the state itself provides such a system rather than
private companies [46]. End of June 2019, the Federal Council decided to
abort the introduction of the new legislation, and to instead rework the vote
électronique concept [43].

Expert dialogue and new legislation 2020-2021 By the end of 2019, no
vote électronique remained available to the cantons. After Post stopped
providing its individual verifiable system, Genève informed in June 2019
that it will also no longer provide its already deployed system, effective
immediately [115].

Two initiatives remained aiming to bring vote électronique back: The Swiss
Post invested in improvements over its universally verified system [232],
and the Bern University of Applied Sciences E-Voting group continued to
develop the CHVote specification, providing a partial implementation under
the name of OpenCHVote [136, 108].

In the mean time, the Federal Chancellery organized a dialogue with ex-
perts from industry and science. They motivated improvements with se-
curity, namely to use standard cryptographic primitives, a diverse set of
implementations and to consider using a public bulletin board. Also more
transparency (for example due to higher quality source code) and indepen-
dent reviews were suggested. Based on this feedback, and the experiences of
the past years, a long list of concrete improvement measures was proposed
and compiled into a report [47]. Using this report, the Federal Council de-
cided to further pursue vote électronique based on new legislation to be
made in 2021 [59].

In April 2021, the consultation procedure started aiming to reform the VPR
and VEleS to further strengthen the security requirements [61, 52, 50]. It
closed in August 2021, with most cantons and political parties as well as

10The Federal Council reacted by procuring three additional external audits over the Swiss
Post system, which confirmed the found issues [16, 179, 222].

11Administrations using the Swiss Post system had no contractural agreements over what
happens if the system fails public review [144].
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many organisations submitting their opinions. The participants largely sup-
ported pursuing the strategic goals (continued development of the systems,
improved audit and transparency, stronger link to research) and agreed that
the measures taken will achieve these goals [51].

In 2021, Swiss Post started a bug bounty program to let researchers review
its improved system. Additionally, the Federal Chancellery presented eight
parties which will review the system on their behalf [48]. So far, at least two
critical vulnerabilities in the protocol were uncovered [234].

4.2 Legal

While cantons organize votings, usage of vote électronique channels requires
approval of the Federal Council (Art. 8a of BPR [98]). The Federal Council
defines in its ordinance about political participation VPR some basic re-
quirements for vote électronique (Art. 27 of VPR [53]), while much of the
competence for the more technical implementation of the law is transferred
to the Federal Chancellery. Votes must stay secret and each voter can only
vote once. Different level of approvals exist, while with increasing size of
the electorate also the security requirements rise.12 The voting results have
to be checked for plausibility. Voters must be able to understand the verifi-
ability concept, and must know how to react when problems arise. Voting
systems may also be provided by private firms. If the overall concept of the
cantons is convincing, the Federal Council grants its basic approval. Then,
the cantons apply for a specific approval for each election at the Federal
Chancellery.

The Federal Chancellery formulates out the technical requirements on which
approvals are granted in its own ordinance VEleS [35]. Any system requires
foremost secure and trustworthy voting, ease of use and comprehensive
specification (Art. 2). Depending on the size of the electorate allowed to par-
ticipate over the online voting channel, additional constraints are enforced:
For over 30 percent of the electorate, individual verifiability is required (Art
4), and for over 50 percent, additionally universal verifiability must be en-
forced (Art 5).13 It dictates risk analysis and risk minimization, an external
audit of the system and publication of the source code. Further technical
details are documented in the comprehensive appendix, which notably in-
cludes the requirement of both a cryptographic and symbolic proof of the
used protocol.

12This is the central concept changed in the newest revision of 2021, which requires the
same (high) security requirements independent of the size of the electorate [50].

13The newest revision of 2021 requires both individual as well as universal verifiability
independent of the size of the electorate [50].
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Cantons need their own legal basis for vote électronique in their constitu-
tions, laws and ordinances. Most cantons have created that basis until now
[57].14 About half have experienced at least some form of vote électronique15

[214, 56].

Reform of VPR and VEleS started in 2021 The new VPR and VEleS fur-
ther strengthen the security requirements. During the consultation round in
summer 2021, the strategic goals to achieve this were named to be contin-
ued development of the existing systems, more effective control, improved
transparency and tightened the connection to research. As it is customary, a
report was provided explaining the purpose of the changes [50].

The VPR now requires all systems to support both individual and univer-
sal verifiability, independent of the size of the electorate. The electorate
must never surpass 30 percent of cantonal voters, respectively 10 percent
of the national voters. The transparency and review requirements are fur-
ther strengthened, too. Notably, private providers continue to be allowed
to provide systems [61]. The VEleS is also reformed: It is now much more
detailed, allowing less freedom when designing the protocol16, writing the
source code, operating the infrastructure and publishing the specification.
Notably, an open source license requirement is still missing [52].

The new provisions in the VEleS primarily try to enforce a ”high-quality”
system, presumably as a response to the arguably low-quality system ob-
served during the Swiss Post review of 2019.17 It is unclear whether these
new provisions are able to achieve the desired outcome, as defining ”high-
quality” in legal terms is very challenging. Not surprisingly, some of the
formulations are impossible, way too strong or not strong enough.18 The
final revision is supposed to be published in the summer 2022 [60].

4.2.1 International institutions

International law and organisations also consider vote électronique, which
then impacted the Swiss law and processes. We present the most relevant
international institutions with an application to vote électronique.

14By 2015, still six cantons have not: AI, AO, NW, TC and ZG [214].
15AG, FR, GL, GR, SH, SO, SG, TG, ZH with the Consortium system; BS, LU, BE, GE with

the Genève system; NE with the Neuchâtel system [214].
16For example, it explicitly requires that for individual verification a proof is displayed to

the voter, which is checked by the voter against previously received printed out codes.
17In 2019, concrete issues breaking individual and universal verifiability were uncovered.

If none of these would have been found, the administration likely would have had no legal
basis to deny usage of the system, even though the public review seemed to indicate the low
quality of the reviewed system.

18For example, it is required to unit test ”all valid inputs” (see Art. 25.13.2; impossible),
the source code contains ”no repetition” (see Art. 25.11.4; too strong), but version control
information is not required to be published (not strong enough).
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Universal Declaration of Human Rights (UDHR) The UDHR by the UN
states that ”(...) [elections] shall be by universal and equal suffrage and
shall be held by secret vote or by equivalent free voting procedures.” [11].
Universal suffrage means that any voter is able to vote, while equal suffrage
ensures each voter has the same amount of votes. Secret voting requires the
vote to not be known to others except the voter, and free voting ensures no
votes are bought, sold or otherwise traded.

The UDHR is very abstract law, which then motivates more specialized laws.
In Europe, the Council of Europe is the main reference which applied the
UDHR to vote électronique.

Council of Europe E-Voting Recommendations The Council of Europe19

already published its first recommendations on e-voting in 2004 [207]. The
recommendations are based on the UDHR and similar international law, and
aim to guide states implementing e-voting20. After around a decade in effect,
an update was recommended to adapt to progress made in practice and
research (for example, verifiability is not part of the 2004 regulation) [100].
2017 the second version was published, which restructures and overhauls
most provisions [209]. It is argued by the authors that the recommendation
will develop binding character, when courts start to seek it out to resolve
controversial national election matters [189].

The recommendation is structured by universal, secret, equal and free suf-
frage, motivated by the applicable paragraph in the declaration of human
rights. Further sections deal with regulatory requirements, transparency
measures and reliability of the system. For each section, multiple abstract
sub-targets are spelled out [209]. These are expected to stay the same for
the foreseeable future [189], and in fact contain only few e-voting specific
provisions.

To put these abstract sub-targets into practice, a guideline is provided which
details for each sub-target how to implement it in more concrete and techni-
cal terms. It may also name other concrete standards to fulfill, for example
to comply with the guidelines set out by the Web Accessibility Initiative
(WAI), for the sub-target of ensuring the persons with disabilities are able
to use the voting system, in the chapter of universal suffrage. It also specif-
ically lists individual and universal verifiability as a means to implement
free suffrage, or receipt-freeness as means to achieve secret suffrage. Fur-
ther, best practices for processes are proposed, like physically destroying
data drives which contain to-be-deleted data. Additional provisions require
to enforce transparency, effective certification procedures and precautions to

19Note that the Council of Europe focuses on human rights, compared to the primarily
economic focused European Union, and the primarily security focused OSCE.

20The focus is not exclusively on internet voting, but on all forms of electronic voting.
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ensure system availability [208]. The guidelines will be regularly updated
to reflect current best practices [189].

Organisation for Security and Cooperation in Europe’s Office for Demo-
cratic Institutions and Human Rights (OSCE/ODIHR) The ODIHR, upon
invitation, creates assessments of election procedures.

Switzerland requested one of these assessments in 2007 for its federal elec-
tions for the national council and the council of states. Interesting in the
context of this work is the description of how postal votes are validated: It
is only ensured the registration card exists and is signed. No further checks
are performed, specifically ”The signature is not compared to an existing
control signature, nor is the electoral register marked to show from whom
a ballot has been received.”. For in-person voting, no additional checks are
performed. Further noted in the report is also how the deadline of postal
voting material to be arrived at the voter is only ten days, leaving little reac-
tion time, especially for expats, to notice a missing delivery [211].

In 2011, another assessment was requested, with overall very similar results
as the previous. An increased effort to ensure expats receive their voting
material on time is described (due to problems with late-deliveries in 2007).
Small issues with lacking vote secrecy in polling stations were also discov-
ered [212].

For the first time, the report also analyses the vote électronique procedures.
It noted that the law is not very precise with its security requirements and
when assigning responsibility, especially if one canton hosts the system, and
another one uses it. It criticised (too) minimal oversight when printing the
voting cards (which contain confidential information), and proposed to use
seals in the Genève system to strengthen voter protection. It recommended
to decrypt the votes only on election Sunday (and not one day before, as
it was practice). It lamented the lack of verification for the voters whether
their vote was registered correctly, and generally recommended to adopt
systems which are more on-par with research proposals. When managing
the systems, the report mentioned that the cantons were entirely dependent
on external experts, and recommended to build up internal competencies. It
further noticed that in the Consortium system, the election key was stored
by the external operator, and instead recommended it to be distributed to
multiple likely non-colluding parties. It regretted that no end-to-end tests
are performed pre-election, and certification procedures miss entirely, con-
tradicting federal law. Additionally, the performed audits were not public,
and for the Consortium system, not done over the latest update of 2010. A
general intransparency about the systems and the administrative processes
was lamented [212]. 22k expats21 were allowed to use the vote électronique

21From AG, BS, GR and SG.
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(while voters living in Switzerland were not yet included) [214].

For the next national elections of 2015, the report focused entirely on vote
électronique. It recognised the law and processes were reworked, and most
recommendations from 2011 were implemented. The introduction and ap-
proval processes for the systems were largely positively described. To im-
prove transparency, the report recommended to let voters try out the new
systems apart from a real election, and to publish the results of audits.22 It
further recommended easier access to the source code and the use of open
standards.23 The OSCE recommended again, as in previous reports, to allow
vote overriding for improved voter coercion mitigation. 132k voters were al-
lowed to use the vote électronique, of which 34k were expats.24 Per canton,
around 15% then did actually use the vote électronique channel [214]

In 2019, a preliminary report was created before the election. The biggest
critique, as in the two reports before, was the intransparent party financing
[216]. The recent developments in vote électronique are summarized, and no
additional issues were identified. Although the preliminary report finished
with a recommendation to observe the election, no such mission was sent
due to limited resources on ODIHR’s part [275].

4.3 Political

Around the year 2000, political interest in vote électronique was high [54].
The federal government established the legal foundation and provided fi-
nancial support, which enabled the introduction of three different cantonal
systems in only a few years [32] and many trials by 2006 [55]. Then, the po-
litical interest slowed down, presumably as there was no change in voting
behaviour, and no problems arouse using this new channel. By 2012, polit-
ical interest in the topic was perceived as slim [212]. In 2013, the limits of
the electorate able to participate in electronic voting was increased, to favour
systems that invested in individual and universal verifiability [35].

In 2015, the Consortium system (the only one out of the three systems not
investing into verifiability [116, 120]) was not granted permission to be used
any more, and the number of cantons being able to provide vote électronique
suddenly dropped [290]. This seemed however not to impact the overall
progress, as already in 2017 the Federal Council decided the time is ready
to fully roll out vote électronique [37]. The cantons supported this progress
in general, although some doubts were raised concerning the security and
cost-effectiveness of the new voting channel [240].

22Only the Genève system published the audit results, while Neuchâtel did not.
23To improve interoperability with other election software. BE discontinued the Genève

system as it was incompatible with its tabulation software [214].
24From BS, LU only expats; from GE, NE including voters living in Switzerland.
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However, during the consultation round in spring 2019 to establish vote
électronique as an ordinal voting channel [39, 40], politics suddenly took a
strong interest. First, Genève decided it will stop providing its system due
to its cost [114], leaving Swiss Post as the only provider. Shortly after, Swiss
Post underwent a public review which uncovered critical vulnerabilities [44]
and the system had to be withdrawn from the next elections [41]. Consider-
able doubts about whether Switzerland is ready for this new voting channel
arose: While most cantons still supported the roll out, some major politi-
cal parties and civil societies were now opposed [46]. The Federal Council
aborted the revision, and announced instead to rework the vote électronique
concept [43].

After a dialogue with experts [47], another revision started in 2021 to further
strengthen the security requirements and transparency measures [61, 52,
50]. Most cantons and parties participated, and now largely agreed over
the measures taken, which notably again included a strong restriction of
electorate able to participate [51, 49]. The new legislation will be published
mid 2022 [60]. A public initiative to stop vote électronique altogether for at
least five years did not materialize.25

In political debates, vote électronique is primarily compared to postal vot-
ing. For example, when discussing security, similar guarantees than postal
vote are politically requested.26 This mindset, and the pro- and contra argu-
ments arising out of it, seem to be almost the same now, as they were at the
beginning of the vote électronique trials.

4.3.1 Arguments in favour

Arguments in favour revolve around improving the voting experience so
more voters can and want to participate. However, it is still unclear whether
vote électronique will indeed increase turnout [131]. To save cost seems only
be a minor motivation and indeed hard to tell, as long as economies of scale
do not set in [38].

Besides the main arguments in favour presented afterwards, there are more
which are not mentioned as prominently. Internet voting has to satisfy much
stronger security properties than this is the case for postal voting (for ex-
ample the verifiability properties). The voter can be prevented to submit
invalid votes. Convenience increases, as the voter no longer needs to bring
the voting letter to a post box or visit the ballot office. Using the interac-
tivity possible through electronic means may enable a more satisfying and
well-informed vote submission.

25https://e-voting-moratorium.ch
26Compare for example with the initiative text of the public initiative against vote

électronique https://e-voting-moratorium.ch.
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Expats In Switzerland, expats can vote on federal referendums and elec-
tions, can get elected and sign petitions, federal initiatives and referendums.
Some of these rights can also be executed on cantonal level, depending on
the canton. The number of expats is not negligible: In 2012, around 700k
lived abroad, of which 125k were registered to vote [101].27

However, some are de-facto denied their voting rights as they are only able
to use postal channel, and late deliveries are a reoccurring problem [211,
101]. The Organisation for Swiss Abroad (OSA) demands the introduction of
an internet voting channel since more than a decade [101]. Indeed, when an
internet voting channel was provided, the voter turnout of expats increased
[130].

Inclusiveness Some voters are not able to fill out paper ballots indepen-
dently. Computer-assisted voting might improve their voting experience and
enable participation in elections without assistance endangering privacy or
integrity of their vote. Indeed, voters with a disability are the prioritised
target group, besides expats [36].

Societies representing blind people support vote électronique. Specifically,
electronic voting allows the blind to fill out and send the ballot indepen-
dently [51], hence guarding secrecy and integrity of the vote without trust-
ing an assisting party.28

Long-term Viability In the future, voters may simply expect to be able to
vote online, as all other contact with the administration [56]. Further, the
postal channel will likely lose relevance over time and therefore also trust.
This social change especially applies to young voters, but affects the whole
population [191].

Working now on the next generation system is sensible as the roll-out will
take many years (as it is indeed currently observed). As a comparison, the
postal channel needed around 30 years to fully roll out, and is now used by
around 90% of voters [191]. Electronic political participation is part of the
digital strategy of Switzerland [125].

Save cost Current proposals still require to send secret material to the
voter over post, but the vote itself can be returned over internet, saving
significant cost and time. When a reliable secure channel is established
to the voter (for example using an E-ID infrastructure), possibly even the
remaining postal channel can be replaced. Further, the counting procedures
scale better, which is especially useful in elections with many candidates
and voting patterns.

27Note that these numbers are high enough to overturn national elections.
28Note that using a pencil or going to the postal office might not be possible without help.
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In 2018, yearly cost of organizing elections is estimated at around CHF 13
for each eligible voter. With an electronic voting channel, the cost is expected
to decrease around 30%. While this scenario assumes the voter still receives
a letter, it does not include the fix cost for introduction and maintenance of
the systems [38].

4.3.2 Arguments against

Arguments against vote électronique revolve around a perceived lack of se-
curity and the high complexity and cost of the systems.

Prominently missing from the arguments against vote électronique is fear
of coercion enabled by voting at home, one of the main objections raised
in international literature. This is not discussed in Switzerland as the is-
sue would be similar with the already established postal voting, which is
perceived as little impacted by issues like family voting [101].

Security The central argument against vote électronique is usually secu-
rity. In Switzerland, notably the pirate party and the digital society are
fundamentally opposed to vote électronique due to security concerns [51].

Legislation adapted often in the past decade, each time introducing much
stronger security guarantees. Opponents of vote électronique doubt legisla-
tion and research is at a point where internet voting can be provided under
acceptable risk. An additional danger, compared to the postal channel, is
the perceived scalability of attacks: If an exploitable attack is found, it might
scale much better than, for example, replacing letters.

The question of security is hard to answer, due to the complexity of the sys-
tems involved. Besides the valid arguments, many invalid ones or wrongly
understood concepts spice up the discussions, sometimes leading to sur-
prising change of minds.29 Often the (invalid) comparison to e-banking is
drawn, by both proponents and opponents of vote électronique.30 The gen-
erally drawn comparison to postal voting might also not be helpful; both
the accepted trust assumptions as well as the provided properties by the
two approaches are very different, and therefore hard to compare.31

More nuanced, the arguments lamenting a lack of security can be catego-
rized into conceptual and implementation issues. On the conceptual level,
the current systems require full trust in the setup and printer component
involved in preparing the election material, and trust in order to achieve

29Compare for example the Rat of Basel surprisingly abolishing vote électronique in
February 2019 [261], and then taking back the decision already in June 2019 [260].

30Compare for example the discussions in Basel [261] and Zürich [241].
31Postal voting relies on trusted personnel, but has very weak formal guarantees. Internet

voting relies on trusted authorities, but then reaches much stronger formal guarantees.
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privacy in the end user device. These are strong trust assumptions, presum-
ably because it is believed otherwise vote électronique could not be provided
at all. On the implementation level, reaching the required properties under
the trust assumptions is difficult and leads to high complexity. This impacts
the quality of specification, proof, code and review of the systems.

Complexity The complexity of the current systems is huge. For a single
vote of moderate size (for example, 4 referendums), the current systems
execute a factor 10 more cryptographic operations as a normal TLS-secured
web request would.32 Further, some of these operations are very specialized
constructions to resolve the verifiability-privacy conflict, sometimes used for
the first time in industry, like zero-knowledge proofs, verifiable shuffles or
oblivious transfer.

The size of the protocol, and the complexity of its operations, leads to com-
plicated models and proofs. Finding issues is already difficult in small pro-
tocols, but even more so with multiple exchanges between different roles.
An indication that this complexity is indeed an issue are the critical issues
found when reviewing electronic voting systems (see section 3.2.3).

The specialized constructions for internet voting are not readily available
but have to be implemented by the system provider from scratch. Imple-
mentation is not feasible without deep knowledge in cryptography, and ex-
perts in both cryptography and implementation are hard to come by. Fur-
ther, the novelty and sparse usage of the constructions makes it relatively
likely that new fundamental issues are still being uncovered and have to be
patched. Both of these fundamental difficulties lead to critical vulnerabilities
observed in the Swiss Post PIT 2019 [285].33

On top of the cryptographic primitives, the vote électronique system itself
has to be added. Some non-trivial usability and technical challenges have to
be solved that the system is understood and runs on every voter’s device.
Specifically elections, which leave much freedom to the voter about how
they want to vote, are difficult to understand.34 Further, the system has to
interface to other governmental services (like the voter register), especially
a challenge if the system should support multiple cantons.

Only a handful of experts worldwide are then fit to review the system due to
the many internet voting specifics. With most researchers of the small field

32With over 150 operations (encryptions, hashes, ...) in CHVote and over 350 operations
in the Swiss Post system for a reasonably sized vote over four referendums. Meanwhile, a
single TLS connection requires around 10 operations for setup and execution.

33The broken verifiable shuffles implementation showed a lack of cryptographic under-
standing of the authors of the system. The weak Fiat-Shamir was known to be a problem in
the literature since 2012 [25], but remained unpatched in the Swiss Post system.

34In some regions, over 25% of submitted ballots are invalid [81].
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likely knowing each other, and some openly opposed to internet voting in
general, independent and fair reviews are difficult to come by. Further, the
reviews are somewhat constrained in time and scope, and arguably can not
reasonably review the current systems in depth.35

Compared to postal voting, or voting in person, the process is therefore
much more complex for all involved. This also complicates this voting
channel from a democracy standpoint: It can be argued the voting process
should be understandable to a large part of the electorate, clearly not the
case with internet voting as conceptualized today. Further, organization of
vote électronique is often done by the canton (due to cost, but also due to
expert knowledge required), while elections traditionally used to be orga-
nized by the municipalities, leading to an increase in power concentration
at the cantonal administration.36

Cost The cost of the already developed systems has been significant. The
three first generation systems (until 2005) cost the federal government CHF
7.5 million, with additional expenses covered by the executing cantons. Af-
terwards, the federal government was not directly invested into develop-
ment any more, but still provided coordination services to the cantons, for
an additional CHF 2.5 million by 2012 [56].

Given 5.5 million eligible voters37, each costing CHF 4 less when using the
electronic channel [38], the yearly system cost must stay under CHF 22 mil-
lion to not surpass the break-even. The Consortium system developed by
Zürich cost CHF 11.1 million 2004-2011 [274].38 The universal verifiable sys-
tem CHVote cost CHF 4.5 million to specify and develop [265], with overall
cost of 6.9 million for Genève [129]. Swiss Post does not publish official
numbers [76], but according to internal documents, it spent around CHF 20
million so far (2021) [5].

Main cost driver is the complexity of the systems. The development of the
central component is estimated at around CHF 2 million by Swiss Post,
and at around CHF 1 million for the verifier component. It is argued that
these components should be build multiple times by different vendors using
different technologies to increase reliability [47]. Another cost driver is the
often changing legal basis, which required continuous investment of the
involved cantons. Swiss Post estimates the next foreseeable change in the
protocol (relaxing assumptions on the printer and setup component) to cost

35For example in the Swiss Post system, the specification of the core protocol is 26 pages
[235]. The implementation requires around 160k lines of Java plus other technologies [233].

36This change arguably contradicts the principle of subsidiarity - part of the constitution
[105] - which states actions should be performed at the lowest governmental level sensible.

372020 average, https://www.bfs.admin.ch/bfs/de/home/statistiken/politik.html.
38CHF 2.3 million was covered by the federal government [274, 56].
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CHF 1 million. The propagation of the change into the software is estimated
at another CHF 1 million [47].

For an individual canton, these kind of sums are far from negligible. Since
the initial three systems (for which the federal government supported the
development to up to 80% [56]), no other canton has started another ini-
tiative on its own. While the three initial systems each survived around a
decade, afterwards they were abandoned (Consortium, Genève) or handed
over (Neuchâtel to Swiss Post). Cantons and civil societies repeatedly asked
the federal government to either develop its own system, or again support
cantons financially [130].

Given the large cost (and binding of other resources) relative to the number
of primary benefactors of the system, some argue the effort is better spent
on other projects of digitalization altogether. Alternative solutions to help
the primary target group are proposed instead, like sending postal letters to
expats earlier, or improving the assistance of people with limited mobility
[130].

System-specific arguments The two remaining systems in Switzerland are
very similar concerning trust assumptions, mechanisms and provided prop-
erties. However, their creation has been quite different. CHVote is based
on a specification worked out in 2017 by the E-Voting group of the Bern
University of Applied Sciences [139], and was then developed by Genève in-
house [113]. The Swiss Post system was initially developed by Scytl, which
operated similar systems also in Norway and Australia, repeatedly facing
harsh critique for a perceived lack of quality of their solutions.39 Swiss Post
bought the system in 2020 to continue development in-house [232].

While Swiss Post is owned by the federal government, it is a private firm
which primarily pursues economic goals. It is argued that this prevents full
transparency [129], and that the people do not want central services of the
state provided by private firms, as established in the 2021 E-ID referendum
[51]. Further, economic incentives may prevent investment in quality efforts
which cannot be observed or contracted by the customer. Indeed, observing
quality of specification, proofs or code is arguably hard.

The past transparency efforts of Swiss Post have indeed sometimes been
unfortunate. The source code was only made accessible as late as legally
possible during the public review 2019, while the system was under control
of Swiss Post already since 2015 [225]. Access to the source code had been
hardened with restrictive usage conditions [45]. Then, the communication
around the critical vulnerabilities found arguably downplayed their severity

39Compare with section 3.2.3.
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or avoided acknowledgement.40 Further, the code was perceived as low
quality [45].

The new system which went into review in 2021 has more permissible usage
conditions [233], and some components are provided under an open source
license [237]. However, the main component is still proprietary [236], likely
due to economic concerns [5]. Since 2019, the quality of the code has been
invested in [233].

4.4 Administration

In Switzerland, elections are organized by the cantons, including for federal
issues. While the cantons are mostly free how they organize their elections,
they do have to follow some basic legal requirements. For vote électronique,
this same principle holds: The systems are operated by the cantons, but the
federal government defines some minimal legal requirements.

Developing such a system is costly, but once established, it could be reused
by other cantons. The federal government decided to finance a large portion
of the first three systems, developed until 2005, under the condition that the
resulting systems could be reused by other cantons for free [55].

Since then, the federal government has restricted itself to facilitate between
the cantons, but does not longer directly support development [56]. In 2020,
the federal government still rejected developing a system by themselves,
rather voicing support that different systems establish [129].

Zürich / Unisys (until 2015) Zürich had no centralized voting registers
when the project started, hence harmonising these registers was a central
part of the effort [32]. The resulting system allowed the municipalities to ad-
minister vote électronique independently (the so-called Mandatenfähigkeit). It
was developed by Unisys [55].

The system then quickly rose to be the most adopted solution in Switzer-
land, thanks to the Mandatenfähigkeit. St. Gallen, Aargau and Thurgau
used it to let expats vote, for which they form a logical municipality. Fri-
bourg, Solothurn, Schaffhausen and Graubünden used the system as their
municipalities administered their own voting registers [56]. Glarus joined
some time later [58].

