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A B S T R A C T   

Process parameters in machining are predominantly selected by following manual tuning procedures. Using data 
from the system and dedicated performance indicators combined with learning-based approaches enables 
automating these procedures while reducing the costs of the machining process. This study investigates efficient 
data-driven approaches for autonomous parameter selection in turning. The number of experimental trials for 
finding optimal process parameters is reduced by incorporating expert knowledge and transferring knowledge 
between different tasks. The turning process costs are modeled using Gaussian process models, and the selection 
of informative experiments is achieved by Bayesian optimization. In this study, all tested methods using expert 
knowledge or transfer of knowledge reduced the number of experiments by at least 40% compared to a standard 
approach for parameter selection based on Bayesian optimization without expert knowledge, confirming the 
efficiency of the applied methods.   

1. Introduction 

Turning is a common machining process, requiring the selection of 
various parameters such as feed per revolution, cutting speed, and depth 
of cut, depending on the specific machining requirements. A mis
specification of these parameters results in uneconomical processes, or 
in non-compliant final parts. The choice of the parameter values de
pends on the specific cutting tool, workpiece, machine, and cooling 
lubricant. These categories can be further subdivided into specific 
properties, such as material type or geometry, which leads to an enor
mous variety of individual optimization tasks. 

Today, in industrial environments, the parameter selection is mainly 
performed by machine operators based on trial and error and experi
ence. The operators follow individual strategies for parameter selection, 
thus influencing the efficiency and the consistency of the parameter 
selection procedure. Expert operators will find (near-) optimal param
eters with minimal experimental effort, while novice operators typically 
require significantly more experiments. Autonomous optimization- 
based parameter selection holds the potential to improve productivity 
and product quality, and to ensure consistency by reducing the variance 
in the parameter selection. 

Existing approaches for autonomous optimization often rely on 

process modeling in combination with selection of experiments, as 
shown in Table 1. A classical approach in process modeling relies on 
empirical models, or on polynomial function approximations, where the 
corresponding coefficients in the candidate model function, or in the 
polynomial are identified from experimental trials. Standard approaches 
such as the Taylor equation, the Kienzle equation or the kinematic 
surface roughness model can be found in Klocke (2011). Polynomial 
functions have been used in Khamel et al. (2012) to model the tool life, 
the surface roughness and the cutting forces in hard turning. Empirical 
models and polynomial functions are beneficial in terms of simplicity 
and interpretability, but suffer from limited generalizability. For 
example, the kinematic surface roughness model does not consider 
surface roughness increase due to built-up edge, which is known to exist 
and described in Klocke (2011). To overcome the limited generaliz
ability of these models, Homami et al. (2014) used artificial neural 
networks (ANNs) for the prediction of surface roughness and flank wear 
in turning. ANNs achieved impressive results in image recognition 
(Krizhevsky et al., 2012), where deep convolutional neural networks 
perform significantly better than standard feature-based methods. In 
manufacturing, a deep convolutional long short-term memory (LSTM) 
neural network autoencoder has been demonstrated for predicting 
multi-step machine speeds by Essien and Giannetti (2020). Fan et al. 
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(2020) demonstrated anomaly detection for semiconductor 
manufacturing processes utilizing a neural network denoising autoen
coder. In contrast to these data-rich applications, the available number 
of experiments for process parameter selection in turning is typically 
small because the costs for each experiment are very high, especially for 
tool life measurements. A disadvantage of ANNs in combination with 
only a few data points is that ANN models are typically not able to 
specify the confidence in their predictions. Intuitively, one would expect 
lower uncertainties of the model’s predictions near measurements and 
higher uncertainties far away from measurements, which is typically not 
captured by neural networks. Recently, Maier et al. (2019) used prob
abilistic Gaussian process (GP) models to model a longitudinal turning 
process. Gaussian process models are more flexible than empirical 
models or second order polynomial functions, and at the same time 
provide confidence intervals of the associated predictions, which makes 
them suitable for modeling in the presented study. 

Process parameter optimization studies in turning are often based on 
statistical analysis of classical design of experiments (DoE), as reported 
in Homami et al. (2014). Alternatively, Yang and Tarng (1998) used the 
Taguchi design for experiment selection. Another approach for param
eter optimization is adaptive sampling, where the experiments are 
determined iteratively, based on an existing model. Bayesian optimi
zation is a form of adaptive sampling and has been demonstrated for 
turning in Maier et al. (2019). In Bayesian optimization, the algorithm 
trades off exploration and exploitation, examining points close to a local 
optimum (exploitation), but at the same time samples at points with 
high uncertainty to discover previously unknown optima (exploration), 
as described in Shahriari et al. (2016). As shown in Gardner et al. (2014), 
Bayesian optimization is a data-efficient method for experiment selec
tion by leveraging model knowledge, which makes it the method of 
choice in this study. 

Whenever large variability in the production scenarios is present, the 
parameter selection process can be enhanced by incorporating expert 
knowledge and by transferring learned knowledge from one scenario to 
another related one, instead of re-optimizing from scratch. Gaussian 
process models are well suited for incorporating both types of knowl
edge as they incorporate the Bayes rule, which naturally allows for the 
specification of prior knowledge, mimicking the expert knowledge- 
based approach of operators in practice. Nevertheless, the number of 
studies using expert knowledge or transfer of knowledge combined with 
Gaussian processes or Bayesian optimization in turning is limited. The 
use of a Gaussian process model combined with an analytical model to 
predict the surface roughness in turning was demonstrated in Misaka 
et al. (2020), where the model accuracy was improved, especially for 
cases with only a few training samples. Guidetti et al. (2021) have also 
demonstrated incorporating empirical process relations in the Gaussian 
process model for plasma spray coating. The results of Misaka et al. 
(2020) are very encouraging, but the work is limited to surface rough
ness modeling and does not consider autonomous parameter selection 
and data-efficient adaptive sampling. The present study investigates and 

compares different methods to incorporate expert knowledge, and to 
transfer knowledge in turning with the aim to reduce the number of 
experiments for autonomous parameter selection. 

