
DISS. ETH NO. 27995

Productive FPGA Programming

for High-Performance Computing

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Johannes de Fine Licht

Master of Science in Computer Science

University of Copenhagen

born on 08.11.1991

citizen of Denmark

accepted on the recommendation of

Prof. Dr. Torsten Hoefler (ETH Zurich), examiner

Prof. Dr. Gustavo Alonso (ETH Zurich), co-examiner

Dr. Michaela Blott (Xilinx), co-examiner

Dr. Michael Kinsner (Intel), co-examiner

2021





“I will go mad!” [Arthur] announced. (...)

“I went mad for a while,” said Ford, “did me no end of good.”

Life, the Universe and Everything

Douglas Adams
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Abstract
For decades, the computational performance of processors has grown at a faster rate than

the available memory bandwidth. As a result, most transistors in modern processors are

spent on managing data movement via caches and registers. Spatial computing archi-

tectures can omit general purpose caches, registers, and control logic by implementing

application-specific dataflow, where computations are laid out spatially. Programmable

spatial architectures, such as FPGAs, can implement application-specific dataflow, but

the steep learning curve of hardware programming prevents widespread adoption in high-

performance computing (HPC). In this dissertation, we address this programmability gap.

High-level synthesis (HLS) has increased productivity when designing FPGA architectures,

but traditional software optimizations are insu�cient to implement high-performance

hardware architectures. To alleviate this, we present a set of key transformations for

HLS, targeting scalable architectures for HPC applications, identifying classes of transfor-

mations and their e↵ect in hardware, and boost the productivity of HLS developers with

the hlslib open source project of productivity tools. Using these techniques, we present a

model-based, end-to-end example of optimizing matrix multiplication for FPGAs, which

yields competitive performance in practice and is published as an open source project.

Venturing beyond HLS, we propose a new way to develop, optimize, and compile FPGA

programs. The Data-Centric parallel programming (DaCe) framework allows applica-

tions to be defined by their dataflow and control flow through the Stateful DataFlow

multiGraph (SDFG) representation, exposing a plethora of optimization opportunities.

We unify general, domain-specific, and platform-specific optimizations in this flow, and

present the FPGA backends of DaCe, emitting e�cient HLS code for both Xilinx and Intel

devices. Building on this infrastructure, we present StencilFlow, an end-to-end framework

that maps general directed acyclic graphs of heterogeneous stencil operators to distributed

FPGA architectures, maximizing temporal locality and ensuring deadlock freedom. We

show the highest performance recorded for stencil programs for either FPGA vendor to

date, and study a complex stencil program from a production weather simulation appli-

cation. With the toolbox of transformations, open source software, and programming

abstractions provided in this dissertation, we contribute to the productivity of HLS de-

velopers, performance engineers, domain scientists, and compiler engineers alike, bridging

the gap for bringing spatial computing systems into the mainstream of HPC.
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Zusammenfassung

Die Rechenleistung von Prozessoren wächst seit Jahrzehnten schneller als die verfügbare

Speicherbandbreite. Infolgedessen werden die meisten Transistoren in modernen Prozes-

soren für die Verwaltung der Datenbewegung über Caches und Register verwendet. Spa-

tial Computing-Architekturen können auf Allzweck-Caches, -Register und -Steuerlogik

verzichten, indem ein anwendungsspezifischer Datenfluss implementiert wird, bei dem

Berechnungen in Schaltkreise übersetzt werden. Programmierbare Architekturen wie FP-

GAs können anwendungsspezifischen Datenfluss implementieren, aber die steile Lernkurve

der Hardwareprogrammierung behindert eine weit verbreitete Einführung in High-Performance

Computing (HPC). In dieser Dissertation schlagen wir Lösungen vor, die das Program-

mieren von FPGAs vereinfachen. High-Level Synthesis (HLS) hat die Produktivität bei

der Entwicklung von FPGA-Architekturen erhöht, aber bekannte Softwareoptimierungen

reichen nicht aus, um leistungsstarke Hardwarearchitekturen zu implementieren. Wir

präsentieren eine Reihe zentraler Transformationen für HLS, die auf skalierbare Architek-

turen für HPC-Anwendungen abzielen, wir identifizieren Transformationsklassen und deren

Auswirkungen in der Hardware, und steigern die Produktivität von HLS-Entwicklern mit

dem Open-Source-Projekt hlslib. Mit diesen Techniken konstruieren wir ein komplettes

Beispiel für die Optimierung von Matrixmultiplikation, das konkurrenzfähige Leistung in

der Praxis erbringt und als Open-Source verö↵entlicht wird. Wir gehen über HLS hin-

aus und schlagen einen neuen Ansatz zur Entwicklung, Optimierung und Kompilierung

von FPGA-Programmen vor. Das Data-Centric Parallel Programming (DaCe)-Framework

ermöglicht die Definition von Programmen via ihrem Datenfluss und Kontrollfluss durch

die Stateful DataFlow multiGraph (SDFG)-Repräsentation. Hierdurch wird eine Vielzahl

von Optimierungsmöglichkeiten o↵engelegt. Wir vereinen allgemeine, domänenspezifische

und plattformspezifische Optimierungen in diesem Prozess und präsentieren die FPGA-

Backends von DaCe, welche e�zienten HLS-Code sowohl für Xilinx-, als auch Intel-Geräte

ausgeben. Basierend auf dieser Infrastruktur präsentieren wir StencilFlow, ein Framework

das beliebige gerichtete azyklische Graphen heterogener Stencil-Operationen auf verteilte

FPGA-Architekturen abbildet, die Temporal Locality maximiert und Deadlock-Freiheit

gewährleistet. Wir zeigen die bisher höchste Leistung für Stencil-Programme für beide

FPGA-Anbieter und untersuchen ein komplexes Stencil-Program aus einer in Verwen-

dung stehenden Applikation zur Wettersimulation. Mit dieser Toolbox von Transformatio-
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nen, Open-Source-Software und Programmierabstraktionen, die in dieser Dissertation er-

stellt werden, tragen wir zur Produktivität von HLS-Entwicklern, Performance Engineers,

Naturwissenschaftler und Compiler-Entwicklern bei und tragen damit dazu bei Spatial

Computing-Systeme in den Mainstream der HPC zu führen.
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Chapter 1

Introduction

1.1 The Evolution of Hardware Scaling

Until the mid-2000’s, the evolution of computing hardware was dominated by Dennard

scaling [45], which postulates that the power density of transistors stay constant when

the feature size is shrunk, while voltage and current is reduced, improving performance

due to higher transistor counts and higher operating frequency, without increasing the

e↵ective power consumption. This was in turn fueled by Moore’s “law”, which was, in

practice, an empirical observation followed by a qualitative guess on how the trend might

continue [108]:

“The complexity for minimum component costs has increased at a rate of

roughly a factor of two per year (see graph). Certainly over the short term

this rate can be expected to continue, if not to increase. Over the longer term,

the rate of increase is a bit more uncertain, although there is no reason to

believe it will not remain nearly constant for at least ten years.”

Gordon Moore made this statement in 1965, thus making no attempt at projecting be-

yond 1975 (a time frame in which, indeed, his projection held remarkably well). However,

Moore’s law is still being cited when discussing the trend in reduction of transistor den-

sity 46 years after its stated expiry. Whether it is alive, dead, or anything in between is

claimed ad hoc by microchip vendors to suit their current technological competitiveness

and marketing narrative, but the core issue is clear: Increases in performance no longer

come for free, and most of the burden of progress has been shifted away from micropro-

cessor technology, and onto computer architecture design, along with all the consequences

that this brings for programmability.

In the mid-2000’s, the era of Dennard scaling came to an end. In fact, recently, shrinking

the feature size even increases the energy loss in modern microchips. This meant that

operating frequencies could no longer be cranked up without significantly increasing the
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power consumption, so further performance increases had to come from other sources. This

marked the beginning of the multi-core era, starting with putting a handful of traditional

CPU cores on the same die, and culminating in the golden age of many-core architectures,

utilizing hundreds or thousands of small, heavily vectorized cores to yield high throughput

at moderate clock frequencies, with GPUs as the main workhorse of modern HPC clusters.

While multi-core and many-core architectures still make up the majority of deployed mi-

crochips today, the core concept has yielded its benefit and is now mature, with new

generations relying on more incremental architectural improvents to continue improving

performance in an era of dead/weakened/not-quite-alive Moore’s law.

We have now entered the era of specialized hardware. Instead of waiting for Dennard or

Moore to yield higher frequencies and smaller (“better”) transistors, boosting performance

must now increasingly come from finding new ways to better utilizing the available power

budget. Fueled by the explosion of interest (and thereby funding) in machine learning

(now more commonly referred to as “AI”), the largest leaps in performance claims re-

cently have come from building architectures that are specialized to solve very specific

problems, very e�ciently. The most notable first example was Google’s TPU, but since

its introduction, specialized machine learning hardware has made its way onto the ar-

chitectures of traditional architectures as well, including Tensor Cores and low-precision

instructions on Nvidia GPUs, and the VNNI and bfloat16 instruction sets on Intel CPUs.

This hardware reduces the number of instructions needed for the same number of funda-

mental computations, and most importantly, reduces data movement, both due to fewer

instructions required per work done and by shrinking data types altogether, using custom

types with properties that favor machine learning workloads [35].

Unfortunately, for most domains outside of machine learning, building application-specified

integrated circuits (ASICs) or adding specialized hardware to general purpose processors,

is not economically feasible, or not adaptable enough to evolving models and changing

requirements. Although some applications might be lucky to find uses for the special-

ized hardware created with machine learning in mind [68], most smaller domains are not

reaping the biggest benefits of the era of specialization.

Simultaneously, another problem has been compounding itself: for decades, the bandwidth

of o↵-chip memory technology has increased at a much slower pace than computational

performance [154]. As a result, on most workloads, the increase in performance of the

processor e↵ectively has a much smaller proportional benefit to the end user, as most

of a program’s runtime is often spent waiting on cache misses. This can be observed in
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state-of-the-art processors today, which only get anywhere close to their advertised peak

performance on a very small set of ideal applications, with many workloads sitting in the

single-digit percentage of peak — despite the fact that the majority of transistors are

already being spent on cache and register files.

The consequences of the memory bottleneck is clear when looking inside a modern proces-

sor architecture. Most currently available processor architectures are load/store architec-

tures (commonly referred to as “von Neumann” architectures), where data is loaded/stored

across a central memory bus to/from a number of central processing cores. These architec-

tures are temporal, in that the sequence of instructions of the program are executed on the

same central hardware unit, utilized in di↵erent ways depending on the given instruction

executed. When executing a numerical workload, we can think of the steps required in

the processor as some variation of the following steps:

1. Instruction are fetched from the central memory bus, or if possible, from the instruc-

tion cache. If a cache miss occurs, the instruction is written to the cache.

2. Instructions are decoded to the format that can be executed by the processor, and

addresses of memory locations are translated to their physical addresses.

3. Data required to execute the instruction is loaded from the central memory bus, or

if possible, from (one of the multiple layers of) cache, into one or more registers. If

a cache miss occurs, the data is written into (one or more layers of) cache.

4. The ALU performs the computation using the data stored in registers.

5. The result of the computation is stored from registers to the central memory bus, or

if possible, to cache, where it will be flushed at a later stage.

Out of the steps above, 4 is arguably the only step that performs what we would consider

a “useful” computation. The remaining steps are primarily orchestration, necessary to

route the right data to the ALU and perform the right operations in the right order,

before routing the data back to the right place. All this orchestration exists to fight the

memory bottleneck. As a result, the power consumption of today’s load/store architectures

are mostly due to the cost of data movement, control logic within the processor, and

addressing general purpose registers and cache: On a 45 nm process node, out of 70 pJ

spent on an instruction, Marc Horowitz estimated that 0.9 pJ are spent on a 32-bit floating

point addition [71]: just 1.3% of the total instruction energy — even before considering
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o↵-chip memory, which would be responsible for another 1–2 orders of magnitude more

power than the processor instruction. While GPUs reduce this e↵ect by executing more

elementary operations per instruction issued, they still rely on general purpose registers,

cache, and instructions, and thus do not evade the fundamental issue of power consumption

in the load/store paradigm.

1.2 Spatial Computing Architectures

To address the inherent power ine�ciency of load/store architectures, we have to consider a

fundamentally di↵erent paradigm, which eliminates or greatly reduces the presence of gen-

eral purpose cache, registers, and control logic — ideally only utilizing the cache, registers,

and control logic that are strictly necessary to execute the program. We can think of such

an architecture as a spatial architecture (as opposed to a temporal architecture), where

computations are laid out spatially across the physical hardware, rather than temporally

streaming as a sequence of instructions to the same central hardware unit.

While a spatial architecture that is specialized to solve a target application would be

superior to a load/store architecture in terms of power e�ciency, the issue of economics

and hardware expertise usually makes it infeasible build ASICs for smaller application

domains, as is typically the case in scientific applications. Because this dissertation is

targeted at high-performance computing workloads, we will thus focus on programmable

spatial architectures (also referred to as reconfigurable hardware). The crucial ongoing

e↵ort for such an architecture to be viable is to find a trade-o↵ between programmability

and e�ciency that o↵ers enough benefits in performance and energy savings to justify the

e↵ort required to program it.