Besides adding support for elections and dropping the initial support for
voting over SMS [56], the system remained nearly the same until it found

40For example, they proclaimed only low severity issues were found by the public intro-
duction testing (PIT). This is technically true as the PIT did not include the review of the
source code (where the severe issues were found), but in the public this was often perceived
as the same thing, which they even acknowledged in their own report [228].
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its end in 2015, when the federal government denied continued usage: The
system had an unresolved issue jeopardizing vote secrecy, and did not com-
ply with the new regulatory framework established two years before [58].
The involved cantons then gave up the system [289].

Genève Genève already had its voting registers centralized when it started
development in 2001 [32]. The security was provided by blue-infinity, a firm
situated in Genève, which was also asked for reviews by the other pilot
systems [55].

Starting 2005, the system was fully developed in-house. Genève continued
development, and continuously improved usability and security [56]. It was
adopted by Basel-Stadt, Luzern and Bern [113, 58].

By 2015, the system supported individual verifiability [58]. In 2016, it was
decided to make the systems open source and develop a new version which
also provides universal verifiability [113]. In 2018, the development of the
new version was halted due to its high cost [114], and the system providing
individual verifiability was shut down in 2019 [115].

Neuchâtel Neuchâtel added the internet voting capability into Guichet
unique, an online portal which also implemented other electronic admin-
istrative concerns [32]. Similar to Genève, they additionally took an effort to
centralize voting registers and election processes [55].

The cryptography was provided by Scytl. A form of end-to-end encryp-
tion was already implemented, as well as the confirmation/finalization code
mechanism still in use today. Two different audit rounds discovered security
flaws, which were fixed before the first official election [55].

The system was not used by other cantons, presumably because the integra-
tion into the Guichet unique was very tight and could not easily be adopted
to other cantons. Neuchâtel however still invested into further development,
adding elections by 2011 [56], and providing individual verifiability by 2015
[58].

Starting 2016, the system was operated by Swiss Post [225, 226], which then
also provided it to other cantons. By 2019, Freiburg, Neuchâtel, Basel-Stadt
and Thurgau used the Swiss Post system [144].

However, the Swiss Post system failed the public review in 2019, and had to
be taken offline [41]. Swiss Post bought the rights of the system from Scytl
in 2020 [173], and from then on continued development in-house [232]. The
updated system went in review mid-2021 [48], and is the only remaining
system in Switzerland.
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4.5 Summary

The history of vote électronique is first a slow, but a successful one: Three
competing systems, with slightly different approaches, enable half of can-
tons to provide vote électronique within a decade [56]. However, then the
legal requirements become stronger, leading to the Consortium system to
give up [58, 289]. And shortly before introducing vote électronique as a
regular voting channel, the other two remaining systems are shut down;
the Genève system due to cost [114], the Swiss Post system due to critical
vulnerabilities [41]. By 2022, Swiss Post is the only provider which aims to
bring back vote électronique in the foreseeable future.

The legal requirements have continuously been hardened throughout the
project, and have undergone three consultation procedures within the last
decade [33, 46, 52]. Besides enforcing overall high quality and transparency
of the systems, specifically required are individual verifiability, universal
verifiability and vote secrecy, albeit under quite strong trust assumptions.41

The future development of the law has already been hinted at in a report
of 2020: The security assumptions in the setup and the printer authorities
should be lowered, towards verifiable parameter generation and distributed
printing [47]. In general, the legal provisions are very detailed with the
central requirements comparable to the recommendations of the Council of
Europe.

Politically, not much has changed since the start of the project, although
much more interest arose when Swiss Post suddenly was the only provider
left, and their system featured critical vulnerabilities. The pro arguments
revolve around the inclusion of more voters - specifically expats and voters
with disabilities - and porting voting to the internet as done with other
governmental services. The contra arguments argue with too high cost and
complexity of the systems, while still being insecure. At least the contra
arguments have shifted somewhat, as with each revision of the law towards
stronger security guarantees, cost and complexity have risen significantly.

Three cantons, with initial support from the federal government, started
with their own voting system, with diverse approaches for architecture,
transparency and security. Over time, all canton-lead initiates came to an
end, as either they could not keep up with recent developments (Consor-
tium) or the systems became too expensive (Genève, Neuchâtel). The re-
maining system was initially developed for Neuchâtel, but is now marketed
towards all cantons by Swiss Post.

41Full trust in the setup and printer authorities and trust for secrecy in the voter’s device.
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Chapter 5

Setting of vote électronique

We explore in this chapter the setting vote électronique is in, hence which
requirements it has to implement under which guarantees.

The requirements are fortunately straight-forward. An electronic voting sys-
tem for Switzerland should enable eligible voters to participate in referen-
dums and elections. Out of scope for this work is anything which does not
impact the cryptographic protocol, like user interfaces or import and export
functionality. We however of course keep in mind what has to be built on top
of the cryptographic protocol, and might choose an appropriate trade-off.

Concerning the guarantees we have to deliver, these are described by the law.
This work focusses on the cryptographic protocol of a vote électronique sys-
tem, hence we are most interested in the technical details described in VEleS
and its appendix [35], but not so much in the organisational constraints reg-
ulated in VPR [53, Art. 27] or even the more abstract BRP [98, Art 8a]. We
use the newest version of VEleS currently available which was published as
part of the consultation procedure in summer 2021 [50, 52]. It will be set in
force sometimes in mid 2022 [60], possibly featuring some small changes.

Given the requirements and the legal framework, we then discuss how we
might change the setting. We might be able to further minimize trust as-
sumptions or even to strengthen requirements. Further, we explore ways
how to reduce the complexity of a possible vote électronique system, as we
note that the existing systems are very complex, and this complexity im-
pedes the operation of a cost-effective and high-quality system.

Referendums, elections and eligibility Referendums are around four times
each year, and are primarily a yes/no choice. Abstention is also possible.
Further, some motions have a direct counter-proposal worked out by the par-
liament; in which case both proposals are individually voted for or against,
and additionally a preference between the two is specified.
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Elections are every four years, leaving much more freedom to the voter with
modifiable lists of candidates. We omit describing here in more detail the
different ways these lists can be modified as it will not be relevant for the
protocol proposed as part of this work.

Eligible voters are organised in voting circles. Smaller municipalities may
consist out of a single voting circle, while bigger municipalities may consist
out of many.1 The results are announced at the granularity of voting circles.
Within a voting circle, there may be voters of different eligibility.2

5.1 Legal Framework

For now, we keep the roles and properties somewhat imprecise, and align
the terminology and formulations with law [52] rather than literature.

Besides the model and the properties we describe here, the law sometimes
imposes artificial constraints on the protocol. It is our understanding that
these constraints are accidental (for example, when mentioning public and
secret keys, the law arguably implicitly requires the protocol to indeed use
public and secret keys), hence we will not elaborate on these further.

Constraints The legal framework for vote électronique is developed within
some legal, political and administrative constraints.

The cantons are in charge of organizing the elections, and - by the Swiss
federal structure - in principle free to do this as they please. The federal gov-
ernment is however able to constrain their options (for example, by passing
a law which defines minimal security requirements), but will be careful to
only regulate what is strictly necessary.

The postal channel is currently the only feasible way to send secret material
to voters. There is no public-key infrastructure with citizens, and an E-ID
which aimed to bring something similar, was rejected in March 2021 [278].3

The postal voting channel, and the in-person voting channel, are already
established and it is currently not the aim to replace these channels [37].

Cantons are organized differently, some tend to place responsibilities at the
cantonal administration and some distribute more to the municipalities.
Whether it makes sense to include the municipalities in vote électronique

1The city of Zürich consists of 12 voting circles.
2For example, foreigners may be able to vote on cantonal issues but not federal.
3The rejection was however arguably not because citizens do not want a state-recognised

electronic ID, but rather because the implementation made it possible that private firms
could have been able to provide it (see https://www.e-id-referendum.ch/).
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depends on the canton.4 For centrally organized cantons such as Basel-
Stadt and Genève, appropriate structures on municipal level may not exist
(or be unrealistic to use for this purpose). In other cantons, for example St.
Gallen and Thurgau, an inclusion of the municipalities would follow the es-
tablished strategy (as supported by the Consortium system used until 2015),
and may even be politically required.

Voters do not have access to a trusted device, and are intellectually lim-
ited. As the voting channel should be fit for use for a large portion of the
electorate, we cannot ask the voter to do complex tasks like keeping secret
key material safe over a longer period of time, or executing more than very
basic5 mathematical expressions.

5.1.1 Model

The legislation assumes a certain model when describing the security prop-
erties.

Roles The protocol is initialized by the Setup Authority which receives all
data related to the election (eligible voters, voting options, deadlines, ...)
and uses it to prepare the election. The Printer Authority is then able to
transmit data securely to the voter (over the assumed secure postal channel)
following the instructions provided by the setup authority.6

The Voter casts and confirms their vote using the Voter Device. Voters are
additionally allowed to invalidate their vote by claiming it has been received
unsuccessfully by the servers [52, appendix 4.9].7

The Control Components may participate in all phases. Multiple of these
components are run in parallel, and together they ensure the voting system
behaves as expected.

The Auditors observe the voting system for correct behaviour (but do no
actively participate). They are able to impersonate fictional voters to test the
system [52, appendix 14.7].

Covert Adversary The law assumes covert adversaries.8 Covert adver-
saries, also called honest-but-curious adversaries, may deviate arbitrarily
from the protocol, but do not wish to be “caught” doing so [12]. This at-
tacker model notably excludes many disruption of service attacks (like a

4Note that the federal government will likely not regulate this, as arguably this would
restrict the cantonal autonomy too much.

5Like comparing values, or addition of small numbers.
6The split of these authorities likely has practical reasons: A facility optimized for print-

ing might not be suitable to prepare the election material.
7How the claim is authenticated and implemented is outside the scope of this work.
8Notably, CHVote [139] and the Swiss Post protocol [235] come to the same conclusion.
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component refusing to process input, or an accountable component flood-
ing others with requests).

Trust assumptions Full trust is placed into the setup and printing author-
ity, hence both are assumed to operate correctly and without leaking secrets.
These authorities are only active in the setup phase of the protocol, before
the voting phase starts.

Some voters might be dishonest, but for honest voters, the to-be-achieved
properties must hold. Voters are only active during the voting phase.

There are multiple control components and auditors (the law suggests at
least four of each), but only one each is fully trusted, while it remains un-
specified which one. Both control components as well as auditors are po-
tentially active during all phases of the protocol, including the tally in the
end.

The roles are connected to each other over bidirectional untrusted channels.
The auditors may not send messages.9 The printer authority may also not
send messages, except a postal letter to the voter, which is assumed a secure
channel. The second assumed secure channel is from the setup authority to
the auditors.

5.1.2 Properties

Having set the stage with the involved roles, we now define list the prop-
erties as defined by the law. As in the literature, there is so far has no con-
sensus over definitions of the security properties, hence it increases trans-
parency if the law explicitly defines the intended meaning. We formalize
the properties in section 8.2.

Following legislation, we refer to Complete Verifiability if both individual ver-
ifiability as well as universal verifiability are guaranteed. A vote is registered
successfully if the server acknowledges that it is the first vote cast and con-
firmed by the corresponding voter, and that the selection of voting option(s)
it represents is valid.

Individual verifiability Individual verifiability holds when voters are given
exactly one of two proofs: Voters who participate electronically are given a
proof that the vote has been registered successfully by the server, exactly as
cast. Voters who did not participate electronically can request a proof that
their vote has not been registered by the server [52, article 5.2, appendix 2.5].

9This essentially means that the auditors cannot be actively involved in the protocol,
hence we never include them in the protocol description. Auditors may nonetheless observe
and validate progress from the outside.
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Voters check their proofs independently. Security analysis may assume the
printer and setup authority as well as one control component are honest [52,
appendix 2.9.1].

Universal verifiability Universal verifiability holds when the auditors are
given a proof that the result is composed out of all, and only of, successfully
registered votes [52, article 5.3, appendix 2.6].

Auditors check the proofs using technical aids. Security analysis may as-
sume at least one auditor (with their technical aid), as well as at least one
control component are honest [52, appendix 2.9.2].

Vote secrecy and Fairness Vote secrecy holds if the plain vote cannot be
attributed to the voter. Fairness ensures the attacker does not learn partial
election results before the official tally [52, article 7, appendix 2.7].

Auditors check the proofs using technical aids. Security analysis may as-
sume at least one auditor (with their technical aid), the printer and setup
authority, as well as one control component are honest [52, appendix 2.9.3].
The law further allows the voter device to be honest for this purpose, hence
not leak any secrets. It is implied by the law, although not clearly specified,
that the short ballot assumption holds.10

Authentication Authentication holds when the attacker cannot insert votes
without having control of the voter [52, appendix 2.8].

Security analysis may assume the printer and setup authority as well as one
control component are honest [52, appendix 2.9.4].

5.2 Discussion

We explore how we may optimize the setting, under the given constraints.
Our observations are independent of any protocol, and we argue for univer-
sally true baselines. The insights are not formally established, but nonethe-
less will help us design our protocol: They prevent us thinking about mech-
anisms which are fundamentally impossible.

There will likely still be a gap between our concrete proposal and the mini-
mal trust assumptions or the strongest possible properties established here.
Such a gap may reflect some unidentified fundamental restriction we have
overlooked, and might not be resolvable. Or the gap is chosen deliberately,
as we resolve tradeoffs between higher complexity or higher security to-
wards simplicity.

10Hence just seeing a list of plain votes does not allow to attribute the respective voters.
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5.2.1 Minimize security assumptions

We first look at the minimal trust assumptions towards the authorities. We
establish what their fundamental non-transferable tasks are, and then con-
clude how this impacts the trust assumptions.

We find that the setup and the printer authority require very strong as-
sumptions in order to achieve our security properties. Introducing a second
printer authority to relax the trust assumptions would unfortunately not
bring much benefit, but increase the effort to operate the protocol substan-
tially. We also argue that having at least one trusted control component and
auditor each is a trust assumption which cannot be reduced any further.

Where we however see potential to reduce the trust assumptions as assumed
by the law is with the voter device: By placing the (arguably realistic) burden
of encrypting the vote on the voter, it is possible to place no trust in the
device at all.

Relieve the setup authority The setup component is where the election au-
thorities enter all data related to the election (eligible voters, voting options,
deadlines, ...).

We do not need trust in the setup authority for any data entered which is
public (like deadlines, length of cryptographic parameters, ...). This data
can simply be published, and for example auditors can verify its correct-
ness. Further, we do not require trust in the setup authority to generate the
cryptographic key material. This can instead be done with the help of the
control components, using some sort of multi-party computation scheme.

However, there are two tasks we do need trust into the setup authority for.
This includes data that needs to stay secret and/or cannot be publicly veri-
fied (like personal data of eligible voters), and data required to prepare the
data for the printing authority. The former implies trust at least for eligibil-
ity verification11, the latter implies that the setup authority inherits the trust
assumptions of the printer authority.

Harden the printing authority The printer authority prints out data re-
ceived by the setup authority, and sends it over the postal channel to the
voter.

In our model, this printed ballot sheet is the only form of secure communica-
tion with the voter before the election. This implies that the printer authority
learns all secrets the voter receives, and therefore can break authentication
(both for the server authenticating the voter as well as vice versa). As we

11This is a part of authentication, see section 8.2.
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need to trust the printer authority to not break authentication, we also need
to trust it for individual verification, which depends on authentication.

When the encryption scheme used to encrypt the vote is deterministic, we
additionally require trust in the printing authority in order to achieve pri-
vacy. Instead, a randomized encryption scheme could be used, which how-
ever would imply trust in some technical aid to pick good randomness.

Introduce secondary printing authority To circumvent a single authority
knowing all secrets a voter receives, we can introduce a second printer au-
thority with another secure channel to the voter.

This may enable us to avoid trust into the printing authority in order to
achieve authentication, rather transforming it into a non-collusion assump-
tion between the printers. The voter and the server would essentially be
required to verify two sets of authentication secrets, with each set originat-
ing from a different printer authority.

For privacy, when some form of deterministic scheme is used, a similar in-
sight applies. The voter would again need to somehow combine information
received from both printers into a single vote.

This second printer authority would need to have different organisational
structures as the primary printing authority to achieve an actual increase in
security. For example, one of the printers could be operated by the canton,
and the second by the municipality.12 However, this will increase the ef-
fort substantially (at least doubling it), which is even more relevant as the
printers still have to be operated under strong procedural safeguards.

To reduce the effort somewhat, one could design this secondary printing
authority such that it delivers secrets valid for multiple elections. For exam-
ple, when registering for vote électronique, the voter receives a code book
valid for the next two years. However, this now requires the voter to safe-
guard these secrets. Voters may lose the key material, or choose unsafe
ways to store it.13 Further, some printing authority has to hold on to these
codes over an extended period in time, which may require additional trust
assumptions or procedural safeguards.

At least one trusted control component The control components are able
to contribute throughout all phases of the protocol.

As noted when discussing the setup authority, the control components may
generate the cryptographic key material used for the election. This can be

12However, depending on the canton, appropriate municipality structures may not exist.
Further, some cantons form a logical municipality for expats (with no real-live equivalent).

13Note that the key material is used only every three months.
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designed in such a way that only a single honest control component ensures
the material has the required properties. For example, when combining
multiple values using XOR to get a uniform at random key, we only need
a single of the original values to be uniform at random for the result to be.
Similar results are possible with more complex schemes such as public key
aggregation or Shamir secret sharing.

During the voting phase, the control components are the only authorities
the voter communicates with, hence also the only components that store
the votes. It requires at least one honest server to ensure received votes
are not simply dropped. Note that this also requires each individual server
to authenticate themselves to the voter, so the voter can be sure the honest
server has seen their vote.

In the tally phase, the control components may again be involved. The
tally could be constructed in such a way that its operations are provable. A
single honest control component would again be enough to uncover missing
or wrong proofs.

At least one trusted auditor The auditors are active during all phases of
the protocol, but do not actively participate.

At least one auditor has to be trusted, else the audits would serve no pur-
pose (the attacker could simply claim the success of the audit independently
of the input).

Interestingly, there is no inherent need to trust any auditor to achieve pri-
vacy. Whether the encrypted vote conforms to the intent of the voter has
already been checked by the voter (due to individual verifiability), therefore
this does not need to be checked again by the auditors.

No trust in voting device The voter device processes the input from the
voter and communicates with the control components.

The voter clearly requires some technical aid to send a request over the
internet. However, the voting device’s function can be restricted to that of a
gateway between the voter and the servers, simply forwarding data. It only
sees obfuscated data, and the forwarding is strictly checked. Then there is
no need to trust the voting device in order to achieve any of the security
properties.

For sending data from the voter to the servers, the voter can use voting codes
instead of plain values. For this to work, the voter and the tallying authority
need to agree on the same plain value↔ voting code lookup. When the device
does not know this association, it learns nothing when snooping the traffic.

To ensure the data was indeed forwarded to the server as intended, the user
needs some verification. This can be solved by placing another lookup both
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at the voter and the server, concretely voting code ↔ verification code. If the
voter receives the correct verification code back from the device, it knows the
forwarding was successful. This of course under the condition that replays
are impossible.

Compared to the current systems, voting codes are a new proposal. Likely,
it was not considered so far as the usability when entering the vote de-
creases.14 However, understanding of the system as a whole might in turn
increase: What the voter enters is exactly what the server receives (rather
than being obfuscated by the voter device). Further, the task is in is essence
a simple one: The voter needs to perform a lookup, something they already
do in reverse for the established verification codes. It should be feasible to
design appropriate usability measures to make this work.

5.2.2 Strengthen properties

We now look at the properties required by Swiss law, and argue whether
and how they could be strengthened.

For privacy, we conclude that the required properties are as strong as they
can be under the given setting. Notably the stronger notion of ballot privacy
called receipt freeness contradicts individual verifiability directly. Everlast-
ing privacy, while not strictly impossible, seems unreachable from a practical
point of view.

For verifiability, we argue that the most important properties from litera-
ture are indeed already required. Additionally, accountability or the even
stronger dispute resolution properties could be required. These properties
would improve the availability guarantees, which could then help to assume
a stronger attacker (rather than the covert adversary model, which essen-
tially is assumed to not break availability). However, these properties are
rather new in the literature, and their implementation would likely entail a
lot of additional complexity.

Privacy Swiss law requires vote secrecy (no one learns the vote of some
specific voter) and fairness (no one learns votes until tally). These are the
oldest recognised properties in the literature, and virtually any voting sys-
tem fulfils them (including non-electronic voting).

Stronger than vote secrecy, but usually seen as a baseline in the literature, is
receipt freeness: The voter should not be able to produce a proof of how the
vote was submitted, even when collaborating with the attacker, to prevent

14Indeed, in a meeting with the Federal Chancellery on 24.11.21, this was the raised
doubt, while the security benefits are recognised and seen as important. In a meeting with
the cantonal administration of Basel on 21.10.21, the feedback was carefully positive.
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vote selling. For in-person voting, this is usually guaranteed by the voting
booth, for the Swiss postal voting however there is no such guarantee.

In the vote électronique setting, any secret information the voter has is con-
tained on the ballot sheet sent by postal mail. As we must assume the voter
collaborates with the attacker, and forwarding the ballot sheet to the attacker
is clearly practical, we must assume the attacker has the same knowledge as
the coerced voter.

If the attacker coerces the voter before they hand in the vote, we cannot have
individual verifiability at the same time as receipt freeness. The attacker
will be able to observe the individual verifiability mechanism (for example
by shoulder-surfing), and as the attacker has the same knowledge than the
voter, the mechanism must also convince the attacker of the cast vote, which
breaks receipt-freeness. The only way to recover would therefore be mech-
anisms that break individual verifiability, like declaring a confirmed vote as
invalid by calling an election hotline.15

But what happens when the attacker coerces a voter only after the vote has
been cast?16 When the individual verifiability check can be repeated, or
when by some other way the actions of the voting device can be retraced17,
receipt freeness still breaks. It is unclear whether a protocol exists under
minimal trust assumptions which defends against both these threats.18

We omit a separate discussion for coercion resistance, as it is a strictly
stronger property than receipt freeness.

Everlasting privacy, hence not relying on cryptographic assumptions for
the privacy of the vote, is arguably possible. Corresponding cryptographic
primitives are well known, like perfect secret encryption or perfectly hid-
ing commitments. Other cryptographic operations could be shifted into the
real world, like performing a verifiable shuffle using paper. Unfortunately,
the practicality of especially the latter example is doubtful, while the veri-
fiable shuffle is a seemingly necessary building block of an internet voting
scheme.19

Verifiability Swiss law requires individual verifiability (the voter can check
the vote was received by the server) and universal verifiability (it can be
audited that any and only received votes are included on the tally), and

15Or revoting, but this is not possible in Switzerland.
16Note that once the postal vote envelope is sent, the voter can no longer proof their vote.
17Note that universal verifiability guarantees cast votes can be accessed.
18In the Swiss Post protocol, the encryptions are deterministic, hence given the submit-

ted ciphertexts and the secret key (from the ballot sheet) the original voting choice can be
recovered [235]. CHVote uses randomized encryption, but consequentially requires trust in
the voting client for the randomization [139].

19See the discussion in section 6.2.2.
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refers to complete verifiability when both are fulfilled. Swiss law further re-
quires some notion of an authentication property, which is best described as
a precondition for individual verifiability, and the notion known as eligibil-
ity verification in the literature.20 All these properties are widely regarded
as necessary in the literature.

End-to-end verifiability is not required by the law, although argued by most
researches as another baseline. However, individual and universal verifiabil-
ity together (which are indeed required) almost always21 imply end-to-end
verifiability [82].

One could think about strengthening eligibility verification, explicitly allo-
cating each vote to a voter publicly (e.g. how [167, 252] implement it). It is
clear from a data protection perspective that in a real system the clear name
cannot be used, but if only an alias is chosen instead, the benefit from a
practical point of view is arguably low. But then who creates this alias list,
and how does this actually increase the trustworthiness of the system?

Accountability ensures that actions of authorities are attributable, so dishon-
est behaviour is not only detected, but also attributed to a specific offender.
It seems realistic that this property can be reached.22 The stronger dispute
resolution property would additionally required complex secret distribution
mechanisms to then additionally recover from a misperforming party. Both
properties have not received much attention in the literature yet.

In the context of Switzerland, both accountability as well as dispute reso-
lution could be seen as an extension of availability. As a any more adver-
sary is assumed, breaking availability is consequentially out of scope. How-
ever, if increasing accountability is possible, while not jeopardizing more im-
portant properties or increasing the complexity too much, it would clearly
strengthen the system.

5.2.3 Reduce complexity

Given the security properties, and the trust assumptions, we explore options
how complexity can be taken out of the system.

Complexity indeed seems to be a big issue, raising to a point where accept-
able cost and quality is difficult to obtain. Swiss Post had quality prob-
lems [45], although it spends a small fortune on its system [5].23 CHVote

20See section 8.2 for a formal discussion.
21With the exceptions arguably only applicable to exotic voting schemes.
22For example, all messages from authorities are signed, and when an invalid message is

singled out, the offender could be clearly blamed.
23The timeline of the sources are skewed: The quality problems were discovered in 2019,

but the report that Swiss Post spent a lot is from 2021. The argument still stands, as it is
unlikely Swiss Post spent most of the money 2019-2021.
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was specified only in 2017 [139] by experienced researchers but used sim-
ilar mechanisms and ended up being similarly difficult to understand as
the older Swiss Post system.24 While cost was around a third of what the
Swiss Post system presumably cost25, it was still a significant amount and
too much for a single canton to bear [114].

We can reduce the complexity by choosing simpler and industry-standard
cryptographic primitives to avoid difficult implementations on our own. We
can focus to implement first and foremost referendums, to avoid the addi-
tional complexity introduced by the complex voting procedures of elections.
Further, we can externalize functionality by letting the voter or some other
system execute it, like encryption or shuffling.

Use simpler and industry-standard cryptographic primitives Some of the
used constructions are very complex, and implemented for the first time
by industry. These complicate the implementation (as it has to be done
from scratch) but also the review (as only domain-experts understand the
constructions in depth). Using simpler cryptography is clearly beneficial.

However, these constructions are complex because the system has be ver-
ifiable, hence a third party has to be convinced that the system executed
correctly. Sometimes this verifiability has to be proven even while preserv-
ing privacy, hence a third party has to be convinced that the system executed
correctly while not learning any of the secret material. This complexity is some-
what inherent to electronic voting (like the tally phase, which has to count
correctly while not leaking the plain vote of individual voters), but there are
many different ways how to achieve it.

For example, zero-knowledge proofs of knowledge can be used to assert
some value has been correctly re-encrypted, without revealing the plaintext
or the secret key. Depending on how the protocol is setup, this same as-
sertion can be reached by taking advantage of time: The re-encryption is
done, and the input and output of the operation (but not the secret key)
is published. After some time, when the secrecy of the computation is no
longer relevant, the secret key is also revealed. Then anyone can verify the
computation was done honestly.

Similarly, commit schemes can be implemented using hash functions. Key
material from different sources can be combined using XOR. Verifiable en-
cryption can be done by the users themselves using a lookup of precom-
puted values. Public key cryptography can be replicated with a hash func-
tion and an additional integrity assumptions into a third party.