This paper is organized as follows: A short introduction to Gaussian 
process models and Bayesian optimization is provided, followed by an 
explanation of the experimental turning setup, the optimization task, 
and the implementation of the different parameter selection approaches. 
The parameter selection approaches mainly differ in the applied 
Gaussian process model. A standard Gaussian process model without 
expert knowledge, similar to Maier et al. (2019), is compared to 
Gaussian process models utilizing expert knowledge, either incorpo
rated through predetermined hyperparameters or through a predefined 
prior mean function, and transfer of knowledge, established by 
multi-task learning. Finally, the paper reports and compares the results 
of the individual approaches for cutting speed selection in turning. 

2. Gaussian process models and Bayesian optimization 

A detailed introduction to Gaussian processes is provided in Ras
mussen and Williams (2006). An overview on Bayesian optimization is 
provided in Shahriari et al. (2016). An introduction related to Gaussian 
processes and Bayesian optimization applied to optimize the process 
parameter set-up in manufacturing is provided in Maier et al. (2020) for 
grinding. 

2.1. Gaussian process regression 

As described in Rasmussen and Williams (2006), a Gaussian process 
is a collection of random variables, which have a joint Gaussian distri
bution, and is fully defined by a mean function m(x) and a covariance 
function k(x,x′), where x and x′ are two different inputs, in our partic
ular case they correspond to points in the parameter space of the process 
parameters. Gaussian process models can be used to represent a distri
bution over functions (Rasmussen and Williams, 2006), and are used in 
this work to provide a model of the process costs as a function of the 
process parameters. Each process cost value, measured at a given pro
cess parameter, corresponds to a noisy realization of the Gaussian pro
cess. The cost function GP model consists of the mean of the GP at each 
process parameter configuration, and the associated covariance, speci
fied with a kernel function. A Matérn 5 covariance function is selected in 
this study, in line with previous work in Maier et al. (2019), where it 
showed good performance in modeling a turning process. The Matérn 5 
covariance function is defined following Rasmussen and Williams 
(2006), 

k(x, x′) = σ2
f exp

(
−

̅̅̅
5

√
r
)(

1 +
̅̅̅
5

√
r +

5
3
r2
)

(1)  

r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − x′)TP(x − x′)
√

(2) 

Table 1 
Methods for autonomous parameter selection in turning.  

Source Method for selection of 
experiments 

Modeling techniques Objective & Constraints on output 

Yang and Tarng (1998) Taguchi method (orthogonal 
array) 

None Optimization of tool life and surface roughness individually 

Nian et al. (1999) Taguchi method (orthogonal 
array) 

None Multi objective optimization of tool life, cutting force and 
surface finish 

Homami et al. (2014) Full factorial design Neural networks Optimization of flank wear constrained to surface roughness 
Aramesh et al. (2013) Full factorial design Gaussian process 

regression 
Multi objective optimization of surface roughness, tool wear, 
and productivity 

Abbas et al. (2016) with details provided in Sadek 
et al. (2015) 

1) Full factorial design  

2) m-EGO (adaptive sampling) 

Gaussian process 
regression 

Multi-objective optimization of surface quality and material 
removal rate 

Maier et al. (2019) Bayesian optimization Gaussian process 
regression 

Optimization of production costs with surface roughness 
constraints  
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P = diag
(
l− 2
1 , l− 2

2 , ., l− 2
D

)
(3)  

where σ2
f is the signal variance, and r is the Euclidean distance between 

the process parameter points x and x′ scaled by the length scale pa
rameters l2i for each process parameter up to dimension D. In this study, 
the process parameter corresponds to the cutting speed, which needs to 
be optimized. Based on Eq. (1) it can be seen that the covariance is equal 
to σ2

f for parameter values x = x′ and declines for a larger distance be
tween the parameter values x and x′. Therefore, the model outputs 
corresponding to input parameters close to each other, are assumed to be 
strongly correlated, whereas model outputs for parameters far away 
from each other are assumed to show a greater variation. Based on the 
Gaussian process and t available measurements yt at process parameter 
points x1:t predictions for an arbitrary process parameter point x∗ can be 
made following Rasmussen and Williams (2006), 

μt(x∗) = m(x∗) + k
T(x∗)

(
K + σ2

NI
)− 1(

y
t
− m

(
x

1:t

))
(4)  

σ2
t (x∗) = k(x∗, x∗) − k

T(x∗)
(
K + σ2

NI
)− 1

k(x∗) (5)  

K =

⎛

⎝
k(x1, x1) … k(x1, xt)

⋮ ⋱ ⋮
k(xt, x1) ⋯ k(xt, xt)

⎞

⎠ (6)  

where μt is the predicted mean value, σ2
t is the predicted variance, I is the 

identity matrix, m(x1:t) = (m(x1) ... m(xt) )
T is the mean function 

vector, K is the covariance matrix, k(x∗) = ( k(x∗, x1) ... k(x∗, xt) )
T is 

the covariance vector, and kT(x∗) is the transpose of k(x∗). Furthermore, 
it is assumed that the measurements are corrupted by Gaussian noise 
N(0,σ2