The most common class of programmable spatial devices are field-programmable gate arrays

(FPGAs). FPGAs are programmable at a very fine granularity, trading o↵ some of the e�-

ciency gained by shedding the load/store overhead for generality [90]. This allows them to

implement arbitrary data types and operations, connected by arbitrarily sized data paths,

laid out by expensive placement and routing procedures. Other programmable spatial

architectures include the Cerebras [78] deep neural network accelerator, Xilinx’ AI En-

gines [55], and Intel’s announced (but not delivered) Configurable Spatial Accelerator [4].

Being the only programmable spatial architecture widely available during the majority of

my doctoral studies, FPGAs will be the primary platform of evaluation throughout this

dissertation.
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1.3 Programming Spatial Architectures

To improve the viability of spatial architectures in high-performance computing in terms of

the trade-o↵ between e�ciency and programmability, we must either improve the inherent

benefit of using such an architecture, or make it easier to achieve the benefits o↵ered. This

dissertation focuses on the latter. The performance capabilities of a device are meaning-

less to a scientist if he cannot program it. If device B promises much higher performance

than device A, but device B is much harder to program, most programmers will stick with

device A (worse yet, the degrees of “much higher” and “much harder” are rarely known

a priori). Our goal is thus to provide scientists with knowledge and tools to productively

program spatial systems for high-performance computing, reducing the resistance to ex-

plore targeting current and new spatial architectures with their applications.

The primary class of programmable spatial architecture that we will use for evaluation in

this work, namely FPGAs, have been around for decades, where they have been used as a

vessel to exploit some of the advantages provided by spatial architectures [131, 23]. How-

ever, FPGAs are notoriously hard to program [14]. Traditionally, FPGAs have been pro-

grammed in hardware description languages (HDLs), such as VHDL or (System)Verilog.

These are structural languages, which describe the state of every register and wire at a

per-cycle level, based on the state of other registers and wires, rather than having a notion

of the temporal progression of a program. For programmers that have not been brought

up in the hardware domain, HDLs are a challenging change of paradigm with a steep

learning curve. Because they exist in a fundamentally di↵erent paradigm, HDLs do not

benefit from the majority of software engineering techniques that improve programmer

productivity and code reliability. While there are still many use cases for HDLs, such as

designing latency critical components or working with highly resource constrained designs,

the lack of adoption of FPGAs in the HPC community suggests that they are unlikely to

become the language of choice for the majority of developers.

High-level synthesis (HLS) tools have established themselves as an alternative to the low-

level hardware development o↵ered by HDLs [105, 30], allowing programmers to use fa-

miliar procedural languages such as C++ [24] or OpenCL [32] to program FPGAs. HLS

abstracts away platform-specific details such as how bus protocols, memory controllers, or

floating point units are implemented, introducing some portability between di↵erent plat-

forms, and allowing the developer to focus more on the functional aspect of their code.

To do so, HLS tools must compile from the procedural, temporal paradigm expressed by
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C-like languages into the structural representation of a circuit, which requires the tool to

reason about both how the circuit is laid out, and about how the temporally expressed

computations are mapped to the circuit. Developers can typically give hints to this pro-

cess in the form of inline pragmas and compilation, which work to constrain the generated

hardware. However, the size of the design space remains huge. When compared to the

relationship between source code and CPU assembly, the abstraction of the source code

and the abstraction of the architecture are much further removed, requiring the developer

to have a better understanding of this mapping and the underlying hardware to achieve

satisfactory solutions. As a result, traditional optimization techniques are insu�cient for

optimizing HLS programs for high-performance computing applications; a shortcoming

which we will address in this work, before raising the level of abstraction further.

The remainder of this dissertation is organized into progressive stages of improving the

productivity of programming spatial architectures for high-performance computing:

• Chapter 2 surveys the transformations required to optimize the current state-of-the-

art programming model for programming spatial devices, namely high-level synthe-

sis, for high-performance computing workloads.

• Chapter 3 gives a short overview of the hlslib open source project, which improves

programmer productivity within the HLS programming model.

• Chapter 4 walks through a comprehensive case study of the optimization process

of arguably the most common high-performance computing kernel, matrix-matrix

multiplication, using the techniques described in Chapter 2, achieving state-of-the-

art performance on the target FPGA device.

• Chapter 5 introduces the Data-Centric Parallel Programming (DaCe) framework as a

new way to program spatial architectures, raising the level of abstraction of programs

from HLS to a dataflow-oriented, graph-based intermediate representation, where

data movement is a first-class citizen. In this paradigm, we can optimize programs

and run them on both FPGA vendors without changing the input program.

• Chapter 6 shows how a domain-specific language can be built on top of DaCe by

introducing the StencilFlow stack, further raising the level of abstraction to a simple

JSON-based specification of stencil programs, which is compiled all the way down

to state-of-the-art accelerators on both Xilinx and Intel FPGAs.
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Combined, the work in this dissertation sets out to empower the workflow of multiple

classes of developers: the HLS programmer; the performance engineer; the domain

scientist; and the compiler engineer.
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Chapter 2

Transforming High-Level Synthesis Codes for

High-Performance Computing

The work in this chapter is based on our publication in TPDS [36], and has both influenced

and been influenced by our tutorial series “Productive Parallel Programming for FPGA

with High-Level Synthesis” 1, given by Prof. Hoefler and myself at numerous occasions,

including PPoPP’18, SC’18, SC’19, HiPEAC’20, SC’20, ISC’20, SC’21, and twice at

ETH Zurich. The tutorial is now also available on YouTube2, and includes “live” demos

of a series of example codes available on GitHub3. Maciej Besta assisted with the visual

presentation of the original paper, and Simon Meierhans came up with the algorithm that

the N-body example code is based on for a project with us during his bachelor degree.

2.1 Optimization of Hardware Programs

For applications where computational performance is a primary goal, this is typically

achieved through careful tuning by specialized performance engineers using well-understood

optimizing transformations when targeting CPU [13] and GPU [123] architectures. For

high-level synthesis (HLS) codes, a comparable collection of guidelines and

principles for code optimization is yet to be established. Optimizing codes for

hardware is drastically di↵erent from optimizing codes for software. In fact, the opti-

mization space is larger, as it contains most known software optimizations, in addition to

HLS-specific transformations that let programmers manipulate the underlying hardware

architecture. To make matters worse, the low clock frequency, lack of cache, and fine-

grained configurability, means that naive HLS codes typically perform poorly compared

to naive software codes, and must be transformed considerably before the advantages

of specialized hardware can be exploited. Thus, the established set of traditional

transformations is insu�cient, as it does not consider aspects of optimized

hardware design, such as pipelining and decentralized fast memory.

1https://spcl.inf.ethz.ch/Teaching/hls-tutorial/
2https://youtu.be/2UvUP2hxMyI
3https://github.com/spcl/hls_tutorial_examples

9



Chapter 2. Transforming HLS Codes for High-Performance Computing

In this chapter, we survey and define a set of key transformations that optimizing compil-

ers or performance engineers can apply to improve the performance of hardware layouts

generated from HLS codes. This set combines transformations extracted from previous

work, where they were applied either explicitly or implicitly, with additional techniques

that fill in gaps to maximize completeness. We characterize and categorize transforma-

tions, allowing performance engineers to easily look up those relevant to improving their

HLS code, based on the problems and bottlenecks currently present. The transforma-

tions have been verified to apply to both the Intel OpenCL and Xilinx Vitis/Vivado HLS

toolflows, but are expected to translate to any pragma-based imperative HLS tool. Most

transformations are also relevant to general (non-HLS) hardware design, but the details

on how they are applied in a given language will di↵er.

In addition to identifying and defining the surveyed transformations, we describe and pub-

lish a set of end-to-end “hands-on” examples, optimized from naive HLS codes into high

performance implementations. This includes a stencil code, matrix multiplication (which

we discuss briefly here, but will cover in detail in Chapter 4), and the N-body prob-

lem, all available on GitHub. The optimized codes exhibit dramatic cumulative speedups

of up to 29,950⇥ relative to their respective naive starting points, showing the crucial

necessity of hardware-aware transformations, which are not performed automatically by

today’s HLS compilers. As FPGAs are currently the most commonly targeted platform

by HLS tools in the high-performance computing (HPC) domain, transformations are dis-

cussed and evaluated in this context. Our work provides a set of guidelines and

a cheat sheet for optimizing high-performance codes for spatial architectures

using HLS languages, guiding both performance engineers and compiler devel-

opers to e�ciently exploit these devices.

2.1.1 From Imperative Code to Hardware

Before diving into transformations, it is useful to form an intuition of the major stages of

the source-to-hardware stack, to understand how they are influenced by the HLS code:

∂ High-level synthesis converts a (typically pragma-assisted) procedural description

(C++, OpenCL) to a functionally equivalent behavioral description (Verilog, VHDL). This

requires mapping variables and operations to corresponding constructs, then scheduling

operations according to their inter-dependencies. The dependency analysis is concerned

with creating a hardware mapping such that the throughput requirements are satisfied,

which for pipelined sections might require the circuit to consume a new input every one

10
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Accumulation interleaving §2.2.1 � – – ⇠ � – � ⇠ � – – – – – –

Delay bu↵ering §2.2.2 � � (�)� � (�)� � �� – – – – –

Random access bu↵ering §2.2.3 � � (�)� � � � � �� – � – – –

Pipelined loop fusion §2.2.4 � (�) – ⇠ ⇠ (�) – � – – – – � – –

Pipelined loop switching §2.2.5 � (�) – ⇠ ⇠ (�) – ⇠ – – – – � – �

Pipelined loop flattening §2.2.6 � – – � ⇠ ⇠ – � – – – – � – –

Inlining §2.2.7 � – (�) – (�) – – � � – – – – – –

S
ca

lin
g

Horizontal unrolling §2.3.1 – (�) � � � � � (�) – – � – – – –

Vertical unrolling §2.3.2 – �! �! – �! �! � � – �� – – – –

Dataflow §2.3.3 – – (�) – (�) �! – � – � – – �� –

Tiling §2.3.4 – � – ⇠ � ⇠ � � �� – – – ��

M
em

or
y Mem. access extraction §2.4.1 (�) – – � � � – � � – – � – – –

Mem. bu↵ering §2.4.2 – – – � � – – � – – – � – – –

Mem. striping §2.4.3 – – – � � � – � – – – � – – –

Type demotion §2.4.4 – – – � � � – � – – – � – – �

Table 2.1: Overview of transformations, the characteristics of their e↵ect on the

HLS code and the resulting hardware, and the objectives that they can target. The

center group of column marks characteristics of each transformation as indicated by the

columns, while the right group of columns marks objectives that can be targeted by

transformations. The latter can be used as a cheat sheet when attempting to address a

bottleneck, while the former describes how the transformation will a↵ect the code and

resulting architecture.
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Chapter 2. Transforming HLS Codes for High-Performance Computing

or more cycles. Coarse-grained control flow is typically implemented as sequential logic,

while computations and fine-grained control flow are organized in (predicated) pipelines.

∑ Hardware synthesis maps the register-level circuit description to components and

wires present on the specific target architecture. At this stage and onwards, the procedure

is both vendor and architecture specific. ∏ Place and route maps the logical circuit

description to concrete locations on the target device, by performing a lengthy heuristic-

based optimization that attempts to minimize the length of the longest wire and the sum

of all wire lengths. The longest propagation time between two registers including the

logic between them (i.e., the critical path of the circuit), will determine the maximum

obtainable frequency. π Bitstream generation translates the final circuit description

to a binary format used to configure the device.

Most e↵ort invested by an HLS programmer lies in guiding the scheduling process in ∂

to implement deep, e�cient pipelines, but ∑ is considered when choosing data types and

bu↵er sizes, and ∏ can ultimately bottleneck applications once the desired parallelism has

been achieved, requiring the developer to adapt their code to aid this process.

2.1.2 Key Transformations for High-Level Synthesis

This chapter identifies a set of optimizing transformations that are essential to designing

scalable and e�cient hardware kernels in HLS. An overview is given in Tab. 2.1. We divide

the transformations into three major classes: pipelining transformations, that enable or

improve the potential for pipelining computations; scaling transformations that increase

or expose additional parallelism; and memory enhancing transformations, which increase

memory utilization and e�ciency. Each transformation is further classified according to

a number of characteristic e↵ects on the HLS source code, and on the resulting hard-

ware architecture (central columns). To serve as a cheat sheet, the table furthermore lists

common objectives targeted by HLS programmers, and maps them to relevant HLS trans-

formations (rightmost columns). Characteristics and objectives are discussed in detail in

relevant transformation sections.

Throughout this chapter, we will show how each transformation is applied manually by a

performance engineer by directly modifying the source code, giving examples before and

after it is applied. However, many transformations are also amenable to automation in an

optimizing compiler.