24Fewer, but more uncommon, cryptographic operations are used (like oblivious transfer).
256.9 million for Genève [129] vs 20 million for Swiss Post [5]. For the Swiss Post system,

this number likely does not include much of the cost borne by Scytl.
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Reduce functionality Besides restricting interoperability features (like im-
port and export interfaces) and similar technical depth, we may also restrict
functionality visible to the voter. Keeping the requirements down of a sys-
tem arguably reduces development time super-linearly (meaning, half the
features likely use less than half the development time).26

A likely candidate is to drop support for either referendums or elections.
Focusing on referendums first is in line with the initial strategy already
proposed 2002 [54] but a step back compared to the current systems which
at least theoretically support elections. As the legal requirements and the
technical implementations have changed heavily in the last decade, it can
be argued that also a restart from a requirements point of view is sensible.
However, voters might wonder why the tool is only sporadically available,
and the uncertainty might lead to distrust in the overall system. If only
partial support is possible, voters should be clearly informed about it (for
example by calling the system explicitly ”votation électronique”).

Externalize tasks Executing tasks outside of the system, rather than doing
it within, may also reduce complexity. A vote électronique system reduced
to its essential features (allowing the voters to vote) has not many tasks left
to take out. However, even cryptographic operations can be externalized.

The cryptographic shuffle has a physical counter-part, concretely printing
sheets then physically permuting the order. This is already implicitly in use
with ballot boxes, where filled out votes are put in by the voters. The order
of insertion is lost, thereby losing the association between the voter and
their vote. To ensure that this shuffling cannot be inverted, no attributable
information must be contained on the permuted sheets.27

The cryptographic encryption can be delegated to the voter, too. The voter
can be presented a voting code for each plain vote, and the voter uses said
voting code to communicate their intent. This is already in use - the other
way around - with the verification codes known in the current systems. Note
that the voter essentially performs a lookup of a precomputed cryptographic
operation, and whatever creates or sees said lookup has to be fully trusted.

More complex cryptographic operations may be executable on a trusted
voter device. However, in Switzerland no smartcards or similar are in wide-
spread use, hence an approach as for example used in Estonia (see [148]) is
not feasible.

26Intuitively, one can argue as follows: Given three components, and a forth one is added,
we need to add three interfaces to connect it to the other components. We hence double the
amount of interfaces required to six, while only increasing functionality by a third to four.

27We omit here how ciphertexts might also enable re-attribution.
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5.3 Summary

We have seen the model and security properties as given by the law. After
establishing terminology, the law clearly states trust assumptions for the
roles participating in the protocol. We identify the covert adversary model as
the attacker the setting attempts to defend against. The law further defines
the security properties a vote électronique system must fulfil.

We then discussed the current setting of vote électronique, and identified
some small possible improvements. We further minimize trust assumptions
by arguing that the voter device needs not to be trusted. Further, we have
seen that accountability and dispute resolution are not reflected yet in the
law, but also acknowledge these contribute primarily to the availability of
the system.28 Also, we have motivated that reducing complexity is a neces-
sary improvement, and have discussed strategies to do so.

28Which is assumed not be of primary concern as the attacker model shows.
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Chapter 6

Iterative Proposal

With the setting established and some general improvements suggested (see
chapter 5), we may now start to propose our protocol.

Instead of starting with a full and formal description (which is in the next
chapter 7), we want to introduce the protocol iteratively. This aims to ease
understanding of why each specific messages is necessary, but also serves as
an (informal) optimality argument: Given the same setting, each message of
our protocol is required, and therefore the protocol is as simple as possible.
Given the aim of this chapter, we focus on the mechanisms used but forego
precise mathematical definitions.1

We foremost target simplicity in the voting phase (rather than in the setup
or tally phase), as this is where the voter interacts with the protocol. We un-
derstand that a protocol appears simpler when there are few single-purpose
values and few round-trips. Our strategy is as follows: We focus first on the
voting phase, and establish two separate protocols, one fulfilling the privacy
properties, and the other fulfilling the verifiability properties. Then we join
the proposals together, and define suitable setup and tally procedures.

Simplifications We assume voters of different eligibility and voters of dif-
ferent voting cycles to participate in different elections. This simplifies our
protocol description. In practice, the protocol can then be run multiple times
in parallel to serve voters of all eligibilities and voting cycles.

Bulletin Board Besides the roles introduced by the setting in chapter 5, we
also rely on a Bulletin Board (BB): A publicly accessible append-only storage
primarily for the exchange between the voters and the control components.
Each addition to the bulletin board is confirmed with a signature over it sent

1Readers which prefer precise mathematical treatments may prefer to skip ahead to chap-
ter 7.
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to the control components. The bulletin board is the only component pub-
licly reachable, and therefore the only component which requires hardening
like public servers do (for example, against DDoS attacks).

Given the covert adversary model of our setting, we do not require any
trust assumptions in the bulletin board. It will only append valid messages,
which for the adversary are either hard to guess (because they require au-
thentication secrets) or attributable (because they originate from a control
component or an authority). Further, the bulletin board cannot refuse to ap-
pend messages, because again this would be easily detectable. As the bul-
letin board state is signed by the bulletin board itself, it can never remove
messages (as a signature would proof misbehaviour). Providing different
parties with different views is also easily detectable, and therefore not part
of the adversary model, either.

Notation We use boldface for an unordered list of elements, for example
a = [a1, a2,...].

We denote the combination of permutations using ∗, like [0 → 1, 1 → 0] ∗
[0 → 0, 1 → 1] = [0 → 1, 1 → 0]. We overload the ∗ operation to also
query lookups2, like a ∗ [a → 2] = 2. We may also revert lookups, like
2 ∗ [a→ 2]−1 = a.

We denote modular addition with ⊕. The modulo is defined over the group
from which the individual values have been drawn from (for example if
x, y r←− Zv and L = [x, y], then ⊕L = ∑ L mod v).

For partial values of the control components we use lowercase with an index
top right (for example, vv(i) for the partial vote verification of CC(i)). When
the partial values have been combined, we use the uppercase equivalent (for
example, VV for the vote verification).

6.1 Establish verifiability

First, we establish verifiability. We aim to find a protocol which supports
vote submission and keeps the vote safe and unmodified until tally.

As we target here only the voting phase, we assume for now OptimalSetup-
Tally: The setup and tally procedures are defined in such a way that they
do not jeopardize the properties achieved in the voting phase. This notably
includes that the secrets are distributed appropriately.

2We refer to lookups for permutations where the source and target groups do not match.
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6.1.1 Verifiable internet voting

We start by the voter simply sending the vote authentication VA together
with the plain vote P to the bulletin board. The bulletin board accepts the
vote if the VA is valid. To enable the bulletin board to check whether VA is
valid, but without giving it the ability to impersonate a voter, we let it know
hashes of all valid VA.3

For the bulletin board to correctly receive the vote and then keep it, we need
some simplifying assumptions. We assume SecureCommunication hence mes-
sages sent cannot be read or changed by the attacker.4 Further, we require
both DeviceIntegrity and BBIntegrity such that the messages are forwarded
and kept unmodified. We will replace these assumptions with weaker ones
that conform to our target security model over the next iterations.

With these trust assumptions, we already reach all required integrity prop-
erties: Complete verifiability is reached as the voter can check both his own
vote, as well as all other given votes on the bulletin board. Authentication
works as the attacker only learns the one-time-use VA after it has been used.

The voter V knows the vote authentication VA and the plain vote P . V uses
their device D to send (VA,P) to the bulletin board BB.

V→ D : VA,P
D→ BB : VA,P

Assumptions: OptimalSetupTally, SecureCommunication, DeviceIntegrity, BBIntegrity
Properties: Complete Verifiability, Authentication

Protocol 1: Verifiable internet voting.

6.1.2 Fewer integrity assumptions

We now drop the unrealistic and unlawful trust assumptions by introducing
the control components.

We assume that at least one control component is honest, calling this the
SingleCCHonest assumption. This already avoids any trust assumption in the
bulletin board, as the append-only guarantee is now ensured by the control
components.5 Further, we need an ElectionHotline assumption; an external

3By the OptimalSetupTally, we do not need to specify now how this exactly works.
4This also holds for the attacker controlling the bulletin board.
5See the discussion at the beginning of this chapter.

93



6. Iterative Proposal

trusted authority which is able to mark votes as invalid if the respective
voter complains.6

We further introduce a vote verification mechanism using the control com-
ponents. In the setup phase, each control component i chooses for each
(VA,P)-tuple a uniform at random partial vote verification vv(i). During the
voting phase, they publish vv(i) when the corresponding (VA,P)-tuple ap-
pears on the bulletin board. Honest control components will never publish
multiple vv(i) for the same VA, ensuring for each voter only a single vote is
verified.

The voter then sums up7 all the partial vote verifications VV′ = ⊕m
i=1 vv(i),

and checks whether VV′ = VV for VV the actual expected vote verification
for the submitted P . If the check succeeds, the voter can be reasonably sure
the P was received by all control components. If the check fails, the voter
calls the election hotline to complain.8

Even though we changed the trust assumptions, the resulting properties re-
main the same. We achieve individual verifiability by the voter checking the
verification codes. Universal verifiability is reached as before; any submitted
votes are visible on the BB. Authentication works as the attacker only learns
VA when the voter submits its vote, and would then break the individual
verifiability check if it modified the vote.

6.1.3 Automate voter feedback

The voter feedback whether the individual verifiability check succeeded cur-
rently requires a hotline to receive a call whenever the check failed. Depend-
ing on the number of disruptions, this may be a lot of effort to operate. We
therefore introduce a second round-trip to automate the feedback of the
individual verifiability check. This indeed brings an advantage on the as-
sumption that an attacker is less likely to interfere when it cannot change
the cast vote.9

If (and only if) the voter has received the correct vote verification, they enter
a confirmation authentication CA. A vote is only included in the tally if the
CA is published. Similar as with the vote verification, we establish a confir-

6Correct authentication and implementation of the claim is included in this assumption.
7Using modular addition, according to the group the vv were picked from. Note that

XOR would have the same effect if the values are picked appropriately.
8Note that the expected VV′ only results with high probability if all honest control com-

ponents have seen the same (VA, P) combination. If an honest control component i has seen
a different (VA,P) combination, the attacker has no advantage to guessing the vv(i).

9In the real world, an additional assumption can be taken: If the attacker could not
interfere with the first round-trip, it will not interfere with the second (the attacker might be
inactive at the moment, might have been unable to capture the connection, . . . ).
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The voter V knows the vote authentication VA and the plain vote P as well
as the corresponding expected vote verification VV. V uses their device
D to send (VA,P) to the bulletin board BB, which forwards it to each i ∈
[1, m] control component CC(i). Each CC(i) responds with the corresponding
partial vote verification vv(i), which BB forwards to V.

V ensures VV′ matches VV, else calls the election hotline.

V→ D : VA,P
D→ BB : VA,P

BB→ CC(i) : VA,P
CC(i) → BB : vv(i)

BB→ D : {vv(1),..., vv(m)}
D→ V : VV′ ← ⊕m

i=1 vv(i)

Assumptions: OptimalSetupTally, SingleCCHonest, ElectionHotline
Properties: Complete Verifiability, Authentication

Protocol 2: Verifiable internet voting with fewer integrity assumptions.

mation mechanism that CA has been received at the control components.10

Similar as with the VA, we again provide the bulletin board with a list of
hashes representing valid VA.

If the voter did not receive the correct vote verification, they simply abort.
As the CA is not published, their vote will simply not be tallied. If the voter
still wants to participate in the election, they need to resort to a different
voting channel.

In the setup phase, each control component i chooses for each CA a uniform
at random partial confirm verification cv(i). During the voting phase, they
publish cv(i) when the corresponding CA appears on the bulletin board.11

The voter then sums up12 all the partial confirm verifications CV′ = ⊕m
i=1 cv(i),

and checks whether CV′ = CV for CV the actual expected confirm verifica-
tion. If the check succeeds, the voter can be reasonably sure the vote has
been confirmed by all control components. If the check fails, the voter calls
the election hotline to complain.

10This prevents an attacker invalidating a specific vote by dropping or changing CA.
11Note that cv(i) are independent of the submitted vote.
12Using modular addition, according to the group the cv were picked from.
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The voter V knows the vote authentication VA and the plain vote P as well
as the corresponding expected vote verification VV. V uses their device
D to send (VA,P) to the bulletin board BB, which forwards it to each i ∈
[1, m] control component CC(i). Each CC(i) responds with the corresponding
partial vote verification vv(i), which BB forwards to V.

Further, V knows the confirm authentication CA and the expected confirm
verification CV. If VV′ matches VV, then V uses their device D to send CA
to the bulletin board BB, which forwards it to each i ∈ [1, m] control com-
ponent CC(i). Each CC(i) responds with the corresponding partial confirm
verification cv(i), which BB forwards to V.

V ensures CV′ matches CV, else calls the election hotline.

First round-trip to cast vote.

V→ D : VA,P
D→ BB : VA,P

BB→ CC(i) : VA,P
CC(i) → BB : vv(i)

BB→ D : {vv(1),..., vv(m)}
D→ V : VV′ ← ⊕m

i=1 vv(i)

Second round-trip to confirm vote.

V→ D : CA
D→ BB : CA

BB→ CC(i) : CA

CC(i) → BB : cv(i)

BB→ D : {cv(1),..., cv(m)}
D→ V : CV′ ← ⊕m

i=1 cv(i)

Assumptions: OptimalSetupTally, SingleCCHonest, ElectionHotline
Properties: Complete Verifiability, Authentication

Protocol 3: Verifiable internet voting with fewer integrity assumptions and
voter feedback.

6.2 Establish privacy

Now we establish privacy. We aim to find a simple protocol which ensures
vote secrecy, hence does not reveal the plain vote belonging to a specific
voter. Further we aim for fairness, hence no conclusions about the voting
result before the tally are possible.

We target again only the voting phase, hence keep the OptimalSetupTally
assumption.

6.2.1 Privacy-preserving internet voting

Vote secrecy can be achieved in two ways. We can choose to encrypt the
vote, with the encryption done before the vote is seen by untrusted roles or
channels, and undone only once the link to the submitting voter has been

96



6.2. Establish privacy

separated. Alternatively, we could avoid that the (plain or encrypted) vote is
ever being associated to the voter, for example using anonymous channels.

For fairness, we require that no plain vote is seen by untrusted roles or chan-
nels before the voting phase ends. We again have two choices: Either the
votes are encrypted until the tally phase, or the plain votes are transferred
only over confidential channels and to trusted parties. The latter is clearly
a too strong assumption, hence we choose instead to encrypt the votes. We
reuse this encryption to achieve vote secrecy at the same time.

As we cannot rely on a trusted technical aid, the voter has to be able to en-
crypt the vote on their own. This can be achieved with a lookup: For each
possible voting option, the voter is given its respective encrypted represen-
tation. As the voter necessarily has to enter this encrypted representation
somewhere to submit the vote, for usability we require this representation
to be short.

We implement this by first mapping each plain vote P to a code vote C ∈ C

using the lookup PtC. The codes can have a very tight representation, as
there only need to be as many codes as there are voting options.

Given the C, we then apply a voter-specific permutation P for encryption.
The permutation is only revealed after the vote has been separated from the
voter (vote secrecy), and the voting period has ended (fairness). We ensure
multiple authorities are involved by letting each define its own permutation,
and then chaining all permutations together.13

Concretely, we let each control component choose for each voter a uniform
at random permutation p(i) : C→ C. During the setup, these are combined
into the chained permutation P ← ∏m

i=1 p(i). The chained permutation is
applied to the PtC lookup to get a voter-specific lookup PtCId ← PtC ∗ P.
The voter receives this PtCId on their voting sheet so they can map their
plain vote P into the voter-specific permuted code vote C.

As the permutation is different for each voter, to again map C to its corre-
sponding plain vote and tally the result, the control components need an Id
associated to the specific code vote. We ensure in the setup phase this Id is
not attributable to a specific voter.14

We require the already defined SingleCCHonest assumption: As long as a
single CC is honest, it will keep its permutation private long enough for
the protocol to achieve vote secrecy and fairness. Further, we require the
NoMetadata assumption, hence only data explicitly defined in the crypto-
graphic protocol is exchanged. This effectively assumes anonymous chan-
nels, an assumption we get rid off in our next iteration.

13To recover this chained permutation at a later point, we require each and every authority
to reveal its own permutation again.

14We omit describing this here, as this is included in the OptimalSetupTally assumption.
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Under these trust assumptions, with the proposed mechanism, we already
reach all required privacy properties. Vote secrecy is achieved by Id not
being attributable to a specific voter. Further, fairness is given as the attacker
cannot decrypt the submitted votes.

The voter V knows the code vote C and the id Id. V uses their device D to
send (C, Id) to the bulletin board BB.

V→ D : C, Id
D→ BB : C, Id

Assumptions: OptimalSetupTally, NoMetadata
Properties: Vote secrecy, Fairness

Protocol 4: Privacy-preserving internet voting.

6.2.2 Fewer privacy assumptions

Unfortunately, the NoMetadata assumption is unrealistic. The device of the
voter is likely registered in the voter’s name, or the voter is even logged in
with a personal account. The request to the bulletin board is delivered over
a network, with the service provider again being able to attribute its origin.
The IP, browser fingerprinting, timing or further side channels may enable
attribution by other third parties, too.

To ensure the vote stays indeed separated from an identifiable voter, we
might require voters to use an anonymous channel when communicating
with the bulletin board. Anonymous channels available today include VPNs,
mix networks, the onion network, and others. However, these technologies
themselves entail trust assumptions. The trust assumption may notably in-
clude trust in the device, something we specifically aim to avoid. Further, the
selection and use of an appropriate technology may require expert knowl-
edge and make vote submission more demanding for the voter.

Alternatively, we can separate the votes from the voters server-side using a
shuffle before decryption. A shuffle takes as input a list of ciphertexts, and
outputs a different list of equally many ciphertexts. If executed honestly,
the output elements are unlinkable to the input elements, hence keeping
the permutation of the values secret. The shuffle is verifiable if a proof is
provided that the same cleartext values are represented by the input and
output elements.15 To achieve these properties, verifiable shuffles require
input in a specific format.

15A dishonest shuffle could instead drop all but one vote which would then be decrypted.
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We cannot assume the voter is able to calculate their ready-to-shuffle vote
by hand, and we cannot use a technical aid (as this again would require
privacy assumptions at said technical aid). As before, we could instead use
a lookup, with the voter mapping their plain vote to their ready-to-shuffle
vote. However, usability is low compared to the code votes approach, as the
ready-to-shuffle votes are long ciphertexts.

Instead, we introduce another mapping CtE in the tally phase, which maps
for each voter the short code votes to their respective ready-to-shuffle repre-
sentation. This mapping can be done in a verifiable way, hence no privacy
(nor verifiability) properties are in danger, but we enable the voter to con-
tinue to use the much simpler code votes. Crucially, the plain text of the
ready-to-shuffle representation corresponds to the actual plain vote, hence
applying the voter-specific mapping CtEId ∈ CtE reverses the voter-specific
permutation.16

With this idea, we can now remove the NoMetadata assumption, while our
properties remain unchanged. For vote secrecy, the reasoning changes, as
it is now guaranteed by the privacy-preserving properties of the verifiable
shuffle done in the tally phase. Fairness is still preserved as the votes remain
encrypted.

The voter V knows the code vote C and the id Id. V uses their device D to
send (C, Id) to the bulletin board BB.

In the tally phase, the votes are verifiably shuffled and decrypted.

V→ D : C, Id
D→ BB : C, Id

Assumptions: OptimalSetupTally
Properties: Vote secrecy, Fairness

Protocol 5: Privacy-preserving internet voting with fewer trust
assumptions.

6.3 Combine proposals and establish setup and tally

We now combine the verifiable and privacy-preserving voting phase pro-
posals. Then we define an appropriate setup and tally phase.

16Formally: For a voter Id submitting C = PtCId ∗ P , the corresponding ready-to-shuffle
representation E = CtEId ∗ C represents P = C ∗ PtC−1

Id .
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6.3.1 Combine proposals

We combine the two proposals by merging the privacy-preserving protocol
into the first round-trip of the verifiable protocol. Concretely, we replace the
plain vote P with the code vote C, and add the Id to the voter requests17.
As the voter now submits C instead of P , a necessary adaptation is also to
choose the vote verifications VV (respectively the partial vote verifications
vv) in relation to C instead of P .

With a combination of all assumptions of the two originating proposals, we
argue to also reach a combination of all their properties. The mechanism for
individual verifiability is preserved as the VV still validate the correct vote
has been received. Universal verifiability and authentication are unchanged.
Vote secrecy and fairness is preserved when VV does not leak the plain
vote, and unaffected by the second round-trip, as the second round-trip is
independent of a specific vote.

We argue that our optimality target is preserved by this combination. First,
we note that the combined proposal does not have more round-trips than the
verifiability-only proposal.18 Second, we observe that while each request has
multiple values, each value has a single purpose. We could instead opt for
a single value per request (and join the purposes together), but we believe
this is more complicated to understand, less efficient to operate19 and leads
to worse usability20.

17Note that we could choose to drop Id as VA provides strictly stronger properties: VA
is both unique and hard-to-guess. We however keep the Id as it is useful to defend against
DDoS at the bulletin board.

18Reducing the number of round-trips seems impossible, no matter the mechanism.
19As argued before, with a stand-alone Id the bulletin board can be defended better

against DDoS.
20Consider the case where multiple C can be cast at the same time. With the long VA

separated from the short C, VA can be reused for all C, reducing the amount of data which
needs to be entered by the voter.
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The voter V knows the vote authentication VA, the id Id, the plain vote
P - using the voter-specific code vote lookup PtCId - mapped to the code
vote C, as well as the corresponding expected vote verification VV. V uses
their device D to send (Id, VA, C) to the bulletin board BB, which forwards
it to each i ∈ [1, m] control component CC(i). Each CC(i) responds with the
corresponding partial vote verification vv(i), which BB forwards to V.

Further, V knows the confirm authentication CA and the expected confirm
verification CV. If VV′ matches VV, then V uses their device D to send CA
to the bulletin board BB, which forwards it to each i ∈ [1, m] control com-
ponent CC(i). Each CC(i) responds with the corresponding partial confirm
verification cv(i), which BB forwards to V.

V ensures CV′ matches CV, else calls the election hotline.

In the tally phase, the votes are verifiably shuffled and decrypted.

First round-trip to cast vote.

V→ D : Id, VA, C
D→ BB : Id, VA, C

BB→ CC(i) : Id, VA, C
CC(i) → BB : vv(i)

BB→ D : {vv(1),..., vv(m)}
D→ V : VV′ ← ⊕m

i=1 vv(i)

Second round-trip to confirm vote.

V→ D : Id, CA
D→ BB : Id, CA

BB→ CC(i) : Id, CA

CC(i) → BB : cv(i)

BB→ D : {cv(1),..., cv(m)}
D→ V : CV′ ← ⊕m

i=1 cv(i)

Assumptions: OptimalSetupTally, SingleCCHonest, ElectionHotline
Properties: Complete Verifiability, Authentication, Vote secrecy, Fairness

Protocol 6: Verifiable and privacy-preserving internet voting.

6.3.2 Define Tally

The tally has to be performed in a verified and privacy-preserving way with-
out relying on any trust in authorities except that a single control component
is honest. Given the voting phase, the tally almost directly follows.

To tally, the confirmed votes are chosen and mapped to their ready-to-shuffle
representation using CtE. Afterwards, one component after the other ap-
plies their verified decryption-shuffle to the previous component’s output
until the last control component results with the plain votes.21 The inputs
and proofs of the shuffles are verified by the other components. If all attest
correct execution, the plain votes are counted and the result is announced.

21Note that the voter-specific ready-to-shuffle representation already represents the true
plain vote (see section 6.2.2).
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To produce the mapping CtEId ∈ CtE which maps a vote C submitted under
Id to its ready-to-shuffle representation E , we necessarily need to combine
each control component’s partial permutation p(i) into the chained permu-
tation P ← ∏m

i=1 p(i). However, in the tally phase, the Id has to be assumed
attributable to a voter.22 Therefore, executing the product and binding it to
the respective C must be done in an obfuscated and verifiable manner. There
is no obvious solution how this can be done, but it will likely involve rather
complex cryptography we explicitly try to avoid.

As a simple alternative, we instead produce CtE during the setup phase and
commit it to the bulletin board. From a security analysis perspective, pro-
ducing and delivering CtEId is no different than producing and delivering
the voter-specific PtCId.

The SingleCCHonest assumption is still enough to perform the verified tally:
Each CC checks the inputs and proofs of the shuffle of all other CCs, and
draws attention to failing proofs. Both privacy and universal verifiability
guarantees remain preserved.23 We replace the OptimalSetupTally assump-
tion with the OptimalSetup assumption for obvious reasons.

The bulletin board BB stores confirmed votes of the form (Id, C). Using
CtE, the first control component CC(1) maps each C to their ready-to-shuffle
equivalent and then performs the first shuffle. Each control component CC(i)

for i ∈ [2, m] performs their own shuffle on the output of the previous. CC(m)

outputs the plain votes. If no CC complains about the shuffles and decryp-
tions of others, the plain votes are counted and the result is announced.

Assumptions: OptimalSetup, SingleCCHonest
Properties: Vote secrecy, Fairness, Universal Verifiability

Protocol 7: Tally phase of a verified and privacy-preserving internet voting.

6.3.3 Define Setup

With all other parts of the protocol set, the setup could be defined straight-
forwardly: A trusted setup authority receives as input the data from the
election authorities (like eligible voters, voting options and other election
configuration), prepares the randomized key material, and then sends it to
the other involved parties.

However, this would prevent us from effectively auditing the trusted au-
thorities, something we would like to do to reduce the associated risk. If the
auditors are supposed to effectively check for honest execution, the involved

22As we dropped the NoMetadata assumption.
23Authentication and individual verifiability are not a concern during the tally phase.
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algorithms cannot involve non-deterministic elements, as auditors cannot be
expected to distinguish honest randomization from phony randomization.
The latter however potentially gives the attacker full knowledge about the
output of the algorithms, without even needing an active communication
channel. We resolve this by letting the trusted authorities only execute de-
terministic algorithms, and move randomization to the control components.

Further, we want to ensure the trusted authorities cannot leak unauthorized
data. We ensure this indeed can be observed by simplifying our communica-
tion model. In our protocol, we restrict communication towards untrusted
components to unencrypted data. Further, the trusted authorities can be
fully wiped after after operations, which is before the voting phase starts.

We additionally consider that the auditors themselves are not fully trusted,
with the strongest trust assumption we can realistically (and lawfully) take
being SingleAuditorHonest. Simply giving the auditors full access to the
trusted authorities’ state would then break whatever the reason is these au-
thorities need to be trusted. We instead implement audits using a probabilis-
tic approach: Each auditor insert dummy voters, then verifies the execution
is honest for these dummy voters.

With the restricted functionality and communication, and the probabilis-
tic audits, we do effectively harden our defence of the trusted authorities
against attackers. Attackers that were only active in the past, but no longer
have access to the system, can not learn anything about the upcoming elec-
tion. Further, currently active attackers are not able to export their knowl-
edge unnoticed out of the system.

Given the restrictions, we design the setup (detailed in section 7.2.1) as fol-
lows: The setup authority publishes the number of voters and the encoding
of plain votes on the bulletin board. The control components then generate
appropriate secret cryptographic material, and send it in encrypted form to
the setup authority. The setup authority decrypts and combines the key ma-
terial. It sends the bulletin board the hash of the authentication secrets, as
well as the values required to execute the shuffle in the tally phase. Further,
it prepares the to-be-printed material for the voters, and sends this to the
printer authority.24

We reuse the SingleCCHonest assumption, and ensure the combination of
key material requires only a single honest control component to be effective.
Further, we introduce the SetupHonest and PrinterHonest assumptions, as
both see the secret key material delivered to the voter. For the authorities
involved in the setup to communicate securely, we assume an established
PKI, and name this assumption SetupPKI.