N). Fig. 1 illustrates the Gaussian process regression. The Gaussian 
process prior is shown on the left side, where no observations are 
available. The red line represents the prior mean function m(x), which 
for this case is zero. Specifying a zero prior mean function is a common 
choice if no expert knowledge is available but it is also possible to select 
non-zero prior mean functions. The picture also shows four arbitrary 
sample functions of the Gaussian process prior. It can be seen that 
different functions can result from the same Gaussian process. The dis
tribution over all functions is specified by the 95% confidence interval 
(shaded green area). By conditioning the Gaussian process on available 
measurements, predictions can be obtained using Eqs. (4) and (5). The 
result of the prediction is visualized in the right panel of Fig. 1. It can be 
seen that the prediction shows a low uncertainty close to the observa
tions and higher uncertainties for parameters further away from avail
able observations. While the true function is unknown for typical 
optimization tasks, it is shown in this example for comparison. 

The hyperparameters σ2
f , l2i , and σ2

N can be specified based on expert 

knowledge. When such a specification is not available a priori, the 
hyperparameters can be determined by maximizing the marginal log 

likelihood log p
(

yt |θ
)

based on available experiments, as reported in 

Rasmussen and Williams (2006). 

log p
(
yt
⃒
⃒
⃒θ
)
= −

1
2
yT
t

(
Kθ + σ2

NI
)− 1

yt −
1
2

log
⃒
⃒
⃒
⃒Kθ + σ2

NI
⃒
⃒
⃒
⃒ −

t
2

log 2π (7)  

θ∗ = arg max log p
(
y
t

⃒
⃒
⃒θ
)

(8) 

Maximizing the marginal log likelihood provides a natural trade-off 
between the quality of the model fit and the model complexity, as 
described in Rasmussen and Williams (2006). 

2.2. Gaussian processes for multi-task learning 

In the conventional single-task/single-output approach, each task is 
learned individually without exploiting correlations between tasks. 
Gaussian process models can be extended to learn multiple-tasks/ 
multiple-outputs simultaneously, as investigated in detail in Alvarez 
et al. (2012). The motivation for such an approach is to exploit relations 
between tasks with the aim of improving the individual model accuracy, 
without increasing the amount of data for the specific task. For turning, 
a task corresponds to the optimization of a specific turning setup. For 
example, in a first task the coating of the cutting tool might be from type 
A and in a second task it might be from type B, while the rest of the setup 
remains unchanged. In multi-task learning, the tasks are learned 
simultaneously, which allows to exploit correlations between the task’s 
outputs. Similar to the single task case, a Gaussian process for multi-task 
learning is defined following Alvarez et al. (2012), 

f ∼ GP
(
m,K

)
(9)  

where m is now a vector of mean functions for each task, and K expresses 
the covariance between the different tasks. 

The main difference between Gaussian processes for a single task and 
multiple-tasks is the specification of the covariance matrix. For the 
multi-task case, it is necessary to find a suitable expression for the matrix 
K, which specifies the relation between the different tasks. The linear 
model of coregionalization (LMC) allows the specification of a valid 
covariance matrix K by expressing the different output functions fd(x) as 
linear combinations of random functions as reported in Journel and 
Huijbregts (1978), 

fd(x) =
∑Q

q=1

∑Rq

i=1
aid,qu

i
q(x) (10)  

where ui
q(x) are latent functions (hidden functions), ai

d,q are scalar co
efficients, Q is the number of kernels, and Rq is the number of latent 

Fig. 1. Illustration of the Gaussian process 
regression with a Matérn 5 kernel and the 
hyperparameters σ2

f = 0.81, l1 = 0.38, and 
σ2

N = 0. The left panel shows four arbitrary 
functions of the Gaussian process prior depicted 
as dashed lines. The GP posterior distribution 
after four observations is shown on the right 
panel, where the dashed lines again correspond 
to four arbitrary functions and the solid line 
represents the predicted mean μt(x∗). The 
shaded area shows the 95% confidence interval, 
which is 0 ± 2σf for the prior distribution and 
μt(x∗) ± 2σt(x∗) for the posterior distribution. 
The predicted mean μt(x∗) and predicted vari
ance σ2

t (x∗) are calculated using Eqs. (4) and 
(5).   
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functions in each group with the same kernel. Fig. 2 shows a schematic 
representation of Eq. (10). Several latent functions ui

q(x) are determined 
based on different kernels kq(x,x′). Afterwards, the final functions fd(x)
are calculated by linear combination of the latent functions. The latent 
functions ui

q(x) are used for model construction but cannot be directly 
measured and therefore are hidden. Only the output functions fd(x) are 
directly measureable and observable. In the turning example, the output 
function f1(x) corresponds to the production costs of the first turning 
task with cutting tool coating A, whereas the output function f2(x)
corresponds to the production costs of the second turning task with 
cutting tool coating B. 