12



2.1. Optimization of Hardware Programs

ILC = L + I (N – 1)
N

Figure 2.1: Pipeline characteristics.

2.1.3 The Importance of Pipelining

Pipelining is essential to e�cient hardware architectures, as expensive instruction decoding

and data movement between memory, caches and registers can be avoided, by sending data

directly from one computational unit to the next. We attribute two primary characteristics

to pipelines:

• Latency (L): the number of cycles it takes for an input to propagate through the

pipeline and arrive at the exit, i.e., the number of pipeline stages.

• Initiation interval or gap (I): the number of cycles that must pass before a new

input can be accepted into the pipeline. A perfect pipeline has I = 1 cycle, as this is

required to keep all pipeline stages busy. Consequently, the initiation interval can often

be considered the inverse throughput of the pipeline; e.g., I = 2 cycles implies that the

pipeline stalls every second cycle, reducing the throughput of all pipelines stages by a

factor of 1

2
.

To quantify the importance of pipelining in HLS, we consider the number of cycles C it

takes to execute a pipeline with latency L (both in [cycles]), taking N inputs, with an

initiation interval of I [cycles]. Assuming a reliable producer and consumer at either end,

we have:

C = L + I · (N � 1) [cycles]. (2.1)

This is shown in Fig. 2.1. The time to execute all N iterations with clock rate f [cycles/s]

of this pipeline is thus C/f .

For two pipelines in sequence that both consume and produce N elements, the latency is

additive, while the initiation interval is decided by the “slowest” actor:

C0 + C1 = (L0 + L1) + max(I0, I1) · (N � 1)

13



Chapter 2. Transforming HLS Codes for High-Performance Computing

When I0=I1 this corresponds to a single, deeper pipeline. For large N , the latencies are

negligible, so this deeper pipeline increases pipeline parallelism by adding more computa-

tions without increasing the runtime; and without introducing additional o↵-chip memory

tra�c. We are thus interested in building deep, perfect pipelines to maximize

performance and minimize o↵-chip data movement.

2.1.4 Optimization Goals

We organize the remainder of this chapter according to three overarching optimization

goals, corresponding to the three categories marked in Tab. 2.1:

• Enable pipelining (Sec. 2.2): For compute bound codes, achieve I=1 cycle for all es-

sential compute components, to ensure that all pipelines that materially impact perfor-

mance run at maximum throughput. For memory bound codes, guarantee that memory

is always consumed at line rate.

• Scaling (Sec. 2.3): Reduce the total number of iterations N by scaling up the parallelism

of the design to consume more elements per cycle, thus cutting the total number of cycles

required to execute the program.

• Memory e�ciency (Sec. 2.4): Saturate pipelines with data from memory to avoid

stalls in compute logic. For memory bound codes, maximize bandwidth utilization.

Sec. 2.5 covers the relationship between well-known software optimizations and HLS, and

accounts for which of these apply directly to HLS code. Sec. 2.6 shows the e↵ect of

transformations on a selection of kernels, and Sec. 2.7 presents related work.

2.2 Pipeline-Enabling Transformations

As a crucial first step for any HLS code, we cover detecting and resolving issues that

prevent pipelining of computations. When analyzing a basic block of a program, the

HLS tool determines the dependencies between computations, and pipelines operations

accordingly to achieve the target initiation interval. There are two classes of problems

that hinder pipelining of a given loop:

1. Loop-carried dependencies (inter-iteration): an iteration of a pipelined loop de-

pends on a result produced by a previous iteration, which takes multiple cycles to

14
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Lacc
Lacc

+ Loop
carried
depen-
dency

Figure 2.2: Loop-carried dependency.

+
M � Lacc
Loop carried
dependency
is resolved

(update every
M cycles) 

Figure 2.3: Bu↵ered accumulation.

complete (i.e., has multiple internal pipeline stages). If the latency of the operations

producing this result is L, the minimum initiation interval of the pipeline will be L.

This is a common scenario when accumulating into a single register (see Fig. 2.2), in

cases where the accumulation operation takes Lacc>1 cycles.

2. Interface contention (intra-iteration): a hardware resource with limited ports is

accessed multiple times in the same iteration of the loop. This could be a FIFO queue

or RAM that only allows a single read and write per cycle, or an interface to external

memory, which only supports sending/serving one request per cycle.

For each of the following transformations, we will give examples of programs exhibiting

properties that prevent them from being pipelined, and how the transformation can resolve

this. All examples use C++ syntax, which allows classes (e.g., “FIFO” bu↵er objects) and

templating. We perform pipelining and unrolling using pragma directives, where loop-

oriented pragmas always refer to the following loop/scope, which is the convention used by

Intel/Altera HLS tools (as opposed to applying to current scope, which is the convention

for Xilinx HLS tools).

2.2.1 Accumulation Interleaving

For multi-dimensional iteration spaces, loop-carried dependencies can often be resolved by

reordering and/or interleaving nested loops, keeping state for multiple concurrent accu-

mulations. We distinguish between four approaches to interleaving accumulation, covered

below.

2.2.1.1 Full Transposition

When a loop-carried dependency is encountered in a loop nest, it can be beneficial to

reorder the loops, thereby fully transposing the iteration space. This typically also has a
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Chapter 2. Transforming HLS Codes for High-Performance Computing

1 for (int n = 0; n < N; ++n)

2 for (int m = 0; m < M; ++m) {

3 double acc = C[n][m];

4 #pragma PIPELINE

5 for (int k = 0; k < K; ++k)

6 acc += A[n][k] * B[k][m];

7 C[n][m] = acc; }

K
M

acc

inn
er

loo
p

A [N×K]
B [K×M] C [N×M] N

(a) Naive implementation of general matrix multiplication C=AB+C.

1 for (int n = 0; n < N; ++n) {

2 double acc[M]; // Uninitialized

3 for (int k = 0; k < K; ++k)

4 double a = A[n][k]; // Only read once

5 #pragma PIPELINE

6 for (int m = 0; m < M; ++m) {

7 double prev = (k == 0) ? C[n][m]

8 : acc[m];

9 acc[m] = prev + a * B[k][m]; }

10 for (int m = 0; m < M; ++m) // Write

11 C[n][m] = acc[m]; } // out

K
M

innerloop

A [N×K]
B [K×M]

acc[ 0] , acc[ 1] , . . . , acc[ M-1]

N
(b) Transposed iteration space, same location written every M cycles.

1 for (int n = 0; n < N; ++n)

2 for (int m = 0; m < M/T; ++m) {

3 double acc[T]; // Tiles of size T

4 for (int k = 0; k < K; ++k)

5 double a = A[n][k]; // M/T reads

6 #pragma PIPELINE

7 for (int t = 0; t < T; ++t) {

8 double prev = (k == 0) ?

9 C[n][m*T+t] : acc;

10 acc = prev + a * B[k][m*T+t]; }

11 for (int t = 0; t < T; ++t) // Write

12 C[n][m*T+t] = acc; } // out

K
M

N
A [N×K]

B [K×M] C [N×M]
acc[ 0] , . . ., acc[ B-1]innerloop

(c) Tiled iteration space, same location written every T cycles.

Listing 1: Interleave accumulations to remove loop-carried dependency.
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significant impact on the program’s memory access pattern, which can benefit/impair the

program beyond resolving a loop-carried dependency.

Consider the matrix multiplication code in Lst. 1a, computing C = A·B+C, with matrix

dimensions N , K, and M . The inner loop k 2 K accumulates into a temporary register,

which is written back to C at the end of each iteration m 2 M . The multiplication of

elements of A and B can be pipelined, but the addition on line 6 requires the result

of the addition in the previous iteration of the loop. This is a loop-carried dependency,

and results in an initiation interval of L+, where L+ is the latency of a 64-bit floating

point addition (for integers L+,int=1 cycle, and the loop can be pipelined without further

modifications). To avoid this, we can transpose the iteration space, swapping the K-loop

with the M -loop, with the following consequences:

• Rather than a single register, we now implement an accumulation bu↵er of depth M

and width 1 (line 2).

• The loop-carried dependency is resolved: each location is only updated every M cycles

(with M�Lacc in Fig. 2.3).

• A, B, and C are all read in a contiguous fashion, achieving perfect spatial locality (we

assume row-major memory layout. For column-major we would interchange the K-loop

and N -loop).

• Each element of A is read exactly once.

The modified code is shown in Lst. 1b. We leave the accumulation bu↵er defined on line 2

uninitialized, and implicitly reset it on line 8, avoiding M extra cycles to reset (this is a

form of pipelined loop fusion, covered in Sec. 2.2.4).

2.2.1.2 Tiled Accumulation Interleaving

For accumulations done in a nested loop, it can be su�cient to interleave across a tile

of an outer loop to resolve a loop-carried dependency, using a limited size bu↵er to store

intermediate results. This tile only needs to be of size �Lacc, where Lacc is the latency of

the accumulation operation.

This is shown in Lst. 1c, for the transposed matrix multiplication example from Lst. 1b,

where the accumulation array has been reduced to tiles of size T (which should be �Lacc,

see Fig. 2.3), by strip-mining the loop over M by a factor of T .
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1 double Acc(double arr[], int N) {

2 double t[16];

3 #pragma PIPELINE

4 for (int i = 0; i < N; ++i) { // P0

5 auto prev = (i < 16) ? 0 : t[i%16];

6 t[i%16] = prev + arr[i]; }

7 double res = 0;

8 for (int i = 0; i < 16; ++i) // P1

9 res += t[i]; // Not pipelined

10 return res; }

Phase 0 Phase 1

+ +

Listing 2: Two stages required for single loop accumulation.

2.2.1.3 Single-Loop Accumulation Interleaving

If no outer loop is present, we have to perform the accumulation in two separate stages,

at the cost of extra resources. For the first stage, we perform a transformation similar to

the nested accumulation interleaving, but strip-mine the inner (and only) loop into blocks

of size K � Lacc, accumulating partial results into a bu↵er of size K. Once all incoming

values have been accumulated into the partial result bu↵ers, the second phase collapses

the partial results into the final output. This is shown in Lst. 2 for K=16.

Optionally, the two stages can be implemented to run in a coarse-grained pipelined fashion,

such that the first stage begins computing new partial results while the second stage is

collapsing the previous results (by exploiting dataflow between modules, see Sec. 2.3.3).

2.2.1.4 Batched Accumulation Interleaving

For algorithms with loop-carried dependencies that cannot be solved by either method

above (e.g., due to a non-commutative accumulation operator), we can still pipeline the

design by processing batches of inputs, introducing an additional loop nested in the ac-

cumulation loop. This procedure is similar to Sec. 2.2.1.2, but only applies to programs

where it is relevant to compute the accumulation for multiple data streams, and requires

altering the interface and data movement of the program to interleave inputs in batches.

The code in Lst. 3a shows an iterative solver code with an inherent loop-carried depen-

dency on state, with a minimum initiation interval corresponding to the latency LStep

of the (inlined) function Step. There are no loops to interchange, and we cannot change

the order of loop iterations. While there we cannot improve the latency of producing a

single result without touching the Step function, we can improve the overall throughput

by a factor of LStep by pipelining across N�LStep di↵erent inputs (e.g., overlap solving

for di↵erent starting conditions). We e↵ectively inject another loop over inputs, then per-
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1 Vec<double> IterSolver(Vec<double> state, int T) {

2 #pragma PIPELINE // Will fail to pipeline with I=1

3 for (int t = 0; t < T; ++t)

4 state = Step(state);

5 return state; }

(a) Solver executed for T steps with a loop-carried dependency on state.

1 template <int N>

2 void MultiSolver(Vec<double> *in,

3 Vec<double> *out, int T) {

4 Vec<double> b[N]; // Partial results

5 for (int t = 0; t < T; ++t)

6 #pragma PIPELINE

7 for (int i = 0; i < N; ++i) {

8 auto read = (t == 0) ? in[i] : b[i];

9 auto next = Step(read);

10 if (t < T-1) b[i] = next;

11 else out[i] = next; }} // Write out

T
b[0]

b[1]

b[N-1]

...

inner loop

(b) Pipeline across N�Lstep inputs to achieve I=1 cycle.

Listing 3: Pipeline across multiple inputs to avoid loop-carried dependency.

form transposition or tiled accumulation interleaving with this loop. The result of this

transformation is shown in Lst. 3b, for a variable number of interleaved inputs N.

2.2.2 Delay Bu↵ering

When iterating over regular domains in a pipelined fashion, it is often su�cient to express

bu↵ering using delay bu↵ers, expressed either with cyclically indexed arrays, or with con-

stant o↵set delay bu↵ers, also known from the Intel ecosystem as shift registers. These

bu↵ers are only accessed in a FIFO manner, with the additional constraint that elements

are only be popped once they have fully traversed the depth of the bu↵er (or when they

pass compile-time fixed access points, called “taps”, in Intel OpenCL). Despite the “shift

register” name, these bu↵ers do not need to be implemented in registers, and are fre-

quently implemented in on-chip RAM when large capacity is needed, where values are not

physically shifted.

