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Abstract

Minimum Euclidian norm projection onto polyhedral sets is a core operation in first–order meth-
ods for convex optimization problems with convex affine inequality constraints. This projection is
performed at every iteration of the solver, which makes its efficiency critical for the overall perfor-
mance. For many practical problems in embedded optimization, this projection can be explicitly
written as an evaluation of a piecewise affine function. State–of–the–art architectures evaluate
such functions by iteratively traversing binary trees. This thesis describes a novel approach that
uses graph representations of the computations to be performed to optimize operation sharing.
Automatic circuit generation is used to obtain problem–specific implementations that can signif-
icantly outperform current reference implementations with only modest increases in circuit size.
The results are implemented in a software toolchain and quantitative comparisons with existing
toolchains are made, demonstrating the effectiveness of the approach.
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1. Introduction

Euclidian projection onto convex polyhedral sets is an operation often encountered in numerical
optimization, particularly in gradient methods. If the target set is given by {x |Gx ≤ h} with
x ∈ Rn, the projection is itself a quadratic program:

P(x) = arg min
y

1

2
‖x− y‖22

s.t. Gy ≤ h.
(1.1)

The projection can be written as a piecewise affine (PWA) function in x [24]. It is therefore given
as a polyhedral partition of Rn with different affine functions for every region:

P(x) =


F1x+ g1, A1x ≤ b1
F2x+ g2, A2x ≤ b2

...

Fkx+ gk, Akx ≤ bk

(1.2)

The computation of (1.2), which is referred to as the parametric solution, is NP–hard and the
number of regions k usually grows exponentially with n. Nevertheless, practically relevant low–
dimensional examples exist such as the projections required in multistage model predicitive con-
trol (MPC).

Recently, MPC has seen a large rise in popularity also for fast dynamical systems due to its
inherent ability to treat constraints in a systematic manner. It is based on solving optimization
problems that incorporate both a system model as well as the control constraints to get optimal
performance. A large body of literature exists on methods improving the algorithms used for
solving these optimization problems, but the computational complexity of MPC controllers for
fast sampled systems is still one of their biggest challenges. For small systems, the method of
choice is explicit MPC, which solves the full MPC problem offline as a multiparametric program.
The online controller implementation then reduces to evaluating a piecewise affine function in x.
However, the complexity of explicit controllers grows exponentially in the system size, which is
why in the last decade, iterative optimization algorithms were investigated which solve the MPC
problem at every controller sampling step.

Common approaches for the online solution of MPC problems include interior point and gradient
methods. Interior point methods incorporate the inequality constraints into the objective func-
tion using a barrier function with an iteratively decreasing weight. Code generators exist (see for
example [15]) to create code tailored to a given MPC problem. Efficient methods for multistage
problems are outlined in [14]. They do not require projection onto the constraints, which is why
they are not outlined in more detail here. Gradient methods solve convex optimization problems
by following the negative gradient of the objective function. If the problem is constrained, this
step is followed by a projection onto the feasible set. Many variations of this idea exist and a good

7



Chapter 1: Introduction 8

zk+1 = P (zk − λ∇f(zk))

zk − λ∇f(zk)
R

Figure 1.1.: Projection example in the context of gradient–based solvers

introduction is presented in [9], Chapter 9.3. Gradient methods yield small implementations and
run fast (see [22]), though their dependence on the condition of the Hessian of the cost function
poses a challenge. If the feasible set is a general polyhedral set, the projection onto it becomes a
relevant issue as well. Consider for example the following optimization problem:

min
z

f(z)

s.t. Gz ≤ h
(1.3)

with f(z) convex and differentiable and z ∈ Rn. Denote the feasible set as R :=
{
z |Gz ≤ h

}
. A

classical gradient iteration for this problem is

zk+1 = P (zk − λ∇f(zk)) (1.4)

where λ is the step size and P is the projection as defined in (1.1). For an input point z, the
projection operator returns y∗, the closest point to z that satisfies the constraints. An example
is depicted in Fig. 1.1. Modern methods like the one used in [22] implement (1.4) with several
extensions, but all of them require the projection operator P to be evaluated at every iteration.
Since such solvers require about 5 to 20 iterations to converge, projection evaluation has to be
at least an order of magnitude faster than the target controller frequency.

In multistage MPC, the constraint set is block diagonal and often repeated, which means the
projection can be broken down into independent lower–dimensional projections of the stage vari-
ables. This makes the use of parametric projection solutions a tractable option. Additionally, for
every iteration of the gradient solver, as many independent projections as there are stages are
evaluated, which means pipelined hardware architectures would be beneficial.

While methods exist for the efficient evaluation of general PWA functions, projection compu-
tations have more structure that can be efficiently exploited by operation reuse. Intuitively,
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many operations required for the location of a point among the regions in (1.2) are required
again to evaluate the projection function and therefore only have to be computed once. In order
to demonstrate the potential of operation reuse, consider the following example of a matrix–vector
multiplication: 

2 0 0 0
2 3 0 0
2 3 4 0
2 3 4 5

x := Qx, x ∈ R4 (1.5)

Evaluated without any assumptions on Q, this would require 16 multiplications and 12 sums.
However, the given product can be computed using 4 multiplications and 3 sums: The first entry
of x is multiplied by 2, at which point the first entry of the result vector is already available.
Next, the second entry of x is multiplied by 3 and added to the previous result, yielding the
second result and so on. As demonstrated, implementations that are designed to take advantage
of operation reuse could yield a performance increase over general approaches. This thesis in-
vestigates potential performance improvements through such computation reuse. It focuses on
PWA functions arising from projection computations and implements the theoretical results in
the form of a software toolchain for automatic digital circuit generation.

1.1. Previous work

Methods and software exist to derive the piecewise affine function for given projection functions,
for example the Multi-parametric Toolbox 3.0 (MPT) [20], which is used as a starting point in
this thesis. MPT also provides C and MATLAB code generation for PWA function evaluation.
Automatic circuit generation for general PWA functions is presented in [26].

In terms of optimizing operation sharing, most approaches originate from research in digital
circuit design related to constant coefficient filter implementations: The special case of multi-
plying a single input number by many different fixed–point coefficients is referred to as multiple
constant multiplication (MCM) in literature (see [5], [10], [19]). The solution approaches are
collectively called common subexpression elimination. Recently, there have been initial efforts
towards exploiting intermediate result reuse across several inputs [8]. The methods mentioned
exclusively deal with parallel fixed–point platforms like FPGAs and ASICs. They make use of
the fact that multiplications by fixed–point constants can be written as sums of shifted versions
of the input number. They therefore essentially convert the MCM problem into one of optimizing
a sequence of additions. The problem of optimizing a sequence of additions of the same set of
inputs for the minimum number of operations has been shown to be NP–hard (see [11]). The
optimal result sharing problem investigated in this thesis differs from what has been investigated
already in several aspects: Primarily, this work also considers floating–point numbers and fully
serial platforms. Also, aside from the heuristics presented in [8], to the best knowledge of the
author, there exist no MCM algorithms that deal with multiple variables.

Two state–of–the–art implementations of code generation for C and VHDL code were selected for
comparisons with the toolchain implemented in this thesis. The reference implementations are
toolchains that work with general piecewise affine functions, whereas this thesis focuses on PWA
functions that arise from projection onto some practically relevant sets. These functions have a
lot of structure, which the toolchain developed in this thesis is able to exploit. For VHDL code,
the MOBY-DIC project [3] was selected. MOBY–DIC was developed as a toolbox that creates
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circuitry for the evaluation of general PWA functions. It was used as a benchmark for the VHDL
backend of the toolchain developed in this thesis. Another toolchain that generates VHDL code
for PWA functions is presented in [25]. It does not perform any operation sharing, however.
For C code, the code generation feature of MPT [20] was used. Both reference implementations
perform point location using binary decision trees, followed by evaluation of the projection for
the region in which the point was located. More details about these reference implementations
is given in Sections 7.2 and 7.3, where quantitative comparisons are made between them and the
software written in this thesis.

1.2. Contribution

This thesis explores a novel approach to evaluating piecewise affine functions that is particularly
efficient for projection computations. Instead of iteratively computing the required hyperplane
evaluations and then evaluating one projection function, this approach evaluates all hyperplanes
and all projection functions concurrently, leading to increased speed. To gain efficiency despite the
tremendous increase in the number of results that have to be computed, the order of operations
is chosen such that many intermediate results can be reused. In addition to this idea,

• A mixed integer linear programming method is proposed to find the optimal operation shar-
ing. Even though solving this MILP for larger practical problems is currently intractable,
smaller problems can be solved. A heuristic is introduced to obtain approximate solutions
for all problem instances.

• An error analysis is conducted to give worst–case bounds for the fixed–point implementa-
tions of the projection computation.

• The theoretical results are implemented in a complete software toolchain that, given a set
to project on, creates ready–to–use VHDL and C implementations of an efficient projection
architecture.

1.3. Outline

The first part of the thesis deals with the theoretical aspects of affine projections: the first chapter
describes the structure of affine projection computations and outlines what approach will be taken
in this thesis to implement it; Chapters 2 through 4 introduce the concept of operation graphs and
two methods to optimize these graphs for different cost functions; Chapter 5 treats the effects
of fixed–point arithmetic on hardware implementations of the projection. In the second part,
the toolchain architecture and selected hardware targets are presented. The final part presents
benchmark comparisons with state–of–the–art implementations and gives an outlook as to how
the implemented toolchain could be extended and improved.



Part I.

Theory
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2. Projection computation: Analysis and
architecture

This chapter details on the required computations for projections and suggests some methods that
can be applied to decrease the amount of computations. The first section outlines the conventional
method of evaluating PWA functions, followed by a motivating example that demonstrates the
effectiveness of operation sharing in projections. After that, a section that generalizes the insights
gained in the example follows. Next, an overview of the architecture to be implemented is
presented. The chapter then concludes with the introduction of graphs as a representation of
matrix–vector products.

2.1. Piecewise affine function evaluation

As mentioned in the Chapter 1, the projection computation can be written as a PWA function
in the form of (1.2). The problem therefore becomes one of evaluating a PWA function, which
is discussed extensively in literature related to explicit MPC (see for example [16], [26]). The
regions Aix ≤ bi (i = 1, . . . , k) in (1.2) are collectively referred to as region set, whereas the
Fix+ gi (i = 1, . . . , k) are the corresponding projection rules. The usual approach taken consists
of two steps:

1. Location of the input point x0 in the region set

2. Application of the projection rule for the region in which the point is

While the second step is straightforward to implement (one evaluation of an affine function), the
point location problem is challenging due to the fact that the number of regions generally grows
exponentially in the number of problem dimensions.