By using the LMC, the matrix K(x, x′) can be stated as in Journel and 
Huijbregts (1978), 

K

(

x, x′
)

=
∑Q

q=1
B
q
kq

(

x, x′
)

(11)  

where Bq is the coregionalization matrix with entries bq
d,d′ =

∑R
i=1ai

d,qai
d′ ,q 

and rank Rq. 
As shown in Alvarez et al. (2012), by setting Q = 1 the general LMC 

is reduced to the intrinsic coregionalization model (ICM) and by setting 
Rq = 1 the general LMC is reduced to the semiparametric latent factor 

model (SLFM). Hence, both the ICM and the SLFM are special cases of 
the general LMC. As described in Cohn and Specia (2013), different 
special cases can be derived from the ICM, which are illustrated in Fig. 3. 
If Bq is equal to the identity matrix as shown in the left panel of Fig. 3, 
the tasks are modeled independently, but share the same kernel. The 
kernel only restricts the considered function space of the outputs but has 
no impact on the relation of the outputs. On the other hand, if all entries 
of the matrix Bq are equal to one, the outputs are perfectly related and 
only have different noise levels. 

As described in Alvarez et al. (2012), based on the data and the 
model, predictions for an arbitrary process parameter point x∗ follow a 
joint normal distribution N(f

∗
(x∗),K∗

(x∗,x∗)). 

f
∗
(x∗) = KT

x∗

(
K
(
X,X

)
+ diag

(
σ2
N

)
⊗ I

N

)− 1
y (12)  

K
∗

(
x∗, x∗

)
= K

(
x∗, x∗

)
− K

x∗

(
K
(
X,X

)
+ diag

(
σ2
N

)
⊗ I

N

)− 1
KT
x∗

(13) 

For simplicity, the prior mean functions m are assumed to be con
stants with a value of zero. The measured output vector is y =

(y1,1, ., yN,1, ., y1,D, ., yN,D)
T, where D is the number of tasks and N is the 

number of data samples per task, assumed to be the same for all tasks for 
simplicity. The measurements of each output are assumed to be 

Fig. 2. Illustration of the LMC, as described in Journel and Huijbregts (1978).  

Fig. 3. Illustration of special cases of the IMC, as described in Cohn and Specia (2013). The left panel shows the case where the tasks are modeled independently but 
share the same kernel. The right panel shows the case where all tasks are perfectly related. 
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corrupted with an individual Gaussian noise with zero mean and vari
ance 

(
σ2

N
)

d. The matrix K(X,X) is of dimension ND× ND, and the matrix 

K
x∗

is of dimension D× ND. Both matrices are calculated based on Eq. 
(11). Further details on their calculation are provided in the Appendix. 
IN is the identity matrix with dimensions N×N, X are the input points for 
all measurements of all tasks, and ⊗ is the Kronecker product. The 
Kronecker product of diag(σ2

N) ⊗ IN multiplies each element of the matrix 
diag(σ2

N) (dimensions D× D) with matrix IN (dimensions N× N), which 
results in a matrix of ND × ND dimension. For multi-task learning, the 
prediction in Eqs. (12) and (13) is given as a joint normal distribution. 
The prediction of a single function fd(x∗) at a test parameter point x∗, as 
for the single output case, corresponds to the marginal distribution of 
the joint normal distribution. For the prediction of the single function 

fd(x∗), the mean is μd(x∗) =
(

f
∗
(x∗)

)

d
, and the variance is σ2

d(x∗) =
(

K
∗
(x∗, x∗)

)

d,d
, which directly follows from the properties of a joint 

normal distribution, as listed in Rencher and Christensen (2012). 
The LMC has a number of hyperparameters collected in the vector θ, 

such as the elements of each coregionalization matrix Bq, the signal 

noise vector σ2
N, and the parameters for each kernel kq(x, x′). By using 

Matérn kernels, each kernel is characterized by the length scale pa
rameters l2i for each input dimension and a signal variance parameter σ2

f . 
The hyperparameters can be computed by maximizing the marginal log 
likelihood, similar to Eq. (8) for the single output case, as described in 
Alvarez et al. (2012).  

θ∗ = arg max log p
(
y
⃒
⃒
⃒X, θ

)
(15)  

2.3. Bayesian optimization 

Having obtained the prediction of the Gaussian process model, 
Bayesian optimization can be used to select the next experimental pa
rameters by maximizing an acquisition function. Within the Bayesian 
optimization framework, the acquisition function ensures the trade-off 
between exploration and exploitation, according to the specifics of the 
optimization problem (Mockus et al., 1978). The most straight-forward 
acquisition function, probability of improvement (Kushner, 1964) selects 
the location of the next experimental evaluation, based on the proba
bility to improve the costs beyond the current lowest costs. Another way 
to choose promising points for experimental evaluation is the upper 
confidence bound acquisition function (Srinivas et al., 2010), which uses 
the predicted costs and the uncertainty estimation for the selection. An 
information-theoretical approach is used by the predictive entropy search 
acquisition function (Hernández-Lobato et al., 2014) for the selection of 
the next experiment. 

In this study, the acquisition function of choice is expected improve
ment, as in Maier et al. (2019), which selects the point with largest 
(predicted) improvement compared to the last evaluated optimum as the 
location of the next experimental evaluation. The advantage of the ex
pected improvement acquisition function is that it easily allows exten
sion to constrained Bayesian optimization, while still providing a very 
good performance, as shown in Gardner et al. (2014). Following Mockus 
et al. (1978), the expected improvement acquisition function is 

calculated as follows, 

aEI(x) =
(
Cmin − μt,co(x)

)
F(Z)+ σt,co(x)ϕ(Z) (16)  

Z =
Cmin − μt,co(x)

σt,co(x)
(17)  

where Cmin corresponds to the lowest measured cost so far, F(Z) is the 
cumulative standard normal distribution F(Z) = 1/

̅̅̅̅̅̅
2π

√ ∫ Z
− ∞ exp( −

t2/2)dt, and ϕ(Z) is the probability density function of a standard 
normal distribution ϕ(Z) = 1/

̅̅̅̅̅̅
2π

√
exp( − Z2/2). 