A common set of applications that adhere to the delay bu↵er pattern are stencil ap-

plications such as partial di↵erential equation solvers [133, 139, 51], image processing

pipelines [70, 121], and convolutions in deep neural networks [17, 92, 31, 140, 21], all
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1 float north_buffer[M]; // Line

2 float center_buffer[M]; // buffers

3 float west, center; // Registers

4 for (int i = 0; i < N; ++i) {

5 #pragma PIPELINE

6 for (int j = 0; j < M; ++j) {

7 auto south = memory[i][j]; // Single memory read

8 auto north = north_buffer[j]; // Read line buffers

9 auto east = center_buffer[(j + 1)%M]; // (with wrap around)

10 if (i > 1 && j > 0 && j < M - 1) // Assume padding of 1

11 result[i - 1][j] = 0.25*(north + west + south + east);

12 north_buffer[j] = center; // Update both

13 center_buffer[j] = south; // line buffers

14 west = center; // Propagate

15 center = east; // registers

16 }

17 }

(a) Delay bu↵ering using cyclically indexed line bu↵ers.

1 float sr[2*M + 1]; // Shift register buffer

2 for (int i = 0; i < N; ++i) {

3 #pragma PIPELINE

4 for (int j = 0; j < M; ++j) {

5 #pragma UNROLL

6 for (int k = 0; k < 2*M; ++k)

7 sr[k] = sr[k + 1]; // Shift the array left

8 sr[2*M] = memory[i][j]; // Append to the front

9 if (i > 1 && j > 0 && j < M - 1) // Initialize/drain

10 result[i-1][j] = 0.25*(sr[0] + sr[M-1] + sr[M+1] + sr[2*M]);

11 }

12 }

(b) Delay bu↵ering using an Intel-style shift register.

Listing 4: Two ways of implementing delay bu↵ering on an N⇥M grid.
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of which are typically traversed using a sliding window bu↵er, implemented in terms

of multiple delay bu↵ers (or, in Intel terminology, a shift register with multiple taps).

These applications have been shown to be a good fit to spatial computing architec-

tures [54, 166, 146, 79, 111, 110, 52], as delay bu↵ering is cheap to implement in hardware,

either as shift registers in general purpose logic, or in RAM blocks.

Lst. 4 shows two ways of applying delay bu↵ering to a stencil code, namely a 4-point

stencil in 2D, which updates each point on a 2D grid to the average of its north, west,

east, and south neighbors. To achieve perfect data reuse, we bu↵er every element read in

sequential order from memory until it has been used for the last time – after two rows,

when the same value has been used as all four neighbors.

In Lst. 4a we use cyclically indexed line bu↵ers to implement the delay bu↵ering pattern,

instantiated as arrays on lines 1-2. We only read the south element from memory each

iteration (line 7), which we store in the center line bu↵er (line 13). This element is then

reused after M cycles (i.e., “delayed” for M cycles), when it is used as the east value

(line 9), propagated to the north bu↵er (line 12), shifted in registers for two cycles until

it is used as the west value (lines 14–15), and reused for the last time after M cycles on

line 8. The resulting circuit is illustrated in Fig. 2.4.

Lst. 4b demonstrates the shift register pattern used to express the stencil bu↵ering scheme,

which is supported by the Intel OpenCL toolflow. Rather than creating each individual

delay bu↵er required to propagate values, a single array is used, which is “shifted” every

cycle using unrolling (lines 6-7). The computation accesses elements of this array using

constant indices only (line 10), relying on the tool to infer the partitioning into individual

bu↵ers (akin to loop idiom recognition [13]) that we did explicitly in Lst. 4a. The implicit

nature of this pattern requires the tool to specifically support it. For more detail on

bu↵ering stencil codes we refer to Chapter 6.

Opportunities for delay bu↵ering often arise naturally in pipelined programs. If we consider

the transposed matrix multiplication code in Lst. 1b, we notice that the read from acc on

line 8 and the write on line 9 are both sequential, and cyclical with a period of M cycles.

We could therefore also use the shift register abstraction for this array. The same is true

for the accumulation code in Lst. 3b.

2.2.3 Random Access Bu↵ering

When a program unavoidably needs to perform random accesses, we can bu↵er data in

on-chip memory and perform random access to this fast memory instead of to slow o↵-chip
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+ + + ×

DR
AM

Seq.
south

east west north

Figure 2.4: A delay bu↵er for a 4-point stencil with three taps.

1 unsigned hist[256] = {0}; // Array of bins

2 #pragma PIPELINE // Will have II=2

3 for (int i = 0; i < N; ++i) {

4 int bin = CalculateBin(memory[i]);

5 hist[bin] += 1; // Single cycle access

6 } // ...write result out to memory...

+

RA
M

Seq.

DRAM

Seq.

Listing 5: Random access to on-chip histogram bu↵er.

memory. A random access bu↵er implemented with a general purpose replacement strategy

will emulate a CPU-style cache; but to benefit from targeting a spatial system, it is usually

more desirable to specialize the bu↵ering strategy to the target application [26, 158]. This

can enable o↵-chip memory accesses to be made contiguous by loading and storing data

in stages (i.e., tiles), then exclusively performing random accesses to fast on-chip memory.

Lst. 5 outlines a histogram implementation that uses an on-chip bu↵er (line 1) to perform

fast random accesses reads and writes (line 5) to the bins computed from incoming data,

illustrated in Fig. 5. Note that the random access results in a loop-carried dependency on

histogram, as there is a potential for subsequent iterations to read and write the same

bin. This can be solved with one of the interleaving techniques described in Sec. 2.2.1, by

maintaining multiple partial result bu↵ers.

2.2.4 Pipelined Loop Fusion

When two pipelined loops appear sequentially, we can fuse them into a single pipeline,

while using loop guards to enforce any dependencies that might exist between them. This

can result in a significant reduction in runtime, at little to no resource overhead. This

transformation is closely related to loop fusion [86] from traditional software optimization.

For two consecutive loops with latencies/bounds/initiation intervals {L0, N0, I0} and

{L1, N1, I1} (Lst. 6a), respectively, the total runtime according to Eq. 2.1 is (L0 +

I0(N0�1))+(L1+I1(N1�1)). Depending on which condition(s) are met, we can distinguish

between three levels of pipelined loop fusion, with increasing performance benefits:

1. I=I0=I1 (true in most cases): Loops can be fused by summing the loop bounds, using
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1 // Pipelined loops executed sequentially

2 #pragma PIPELINE

3 for (int i = 0; i < N0; ++i) Foo(i, /*...*/);

4 #pragma PIPELINE

5 for (int i = 0; i < N1; ++i) Bar(i, /*...*/);

(a) (L0 + I0(N0�1)) + (L1 + I1(N1�1)) cycles.

1 #pragma PIPELINE

2 for (int i = 0; i < N0+N1; ++i) {

3 if (i < N0) Foo(i, /*...*/);

4 else Bar(i - N0, /*...*/); }

(b) L2 + I(N0 + N1�1) cycles.

1 #pragma PIPELINE

2 for (int i = 0; i < max(N0, N1); ++i) {

3 if (i < N0) Foo(i, /*...*/); // Omit ifs

4 if (i < N1) Bar(i, /*...*/); } // for N0==N1

(c) L3 + I · (max(N0, N1)�1) cycles.

Listing 6: Two subsequent pipelined loops are fused sequentially (Lst. 6b) or concurrently

(Lst. 6c) to reduce the total number of cycles required to execute them.
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loop guards to sequentialize them within the same pipeline (Lst. 6b).

2. Condition 1 is met, and only fine-grained or no dependencies exist between the two

loops: Loops can be fused by iterating to the maximum loop bound, and loop guards

are placed as necessary to predicate each section (Lst. 6c).

3. Conditions 1 and 2 are met, and N=N0=N1 (same loop bounds): Loops bodies can

be trivially fused (Lst. 6c, but with no loop guards necessary).

An alternative way of performing pipeline fusion is to instantiate each stage as a separate

processing element, and stream fine-grained dependencies between them (Sec. 2.3.3).

2.2.5 Pipelined Loop Switching

The benefits of pipelined loop fusion can be extended to coarse-grained control flow by

using loop switching (as opposed to loop unswitching, which is a common transforma-

tion on load/store architectures [13]). Whereas instruction-based architectures attempt

to only execute one branch of a conditional jump (via branch prediction on out-of-order

processors), a conditional in a pipelined scenario will result in both branches being instan-

tiated in hardware, regardless of whether/how often it is executed. The transformation of

coarse-grained control flow into fine-grained control flow is implemented by the HLS tool

by introducing predication to the pipeline, at no significant runtime penalty.

Lst. 7 shows a simple example of how the transformation fuses two pipelined loops in

di↵erent branches into a single loop switching pipeline. The transformation applies to any

pipelined code in either branch, following the principles described for pipelined loop fusion

(§2.2.4 and Lst. 6).

The implications of pipelined loop switching are more subtle than the pure fusion examples

in Lst. 6, as the total number of loop iterations is not a↵ected (assuming the fused loop

bound is set according to the condition, see line 1 in Lst. 7b). There can be a (tool-

dependent) benefit from saving overhead logic by only implementing the orchestration

and interfaces of a single pipeline, at the (typically minor) cost of the corresponding

predication logic. More importantly, eliminating the coarse-grained control can enable

other transformations that significantly benefit performance, such as fusion [§2.2.4] with

adjacent pipelined loops, flattening nested loops [§2.2.6], and on-chip dataflow [§2.3.3].
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1 if (condition) {

2 #pragma HLS PIPELINE

3 for (int i = 0; i < N0; ++i)

4 y[i] = Foo(x[i]);

5 } else {

6 #pragma HLS PIPELINE

7 for (int i = 0; i < N1; ++i)

8 y[i] = Bar(x[i]);

9 }

(a) Coarse-grained control flow.

1 auto N = condition ? N0 : N1;

2 #pragma HLS PIPELINE

3 for (int i = 0; i < N; ++i) {

4 if (condition) {

5 y[i] = Foo(x[i]);

6 } else {

7 y[i] = Bar(x[i]);

8 }

9 }

(b) Control flow absorbed into pipeline.

Listing 7: Pipelined loop switching absorbs coarse-grained control flow.

2.2.6 Pipelined Loop Flattening/Coalescing

To minimize the number of cycles spent in filling/draining pipelines (where the circuit

is not streaming at full throughput), we can flatten nested loops to move the fill/drain

phases to the outermost loop, fusing/absorbing code that is not in the innermost loop if

necessary.

Lst. 8a shows a code with two nested loops, and gives the total number of cycles required

to execute the program. The latency of the drain phase of the inner loop and the latency

of Bar outside the inner loop must be paid at every iteration of the outer loop. If N0�L0,

the cycle count becomes just L1 + N0N1, but for applications where N0 is comparable to

L0, draining the inner pipeline can significantly impact the runtime (even if N1 is large).

By transforming the code such that all loops are perfectly nested (see Lst. 8b), the HLS

tool can e↵ectively coalesce the loops into a single pipeline, where next iteration of the

outer loop can be executed immediately after the previous finishes.

To perform the transformation in Lst. 8, we had to absorb Bar into the inner loop, adding

a loop guard (line 5 in Lst. 8b), analogous to pipelined loop fusion (§2.2.4), where the

second pipelined “loop” consists of a single iteration. This contrasts the loop peeling

transformation, which is used by CPU compilers to regularize loops to avoid branch mis-

predictions and increasing amenability to vectorization. While loop peeling can also be

beneficial in hardware, e.g., to avoid deep conditional logic in a pipeline, small inner loops

can see a significant performance improvement by eliminating the draining phase.
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1 for (int i = 0; i < N1; ++i) {

2 #pragma PIPELINE

3 for (int j = 0; j < N0; ++i) {

4 Foo(i, j);

5 }

6 Bar(i);

7 }

(a) L1 + N1 · (L0 + N0�1) cycles.

1 for (int i = 0; i < N1; ++i) {

2 #pragma PIPELINE

3 for (int j = 0; j < N0; ++i) {

4 Foo(i, j);

5 if (j == N0 - 1) Bar(i);

6 }

7 }

(b) L2 + N0N1�1 cycles.

Inner state 0
Outer state

Inner state 1
Single state

Listing 8: Before and after coalescing loop nest to avoid inner pipeline drains.

2.2.7 Inlining

In order to successfully pipeline a scope, all function calls within the code section must

be pipelineable. This typically requires “inlining” functions into each call site, creating

dedicated hardware for each invocation, resulting in additional resources consumed for

every additional callsite after the first. This replication is done automatically by HLS

compilers on demand, but an additional inline pragma can be specified to directly “paste”

the function body into the callsite during preprocessing, removing the function boundary

during optimization and scheduling.