The classical method used for point location (used for example in [26], [25]) is a decision tree
traversal for point location. In this method, a decision tree is built with a hyperplane evaluation
ci = aTi x−bi assigned to every node i. Tree traversal starts at the root. At every node, the corre-
sponding hyperplane evaluation is performed and a child is selected depending on the sign of ci.
Once a leaf is reached, the region in which the point is is found. Decision tree creation algorithms
are still an active research topic. A recent one is outlined in [16], and MPT [20] is a software
package that can generate PWA functions as well as decision trees directly. In the best case, a
tree of logarithmic depth can be created for a given PWA function. Therefore, if the function has
k regions, the tree has depth log2 k and at most log2 k hyperplane evaluations are required to find
the region in which a point is. In practice, this optimal tree depth is often not reached, however.
The method in [25] flattens the tree by a factor of M ∈ N, by evaluating M hyperplanes per node.
On the other hand, the implementation from [25] introduces an M–fold increase in hardware size.

In the next section, an example is used to demonstrate that in specific cases, alternative ap-
proaches to the classical PWA function evaluation can be very efficient.

12
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2.2. Projection example

A set of practical relevance is the case where

0 ≤ x1 ≤ x2 ≤ · · · ≤ xi ≤ x∗ (2.1)

has to hold. For i = 2, this reduces to the set shown in Fig. 2.1. This section will first outline
the classical approach of computing a projection onto this set, with an analysis of the number of
operations required. Then, an alternative approach is presented with the analogous analysis and
compared.

0 x∗
x1

0

x∗

x
2

R =
{

(x1, x2) | 0 ≤ x1 ≤ x2 ≤ x∗
}

Figure 2.1.: Two–dimensional set to project on. Notice the alignment with the coordinate axis
and the unity slope of the only slanted line.

2.2.1. Classical approach: Binary tree traversal

If this example is solved parametrically, the result is 7 regions and associated computation rules,
as depicted in Fig. 2.2. The point location step using binary trees (as outlined in [16]) involves at
least dlog2 7e = 3 hyperplane evaluations to find out in which region the point lies, and only then
can the projection computation be performed. This means the amount of operations performed
in the best case would be three hyperplane evaluations and one projection rule computation.
In Nx dimensions, a hyperplane evaluation requires Nx multiplications, Nx − 1 additions and
a subtraction. Since subtractions and additions involve the same cost on most platforms, the
operation amounts for a hyperplane evaluation will simply be referred to as Nx multiplications
and Nx sums. Finally, the projection computation has the form Fx + g for some F ∈ RNx×Nx
and g ∈ RNx and requires N2

x multiplications and N2
x sums. For the example in 2 dimensions,

this brings the total amount of operations to:

opsc = 3 (2 mul + 2 add) + 4 mul + 4 add = 10 mul + 10 add (2.2)



Chapter 2: Projection computation: Analysis and architecture 14

0 x∗
x1

0

x∗

x
2 I

II

III

IVVVI

VII

Figure 2.2.: Regions generated by the conventional approach

where “mul” denotes a multiplication and “add” an addition.

2.2.2. Direct approach: Combined computation

Upon closer investigation of the set shown in Fig. 2.1, one can notice that the only possible
components of the result are elements of {x0

1, x
0
2, x
∗, 0, (x0

1 + x0
2)/2}, where x0

1, x
0
2 denote the

inputs to the projection. This means all the projection computations can be performed using one
addition and a division by two, which is just a bit shift in fixed–point arithmetic. Looking at what
hyperplane evaluations are to be performed, one can see that in addition to the aforementioned
computations, (x0

1 − x∗), (x0
2 − x∗), (x∗1 − x∗2) and (x0

1 + x0
2 − 2x∗) are required as well. Overall,

the operations required sum up to
opsd = 5 add (2.3)

since bit shifts are free in hardware. While there is still a mechanism required to select the correct
results among these computed terms, the number of computations to be performed overall has
decreased significantly. Note that based on the computed terms, the binary tree traversal can
still be performed, however now all results are already available. Additionally, if the projection
is implemented in a circuit, the binary decision tree based on the precomputed results can be
implemented as a single–cycle muxing network to select the correct projection result for the
corresponding region in which the point is located.
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2.3. Simplifications specific to projections

2.3.1. Region merging

As already shown in the 2D example, the projection of a single element in x often has the same
result for multiple regions. This fact can be exploited more systematically by, on a per element
basis, collecting all regions with the same outcome into one so–called superregion. This reduces
the number of hyperplane evaluations to be performed for the decision of one element compared
to checking all regions individually, since hyperplanes that decide between regions which are
part of the same superregion become unnecessary. This simplifies the muxing logic. However,
since this is done for every element separately, the total number of hyperplane evaluations is not
necessarily smaller than it would be if all of the original regions were checked separately.

2.3.2. Sharing operations between hyperplane and projection rule evaluations

Both hyperplane and projection rule evaluations in Nx dimensions can be written in the form

cTx+ d (2.4)

for some c ∈ RNx and some d ∈ R. As the previous investigations suggest, some terms are
required for hyperplane evaluations as well as for projection computations. To exploit this, a
matrix U is defined containing all the hyperplane evaluations and rule computations as rows:

U =

c
T
1 d1

cT2 d2
...

...

 (2.5)

The resulting matrix U for a projection has Nx+1 columns and at most as many rows as there are
hyperplane evaluations and projection rules. The projection then becomes a task of evaluating

r = U

[
x
1

]
(2.6)

and after that using the results associated with hyperplane evaluations to select the entries of
the projected point from the results pertaining to projection rule computations. For example,
consider a projection that would require hyperplane evaluations aTi x0 ≤ bi, i ∈ {1, 2, 3} and
projection computations fTi x0 + gi, i ∈ {1, 2}. The initial matrix U would then become

U =


aT1 −b1
aT2 −b2
aT3 −b3
fT1 g1

fT2 g2

 (2.7)

This matrix format is convenient in several ways: Computations that are done for multiple regions
can be readily identified as equal rows in U , whereas some rows do not require any computations
at all. If two rows i, j are linearly dependent and at least one of them represents a hyperplane
evaluation, one of them is a scaled version of the other and can be removed. The computations for
hyperplane evaluations can further be simplified by scaling the hyperplanes by a positive scalar to
make as many of their coefficients equal to 1 as possible. As can be easily seen, the applicability
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of the simplifications listed here depends strongly on the actual hyperplane evaluations and
functions to be computed. This method can also be applied to general PWA functions, however
it is more effective if hyperplane evaluations and projection rules require similar results, which is
the case in projection computations for many practically relevant sets.

2.4. Projection computation architecture

2.4.1. Basic concept

The investigations shown in the previous example and the selection of an FPGA as primary
hardware platform suggest an architecture that favors parallelism. A high–level overview of
the architecture implemented in this thesis is shown in Fig. 2.3. Essentially, the projection
computation is separated into two steps:

1. The full product r = U
[
x 1

]T
as defined in (2.6) is computed, reusing as many interme-

diate results as possible

2. Based on the signs of the entries of r, the components yi of the projected point vector y
are assigned entries of r. The function “sel” deciding which entries of r to use for which
position of y is a muxing network.

The entries of r cannot be blocked into hyperplane evaluation results and projection results,
since part of them are used for both hyperplane evaluations and projection rules. In a hardware
implementation, the second step can be done in a single clock cycle even for the largest projection
computations considered for this thesis. This is why most of the theoretical focus is put on
finding efficient implementations of the computation block: Since U is constant, the order in
the computation block can be chosen to reuse intermediate results, thereby reducing the amount
of operations required. The method employed to increase reuse is optimizing operation graphs,
which will be introduced in Section 2.5.

2.4.2. Limitations of our approach

This approach has obvious drawbacks compared to the conventional tree–based approach outlined
in [26] and others. Particularly, the computation block performs all hyperplane and projection
rule evaluations concurrently, whereas the existing solutions only evaluate a fraction of them by
traversing a decision tree. On the other hand, existing implementations have to wait for a hyper-
plane computation to be completed before the control logic can choose a new one. This means
that while the worst–case time a projection takes in the conventional approaches is the decision
tree depth times the time required for a general hyperplane evaluation, the computation (2.6)
can be performed in the time it requires to do a single hyperplane evaluation due to concurrency.
This concurrency becomes possible since no decisions have to be made during the computation.

Computation

r = U

[
x
1

]
ySelection

y = sel(r)
x0

Figure 2.3.: Abstract architecture overview
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+1

+2x2

x3

x1

+1

+2x2

x3

x1

×2 (b)

×1 (a)

Figure 2.4.: Two example operation graphs

2.5. Operation graphs

This section introduces operation graphs as a concept of representing a sequence of computations
on a common set of inputs, explicitly representing operation order. This order of operations is
vital for operation sharing. The concept of operation graphs is widely used in fields like software
compiler design, however this thesis deals with much a more limited set of operations than other
research.

2.5.1. Using directed graphs to represent affine computations

In graph theory, a general directed graph is a set V of vertices and a set E of edges connecting
them. If a vertex only has edges going away from it, it is called a source, if it only has edges going
towards it, it is called a sink. More theory on graphs can be found in textbooks, for example in
[12]. In order to use graphs to represent affine computations, the aforementioned components of
a directed graph are assigned specific meanings:

• Source vertices are scalar input variables

• Non–source vertices are operations: addition, multiplication

• Edges represent data flow

Sinks are not assigned any special meaning here, they simply represent operations as well. Con-
sider a simple example shown in the left part of Fig. 2.4. This graph has three sources representing
the input variables x1, x2, x3 and two non–source vertices representing additions. Every vertex in
the graph represents a symbolic expression of the inputs: Source vertices trivially represent the
corresponding input variable, and non–source vertices represent the result they compute. In the
example, vertex +1 represents (x1 +x2) and vertex +2 represents (x1 +x2) +x3 = (x1 +x2 +x3).
This means the complete set of results computed by the graph in the left part of Fig. 2.4 is:{

x1, x2, x3, (x1 + x2), (x1 + x2 + x3)
}

(2.8)

with every result corresponding to a vertex in the graph. A slightly more complex example is
shown on the right side of Fig. 2.4. This example also involves two product nodes, ×1 and ×2.
Products in linear algebra have one constant and one variable operand, which is why product
nodes only have one edge going to them. The constant with which the input is multiplied is
assigned to the node and denoted in brackets. This means in addition to the expressions listed
in (2.8), the example on the right also computes (ax1 + ax2) and (bx3).
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2.5.2. Order of operations and latency

The graphs shown in Fig. 2.4 already suggest that there is an inherent order of operations. For
example, +2 cannot be computed before +1, since the result of +1 is required as an input to +2.
This section quantifies this suggestion. A reasonable abstraction for actual implementations of a
computation is that there are computational cycles, in each of which a (possibly limited) number
of operations can be performed in parallel. Latency in general is defined to be the delay (in
computational cycles) between the input variable values becoming available and a result being
computed. If no constraint is given on the amount of operations that can be performed per
computational cycle, the intrinsic latency of a vertex Vi in the graph is defined as the maximum
path length of any of the sources to Vi. This is due to the fact that an operation can only
be performed once all its inputs have been calculated. Note that the intrinsic latencies can be
extracted from an operation graph using recursive graph traversal.