3. Methodology 

3.1. Experimental setup 

The experiments are performed for longitudinal turning on a Swiss 
GT 32 turning machine from Tornos, shown in Fig. 4. The machine is 
equipped with an automatic bar feeder Robobar SBF 326 from Tornos, 
which handles round bars made of 1.4125 martensitic stainless steel 
with an initial diameter of 20 mm and a length of 3 m. During the cut
ting operation, the diameter of the bar is reduced from 20 to 7 mm in 13 
steps, with a fixed depth of cut of 0.5 mm over a length of 20 mm. In this 
study, the feed per revolution is fixed to 0.05 mm/rev, and only the 
cutting speed is optimized. By changing the cutting speed of the turning 
operation, the machine controller may internally change other param
eters such as the spindle acceleration (not considered for optimization in 
this study). During cutting, Blasomill 15 from Blaser Swisslube is used as 

a cooling lubricant with a constant flow rate for all experiments. The 
cutting operations are performed using carbide inserts from Diametal 
(carbide M10/30, coating D30, geometry DCGX-FR070301, corner 
radius of 0.1 mm, and article number 236157), mounted on a right-hand 
tool holder Topdec SDACR from Diametal. The tool life of the cutting 
tool is determined based on VBmax measurements using a Leica Wild 
M10 microscope, whereby a tool with VBmax ≥ 100 µm is considered 
worn out. 

3.2. Optimization task and cost calculation 

In this study, the aim of the optimization is to find the cutting speed 
vc,min which minimizes the individual production costs. 

vc, min = arg min(ln(CFE(vc))) (18) 

The cutting speed vc is optimized over a large domain between 10 
and 175 m/min. The upper bound of the cutting speed is selected based 
on the maximum rotational speed of the turning machine, reached 
during the final longitudinal cutting step. A wide range of cutting speeds 
results in costs that are different by orders of magnitudes. Having these 
large cost differences, accurate modeling typically requires short length 
scale parameters of the Gaussian process kernel, which generally slows 
down the optimization. Therefore, the logarithm of the individual pro
duction costs is modeled and optimized. Note that by optimizing in the 
log space the Gaussian noise is also changed from a normal to a log- 
normal distribution. The advantage of the log-normal distribution is 
that the predicted costs are always positive, which matches reality. The 
individual production costs CFE are calculated as follows, 

log p
(
y
⃒
⃒
⃒X, θ

)

= −
1
2
yT
(
K
(
X,X

)
+ diag

(
σ2
N

)
⊗ I

N

)− 1
y −

1
2

log
⃒
⃒
⃒
⃒K
(

X,X
)

+ diag
(
σ2
N

)
⊗ I

N

⃒
⃒
⃒
⃒ −

ND
2

log 2π (14)   

M. Maier et al.                                                                                                                                                                                                                                  



Journal of Materials Processing Tech. 303 (2022) 117540

6

CFE = tc
(

CMH +
CI
T

)

(19)  

and the cutting time tc for multiple cuts is calculated as, 

tc =
∑n cuts

i=1

Dilπ
vcf

(20)  

where T is the tool life, l is the length of the cut, Di is the diameter at each 
cut, vc is the cutting speed, and f is the feed per revolution. In this study, 
the machine hour-rate CMH is assumed to be 90 U/h and the costs per 
cutting edge CI are assumed to be 10 U. The cost unit is denoted with U 
for generality but corresponds to Swiss francs. 

3.3. Modeling 

The optimization is implemented in Python and uses the GPy library 
(GPy, 2012) for Gaussian process models. The aim of all Gaussian pro
cess models is to accurately model the production costs as a function of 
cutting speed. Four Gaussian process model versions are tested:  

• Model 1 - standard model without expert knowledge (benchmark)  
• Model 2 - model with fixed hyperparameters, determined from 

similar optimization tasks to transfer knowledge  
• Model 3 - model with non-zero prior mean function, incorporating 

knowledge from available empirical or analytical models  
• Model 4 - model based on multi-task learning, modeling several tasks 

together and transfer knowledge by utilizing correlations between 
different tasks. 

Fig. 5 illustrates the four Gaussian process model variants. 
The standard Gaussian process model (Model 1) uses a zero prior 

mean function and determines the hyperparameters by maximizing the 
marginal log likelihood based on available data points, as specified in 
Eq. (8). Throughout this study the maximization of the marginal log 
likelihood is performed using the quasi-Newton method by Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) with 1000 restarts. Details of the 
BFGS method are given in Nocedal and Wright (2006). 

Instead of determining the hyperparameters by maximizing the 
marginal log likelihood, the hyperparameters can be fixed based on 

expert knowledge, which is investigated as a possible alternative in 
Model 2. 