2.3 Scalability Transformations

Parallelism in HLS revolves around unrolling loop iterations that would otherwise be

executed in a sequential or pipelined manner. In Sec. 2.2.1 we used strip-mining and

reordering to avoid loop-carried dependencies by changing the schedule of computations

in the pipelined loop nest. In this section, we similarly strip-mine and reorder loops,

but with additional unrolling of the strip-mined chunks. Pipelined loops constitute the

iteration space; the size of which determines the number of cycles it takes to execute the

program. Unrolled loops, in a pipelined program, correspond to the degree of parallelism

in the architecture, as every expression in an unrolled statement is required to be executed

concurrently in hardware. Parallelizing a code thus means turning sequential/pipelined

loops fully or partially into parallel/unrolled loops. This corresponds to cutting the number
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CU
a b
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(d) Streaming dataflow.

Figure 2.5: Horizontal unrolling, vertical unrolling, and dataflow, as means to increase

parallelism. Rectangles represent bu↵er space, such as registers or on-chip RAM. Hori-

zontal: four independent inputs processed in parallel. Vertical: one input is combined

with multiple bu↵ered values. Dataflow: similar to vertical, but input or partial results

are streamed through a pipeline rather than broadcast.

1 for (int i = 0; i < N / W; ++i)

2 #pragma UNROLL // Fully unroll inner

3 for (int w = 0; w < W; ++w) // loop

4 C[i*W + w] = A[i*W + w]*B[i*W + w];

(a) Using strip-mining.

1 // Unroll outer loop by W

2 #pragma UNROLL W

3 for (int i = 0; i < N; ++i)

4 C[i] = A[i] * B[i];

(b) Using partial unrolling.

Listing 9: Two variants of vectorization by factor W using loop unrolling.

of sequential iterations, as the number of cycles taken to execute the program are e↵ectively

reduced by the inverse of the unrolling factor.

2.3.1 Horizontal Unrolling (Vectorization)

We implement vectorization-style parallelism with HLS by “horizontally” unrolling loops

in pipelined sections, or by introducing vector types, dividing the sequential iteration

space by the degree of parallelism accordingly. This is the most straightforward way of

adding parallelism, as it can often be applied directly to an inner loop without further

reordering or drastic changes to the nested loop structure. Vectorization is more powerful

in HLS than SIMD operations on load/store architectures, as the unrolled compute units

are not required to be homogeneous, and the number of units are not constrained to fixed

sizes. Horizontal unrolling increases bandwidth utilization by explicitly exploiting spatial

locality, allowing more e�cient accesses to o↵-chip memory such as DRAM.
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Lst. 9 shows two functionally equivalent ways of vectorizing a loop over N elements by a

horizontal unrolling factor of W . Lst. 9a strip-mines a loop into chunks of W and unrolls

the inner loop fully, while Lst. 9b uses partial unrolling by specifying an unroll factor in

the pragma. As a third option, explicit vector types can be used, such as those built

into OpenCL (e.g., float4 or int16), or custom vector classes (such as those provided by

hlslib, see Chapter 3). These provide less flexibility, but are more concise and are su�cient

for many scientific applications.

In practice, the unrolling factor W [operand/cycle] is constrained by the bandwidth

B [Byte/s] available to the compute logic (e.g., from o↵-chip memory), according to

Wmax =
B

fS
,

where f [cycle/s] is the clock frequency of the unrolled logic, and S [Byte/operand] is the

operand size in bytes. To exploit all available bandwidth in a memory bound application

using vectorization, we must set W �
l

B
fS

m
, while compute bound computations should

set W 
j

B
fs

k
to avoid spending resources on compute units that cannot be fully saturated

by the available bandwidth (assuming another source of parallelism is available, see the

following). Horizontal unrolling is usually not su�cient to achieve high logic utilization

on large chips, where the available memory bandwidth is low compared to the available

amount of compute logic. Furthermore, because the energy cost of I/O is orders of mag-

nitude higher than moving data on the chip, it is desirable to exploit on-chip memory and

pipeline parallelism instead (this follows in Sec. 2.3.2 and 2.3.3).

2.3.2 Vertical Unrolling

We can achieve scalable parallelism in HLS without relying on external memory band-

width by exploiting data reuse, distributing input elements to multiple computational

units replicated “vertically” through unrolling [127, 166, 39]. This is the most potent

source of parallelism on hardware architectures, as it can conceptually scale indefinitely

with available silicon when enough reuse is possible. Viewed from the paradigm of cached

architectures, the opportunity for this transformation arises from temporal locality in

loops. Vertical unrolling draws on bandwidth from on-chip fast memory by storing more

elements temporally, combining them with new data streamed in from external memory to

increase parallelism, allowing more computational units to run in parallel at the expense

of bu↵er space. In comparison, horizontal unrolling requires us to widen the data path

that passes through the processing elements (compare Fig. 2.5b and 2.5c).
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1 for (int n = 0; n < N / P; ++n) { // Divided by unrolling factor P

2 for (int m = 0; m < M / T; ++m) { // Tiling

3 double acc[T][P]; // Is now 2D

4 // ...initialize acc from C...

5 for (int k = 0; k < K; ++k) {

6 double a_buffer[P]; // Buffer multiple elements to combine with

7 #pragma PIPELINE // incoming values of B in parallel

8 for (int p = 0; p < P; ++p)

9 a_buffer[p] = A[n*P + p][k];

10 #pragma PIPELINE

11 for (int t = 0; t < T; ++t) // Stream tile of B

12 #pragma UNROLL

13 for (int p = 0; p < P; ++p) // P-fold vertical unrolling

14 acc[p] += a_buffer[p] * B[k][m*T+t];

15 }

16 /* ...write back 2D tile of C... */

17 }

18 }

Listing 10: P -fold vertical unrolling of matrix multiplication.

When attempting to parallelize a new algorithm, identifying a source of temporal par-

allelism to feed vertical unrolling is essential to determine whether the design will scale.

Programmers should consider this carefully before designing the hardware architecture.

From a reference software code, the programmer can identify scenarios where reuse oc-

curs, then extract and explicitly express the temporal access pattern in hardware, using

a delay bu↵ering [§2.2.2] or random-access [§2.2.3] bu↵ering scheme. Then, if additional

reuse is possible, vertically unroll the circuit to scale up performance.

As an example, we return to the matrix multiplication code from Lst. 1c. In Sec. 2.2.1.2,

we saw that strip-mining and reordering loops allowed us to move reads from matrix A

out of the inner loop, re-using the loaded value across T di↵erent entries of matrix B

streamed in while keeping the element of A in a register. Since every loaded value of B

eventually needs to be combined with all N rows of A, we realize that we can perform

more computations in parallel by keeping multiple values of A in local registers. The

result of this transformation is shown in Lst. 10. By bu↵ering P elements (where P was

1 in Lst. 1c) of A prior to streaming in the tile of B-matrix (lines 8-9), we can divide the

outer loop over rows by a factor of P , using unrolling to multiply parallelism (as well as

bu↵er space required for the partial sums) by a factor of P (lines 12-14).

2.3.3 Dataflow

29



Chapter 2. Transforming HLS Codes for High-Performance Computing

1 void PE(FIFO<float> &in, FIFO<float> &out, int T) {

2 // ..initialization...

3 for (int t = 0; t < T / P; ++t) { // Divide timesteps T by factor P

4 #pragma PIPELINE

5 for (/* loops over spatial dimensions */) {

6 auto south = in.Pop(); // Value for t-1 from previous PE

7 // ...load values from delay buffers...

8 auto next = 0.25*(north + west + east + south);

9 out.Push(next); // Value for t sent to PE computing t+1

10 }

11 }

12 }

(a) Processing element for a single timestep. Will be replicated P times.

1 #pragma DATAFLOW // Schedule nested functions as parallel modules

2 void SystolicStencil(const float in[], float out[], int T) {

3 FIFO<float> pipes[P + 1]; // Assume P is given at compile time

4 ReadMemory(in, pipes[0]); // Head

5 #pragma UNROLL // Replicate PEs

6 for (int p = 0; p < P; ++p) {

7 PE(pipe[p], pipe[p + 1], T); // Forms a chain

8 }

9 WriteMemory(pipes[P], out); // Tail

10 }

(b) Instantiate and connect P consecutive and parallel PEs.

Listing 11: Dataflow between replicated PEs to compute P timesteps in parallel.
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For complex codes it is common to partition functionality into multiple modules, or pro-

cessing elements (PEs), streaming data between them through explicit interfaces. In

contrast to conventional pipelining, PEs arranged in a dataflow architecture are scheduled

separately when synthesized by the HLS tool. There are multiple benefits to this:

• Di↵erent functionality runs at di↵erent schedules. For example, issuing memory re-

quests, servicing memory requests, and receiving requested memory can all require

di↵erent pipelines, state machines, and even clock rates.

• Smaller components are more modular, making them easier to reuse, debug and verify.

• The e↵ort required by the HLS tool to schedule code sections increases dramatically with

the number of operations that need to be considered for the dependency and pipelining

analysis. Scheduling logic in smaller chunks is thus beneficial for compilation time.

• Large fan-out/fan-in is challenging to route on real hardware, (i.e., 1-to-N or N -to-1

connections for large N). This is mitigated by partitioning components into smaller

parts and adding more pipeline stages.

• The fan-in and fan-out of control signals (i.e., stall, reset) within each module is reduced,

reducing the risk of these signals constraining the maximum achievable frequency.

To move data between PEs, communication channels with a handshake mechanism are

used. These channels double as synchronization points, as they imply a consensus on the

program state. In practice, channels are always FIFO interfaces, and support standard

queue operations Push, Pop, and sometimes Empty, Full, and Size operations. They

occupy the same register or block memory resources as other bu↵ers (Sec. 2.2.2/Sec. 2.2.3).

The mapping from source code to PEs di↵ers between HLS tools, but is manifested when

functions are connected using channels. In the following example, we will use the syntax

from Xilinx Vitis HLS to instantiate PEs, where each non-inlined function correspond to a

PE, and these are connected by channels that are passed as arguments to the functions from

a top-level entry function. Note that this functionally diverges from C++ semantics

without additional abstraction (we will address this in Sec. 3.2.3), as each function in the

dataflow scope is executed in parallel in hardware, rather than in the sequence specified

in the imperative code. In Intel OpenCL, dataflow semantics are instead expressed with

multiple kernel functions each defining a PE, which are connected by global channel

objects prefixed with the channel keyword.
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To see how streaming can be an important tool to express scalable hardware, we apply it

in conjunction with vertical unrolling (Sec. 2.3.2) to implement an iterative version of the

stencil example from Lst. 4. Unlike the matrix multiplication code, the stencil code has

no scalable source of parallelism in the spatial dimension. Instead, we can achieve reuse

by unrolling the outer time-loop to treat P consecutive timesteps in a pipeline parallel

fashion, each computed by a distinct PE, connected in a chain via channels [54, 124, 166].

We replace the memory interfaces to the PE with channels, such that the memory read

and write become Pop and Push operations, respectively. The resulting code is shown in

Lst. 11a. We then vertically unroll to generate P instances of the PE (shown in Lst. 11b),

e↵ectively increasing the throughput of the kernel by a factor of P , and consequently

reducing the runtime by dividing the outermost loop bound by the unroll factor P (line 3

in Lst. 11a). Such architectures are sometimes referred to as systolic arrays [89, 104].

For architectures/HLS tools where large fan-out is an issue for compilation or routing, an

already replicated design can be transformed to a dataflow architecture. For example, in

the matrix multiplication example in Lst. 10, we can move the P -fold unroll out of the inner

loop, and replicate the entire PE instead, replacing reads and writes with channel accesses

(for more details, see the case study of optimizing matrix multiplication Chapter 4). B is

then streamed into the first PE, and passed downstream every cycle. A and C should no

longer be accessed by every PE, but rather be handed downstream similar to B, requiring

a careful implementation of the start and drain phases, where the behavior of each PE

will vary slightly according to its depth in the sequence.

2.3.4 Tiling

Loop tiling in HLS is commonly used to partition large problem sizes into manageable

chunks that fit into fast on-chip memory, in an already pipelined program [166]. Rather

than making the program faster, this lets the already fast architecture support arbitrarily

large problem sizes. This is in contrast to loop tiling on CPU and GPU, where tiling is

used to increase performance. Common to both paradigms is that they fundamentally aim

to meet fast memory constraints. As with horizontal and vertical unrolling, tiling relies

on strip-mining loops to alter the iteration space.

Tiling was already shown in Sec. 2.2.1.2, when the accumulation bu↵er in Lst. 1b was

reduced to a tile bu↵er in Lst. 1c, such that the required bu↵er space used for partial results

became a constant, rather than being dependent on the input size. This transformation

is also relevant to the stencil codes in Lst. 4, where it can be used to restrict the size of
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the line bu↵ers or shift register, so they are no longer proportional to the problem size.

2.4 Memory Access Transformations

When an HLS design has been pipelined, scheduled, and unrolled as desired, the memory

access pattern has been established. In the following, we describe transformations that

optimize the e�ciency of o↵-chip memory accesses in the HLS code. For memory bound

codes in particular, this is critical for performance after the design has been pipelined.