2.5.3. Operation graph optimization: Problem definition

Assume the purpose of the graphs is to represent a matrix–vector multiplication shown in (2.6)
with the dimensions defined there. Define GU (x) to mean “an operation graph describing the
computation of (2.6)”. The vector x will be referred to as the input and the result of (2.6) will
be referred to as the output or result. The problem of finding an optimal operation graph for a
specified cost function f (for example, the least amount of operations) can be written as follows:

min
GU

f (GU )

s.t. GU (x) = U
[
xT 1

]T (2.9)

where the constraint enforces correct computation. The next two chapters present two approaches
to solve this optimization problem exactly using mixed–integer programming and approximately
using a heuristic. They apply slightly different implementations of the graph descriptions, how-
ever the basics outlined in this section apply for both.



3. Graph optimization using Mixed–Integer
Linear Programming

3.1. Introduction

This chapter introduces a formulation of (2.9) that is compatible with common MILP solvers.
The formulation contains all aspects of the described operation graphs explicitly, allowing for a
wide variety of optimization goals and extensions. A mixed–integer linear programming approach
has already been taken for adder–only graphs in [21], however instead of extending this approach
to multiplications of multiple different inputs and floating point numbers, the approach taken
here is to introduce a new formulation based on similar ideas.

3.2. Assumptions

A core assumption made at this level of abstraction is that no intermediate result is computed
twice, regardless of what the optimization goal is. Whenever an intermediate result is required
multiple times, all occurrences of this result can be replaced by the one computation with the
lowest latency. This leads to the following:

All computed intermediate and final results are different from each other. (3.1)

In order to derive an upper bound for the operations to be performed (and with this, an upper
bound on how many vertices can be in the graph), a few constants have to be introduced. Assume
the matrix U from (2.6) has Ne nonzero entries and among those entries, there are Nα different
numbers. Assume also that there are Nm non–zero entries different from one. This means

Nα ≤ Nm ≤ Ne ≤ NxNr. (3.2)

For the upper bound of operations to be performed, assume the worst case, meaning no inter-
mediate result can be used more than once. Since every row of the matrix denotes a linear
combination, which requires one less addition than the number of terms it sums up, the worst
case total number of additions required is

Na = Ne −Nr. (3.3)

Multiplications can possibly be shared across sums, but in the worst case, every variable with a
non–zero coefficient unequal to one in every result term has to be multiplied separately, yielding
a total number of operations of at most

Nv = Ne −Nr +Nm (3.4)

This means that any formulation that allows for at least Nv nodes to be present in the resulting
graph will be able to represent a feasible solution.

19
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3.3. Variables

The description of an operation graph GU is denoted as a set V of tuples Vi ∈ V. The index
i ∈ 1, . . . , Nv is used to refer to vertex i in the graph and this index is propagated to everything
related to this vertex. If a variable has such an index, an instance of this variable exists for every
node separately.

3.3.1. Describing intermediate results

Every vertex Vi represents an intermediate result represented by the variable Si. Since all that is
done in linear computations are sums and products, Si can be defined as a vector with the same
length as the input vector.

Si :=
[
bi1 bi2 · · · biNx

]
∈ RNx (3.5)

The intermediate result described by a given Si can then be computed as Six. For example, if

x :=
[
x1 x2 x3

]T
, this means S ∈ R3. If vertex i were to represent x1 + x2, this would be

written as Si =
[
1 1 0

]
, and similarly a linear combination 2.5x2 + 8x3 would be represented

by Si =
[
0 2.5 8

]
. Note that the Si only express the result of an operation, they do not specify

how this result has come to be. For later use, a matrix that stacks the intermediate results for
all the vertices (denoted the intermediate result matrix) is defined here:

S :=


S1

S2
...

SNv
I

 (3.6)

where I ∈ RNx×Nx is the identity matrix. The vector Sx contains all the intermediate results
computed in the graph as well as the inputs.

3.3.2. Describing computations leading to intermediate results

In order to describe how the intermediate result of a vertex Vi is computed, a variable Ci is
defined here. In graph–theoretical terms, this Ci specifies the incoming edges to vertex Vi.
The possible data sources for computation inputs are primary inputs (x1, x2, . . ., xNx), previous
intermediate results (referred to as secondary inputs) or combinations of the two. Notice that
the previously defined S conveniently captures all these input possibilities at once. Using these
inputs, either sums or multiplications by constants can be computed. In order to represent all
possible combinations, let Ci be a tuple

Ci =
(
Ai,Mi, zi, µi

)
(3.7)

where Ai describes addition inputs and Mi describes multiplications. More specifically, Ai is a
vector of binary numbers describing inputs to an addition:

Ai :=
[
ai1 ai2 · · · ai(Nx+Nv)

]
∈ BNx+Nv

:=
[
Asi Api

] (3.8)

where B = {0, 1} denotes a binary number. The first Nv entries of Ai denote additions of
secondary inputs, summarized as Asi , whereas the last Nx entries (summarized as Api ) denote
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additions of primary inputs. Let Mi be another vector of binary numbers describing the selection
of a coefficient for multiplication:

Mi :=
[
mi1 mi2 · · · miNm

]
∈ BNm (3.9)

These two vectors together allow for the description of any of the possibilities outlined in the
above list. In case vertex i is an addition, this addition can be written in terms of intermediate
result descriptions as follows:

Si = AiS (3.10)

If, on the other hand, the vertex is a multiplication, it can be written as

Si =
(
MiQ

)
AiS (3.11)

where Q :=
[
α1 · · · αNm

]T ∈ RNα is a vector of all the unique coefficients present in U . The
selection whether the vertex is a multiplication or an addition is made by the variable µi ∈ B:

µi = 1 ⇐⇒ Vertex i represents a multiplication

µi = 0 ⇐⇒ Vertex i represents an addition
(3.12)

For software implementation reasons, the operation graph representation is defined to have a
fixed number of vertices Nv as previously mentioned. If some intermediate results are reused,
part of the vertices are not used in computations. Unused vertices are marked by the flag zi ∈ B
as follows:

zi = 1 ⇐⇒ Vertex i is unused

zi = 0 ⇐⇒ Vertex i is in use
(3.13)

3.3.3. Latency description

As mentioned in Section 2.5.2, there is an inherent concept of latency in the operation graph: If
traversal of one edge is assigned a latency of 1, the latency of a vertex (defined as the distance
of the vertex in computational cycles from the inputs) is simply the cardinality of the longest
path present from any of the inputs to the vertex. However, if the number of computational
units available in parallel is less than the number of operations that could be performed at that
time, this inherent concept of latency becomes less relevant: Even though a vertex might only
be 3 edges away from any of the inputs, there might not be any computational unit available in
the third cycle to get to that vertex. To express any non–inherent latency descriptions, define
li ∈ N+ as the latency of the vertex i. This means that the operation that is represented by
vertex i is computed in the li–th cycle of the whole computation.

3.3.4. Graph representation example

In order to make the meaning of the variables defined in this section more clear, a graph repre-
sentation example is presented here. The computation used for the example isr1

r2

r3

 =

1 1 0 0
0 c2 1 1
0 0 c1 c1



x1

x2

x3

x4

 (3.14)

This example results in an operation graph as shown in Fig. 3.1 on page 22. Note that this is not
the only graph that results in (3.14). First of all, the vertices in this graph are assigned numbers,
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× c1

r1

r2

r3

+

+

+

× c2

x2

x3

x1

x4

Figure 3.1.: Example operation graph representing (3.14)

as shown in Fig. 3.2 on page 23. The Si for the example graph are then shown in Fig. 3.3 on
page 23. A version of the graph annotated with all the variables is shown in Fig. 3.4 on page 24,
along with some explanatory notes.

3.4. Constraints

The variables introduced in the previous section have to be constrained in several ways such
that every feasible solution of the optimization problem corresponds to a feasible adder graph
implementing the computation (2.6). More specifically, this means the following:

1. Every result rk, k ∈ 1, . . . , Nr from the result vector r =
[
r1, . . . , rNr

]T
has to be present

among the intermediate results

2. Every vertex Vi is constructable, i.e. if it is a sum, the specified inputs (selected by Ci)
have to actually result in the specified sum (given by Si) (and analogous constructability
has to hold for products.)

While the first kind of constraint listed above is easy to implement, the constructability require-
ment is more involved. The following subsections outline the implementation of these constraints
using the variables defined in Section 3.3.

3.4.1. Constraints for correctness of computation

The same constructability and latency constraints hold for the end results as for the intermediate
results, therefore they are simply treated the same. The presence of the results rk can be ensured
by constraining the first m intermediate results to be equal to these results:

Sk = uk ∀k = 1, . . . , Nr (3.15)

where the uk are the rows of U .
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V5

r1

r2

r3

V1

V3

V2

V4

x2

x3

x1

x4

Figure 3.2.: Example operation graph: Vertices are given numbers

S5 =
[
0 0 c1 c1

]

r1

r2

r3

S1 =
[
1 1 0 0

]

S3 =
[
0 c2 1 1

]

S2 =
[
0 0 1 1

]

S4 =
[
0 c2 0 0

]
x2

x3

x1

x4

Figure 3.3.: Example operation graph: Intermediate result descriptions Si added



Chapter 3: Graph optimization using Mixed–Integer Linear Programming 24

S5 =
[
0 0 c1 c1

]
As

5 =
[
0 1 0 0 0

]
Ap

5 =
[
0 0 0 0

]
M5 =

[
1 0

]

r1

r2

r3

S1 =
[
1 1 0 0

]
As

1 =
[
0 0 0 0 0

]
Ap

1 =
[
1 1 0 0

]
M1 =

[
0 0

]

S3 =
[
0 c2 1 1

]
As

3 =
[
0 1 0 1 0

]
Ap

3 =
[
0 0 0 0

]
M3 =

[
0 0

]

S2 =
[
0 0 1 1

]
As

2 =
[
0 0 0 0 0

]
Ap

2 =
[
0 0 1 1

]
M2 =

[
0 0

]

S4 =
[
0 c2 0 0

]
As

4 =
[
0 0 0 0 0

]
Ap

4 =
[
0 1 0 0

]
M4 =

[
0 1

]

x2

x3

x1

x4

Figure 3.4.: Example operation graph: Complete picture
This figure shows the complete operation graph description for example (3.14). V1

for example is a sum of x1 and x2. This means S1 has ones at those positions. V1 is
constructed from two primary inputs (x1 and x2) at positions 1 and 2, which is why
Ap1 = [1 1 0 0]. Since there are no secondary inputs summed up, As1 is all zeros.
Conversely, V4 is a multiplication, which is why only one entry across Ap4 and As4
can be one. This single nonzero entries specifies the multiplication input (x2 in this
case). The 1 in M4 specifies that this selected input is multiplied by c2 to yield the
S4 = [0 c2 0 0] which represents c2x2.
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3.4.2. Vertex constructability constraints

As noted in section 3.3.2, a vertex Vi can be constructed in several ways. If it is zero, the following
holds:

Si = 0 (3.16)

If on the other hand it is a sum it can be written as

Si = AiS =

Nv∑
j=1

aijSj +Api (3.17)

Since (3.17) represents a sum, exactly 2 entries of Ai are 1 and all other entries 0. Mathematically
speaking, this means: ‖Ai‖1 = 2. Finally, it can also be a multiplication, in which case it is written
as

Si = (MiQ)AiS =

(
Nα∑
k=1

mikαk

) Nv∑
j=1

aijSj +Api

 (3.18)

where only one entry of Mi is nonzero, as well as only one entry of Ai. With the help of zi and
µi, the three cases (3.16), (3.17) and (3.18) can be summarized into a compact form:

Si =

(
1− µi +

Nα∑
k=1

mikαk

) Nv∑
j=1

aijSj +Api

 (3.19a)

‖Ai‖1 + ‖Mi‖1 = 2(1− zi) (3.19b)

‖Mi‖1 = µi (3.19c)

If µi = 0, all entries of Mi are 0 and (3.19a) becomes (3.17). If zi = 1, everything becomes zero
and (3.19a) becomes (3.16). Finally, in the case of a multiplication, µi = 1 and the constraint
becomes (3.18).