The informative prior mean function of Model 3 can be specified 
based on known physical or empirical models. In this study, the Taylor 
equation is used to model the tool life as a function of the cutting speed, 
which according to Klocke (2011) is specified as follows, 

T = Cv⋅vkc (21)  

where Cv and k are model coefficients. The tool life predictions are then 
used in combination with Eq. (19) to calculate the individual production 
costs. The resulting deviation between the measured cost and the pre
diction based on the Taylor equation is modeled by a standard Gaussian 
process model using a Matérn 5 kernel. This corresponds to a two-step 
approach. The parameters of the Taylor equation are determined first 
by ordinary least squares using the scikit-learn library (Pedregosa et al., 
2011). Afterwards the hyperparameters of the Gaussian process model 
are determined by maximizing the marginal log likelihood, following 
Eq. (8). The two-step approach is chosen to make the results comparable 
to standard curve fitting techniques based solely on the Taylor equation, 
which is identical to the first modeling step. 

For transferring knowledge between different tasks, Model 4 uses 
multi-task learning. As introduced in Section 2.2, different multi-task 
learning models exist. In this study, the general idea of the used multi- 
task approach is to determine a common model for all tasks and 
model individual deviations to this model independently. Thus, a linear 
model of coregionalization based on two Matérn 5 kernels is used for 
multi-task learning, resulting in two coregionalization matrices B1 and 
B2. The first coregionalization matrix B1 is filled with ones, and the 
hyperparameters of the associated Matérn 5 kernel are free. In this way, 
the combination of coregionalization matrix B1 and the corresponding 
kernel models the fully related share of the task’s outputs. For the second 
coregionalization matrix and associated kernel, the coregionalization 
matrix is diagonal B2 = diag(κ), the length scale hyperparameter of the 
associated kernel is free, and the signal variance of the kernel is fixed to 
one, as the signal variance is fully captured by the coregionalization 
matrix B2. By specifying a diagonal coregionalization matrix, the out
puts of each task are modeled independently, but share the same 
hyperparameters. Note that the specifications of B1 and B2are identical 

Fig. 4. Picture of turning machine.  

M. Maier et al.                                                                                                                                                                                                                                  



Journal of Materials Processing Tech. 303 (2022) 117540

7

to the special cases shown in Fig. 3. The hyperparameters of the multi- 
task model are determined by maximizing the marginal log likelihood, 
following Eq. (15) . 

The benchmark model (Model 1) and the model based on a non-zero 
prior mean function (Model 3) do not need additional information. For 
the multi-task learning model (Model 4), measurements from other tasks 
are necessary, and the model with fixed hyperparameters (Model 2) 
requires the specification of the hyperparameters, which can also be 
achieved by using measurements from other tasks. Fig. 6 shows avail
able results for optimization tasks using carbide cutting inserts with 

coating D10 and D60, which serve as prior knowledge for the current 
optimization task. The current optimization task is slightly different 
than the previous optimization tasks because in the current setup the 
carbide insert is coated with D30 instead of D10 or D60 – the rest of the 
setup remained unchanged. The nomenclature of the tool coating is only 
a classification of the tool manufacturer and does not correspond to 
specific physical properties of the tool, as specified in Diametal (2017). 
This situation is typical to an industrial environment where the operator 
of the turning machines does not know the exact physical properties of 
the tool, due to trade secrets of the tool manufacture. For the fixed 

Fig. 5. Overview of tested Gaussian process model variants. The different Gaussian process variants are a standard Gaussian process, a Gaussian process with fixed 
hyperparameters, a Gaussian process with a prior mean function based on the Taylor equation, and a multi-task Gaussian process. 
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hyperparameter case, the hyperparameters of the D60 coating deter
mined by maximizing the marginal log likelihood utilizing all D60 
measurements are reused for the D30 case, which are l1,D60 = 0.975, 
σ2

f ,D60 = 17.02, and σ2
N,D60 = 0.015. Note that these hyperparameters 

correspond to a normalized cutting speed between zero and one. For the 
multi-task learning approach, the available observations from the D10 
and the D60 coating are used together with the new observations from 
the D30 coating for model updating, as specified in Eq. (15), and for 
predictions, as specified in Eqs. (12) and (13). 

3.4. Optimization procedure 

The different Gaussian process models are tested within the general 
optimization procedure, as shown in Fig. 7. Each optimization is started 
with two initial experiments. In the cases where the hyperparameters 

are determined by maximizing the marginal log likelihood, the initial 
experiments should be chosen in an area, which allows a good charac
terization of the function shape. In Bayesian optimization, knowing the 
fastest function change allows to determine the smallest length scale of 
the GP model, which improves robustness of the optimization. Thus, the 
initial cutting speeds are set to 10 m/min and 30 m/min because this 
region is the expected maximum slope of the cost. This selection is 
especially useful for the standard Gaussian process model. 

Each experiment is started with a new cutting insert that is then used 
for manufacturing, until it is considered worn out following the VBmax 
criterion. For low cutting speeds it might take very long until the tool 
reaches the VBmax criterion, while the cost for the machine time is 
already very high. To avoid unnecessarily long experiments, the ex
periments are stopped when the contribution of the cost for the machine 
time exceeds 95% of the total cost. In this case, the cost is calculated as 

Fig. 6. Gaussian process regression for coating D10 and D60.  

Fig. 7. Flowchart of the general optimization procedure. The GP model can be represented by one of the four model variants as illustrated in Fig. 5.  

Fig. 8. Left: Result of Bayesian optimization after 10 experiments using a standard Gaussian process model without expert knowledge (Model 1). Right: Result of 
Bayesian optimization after 6 experiments using fixed hyperparameters (Model 2). 
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the average between the machine time cost alone, assuming an infinite 
tool life, and the cost, which would occur if the insert is assumed worn 
out directly after the next workpiece is manufactured. 