2.4.1 Memory Access Extraction

By extracting accesses to external memory from the computational logic, we enable com-

pute and memory accesses to be pipelined and optimized separately. Accessing the same

interface multiple times within the same pipelined section is a common cause for poor

memory bandwidth utilization and increased initiation interval due to interface contention,

since the interface can only service a single request per cycle. In the Intel OpenCL flow,

memory extraction is done automatically by the tool, but since this process must be

conservative due to limited information, it is often still beneficial to do the extraction

explicitly in the code [84]. In many cases, such as for independent reads, this is not an

inherent memory bandwidth or latency constraint, but arises from the tool scheduling it-

erations according to program order. This can be relaxed when allowed by inter-iteration

dependencies (which can in many cases be determined automatically, e.g., using polyhedral

analysis [60]).

In Lst. 12a, the same memory (i.e., hardware memory interface) is accessed twice in the

inner loop. In the worst case, the program will issue two 4 Byte memory requests every

iteration, resulting in poor memory performance, and preventing pipelining of the loop.

In software, this problem is typically mitigated by caches, always fetching at least one

cache line. If we instead read the two sections of A sequentially (or in larger chunks), the

HLS tool can infer two so-called “burst” accesses (consecutive sequential accesses) to A of

length N/2, shown in Lst. 12c. Since the schedules of memory and computational modules

are independent, ReadA can run ahead of PE, ensuring that memory is always read at the

maximum bandwidth of the interface (Sec. 2.4.2 and Sec. 2.4.3 will cover how to increase

this bandwidth). From the point of view of the computational PE, both A0 and A1 are

read in parallel, as shown on line 5 in Lst. 12b, hiding initialization time and inconsistent

memory producers in the synchronization implied by the data streams.
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1 void PE(const int A[N], int B[N/2]) {

2 #pragma PIPELINE // Achieves I=2

3 for (int i = 0; i < N/2; ++i) {

4 // Issues N/2 memory requests of size 1

5 B[i] = A[i] + A[N/2 + i];

6 }

7 }

DR
AM

A[i]

A[N/2+i]

1 elem./burst

1 elem./burst

N/2 bursts

N/2 bursts
N/2 state

transitionsPE

(a) Multiple accesses to A cause ine�cient memory accesses.

1 void PE(FIFO<int> &A0, FIFO<int> &A1,

2 int B[N/2]) {

3 #pragma PIPELINE // Achieves I=1

4 for (int i = 0; i < N/2; ++i) {

5 B[i] = A0.Pop() + A1.Pop());

6 }

7 }

DR
AM

A[i]

A[N/2+i]

N/2 elem./burst

N/2 elem./burst

1 burst

1 burst
1 state

transition

Com
pute

Pipeline

PE

ReadA

(b) Move memory accesses out of computational code.

1 void ReadA(const int A[N], FIFO<int> &A0, FIFO<int> &A1) {

2 int buffer[N/2];

3 #pragma PIPELINE

4 for (int i = 0; i < N/2; ++i)

5 buffer[i] = A[i]; // Issues 1 memory request of size N/2

6 #pragma PIPELINE

7 for (int i = 0; i < N/2; ++i) {

8 A0.Push(buffer[i]); // Sends to PE

9 A1.Push(A[N/2 + i]); // Issues 1 memory request of size N/2

10 }

11 }

(c) Read A in long bursts and stream them to the PE.

Listing 12: Separate memory accesses from computational logic.
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An important use case of memory extraction appears in the stencil code in Lst. 11, where

it is necessary to separate the memory accesses such that the PEs are agnostic of whether

data is produced/consumed by a neighboring PE or by a memory module. Memory ac-

cess extraction is also useful for performing data layout transformations in fast on-chip

memory. For example, we can change the schedule of reads from A in Lst. 10 to a more

e�cient scheme by bu↵ering values in on-chip memory, while streaming them to the kernel

according to the original schedule.

2.4.2 Memory Bu↵ering

When dealing with memory interfaces with an inconsistent data access latency, such as

DRAM, it can be beneficial to request and bu↵er accesses earlier and/or at a more ag-

gressive pace than what is consumed or produced by the computational elements. For

memory reads, this can be done by reading ahead of the kernel into a deep bu↵er in-

stantiated between memory and computations, by either 1) accessing wider vectors from

memory than required by the kernel, narrowing or widening data paths when piping to

or from computational elements, respectively, or 2) increasing the clock rate of modules

accessing memory with respect to the computational elements.

The memory access function Lst. 12c allows long bursts to the interface of A, but receives

the data on a narrow bus at W · Sint = (1 · 4) Byte/cycle. In general, this limits the

bandwidth consumption to f · WSint at frequency f , which is likely to be less than what

the external memory can provide. To better exploit available bandwidth, we can either

read wider vectors (increase W ) or clock the circuit at a higher rate (increase f). The

former consumes more resources, as additional logic is required to widen and narrow the

data path, but the latter is more likely to be constrained by timing constraints on the

device, and is not always directly supported by HLS tools.

2.4.3 Memory Striping

When multiple memory banks with dedicated channels (e.g., multiple DRAM modules

or HBM lanes) are available, the bandwidth at which a single array is accessed can be

increased by a factor corresponding the the number of available interfaces by striping

it across memory banks. This optimization is employed by most CPUs transparently by

striping across multi-channel memory, and is commonly known from RAID 0 configuration

of disks. This optimization can become especially crucial when dealing with memory

technologies that expose many small channels to provide very high memory bandwidth,
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(b) Memory striped across four banks.

Figure 2.6: Striping memory across memory banks increases available bandwidth.

such as high-bandwidth memory (HBM) stacks.

We can perform striping explicitly in HLS by inserting modules that join or split data

streams from two or more memory interfaces. Reading can be implemented with two or

more memory modules requesting memory from their respective interfaces, pushing to

FIFO bu↵ers that are read in parallel and combined by another module (for writing: in

reverse), exposing a single data stream to the computational kernel. This is illustrated in

Fig. 2.6, where the unlabeled dark boxes in Fig. 2.6b represent PEs reading and combining

data from the four DRAM modules. The Intel OpenCL compiler [32] can apply this

transformation automatically with the appropriate flags set.

2.4.4 Type Demotion

We can reduce resource and energy consumption, bandwidth requirements, and operation

latency by demoting data types to less expensive alternatives that still meet precision

requirements. This can lead to significant improvements on architectures that are special-

ized for certain types, and perform poorly on others. As of writing, Intel FPGAs only

expose 32-bit floating point as hardened units, while Xilinx FPGAs expose no native float-

ing point units at all. Since integer/fixed point and floating point computations on these

architectures can thus compete for the same reconfigurable logic, using a data type with

lower resource requirements increases the total number of arithmetic operations that can

potentially be instantiated on the device. The largest benefits of type demotion are seen

in the following scenarios:

• Compute bound architectures where the data type can be changed to a type that occu-

pies less of the same resources (e.g., from 64-bit integers to 48-bit integers).

• Compute bound architectures where the data type can be moved to a type that is

natively supported by the target architecture, such as single precision floating point on
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Intel’s Arria 10 and Stratix 10 devices [130].

• Bandwidth bound architectures, where performance can be improved by up to the same

factor that the size of the data type can be reduced by.

• Latency bound architectures where the data type can be reduced to a lower latency

operation, e.g., from floating point to integer.

In the most extreme case, it has been shown that collapsing the data type of weights

and activations in deep neural networks to binary [31, 140] can provide su�cient speedup

for inference that the increased number of weights makes up for the loss of precision per

weight.

2.5 Software Transformations in HLS

In addition to the transformations described in the sections above, we include an overview

of how well-known CPU-oriented transformations apply to HLS, based on the compiler

transformations compiled by Bacon et al. [13]. These transformations are included in

Tab. 2.2, and are partitioned into three categories:

• Transformations directly relevant to the HLS transformations already presented here.

• Transformations that are the same or similar to their software counterparts.

• Transformations with little or no relevance to HLS.

It is interesting to note that the majority of well-known transformations from software

apply to HLS. This implies that we can leverage much of decades of research into high-

performance computing transformations to also optimize hardware programs, including

many that can be applied directly (i.e., without further adaptation to HLS) to the im-

perative source code or intermediate representation before synthesizing for hardware. We

stress the importance of support for these pre-hardware generation transformations in HLS

compilers, as they lay the foundation for the hardware-specific transformations.

2.6 End-to-End Examples

To showcase the transformations presented here and provide a “hands-on” opportunity for

seeing HLS optimizations applied in practice, we will describe the optimization process on
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CPU-oriented Transformations and how they apply to HLS codes.
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� Loop interchange [8, 86] is used to resolve loop-carried dependencies [§2.2].
� Strip-mining [148], loop tiling [95, 86], and cycle shrinking [116] are central components of many HLS transformations [§2.2.1, §2.3.1,

§2.3.2, §2.2.1.2].
� Loop distribution and loop fission [87, 86] are used to separate di↵erently scheduled computations to allow pipelining [§2.3.3].
� Loop fusion [157, 86, 152] is used for merging pipelines [§2.2.4].
� Loop unrolling [48] is used to generate parallel hardware [§2.3.1, §2.3.2].
� Software pipelining [94] is used by HLS tools to schedule code sections according to operation interdependencies to form hardware

pipelines.

� Loop coalescing/flattening/collapsing [115] saves pipeline drains in nested loops [§2.2.6].
� Reduction recognition prevents loop-carried dependencies when accumulating [§2.2.1].
� Loop idiom recognition is relevant for HLS backends, for example to recognize shift registers [§2.2.2] in the Intel OpenCL compiler [32].

� Procedure inlining is used to remove function call boundaries [§2.2.7].
� Procedure cloning is frequently used by HLS tools when inlining [§2.2.7] to specialize each function “call” with values that are known

at compile-time.

� Loop unswitching [7] is rarely advantageous; its opposite is beneficial [§2.2.6, §2.2.4].
� Loop peeling is rarely advantageous; its opposite is beneficial to allow coalescing [§2.2.6].
� SIMD transformations is done in HLS via horizontal unrolling [§2.3.1].
� Short-circuiting: while the logic for both boolean operands must always be instantiated in hardware, dynamically scheduling branches [81]

can e↵ectively “short-circuit” otherwise deep, static pipelines.
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� Loop-based strength reduction [28, 18, 136], Induction variable elimination [6], Unreachable code elimination [6], Useless-code

elimination [6], Dead-variable elimination [6], Common-subexpression elimination [6], Constant propagation [6], Constant folding

[6], Copy propagation [6], Forwarding substitution [6], Reassociation, Algebraic simplification, Strength reduction, Bounds reduction,

Redundant guard elimination are all transformations that eliminate code, which is a useful step for HLS codes to avoid generating

unnecessary hardware.

� Loop-invariant code motion (hoisting) [6] does not save hardware in itself, but can save memory operations.

� Loop normalization can be useful as an intermediate transformation.

� Loop reversal [6], array padding and contraction, scalar expansion, and scalar replacement yield the same benefits as in software.

� Loop skewing [6] can be used in multi-dimensional wavefront codes.

� Function memoization can be applied to HLS, using explicit fast memory.

� Tail recursion elimination may be useful if eliminating dynamic recursion can enable a code to be implemented in hardware.

� Regular array decomposition applies to partitioning of both on-chip/o↵-chip memory.

� We do not consider transformations that apply only in a distributed setting (message vectorization, message coalescing, message

aggregation, collective communication, message pipelining, guard introduction, redundant communication), but they should be

implemented in dedicated message passing hardware when relevant [40].
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� No use case found for loop spreading and parameter promotion.

� Array statement scalarization: No built-in vector notation in C/C++/OpenCL.

� Code colocation, displacement minimization, leaf procedure optimization, and cross-call register allocation, are not relevant for HLS,

as there are no runtime function calls.

� I/O format compilation: No I/O supported directly in HLS.

� Supercompiling: is infeasible for HLS due to long synthesis times.

� Loop pushing/embedding: Inlining completely is favored to allow pipelining.

� Automatic decomposition and alignment, scalar privatization, array privatization, cache alignment, and false sharing are not relevant

for HLS, as there is no (implicit) cache coherency protocol in hardware.

� Procedure call parallelization and split do not apply, as there are no forks in hardware.

� Graph partitioning only applies to explicit dataflow languages.

� There are no instruction sets in hardware, so VLIW transformations do not apply.

Table 2.2: The relation of traditional CPU-oriented transformations to HLS codes.
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a sample set of classical HPC kernels, available as open source repositories on GitHub4.

These kernels are written in C++ for Xilinx Vitis HLS [160] with hlslib (introduced in

Chapter 3) extensions, and are built and run using the Xilinx Vitis environment. For each

example, we will describe the sequence of transformations applied, and give the resulting

performance at each major stage.

The included benchmarks were run on an Alveo U250 board, which houses a Xilinx Ul-

traScale+ XCU250-FIGD2104-2L-E FPGA and four 2400 MT/s DDR4 banks (we utilize

1-2 banks for the examples here). The chip consists of four almost identical chiplets with

limited interconnect between them, where each chiplet is connected to one of the DDR4

pinouts. This multi-chiplet design allows more resources (1728K LUTs and 12,288 DSPs),

but poses challenges for the routing process, which impedes the achievable clock rate and

resource utilization for a monolithic kernel attempting to span the full chip. Kernels were

compiled for the xilinx u250 xdma 201830 2 shell with Vitis 2019.2 and executed with

version 2.3.1301 of the Xilinx Runtime (XRT). All benchmarks are included in Fig. 2.7,

and the resource utilization of each kernel is shown in Fig. 2.8.