However, the product of two sums of variables in (3.19) is bilinear and therefore cannot be
directly implemented in a MILP formulation. Products of binary and continuous variables can
be implemented as shown in [7], but this approach requires an additional variable per product as
well as four constraints. A more efficient way of implementing (3.19) is as follows:∣∣∣∣∣∣Si −

Nv∑
j=0

ai,jSj +Api

∣∣∣∣∣∣ ≤Mµi,k (3.20a)

∣∣∣∣∣∣ Siαk −
Nv∑
j=0

ai,jSj +Api

∣∣∣∣∣∣ ≤M(1−mi,k) (3.20b)

‖Ai‖1 + ‖Mi‖1 = 2(1− zi) (3.20c)

‖Mi‖1 = µi (3.20d)

In (3.20), Big–M reformulation is used (as already applied in [7]) with M ∈ R larger than the
absolute value of all elements of U . The choice of which entry of Mi is non–zero activates the
corresponding constraint while turning the others off. Note that there is one instance of (3.20b)
for every combination of vertex index i and unique coefficient index k. This means there are
NvNα constraints like (3.20b), which emphasizes the importance of formulating efficiently. The
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nonlinearity of (3.20) can now be formulated in the form of linear constraints: The sums in the
aforementioned constraint are computed on a per–position basis, meaning (3.20a) can be written
as Nx individual equations for all the posititions p = 1, . . . , Nx in this sum of vectors:

bi,p −
Nv∑
j=0

ai,jbj,p + ai,(Nv+p) = 0 ∀i ∈ 1, . . . , Nv, ∀p ∈ 1, . . . , Nx (3.21)

Looking at (3.21), one can see that now only products of binary and continuous variables appear,
which can be implemented using an auxiliary binary variable as demonstrated in [7]:

c = a · b ⇐⇒


c ≤Ma

c ≥ −Ma

c ≤ b− (−M)(1− a)

c ≥ b−M(1− a)

(3.22)

where b and c are continuous variables and a is a binary one. For the case of only binary variables,
this example simplifies to

c = a · b = a ∧ b ⇐⇒


−a+ c ≤ 0

−b+ c ≤ 0

a+ b− c ≤ 1

(3.23)

which is also shown in [7]. Applying this to the constraints in (3.21) results in a system of
constraints linear in the variables, which is now an MILP, for which standard solution methods
and software exist.

3.4.3. Latency constraints

The latency constraints ensure that the computation of an intermediate result only depends
on other results computed before it. As mentioned earlier, every vertex i has a variable li
associated to it that specifies at what point in time (measured in computational latency cycles)
it is computed. If intermediate result j, denoted by Sj , is used in the computation of Si, its
latency lj has to be strictly less than that of Si, which is li. Another way of expressing this is:

lj ≥ li =⇒ aij = 0 (3.24)

This is because aij = 1 means that Sj is involved in the computation for Si. The implication
above can also be expressed as a constraint suitable for MILP formulations:

li − lj +M(1− ai,j) ≥ 1 (3.25)

Again, instances of this constraint are added for all combinations of j and i, j 6= i.

3.5. Cost functions

Altogether, the constraints listed in Section 3.4 result in the only feasible sets of Vi being repre-
sentations of valid operation graphs. This means that without a cost function, the above variables
and constraints represent a feasibility problem. The latency level variables li are deliberately not
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constrained to be the intrinsic latencies for the feasibility problem, since some cost functions
might lead to different latencies. The descriptions of the vertices contain all information required
about the graph: number of nonzero intermediate results, which results are constructed from
which others and at what latency level which result is constructed. Therefore, a multitude of
different cost functions can be constructed to optimize the graph towards different goals.

3.5.1. Minimum number of operations

Since zi directly denotes whether intermediate result Vi is zero, the cost function for the minimum
number of operations is simply

Cmin add(V) := max
V

Nv∑
i=1

zi (3.26)

3.5.2. Optimal latency with the minimum number of operations

If there is no constraint on the amount of operations performed at the same time, the amount of
computational cycles required to compute a scalar product aTx+ b with x ∈ RNx can be given as

Lopt = 1 + dlog2 (Nx + 1)e (3.27)

where the first cycle is required to multiply all the entries of x with the corresponding entries of
a and the other dlog2 (Nx + 1)e cycles are required to sum up the products using a symmetric
adder tree. The problem can therefore be constrained to not have any vertices with latencies
larger than Lopt:

li ≤ Lopt ∀i ∈ 1, . . . , Nv (3.28)

The problem is then solved with the same cost function as in Section 3.5.1. This ensures the
fastest computation of U possible with the least amount of operations.

3.5.3. Minimum worst–case latency for a given parallelism

This cost function yields the minimum worst–case latency with an additional constraint of at
most P operations per latency level. For the introduction of such a cost function, an upper
bound for the maximum latency is required. Since there are at most Nv operations, the absolute
maximum possible latency is Nv. This is a very conservative upper bound, since it is for the
case of no result reuse combined with a parallelism of P = 1. Nevertheless, using this bound
ensures every feasible solution can be represented. In order to optimize the graph for minimum
worst–case latency, a new auxiliary variable L ∈ N with the constraints

li ≤ L ∀i ∈ 1, . . . , Nv (3.29)

is added. The cost function then becomes

Cmin (max lat)(V) := min
V
L (3.30)

Additional constraints have to be added to ensure the maximum parallelism is not violated. First,
introduce intermediate variables δi,k ∈ B with k, s = 1, . . . , Nv which are defined as follows:

δi,s = 1 ⇐⇒ li = s (3.31)
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This can be expressed as:

li −
Nv∑
s=1

δi,ss = 0

Nv∑
s=1

δi,s = 1

(3.32)

for i = 1, . . . , Nv. Now the δi,s can in turn be used to express the actual parallelism constraint
for each latency level s:

Nv∑
i=1

δi,s ≤ P ∀s ∈ 1, . . . , Nv (3.33)

3.6. Optimization problem: Complete formulation

The complete formulation of the MILP that implements the high–level optimization problem
outlined in (2.9) is presented here. The variables are as defined in Section 3.3 and the cost
function C(V) can be chosen among those presented in Section 3.5.

min
V

C(V) (3.34a)

s.t. Sh = uh (3.34b)∣∣∣∣∣∣Si −
Nv∑
j=1

ai,jSj +Api

∣∣∣∣∣∣ ≤Mµi,k (3.34c)

∣∣∣∣∣∣ Siαk −
Nv∑
j=1

ai,jSj +Api

∣∣∣∣∣∣ ≤M(1−mi,k) (3.34d)

aii = 0 (3.34e)

‖Ai‖1 + ‖Mi‖1 = 2(1− zi) (3.34f)

‖Mi‖1 = µi (3.34g)

li − lj +M(1− ai,j) ≥ 1 (3.34h)

where h = 1, . . . , Nr, k = 1, . . . , Nα, i = 1, . . . , Nv, j = 1, . . . , Nv.



4. Graph optimization using a heuristic

The biggest drawback of the approach outlined in Chapter 3 is that the solution of the result-
ing MILP takes very long even on high–end computing hardware. A significant speedup can
be achieved by applying a heuristic to find a feasible solution to use as a starting point for the
numerical optimizer. In cases where the problem description outlined in Chapter 3 becomes too
large for a numerical optimizer to handle, the output of the heuristic can be used directly, in the
hopes that it is at least close to the optimum.

The heuristic presented here follows the general idea of a greedy algorithm. Several similar algo-
rithms have been implemented (see for example [5], [10], [19]) for adder–only operation graphs.
Due to the differences to the problem at hand, a new heuristic implementation is introduced here
inspired by them.

4.1. Basic algorithm structure

This algorithm follows the idea of “at each stage, do what locally appears best”. The rows of U
are added to the graph one at a time in a locally optimal way. By tuning the method used to
add rows to the graph, this basic idea can be customized to yield graphs that are good starting
points for different cost functions. The rows are built backwards: A result is decomposed into
two operands, these operands are decomposed in turn and so on, similar to the algorithm in [5].
The backward building approach makes the incorporation of parallelism constraints non–trivial.
This can be tackled by splitting the problem of optimizing for a given parallelism constraint into
two stages: Graph construction and graph scheduling.

4.1.1. Data structure

The data structure used for the heuristic presented in the following is a reduced version of the
representation used in Chapter 3. Conceptually, the same operation graph is used, but it is not
implemented as a vertex list but rather as an actual recursive graph data structure. Nodes still
represent intermediate results Si, but the construction information is not explicitly stored in
them anymore but rather derived from the edge set of the graph. Since an intermediate result is
described by a vector (also called row), the subsequent sections use the terms node, vertex and
row interchangeably.

4.1.2. Graph construction

The general structure of the generation algorithm is shown in Algorithm 1 on page 31: An empty
graph is created and the rows of the matrix to be converted to a graph are added recursively one
after another. The recursive row addition is implemented as outlined in Algorithm 2 on page 31.
The specific implementations of KeyFunction and DecomposeFunction are then used to tweak
the graph generation toward a certain goal.

29
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Key function design

The key function decides in which order rows are added: A scalar key is first computed for every
row. A generic sort function is then used to sort the rows by key function value. This can have a
big influence on the efficiency of the heuristic: If one row is added before another, no information
about the operations required in the latter is known to the algorithm during the inclusion of the
former. Adding the rows in order of increasing complexity lead to efficient operation sharing in
many practical cases. The complexity of a row is defined as the number of operations required
(in the worst case) to compute it. An upper bound for the amount of operations h required for
a row can be computed as

hmax = h+ + h× (4.1)

where h+ is the number of additions, which is the number of non–zero entries of the row minus
one. The multiplications required are denoted by h×. This number is equal to the amount of
non–zero, non–unity entries of the row. If this order of rows is used, the first rows added only
require few operations, which means the amount of operations that is added without considering
sharing is reduced.