Having obtained the measurements, the Gaussian process model can 
be used to calculate the optimal parameters and to assess convergence of 
the optimization. Similar to Maier et al. (2019), convergence is reached 
when for three consecutive iterations the change in the optimal pre
dicted cost μ(xopt) is less than 5%, the variance at the optimal predicted 
parameter is 2σ(xopt)/μ(xopt) < 25%, and the optimal cutting speed 
varies less than 15 m/min. If convergence is not reached, the cutting 
speed maximizing the expected improvement acquisition function, as 
specified in Eq. (16), is used as the next test parameter. In total, four 
individual optimization runs have been performed. To reduce the total 
number of experiments for the optimization runs, measurements form 
previous optimization runs were reused when a measurement is avail
able within ± 2 m/min of the requested cutting speed value given that 
the measurement was not used during this run yet. 

4. Experimental results 

Fig. 8 left shows the model prediction after 10 experiments for the 
standard Gaussian process model without expert or transferred knowl
edge (Model 1). The observations (black dots) are acquired by the 
Bayesian optimization procedure, as specified in Fig. 7. After the two 
initial experiments at cutting speeds of 10 m/min and 30 m/min, the 
algorithm requests an experiment at the maximum cutting speed of 
175 m/min because based on the two available experiments the model 
expects a decrease in cost for an increase in cutting speed. Having these 
three data points, the algorithm explains the data by a nearly linear 
model with a high length scale parameter and a high noise level, where 
the cost decreases slightly for higher cutting speeds. Considering only 
these three data points, without additional information, the prediction is 
reasonable, but the model is too simple for the investigated process. As a 
consequence of the simple initial model, a cutting speed of 175 m/min is 
investigated four times until the model reduces the noise estimation to 
an adequate level and is able to distinguish between noise and signal. 
The following experiments are selected close to the optimum. After 10 
experiments the algorithm reaches convergence. 

In addition to the observations used by the Gaussian process 
regression, several validation points are shown and used to assess the 
performance of the Gaussian process regression. For each cutting speed, 
the prediction of the Gaussian process regression follows a Gaussian 
distribution with a mean and a 95% confidence interval. In the ideal 
case, the validation points should be centered around the mean function 
and the variation of the data points should match the 95% confidence 
interval of the prediction. Indeed, all validation points are within the 
predicted confidence interval. The uncertainty prediction close to the 
data points is mainly explained by noise, whereas the uncertainty 

between measurement points is a combination of noise and uncertainty 
due to missing data. It can be observed that for high cutting speeds 
above 150 m/min, the measured cost values are more scattered. In the 
Gaussian process model the noise is assumed to be identical for all 
cutting speeds. Therefore, this approximation causes the model to 
overestimate the noise for lower cutting speeds. It would be possible to 
use a different likelihood which reflects the heteroscedasticity of the 
data (different noise levels for different process parameters), as shown in 
Muñoz-González et al. (2011). However, such approaches usually in
crease the model complexity and are typically analytically intractable 
and need approximation methods such as expectation propagation, as 
shown in Muñoz-González et al. (2011). Alternatively, they require 
computationally expensive sampling methods such as Markov chain 
Monte Carlo (MCMC), as reported in Goldberg et al. (1997). Due to the 
increase of the model complexity by using a tailored likelihood and the 
good performance obtained by the simple model no attempts have been 
made to improve the model. However, the use of a tailored likelihood 
might be an interesting direction for future research. 

The right panel of Fig. 8 shows the result for the model with fixed 
hyperparameters (Model 2). The two initial experiments are again at 
cutting speeds of 10 m/min and 30 m/min. As for the case without prior 
knowledge the next experiment is performed at the highest cutting speed 
of 175 m/min. However, the algorithm does not test high cutting speeds 
again because it is able to directly distinguish between noise and signal. 
Afterwards the algorithm samples close to the optimum and reaches 
convergence after 6 experiments. The resulting posterior prediction of 
the standard Gaussian process model and the model with fixed hyper
parameters is very similar after convergence but the model with fixed 
hyperparameters needs 6 experiments instead of 10 experiments, which 
reduces the experimental effort significantly. 

The next investigated approach is the specification of a non-zero 
prior mean function (Model 3), as displayed in Fig. 9. At least two tool 
life measurements at different cutting speeds are required to fit the 
Taylor equation. The optimization is again initialized with experiments 
at cutting speeds of 10 m/min and 30 m/min. However, the experiment 
at the lowest cutting speed of 10 m/min takes very long without 
reaching the end of the tool life. Hence, the 95% criterion for the cost is 
reached before the insert is worn out and no tool life is measured for this 
experiment. To obtain a second measurement for the tool life the third 
experiment is conducted at 175 m/min as requested by the optimization 
with the standard Gaussian process model (Model 1). After these three 
experiments, two tool life measurements are available and a prior mean 
function based on the Taylor equation can be calculated. Afterwards the 
algorithm starts to sample close to the optimum and converges after 6 
experiments. As shown on the left of Fig. 9, the Taylor equation shows a 
high error between measurements and predictions. Therefore, using the 
predicted tool life by the Taylor equation for costs calculated alone leads 
to high model errors, as shown on the right of Fig. 9. Although the Taylor 

Fig. 9. Taylor equation fit and Gaussian process regression with prior mean based on Taylor equation (Model 3) after 6 experiments.  
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equation fit is not very good, the data is explained well by the Gaussian 
process model using the costs calculated by the Taylor equation as a 
mean function. Therefore, the deviation between the costs predicted by 
the Taylor equation and the costs determined experimentally is modeled 
accurately by the Gaussian process model. Moreover, compared to the 
standard approach, the data-efficiency of the optimization is improved 
by using a Gaussian process model with a mean function based on the 
Taylor equation. Similarly to the previous approaches, some of the 
validation points are outside the 95% confidence interval for cutting 
speeds of 175 m/min. This is again a result of the Gaussian likelihood, 
assuming identical noise for all cutting speeds. However, for this case, 
the model predicts the data very well near the optimum because more 
data is available in this range, whereas a cutting speed of 175 m/min is 
only sampled once. 