24It aligns with the organisational realities (and the legal requirements) that the printer
authority is a separate instance.
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6.4 Summary

Based on the setting as seen in chapter 5, we iteratively constructed an in-
ternet voting protocol. For each step, we argued informally under which
assumptions the verifiability and privacy properties were established and
preserved.

First, we defined a voting phase fulfilling the verifiability properties. In the
first round-trip, the voter sends the vote together with a vote authentica-
tion to the bulletin board and expects back a vote-specific verification. If
the verification matches to what the voter expects, the voter initiates a sec-
ond round-trip by sending their confirm authentication. If the voter again
receives back the expected confirm verification, the vote was cast and con-
firmed successfully.

Then, we defined a privacy-preserving voting phase. The voter is instructed
to send an encryption of their vote to the server. We observe that we can-
not assume that the voter has used an anonymous channel, hence before
decryption, we have to verifiably shuffle the received votes. To improve us-
ability, we introduce a lookup of short representations of an encrypted vote
(which the voter submits) to the long ciphertexts required for the shuffle.

Finally, we combine the two proposals together, arguing that the combina-
tion is still as simple as possible in the given setting. We define an appropri-
ate tally phase, and sketch the most important aspects of the setup phase.
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Chapter 7

Formal Proposal

Based on the setting established in chapter 5, and the draft established by
the iterative proposal in chapter 6, we now finally propose our protocol
formally.

In its full detail, this would take dozens of pages, while the core ideas would
still be hard to grasp. We choose a different approach: We describe the Core
Protocol, which contains all mechanisms specific to internet voting, in full
detail. This core protocol then assumes an established Infrastructure with
standard cryptographic primitives. We will clearly describe how the core
protocol interacts with the infrastructure (and formulate precise require-
ments) but provide only syntax (and no algorithms) of the latter.

We first repeat the setting we are in. Then, we define the infrastructure we
depend on, and go on with describing the protocol in its full detail. At
the end of this chapter, we place an informal security analysis, and propose
some extensions to the protocol.

Model We use the same roles as established in chapter 5. The setup au-
thority prepares the election. The printing authority receives data from the
setup authority to forward to the voter over the postal channel. The voter
casts and confirms their vote. Throughout the protocol, control components
together generate key material, register cast and confirmed votes, and tally
in the end. All communication (except over secure channels) is stored on
the publicly-reachable append-only bulletin board. The protocol execution
is further observed by auditors, which may detect when trust assumptions
are broken.

The roles are connected to each other over bidirectional untrusted chan-
nels, except the auditors (which may not send any messages at all), and the
printer authority (which may only send the voter a postal letter over the
assumed secure postal channel).
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We assume a covert adversary, which may deviate arbitrarily from the pro-
tocol, but does not wish to be “caught” doing so [12]. This attacker model
notably excludes many disruption of service attacks (like components refus-
ing to process input, or flooding by attributable requests).

Our strongest trust assumption is that we have to rely on a fully trusted1

setup and printer authority. We simplify observation and thereby reduce
risk of this trust assumption by restricting outward communication (only
in plain or towards individual voters) and choosing a simplified execution
model (concretely, no randomness is produced at these trusted authorities2).
Further, both authorities are not needed any more after the setup phase,
hence their data can be fully wiped before the election starts.

During the whole course of the protocol, we rely on a single honest control
component and a single honest auditor (while multiple control components
and auditors are engaged). It is up to the operator how at least one honest
role is realistically guaranteed. For example, each control component could
be hosted by a different canton, with each using their own implementation
of the protocol. Trustworthy auditors could be most likely found in the often
already established voting commissions on municipal level.

Further, we rely on the trust assumptions our infrastructure requires. The
infrastructure has to be chosen in such a way that it does not weaken our
model, which in our opinion is realistic.

Importantly, we place no assumptions in the voting device, contrary to other
proposals for vote électronique.

Properties We achieve all properties as required and defined by law. This
concretely includes individual verifiability, universal verifiability, vote se-
crecy, fairness and authentication. We formally define the properties in
chapter 8, and then proof the protocol implements them in chapter 9.

We reach a notion of accountability through the bulletin board, which stores
the progress of the protocol with each step being attributable. We further
improve the system towards availability, usability and transparency.

7.1 Infrastructure

Before describing the core protocol, we detail the infrastructure our protocol
relies upon.

We avoid defining the infrastructure algorithms in full detail, to reduce com-
plexity of this document and of the protocol. We however fully specify nec-
essary ”glue” to plug-and-play an appropriate cryptographic primitive. At

1We refer to an authority as trusted when it operates correctly and does not leak secrets.
2Randomness predictable to the attacker may emulates outwards communication.
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the same time, the mechanisms are cleanly abstracted away from the pro-
tocol, which allows the infrastructure to evolve on its own. Progress in
research or industry on the infrastructure level can therefore continuously
be integrated into the system without adapting the core protocol.

The mechanisms have mostly industry-standard solutions. For the verifi-
able shuffle, we propose to use Bayer-Groth as used by Swiss Post [235], or
Wikström as used by CHVote [139].

The infrastructure and the core protocol rely on cryptographic parameters
such as group sizes. We assume these parameters are picked appropriately
to reach the aimed for security level, and all participants of the protocol (and
the infrastructure) have access to these values.

7.1.1 Channels

Besides the untrusted channels, we rely on authentic and secure channels
for some parts of the protocol. Concretely, to implement the bulletin board,
we require authentic channels from and to the bulletin board. In the setup
phase of the protocol, we additionally require some secure channels.

Authentic channels We require bidirectional authentic channels from the
bulletin board which connect to the setup authority, the printer authority
and each control component. This concretely means whenever a message is
sent from or to the bulletin board, the sender is undeniably identified and
therefore attributable. This also holds for third parties; hence the bulletin
board can convince the control component when some message originated
at the setup authority.

We specifically note that the protocol may be run multiple times in paral-
lel, a reasonable assumption as different eligibilities and voting cycles each
require their own instantiation of the protocol. The authenticated commu-
nication must therefore provide something similar as injective agreement as
defined by Lowe [181].

We use A and A to denote communication sent over the authenticated
channel. We describe in section 7.1.2 how this is denoted exactly.

Secure channels In the setup phase of the protocol we require some se-
cure channels, hence channels which are both authentic as well as secret.
Concretely, we require secure channels from each control component to the
setup authority, and another secure channel from the setup authority to the
printer authority.
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One complication is that the setup authority (per our model) should not
produce randomness, which is typically required from such a mechanism.3

The encryption randomness could instead be produced by the control com-
ponents, like the voter key material, with the printer authority validating
the expected randomness was used.4

We use S and S to denote communication sent over the secure channel.

7.1.2 Building Blocks

Besides the channels, we require some more complex primitives we detail
here. The bulletin board is our append-only storage, which makes sure
the progress of the protocol is traceable. The verifiable shuffle ensures the
votes are separated from their voters before the votes are decrypted. The
election hotline is our way out to resolve conflicts not possible within the
cryptographic protocol.

Hash We need a collision resistant hash function (like SHA-256) support-
ing input of arbitrary size. We denote this hash function as Hash.

Bulletin Board The bulletin board is an append-only storage. It publishes
a new entry for each received authentic message and each result of own
computations. Each such published entry further references its previous
entry, to enforce an explicit ordering and make detection of missing mes-
sages easier. Besides making all entries publicly accessible, entries are also
published over the authentic channels towards all control components.

We specify that the control components must only react to the entries pub-
lished over the authentic channel. Each entry published is then verified by
the control components whether it adheres to the specification. As at least
one control component is honest, this avoids us placing any trust assump-
tions for correct execution in the bulletin board: Any misbehaviour5 is now
detectable and therefore outside of our adversary model. Note that in the
setup phase the control components ensure they all have the same initial
view, and in the tally phase, the control components ensure they all have
the same view of the confirmed votes.6

We further specify that the bulletin board only reacts to entries received
over its authentic channels (besides the requests of the voters, which each
have a single-use authentication secret attached). This prevents malicious
authorities from flooding the bulletin board with requests (as the requests

3Secure channels need encryption, and IND-CPA security or stronger needs randomness.
4This needs to be carefully designed to not expose the randomness to the attacker.
5Executing computations wrongly, or attempting to removing or change entries later on.
6Different views are clearly an attack and therefore again outside the attacker model.
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are attributable, this scenario is again outside the attacker model), and ex-
ternal authorities from having any request processed (as they have no valid
authentication whatsoever).

This design puts the bulletin board, the only publicly reachable service in
our protocol, in a strong position to defend against DDoS attacks.7 It only
needs to process authenticated messages, and detecting unauthenticated re-
quests is usually rather efficient.

We omit in our protocol explicitly describing whenever the bulletin board
sends messages, as it is obvious: Whenever a new message is received, or
a computation is executed, the bulletin board publishes a new correspond-
ing entry. The control component receive this entry over the authenticated
channel, and react to it if appropriate. Other authorities are expected to pull
the bulletin board on demand.

We however explicitly describe whenever the bulletin board receives mes-
sages, using our authentic channel notation.

Verifiable shuffle When a voter sends a request to the (untrusted) bulletin
board, we have to assume the bulletin board associates the request with an
identifiable voter.8

The verifiable shuffle ensures the vote and the voter are separated before
the vote is decrypted. To ensure the decryption cannot be done over un-
shuffled votes, we require a decryption scheme which needs involvement of
all control components (as the single honest control component we assume
will refuse decryption of incorrectly or not shuffled votes). As the shuffling
and the decryption might be done by the same cryptographic primitive, we
define our syntax to do both tasks at the same time.

We define the verified decryption-shuffle as consisting out of the following
algorithms:

• SKGen() is a randomized function which returns a key pair (skS, pkS) ∈
(SK, PK), for skS the secret key and pkS the public key.

• SKAgg(pkS) is a deterministic function which takes a list of public keys
pkS ∈ pkS such that ∀pkS ∈ PK and outputs an aggregated public key
pkS ∈ PK.

• SEnc(r, pkS, m) is a deterministic function randomized by r ∈ R ⊆
{0, 1}∗ which takes a public key pkS ∈ PK and a plaintext m ∈ M ⊆
{0, 1}∗ and outputs a ciphertext c ∈ C ⊆ {0, 1}∗.

7Note that operating a public facing service is expensive and requires highly special-
ized appropriate defences like DDoS protection. Having only a single exposed component
reduces cost. Further, as the component is untrusted, operators can be freely chosen.

8See the discussion in section 6.2.2 why this is the case, and why voters cannot be as-
sumed to use an anonymous channel.
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• SShuffleDecrypt(c, skS) is a randomized function which takes a list of
ciphertext c such that ∀c′ ∈ C, and a secret key skS ∈ SK as arguments.
It outputs a list of shuffled ciphertexts c′ such that ∀c ∈ C, and a proof
π ∈ Π. If the function has been called once for every secret key of
which their aggregated public key was used in the encryption, with
its ciphertext list input being the ciphertext list output of the previous
invocation, the function instead outputs a plaintext m ∈ M.9

• SVerifyShuffleDecrypt(c, c′, π) is a deterministic function which takes
two lists of ciphertext, c such that ∀c ∈ C, and c′ such that c′ ∈ C, and
a proof π ∈ Π. It outputs either true or false.

Definition 7.1 (Terminology) We use terminology as follows:

• A Valid Public Key was output by SKGen or was output by
SKAgg which arguments were only valid public keys.

• The Decryption Secret Keys of a valid public key is the se-
cret key output together with the public key by SKGen. For
aggregated public keys, the term refers to the list of the re-
spective secret keys.

• A Valid Ciphertext is a ciphertext output by SEnc, for any
r ∈ R, message m ∈ M and valid public key.

Definition 7.2 (Correctness) Given the terminology of definition 7.1, we de-
fine correctness as follows:

Given any list of valid ciphertexts c - representing a list of plain-
text m, encrypted using the valid public key pkS - when:

• calling SShuffleDecrypt for each decryption secret key skS of
pkS;

• given as input the ciphertext list of the previous invocation
(the first invocation gets directly c) and the current skS;

results a list of ciphertext c′ and a proof π ∈ Π for which

• c′ represents the same plaintext values as c, but in a ran-
domly permuted order;

• SVerifyShuffleDecrypt when passed c, c′ and π returns true.

Both constraints also hold for when SShuffleDecrypt is called with
the last decryption secret key and therefore outputs m′.

9We abuse notation like this to avoid defining an Encode and Decode function from the
ciphertext space to the plaintext space and back.
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SVerifyShuffleDecrypt will return false if π does not proof that c,
c′ contain the same plaintext values.10

Security assumptions are made explicit in chapter 9. We however highlight
some critical details of how the shuffle is embedded into our protocol:

• Each control component executes SKGen, which leads to at least one
key pair using proper randomness.

• The setup authority executes functions SKAgg and SEnc. We note that
these are either deterministic or their randomness is explicitly passed
into the function.

• Each control component only executes SShuffleDecrypt if for all previ-
ous invocations SVerifyShuffleDecrypt returns true (which prevents the
honest control component from decrypting some incorrectly shuffled
list of ciphertext).

• Each control component will execute SShuffleDecrypt once, which en-
sures at least once the permutation is done randomly.

• Each control component checks the proofs of all invocations after its
own SShuffleDecrypt call.

All operations and values which belong to the shuffle are drawn upon
yellow background, as this makes it easier to recognise the syntax.

Election hotline The election hotline is where the voter can complain if
their vote has been cast, but not confirmed correctly. The election hotline is
then able to invalidate the vote, as foreseen by law [52, appendix 4.9]. It is
not part of the protocol how the claim is authenticated, nor how the vote is
then unvalidated.

To reduce the load on the election hotline, we have introduced separate
round-trips for casting and confirming a vote (see section 6.1.3). The elec-
tion hotline is therefore only called when the attacker did not interfere when
casting the vote but interfered when confirming it, and we assume this sce-
nario to be unlikely.11

We do not establish syntax for the election hotline, rather simply refer to it.

10Note that the function is not required to verify whether the permutation was applied
randomly or not, as this is typically not possible.

11We might further reduce potential load on the election hotline by introducing additional
round-trips (e.g. to ”finalize” a confirmed vote). However note that this problem cannot be
solved entirely within the cryptographic protocol, per the two generals problem, and we
expect the benefits of additional round-trips relative to their cost to be slim.
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7.2 Core Protocol

The protocol is divided into three phases. It starts with the setup phase,
which ensures all parties receive all required cryptographic material before
the election starts. In the voting phase, the voter submits their vote and
performs their individual verifiability check. In the final tally phase, the
votes are shuffled, decrypted and counted.

To avoid the complexity of introducing all parts of the protocol at the same
time, we structure our presentation as follows. In this section, we focus
on the values exchanged between the roles, but give only an intuition of
what these values are composed of. In the next section, we explicitly define
the values themselves and present pseudo-code for all involved algorithms
which produce or process them.

Roles As in our setting, auditors are not active participants of the pro-
tocol. One might however employ auditors to give additional assurances
that the trust assumptions are not broken, which we describe informally in
appendix C.

Notation We use boldface for an unordered list of elements, for example
a = [a1, a2,...].

Expression Example Result
get range L← [1, 4] L = [1, 2, 3, 4]
get size NL = |L| NL = 4
choose random x r←−N x = 2
choose match x .←− (2, .) ∈ {(1, a), (2, b)} x = b

We denote the combination of permutations using ∗, like [0 → 1, 1 → 0] ∗
[0 → 0, 1 → 1] = [0 → 1, 1 → 0]. We overload the ∗ operation to also
query lookups12, like a ∗ [a → 2] = 2. We may also revert lookups, like
2 ∗ [a→ 2]−1 = a.

We denote modular addition with ⊕. The modulo is defined over the group
from which the individual values have been drawn from (for example if
x, y r←− Zv and L = [x, y], then ⊕L = ∑ L mod v).

For partial values of the control components we use lowercase with an index
top right (for example, vv(i) for the partial vote verification of CC(i)). When
the partial values have been combined, we use the uppercase equivalent (for
example, VV for the vote verification).

When a party encounters an assert with an invalid expression (like assert
false), then the party aborts processing the particular message.

12We refer to lookups for permutations where the source and target groups do not match.
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7.2.1 Setup

The election authorities prepare for each election the following values:

Description Notation
Voters (includes postal addresses) V

The first voter id Idv
Codes C

Plain to Codes lookup PtC

V includes all information relevant to send the voting material to the voter.
Only its size |V| will be published on the bulletin board.

Id1 has to be chosen in such a way that the range [Id1, Id1 + |V|] produces no
overlaps with any other active election.

C is the collection of codes where each represents a voting option. |C| must
be equal the number of available voting options. As the voter has to enter
these codes by hand, it is advisable to choose values that are as easy and
short to enter as possible. Further, the codes should not represent actual
voting options (to not confuse the voter) or indicate preference of some sort
(to not influence the voter). For example, the alphabet may be suitable,
without ambiguous characters such as 0O or 1Il.

PtC maps each voting option to a unique code. It is fine if PtC is predictable,
as for each voter it will be randomly permuted into the voter-specific PtCId.
For example [’1.Yes’→ A, ’1.No’→ B, ’1.Abstain’→ C, ’2.Yes’→ D,...].

Setup phase (1/2) The setup authority establishes key material with the
control components (see Protocol 8).

The administrator starts the process by entering (Id1, |V|, PtC) into the setup
authority. This is sent to the bulletin board, which generates a sufficiently
large set of Id to have one Id per voter.

Each control component generates for each voter a partial ballot b(i). For
the tally phase, each control component generates a shuffle key pair. The
partial ballot of each voter as well as the shuffle public key are sent back to
the setup authority over the secure channel.

The setup authority merges each voter’s partial ballots into the ballot B.
It then publishes each hashed authentication secret hVA and hCA on the
bulletin board.13

To prepare the shuffle, the setup authority aggregates the shuffle public
keys. The resulting aggregated public key pkS is used to create for each
voter a lookup CtEId, which maps each possible code vote to a ciphertext

13For the bulletin board to check whether a voter’s request is properly authenticated.
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representing the corresponding plain vote. All CtE and the pkS are posted
on the bulletin board.

Setup Authority BB CC(i)

i ∈ [1, m]

learns Id1, |V|, PtC
Id1, |V|, PtC

A

Id← GenIds(Id1, |V|)

b(i) r←− GenBallots(Id)

(sk(i)S , pk(i)S )
r←− SKGen()

b(i), pk(i)S
S

b← {b(1),..., b(m)}
B← MergeBallots(Id, b)

(hVA, hCA)← HashAuths(Id, B)

pkS ← {pk(1)S ,..., pk(m)
S }

pkS ← SKAgg(pkS)
CtE← GenCtEs(Id, B, pkS )

hVA, hCA
pkS , CtE

A

Protocol 8: Setup phase (1/2) where the setup authority establishes key ma-
terial with the control components (CC). The bulletin board (BB) facilitates,
and receives authentication hashes and key material to store.

Setup phase (2/2) The setup authority delivers the secret material to the
voter via the printer authority (see Protocol 9).

The administrator continues the setup by entering V into the setup author-
ity. Entering V only in the second phase of the setup helps to preserve
privacy: Outgoing channels are from now on only towards individual vot-
ers, which is easier supervised than requests to the bulletin board.

The setup authority assigns14 each voter a ballot B and generates their per-
sonal ballot sheet BS out of B. The ballot sheet notably contains all au-
thentication secrets and the voter-specific permutation of the codes. It may

14Ballots are voter-independent until now, hence this assignment can be arbitrary.
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already be represented in a format which the printer can directly output (for
example, a print-optimized PDF).

The ballot sheets are sent to the printer over the second secure channel. The
printer prints the ballot sheet and sends it to the corresponding voter over
postal mail, another assumed secure channel.

Setup Authority Printer Voteri
i ∈ [1, |V|]

learns V

knows Id, B, PtC

BS← GenBallotSheets(Id, B, V, PtC)
BS

S

BSi
S

Protocol 9: Setup phase (2/2) where the setup authority prepares the ballot
sheets for the printer, and then the printer sends them to the voter.

7.2.2 Voting phase

The voter casts and confirms their vote using the ballot sheet received over
postal mail. The bulletin board checks authentication and maintains the list
of cast and confirmed votes. The control components observe the actions of
the bulletin board, and work together to recover the verification based on
their view of the cast and confirmed votes. If the control components’ views
are consistent, the correct verifications for the voter are recovered, which the
voter checks against their ballot sheet.

Voting phase (1/2) The voter casts their vote (see Protocol 10).

When the voter has decided on their preferred voting option P , they use
PtCId to map P to the corresponding code vote C. Together with their Id and
the vote authentication VA the voter sends C to the bulletin board.15

The bulletin board ensures the authentication and the validity of the vote,
otherwise the request is simply ignored. Then the bulletin board checks
this is indeed the first vote cast by that voter, otherwise the bulletin board

15Technically, the Id is not needed, as the hash of VA already uniquely identifies a voter.
However, it allows to debug failed authentication (has the voter participated in the wrong
election?) and might speed up authentication (with the first layer only checking whether the
Id is valid, before even hashing VA).
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responds with the earlier cast vote (and the respective partial vote verifica-
tions).16 If all checks succeed, the vote is published and the control compo-
nents are notified.

Each control component extracts the applicable partial vote verification vvC
and sends it to the bulletin board, which forwards it to the voter.

The voter extracts the expected vote verification VV from the ballot sheet,
and continues the voting phase if the combination of the partial vote verifi-
cations result in the same value. Otherwise, the voter aborts.17

For an election with n selectable voting options, the exchange is done with n
different C at the same time. Partial votes are not allowed (else the attacker
might drop parts of the vote), hence all voters must submit exactly n votes.

For an election with only certain combinations of voting options allowed,
the C and its voter-specific permutations are appropriately structured into
subgroups. For each subgroup, it is enforced that exactly the appropriate
number of options is cast. For example, for an election with a yes/no ques-
tion and a choose-two-out-of-three-options question, C would be structured
in two subgroups, like C1 = {A, B} and C2 = {C, D, E}. The bulletin board
then enforces that exactly three C are cast, with exactly one belonging to C1
and exactly two belonging to C2.

16If the voter has already confirmed their vote, the bulletin board ignores the request.
17The voter may still use a different voting channel, if available.
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Voter BB CC(i)

i ∈ [1, m]

knows BS knows hVA knows b(i)

decides P
(Id, VA,..., PtCId,...)← BS
C .←− (P , .) ∈ PtCId

Id, VA, C
asserts (Id,Hash(VA)) ∈ hVA
asserts C ∈ C

asserts (Id, .) /∈ CCast

CCast ← CCast ∪ {(Id, C)}

(..., vv(i),...) = b(i)Id
vv(i)C

A

vvC ← {vv(1)C ,..., vv(m)
C }

vvC

{vv(1)C ,..., vv(m)
C } ← vvC

VV′C = ⊕m
i=1 vv(i)C

(..., {VVC | C ∈ C},...)← BS
asserts VVC = VV′C

Protocol 10: Voting phase (1/2) where the voter casts their vote. The vote
and the vote authentication are stored on the bulletin board (BB), and the
control components (CC) send back a verification for the received vote.

Voting phase (2/2) The voter confirms their vote (see Protocol 11).

When the first part of the voting phase has been successful, the voter extracts
the confirm authentication CA from the ballot sheet, and sends it together
with their Id to the bulletin board.

The bulletin board ensures the authentication is valid, otherwise the request
is simply ignored. Then the bulletin board checks the voter has not already
confirmed the vote, otherwise the bulletin board responds with the partial
vote confirmations. If both checks succeed, the vote is extracted from the
cast votes, and marked as confirmed. When the voter has not cast a vote yet,
instead the empty vote is added to the confirmed votes.18

18If this happens, the voter has clearly made a mistake: They input their confirmation
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Each control component extracts the partial confirm verification cv and then
sends it to the bulletin board. The bulletin board forwards all to the voter.

The voter extracts the expected confirm verification CV out of the ballot
sheet, and ensures the combination of the partial confirm verifications result
in the same value. If yes, the voter has successfully confirmed the vote and
is done. If no, the voter calls the election hotline to invalidate the vote.

Voter BB CC(i)

i ∈ [1, m]

knows BS knows hCA,CCast knows b(i)

(Id,..., CA,...)← BS
Id, CA

asserts (Id,Hash(CA)) ∈ hCA
asserts (Id, .) /∈ CConf

C ← (Id, .) ∈ CCast
CConf ← CConf ∪ {(Id, C)}

(..., cv(i),...) = b(i)Id
cv(i)

A

cv← {cv(1),..., cv(m)}
cv

{cv(1),..., cv(m)} ← cv
CV′ = ⊕m

i=1 cv(i)

(..., CV,...)← BS
asserts CV = CV′

Protocol 11: Voting phase (2/2) where the voter confirms their vote. The
confirmation authentication is stored on the bulletin board (BB), and the
control components (CC) send back a verification that the confirmation has
been received.

7.2.3 Tally phase

The confirmed votes are tallied.

The control components perform the verifiable decryption-shuffle, and pub-
lish corresponding proofs and partial results on the bulletin board. After

authentication before verifying the vote verifications.
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each control component verified the proofs of the other control components,
the plain votes are counted and the result is announced.

Tally phase (1/2) In the first part of the tally phase, the control compo-
nents verifiably shuffle and decrypt the votes (see Protocol 12).

The first control component maps the confirmed votes to their appropriate
ciphertext counterpart. Then it shuffles the ciphertexts, and does the partial
decryption. The proofs of both procedures and the intermediate result is
posted on the bulletin board.

The next control component ensures the proofs are valid, else it aborts.19

Then it does its own shuffle and partial decryption, again posting the re-
sult on the bulletin board. One after the other control component follows,
always validating the proofs of all previous components. The last control
component gets the plain votes as a result.

For the plain votes not to be attributable to individual voters, the shuf-
fling requires at least two values to operate on (if only a single ciphertext
is shuffled, the resulting plain vote obviously belongs to that ciphertext).
The concrete shuffle implementation might enforce a higher lower bound.
We rely on the authorities to choose an appropriate number of vote(r)s such
that sufficient votes are handed in.20

For an election with n selectable voting options, the shuffle operates on n
times the ciphertexts. This might negatively affect performance. One may
therefore decide to perform a separate shuffle for each C subgroup. Each
individual shuffle then handles less ciphertexts, while the anonymity set is
as big as before.

The shuffling can be performed jointly over multiple instances, as long as
the used P ’s are unambiguous and the same shuffle key pairs were chosen.
This setup is advisable if voters of different eligibilities are active in the same
voting circle: While for each eligibility, a separate instance needs to be setup,
as in the end all votes are again shuffled together, the intended size of the
anonymity set (given by the voting circles) is preserved.

19Note that each control component establishes the original list of ciphertexts by them-
selves, ensuring all control components have the same view of confirmed votes.

20In Switzerland, the administration defined voting cycles. For each voting cycle, only the
aggregated results are published.
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CC(i)

i ∈ [1, m]

knows sk(i)S

E0 ← MapCtEs(CConf, CtE)

∀j ∈ [1, i− 1].SVerifyShuffleDecrypt(E j−1,E j, πj)

(E i, πi)
r←− SShuffleDecrypt(E i−1, sk(i)S )

publish E i, πi on BB

Protocol 12: Tally phase (1/2) of control components where they first
ensure the proofs of previous invocations are valid, then shuffle and

partially decrypt the confirmed votes while storing proofs on the bulletin
board (BB).