Decomposition function design

Given a row R, the decision function decides whether to decompose this row into two summands
to be added or into an operand and a factor for multiplication. This decision should be done in
a way to maximize the number of operations reused from computations previously added to the
graph. Assume a row R is to be added to the graph G, which already contains all the operations
of previous row additions. The best case for the addition of this row is if only one operation is
required to add it to the graph. This can happen in two scenarios:

• Two rows R1, R2 are already part of the graph and R = R1 +R2

• R is a product of a scalar and a row which is already part of the graph

If such a case is found, the one operation is added immediately, since there can be no better way
to compute R. However, if neither of the above holds, R has to be decomposed into two rows R1

and R2, which in turn have to be added to the graph. Several methods can be used to select R1

(and with R2 = R−R1 also R2) in an efficient way:

• Split R in some general way, for example into sums with equal amounts of summands

• Look for the most complex already–present part of R in G, make this R1 and compute R2

via R2 = R−R1

• Iterate over all possibilities of splitting R, looking at which split results in the least amount
of operations added

The possibilities mentioned differ in terms of effectiveness, but also in terms of runtime. Splitting
R in a general way is the fastest, but also does not consider anything present in the graph. Looking
for the most complex already–present part does not take long, but might result in short–sighted
decisions. Iterating over all the possibilities results in exponential runtime due to combinational
explosion of the recursion, but appears to provide the best result. The actual implementation
of the heuristic can be configured to select between those methods or to try several and use the
best result.
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Data: Matrix U
Result: Directed graph G representing the computation of matrix U times a vector

1 V (G)← {}
2 E(G)← {}
3 Nr ← Number of rows in U

4 s← KeyFunction (U)
5 Us ← sort (U ,s)

6 for i← 1 to Nr do
7 ui ← i–th row of Us
8 AddRowRecursive(G,ui)

9 end

Algorithm 1: Greedy heuristic for graph building

1 Function: AddRowRecursive(G,R)
Data: Graph G to add row to
Data: Row R to add

2 if R is trivial, i.e. one of the inputs then
3 Do nothing and return
4 end
5 if R is already present in G then
6 Do nothing and return
7 end
8 (R1, R2)← DecomposeFunction (R)
9 AddRowRecursive (R1)

10 AddRowRecursive (R2)
11 Add node for R
12 Add edges R1 → R and R2 → R

13 end

Algorithm 2: AddRowRecursive implementation

4.1.3. Graph scheduling

After the graph has been constructed, the problem of assigning a computation cycle to each of
the nodes has to be solved. More formally, every node is assigned an integer l that specifies
how many cycles after the start of the computation it is computed. The inputs to the graph
are defined as having l = 0. A parallelism constraint is interpreted as saying “there can be at
most p nodes having the same l”. A simple algorithm can be used to schedule a given graph
relatively effectively. It follows the idea of “add those nodes that recursively have the most
successors first”. A more formal definition is given in Algorithm 3 on page 32. The two auxiliary
functions FindCandidates and SelectBestCandidate find a set of nodes eligible for scheduling on
the given latency level and then select the one which should be scheduled first, respectively. The
FindCandidates function iterates over all not yet scheduled nodes of the graph and finds those
that satisfy the following:

• All predecessors of the node are already scheduled
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• All predecessors of the node are scheduled at an earlier latency than the current one

Among those, the SelectBestCandidate function chooses the one with the most successors. The
successors are counted recursively up to the end of the graph. While no proof is attempted here
that this approach is optimal, practical tests showed good results.

Data: Graph G to schedule, Integer p specifying maximum parallelism
Result: Graph G is scheduled

1 l← 0 // Current latency level

2 s← p // Slots left on this level

3 n← |V (G)| // Nodes left to schedule

4 while n > 0 do
5 while s > 0 do
6 C = FindCandidates (G,l)
7 if |C| = 0 then
8 break // No candidates left, go to next latency

9 end
10 R← SelectBestCandidate (G,C)
11 lR ← l // Set latency of R to l
12 n← n− 1 // A new node was placed, one less left

13 s← s− 1 // A slot was filled, one less left

14 end
15 l← l + 1 // No slots left or no candidates, go to next layer

16 s← p // This means we have p slots left again

17 end

Algorithm 3: Heuristic graph scheduling algorithm



5. Fixed–point computations and error bounds

5.1. Introduction

If the projection computation is performed in fixed point arithmetic, errors accumulate in a
nontrivial manner. This leads to the question: Given a specified fixed point precision, what
is the worst–case deviation of the fixed point result from result computed in exact arithmetic?
This chapter investigates the sources of error and introduces a theoretical upper bound on the
maximum deviation (also referred to as error). This bound holds for all input points and can be
evaluated offline after the generation of the operation graph GU (x).

As shown in Section 2.3.2, all computations required to perform projections can be summarized
as one matrix–vector product of the form

r = U

[
x
1

]
(5.1)

This makes the projection of a point a three–step process:

1. Compute r

2. Determine which region contains the point x based on r

3. Select the projection results for that region among the entries of r

The fact that the vector r contains both the hyperplane evaluation results as well as the actual
projection computations can lead to two kinds of error:

• Direct computation errors (εdir): The projection result is built from entries of r. Since
these entries are inaccurate, the final result will be inaccurate. This error type encompasses
all errors in the computation of r and linear error analysis can be used to derive a bound.

• Region shift errors (εreg): The determination of which region contains the input point
is based on entries of r. Since they are inaccurate, this determination can yield a wrong
result, i.e. a point can be classified as being in a neighboring region. Linear error analysis
cannot be used here.

While direct computation errors occur for every input point, region shift errors only appear if a
point is near a region boundary. What follows is a short section on notation, then two sections
that treat these two error types in more detail and specify upper bounds on them. The chapter
then concludes with a section that assembles a total worst–case error bound from the individual
bounds, answering the question posed in the beginning.

The following sections rely on many basics related to fixed point arithmetic. Appendix A gives
a short introduction to fixed point arithmetic as well as a treatment of what errors occur in
computations involving fixed point numbers.

33
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5.2. Notation and assumptions

In the following, variables with a hat denote the fixed point version of the same variables without
hat, i.e. Û is the fixed point version of U . Conversion to fixed point is a scalar operation, it is
applied to matrices and vectors element–wise. Computations that involve both fixed point and
real variables (for example Ûx) are defined as exact arithmetic computations in which all the
fixed point variables are cast back to real numbers with the same value. For the sake of easier
notation, define

z :=

[
x
1

]
(5.2)

The following assumes that z ≡ ẑ, which means there is no error in the input point. Additionally,
the input points x (and with that, z) are constrained to be within a symmetric box by the fixed
amount of integer bits that are used to represent them. If for example the numbers have k integer
bits, they can only be in [−

(
2k
)
, 2k−1], which is approximated here as [−

(
2k
)
, 2k] for symmetry.

The set of x with all components in this range is denoted X. The actual computation of r is
performed using an operation graph as outlined in earlier chapters, denoted as

r̂ = ĜÛ (z) (5.3)

which means “G is evaluated in fixed point arithmetic using coefficients from Û”. The exact
arithmetic reference computation is denoted as

r = Uz (5.4)

While (5.4) is only the first step in the projection computation, it is the only step which is
different for exact and fixed point computations, which is why it is referred to as the reference
even though the actual reference computation is the combination of (5.4) with the other two
steps outlined in the introduction.

5.3. Direct computation errors

The maximum direct computation error of r is defined as

εdir := max
z∈X

∥∥∥Uz − ĜÛ (z)
∥∥∥
∞

(5.5)

where X is the allowed set of inputs to the projection computation. This represents the maximum
deviation of the fixed point graph evaluation from the original exact arithmetic reference. The
∞–norm is chosen to get the largest component of |r− r̂|, since this will be useful later. Next, a
derivation of an upper bound on εdir is presented.

5.3.1. Upper bound derivation

Since the result of the exact computation is known, determining εdir in (5.5) means finding out
what errors are introduced in the computation of ĜÛ (x). As demonstrated in Appendix A,
determining the computational error of a fixed point product that has inaccuracies in both input
operands is nontrivial. The only products that appear in ĜÛ (x) are products of entries of Û and

intermediate results. Therefore, if Û were free from errors, the graph would only have products
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of one correct and one inaccurate operand. Obviously, the conversion from U to Û cannot be
made error free unless U = Û . However, (5.5) can be bounded from above as follows:

εdir = max
z∈X

∥∥∥Uz − (Ûz − Ûz)− ĜÛ (z)
∥∥∥
∞

≤ max
z∈X

∥∥∥Uz − Ûz∥∥∥
∞︸ ︷︷ ︸

εdiscr

+ max
z∈X

∥∥∥Ûz − ĜÛ (z)
∥∥∥
∞︸ ︷︷ ︸

εcomp

(5.6)

Here, Ûz is defined as an exact computation with Û cast to real numbers. This upper bound
results in a new term εdiscr and a term εcomp that looks like (5.5), but with a Û instead of U . This
means that in εcomp, both of the terms in the subtraction use the same Û , which means when
comparing Ûz to ĜÛ , only errors accumulating in the variables, but no coefficient errors have to
be considered. This makes the computation of εcomp independent of z. Next, an algorithm for
this computation is presented. The computation of εdiscr is shown in the section after that.

Computation of εcomp

The basis for the determination of the worst–case direct computation error is the operation
graph created by solving (2.9). The order of operations and number of multiplications in GÛ
determines what errors are introduced. Instead of deriving a conservative analytical bound, a
simple algorithm can be used to recursively determine an upper bound on the worst–case error
at each node of the tree, starting from the results. The algorithm is shown in Algorithm 4 and
Algorithm 5 on page 36. Once this algorithm is performed, the worst-case error for each result
node (in number of least significant bits (LSBs), trivially convertible to a real number) is known
and can be written down as a vector:

η(Û , G) =



max
z∈X

∣∣∣(Ûz)1 −
(
GÛ (z)

)
1

∣∣∣
max
z∈X

∣∣∣(Ûz)2 −
(
GÛ (z)

)
2

∣∣∣
...

max
z∈X

∣∣∣(Ûz)r − (GÛ (z)
)
r

∣∣∣


:=


η1

η2
...
ηr

 (5.7)

where r is the amount of rows of U and (Ux)1 is the first component of Ux and so on. The
computation error is then obtained as follows:

εcomp = ‖η‖∞ (5.8)

Computation of εdiscr

This error is purely due to the quantization of U . It can be bounded from above as follows:

εdiscr(U, Û) = max
z∈X

∥∥∥(U − Û)z
∥∥∥
∞

:= max
z∈X
‖(∆U)z‖∞ (5.9)

Note that the components of z are bounded in absolute value. Each entry of Û deviates at most
1 LSB from the corresponding entry in U . This means (5.9) can be rewritten as

εdiscr(U, Û) = 2bi−1 max
ui∈∆U

|ui|1 (5.10)
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with bi, bf the numbers of integer and fractional bits used in the fixed–point representation of x
and ui is the i–th row of ∆U . The maximum error can be found by selecting the row of ∆U with
the largest 1–norm and then selecting the entries of x with maximum absolute value 2bi−1 and
the same sign as the entries in the selected row with which they are multiplied.