2.6.1 Stencil Code

Stencil codes are a popular target for FPGA acceleration in HPC, due to their regular

access pattern, intuitive bu↵ering scheme, and potential for creating large systolic ar-

ray designs [166]. We show the optimization of a 4-point 2D stencil based on Lst. 4.

Benchmarks are shown in Fig. 2.7, and use single precision floating point, iterating over

a 8192⇥8192 domain. We first measure a naive implementation, where all neighboring

cells are accessed directly from the input array, which results in no data reuse and heavy

interface contention on the input array. We then apply the following optimization steps:

1. Delay bu↵ers [§2.2.2] are added to store two rows of the domain (see Lst. 4a), removing

interface contention on the memory bus and achieving perfect spatial data reuse.

2. Spatial locality is exploited by introducing vectorization [§2.3.1]. To e�ciently use

memory bandwidth, we use memory extraction [§2.4.1], bu↵ering [§2.4.2], and strip-

ing [§2.4.3] from two DDR banks.

3. To exploit temporal locality, we replicate the vectorized PE by vertical unrolling [§2.3.2]

and stream [§2.3.3] between them (Lst. 11). The domain is tiled [§2.3.4] to limit fast

memory usage.

4https://github.com/spcl?q=hls
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Figure 2.7: Performance progression of kernels when applying transformations. Parenthe-

ses show speedup over previous version, and cumulative speedup.

Naive
Pipelined

Vectorized

Systolic
Naive

Pipelined

Vectorized

Systolic
Initial

Pipelined

Systolic

0.01%

0.1%

1%

10%

100%
[Utilization]

Stencil Matrix Multiplication N-Body

LUTs DSPs BRAM

Figure 2.8: Resource usage of kernels from Fig. 2.7 as fractions of available resources. The

maxima are taken as 1728K LUTs, 12,288 DSPs, and 2688 BRAM.

Enabling pipelining with delay bu↵ers allows the kernel to throughput ⇠1 cell per cycle.

Improving the memory performance to add vectorization (using W = 16 operands/cycle

for the kernel) exploits spatial locality through additional bandwidth usage. The vertical

unrolling and dataflow step scales the design to exploit available hardware resources on

the chip, until limited by placement and routing. The final implementation is available on

GitHub5.

2.6.2 Matrix Multiplication Code

The full optimization process of matrix multiplication kernel is presented as a comprehen-

sive case study in Chapter 4. Here, we present an overview of performance at progressive

stages of optimization for 8192⇥8192 matrices, shown in Fig. 2.7. Starting from a naive

implementation (Lst. 1a), the following optimization stages were applied:

5https://github.com/spcl/stencil_hls/
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1. We transpose the iteration space [§2.2.1.1], removing the loop-carried dependency on

the accumulation register, and extract the memory accesses [§2.4.1], vastly improving

spatial locality. The bu↵ering, streaming and writing phases are fused [§2.2.4], allowing

us to coalesce the three nested loops [§2.2.6].

2. In order to increase spatial parallelism, we vectorize accesses to B and C [§2.3.1].

3. To scale up the design, we vertically unroll by bu↵ering multiple values of A, applying

them to streamed in values of B in parallel [§2.3.2]. To avoid high fan-out, we partition

bu↵ered elements of A into processing elements [§2.3.3] arranged in a systolic array

architecture. Finally, the horizontal domain is tiled to accommodate arbitrarily large

matrices with finite bu↵er space.

Allowing pipelining and regularizing the memory access pattern results in a throughput

of ⇠1 cell per cycle. Vectorization multiplies the performance by W , set to 16 in the

benchmarked kernel. The performance of the vertically unrolled dataflow kernel is only

limited by placement and routing due to high resource usage on the chip. The final

implementation achieves state-of-the-art performance on the target architecture, and is

available on GitHub6. For more details, see the full case study in Chapter 4.

2.6.3 N-Body Code

Finally, we show an N-body code in 3 dimensions, using single precision floating point

types and iterating over 16,128 bodies. Since Vitis HLS does not allow memory accesses

of a width that is not a power of two, memory extraction [§2.4.1] and bu↵ering [§2.4.2]

was included in the first stage, to support 3-vectors of velocity. We then performed the

following transformations:

1. The loop-carried dependency on the acceleration accumulation is resolved by applying

tiled accumulation interleaving [§2.2.1.2], pipelining across T�L+ di↵erent resident

particles applied to particles streamed in.

2. To scale up the performance, we further multiply the number of resident particles, this

time replicating compute through vertical unrolling [§2.3.2] of the outer loop into P

parallel processing element arranged in a systolic array. Each element holds T resident

particles, and particles are streamed [§2.3.3] through the PEs.

6https://github.com/spcl/gemm_hls
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The second stage gains a factor of 4⇥ corresponding to the latency of the interleaved

accumulation, followed by a factor of 42⇥ from unrolling units across the chip. T�L+ can

be used to regulate the arithmetic intensity of the kernel. The bandwidth requirements

can be reduced further by storing more resident particles on the chip, scaling up to the full

fast memory usage of the FPGA. The tiled accumulation interleaving transformation thus

enables not just pipelining of the compute, but also minimization of I/O. The optimized

implementation is available on GitHub7.

These examples demonstrate the impact of di↵erent transformations on a programmable

spatial computing platform. In particular, enabling pipelining, regularizing memory ac-

cesses, and vertical unrolling are shown to be central components of scalable hardware

architectures. The dramatic speedups over naive codes also emphasize that HLS tools

do not yield competitive performance out of the box, making it critical to perform fur-

ther transformations. For additional examples of optimizing HLS codes, we refer to the

numerous works applying HLS optimizations listed below.

2.7 Related Work

Optimized applications. Much work has been done in optimizing C/C++/OpenCL

HLS codes for FPGA, such as stencils [166, 146, 79, 149, 144], deep neural net-

works [138, 159, 140, 21, 31], matrix multiplication [46, 144, 39, 59], graph process-

ing [20, 19], networking [50], light propagation for cancer treatment [158], and protein

sequencing [127, 122]. These works optimize the respective applications using transfor-

mations described here, such as delay bu↵ering, random access bu↵ering, vectorization,

vertical unrolling, tiling for on-chip memory, and dataflow.

Transformations. Zohouri et al. [165] use the Rodinia benchmark to evaluate the

performance of OpenCL codes targeting FPGAs, employing optimizations such as SIMD

vectorization, sliding-window bu↵ering, accumulation interleaving, and compute unit repli-

cation across multiple kernels. We present a generalized description of a superset of these

transformations, along with concrete code examples that show how they are applied in

practice. The DaCe framework [16] exploits information on explicit dataflow and con-

trol flow to perform a wide range of transformations, and code generates e�cient HLS

code using vendor-specific pragmas and primitives. Kastner et al. [83] go through the

implementation of many HLS codes in Vivado HLS, focusing on algorithmic optimiza-

7https://github.com/spcl/nbody_hls
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tions. da Silva et al. [33] explore using modern C++ features to capture HLS concepts

in a high-level fashion. Lloyd et al. [103] describe optimizations specific to Intel OpenCL,

and include a variant of memory access extraction, as well as the single-loop accumulation

variant of accumulation interleaving.

Directive-based frameworks. High-level, directive-based frameworks such as OpenMP

and OpenACC have been proposed as alternative abstractions for generating FPGA ker-

nels. Leow et al. [100] implement an FPGA code generator from OpenMP pragmas, pri-

marily focusing on correctness in implementing a range of OpenMP pragmas. Lee et al. [99]

present an OpenACC to OpenCL compiler, using Intel OpenCL as a backend. The au-

thors implement horizontal and vertical unrolling, pipelining and dataflow by introducing

new OpenACC clauses. Papakonstantinou et al. [114] generate HLS code for FPGA from

directive-annotated CUDA code.

Optimizing HLS compilers. Mainstream HLS compilers automatically apply many of

the well-known software transformations in Tab. 2.2 [11, 62, 63], but can also employ more

advanced FPGA transformations. Intel OpenCL [32] performs memory access extraction

into “load store units” (LSUs), does memory striping between DRAM banks, and detects

and auto-resolves some bu↵ering and accumulation patterns. Recent versions of the Vi-

tis HLS compiler also detects and resolves some floating point accumulation patterns. The

proprietary Merlin Compiler [29] uses high-level acceleration directives to automatically

perform some of the transformations described here, as source-to-source transformations to

underlying HLS code. The HeteroCL [93] framework can automatically optimize certain

classes of applications supported by its backend components. Artisan [142] is a meta-

programming approach built on HLS, which uses an approach based on separation of

concerns to apply some of the transformations described here, such as vertical unrolling,

vectorization, delay bu↵ering, dataflow, inlining, and resolving loop-carried dependencies.

Schuiki et al. [125] propose LLHD, an intermediate representation designed to sit be-

tween hardware description languages and the circuitry that they represent, providing a

promising approach to establishing common ground for di↵erent hardware compilers and

optimization frameworks. Polyhedral compilation is a popular framework for optimizing

CPU and GPU loop nests [60], and has also been applied to HLS for FPGA for optimiz-

ing data reuse [119]. Such techniques may prove valuable in automating, e.g., memory

extraction and tiling transformations. While most HLS compilers rely strictly on static

scheduling, Dynamatic [81] considers dynamically scheduling state machines and pipelines

to allow reducing the number of stages executed at runtime.
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Domain-specific frameworks. Implementing programs in domain specific languages

(DSLs) can make it easier to detect and exploit opportunities for advanced transforma-

tions. Darkroom [70] generates optimized HDL for image processing codes, and the popular

image processing framework Halide [121] has been extended to support FPGAs [120, 101].

Luzhou et al. [104] and StencilFlow [38] propose frameworks for generating stencil codes

for FPGAs. These frameworks rely on optimizations such as delay bu↵ering, dataflow, and

vertical unrolling, which we cover here. Using DSLs to compile to structured HLS code

can be a viable approach to automating a wide range of transformations, as we will show

with the StencilFlow framework in Chapter 6. Koeplinger et al. [85] and the FROST [135]

DSL framework also follow this approach.

Other approaches. There are other approaches than C/C++/OpenCL-based HLS lan-

guages to addressing the productivity issues of hardware design: Chisel/FIRRTL [12, 77]

maintains the paradigm of behavioral programming known from RTL, but provides mod-

ern language and compiler features. This caters to developers who are already familiar

with hardware design, but wish to use a more expressive language. In the Maxeler ecosys-

tem [107], kernels are described using a Java-based language, but rather than transforming

imperative code into a behavioral equivalent, the language provides a DSL of hardware

concepts that are instantiated using object-oriented interfaces. By constraining the input,

this encourages developers to write code that maps well to hardware, but requires learning

a new language exclusive to the Maxeler ecosystem.

2.8 Toolflow of Xilinx vs. Intel

When choosing a toolflow to start designing hardware with HLS, it is useful to understand

two distinct approaches by the two major vendors: Intel OpenCL wishes to enable writing

accelerators using software, making an e↵ort to abstract away low-level details about the

hardware, and present a high-level view to the programmer; whereas Xilinx’ Vitis/Vi-

vado HLS ecosystem provides a more productive way of writing hardware, by means of a

familiar software language. Xilinx uses OpenCL as a vehicle to interface between FPGA

and host, but implements the OpenCL compiler itself as a thin wrapper around the C++

compiler, whereas Intel embraces the OpenCL paradigm as their frontend (although they

encourage writing single work item kernels [2], e↵ectively preventing reuse of OpenCL

kernels written for GPU).

Vitis HLS has a stronger coupling between the HLS source code and the generated hard-
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ware. This requires the programmer to write more annotations and boilerplate code, but

can also give them a stronger sense of control over their architecture. Conversely, the

Intel OpenCL compiler presents convenient abstracted views, saves boilerplate code (e.g.,

by automatically pipelining sections), and implements e�cient substitutions by detect-

ing common patterns in the source code (e.g., to automatically perform memory extrac-

tion [§2.4.1]). The downside is that developers can end up struggling to write or generate

code in a way that is recognized by the tool’s “black magic”, in order to achieve the de-

sired result. Finally, Xilinx’ choice to allow C++ gives Vitis HLS an edge in expressibility,

as (non-virtual) objects and templating turns out to be a useful tool for abstracting and

extending the language (we will see multiple examples of this in Chapter 3). Intel o↵ers

a C++-based HLS compiler, but does not (as of writing) support direct interoperability

with the OpenCL-driven accelerator flow.

2.9 Summary

The transformations known from software are insu�cient to optimize HPC kernels target-

ing spatial computing systems. We have proposed a new set of optimizing transformations

that enable e�cient and scalable hardware architectures, and can be applied directly to the

source code by a performance engineer, or automatically by an optimizing compiler. Per-

formance and compiler engineers can benefit from these guidelines, transformations, and

the presented cheat sheet as a common toolbox for developing high performance hardware

using HLS. Much of the material presented here is also available in interactive form as part

of our tutorial, “Productive Parallel Programming for FPGA with High-Level Synthesis”,

available online (see page 9), containing demos of code examples.