Tally phase (2/2) The control components verify the remaining proofs (see
Protocol 13).

When the shuffle-decryption has been executed by all control components,
each control component goes through all the proofs of the control compo-
nents they have not verified yet.

When all control components have verified the proofs successfully, the plain
votes are counted and the result is announced.

CC(i)

i ∈ [1, m]

∀j ∈ [i + 1, m].SVerifyShuffleDecrypt(E j−1,E j, πj)

Protocol 13: Tally phase (2/2) where the control components (CC) verify
the shuffle and decryption proofs on the bulletin board (BB) they have not

checked yet in Protocol 12.
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7.3 Algorithms

We now give pseudo-code for all syntax with is part of the core protocol.
For the syntax belonging to the verifiable shuffle (prefixed with an S), see
section 7.1.2.

The core idea is that the ballots are generated jointly by the control compo-
nents, with the setup authority essentially only combining the randomness
of all components. The combining operations are modular addition, XOR or
chained permutations, with these operations all having the property that if
at least one involved value is uniform at random, then the result will be.

We use modular addition to derive authentication secrets. These have to be
brute-force safe. We denote the group where the authentication secrets are
chosen from as Za.

We further use modular addition to derive the verification secrets. These
are shown to the user, and the attacker only has a single try to get it right,
for the user not to suspect foul play. Per our assumption of a covert adver-
sary, the probability to guess the right verification is therefore related to the
adversary’s deterrence factor.21 We denote the group where the verification
secrets are chosen from as Zv.

We chain permutations together to permute the PtC into the voter-specific
PtCId. The permutations must be defined over all C ∈ C, and must be a
bijection. The partial permutations always have to be applied in the same
order to result in the same combined permutation. We denote the group
where permutations are chosen from as P|C| : C→ C.

Finally, we choose randomness for the verifiable shuffle to encrypt the votes.
We denote where the randomness for a single encryption call is chosen from
as {0, 1}s. We use XOR to combine the randomness from multiple control
components, denoted as ⊗.

21This typically results in much shorter verification codes than the brute-force safe au-
thentication codes.
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Algorithm: GenIds(Id1, n)
Input: First Id: Id ∈N

Number of Ids to generate: n ∈N

for i ∈ [1, n− 1] do
Idi ← Id1 + i

Id← (Id1,..., Idn)

return Id

Algorithm 7.1: Generates n ids.

Algorithm: GenBallots(Id)
Input: Ids to generate ballots for: Id = (Id1,..., Id|V|)

for Id ∈ Id do
for C ∈ C do

vvC
r←− Zv

rC
r←− {0, 1}s

vv← {vvC | C ∈ C}
r← {rC | C ∈ C}

va r←− Za

ca r←− Za

cv r←− Zv

p r←− P|C|

bId ← (va, vv, ca, cv, p, r )

b← {(Id, bId) | Id ∈ Id}

return b

Algorithm 7.2: Generates a ballot for each id.
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Algorithm: MergeBallots(Id, b)
Input: Ids to generate ballots for: Id = (Id1,..., Id|V|)

Ballots ∀i ∈ [1, m].CCi: b = {(b(i)Id , Id) | Id ∈ Id, ∀i ∈ [1, m]}

for Id ∈ Id do
∀i ∈ [1, m].(va(i), vv(i), ca(i), cv(i), p(i), r(i))← b(i)Id

for C ∈ C do
VVC ← ⊕m

i=1 vv(i)C
RC ← ⊗m

i=1 r(i)C
VV ← {VVC | C ∈ C}
R← {RC | C ∈ C}

VA← ⊕m
i=1 va(i)

CA← ⊕m
i=1 ca(i)

CV← ⊕m
i=1 cv(i)

P← ∏m
i=1 p(i)

BId ← (VA, VV , CA, CV, P, R)

B← {(Id, BId) | Id ∈ Id}

return B

Algorithm 7.3: Merges ballots generated by Algorithm 7.2.

Algorithm: HashAuths(Id, B)
Input: Ids to hash auths for: Id = (Id1,..., Id|V|)

Ballots: B = {(BId, Id) | Id ∈ Id}

for Id ∈ Id do
(VA,..., CA,...)← BId

hVAId ← Hash(VA)
hCAId ← Hash(CA)

hVA← {(Id, hVAId) | Id ∈ Id}
hCA← {(Id, hCAId) | Id ∈ Id}

return (hVA, hCA)

Algorithm 7.4: Creates hashes of the authentication secrets.
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Algorithm: GenCtEs(Id, B, pkS )
Input: Ids to generate CtE for: Id = (Id1,..., Id|V|)

Ballots: B = {(BId, Id) | Id ∈ Id}
Shuffle public key: pkS

for Id ∈ Id do
(..., P, R)← BId

for C ∈ C do
C ′ ← C ∗ P−1

P .←− (., C ′) ∈ PtC

EC ← SEnc(RC , pkS,P)

CtEId ← {(C,EC ) | C ∈ C}
CtE← {(Id, CtEId) | Id ∈ Id}

return CtE

Algorithm 7.5: Generates the lookups to derive the shuffle input.

Algorithm: GenBallotSheets(Id, B, V, PtC)
Input: Ids to hash auths for: Id = (Id1,..., Id|V|)

Ballots: B = {(BId, Id) | Id ∈ Id}
Electorate: V = (V1,..., V|V|)
Plain to Code lookup: PtC

i = 1
for Id ∈ Id do

(VA, VV , CA, CV, P, R)← BId

PtCId ← PtC ∗ P

BSi ← (Id, VA, VV , CA, CV, PtCId, R)
i← i + 1

BS← {(Vi, BSi) | i ∈ {1, . . . , |V|}

return BS

Algorithm 7.6: Generates the ballot sheets.
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Algorithm: MapCtEs(CConf, CtE)
Input: Confirmed Votes: CConf

Code to Encryption lookup: CtE

for (Id, C) ∈ CConf do
CtEId

.←− (Id, .) ∈ CtE
EC

.←− (C, .) ∈ CtEId

E ← E ∪ {EC}

return E

Algorithm 7.7: Maps the confirmed code votes to encryptions.
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7.4 Extensions

The proposed protocol reaches all security properties under the stated trust
assumptions, as we proof in chapter 9. However, there are extensions we
might incorporate into the protocol to further harden the system, at the
price of increased complexity and/or reduced transparency.

Shuffle at the printer Instead of the setup authority preparing the ballot
sheets with a corresponding voter, the ballot sheets could at that step still
remain separated from individual voters. Only at the printer authority do
we assign the ballot sheets to voters, for example using a physical process
which makes it impossible to store the correspondence. This increases pri-
vacy against an attacker which has access to the setup authority, but is not
able to attribute requests to the bulletin board to individual voters.

Concretely, we establish the strong notion of everlasting privacy, as even
before the verifiable shuffle22, the votes are not attributed to their voter.

Keep bulletin board partially or fully secret Instead of exposing the full
bulletin board to the public, we could instead opt to expose only selected
entries. For an attacker which has only the partial public view of the bulletin
board, we can strengthen our security properties.

If the bulletin board hides any values related to the verifiable shuffle, our
protocol achieves the very strong notion of everlasting privacy. Because the
voting codes are effectively perfect encryption, no cryptographic assumption
are used any more to protect vote secrecy.

If the bulletin board hides the voting codes / vote verification exchange, the
protocol achieves receipt freeness for voters which are compromised only
after they have confirmed their vote. These voters can no longer proof to the
attacker which vote is represented on the bulletin board.

Use a pseudo-random generator for the shuffle randomness Instead of the
control components picking an r for each voting code (merged into R, then
used for the SEnc call in GenCtEs), we could instead pick a single random
seed to initialize an appropriate pseudo-random generator.23

This reduces the randomness picked at the control components by a sub-
stantial amount, especially when many voting options are possible.

22Which currently breaks this notation as it likely uses cryptographic assumptions.
23Both mechanisms are per-voter as the randomness is included on the ballot sheet.
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7.5 Summary

Based on the setting and the iterative proposal (see chapter 5 and chap-
ter 6), we formally defined a protocol for vote électronique. We clearly
established the trust assumptions it requires and the security properties it
achieves, which we formally proof in chapter 9.

First, we clearly described the infrastructure we depend on. We require au-
thentic channels throughout the execution of the protocol, and the stronger
secure channels only in the setup phase. Based on the authentic channels,
we specify our append-only storage we name the bulletin board. We define
clear syntax and a correctness definition for the verifiable decryption-shuffle
we need in the tally phase of the protocol. We also assume an election hot-
line, which resolves conflicts impossible within the cryptographic protocol.

Based on the infrastructure, we introduce the protocol divided in setup, vot-
ing and tally phases. The setup phase establishes key material with the
control components, and ensures the bulletin board and each voter receives
appropriate material for the voting phase to start. In the voting phase, the
voter casts and confirms their vote, verifying each round-trip with the con-
trol components. In the tally phase, the control components verifiably shuf-
fle and decrypt the votes.

We also give pseudo-code for all syntax which is part of our core protocol
(which is everything except the infrastructure). An informal security anal-
ysis follows, as well as a short discussion about possible extensions of the
protocol to further decrease the trust assumptions or strengthen the security
properties.
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Chapter 8

Formal Model

We first define an abstract voting model and its syntax. We use that syntax
to derive game-based definitions for our security properties. Defining the
security properties in the abstract makes discussing them easier.

This model can then be instantiated by some concrete voting protocol (for
example, our proposal of chapter 7).

8.1 Bulletin-Board Voting

We call our model Bulletin-Board Voting, as the component at the centre of
our model is a bulletin board: A public append-only storage over which the
other involved roles interact.

Roles We introduce the few roles we need to describe our properties. We
refer to instances of roles as honest if they follow the protocol exactly and do
not leak secrets, and as dishonest if they are under control of the adversary.

The Voters (V) are eligible to cast and confirm votes in the election. For all
honest voters, we require our properties to hold, even if dishonest voters
also participate in the protocol.

The Control Components (CC) are servers run on behalf of the election au-
thorities. We assume a single control component to be honest, but allow
further, dishonest, control components. All of our game-based definitions
include the control components.

The Bulletin Board (BB) is a public append-only storage. We assume all
communication between the voters and control components goes over the
bulletin board. The bulletin board is assumed honest.1

1Depending on the concrete voting protocol, the bulletin board’s honestly could be en-
forced by the control components.
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The Adversary (A) exists only once and remembers state between invoca-
tions. The adversary does not learn secrets and cannot change execution
of the honest roles, but is otherwise able to to anything (like creating or
changing messages sent between roles, or altering execution of dishonest
roles).2

Protocol principles We avoid defining details about the voting protocol
itself at all, as we do not require any such assumptions for our security
definitions. We have to however clear up some terminology to precisely
describe the properties.

We divide the protocol into setup, voting and tally phases. During the setup
phase, key material is prepared necessary for voting and tally (but no votes
are cast yet). In the voting phase, the voters cast and confirm their votes. In
the tally phase, the confirmed votes are counted and the result is published.

In the voting phase, the voter first casts the vote. The vote represents some
selection of voting option(s). Depending on the protocol, the voter may or
may not exchange some messages with the control components (via the bul-
letin board). If the voter is happy with how the vote was cast, they confirm
their vote. Again, some additional messages with the control components
may be exchanged. If the voter is happy with how the vote was confirmed,
their Individual Verifiability Check succeeds. This specifically means that the
voter is convinced that their cast and confirmed vote was received by the
control components exactly as intended.3

Syntax by protocol phase To precisely describe our properties, we require
to define some syntax.

We define a function Setup which encapsulates the setup phase. Given
params (which describes necessary election configuration like participating
voters, voting options, cryptographic parameter sizes, . . . ), it returns a list
of voter states v, a list of control component states cc and the initial bulletin
board state bb. It might be run under adversarial influence which we denote
as SetupA.

For the voting phase, we assume no syntax to keep the definitions simple,
and to not artificially restrict the protocols our definitions apply to. How-
ever, concrete protocols have to provide oracles to the adversary for each

2Likely, the concrete protocol will further restrict the behaviour of the adversary with
some additional assumptions, for example that the adversary is polynomially bound or can-
not interfere with messages sent over secure channels.

3Notice the gap between a voter who confirmed their vote, but was not happy with the
messages exchanged afterwards such that the individual verifiability check failed: Is the vote
now confirmed by the control components as intended? In general, this cannot be resolved
(like the two generals’ problem), and we therefore leave it unspecified in our model.
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type of request answered by honest roles. The adversary then drives the
voting phase given all these oracles, possibly calling them in any order and
given any arguments. The proofs have to reflect this still does not break the
to-be-shown security property. We write ARole to give the adversary access
to all oracles provided by the honest Role.

For the tally phase, we define a function Tally(). It returns the election
result, interacting with the other instances. It might be run under adversarial
influence which we denote as TallyA.

Syntax to query protocol state To define our properties, we require some
syntax to query the state of instances.

We define the following functions to assess the state of the voter:

• Confirmed(V) returns true if the voter V has confirmed their cast vote,
otherwise false.

• IVCheck(V) returns true if the voter V has accepted their individual
verifiability check, otherwise false.4

We further define the following functions to assess the state represented on
the bulletin board:

• Count(BB) returns the number of confirmed votes on the bulletin board
BB.

• Extract(BB, i) returns the selection represented by the confirmed vote
of voter Vi on the bulletin board BB.5 If no confirmed vote is on the
bulletin board, it returns ⊥. If multiple confirmed votes are on BB, a
list is returned.

• Validate(BB, i) returns true if there is a confirmed vote of voter Vi on
the bulletin board BB and the selection represented by said confirmed
vote is valid, otherwise false.

• CorrectTally(BB) tallies the selections represented by the confirmed
votes on the bulletin board and returns the result.6

• VerifyTally(BB, t) returns true if the bulletin board BB could represent
some claimed election result t, otherwise false.

Given the same arguments, we assume the functions to always return the
same result. While the concrete protocol has to be able to implement these
functions correctly, it does not necessarily need to do so in an efficient man-
ner.

4Note that IVCheck(V) =⇒ Confirmed(V).
5Notably independent whether the selection is valid.
6Note that this might different than the result returned by the TallyA(), in case the

adversary is able to influence the result output in the tally phase.
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8.2 Security properties

Given our syntax, we can now precisely define the security properties. We
motivate them out of the definitions of our setting (see chapter 5), which
themselves are extracted from law. We relate the security properties to their
equivalents known by literature (if any), and provide precise game-based
definitions. There are two previous proofs we know of in the Swiss context
over internet voting schemes, and we describe difference of definitions in
appendix D.

All properties together result in a secure voting system. Individual verifia-
bility ensures votes are cast as intended. Authentication ensures only votes
from eligible voters are confirmed. Universal verifiability then ensures the
confirmed votes are counted appropriately. Throughout the process, vote
secrecy and fairness hold for secret and fair elections.

Simplifications We aim to keep the definitions as simple as possible, to
focus the attention on the to-be-achieved security properties rather than on
notational technicalities. We choose to restrict the adversary in two cases.
The concrete protocol to which the definition is applied has to of course
argue that these restrictions do not result in an insecure real-world system,
or remove them from the definition.

We restrict the adversary when it is given the power to choose the hon-
est voter’s selection: The adversary has to do so at the start of the voting
phase, hence before first learning (additional) private state of compromised
instances or interacting with the protocol. This is a restriction of the adver-
sary we argue natural: An honest voter decides its selection independently
to the concrete run of the protocol. We incorporate this restriction as it
makes our definitions much simpler.

We further restrict the adversary by not giving it the power to decide which
voter and which control component is honest: We fix the honest control
component to CC1, and the honest voter to V1, while all other instances are
assumed under control of the adversary. This avoids us having to model
the adversary choosing the honest roles, possibly even only after interacting
with the protocol for some time. This is a restriction we only incorporated
for simplicity, and we propose that protocols using the definitions either give
the choice back to the adversary, or argue why fixing the honest instances
does not incur a loss in generality.

Notation Honest instances of roles are created with c←− out of an appropri-
ate initial state, like V c←− V(v).

We write L⊖1 if we want to exclude the first element of the list L.
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To formulate the winning conditions in the games, we use assert statements
(rather than returning a value depending on some condition). This simpli-
fies understanding the property, as it is immediately clear what the property
asserts.

8.2.1 Individual Verifiability

We defined individual verifiability like this:

Individual Verifiability holds when voters are given exactly one
of two proofs: Voters who participate electronically are given a
proof that the vote has been registered successfully by the server,
exactly as cast. Voters who did not participate electronically can
request a proof that their vote has not been registered by the
server.

This definition is composed out of two requirements: One for voters which
indeed do participate, and another one for voters which do not participate.
We introduce these properties as individual verifiability and participation
verifiability.

Both these requirements are defined relative to ”successfully registered”
votes, which itself is composed out of two other properties. Voters must
only cast and confirm a single vote, and only votes which represent a valid
selection must be stored by the server. We define the former as eligibility
uniqueness in section 8.2.4, and the latter as vote verifiability here.

Individual Verifiability In our precise game definitions here, we refer only
to the first part as Individual Verifiability, consistent with the use of this term
in the literature. For this property to hold, the individual verifiability check
for the voter may only pass if the confirmed vote has been included on the
bulletin board.

We first setup the protocol using SetupA. The adversary then chooses the
selection of the honest voter. Afterwards, the adversary plays against this
honest voter, the honest control component and the bulletin board, while
being in control of all other instances. In the end, the adversary wins if it
can break the valid state as defined by the assert statement.

The adversary wins the game if the individual verifiability check succeeds
although the bulletin board does not include a confirmed vote, or includes a
confirmed vote representing a different selection. We define the advantage
of an adversary against individual verifiability as:

AdvIV
A = Pr[ExpIV

A assert fails]
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ExpIV
A (params):

(v, cc, bb) r←− SetupA(params)

s← A()
V1

c←− V(v1, s), CC1
c←− CC(cc1), BB c←− BB(bb)

AV1,CC1,BB(v⊖1, cc⊖1)

assert IVCheck(V1) =⇒ Extract(BB, 1) = s

Game 1: Game for individual verifiability. We let the adversary choose s,
the selection of the voter.

Participation Verifiability The second part of the definition we refer to as
Participation Verifiability, a new term, as we are not aware of this property
being used in the literature. It allows voters to verify whether they have
participated or not after the voting phase has finished. We explicitly formu-
late it more general, requiring the check to succeed for all eligible voters.
Defining it only for abstaining eligible voters does not make much sense
when the check is implemented it practice (chicken-egg problem).

Compared to the previous game, the adversary may now additionally decide
whether the voter should abstain. The adversary can therefore either attack
the first or the second assert statement.

ExpPV
A (params):

(v, cc, bb) r←− SetupA(params)

s← A()
V1

c←− V(v1, s), CC1
c←− CC(cc1), BB c←− BB(bb)

AV1,CC1,BB(v⊖1, cc⊖1)

TallyA()

assert IVCheck(V1) =⇒ Extract(BB, 1) = ⊤
assert not Confirmed(V1) =⇒ Extract(BB, 1) = ⊥

Game 2: Game for participation verifiability. We let the adversary choose
s, the selection of the voter or ⊥ for an abstaining voter.

The adversary wins the game if the individual verifiability check succeeded
but no vote is confirmed on the bulletin board. The adversary further wins
the game if the voter did not confirm their vote but some confirmed vote
corresponding to that voter is included on the bulletin board. We define the
advantage of an adversary against participation verifiability as:

AdvPV
A = Pr[ExpPV

A assert fails]
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Instead of having two assert statements in the same game, we could also
instead define two games, each only featuring a single assert statement. We
name the game variant with only the first assert statement Participation Ver-
ifiability - Participating Voter, with the game ExpPVP

A . We name the game
variant with only the second assert statement Participation Verifiability - Ab-
staining Voter, with the game ExpPVA

A .

The adversary against participation verifiability wins if it wins in either
game variant, hence we can upper bound the advantage by the sum of the
advantages of the two game variants.

AdvPV
A ≤ AdvPVP

A + AdvPVA
A

As defined, participation verifiability - participating voter is a weaker prop-
erty than individual verifiability. We can therefore bound the advantage of
an adversary against ExpPVP

A by the advantage of an attacker against ExpIV
A .

AdvPVP
A ≤ AdvIV

A

Further, as defined, participation verifiability - abstaining voter is the same
property as eligibility verification. We can therefore equal the advantage of
an adversary against ExpPVA

A to the advantage of an attacker against ExpEV
A .

AdvPVA
A = AdvEV

A

Vote Verifiability Vote Verifiability ensures votes represent a valid selection.
Depending on the precise voting scheme, there might be restrictions which
voting choices can be taken at the same time, or whether single or multiple
voting options have to be selected. Getting this right ensures each vote
counts only once (no double-selection within the same vote) and votes do
not corrupt other votes (for example, by selecting negatively7).

In this game, the adversary gets the secrets of all voters, and must attempt
to cast and confirm an invalid vote.

The adversary wins the game if some confirmed vote is on the bulletin
board, but the selection it represents is invalid. We define the advantage
of an adversary against vote verifiability as:

AdvVV
A = Pr[ExpVV

A assert fails]

7Like selecting a specific candidate -1 times.
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ExpVV
A (params):

(v, cc, bb) r←− SetupA(params)

CC1
c←− CC(cc1), BB c←− BB(bb)

ACC1,BB(v, cc⊖1)

assert Extract(BB, 1) = ⊤ =⇒ Validate(BB, 1)

Game 3: Game for vote verifiability.

8.2.2 Universal Verifiability

We defined universal verifiability like this:

Universal verifiability holds when the auditors are given a proof
that the result is composed out of all, and only of, successfully
registered votes.

Universal verifiability is defined relative to ”successfully registered” votes.
We already have a precise understanding of what this refers to (see sec-
tion 8.2.1), and all confirmed votes on the bulletin board fulfil this definition
(guaranteed by the individual verifiability and authentication properties).
The bulletin board further guarantees that votes, once included, are un-
changed. Therefore, after the voting phase, the bulletin board contains ”all,
and only (...), successfully registered votes”.

Consequentially, our property needs only to prove that the bulletin board as
given after the voting phase is tallied correctly.

Universal Verifiability Universal Verifiability ensures all confirmed votes in-
cluded on the bulletin board are tallied correctly.

We let the adversary interact arbitrarily with the bulletin board and the
honest control component. Then, the adversary needs to produce some
claimed election result which cannot be refuted, but is still wrong.

ExpUV
A (params):

(v, cc, bb) r←− SetupA(params)

CC1
c←− CC(cc1), BB c←− BB(bb)

ACC1,BB(v, cc⊖1)

t← TallyA()

assert VerifyTally(BB, t) =⇒ CorrectTally(BB) = t

Game 4: Game for universal verifiability. We let the adversary choose t′,
the claimed voting result.

138



8.2. Security properties

The adversary wins the game if the adversary-chosen t validates relative
to the bulletin board, although the actual result represented on the bulletin
board is different to t. We define the advantage of an adversary against
universal verifiability as:

AdvUV
A = Pr[ExpUV

A assert fails]

8.2.3 Vote Secrecy and Fairness

We defined vote secrecy and fairness like this:

Vote secrecy holds if the plain vote cannot be attributed to the
voter. Fairness ensures the adversary does not learn partial elec-
tion results before the official tally.

For the privacy properties, we use indistinguishability games: The adversary
has to be unable to distinguish two different worlds from each other. In the
first world with challenge bit 0, the adversary sees the real world where the
honest voter casts their real vote. In the second world with challenge bit
1, the adversary sees a simulated world where the honest voter casts some
fake vote. After the game, the adversary has to guess the challenge bit.

Vote secrecy requires votes either to be encrypted or not attributable to vot-
ers (e.g. by using anonymous channels). When a protocol goes for the
latter, it might even allow the voter to cast plain votes. However, we argue
protocols which allow to cast plain votes to be unrealistic: It would need
strong trust assumptions on an anonymous and confidential channel from
the voter to the bulletin board (for vote secrecy and fairness), and strong
trust assumption on said bulletin board in order to keep the votes private
until the tally phase (for fairness). Here, we therefore define vote secrecy
with some restriction in generality; specifically we assume the cast votes to
be encrypted. This simplifies the vote secrecy definition, and even allows us
to argue that vote secrecy implies fairness.

As both of the vote secrecy as well as the fairness definition are somewhat
novel, we argue more explicitly why they are appropriate in appendix E.

Vote secrecy Vote Secrecy ensures the adversary does not learn the voter
selection.

We formalize this notion in an indistinguishability game. We let the adver-
sary decide upon both the real as well as the fake selection of the voter, and
the voter casts then depending on the challenge bit. The voting phase pro-
ceeds as usual, with the attacker being able to freely interact with the honest
instances, and having full control over the dishonest instances.
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In the end, always the real votes are counted; with challenge bit 0 the tally
is executed normally, with challenge bit 1 the tally is simulated as if the
voter would have cast their real selection. This prevents the adversary from
trivially distinguishing the real and the fake world by looking at the tally
result.

Finally, the adversary is given the tally result r and then has to output its
challenge bit guess.8

We extend our syntax with the function SimTallyA() which modifies the tally
in such a way that the vote of the honest voter is simulated to represent s1−β.

ExpVS,β
A (params):

(v, cc, bb) r←− SetupA(params)

(s0, s1)← A()
V1

c←− V(v1, sβ), CC1
c←− CC(cc1), BB c←− BB(bb)

AV1,CC1,BB(v⊖1, cc⊖1)

if β = 0 then r ← TallyA() else r ← SimTallyA()
d← AV1,CC1,BB(r)

if d = β then return 1 else return 0

Game 5: Game for vote secrecy. We let the adversary choose s0 and s1, the
possible selections of the voter, of which the voter casts sβ.

The adversary wins the game if it can distinguish whether the fake or the
real selection is cast by the voter. Further, the adversary wins if it can dis-
tinguish the simulated tally from the real tally. The adversary also wins if
any of the oracles provided by the honest instances enable it to distinguish
the real or the fake world.

The adversary wins the game if it can distinguish ExpVS,0
A (params) from

ExpVS,1
A (params). We define the advantage of an adversary against vote se-

crecy as:

AdvVS
A = |Pr[ExpVS,0

A (params) = 1]− Pr[ExpVS,1
A (params) = 1]|

Fairness Fairness ensures the adversary does not learn partial election re-
sults before the official tally.

8When using verified decryption-shuffles, the result r would also include some proof Π
of correct shuffle and decryption. Note that with challenge bit 1, Π needs to be simulated
over the bulletin board the adversary sees, else distinguishing the real and the simulated
tally might be trivial.
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We formalize this notation similar to how we formalized the vote secrecy
definition (see section 8.2.3). We again let the adversary decide upon both
the real as well as the fake selection of the voter, and the voter casts then de-
pending on the challenge bit. The voting phase proceeds as before, with the
attacker being able to freely interact with the honest instances, and having
full control over the dishonest instances.

However, then the adversary already has to output the guess for the chal-
lenge bit: Fairness only needs to hold until the tally phase.

ExpF,β
A (params):

(v, cc, bb) r←− SetupA(params)

(s0, s1)← A()
V1

c←− V(v1, sβ), CC1
c←− CC(cc1), BB c←− BB(bb)

d← AV1,CC1,BB(v⊖1, cc⊖1)

if d = β then return 1 else return 0

Game 6: Game for fairness. We let the adversary choose s0 and s1, the
possible selections of the voter, of which the voter casts sβ.