Data: Directed graph G representing the computation of matrix Û times a vector
Data: Worst–case error εmax

1 εmax ← 0 ;

2 for i← 1 to r do

3 ui ← i–th row of Û
4 ε← GetMaxError(G,ui)
5 εmax ← max(ε, εmax)

6 end

Algorithm 4: Maximum error determination algorithm

1 Function: GetMaxError(G,r)
Data: Graph G to trace error in
Data: Node r to start at

2 if r is trivial, i.e. one of the inputs then
3 return 0
4 end
5 if r is a product then
6 α← Factor this is a product with
7 ri ← Node name of variable input
8 return 1 + α( GetMaxError(G, ri))

9 end
10 if r is a sum then
11 r1 ← Node name of variable input 1
12 r2 ← Node name of variable input 2
13 return GetMaxError(G, r1) + GetMaxError(G, r2)

14 end

15 end

Algorithm 5: GetMaxError implementation
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R1

R2

Rb

Ra

Figure 5.1.: Region shift: The solid blue line represents a hyperplane evaluation in exact arith-
metic, and the dashed green line shows a possible inaccuracy if this evaluation is
performed in fixed point arithmetic. As one can see, points in the region Rb were
originally considered to be in R2, but are classified as being in R1 if the hyperplane
evaluation is performed in fixed–point arithmetic. The opposite effect happens for
points in Ra.

5.4. Errors due to region shifts

5.4.1. Source

Because the hyperplane evaluations for point location are also performed in fixed point arithmetic,
points that were originally part of one region can become part of another after fixed point
conversion. Consequently, the wrong projection function is evaluated for such points. The reason
for this misclassification of points is that slopes and offsets of halfplanes change if their coefficients
are quantized, which results in region boundaries moving. An example of this is shown in Fig. 5.1.
Define R1, R2 as the regions in which the point is if hyperplane evaluations are performed in exact
and fixed point arithmetic, respectively (this would correspond to a point in Ra in Fig. 5.1). If
the projection rules associated with R1, R2 are F1x+g1 and F2x+g2, respectively, then the error
due to a point from R1 being classified as in R2 is

ε = (F1x+ g1)−
(
F̂2x+ ĝ2

)
=
(
F1 − F̂2

)
x+ (g1 − ĝ2) := Fx+ g. (5.11)

Instead of F1x + g1 in exact arithmetic, F̂2x + ĝ2 is evaluated in fixed point arithmetic. The
circumstances under which this happens can be written down in a mathematical form. Define
the region description of R1 and R2 as A1x ≤ b1 and A2x ≤ b2 and the fixed point version of
the second region description as Â2x ≤ b̂2. A point fulfills the above requirements if at the same
time, A1x ≤ b1 and Â2x̂ ≤ b̂2 hold. If there is no such point, then no points move across this
particular region boundary. Note that the computation of Â2x ≤ b̂2 also has associated direct
computation errors. An example of a one–dimensional region shift and the associated error is
given in Fig. 5.2.
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âx = b̂ ax = b
Input point x0
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F1x + g1

F̂2x + ĝ2

Figure 5.2.: Region shift error in 1D: The exact arithmetic boundary is denoted ax = b,
whereas the fixed–point version is denoted âx = b̂. Ra is the region of misjudgement:
points within it are part of R1, but get classified as being in R2 by the fixed–point
arithmetic hyperplane evaluation. Two example projection functions F1x + g1 and
F̂2x+ ĝ2 are shown in the figure, as well as the maximum error ε that occurs due to
the misjudgement.
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5.4.2. Upper bounds

The region shift errors are a combination of errors within hyperplane evaluations and direct
errors as outlined in the previous section. The error of interest is the one between computing
everything in exact arithmetic (reference conditions) and evaluating everything in fixed point
arithmetic (actual in–circuit conditions). A relatively easy to evaluate upper bound for this error
is the maximum offset resulting from using the wrong projection formula added to the maximum
error introduced when computing the actual projection formula in fixed point.
Consider two regions R1 and R2 as defined in Section 5.4.1. In the case outlined in that Section,
instead of F1x+g1 in exact arithmetic, F̂2x+ ĝ2 is computed in fixed point. While the worst–case
difference between F2x+ g2 in fixed point and exact arithmetic is computed using the algorithm
in the previous section, the error due to using the wrong projection rule has yet to be found. The
worst case can be found using an optimization problem:

max
x∈X

‖Fx+ g‖22

s.t. A1x ≤ b1
Â2x ≤ b̂2 + 1εdir(U, Û)

(5.12)

where F, g,A1, A2, b1, b2 are as defined in Section 5.4.1 and U as defined in the introduction. The
second constraint incorporates the direct computation error in computing Â2x̂ − b̂2 by adding
εdir(U, Û) to all entries of b̂2, covering all possible computational errors. The true worst–case
error would be the highest error value found across all region combinations. Let i, j ∈ 1, . . . , Nr

and i 6= j be indeces of two regions. The worst–case region shift error εreg is defined as

εreg := max
i∈1,...,Nr
j∈1,...,Nr


max
x∈X

‖(Fi − F̂j)x+ (gi − ĝj)‖22

s.t. Aix ≤ bi
Âjx ≤ b̂j + 1εdir(U, Û)

 (5.13)

Since the number of region combinations grows quadratically in the number of regions (and the
number of regions grows exponentially in the number of problem dimensions), many instances of
(5.12) have to be solved. Unfortunately, the maximization of a norm is not convex, and therefore
direct solution is impractical. However, an upper bound can be found by decomposing Fx + g
into its rows as follows:

Fx+ g :=


f1x+ g1

f2x+ g2
...

fnx+ gn

 (5.14)

where f1 is the first row of F and so on. One can then write

max
x∈X
‖Fx+ g‖22 ≤

∥∥∥∥∥∥∥∥∥∥∥


max
x∈X
|f1x+ g1|

max
x∈X
|f2x+ g2|

...
max
x∈X
|fnx+ gn|



∥∥∥∥∥∥∥∥∥∥∥

2

2

(5.15)

where X is the feasible set of x. The above holds since

‖Fx+ g‖22 =
n∑
i=1

(fix+ gi)
2 (5.16)
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and the sum of maxima is larger than a maximum over a sum:

max
x∈X

n∑
i=1

(fix+ gi)
2 ≤

n∑
i=1

(
max
x∈X
|fix+ gi|

)2

(5.17)

This holds since each individual term on the right side is by definition larger than its equivalent
on the left:

(fix+ gi)
2 = |fix+ gi|2 ≤

(
max
x∈X
|fix+ gi|

)2

∀x ∈ X (5.18)

The result of (5.12) can now be bounded from above using the sum–of–squares of the results of
the following set of LPs:

max
x

|fix+ gi|

s.t. A1x ≤ b1
Â2x ≤ b̂2 + 1εdir(U)

(i ∈ 1, . . . , n) (5.19)

where the absolute value function can be implemented by solving (5.19) once for both the objec-
tives fix+ gi and −(fix+ gi) and taking the maximum of the two as the final result.

This set of LPs is now almost trivial to solve, which means it is also tractable to solve it for
all possible region combinations in the problem sizes this report is concerned with. For many
combinations of regions, there will be no feasible point. This happens if for example two regions
are not adjascent and the fixed-point rounding errors are not enough to make them overlap. In
this case, the worst–case error due to a shift between those two regions is simply 0.

5.5. Total error

Either point location has the same result in fixed point and exact arithmetic, in which case the
total error is only the error due to the fixed point evaluation of Fix + gi for that region. In the
second case, the same error occurs, but additionally, the error arising due to the wrong i being
chosen has to be added.

The presented error bound can be evaluated offline for a given matrix U . An example eval-
uation is presented in Chapter 7.
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6. Toolchain and target hardware overview

The theoretical optimizations presented in Part I were implemented as an automated toolchain.
This chapter presents a conceptual high–level overview as well as an overview of the selected
target platforms. More practical, academically less relevant information on library dependencies,
platform specifics and miscellanea are outlined in the documentation for the toolchain software
project, which is delivered with the code itself.

6.1. Framework and features

The toolchain was implemented in Python (version 3) [1], using NumPy [27] and ECOS [13] for
linear algebra and linear programming and NetworkX [18] for graph manipulation. A full list of
software dependencies is given in the documentation of the code. While originally designed to
handle projections onto affine sets, it now supports any piecewise affine function. A few important
features are listed below:

• C and VHDL code generation backends

• Fixed and floating point support for C, fixed point only for VHDL

• Automatic compilation, simulation and verification for both backends

• Semi-automatic profiling for both backends

• Evaluation of worst–case errors due to fixed–point arithmetic

While the toolchain as it is only runs on Linux, the dependencies on Linux are only due to the
interface to other programs like Gurobi, Vivado, the ARM toolchain and MATLAB. The Python
code itself was kept platform–independent.

6.2. Toolchain components and data flow

Figure 6.1 on page 45 gives an overview of the components present in the toolchain. The input
to the toolchain is a description of a set to project on (Ax ≤ b), however the code immediately
uses MPT to convert this into a PWA function, which means general PWA functions can easily
be used as input as well. The following sections give a short summary for the main components
of the toolchain.

6.2.1. Frontend

The frontend launches MATLAB and uses MPT [20] and YALMIP [23] to generate a PWA
function for projection onto the given set and various other results, mentioned in detail in the
code documentation. A matrix of hyperplane evaluations and projection rules to be computed
is generated (U) along with a dictionary that describes which hyperplane evaluation results lead
to what projection result per variable (Dmux). Since the frontend is the only place MATLAB is
used, the frontend also runs the reference code generation toolboxes (MPT and MOBY–DIC).
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6.2.2. Optimization

The optimization tool takes the matrix created by the frontend as input and attempts to find
an efficient way to compute products of this matrix with the input vector. This optimization
is performed by either solving a MILP using the Gurobi [17] or GLPK [4] solvers or with the
heuristic presented in Chapter 4. If the VHDL code generation was selected, the operation
graph is optimized to have the lowest possible latency and few operations. If the C backend
was selected, focus is only put on having few operations in the graph, and the resulting graph
is already serialized to one operation per computational cycle. The result of this optimization is
given as a directed graph data structure.

6.2.3. Backend

The selected backend takes the computation description created by the optimization tool and
generates code that performs the aforementioned operations. For the VHDL backend, a pipelined
architecture exactly corresponding to the operation graph is implemented. All end results that are
already available somewhere within the graph are buffered with registers to make them available
in the same cycle as the last result computed. The selection of results is implemented as a single–
cycle muxing network. No attempts to optimize this muxing network are made here, since circuit
synthesis tools already implement sophisticated methods for lower–level optimizations. The C
backend implements the serialized graph as a series of C expressions, storing intermediate results
in static variables. The muxing network is then implemented as a binary tree traversal which
works exactly the same as the MPT–generated code.