The last investigated approach is multi-task learning (Model 4), as 
shown in Fig. 10. As before, the multi-task learning case is started with 
two initial experiments at 10 m/min and 30 m/min. In addition to these 
two starting points, the multi-task model incorporates the results of the 
previous measurements with the D10 and D60 coatings. As a conse
quence, the algorithm requests points close to the optimum and reaches 
convergence after 4 experiments. After these 4 experiments the model is 
able to predict the data very well, especially close to the optimum. Only 
the variation at high cutting speed is again slightly underestimated due 
to the assumption of Gaussian noise that is modeled independently of 

the cutting speed. Note that the model’s results for the D30 coating are 
very similar to the results of the D60 coating. This similarity is exploited 
by the multi-task learning approach, leading to a fast convergence. 

Fig. 11 shows a comparison of all tested models. It can be seen that 
the standard Gaussian process model without expert knowledge (Model 
1) starts to sample close to the optimum only after 7 experiments and 
converges after 10 experiments. The performance of the Gaussian pro
cess model with fixed hyperparameters (Model 2) and the non-zero prior 
mean function (Model 3) behave very similar. They start to sample pa
rameters close to the optimum after 4 experiments and converge after 6 
experiments. The best performance is achieved with the multi-task 
learning approach (Model 4), which first samples a parameter close to 
the optimum after 3 experiments and converges after 4 experiments. In 
summary, the three tested methods that include expert knowledge or 
share knowledge are suited to significantly improve the sample effi
ciency compared to the standard Gaussian process model. 

5. Conclusion 

In this study, different methods to include expert knowledge and 
transfer knowledge were investigated and compared to a standard data- 
driven approach for the minimization of the production costs by 
adjusting the cutting speed in turning. For all demonstrated cases, the 
combination of Gaussian process models with Bayesian optimization 
proved successful for modeling of the optimization objective and for 
experiment selection. A direction for future research is to investigate 
tailored likelihood functions to consider the different noise levels for 
different cutting speeds. Expert knowledge and transfer learning were 
introduced by specifying Gaussian process hyperparameters a priori, 
using an empirical mean function based on the Taylor equation for the 
Gaussian process models, and by utilizing multi-task learning. While the 
model with an empirical mean function does not need additional data 
from related tasks, the approaches based on a model with fixed hyper
parameters and multi-task learning model require data from previous 
experiments. Thus, the fixed hyperparameters and multi-task approach 
are especially useful if data from previous similar experiments is avail
able. All approaches using expert knowledge or transfer learning 
reduced the number of experiments to find optimal cutting speeds by at 
least 40% compared to the standard approach, confirming that the 
presented approaches improve the sample efficiency of parameter se
lection. Future work is necessary to investigate the data efficiency and 
transferability of data for other manufacturing cases. Furthermore, the 
incorporation of expert knowledge and transfer of knowledge is not 
limited to the demonstrated methods. For example, it might be possible 
to also use prior knowledge to select the initial experiments. 
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Appendix 

Equations for multi-task learning 

In this section the calculation of K
(

X,X
)

and Kx∗
is shown based on Alvarez et al. (2012). The Eq. (11) can be written componentwise as follows, 

(K(x, x′))d,d′ =
∑Q

q=1
bqd,d′kq

(

x, x′
)

(A.1)  

where bq
d,d′ are the coefficients of the coregionalization matrix Bq modeling the covariance between the different outputs fd(x), and kq(x, x′) are the 

kernels modeling the covariance between different process parameter points. For D different outputs and N data points per output, The matrix K
(

X,X
)

of dimension ND×ND, is calculated as follows, 

K
(
X,X

)
=

⎛

⎜
⎝
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…
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(
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(
X
D
,X

1

))

D,1
⋯
(
K
(
X
D
,X

D

))

D,D

⎞

⎟
⎠ (A.2)  

where Xd is the input training data for output d. By using equation (A.1), the blocks 
(

K
(

Xd,Xd′

))

d,d′
of the matrix K

(
X,X

)
can be calculated as follows. 

(
K
(
X
d
,X

d′

))

d,d′
=

⎛

⎝
(K(x1, x1))d,d′ … (K(x1, xN))d,d′

⋮ ⋱ ⋮
(K(xN , x1))d,d′ ⋯ (K(xN , xN))d,d′

⎞

⎠ (A.3) 

The matrix K
x∗

of dimension D×ND and entries (K(x∗, xj))d,d′ can be calculated as follows. 

K
x∗
=

⎛

⎝

(
K
(
x∗, xj

))

1,1 …
(
K
(
x∗, xj

))

1,D
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K
(
x∗, xj
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D,1 ⋯
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D,D
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⎠ (A.4)  

(
K
(
x∗, xj

))

d,d′ =
(
(K(x∗, x1))d,d′ ⋯ (K(x∗, xN))d,d′

)
(A.5)  
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