The adversary wins the game if it has a higher probability of winning the
game than random guessing. We define the advantage of an adversary
against fairness as:

AdvF
A = |Pr[ExpF,0

A (params) = 1]− Pr[ExpF,1
A (params) = 1]|

As defined, fairness is a weaker property than vote secrecy. We can therefore
bound the advantage of an adversary against fairness by the advantage of
an attacker against vote secrecy.

AdvF
A ≤ AdvVS

A

8.2.4 Authentication

We defined authentication like this:

Authentication holds when the adversary cannot insert votes
without having control of the voter.

In the literature, the property described here is usually referred to as eligi-
bility verification. The adversary should not be able to impersonate voters
without having control of them, e.g. learning their secrets. In this section,
we further include the requirement that voters must only cast and confirm
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a single vote, which we refer to as eligibility uniqueness, as argued for in
section 8.2.1.

Eligibility Verifiability Eligibility Verifiability ensures every vote considered
in the tally is confirmed by an eligible voter.

We let the adversary choose the selection of the voter. Without the voter
doing the confirmation, the adversary has to place a confirmed vote on the
bulletin board.

ExpEV
A (params):

(v, cc, bb) r←− SetupA(params)

s← A()
V1

c←− V(v1, s), CC1
c←− CC(cc1), BB c←− BB(bb)

AV1,CC1,BB(v⊖1, cc⊖1)

assert not Confirmed(V1) =⇒ Extract(BB, 1) = ⊥

Game 7: Game for eligibility verifiability. We let the adversary choose s,
the selection of the voter or ⊥ for an abstaining voter.

The adversary wins the game if the voter has not confirmed their vote, al-
though some corresponding vote is confirmed on the bulletin board. We
define the advantage of an adversary against eligibility verifiability as:

AdvEV
A = Pr[ExpEV

A assert fails]

Eligibility Uniqueness Eligibility Uniqueness ensures every eligible voter can
only confirm a single vote.

We give the adversary access to all voter secrets. The adversary then has to
insert multiple votes corresponding to the same voter.

ExpEU
A (params):

(v, cc, bb) r←− SetupA(params)

CC1
c←− CC(cc1), BB c←− BB(bb)

ACC1,BB(v, cc⊖1)

assert ∀i ∈ [1, |v|].|Extract(BB, i)| ≤ 1

Game 8: Game for eligibility uniqueness.
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The adversary wins the game if multiple confirmed votes corresponding to
the same voter are confirmed on the bulletin board. We define the advantage
of an adversary against eligibility verifiability as:

AdvEU
A = Pr[ExpEU

A assert fails]

8.3 Summary

We first defined a formal model we call the Bulletin Board model. It assumes
voters, control components and the bulletin board to exist. We clear up some
terminology, and then define syntax we require for our security properties.
The model places very few assumptions, and should therefore be generally
applicable.

Given the formal model, we then precisely defined the security properties.
Starting from formulation as given by law, we decompose into clearly sep-
arated and easily definable security properties. Already in this abstract for-
mal modal, we are able to show some relations between the properties which
will simplify our concrete proofs later on.
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Chapter 9

Computational Proof

We now proof the proposal of chapter 7 fulfils the claimed properties.

First, we make our infrastructure assumptions explicit, and describe how
these assumptions are represented in our proofs. Afterwards, we apply the
game-based definitions of chapter 8 to our proposal and the infrastructure.
Clear bounds are established for the attacker to win each of these games.

In the verifiability games, the adversary targets to break some assertion. We
continuously modify the games by inserting early aborts for cases where
we can clearly bound the attacker advantage. After sufficient modifications,
called game hops, we end up with a game that is impossible to win for the
adversary. We then collect the bounds, hence sum up all bounded attacker
advantages of our game hops, to end up with the overall attacker advantage.

In the privacy games, the adversary needs to differentiate two different
worlds from each other. We start with the game in world 0, then contin-
uously modify it for it to become more and more similar to the game in
world 1. For each modification, again called game hop, we bound the prob-
ability that the adversary can distinguish the game before the modification
from the game after the modification. When our modified game is exactly
equal the game of the world 1, we again collect the bounds, hence sum up all
bounded attacker advantages of our game hops to end up with the overall
attacker advantage.

9.1 Infrastructure assumptions

In the proposal specification we clearly separated the core protocol from the
infrastructure it relies upon. We will continue to do so in the proofs. In
this section, we clearly describe what is assumed of the infrastructure and
how it is therefore represented in the proofs. We collectively describe any
assumptions part of this section as the Infrastructure Assumptions.
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The infrastructure and the core protocol rely on cryptographic parameters
such as group sizes. We assume these parameters are picked appropriately
to reach the aimed for security level, and all participants of the protocol (and
the infrastructure) have access to these values.

Channels The secure channels are used in the setup phase to exchange
secret data between the control components to the setup authority, and from
the setup authority via the printer to the voter. The authentic channels are
used throughout the protocol to exchange data with the bulletin board.

We assume both the secret as well as the authentic channels to be perfect,
hence the attacker has zero advantage when trying to break their properties.

In our computational proof, we do not mention the channels: Data ex-
changed over these channels simply continues to be processed within the
game of the challenger.1 When exchanged over authentic channels, the at-
tacker will be given access to the values.

Hash The hash function Hash is used to authenticate voters.

We assume the hash function to be pre-image resistant, hence given h it is
hard to find m such that h = Hash(m). The hash function supports input of
arbitrary size.

Our computational proofs include the hash functions. We denote the advan-
tage of an attacker B against pre-image resistance of Hash with AdvpIR

B,H.

Bulletin Board The bulletin board stores the progress of the protocol. Its
processing is verified by the control components, which will detect any de-
viation from the specification, such as incorrectly executed computations, or
changed or removed entries.

The bulletin board is untrusted. However, as it communicates state updates
over the authentic channels (which we already assumed to exist), it still
cannot misbehave: The honest control component will only accept messages
sent over the authentic channel, which prevents the bulletin board from
publishing inconsistent state.2

In our computational proofs, the bulletin board is fully under the control
of the adversary (and therefore omitted as another explicit instance). This
concretely means any communication in between the voter and the honest
control component goes directly over the adversary. In turn, we make it

1We assumed in section 7.1 that values sent over authentic channels can also convince
third parties of the respective sender, hence values can also be attributed when they are
forwarded.

2As this would be detectable, and therefore outside the attacker model.
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explicit how the honest control component re-executes all computations of
the bulletin board (to ensure it does not misbehave). Our challenger game
therefore does includes all computations specified for the bulletin board, as
they are also executed by the honest control component.

Verifiable shuffle The verifiable shuffle consisting out of the five algorithms
(SKGen,SKAgg, SEnc, SShuffleDecrypt,SVerifyShuffleDecrypt) ensures the vote
and the voter are separated before the vote is decrypted.

In the setup phase, we assume the following (reusing terminology of defini-
tion 7.1):

• SKGen() is one-way when executed honestly: Given pkS, the adversary
does not learn skS.

• SKAgg(pkS) is one-way: Given pkS, the adversary does not learn the
associated skS. Further, additionally given some decryption secret keys
of pkS, the attacker does not learn additional decryption secret keys.
These properties hold as soon as some of the involved keys have been
produced by an honestly executed SKGen.3

• SEnc(r, pkS, m) is IND-CPA secure when executed honestly using uni-
form at random r: Given c and pkS, the adversary does not learn what
m it represents.

We denote the advantage of an attacker C against the one-wayness of SKGen
and SKAgg with AdvKOW

C,S . We denote the advantage of an attacker D against
IND-CPA security of SEnc with AdvIND-CPA

D,S .

In the tally phase, we assume the following:

• SShuffleDecrypt(c, skS) is IND-CPA secure: Given c, sks, c′ and π, the
adversary does not learn what plaintext is represented (unless it was
the last iteration, in which case the plaintext values are revealed triv-
ially).

• SShuffleDecrypt(c, skS) shuffles when executed honestly: Given c, c′

and π, the adversary cannot learn which c ∈ c corresponds to which
c′ ∈ c′.

• SVerifyShuffleDecrypt(c, c′, π) is correct when executed honestly: Given
c the adversary cannot come up with c′, π such that c′ represents
different plaintext as c, but SVerifyShuffleDecrypt returns true.

We denote the advantage of an attacker E against IND-CPA security of
SShuffleDecrypt with AdvIND-CPA

E ,S . We denote the advantage of an attacker

3Note that potentially malicious control components execute SKGen, hence they might
execute it e.g. relative to some other secret keys or using bad randomness.
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F against the shuffling of SShuffleDecrypt with Advshuffle
F ,S . We denote the

advantage of an attacker G against the correctness of SVerifyShuffleDecrypt

with Advverify
G,S .

Election hotline Voters can contact the election hotline when they have
confirmed their vote, but have not received the correct confirm verification.

We assume however the election hotline resolves these conflicts results in no
advantage to the adversary.

9.2 Implement syntax

We now implement the syntax of the formal model (see chapter 8) with our
core protocol (see section 7.2). We are able to implement all functions as
specified.

We explicitly note that both the formal model as well the core protocol as-
sume the exact same roles with the same respective assumptions. Further,
the terminology matches, too.

Setup The function consists out of Protocol 8 and Protocol 9. Besides the
infrastructure assumptions, we assume some honest control component i,
an honest setup authority and an honest printer authority.

The setup takes as an argument params = (Id1, V, PtC).

The game is driven by honest instances which send each other messages over
authentic and secure channels. The honest control component will only react
when it has received the authentic message (Id1, |V|, PtC) from the setup
authority. The setup authority will only continue once it has received the
partial ballots and shuffle public key over the secure channel of each control
component. We therefore only need to analyse this single trace.

We provide the adversary with all data that is sent over authentic channels.
Further, the adversary is able to contribute the values of the control compo-
nents it controls.

At the end of the game, we explicitly define the initial secret state of voters
and the honest control component, to formulate lemmas which help us proof
the security properties. The voter’s initial secret state consists out of the
corresponding ballot sheet, which reaches the voter over secure channels via
the trusted printer authority. The honest control components’ initial secret
state is the list of their partial ballots and their shuffle private key, which the
honest control component generated itself.
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Besides the secret state, the honest control component knows all values it
needs to process the voting and tally phase (hVA, hCA, CtE), all received
authentically from the setup authority.

Algorithm: SetupiA(params)
Input: Params: params = (Id1, V, PtC)

// the honest control component creates key material out of (Id1, |V|, PtC)
Id← GenIds(Id1, |V|)
b(i) r←− GenBallots(Id)

(sk(i)S , pk(i)S )
r←− SKGen()

// the adversary creates the key material of the other control components

{b(j) | j ∈ [1, m]\i} ← A(Id1, |V|, PtC)

{pk(j)
S | j ∈ [1, m]\i} ← A()

// the setup authority combines and processes the key material

B← MergeBallots(Id, {b(1),..., b(m)})
(hVA, hCA)← HashAuths(Id, B)
BS← GenBallotSheets(Id, B, V, PtC)

pkS ← SKAgg({pk(1)S ,..., pk(m)
S })

CtE← GenCtEs(Id, B, pkS )

// the setup authority publishes values for the voting and tally phases
{ccj | j ∈ [1, m]\i} ← A(hVA, hCA, pkS , CtE)

v← {BSi | i ∈ [1, |V|]}
cci ← (b(1), sk(1)S )

return (v, (cc1,..., ccm))

Algorithm 9.1: Setup under influence of the adversary A, assuming
honest control component i, honest setup authority and honest printer
authority.

Lemma 9.1 (Secret voter state) Under the infrastructure assumptions, for hon-
est setup authority, honest printer authority and honest control component i, Setupi

A
ensures that the values in each ballot sheet BSId = (Id, VA, VV, CA, CV, PtCId, R)
(except Id) are unknown to the attacker. Concretely, the adversary cannot do better
than guessing (VV, CV, R) uniform at random. The advantage of an adversary B
guessing (VA, CA) is smaller or equal to AdvpIR

B,H. The advantage of an adversary
D guessing PtCId is smaller or equal to AdvIND-CPA

D,S .
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Proof All operations (XOR, modular addition, chaining of permutations)
used to combine the partial ballots in MergeBallots result in uniform at ran-
dom values, as at least the partial value by the honest control component
was picked uniform at random in GenBallots. GenBallotSheets, which gener-
ates the ballot sheets, preserves this property.

For the uniform at random VA and CA, the adversary additionally learns
their hash values hVA and hCA. The advantage of an adversary learning VA
given hVA is bound by the advantage of an adversary B against pre-image
resistance of the hash function AdvpIR

B,H (see section 9.1). The same holds for
the adversary learning CA given hCA.

For the uniform at random PtCId (as it is produced out of the uniform at
random permutation P), the adversary learns the inversion CtEId. While the
range of CtEId is encrypted, the adversary might be able to decrypt one of
the |CtEId| = |C| ciphertexts. The advantage of that adversary is bound by
AdvIND-CPA

D,S .4 □

Lemma 9.2 (Independent voter state) Under the infrastructure assumptions,
for honest setup authority, honest printer authority and honest control component
i, Setupi

A ensures that the values inside b(i)Id and BSId are independent for different
voters. Concretely, even if the adversary is given other values produced during the
same Setupi

A invocation, the adversary has no advantage than directly guessing the
values (for which we bound the advantage in lemma 9.1).

Proof At least the honest control component chooses in GenBallots indepen-
dent values for each voter. The property therefore directly follows for b(i)Id .
By the same argument as in the proof of lemma 9.1, the property also follows
for all values in BSId under the bounded advantage.5 □

Lemma 9.3 (Secret honest control component i state) Under the infrastructure
assumptions, for honest setup authority, honest printer authority and honest con-
trol component i, Setupi

A ensures that the values of the honest control component

in each partial ballot b(i) as well as the secret shuffle key sk(i)S are unknown to the
attacker. Concretely, the adversary cannot do better than guessing each value of each
partial ballot b = (va, vv, ca, cv, p, r) uniform at random. Further, the advantage

of an adversary C guessing sk(i)S , given pkS , is bound by AdvKOW
C,S .

Proof The honest control component has chosen each value inside the par-
tial ballots uniform at random, by the specification of GenBallots. These val-

4Note that the r used in each call to SEnc is uniform at random.
5We note that both pre-image resistance as well as IND-CPA security allow for these kind

of oracles to exist: Given other voter’s secret state, the adversary effectively learns some valid
(CA, hCA) pairs and some valid decryptions of CtE.
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ues are then never passed on to the adversary, as they are only transmitted
over secure channels and processed by trusted authorities.6

The adversary advantage for guessing sk(i)S follows directly from our infras-
tructure assumptions in section 9.1. □

Syntax to query protocol state We implement the functions to assess the
state of the voter as follows:

• Confirmed(V) returns true if the voter V has already published their
confirmation authentication, otherwise false.

• IVCheck(V) returns true if the voter V has successfully compared the
confirmation verification codes, otherwise false.7

We implement the functions over the bulletin board as follows:

• Count(BB) returns |CConf|.

• Extract(BB, i) retrieves C .←− (Idi, .) ∈ CConf. If C = ⊥, it returns ⊥.
Else, it retrieves P .←− (., C) ∈ PtCIdi . CConf never contains more than
one vote per Id, as before an entry with Id is added to CConf, it is
ensured that (Id, .) /∈ CConf (see Protocol 11).

• Validate(BB, i) returns true if Extract(BB, i) ̸= ⊥, otherwise false.8

• CorrectTally(BB) returns the sum of all plain votes P = {P | (P , C) ∈
PtCId | (Id, C) ∈ CConf | Id ∈ Id}.

• VerifyTally(BB, t) executes E0 = MapCtEs(CConf, CtE) and then ∀i ∈
[1, m].SVerifyShuffleDecrypt(E i−1,E i, πi) for t = {(E1, π1),..., (Em, πm)}.
If this is successful, it returns true, otherwise false.

In our proof, there is no bulletin board, rather the honest control component
takes over its responsibilities. When we need state of the bulletin board, we
therefore use the view the honest control component has of it.9

Tally The function consists out of Protocol 12 and Protocol 13. We assume
some honest control component i.

The tally takes as an argument the confirmed votes, the CtE lookup and the
shuffle secret key of the honest control component.

The game is driven by the honest control component sending and receiving
values over authentic channels from the other control components. It expects

6At this point of the game, there are no compromised voters, hence this statement holds.
7Note that for honest voters, IVCheck(V) =⇒ Confirmed(V).
8The bulletin board, by construction, does not accept invalid votes.
9Note that the tally phase guarantees the CConf as seen by the honest control component

is used for tallying.
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the result of the shuffles of the previous control components, and verifies
their proofs. Then, the honest control component continues with its own
shuffle decryption. It then expects the result of the shuffles of the subsequent
control components, and again verifies their proofs. We therefore only need
to analyse this single trace.

The adversary receives the shuffle result and proof of the honest control
component. Further, the adversary is able to contribute the shuffle results
and proofs of the control components it controls. Note that adversary knows
CConf and CtE from the setup and the voting phase, which is why we do not
explicitly pass it to the adversary in Algorithm 9.2.

The honest control component will abort whenever some proof verification
fails. Only if all control components reach the end of their tally phase (hence
have verified the proofs of all other control components, and have executed
their own shuffle), will the tally result be announced.

Algorithm: TallyiA(CConf, CtE, sk(i)S )

E0 ← MapCtEs(CConf, CtE)

// the adversary provides previous shuffles
{(E1, π1),..., (E i−1, πi−1)} ← A()

// the honest control component i verifies previous shuffles and shuffles
∀j ∈ [1, i− 1].SVerifyShuffleDecrypt(E j−1,E j, πj)

(E i, πi)
r←− SShuffleDecrypt(E i−1, sk(i)S )

// the adversary provides subsequent shuffles
{(E i+1, πi+1),..., (Em, πm)} ← A(E i, πi)

// the honest control component i verifies subsequent shuffles
∀j ∈ [i + 1, m].SVerifyShuffleDecrypt(E j−1,E j, πj)

return ({(E1, π1),..., (Em, πm)})

Algorithm 9.2: Tally under influence of the adversary A.

Lemma 9.4 (Correct tally) Under the infrastructure assumptions, for honest con-
trol component i, Tallyi

A is correct, hence it outputs exactly what is represented by
CConf and CtE. Concretely, the advantage of an adversary G convincing the honest

control component of a different tally result is bound by Advverify
G,S .

Proof The honest control component i derives E0 directly from CConf and
CtE. Using SVerifyShuffleDecrypt, it validates proofs of all other control
components which ensure each pair of ciphertext ∀j ∈ [1, m]\i.(E i−1,E i)
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represent the same plaintext. Further, as SVerifyShuffleDecrypt is executed
honestly and therefore correct, the two lists E i−1 and E i represent the same
plaintext, too. It follows that the final list Em represents the same as CConf
and CtE.

The advantage of an adversary breaking the correctness of one of the m− 1
honestly executed calls to SVerifyShuffleDecrypt is bound by Advverify

G,S . □

Lemma 9.5 (Private tally) Under the infrastructure assumptions, for honest con-
trol component i, Tallyi

A is private, hence does not reveal anything but the set of
plain votes represented by represented by CConf and CtE. Concretely, the advantage
of an adversary learning anything more about an individual voter’s preference than
what is revealed by the tally result itself is bound by AdvIND-CPA

E ,S , Advshuffle
F ,S and

Advverify
G,S .

Proof We first argue that the adversary cannot change the plaintext repre-
sented by E i−1 - compared to the plaintext of the correct tally - by a similar
argumentation as done in the proof for lemma 9.4: The adversary would
need to break the correctness of at least one of the i − 1 invocations of
SVerifyShuffleDecrypt executed by the honest control component, for which
the advantage of the adversary is bound by Advverify

G,S .

When the honest control component then executes SShuffleDecrypt using
E i−1, it produces E i such that the adversary advantage to learn which E ∈
E i−1 corresponds to which E ′ ∈ E i is bound by Advshuffle

F ,S .

Further, the adversary advantage to learn the plaintext directly from any of
the |CConf| ∗ i ciphertext in E i for i ∈ [0, i− 1] is bound by AdvIND-CPA

E ,S .

We summarize that as soon as the honest control component has executed
its shuffle, the votes cannot be attributed any more to individual voters.
The adversary cannot change the input of the honest shuffling, and cannot
directly decrypt the votes before the honest control component shuffles. □

9.3 Security properties

Given the implementation of the syntax of the formal model, we now use its
game-based definitions of the security properties.

Fixing the honest voter and control component We argue that fixing the
honest voter to V1 and the honest control component to CC1 does not incur
a loss in generality.

We do this with a simple argument: We observe that all control components
as well as all voters have the same specification, hence honest instances will
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all behave the same. The adversary therefore cannot have an advantage de-
pending which instance is honest (even if it has interacted with the protocol
first).

Oracles in the voting phase To avoid duplicating specification of sec-
tion 7.2, we do not explicitly define oracles provided by the voters and con-
trol components in the voting phase. We however will refer to the oracles in
the following text, hence we clear up terminology.

Honest control components provide two oracles: The Cast Oracle which al-
lows to cast a vote (the first round-trip with the voter), and the Confirm Oracle
which allows to confirm a vote (the second round-trip with the voter). The
voter provides three oracles which remain unnamed: One to cast a vote, one
to confirm a vote, and one to process the final confirm verification.

9.3.1 Individual Verifiability

We instantiate and give bounds of the individual verifiability properties as
defined in section 8.2.1.

9.3.1.1 Individual Verifiability

The adversary wins the game if the individual verifiability check of the hon-
est voter passes, although there is no confirmed vote of that voter, or the
confirmed vote does not represent the honest voter’s selection.

In our game, we restrict ourselves to proof the advantage of an adversary
against a single trace in the voting phase. We however argue this does not
incur a loss of generality, as the adversary’s advantage cannot increase for
any other trace.

For the individual verifiability check of the honest voter to succeed the hon-
est voter must have executed their specification in order and until the end.
We therefore let the game be driven by the honest voter. Any message sent
by the voter is given to the adversary, and any message received by the voter
is provided by the adversary. When the message received back from the ad-
versary is wrong, the game aborts: As the voter’s individual verifiability
check will not succeed, the adversary cannot win the game.

To derive the messages for the honest voter, the adversary might query other
instances. We argue that by interacting with dishonest control components
and dishonest voters, the adversary gets no advantage: Their state is already
under the control of the adversary, hence the adversary does not learn any-
thing new. Further, it does not influence the state of the honest voter and
honest control component, and therefore it does not influence whether the
property is preserved or broken. Hence the only remaining oracles which
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potentially have an advantage to the adversary are provided by the honest
control component.10

Queries to the honest control component The adversary is able to inter-
act the cast oracle with (Id, VA, C) and the confirm oracle with (Id, CA). We
argue that for both oracles, the adversary gets no advantage when querying
with Id′ ̸= Id, as then state corresponding to the honest voter is unmodified
(hence, whether the property holds or not is unchanged). Further, the ad-
versary does not receive any useful answer, as with Id′ ̸= Id any answer is
independent to the state corresponding to the voter bId (see lemma 9.2). We
therefore fix the adversary to always query with Id provided by the honest
voter.

If the adversary wants to query the cast oracle, we force it to do so before re-
sponding to the voter with the vote verification. Calling it later in the game
cannot increase the adversaries advantage to guess the right vote verifica-
tion, but would still have the same effect on the honest control components
state. Calling it earlier would make it harder to pass validation (for exam-
ple, the adversary needs to guess some VA′ such that Hash(VA′) = hCA), but
when validation is not passed, the oracle has no effect (no state changed or
revealed).

Similarly, if the adversary wants to query the confirm oracle, we force it to
do so before responding to the voter with the confirm verification. Calling
it later cannot increase the adversaries advantage to guess the right confirm
verification, calling it earlier cannot increase the adversary advantage to pass
validation.

At this point, we can also restrict the adversary to call the same oracle at
most once. By the time the adversary calls the oracle, it knows how it can
pass validation (hence it does not need multiple attempts). Further, after the
first call passed validation, any subsequent oracle call will not modify state
or return new values any more.

As it is now predetermined when the adversary calls which oracle, we can
inline the oracles directly into the game. As it makes our game description
easier, we do not explicitly model an adversary not calling an oracle: If the
adversary does not wish to change the honest control components state it
can simply forward invalid authentication.11

Deriving the game We derive our game from Game 1 of the formal model
as follows:

10The honest voter’s oracles are all already in use.
11Alternatively, we could let the adversary explicitly return a value whether it wants to

call the oracle or not, and remove its option to specify VA′. It matters not for our proof.
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• We replace SetupA with our implemented Setup1
A (and inherit its trust

assumptions).

• After the adversary specifies the voting preference of the honest voter,
we inline the specification of the voter of Protocol 10 and Protocol 11.
Any sent message is passed to the adversary, and any received mes-
sage is received from the adversary. If some received message is
wrong, the game is aborted (and the adversary loses).

• We inline the cast oracle of the honest control component after the cast
message is sent by the voter, giving the adversary the power to spec-
ify VA′, C ′ and possibly learning vv(1)C ′ . Further, we inline the confirm
oracle of the honest control component after the confirm message is
sent by the voter, giving the adversary the power to specify CA′ and
possibly learning cv(1).

• We make the attacker slightly more powerful by passing it the private
state of the dishonest voters and control components already before it
specifies the voting preference of the honest voter.

• We replace the syntax of the assertion with our implemented syntax.
We remove the left-hand side and directly assert the implication, as
the left-hard side is implied if the game proceeded that far.

This results in Game 9.

The adversary wins the game if it runs until the end, but P ′ ̸= P . We define
the advantage of an adversary against individual verifiability as:

AdvIV
A = Pr[ExpIV

A assert fails]

The following theorem provides a bound on the advantage of any (even
unbounded) adversary.

Theorem 9.6 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any adversary A, it
holds that

AdvIV
A ≤

1
|Zv|

+
1
|Zv|

Intuitively, the first part is from guessing the vote verification, and the sec-
ond part from guessing the confirmation verification. The adversary is un-
bounded as no computational assumptions are required to safeguard the
verification codes. The proof for the theorem is in section 9.4.1.
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ExpIV
A (params):

(v, cc, bb) r←− SetupA(params)

// the state of the honest voter 1
(Id, VA, {VVC | C ∈ C}, CA, CV, PtCId)← v1

// the attacker receives the private state of the dishonest voters and

control components and is able to pick the honest voter’s plain vote

P ← A(v⊖1, cc⊖1)

// the voter picks the corresponding C and casts the vote

C .←− (P , .) ∈ PtCId

// the attacker decides what to forward to the honest control component

(VA′, C ′)← A(VA, C)

// the honest control component stores the cast vote and answers

if ((Id,Hash(VA′)) ∈ hVA and C ′ ∈ C and (Id, .) /∈ CCast)
then CCast ← CCast ∪ {(Id, C ′)}; (..., {vv(1)C | C ∈ C},...)← b(1)Id ; A(vv(1)C ′ )

// the attacker decides what to forward to the voter

({vv′(1)C ,..., vv′(m)
C })← A()

// the voter checks the vote verification

if (VVC ̸= ⊕m
i=1 vv′(i)C ) then abort

// the voter confirms the vote

A(CA)

// the attacker decides what to forward to the honest control component

(CA′)← A()

// the honest control component stores the confirmed vote and answers

C ′′ ← (Id, .) ∈ CCast
if ((Id,Hash(CA′)) ∈ hCA and (Id, .) /∈ CConf)

then CConf ← CConf ∪ {(Id, C ′′)}; (..., cv(1),...)← b(1)Id ; A(cv(1))

// the attacker decides what to forward to the voter

({cv′(1),..., cv′(m)})← A()

// the voter checks the vote verification

if (CV ̸= ⊕m
i=1 cv′(i)) then abort

// the attacker wins if P ′ ̸= P
C ′′′ .←− (Id, .) ∈ CConf
P ′ .←− (., C ′′′) ∈ PtCId
assert P ′ = P

Game 9: Game for individual verifiability. We let the adversary choose P ,
the plain vote of the voter. Note that C ′′′ as well as P ′ might be undefined.
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9.3.1.2 Participation Verifiability

Participation verifiability allows voters to verify whether they have partici-
pated in the election or not. As proposed in section 8.2.1 we split the defini-
tion into ExpPVP

A for participating voters, and ExpPVA
A for abstaining voters.