6.2.4. Verification

While analytical verification can be used to show that the operation graph created by the opti-
mization indeed represents the matrix computation it was generated for, all other steps of the
toolchain have to be verified using numerical verification. For this purpose, the frontend already
generates a set of pairs (x0, xp) that are used to verify the generated code numerically.

6.3. Hardware targets

6.3.1. STM32F407 ARM embedded processor

This embedded processor has an ARM Cortex–M4 architecture with a floating point unit. This
architecture has a 3–stage pipeline and branch speculation. More information on the Cortex–M4
architecture can be found in [6]. The tests conducted were performed using bare–metal code,
meaning no operating system and no standard library were used. This means that timing results
have no variance and are accurately reproducible. As test hardware, an STMF4 Discovery board
was used, as shown in Fig. 6.2 on page 46.

6.3.2. Xilinx Zynq–7020 SoC

The Xilinx Zynq platform is a family of system–on–chip (SoC) devices which feature an FPGA
as well as an ARM Cortex–A9 microprocessor. For the purposes of this thesis, only the FPGA
portion was used. An overview of the resources available on the FPGA portion is given in
Table 6.1. As can be seen, the size of this FPGA is already quite substantial, however Xilinx also
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Resource Available amount

Registers 106400

Look–Up Tables 53200

DSP slices 220

Table 6.1.: Resources available on the Zynq–7020 FPGA portion

has devices with five times as many LUTs and registers and 10 times as many DSPs available.
As a development platform for this thesis, the Zedboard was used, shown in Fig. 6.3 on page 46.
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Analytical
verification

C code

Operation graph: GU (x)

Muxing info: Dmux

Computations: U
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1

]
Muxing info: Dmux

Optimization

Backend: MCU

Input:
R := Ax ≤ b

Numerical
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VHDL code

Backend: FPGA

Frontend

Numerical
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Figure 6.1.: Toolchain overview: This figure depicts the flow of data and the different formats
used in between the tools. Tools are shown in ellipses, whereas intermediate data is
in boxes. The resulting code can be directly passed on to compilers for the respective
platforms.
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Figure 6.2.: STM32F407 Discovery board

Figure 6.3.: Zedboard
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7. Results

This chapter quantitatively compares the circuits and code generated by the toolchain with
reference toolchains that serve similar purposes. First, a few practically interesting sets are
presented. Next, comparisons for these sets are presented in separate sections for the C code
output and the VHDL circuit output. The chapter concludes with sections giving practical
examples for the heuristic and error bound computation.

7.1. Benchmark sets

Due to the nature of this toolchain, it is particularly useful for projections that lend themselves
to operation sharing. A few suitable, practically relevant sets are presented here.

7.1.1. Ordered set

A set that often appears in practical applications like the selection of switching times in power
electronics equipment is the so–called ordered set, defined in n dimensions as

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ x∗. (7.1)

Note that the two–dimensional case of this was already used as an example in Section 2.2. A
variation on this would be the non–unit slope ordered set:

0 ≤ α1x1 ≤ α2x2 ≤ · · · ≤ αnxn ≤ x∗ (7.2)

with αi > 0 ∀i. However, without any assumptions on the αi, it is difficult to make relevant
benchmarks: While a particular set of αi might result in a high degree of operation sharing and
a small circuit, another set might result in a big circuit.

7.1.2. Hexagon

The hexagon in two dimensions is a set that appears often in power electronics. It can be
described as 

1 cot(60)
−1 − cot(60)
1 − cot(60)
−1 cot(60)
0 1
0 −1

x ≤


1
1
1
1√
3/2√
3/2

 , cot(α) =
sin(α)

cos(α)
(7.3)

Rotated versions of this set are also practically relevant.
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Figure 7.1.: Visualization of (7.6) for x ∈ R. Instead of projecting every x < l onto l and every
x > u onto u, constraint violations are decreased by a factor, leading to x0 being
projected onto xp < l. Simple trigonometric considerations can be used to show that
|x0 − l| / |xp − l| = 1 / cos2 (arctan(α)). In this figure, α was set to 1, leading to a
constraint violation reduction by a factor of 2.

7.1.3. Box

Box constraints are another case of a set that requires almost no computations if it is aligned to
the coordinate axes. In dimension n, box constraints can be written as

l ≤ x ≤ u (7.4)

for l, u, x ∈ Rn and l, u constant. Rotated versions of the box constraints can also be considered:

l ≤ Rx ≤ u (7.5)

with R ∈ Rn×n being constant a rotation matrix. However, the same considerations as the ones
for the non–unit slope ordered set apply: Without further specifications on the angles, no real
benchmark statements can be made.

7.1.4. Soft constraint

In many applications, constraints do not have to be strictly met. This can be incorporated into
the constraints by adding slack variables to them. For example, the box constraint could be
expressed in a soft version as follows:

l − αs ≤ x ≤ u+ αs (7.6)

with s ∈ Rn and α ∈ R+ \ 0 a coefficient. Soft problems are still affine, but the number of
variables in these problems increases by the number of slack variables added. The effect of this
addition is demonstrated in Fig. 7.1 for n = 1.

7.1.5. Output constraint

Another fairly typical set arises when an output of a system is a linear combination of states. If
for example an LTI system has two states x1, x2 and its output is defined by y = c1x1 + c2x2

with an allowed range of [l, u], the set to project on is

l ≤ c1x1 + c2x2 ≤ u. (7.7)
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7.2. Embedded C code backend

7.2.1. Reference implementation

The reference used to compare the C code to was the MPT [20] function to generate C code
from a binary tree. It serves as a particularly good reference since traversing binary trees is the
current state–of–the–art in embedded PWA evaluation. MPT only generates C code that works
with double precision floating point numbers. It is trivial to patch the generated code to use
single precision floating point, but the generation code would have to be entirely rewritten to
generate code that works in fixed–point arithmetic. The C code implementations generated by
the novel approach simply compute all the operations in the graph in order and then traverse the
same binary tree as the one used by the MPT generated code based on the computation results.
Therefore, the toolchain code is expected to be faster only where the speedup due to operation
sharing and lack of branch statements during the computations outweighs the drawback of com-
puting all hyperplane evaluations and functions.

Since not all nodes of the binary decision tree are at the same depth, there are regions that
take more decisions to find than others. A region that has the highest depth in a given tree will
be called a worst–case region here. Points within that region are all worst–case points.

7.2.2. Comparison results

Code was generated for the sets outlined in Section 7.1 and timed for a worst–case point on the
STM32F4 Discovery board. The projection was repeated 100000 times and its runtime measured
using a logic output of the board and a logic analyzer. The resulting time was then divided by
100000 to get the runtime of one projection. This averaging was done to increase measurement
precision and remove any potential bias by surrounding code. A summary is given in Table 7.1.
All measurements were taken with -O3 turned on in the compiler, which means it should opti-
mize the code for both size and speed. This setting is most commonly used in practice. A plot
that compares implementations of the ordered set for various dimensions is shown in Fig. 7.2 on
page 53.

As can be seen in the table and the plot, the MPT reference code is mostly faster, in addi-
tion to being less sensitive to rotations of the sets. The most prominent case of the dependence
on rotations is the rotated 3D box in the table: For a rotation of 45 degrees, many hyperplane
evaluations only differ in some coefficient signs, whereas for a random rotation (i.e. 26◦) the
hyperplanes have different slopes and hence the degree of operation sharing is far lower. Con-
versely, for cases that hardly require any operations at all, the code generated by the toolchain
is consistently faster than the MPT reference. Since in the C backend, more operations translate
into longer runtimes, these measurements are therefore consistent with the expectations outlined
in the previous section.

7.3. VHDL code backend

7.3.1. Reference implementation

For circuit generation, the recently released MOBY–DIC toolbox [3] was used. This toolbox
implements the same binary tree traversal as the MPT reference. An affine function computa-
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Set MPT time Toolchain time

Hexagon (2D) 1.6µs 2.2µs

Hexagon (2D) rotated 26◦ 1.6µs 3.4µs

Box (2D) 1.0µs 0.8µs

Box (3D) 1.9µs 1.0µs

Box (3D) rotated 26◦ 1.9µs 8.3µs

Box (3D) rotated 45◦ 1.9µs 2.5µs

Box (4D) 3.0µs 1.3µs

Output constraints (2D) 1.1µs 1.0µs

Soft output constraints (3D) 6.3µs 2.2µs

Table 7.1.: Time per worst–case point projection for benchmark sets (C backend)

tion unit is used iteratively to perform the hyperplane evaluations and compute the projection
function. This iterative architecture makes the circuits impossible to pipeline. MOBY–DIC was
designed for general PWA functions and small circuit size, which explains why it is reasonable
that the software implemented in this thesis can outperform it for projections, which have more
structure. Additionally, the implementations in this thesis were designed primarily for speed.
A comparison with [25], another state–of–the–art toolchain, was not done because no published
code for their toolchain was found. However, from the architecture designs in the paper, it is eas-
ily derivable that their circuitry would be orders of magnitude larger than both MOBY-DICs and
the ones generated in this thesis, since no operation sharing is attempted at all. The generated
VHDL code for both reference and toolchain was implemented on the Zynq FPGA described in
Section 6.3.2 using the Xilinx Vivado software under the same clock constraint conditions. The
cycle times were extracted from the designs, and proper functioning of the generated circuits for
both MOBY–DIC and the software from this thesis was confirmed using behavioral simulation
and numerical verification of the results. The code generated in this thesis was also implemented
on the actual Zynq board and verified in hardware–in–the–loop experiments.

7.3.2. Comparison results

Comparison results for the benchmark sets are given in Table 7.2 on page 52. A plot for the
ordered set in various dimensions is given in Fig. 7.3 on page 54. As can be seen in the table and
the figures, the toolchain is faster by a large margin in every case. This is no surprise, since the
toolchain creates circuity that computes the projection in the minimum possible amount of cycles
by design. One can also see that while hardware requirements generally increase, sets which are
aligned to the coordinate axes are an exception. Additionally, the circuitry generated in this
thesis is pipelined, which means if several independent projections are performed, the number
of projections per clock cycle approaches 1. This pipelining cannot be added to any recursive
implementations based on binary tree traversals, including MOBY-DIC.