We proof AdvPVA
A = AdvEV

A in section 9.3.4.1. Here, we only discuss ExpPVP
A .

We can easily construct ExpPVP
A out of ExpIV

A by weakening the assert state-
ment: We only need to assert that (Id, .) ∈ CConf, hence that some vote is
confirmed. We avoid describing the full game again.

The following theorem provides a bound on the advantage of any (even un-
bounded) adversary against participation verifiability - participating voters.

Theorem 9.7 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any adversary A, it
holds that

AdvPVP
A ≤ 1

|Zv|

Intuitively, the advantage is from guessing the confirmation verification. The
proof is in section 9.4.2

From theorem 9.7 and theorem 9.13 we can directly bound the advantage of
an adversary against participation verifiability.

Theorem 9.8 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any polynomially
bound adversary A, it holds that

AdvPV
A ≤

1
|Zv|

+ AdvpIR
B,H

Proof We know that AdvPV
A ≤ AdvPVP

A +AdvPVA
A and that AdvPVA

A = AdvEV
A

(see section 8.2.1). By theorem 9.7, it holds that AdvPVP
A ≤ 1

|Zv| . By theo-

rem 9.13 it holds that AdvEV
A ≤ AdvpIR

B,H. □

9.3.1.3 Vote Verifiability

Vote verifiability ensures all votes represent valid voting options.

Vote verifiability is guaranteed by the cast oracle of the honest control com-
ponent: Before some C is added to CCast, it is ensured that C ∈ C. By
definition, C is then a valid vote.
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Theorem 9.9 Under the infrastructure assumptions, for honest setup authority
and honest control component i, for any adversary A, it holds that

AdvVV
A = 0

Proof We observe that in Setupi
A the setup authority delivers the honest

control component PtC, which can then be used to derive C. Given an
honest setup authority, we are ensured the honest control component indeed
received the correct C.

We then use a proof by contradiction. Assuming for some voter index i,
Extract returns some vote C /∈ C. This means that (Idi, C) ∈ CConf (by defini-
tion of Extract). Any (Idi, C) ∈ CConf must also be in CCast (by Protocol 11).
Any (Idi, C) added to CCast is assured to fulfil C ∈ C (by Protocol 10). This
contradicts our initial assumption, and concludes the proof. □

9.3.2 Universal Verifiability

We instantiate and give bounds of the universal verifiability property as
defined in section 8.2.2.

9.3.2.1 Universal Verifiability

Universal verifiability ensures the confirmed votes are tallied correctly.

For universal verifiability, we assume an even stronger adversary: We no
longer rely on any trusted parties except the honest control component i.

We cannot reuse Setupi
A as done in the previous games, as it relies on a

trusted setup and printer authority. We therefore redesign it here under the
new trust assumption that only the single honest control component exists.
As before, the honest control component receives params = (Id1, V, PtC).
Based on this, the honest control component generates its key material. The
adversary then learns the partial ballots (as it is sent to the setup authority),
and freely decides upon the result of the setup function.

In the voting phase, the adversary essentially plays only against the hon-
est control component, casting and confirming arbitrary votes. However,
here the capabilities of this otherwise very strong adversary are heavily
constrained: While for universal verifiability the adversary can do more
or less everything, the other properties still hold under the weaker adver-
sary model.12 Concretely, after the voting phase it must hold that P = {P |
(P , C) ∈ PtCId | (Id, C) ∈ CConf | Id ∈ Id} is the real tally result. By eligibility
uniqueness (see section 9.3.4.2), for each Id at most one C will be selected.
Then, by individual verifiability (see section 9.3.1.1), it must hold that this

12Like the Genie in Aladdin: PHENOMINAL COSMIC POWER...itty bitty living space.
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C reflects the P of the corresponding voter, as does the corresponding entry
in CtEId.

After the voting phase Tallyi
A is run, which establishes the tally result t.

The adversary wins if this tally result passes verification, although does not
represent the real tally result.13

Deriving the game We derive our game from Game 4 of the formal model
as follows:

• We inline the new setup function as described.

• We construct the honest control component, and pass it as an oracle to
the adversary.

• We replace TallyA with our implemented Tallyi
A.

• We replace the syntax of the assertion with our implemented syntax.
We abort if the left-hand side is false. Afterwards, we assert the impli-
cation.

This results in Game 9.

The adversary wins the game if it runs until the end, but the assertion fails.
We define the advantage of an adversary against universal verifiability as:

AdvIV
A = Pr[ExpIV

A assert fails]

The following theorem provides a bound on the advantage of any polyno-
mially bounded adversary.

Theorem 9.10 Under the infrastructure assumptions, for honest control compo-
nent i, for any polynomially bound adversary A, it holds that

AdvUV
A ≤ Advverify

G,S

when eligibility uniqueness (see section 9.3.4.2) and individual verifiability (see
section 9.3.1.1) also hold.

Proof By eligibility uniqueness (see section 9.3.4.2) and individual verifia-
bility (see section 9.3.1.1), we know that right before Tallyi

A is executed, it
holds that P = {P | (P , C) ∈ PtCId | (Id, C) ∈ CConf | Id ∈ Id}.14

The advantage of the adversary being able to influence Tallyi
A such that

Em ̸= P directly follows from the correctness property of the verifiable
shuffle (see lemma 9.4). □

13We explicitly include the verification in our game, although at this point it will always
pass. If it would not, the honest control component would have aborted during Tally.

14See the discussion from above we avoid to duplicate.
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ExpUV
A (params):

// the honest control component creates key material out of (Id1, |V|, PtC)
Id← GenIds(Id1, |V|)
b(i) r←− GenBallots(Id)

(sk(i)S , pk(i)S )
r←− SKGen()

// the adversary decides the result of the setup phase

(hVA, hCA, CtE, pkS )← A(b
(i))

// the adversary plays the voting phase with the honest control component

cci ← (b(1), sk(1)S )

CCi
c←− CC(cci)

ACCi ()

// the tally phase is run

t← Tallyi
A()

// if the tally result verifies...

{(E1, π1),..., (Em, πm)} = t
E0 = MapCtEs(CConf, CtE)
if not ∀i ∈ [1, m].SVerifyShuffleDecrypt(E i−1,E i, πi) then abort

// ...then it must be correct

assert P = {P | (P , C) ∈ PtCId | (Id, C) ∈ CConf | Id ∈ Id} = Em

Game 10: Game for universal verifiability for some honest control
component i.

9.3.3 Vote Secrecy and Fairness

We instantiate and give bounds of the vote secrecy and fairness properties
as defined in section 8.2.3.

9.3.3.1 Vote Secrecy

Vote secrecy ensures the adversary does not learn the voter selection.

To win the game, the adversary needs to distinguish whether it plays in the
real world, with challenge bit β = 0, or the fake world, with challenge bit
β = 1. The adversary is granted the ability to decide upon the selection the
honest voter casts in the real world P0 or in the fake world P1.

The definition additionally requires SimTallyA, which we implement with
SimTallyi

A. SimTallyi
A behaves exactly the same as Tallyi

A, but the call to
SShuffleDecrypt is replaced by a call to SSimShuffleDecrypt. This function
behaves exactly the same as SShuffleDecrypt, but it replaces the selection
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the honest voter cast in the fake world by the selection the honest voter
would have cast in the real world.15 We assume that the advantage of an
adversary distinguishing Tally from SimTally is bounded by the advantage
of the adversary against the secrecy of the tally (see lemma 9.5).16

The challenger bit β influences the game in two cases: First, in the voting
phase, it determines which attacker-chosen voter selection (P0,P1) the hon-
est voter actually casts as C = PtCId ∗ Pβ. Second, in the tally phase, it
determines whether Tally or SimTally is executed.

To predict β in the voting phase, the adversary’s only chance to distinguish
game 0 from game 1 is to correctly predict whether C represents P0 or P1.
We argue that no oracle in the voting phase will increase the adversaries
advantage. The honest voter will only additionally reveal authentication
values or whether verification values were correct, which both are unrelated
to C or Pβ. The honest control component will only reveal verification codes
or whether authentication values were correct, which both are unrelated to C
or Pβ. We therefore omit providing the adversary with oracles in the voting
phase.

Deriving the game We derive our game from Game 5 of the formal model
as follows:

• We replace SetupA with our implemented Setup1
A (and inherit its trust

assumptions).

• We inline the cast oracle of the honest voter. We let the adversary
specify P0 and P1 and pass it the C the voter casts.

• We replace TallyA with our implemented Tally1
A.

• We replace SimTallyA with our implemented SimTally1
A.

• We make the attacker slightly more powerful by passing it the private
state of the dishonest voters and control components already before it
specifies the voting preferences of the honest voter.

The adversary wins the game if it can distinguish ExpVS,0
A (params) from

ExpVS,1
A (params). We define the advantage of an adversary against vote se-

crecy as:

AdvVS
A = |ExpVS,0

A (params)− ExpVS,1
A (params)|

The following theorem provides a bound on the advantage of any polyno-
mially bounded adversary.

15This essentially ensures that the tally result always reflects the tally of the real world.
16Whether this really holds in the verifiable shuffle our infrastructure then really provides

needs to be proven, and remains here an educated guess.
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ExpVS,β
A (params):

(v, cc, bb) r←− SetupA(params)

// the state of the honest voter 1
(Id, VA, {VVC | C ∈ C}, CA, CV, PtCId)← v1

// the attacker receives the private state of the dishonest voters and

control components and is able to pick the honest voter’s plain vote

(P0,P1)← A(v⊖1, cc⊖1)

// the voter picks the corresponding C and casts the vote

C .←− (Pβ, .) ∈ PtCId

// the attacker learns C
A(C)

// the tally is executed

if β = 0 then r ← TallyA() else r ← SimTallyA()

// the adversary guesses the challenge bit

d← A(r)
if d = β then return 1 else return 0

Game 11: Game for vote secrecy. We let the adversary choose P0 and P1,
of which the voter will cast Pβ.

Theorem 9.11 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any polynomially
bounded adversary A, it holds that

AdvVS
A ≤ AdvIND-CPA

E ,S + Advshuffle
F ,S + Advverify

G,S

Proof The adversary does not know PtCId which is a uniform at random
permutation (see lemma 9.1 and lemma 9.2). Therefore the advantage of an
adversary detecting whether P0 or P1 was used is 0.17

The adversary might be able to tell apart Tally1
A and SimTally1

A. As as-
sumed, the advantage of an adversary distinguishing these two functions
is bounded by the advantage of the adversary against the secrecy of the
tally (see lemma 9.5).

Collecting all advantages proofs the theorem. □

17Strictly speaking, this ignores that the adversary knows CtEId, and the ciphertext E
associated to C might also give the adversary some advantage. However, the privacy of the
tally bound already includes how the adversary might attempt decryption of E , which is
why we do not include it here again.

163



9. Computational Proof

9.3.3.2 Fairness

As noted in section 8.2.3, fairness is a weaker property than vote secrecy. We
can therefore bound the advantage of an adversary against fairness by the
advantage of an attacker against vote secrecy.

Theorem 9.12 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any polynomially
bounded adversary A, it holds that

AdvF
A ≤ AdvVS

A

9.3.4 Authentication

We instantiate and give bounds of the authentication properties as defined
in section 8.2.4.

9.3.4.1 Eligibility Verifiability

Eligibility verifiability ensures every vote considered in the tally is con-
firmed by an eligible voter.

The adversary wins the game if the honest voter has not confirmed their
vote, but their vote is nonetheless marked as confirmed. In our game, we
restrict ourselves to proof the advantage of an adversary against a single
trace in the voting phase. We however argue this does not incur a loss of
generality, as the adversary’s advantage cannot increase for any other trace.

For the adversary to win, it is required that the vote of the honest voter
is stored as confirmed at the honest control component. This necessarily
requires the adversary to call the confirm oracle and pass validation, hence
guess the correct request (Id, CA). The adversary knows Id (as it is public),
but does not know CA after the setup (see lemma 9.1). To learn more about
CA the adversary might query other instances.

As in section 9.3.1.1, we observe that querying instances the adversary al-
ready has control over results in no advantage to the adversary. Querying
the honest control component to learn CA results in no advantage, as the
honest control component never reveals authentication secrets (like the par-
tial va). Querying the honest voter for the confirmation (the only way the
voter reveals CA) would result in a trivial lose for the adversary, as then it
can never break the assertion. We conclude that the adversary cannot do
better through queries to other instances.

Deriving the game We derive our game from Game 7 of the formal model
as follows:
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• We replace SetupA with our implemented Setup1
A (and inherit its trust

assumptions).

• We inline the confirm oracle of the honest control component, and let
the adversary specify CA′.

• We remove that the adversary specifies the vote preference of the hon-
est voter, as the honest voter never casts a vote. We also remove how
the honest control component answers if the confirmation was success-
ful, as the adversary is not active any more afterwards.

• We replace the syntax of the assertion with our implemented syntax.
We remove the left-hand side and directly assert the implication, as
the left-hard side is implied: We do not allow the adversary to query
the voter in such a way that they would confirm their vote.

ExpEV
A (params):

(v, cc, bb) r←− SetupA(params)

// the id of the honest voter 1
(Id,...)← v1

// the attacker receives the private state of the dishonest voters and

control components

A(v⊖1, cc⊖1)

// the attacker decides how to query the honest control component

(CA)← A()

// the honest control component stores the confirmed vote

C ← (Id, .) ∈ CCast
if ((Id,Hash(CA)) ∈ hCA and (Id, .) /∈ CConf)

then CConf ← CConf ∪ {(Id, C)}

// the attacker wins if some vote is confirmed

assert (Id, .) /∈ CConf

Game 12: Game for eligibility verifiability. We let the adversary choose P ,
the plain vote of the voter.

The adversary wins the game if the vote is confirmed in the end. We define
the advantage of an adversary against eligibility verifiability as:

AdvEV
A = Pr[ExpEV

A assert fails]

Theorem 9.13 Under the infrastructure assumptions, for honest setup authority,
honest printer authority and honest control component i, for any polynomially
bounded adversary A, it holds that
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AdvEV
A ≤ AdvpIR

B,H

where B is an adversary against the pre-image resistance of hash function H.

Intuitively, the advantage results from guessing the confirmation authenti-
cation, breaking the pre-image resistance of hash function H. The proof for
the theorem is in section 9.4.3.

9.3.4.2 Eligibility Uniqueness

Eligibility uniqueness ensures every eligible voter can only confirm a single
vote.

Eligibility uniqueness is guaranteed by the confirmation oracle of the honest
control component: Before some Id is added to CConf, it is ensured that
(Id, .) /∈ CConf, hence there cannot be two votes confirmed under the same
Id. This is already reflected in the definition of Extract.

Theorem 9.14 For honest control component i, for any adversary A, it holds that

AdvEU
A = 0

Proof The honest control component will check whether for the presented
Id a vote was already confirmed, and will deny any further confirmations.□

9.4 Game Hops

Given the instantiated game-based definitions, here we prove the theorems
to hold which bound the respective attacker-advantage.

Our proof strategy modifies the games step by step, until the adversary can-
not win the game any more. For each modification, we bound the advantage
of the adversary. In the end, we collect the bounds; hence add all advantages
of the adversary throughout the modifications.

9.4.1 Individual Verifiability

We observe that the attacker must get both checks of the voter to succeed
for the game not to abort early. We modify the game correspondingly.

The first abort is skipped if and only if the modular addition of the partial
vote verifications is as expected. We argue that the attacker either needs to
submit exactly what was cast by the voter, or guess the partial vote verifica-
tion of the honest control component. In technical terms, it holds that either
(Id = Id′ and VA = VA′ and C ′ = C ′) or the attacker guesses vv(1)C ′ .
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We reflect this idea in the first modification of the game: When the attacker
guesses vv(1)C ′ (denoted as event E1), we abort the game.

Further, the second abort is skipped if and only if the modular addition of
the partial confirm verifications is as expected. We argue that the attacker
needs to submit exactly what the voter confirmed, or guess the partial con-
firm verification of the honest control component. In technical terms, it
holds that either (Id = Id′′ and CA = CA′) or the attacker guesses cv(1).

We implement the second idea with the second modification of the game:
When the attacker guesses cv(1) (denoted as event E2), we abort the game.

Both modifications together result in Game 13.
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ExpIV-1
A (params):

(v, cc, bb) r←− SetupA(params)

// the state of the honest voter 1
(Id, VA, {VVC | C ∈ C}, CA, CV, PtCId)← v1

// the attacker receives the private state of the dishonest voters and

control components and is able to pick the honest voter’s plain vote

P ← A(v⊖1, cc⊖1)

// the voter picks the corresponding C and casts the vote

C .←− (P , .) ∈ PtCId

// the attacker decides what to forward to the honest control component

(VA′, C ′)← A(VA, C)
if (VA′ ̸= VA or C ′ ̸= C) then E1 ← true abort

// the honest control component stores the cast vote and answers

if ((Id,Hash(VA′)) ∈ hVA and C ′ ∈ C and (Id, .) /∈ CCast)
then CCast ← CCast ∪ {(Id, C ′)}; (..., {vv(1)C | C ∈ C},...)← b(1)Id ; A(vv(1)C ′ )

// the attacker decides what to forward to the voter

({vv′(1)C ,..., vv′(m)
C })← A()

// the voter checks the vote verification

if (VVC ̸= ⊕m
i=1 vv′(i)C ) then abort

// the voter confirms the vote

A(CA)

// the attacker decides what to forward to the honest control component

(CA′)← A()
if (CA′ ̸= CA) then E2 ← true abort

// the honest control component stores the confirmed vote and answers

C ′′ ← (Id, .) ∈ CCast
if ((Id,Hash(CA′)) ∈ hCA and (Id, .) /∈ CConf)

then CConf ← CConf ∪ {(Id, C ′′)}; (..., cv(1),...)← b(1)Id ; A(cv(1))

// the attacker decides what to forward to the voter

({cv′(1),..., cv′(m)})← A()

// the voter checks the vote verification

if (CV ̸= ⊕m
i=1 cv′(i)) then abort

// the attacker wins if P ′ ̸= P
C ′′′ .←− (Id, .) ∈ CConf
P ′ .←− (., C ′′′) ∈ PtCId
assert P ′ = P

Game 13: Modified game for individual verifiability. We let the adversary
choose P , the plain vote of the voter. Note that C ′′′ as well as P ′ might be

undefined.
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Lemma 9.15 Given the same security assumptions in both games, for any adver-
sary A, it holds that

|AdvIV
A −AdvIV-1

A | ≤
1
|Zv|

+
1
|Zv|

Proof As ExpIV
A and ExpIV-1

A are equal, except if either E1 or E2 occurs, we
get that18:

|AdvIV
A −AdvIV-1

A | ≤ E1 + E2

When the voting phase starts, the adversary does not know the secret state
of the honest voter and the honest control component (see lemma 9.1 and
lemma 9.3). Even when the adversary is passed the secret state of the other
voters19, this results in no advantage to guessing b(i)Id and BSId directly (see
lemma 9.2).

If E1 occurs, but the adversary still wins the game, then it must guess vv(1)C ′
such that VVC = ⊕m

i=1 vv′(i)C , else the voter would abort the game. The value
is picked uniform at random out of Zv (see GenBallots), hence the attacker
has no advantage to random guessing. Therefore, E1 = 1

|Zv| .

If E2 occurs, but the adversary still wins the game, then it must guess cv(1)

such that CV = ⊕m
i=1 cv(i), else the voter would abort the game. The value is

picked uniform at random out of Zv (see GenBallots), hence the attacker has
no advantage to random guessing. Therefore, E2 = 1

|Zv| . □

We now note that AdvIV-1
A = 0. Indeed, it now holds that VA = VA′ and

C = C ′, hence the correct vote is cast (else, E1). Further, it now holds that
CA = CA′, hence the correctly cast vote is also confirmed (else, E2). It must
therefore hold that C ′′′ = C, which also implies that P = P ′.

Proof (theorem 9.6) Collecting the security assumptions and the bounds
proofs theorem 9.6. □

9.4.2 Participation Verifiability - Participating Voter

ExpPVP
A is defined only relative to ExpIV

A . Similarly, we will describe the
participation verifiability proof only relative to the individual verifiability
proof (see section 9.4.1).

18By Shoop’s difference lemma.
19We omit [... and of the dishonest control components] as this was already known to the

adversary from the setup phase.
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Compared to ExpIV
A , the only difference in ExpPVP

A is in the assertion: We no
longer require the plain vote to match the voter’s selection, but only require
some confirmed vote to be reflected on the bulletin board. This make the
attack harder for the adversary.20

We argue that we only need to apply the second modification of ExpIV
A to

our ExpPVP
A : When the attacker guesses cv(1) (denoted as event E2), we abort

the game. This modification results in ExpPVP-1
A .

Lemma 9.16 Given the same security assumptions in both games, for any adver-
sary A, it holds that

|AdvPVP
A −AdvPVP-1

A | ≤ 1
|Zv|

Proof As ExpPVP
A and ExpPVP-1

A are equal, except if E2 occurs, we get that:

|AdvPVP
A −AdvPVP-1

A | ≤ E2

As argued before in section 9.4.2, it holds that E2 = 1
|Zv| . □

We now note that AdvPVP-1
A = 0. Indeed, it holds that CA = CA′, hence the

voter has definitely confirmed their vote (else, E2).21

Proof (theorem 9.7) Collecting the security assumptions and the bounds
proves theorem 9.7. □

9.4.3 Eligibility Verifiability

We observe that the attacker only succeeds if it manages to guess CA′ such
that Hash(CA′) = Hash(CA). We modify our game correspondingly.

We modify the game as follows: Whenever the attacker outputs CA′ such
that Hash(CA′) = Hash(CA), we denote this as the event E3 and abort the
game.

The modification results in Game 14.

Lemma 9.17 Given the same security assumptions in both games, for any polyno-
mially bound adversary A, it holds that

|AdvEV
A −AdvEV-1

A | ≤ AdvpIR
B,H

20For example, if the attacker manages to successfully confirm P ′ ̸= P then the attacker
would always win ExpIV

A , but not necessarily in ExpPVP
A .

21The vote itself might be undefined if the adversary prevented it being cast, but this does
not make a difference for the definition here.
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ExpEV-1
A (params):

(v, cc, bb) r←− SetupA(params)

// the id of the honest voter 1
(Id,..., CA,...)← v1

// the attacker receives the private state of the dishonest voters and

control components

A(v⊖1, cc⊖1)

// the attacker decides how to query the honest control component

(CA′)← A()
if Hash(CA′) = Hash(CA) then E3 ← true abort

// the honest control component stores the confirmed vote

C ← (Id, .) ∈ CCast
if ((Id,Hash(CA′)) ∈ hCA and (Id, .) /∈ CConf)

then CConf ← CConf ∪ {(Id, C)}

// the attacker wins if some vote is confirmed

assert (Id, .) /∈ CConf

Game 14: Game for eligibility verifiability. We let the adversary choose P ,
the plain vote of the voter.

Proof As ExpEV
A and ExpEV-1

A are equal, except if E3 occurs, we get that:

|AdvEV
A −AdvEV-1

A | ≤ E3

We observe that the adversary does not know CA when the voting phase
starts (same argumentation as in proof 11). We further observe that CA
appears uniform at random to the adversary (see lemma 9.1).

E3 occurs when the adversary guesses CA′ such that Hash(CA′) = Hash(CA).
The adversary is given hCA = Hash(CA), which corresponds to the pre-
image resistance attacker B against Hash which advantage we have bound
to AdvpIR

B,H. Hence, E3 ≤ AdvpIR
B,H. □

We now observe that AdvEV-1
A = 0. Indeed, when Hash(CA′) = Hash(CA)

the game aborts. The adversary is therefore unable to confirm any vote for
the voter under attack.

Proof (theorem 9.13) Collecting the security assumptions and the bounds
proofs theorem 9.13. □

171



9. Computational Proof

9.5 Summary

We first described the security guarantees we expect from our infrastruc-
ture, and how they impact our proofs. We assume perfect secure channels
in the setup phase, and perfect authentic channels throughout all phases.
We need a pre-image resistant hash function. The bulletin board stores the
append-only state, communicated over authentic channels. The verifiable
shuffle provides secure key generation and encryption, as well as a secure
and correct decryption-shuffle. Besides the verifiable shuffle, no infrastruc-
ture assumption needs to be represented in the proofs.

Then we implemented the syntax as required by our formal model. We map
the setup phase into the setup function, and prove it to provide secure initial
state to the honest voter and honest control component. We implement the
protocol state queries using the state of the honest control component. We
further map the tally phase into the tally function, and prove the tally to be
correct and private.

Finally, we proved property by property. Individual verifiability is guaran-
teed as long as the verification codes are suitably long. Participation verifia-
bility additionally requires the pre-image resistant hash function (and there-
fore suitably long authentication codes). Vote verifiability is given by design.
Universal verifiability requires the correctness of the shuffle. Vote secrecy is
guaranteed by the secure encryption of the verifiable shuffle. Fairness is
implied by vote secrecy. Eligibility verifiability holds due to the pre-image
resistance of the hash function. Finally, eligibility uniqueness is again given
by design.
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Chapter 10

Conclusion

In this thesis, we have proposed a system for vote électronique. Its unique
characteristic, compared to previous proposals of such schemes in Switzer-
land, is the use of code voting: The voter enters a code corresponding to
their voting choice instead of the plain voting choice.

This small change not only increases security as the voter no longer needs to
trust their own device, it also leads to a drastically simpler system concern-
ing specification and proofs than previous endeavours. It is to be expected
that also its implementation and operation will be less complex and error-
prone.

We proved the system secure using a formal model adapted specifically
to Switzerland, which translates the requirements set forward by law into
formal game-based definitions. We identified properties not recognised in
the literature, and improved other properties such that they apply to a wider
range of electronic voting protocols. We use computational proofs to show
that our proposal indeed satisfies the formal properties.

To ensure the system does not only meet current legislative requirements,
but will likely also support future to-be-expected changes in law, we base
the design of the scheme on an informal argument for optimality. We per-
formed a survey of the literature and of history, law and politics in Switzer-
land concerning vote électronique. We then reflected upon the legislation,
discussing how it may be adapted to lead to securer systems. Based on
this new strongest currently achievable setting, we iteratively constructed a
voting protocol which forms the basis of our new system.

As part of this work, we have also identified room for improvement within
the legislative basis and within the Swiss Post scheme, which we have com-
municated with the responsibles.
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10. Conclusion

Future work The voting protocol is fully specified, as is a first draft of the
computational proofs. While the result at the very least convince of the
feasibility of such a code voting system for vote électronique, we did have to
restrict the scope of the thesis to fit in the six months available.

There is still some considerable work left until the proposed system might
see real-world usage.

• Thorough review of the protocol and the computational proofs by in-
dependent researchers.

• Symbolic proof of the properties, notably as required by law.

• Specification of the infrastructure, crucially the verifiable shuffle and
the bulletin board.

• Discussion about parameter sizes, based on the adversary bounds es-
tablished in the computational proofs.

• Study about usability, exploring how the code voting mechanism as
proposed performs best in practice.

Besides future work specific to the proposed system, we have also identified
some gaps in the literature which motivate future research.

• Survey about mechanisms known in the literature (like section 3.3).

• Discussion about achievable properties under specific circumstances
(like chapter 5).

• Optimality arguments of constructions (like chapter 6).

• Formalization of properties which match more complex voting proto-
cols (like chapter 8).
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Appendix A

Trivia

For the Norways 2011 election, when printing the voting cards, it was no-
ticed late that unfortunately some parties were missing. The printing was
stopped, and the protocol setup had to be redone. However, access to the
server was denied: The terrorist attack of Andres Breivik impacted the
building which housed one of the servers, and the crime scene was un-
der lockdown. After a few days, they finally got permission to evacuate the
server, and could restart the printing. Additionally endangering the dead-
line, the printing company noticed the printing took longer than expected,
but the voting period could not start until printing was finished. Three shifts
worked around the clock to compensate, and the system went online with
only a few hours delay [128].

For the Norways 2013 elections, the Internet Election Committee (IEC) was
founded, composed out of voters, experts and representatives from the ad-
ministration. A counting ceremony was held to make the tallying of votes
somewhat approachable. The result of the ceremony was discarded [186].

For the Norways 2013 elections, the IEC announced they would like to ac-
commodate media or political representatives to conduct verification. No
party showed interest, so the only organization which performed verifica-
tion was contracted by the government itself [213].

Voting booths in France have an error rate (difference between amount of
signatures and counted votes, which should be 0) that is 4 to 6 times higher
with electronic counting machines than with paper ballots. No convincing
hypothesis explains this gap [107].

Sweden wanted to start with remote voting trials for their election in 2019.
However, their trial was stopped a week before the vote, presumably due
to reviews arriving late and the responsible political side having lost confi-
dence [104]. Scytl implies it was stopped to due GDPR concerns [250].
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A. Trivia

In the Netherlands, following a suddenly heated public debate, the minister
forbid usage of all software one month before the election of 2017. Most
importantly impacted was the supporting software for the count, which had
organically grown over the years to take over more and more tasks. Sud-
denly, the municipalities needed to reorganize how they would perform the
election, but their questions to the ministry remained unanswered (Could
they still use computers? Could they use spreadsheets?). Under pressure of
the municipalities, and after a report found only minor issues with the sup-
porting software, the ministry again allowing usage of the software, under
the condition that all counts had also to be performed manually. Everything
then seemed to go smoothly, however after the election some discrepancies
between municipality results and aggregated results were observed: A few
thousand votes went missing. An investigation revealed that a system crash
lead to data loss, and due to time constraints, the clerks did not double-
check their inputs [65].
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Appendix B

Swiss Post Protocol

For a summary of this protocol see section 3.2.3. Each paragraph in the
summary corresponds to one section here, and phrase in the summary cor-
responds to one paragraph here.

Publicly known for each election e are the N voters participating, the n
available voting options and the amount ψ of voting options selectable. The
valid combination of voting options is defined using a list of ψ entries, with
each being a correctnessID which differs for different questions.1 The voter
communicates over the voting device to the voting server. The voting server
handles communication between all other server-side entities. All server-
side entities append cryptographic values to the log, which is used by the
auditors to verify correct execution. To setup the protocol, a fully trusted
printer prepares the election key material.2

B.1 Setup

Each return code control component (CCR) chooses a secret and ψ encryp-
tion key pairs. The public keys are added to the log and then sent to the
printer. The printer aggregates them into the choice return code public keys
(resulting in a single key per selectable voting option). The printer logs the
received and aggregated public keys.

The printer chooses n setup key pairs, and logs their public keys. For each
voter, the printer chooses an id vcd, a verification card key pair (sk, pk) and
a ballot casting key bCK.

1For example, for an election with a yes/no question and a choose-three question, the
table would look like (a, b, b, b).

2The terminology ”printer” is likely only used to comply with the Swiss regulation,
which in its version until 2021 does not know a setup component (but a fully-trusted printer).
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B. Swiss Post Protocol

Each of the n voting options (encoded into primes) is raised to sk to result in
pCC. bCK is squared and raised to sk to result in the confirmation key CK.
Each pCC and the single CK is hashed and squared to result in many hpCC
and a single hCK. hpCCHash are generated by hashing each hpCC with vcd,
e and its corresponding entry in the correctnessID table.

Each hpCC is encrypted by one if the n setup keys, and hCK is encrypted
by the aggregated setup keys. vcd, pk, the encrypted hpCCs and hCK, and
a shuffled list of the hpCCHash are sent to each CCR and appended to the
logs.

Each CCR derives two voter secrets using a KDF, the first by using its secret
and vcd as a seed, the second by additionally appending the constant ”con-
firm” to the previously used seed. Each encrypted hpCC is raised to the first
voter secret, the encrypted hCK is raised to the second. The resulting values,
a zero-knowledge proof of the exponentiations, and the generator raised to
each of the secrets3 is returned to the printer.

The printer now multiplies the resulting values of each CCR, then decrypts
them using the setup secret keys into the many pC and the single pVCC.
These are then hashed into lCC = H(pC, vcd, e, correctnessID) and lVCC =
H(pVCC, vcd, e).

The printer now picks randomly for each voter n short choice return codes
CC and a single short vote cast return code VCC. They are associated to the
long equivalents by a key-value store: The key is given by the hash of the
long code, the value is an encryption of the short code, under a key derived
out of the long code.4 The key-value store is shuffled, appended to the log,
and sent to the voting server.

Finally, the printer chooses a short voter-specific secret, uses it as a seed to
a KDF to derive a symmetric key, and then encrypts the verification card
secret key into a key store. The store is appended to the log, and sent to
the voting server. The short secret is sent to the voter, who can use it to
download and unlock the store.5

Each mixing control component (CCM) - except the last CCM which remains
offline - chooses an election key pair, appends the public key to the log
and sends it to the printer. The printer chooses the electoral board key
pair. Shares of the private key are distributed to trustees. The public key
is aggregated with the public keys of the CCMs into the the election public
key. All public keys are appended to the log, and the election public key is
sent to the voting server.

3Essentially resulting in two public keys, each derived out of one of the secrets.
4Note that this construction allows to retrieve the short code iff the long code is known.
5This improves usability for the voter, as the secret can be chosen much shorter than the

full verification card secret key.
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B.2. Voting

The setup phase finishes with the auditors checking the zero-knowledge
proofs in the log.

B.2 Voting

The voter receives a voting card with its short secret (for the key store), the
short choice return codes CC for each choice, the ballot casting key bCK and
the short vote cast return code VCC. The voter authenticates6, downloads
the key store, and unlocks the verification card secret key sk.

The voter multiplies the selected voting options and encrypts them under
the election public key into E1. Each voting option is further raised to sk,
and encrypted under the choice return code public keys into the list E2. E1
and E2 are sent to the voting server, together with zero-knowledge proofs
asserting that E1 and E2 contain the same encrypted voting options.

The voting server forwards the values to the CCRs. Each CCR ensures the
voter has not voted yet, checks that the vote contains the expected number
of selections and verifies the proofs. If all succeeds, the vote is registered as
cast. Each CCR now uses its set of encryption key pairs to partially decrypt
E27, and adds the result together with zero-knowledge proofs of correct
exponentiation to the log.

Now each CCR verifies the proof of the others, then combines the partial
decryptions to fully decrypt E2 into the pCC’s8. The pCC’s are added to the
log. Each CCR generates from each pCC the respective hpCC and hpCCHash
as done in the setup phase. When all hpCCHash exist as expected, each
hpCC is raised to the appropriate voter secret to recover the partial lCC.
Both pCC and the partial lCC, as well as a proof of correct exponentiation,
are added to the log.

The voting server now multiplies each the partial lCC into pC to then derives
each full lCC as done in the setup phase. Finally, the short choice return
code CC belonging to each lCC is extracted from the key-value store. All
are added to the log, and then returned to the voter.

The voter compares the received CC with the one printed on the voting card,
and if they match, the voter enters bCK. The voting client computes the CK
and sends it to the voting server.

Each CCR ensures the confirmation procedure is for a valid vote, and has not
been attempted to many times. It hashes and squares CK to compute hCK,

6Authentication is not specified yet as of Version 0.9.10.
7As multi-recipient ElGamal is used as the encryption here, this means raising the first

term of the encryption to the secret.
8As multi-recipient ElGamal is used as the encryption here, this means dividing the

second term by a multiplication of all first terms.
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B. Swiss Post Protocol

return codes finalization code

pCC = psk CK = bCK2∗sk

hpCC = H(pCC)2 hCK = H(CK)2

lCCi = hpCCvsi,1 lVCCi = hCKvsi,2

pC = ∏ lCCi pVCC = ∏ lVCCi
lCC = H(pC, vcd, ee, correctnessID) lVCC = H(pVCC, vcd, ee)
CC = Dec(lCC, st[H(lCC)]) VCC = Dec(lVCC, st[H(lVCC)])

Table B.1: Overview of the operations performed on the return codes and the finalization code
over all components. For vsi,1 and vsi,2 the voter secrets of the CCR i, and st the respective
key-value store for the encrypted short codes. The variable names are the same as used in the
specification, although casing has been changed to be little bit closer to consistent naming. Note
the naming collision with pC of line 4, which should have been named pCC (compare with the
right column), but this was already defined on line 1.

and then raises the result to the second voter secret to get the partial lVCC.
lVCC is appended to the log, together with CK, the number of attempts,
and a zero-knowledge proof of the exponentiation.

The voting server now multiplies all partial lVCC into pVCC (same as in
the setup phase) to ultimately derive the full lVCC. Finally, the short vote
cast return code VCC belonging to the lVCC is extracted from the key-value
store, added to the log together with the attempts count, and returned to
the voter. The voter compares the VCC with the one printed on the voting
card.

The voting phase finishes with the auditors checking consistency of the val-
ues in the log, specifically that the CCR logs are equal, the recorded votes
are consistent, the zero-knowledge proofs verify and the extraction of the
short codes are reproducible.

B.3 Tallying

The voting server prepares the tally by extracting the ciphertext E1 from all
confirmed votes. Each CCM, one after the other, mixes the ciphertexts and
partially decrypts. Both mix proofs as well as a zero-knowledge proof of
partial decryption are stored in the log. The auditors verify the proofs, and
if successful, the trustees reconstruct their electoral board private key. The
key is passed to the last offline CCM, which does the final decryption after
another mix. The now fully decrypted plain votes are factorized into their
composing primes to recover the selected voting options.

The tally phase finishes with the auditors checking the execution of the last
CCM: The mix proof and the proofs of decryption are verified, and the
factorization of the plain votes is reconstructed [235].
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Appendix C

Use auditors to check trust
assumptions

The auditors are not strictly required for the protocol to reach its security
properties under the trust assumptions (see chapter 7). One might however
employ auditors to give additional assurances that the trust assumptions are
not broken.

The description here is informal, and there needs to be extra care employed
when designing appropriate procedures that the checks are effective (mean-
ing the attacker cannot simply circumvent it) and do not break the security
properties (for example by giving the auditors too much power like expos-
ing inadequate secret material).

Setup phase Auditors can check that Id1 actually does not lead to overlaps
with other elections and Id is generated as expected. Further, auditors can
check that PtC encodes each potential voting option into a separate code.
Additionally, auditors may perform basic consistency checks, like |V| =
|Id| = |hVA| = |hCA|, ∀Id ∈ Id.(Id, .) ∈ hCA and ∀Id ∈ Id.(Id, .) ∈ hVA. Fur-
ther, the auditors also check that all cryptographic parameters make sense,
e.g. Za and Zv to choose the authentication and verification secrets.

To audit the second part of the setup phase, auditors may be empowered to
choose some voters V′ ⊂ V of which they audit their ballot sheets, to assert
the setup and the printer component operate as expected. It is important
that the chosen voters V′ will not participate in the elections later on1 (as
the auditors learn their secrets), and that the selection is not predictable by
the attacker (as then the check would be ineffective). Per our setting, there

1Of course, excluding real voters from the election is not a good option. One could in-
stead empower the auditors to create fake voters, however these must not be distinguishable
from real voters.
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C. Use auditors to check trust assumptions

may be only a single honest auditor, hence each auditor must select fake
voters by themselves and in secret.

When the ballot sheets finished printing - but of course before sending them
out - each auditor reveals the voters it wants to audit.2 The ballot sheets of
all voters under audit are then examined by all auditors together.

The auditors may check the Id is valid and the authentication secrets are
correctly represented as hashes on the bulletin board. Further, they may
ensure each plain voting option is assigned a different code, and this code
is indeed in C.

The auditors can further also check that the verifiable shuffle preparation has
been done correctly, as the randomness used when creating the shuffle input
ciphertexts is also part of the ballot sheet. For each code vote, the auditors
ensure the appropriate ciphertext represents the expected plain vote.

Going even further, the auditors may also verify that the partial ballot com-
bination has been done correctly. For this, they request the partial ballot of
the voters under audit directly from the control components.3 Then, they
check whether the combination of the partial ballots indeed result in the
given ballot sheet.

The auditors may also do cross-checking of ballot sheets, for example to
ensure the plain to code lookup is reasonably different on each ballot sheet.

Voting phase Auditors can continuously check the bulletin board for con-
sistency. Concretely, they can ensure for each cast vote that the cast authenti-
cation is published. Further, for each confirmed vote, the auditors can check
the confirm authentication is published, and the vote has been correctly cast.

Auditors may also verify that the bulletin board indeed processes new input,
and the control component also react to the new messages. For this purpose,
the auditors may be empowered to choose additional voters V′′ ⊂ V, again
choosing them in secret and individually, but then performing the actions
together. When a vote is confirmed during the audit, of course the repre-
sented plain vote has to be subtracted from the final result again.

Tally phase During the tally phase, the verifiable shuffle executed by the
control components produce proofs. The auditors may verify these proofs
are indeed correct. Further, they may assert the final announced result in-
deed is the sum of the plain votes resulting from the shuffle.

2The process needs to ensure auditors indeed reveal all their chosen voters.
3Note that the corresponding request has to be placed on the bulletin board, to establish

an audit trail. Else individual auditors might deceive control components to reveal secrets of
voters not under audit.
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Appendix D

Differences of computational proof to
other computational proofs of vote

électronique protocols

We explicitly want to document the differences between the computational
proofs of vote électronique protocols.

D.1 CHVote Verifiability Analysis

The document only takes the verifiability properties of CHVote into account.
It first establishes clear definitions and then presents both computational
and symbolic proofs [24]. The document is clearly structured, and the proofs
are comparatively easy to follow. It was written by established researchers
in the field. Throughout this section, we refer to [24] as the analysis.

In general, the overall structure of the properties and corresponding game-
based definitions are similar. We justify here notable differences in mod-
elling, notation and definitions.

The analysis uses the single-pass voting model, however this model does not
really fit the two-roundtrip scheme we intend to prove. We use a somewhat
more abstract model which defines less about the messages exchanged of
the voting protocol, but instead provides functions to directly assess the
state of the voting protocol.

Overall, our game-based definitions are less specialized to the specific prop-
erties, but instead always preserve the same structure. This aims to simplify
the model (as few functions have to be assumed) and the proofs (as the
structure can be reused). Further, our games are more consistent, which is a
valid design goal as arguably only all properties together result in a useful
- as secure - voting system.
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D. Differences of computational proof to other computational proofs of

vote électronique protocols

As a last general change, we adopt the notation to align closer to the naming
used already in the proposal. Instead of election authorities, we have control
components. Instead of sk and vsk for the private state of voters and control
components, we refer to v and cc. Instead of pk, we refer to the public state
as bb, the bulletin board state. Our naming overall aims to stronger distinct
the different roles and their values.

Difference by property In the individual verifiability game, the analysis
provides the attacker with both the public information as well as the private
state of the corrupted control components cc⊖1 to decide upon the voter
selection s. We argue this is inconsistent; if the attacker is provided with
private state at this point of the game (concretely cc⊖1), then it should be
provided with all private state it eventually gets access to (notably, includ-
ing the private state of the corrupted voters v⊖1). We reflect this in our
definitions.

Participation verifiability or something similar is not mentioned by the anal-
ysis. We note that this is also not prominently claimed by CHVote.

For vote verifiability1 the attacker is allowed full access to the setup proce-
dure. We however reuse the same game structure as for individual verifia-
bility, explicitly including the setup procedure. We argue that this does not
overall weaken our definition, and it is hard to imagine a voting protocol
which can decide whether a vote is valid without any assumptions on the
setup. Indeed, when proving the property for CHVote, the analysis again
includes the setup procedure with an honest control component.

In the universal verifiability game, the analysis lets the adversary generate
a valid bulletin board and claim a result. If the result cannot be disproven
(but is still wrong), the attacker wins. We take over the latter part, but
again replace the former part with the same structure as in the individual
verifiability game. By forcing the attacker to use the normal setup procedure
and play against the actual bulletin board, we avoid defining a possibly
complex validation function over the bulletin board (as by design only valid
bulletin boards are produced).

Voter secrecy and fairness are out of scope for the analysis.

For eligibility verifiability, the attacker in the analysis wins if the bulletin
board contains a confirmed vote of some voter which does not reflect the
voter’s intention. This implies that an adversary may confirms a vote, as
long as it reflects the intention of the corresponding voter. However, this
is too weak, as voters must be aware whether they have participated in the

1Referred to as ballot verifiability in the analysis.
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election or not.2 We therefore require the stronger notion that if a voter has
not confirmed their vote, then there must be no corresponding confirmed
vote on the bulletin board.

Eligibility uniqueness is defined identically by the analysis.

D.2 Scytl / Swiss Post Computational Proof

The document includes both a formal description of the protocol as well as
the computational proof for both verifiability and privacy properties [235].
It was initially written by Scytl, then extended by Swiss Post once they took
over development. Throughout this section, we refer to [235] as the analysis.

The analysis defines the properties directly protocol-specific.

Difference by property The analysis does not proof individual verifiability,
but two sub-properties instead: Sent-as-intended and recorded-as-confirmed -
vote rejection. The first property ensures the vote verification codes cannot
be produced by the adversary, the second property ensures the same for
the confirm verification.3 In both games, the adversary does not choose the
voter selection, it is chosen at random instead.

Universal verifiability is directly proven. The analysis lets the adversary gen-
erate a valid bulletin board and claim a result. If the result passes validation,
but is different to the real result, the attacker wins.

4

Swiss
Post has been made aware of this finding.5

A notion of vote verifiability is proven, called vote compliance, where the
attacker tries to cast an invalid ballot.

Vote secrecy is proved based on an adapted BPRIV definition (see [23]).6 The
attacker is provided with additional oracles for each message exchanged be-

2In Switzerland, voters may use different voting channels, but double-voting is forbid-
den. Voters must therefore know whether an electronic vote was already cast in their name.

3In the analysis, these values are called choice return code and vote cast code.
4

5https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/

issues/31
6The ideal model as assumed by the BPRIV definition however does not match the ideal

model the Swiss Post protocol achieves. For example, in the Swiss Post protocol, the attacker
additionally learns whether voters attempt to confirm their vote, based on observing the
number of messages exchanged.
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D. Differences of computational proof to other computational proofs of

vote électronique protocols

tween the honest voter and the honest control component. The Ocast ora-
cle is not instantiated, and the side-conditions of BPRIV (strong consistency,
strong correctness, authentication [23, 172]) are not explicitly proven to hold.
The attacker is restricted in the sense that it is not allowed to break the final-
ization code mechanism, hence if the vote has been confirmed successfully
by the control components, the voter individual verifiability check must also
succeed.

Fairness is neither mentioned nor proven. The protocol likely fulfils the
property; the vote is encrypted on the voter device and only decrypted in
the tally phase.

Eligibility verifiability is proven as part as individual verifiability (denoted
as recorded-as-confirmed - vote injection). Again, the voter selection is chosen
at random. The attacker is provided with the data necessary to submit a
vote, but not to confirm it. The adversary wins if it manages to confirm the
vote without learning the confirm authentication7 from the voter.

Eligibility uniqueness is not mentioned by the analysis. The protocol likely
fulfils the property; the control components explicitly check for double-
casting and its effects.8

7Called BCK in the analysis.
8For example VerifyBallotCCR aborts if the voter already registered some valid vote.
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Privacy Definitions

As the privacy definitions presented in section 8.2.3 are somewhat novel,
we argue here more explicitly why they are appropriate. We also note that
while for vote secrecy (also sometimes called ballot privacy) there are many
formal definitions in the literature, we did not encounter a formal definition
for fairness.

Comparison to BPRIV Our definitions use similar ideas as the BPRIV defi-
nition [23, 172, 85], but BPRIV is intended for protocols matching the single-
pass voting model. When a protocol does not satisfy the single-pass voting
model, then it will also not match the ideal world the BPRIV definition pro-
vides guarantees to.1

Our definition is more general as it provides oracles to the adversary for
each message processed or produced by honest instances, and therefore also
specifically considers messages not part of the single-pass voting model.
Consider an artificial voting scheme where the control components broad-
cast for each received ballot its decryption. Vote privacy is trivially broken,
but instantiating BPRIV might miss the attack as the broadcast is not part of
the single-pass voting model.

Further, our definition considers compromised voters, providing the adver-
sary with some part of honest secret key material. Consider an artificial
voting scheme encrypting the vote with a public key, but all honest voters
know the corresponding secret key. Vote privacy is trivially broken as soon
as the adversary compromises a voter, but BPRIV restricts the adversary to
only learn public keys.

1Therefore the strong guarantees the definition provides for single-pass voting models,
namely that satisfying BPRIV and some side conditions ensures the voting protocol is indis-
tinguishable to some ideal world, does not apply any more.
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E. Privacy Definitions

Thirdly, our definition does not constrain the adversary at all; instead of only
having two oracles available (OvoteLR and Ocast) to cast and confirm the
vote, the adversary can now arbitrarily interact with the honest instances.
Consider an artificial voting scheme which publishes voter secret material if
a voter confirms their vote before casting it. Vote privacy can be broken by
an adversary who reorders messages, but BPRIV might not capture it.

All these issues arise when the BPRIV definition is used without adding aux-
iliary oracles, which for example exchange further messages or compromise
voters. However, when additional oracles are added, it is unclear which
guarantees BPRIV still achieves, or more concretely, whether the proof into
the ideal world can be adapted to incorporate the additional oracles.

Our definitions We construct our definitions by taking over two crucial
ideas: First, the attacker is able to specify the voter selection in the real and
in the fake world. Second, the tally always returns the tally result of the real
world, possibly while simulating parts of the tally. As with our verifiability
definitions, we do not explicitly specify all available oracles.

We motivate the definitions by informally reasoning about how relevant
aspects are covered.

Any vote secrecy attacks involving a strict subset of control components
or compromised voters is covered trivially, as the attacker is passed their
private state. Vote secrecy attacks (ab)using some interaction pattern with
the honest instances are also covered, as the adversary is given access to
appropriate oracles. Finally, vote secrecy leaks in the tally phase are covered
as the adversary is able to participate during tally.

Fairness attacks which rely on individually decrypted votes trivially lead
to a win of the fairness game. Fairness attacks which may rely on a cer-
tain aggregation of votes2 are also covered: As the adversary can arbitrarily
cast and confirm votes (except for the honest voter) the adversary is able to
simulate any aggregation which gives it an advantage.

2When a certain set of votes allows to draw conclusions over what tally they represent,
possibly without knowing what any individual vote represents.
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[87] Véronique Cortier and Cyrille Wiedling. A formal analysis of the Nor-
wegian E-voting protocol. In International Conference on Principles of
Security and Trust, pages 109–128. Springer, 2012.
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[124] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical se-
cret voting scheme for large scale elections. In International Workshop
on the Theory and Application of Cryptographic Techniques, pages 244–251.
Springer, 1992.

201

https://www.ge.ch/document/point-presse-du-conseil-etat-du-28-novembre-2018
https://www.ge.ch/document/point-presse-du-conseil-etat-du-28-novembre-2018
https://www.ge.ch/document/point-presse-du-conseil-etat-du-28-novembre-2018
https://www.ge.ch/document/point-presse-du-conseil-etat-du-28-novembre-2018
https://www.ge.ch/document/point-presse-du-conseil-etat-du-19-juin-2019
https://www.ge.ch/document/point-presse-du-conseil-etat-du-19-juin-2019
https://github.com/republique-et-canton-de-geneve/chvote-1-0
https://github.com/republique-et-canton-de-geneve/chvote-1-0
https://github.com/republique-et-canton-de-geneve/chvote-1-0/blob/master/docs/system-overview.md
https://github.com/republique-et-canton-de-geneve/chvote-1-0/blob/master/docs/system-overview.md
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://chvote2.gitlab.io/
https://www.ne.ch/medias/Pages/150901_Neuch%C3%A2tel,-premier-canton-partenaire-de-la-plateforme-de-vote-%C3%A9lectronique-d%C3%A9velopp%C3%A9e-par-La-Poste.aspx
https://www.ne.ch/medias/Pages/150901_Neuch%C3%A2tel,-premier-canton-partenaire-de-la-plateforme-de-vote-%C3%A9lectronique-d%C3%A9velopp%C3%A9e-par-La-Poste.aspx
https://www.ne.ch/medias/Pages/150901_Neuch%C3%A2tel,-premier-canton-partenaire-de-la-plateforme-de-vote-%C3%A9lectronique-d%C3%A9velopp%C3%A9e-par-La-Poste.aspx
https://www.ne.ch/autorites/CHAN/CHAN/elections-votations/Pages/vote-electronique.aspx
https://www.ne.ch/autorites/CHAN/CHAN/elections-votations/Pages/vote-electronique.aspx


Bibliography

[125] Bundesamt für Kommunikation. Strategie Digitale Schweiz. report,
Bundesamt für Kommunikation, June 2020. Accessed at 2021-11-25.

[126] David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 Neuchâtel’s
cast-as-intended verification mechanism. In International Conference on
E-Voting and Identity, pages 3–18. Springer, 2015.

[127] Galois. The Future of Voting. US Vote Foundation, 2015.

[128] Ida Sofie Gebhardt Stenerud and Christian Bull. When reality comes
knocking norwegian experiences with verifiable electronic voting. In
5th International Conference on Electronic Voting 2012 (EVOTE2012).
Gesellschaft für Informatik eV, 2012.

[129] Bundesversammlung der Schweizerischen Eidgenossenschaft
Genf. Entwicklung eines E-Voting-Systems durch den Bund
oder die Kantone. https://www.parlament.ch/de/ratsbetrieb/

suche-curia-vista/geschaeft?AffairId=20190312, September
2019. Accessed at 2021-09-29.

[130] Micha Germann. Internet voting increases expatriate voter turnout.
Government Information Quarterly, 38(2):101560, Apr 2021.
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[169] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung.
sElect: A lightweight verifiable remote voting system. In 2016 IEEE
29th Computer Security Foundations Symposium (CSF), pages 341–354.
IEEE, 2016.

205



Bibliography
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