7.4. Heuristic

The MILP representation presented in Chapter 3 is limited to using multiplications by constants
that are already present in the original matrix U and additions. While it could be extended
to allow for subtractions as well, this would roughly double the amount of binary variables and
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Set Cycles DSP LUT (%) Register (%)

Hexagon (2D) TC 3 6 0.95 0.55
MD 14 2 0.28 0.15

Hexagon (2D) rotated 26◦ TC 3 18 2.06 1.17
MD 14 2 0.32 0.15

Box (2D) TC 1 0 0.05 0.10
MD 12 2 0.30 0.15

Box (3D) TC 1 0 0.08 0.14
MD 18 3 0.28 0.20

Box (3D) rotated 26◦ TC 3 36 4.30 2.97
MD 18 3 0.43 0.20

Box (3D) rotated 45◦ TC 3 7 2.59 1.48
MD 18 3 0.37 0.21

Box (4D) TC 1 0 0.10 0.19
MD 24 4 0.76 0.27

Output constraint (2D) TC 3 5 0.33 0.34
MD 8 2 0.24 0.15

Soft output constraint (3D) TC 3 9 1.65 1.18
MD 16 3 0.45 0.23

Table 7.2.: VHDL timing and resource comparison for benchmark sets. “TC” denotes rows
with toolchain implementation results, “MD” denotes rows with MOBY-DIC im-
plementation results. The output constraint was tested with example constants
c1 = 22, c2 = 4.9, l = −400, u = 1000.
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Figure 7.2.: C generation, ordered set
The code was compiled with -O3 turned on in the compiler. Experiments with -O0
to -O1 resulted in a different plot with MPT being faster for all but the 2D and
3D cases. The large time increase for 6D in the toolchain timings are most likely a
secondary effect like memory blocking issues or unlucky branch prediction.

add many more constraints. The inclusion of arbitrary factors for multiplication would make
the problem into a quadratically constrained integer program, which would likely lead to even
longer solution times. On the other hand, the heuristic outlined in Chapter 4 can be extended
to using subtractions as well as multiplications by arbitrary factors simply by extending the row
decomposition function to also consider these cases. The inclusion of these nonlinear aspects can
be selectively turned on in the implemented software toolchain. As shown in Fig. 7.4 on page 55,
the heuristic is indeed very effective.

7.5. Error bound

The error bound was tested with 100000 evenly spaced points on the 2D and 3D ordered sets for
various fractional bit lengths. The results are plotted in Fig. 7.5 on page 56. As expected, the
bound goes down monotonically if the number of fractional bits is increased.
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Figure 7.3.: Comparison of toolchain with MOBY-DIC for ordered set
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Figure 7.4.: Comparison of MILP solution process with heuristic. The heuristic takes less than
a second to run, while the MILP solution process stops making progress after a few
minutes. The shown plot is for the 3D ordered set, a relatively small problem. The
other benchmark sets yielded qualitatively similar results.
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Figure 7.5.: Error bounds for fixed–point implementations
The upper plot shows comparisons of error bound, reference and toolchain for the
2D ordered set, the lower one the same comparison for the 3D ordered set. The
errors shown for the reference and toolchain are worst–case errors found among all
projected points. While this example does not make any general statement about
the error bound, it shows that the bound behaves as expected.



8. Discussion and Outlook

8.1. Discussion

The benchmarks presented in Chapter 7 demonstrated that for some sets, dramatic speedups over
current reference implementations can be achieved at comparatively small circuit size increases.
The demonstrated speedup can be achieved for any set, since the toolchain designs a circuit that
computes all results with the lowest latency possible. What varies is the size of the resulting
circuit: If many intermediate results can be reused, the generated circuit can be the same size
or even smaller than the reference decision tree based solutions. If however little sharing can
take place, circuits quickly become impractically large. Nevertheless, compared to the existing
approaches that reach similar computation speeds (i.e. [25]), circuit size is still very manageable.
The presented benchmark comparisons were done with the MILP optimization disabled and only
the heuristic developed in this thesis applied, since the MILP optimization would not have been
tractable for the higher dimensions. This demonstrates that the implemented heuristic already
yields useful results even though it is rather basic.

The pipelined nature of the generated circuits makes them a good choice for cases where many
projections on independent points are required: With a growing number of independent pro-
jections, the number of cycles spent per projection approaches one. A practically important
application of this feature is multistage MPC, as outlined in Chapter 1. Pipelining is not usable
in any of the existing implementations.

The tests also showed that generating C code that applies operation reuse is of little benefit
in embedded architectures. This was to be expected, since current compilers already apply good
heuristics for intermediate result reuse. Additionally, current embedded processors have short
pipelines, which means the increased amount of branching statements in the reference implemen-
tations are no big drawback compared to the mostly branchless computations performed by the
code generated in this thesis.

Overall, this thesis demonstrated that for some practically relevant sets, problem–specific au-
tomatic circuit generation can in fact be very beneficial and significantly outperform current,
more general reference implementations, while making better use of scarce resources. The im-
plemented software toolchain is modular and extensively documented, making it a good starting
point for further investigations related to operation reuse in projection computations.

8.2. Outlook and possible future work

A large part of the theory presented in this report is concerned with writing the problem of
optimal operation sharing as a mixed integer linear program. While the underlying problem is
NP–complete and hence intractable for everything but very small problems, there exist good
heuristics for solving such problems approximately. More research into applying such methods
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to the problem at hand could lead to further circuit size reductions in the generated implemen-
tations. The presented representation of operation graphs can also be used as a starting point
for other related problems.

A prominent feature of the implemented toolchain is the dependence of circuit size on the align-
ment of the projection target sets to the coordinate axes. This suggests that it might be beneficial
to investigate the application of a rotation to points before they are projected, leading to more
aligned sets and leaner circuits.

To make the concept of operation sharing also applicable to C code generation, the combina-
tion of decision tree traversal with operation reuse could be investigated. This approach could
potentially reduce the time per node in the tree traversal while keeping the original tree traversal
mechanism in place.

Since the toolchain is not limited to projection computations, but rather designed to exploit
structure in them, further research could be done to find other classes of functions for which it
works well. Another approach would be to try to extend the frontend to exploit structure found
in other function classes.
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A. Fixed–point computations and error sources

This appendix gives some background on what errors can occur in elementary fixed–point com-
putations and how they can be bounded. The knowledge presented in this report is common
knowledge amoung circuit designers and in no way introduced by the author.

A.1. Computer representation of numbers

This section gives a very short introduction to how numbers are represented in software and
circuits. It also outlines the concepts of floating and fixed point arithmetic. Nothing presented in
this section is new or introduced by the author, but it is essential knowledge for the error bound
analysis presented in this thesis. The purpose of this section is to outline the most important
facts. There are various works in literature that give a more complete treatment of the subject,
for example [28].

In software and circuits alike, numbers are represented using base 2. An integer number is
therefore given by a sequence of bits (also called in binary), each of them given a weight. By
convention, the lowest weight is written on the right. The notation used in this report is to add
a subscript B to all constants written out in binary, whereas no subscript means the number is
to be read as a decimal number. A few examples:

2 = 10B = (1× 21) + (0× 20)

28 = 11100B = (1× 24) + (1× 23) + (1× 22) + (0× 21) + (0× 20)
(A.1)

To extend this notation to be able to use fractional numbers, a decimal point is added after the
bit sequence. More bits are then appended with weights 2−1, 2−2 and so on. For example,

2.25 = 10.01B = (1× 21) + (0× 20) + (0× 2−1) + (1× 2−2) (A.2)

This principle of binary sequences with weights is used in all number representations treated
in this report. What follows are two sections on specific number formats used throughout the
toolchain: Floating point numbers and fixed point numbers.

A.1.1. Fixed–point numbers

In fixed–point numbers, the length of the bit sequence as well as the number of bits after the
decimal point are specified and constant. For example, one might specify that numbers have 8
bits before the decimal point and 8 bits after it. The notation used for number widths in this
report is shown below:

FI(i, f) := Numbers with i integer bits and f fractional bits (A.3)

By convention, numbers with a specified width are written down in full. For example,

2 ∈ FI(8, 8) = 00000010.00000000B

2 ∈ FI(4, 2) = 0010.00B
(A.4)
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and so on. This fixed amount of integer and fractional bits results in a fixed, limited range
of representable numbers with a fixed resolution: For example, FI(8, 8) has a range from 0 to
(28 − 2−8) with increments of 2−8 = 0.0039062 for unsigned numbers, and the same increments
over a −128 to 127 range for signed numbers. Signed numbers are represented using the two’s
complement, the details of which are irrelevant to the error bound analysis. A hat is used to
denote fixed point versions of constants:

Â := Fixed point version of A (A.5)

The fixed point versions of variables are by convention rounded down (toward negative infinity)
and hence are at most one LSB off per component.

A.1.2. Floating point numbers

Floating point numbers represent a given number as three separate components: a sign, an
exponent and a mantissa. These components have a fixed amount of bits. From these components,
the actual number is obtained as follows:

Number = (−1)Sign ×Mantissa× 2Exponent (A.6)

There are several standards like IEEE 754 single–precision binary floating point [2] and almost
all software and circuitry complies with them. The details of these standards are not relevant
here, what is relevant is the characteristics of floating–point numbers: Since the decimal point
can effectively be moved around by changing the exponent, a very wide range of numbers can be
represented. While a number cannot be at the same time very large and very precise, floating
point numbers have practically speaking almost no range limitations. However, there are various
other numerical issues with floating point numbers which are not discussed here.

A.1.3. Conversion from floating to fixed point

While floating point numbers look superior in terms of range and resolution, computations using
such numbers are more complex to perform. Modern processors have dedicated floating point
units (FPUs) for this purpose. However, if custom circuitry is designed (and fixed point numbers
are precise enough), it is often beneficial to use a fixed–point number representation for smaller,
faster circuits.

Since fixed–point numbers have only finite resolution, a floating point number can not always
be exactly represented by them. The usual convention of converting a number to fixed point is
finding the fixed point representation closest to it. For example, if 2.1 were to be converted to
FI(4, 3), the result would be 0010.001B = 2.125. If more fractional bits are allowed, the number
can be represented more exactly, for example in FI(4, 12): 0010.000110011010B = 2.1001. The
difference between the actual number and the number in the chosen fixed point representation
is always less than the weight of the rightmost bit, because that is the difference between two
representable numbers. This rightmost bit is also called the least significant bit or LSB.

A.2. Error sources in fixed point computations

• Quantization errors: Conversion from floating point to fixed point can introduce at most
one LSB error per converted number
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• Accumulation errors: If two terms with errors are added, the errors are added as well.
Similarly, errors propagate through products. In the worst case, the errors have the same
sign and the total error is the sum of the previous ones.

• Truncated products: The product of two numbers in FI(i, f) is in FI(2i, 2f) if the
product is computed in full precision. However, circuits that perform many operations
after each other usually concatenate numbers back to the size of the inputs. This means
the uppermost i bits as well as the lowermost f bits are thrown away. This can result in
at most one LSB of error every time a product is computed.

Consider the following example for the amplification of errors: Assume a product of a constant
coefficient c1 and a variable input z is to be computed. Also assume that in the fixed point
computation, c1 and z have errors εc and εz, respectively. The product then becomes:

ĉ1(z + εz) = (c1 + εc) (z + εz) = c1z + (c1εz + zεc + εcεz) (A.7)

This makes the worst–case value of the error introduced in this product dependent on the input
itself and not just its error, which is inconvenient. However, if the constant coefficient can be
considered error–free, (A.7) becomes

ĉ1(z + εz) = c1 (z + εz) = c1z + c1εz (A.8)

in which case the error in the result is simply the input error times the constant coefficient. This
means the error in a computation can be expressed independently of the inputs.