In Chapter 4, we will deep dive into the optimization process of a matrix multiplication

kernel implemented in an HLS language, showcasing many of the transformations discussed

here in a concrete setting, by simultaneously maximizing computational throughput and

minimizing data movement of the application. But first, we will provide some concrete

software tools to improve the productivity of HLS programming.
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Chapter 3

hlslib: Software Engineering for Hardware

Design

hlslib is an open source project1, which materialized as I implemented features that I found

missing or lacking in Vivado/Vitis HLS, while developing kernels such as the ones described

in Chapter 2, and has since received support for Intel FPGA. hlslib was presented at

H2RC’19 and is published as an extended abstract on arXiv [37]. The GitHub repository

has garnered significant attention and received contributions from multiple authors.

3.1 High-Level Synthesis Programming

Although the productivity of developing for FPGAs has improved significantly with

widespread adoption of HLS, working with these tools can be a less-than-smooth ex-

perience. The imperative languages primarily used by HLS tools, namely C, C++, and

OpenCL, were not designed with hardware development in mind, and the resulting opaque

mapping to hardware can be unclear to both software developers (who cannot implement

code in the way they are used to), and hardware developers (who struggle to achieve the

exact architecture that they have in mind).

We introduce hlslib, an open source collection of tools, modules, and scripts, with the

overarching goal of improving the quality of life of HLS developers. An overview of some

hlslib features and which stage of development benefits from them is given in Fig. 3.1.

While hlslib cannot hope to solve all the issues of HLS development, we hope to smoothen

as many steps of the process as possible in a external library, and encourage good prac-

tices inspired by traditional software engineering. This chapter gives an overview of the

functionality o↵ered by hlslib as of writing, but the library is continuously developed to

provide new features and to support newer versions and functionality of the two major

vendor tools, Xilinx’ Vitis HLS [160] (formerly Vivado HLS), and Intel’s OpenCL SDK

for FPGAs [32].

1https://github.com/definelicht/hlslib
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Figure 3.1: Stages of HLS development and the supporting hlslib features.

3.2 Improving the HLS Workflow

3.2.1 CMake Integration

Many existing HLS projects, including example codes published by both Xilinx and Intel

through their o�cial channels, rely on manually written GNU makefiles. This method

o↵ers poor portability, and does not allow projects to be configured without modifying

the makefile or source code. In software development, CMake is a widespread tool used

to configure and build C/C++ projects. Users can set project parameters during con-

figuration, as compilation is performed out-of-source, and dependencies are automatically

located on the host system in a portable fashion.

hlslib provides supports for FPGA projects in CMake, allow separation of source code and

configuration through the FindVitis.cmake and FindIntelFPGAOpenCL.cmake scripts,

required to locate and expose the Xilinx and Intel FPGA ecosystems, respectively. Users

gain access to the HLS binaries, as well as compiler flags, header files, and library files

required to build the OpenCL host code. Historically, the workflow for building and run-

ning FPGA codes with commercial HLS tools has been continuously changing throughout

their development. By o✏oading the responsibility of setting up the HLS environment to

hlslib, projects become robust to changes in the setup provided by the vendors.

An example snippet for a CMakeLists.txt using hlslib to build an Vitis project with a

top-level function “Top” is given below, where hardware targets are added with custom

targets, using the binaries exposed by the find-scripts:

Examples of the full flow with all relevant files are included in the hlslib repository, for

both Xilinx and Intel OpenCL ecosystems.
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1 set(TARGET_PLATFORM "xilinx_u250_xdma_201830_2" CACHE STRING "Vitis accelerator platform.")

2 set(CMAKE_MODULE_PATH hlslib/cmake)

3 find_package(Vitis REQUIRED)

4 include_directories(${Vitis_INCLUDE_DIRS} hlslib/include)

5 add_executable(MyHostCode MyHostCode.cpp)

6 target_link_libraries(MyHostCode ${Vitis_LIBRARIES})

7 add_custom_target(compile_hardware COMMAND ${Vitis_COMPILER}

8 --platform ${TARGET_PLATFORM} --kernel Top

9 -c -t hw Kernel.cpp -o Kernel.xo)

10 add_custom_target(link_hardware COMMAND ${Vitis_COMPILER}

11 --platform ${TARGET_PLATFORM} --kernel Top

12 -l -t hw Kernel.xo -o Kernel.xclbin)

Listing 13: Creating custom FPGA targets with hlslib CMake support.

3.2.2 Portable OpenCL Host Code

OpenCL was originally developed for GPUs, and thus follows the GPU model of creating

computational kernels, transferring data in bulk between host and device memories, and

launching discrete compute kernels. OpenCL is exposed as a host-side interface by both

Intel and Xilinx for launching computational kernels and interacting with device DRAM.

Intel and Xilinx have taken slightly di↵erent approaches to adapting OpenCL to FPGAs.

In order to enable a fully unified interface, hlslib provides an OpenCL wrapper that hides

subtle di↵erences between vendors, such as distinct ways of specifying which memory bank

a bu↵er should be instantiated on. An example of a basic hlslib OpenCL host program

is given in Lst. 14, which is valid code for both the Intel and Xilinx ecosystems (example

file name uses the Xilinx .xclbin su�x).

1 using namespace hlslib::ocl;

2 Context context; // Sets up the vendor OpenCL runtime

3 auto program = context.MakeProgram("KernelFile.xclbin"); // Or KernelFile.aocx

4 std::vector<float> input_host(N, 5), output_host(N);

5 auto input_device = context.MakeBuffer<float, Access::read>(MemoryBank::bank0, input_host.cbegin(),

6 input_end.cend());

7 auto output_device = context.MakeBuffer<float, Access::write>(MemoryBank::bank1, N);

8 auto kernel = program.MakeKernel("Kernel", in_device, out_device, N);

9 kernel.ExecuteTask(); // Synchronous kernel execution

10 output_device.CopyToHost(output_host.begin());

Listing 14: Portable OpenCL host program implemented with the hlslib wrapper.
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1 void Top(int const *mem0, int *mem1) {

2 #pragma HLS DATAFLOW

3 hlslib::Stream<int> s0, s1;

4 Read(mem0, s0); // Sequential in software,

5 Compute(s0, s1); // parallel in hardware

6 Write(s1, mem1);

7 }

8

9 void Compute(hlslib::Stream &s0,

10 hlslib::Stream &s1) {

11 for (int t = 0; t < T; ++t) {

12 for (int i = 0; i < N; ++i) {

13 #pragma HLS PIPELINE

14 int read = s0.Pop();

15 int res = /* do compute */;

16 s1.Push(res);

17 }

18 }

19 }

1 void Read(int const *mem0, hlslib::Stream &s) {

2 for (int t = 0; t < T; ++t) {

3 for (int i = 0; i < N; ++i) {

4 #pragma HLS PIPELINE

5 s.Push(mem0[i]);

6 } } }

7

8 void Write(hlslib::Stream &s, int *mem1) {

9 for (int t = 0; t < T; ++t) {

10 for (int i = 0; i < N; ++i) {

11 #pragma HLS PIPELINE

12 mem1[i] = s.Pop();

13 } } }

Read

DR
AM

Write C
om
pu
te

Listing 15: Software and hardware behavior is di↵erent for cyclic dataflow.

3.2.3 Emulating Multiple Processing Elements in Software

Accurately emulating the semantics of multiple concurrent processing elements (PEs) ex-

ecuting in hardware is critical to the testing process, as multiple PEs are vital to any

high performance architecture. PEs typically communicate via blocking channels, im-

plying synchronization points between them. Emulating concurrent PEs thus requires a

multi-threaded environment with thread-safe constructs.

In the Intel OpenCL ecosystem, PEs are expressed as OpenCL kernels that are launched

separately from the host code, and communication channels are expressed as global objects

that are accessed within the kernel codes. When running emulation in software, PEs are

thus launched as concurrent threads by the runtime. On the other hand, Xilinx HLS

instantiates PEs from functions or loops “called” in a scope annotated with the DATAFLOW

pragma. While this allows expressing communication between kernels with multiple PEs

in a more explicit fashion, it also means that the behavior of executing the code when

compiled as C++ code can di↵er significantly from its behavior when built for hardware.

An example of this is shown in Lst. 15, when mem0 and mem1 are passed as pointers to the

same address.

Programs with cyclic dataflow between PEs are not o�cially supported by Xilinx, but will

compile and run in practice, albeit without any guarantees of correctness. Regardless, it
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can be desirable to write such programs for high-performance implementations of itera-

tive algorithms, such as iterative stencil computations, where the same DRAM memory

addresses are read and written multiple times during execution. In such a scenario, a

program like Lst. 15 will exhibit di↵erent behavior in software and hardware:

• In software, Read will execute all T · N iterations before Compute is called, which will

execute all T ·N iterations before Write is called. Assuming that the streams s0 and s1

are unbounded in software, each iteration t will perform exactly the same computation.

• In hardware, Read, Compute, and Write will run concurrently, and s0 and s1 will be

bounded with size 1. The PEs will thus stay synchronized. Each iteration t of Read

will read values written by the previous iteration of Write, assuming N is significantly

larger than the pipeline depth.

When feedback happens directly between PEs and there is a cycle in the channels inter-

connecting them, in the best case, programs will crash or not terminate in software. In the

worst case, programs like Lst. 15 will produce di↵erent results in software and hardware,

because the feedback dependency on mem is not enforced.

To more accurately emulate kernels with multiple PEs and potential feedback dependen-

cies, hlslib provides a set of thin wrapper macros that mitigate the di↵erence between the

compiled C++ and the hardware generated HLS, that can be used in conjunction with

hlslib::Stream wrapper objects (see Sec. 5.7.5) to run PEs concurrently in a communi-

cation synchronous fashion. Programs only need to wrap every function call in a DATAFLOW

section in an hlslib-defined macro, as shown in Lst. 16, which is a modified version of the

top-level function from Lst. 15.

1 void Top(int const *mem0, int *mem1) {

2 #pragma HLS DATAFLOW

3 hlslib::Stream<int> s0, s1; // hlslib streams are thread-safe

4 HLSLIB_DATAFLOW_INIT();

5 HLSLIB_DATAFLOW_FUNCTION(Read, mem0, s0); // In simulation mode,

6 HLSLIB_DATAFLOW_FUNCTION(Compute, s0, s1); // each call launches

7 HLSLIB_DATAFLOW_FUNCTION(Write, s1, mem1); // a separate C++ thread

8 HLSLIB_DATAFLOW_FINALIZE(); // Joins C++ threads

9 }

Listing 16: PEs in DATAFLOW section annotated to emulate hardware behavior.

Behind the scenes, each HLSLIB DATAFLOW FUNCTION macro chooses between two kinds of

behavior, depending on the compilation mode:
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• In hardware, all annotated functions are simply inlined, resulting in code identical to

Lst. 15, which will run each function as a parallel processing element.

• In software, each function is executed in a newly launched C++ thread. When

HLSLIB DATAFLOW FINALIZE is called, hlslib will wait on each of the launched threads,

returning when all PEs have terminated.

The software behavior means that PEs cannot run ahead of others more than what is

allowed by the depth of the channels between them, which also allows debugging deadlocks

due to channel sizes (i.e., depth of the FIFOs implementing them in hardware). When

a Pop or Push from/to a channel has waited for a configurable amount of time without

receiving data, hlslib will print a warning with the channel name and operation, enabling

easier debugging of deadlocks.

3.3 Object-Oriented Hardware Design

Classes can provide excellent encapsulation for hardware concepts, combining data and

functionality in the spirit of object-oriented programming, but also allow specializing

classes with C++ templates allows parameters to be specified at compile-time, when this

is necessary for generating hardware. hlslib uses classes both in the object-oriented sense,

and to exploit template metaprogramming.

3.3.1 Streams/Channels

Channel objects are ubiquitous in HLS programming, either as communication primi-

tives between processing elements, or as bu↵ers with FIFO semantics. Channels in In-

tel OpenCL are global objects, while channels in Vitis HLS are created as templated

hls::stream objects.

hlslib extends the Vitis HLS built-in hls::stream class in the hlslib::Stream class,

which adds a number of additional features and streamlines the interface. Most notably,

hlslib streams are thread-safe, and support the features o↵ered by the hlslib multiple-PE

simulation functionality (example usage shown was shown in Lst. 15 and 16). Further-

more, streams are bounded by default, like the hardware implement they represent. If no

argument is specified, the default Vitis HLS implementation is used, which is a ping-pong

bu↵er. Any other depth will implement a FIFO using a resource suggested by the tool, or

specified by an optional template argument (e.g., SRL, LUTRAM, BRAM, or UltraRAM).

52



3.3. Object-Oriented Hardware Design

3.3.2 Wide Data Buses and Vectorization

Instantiating wide data paths in HLS is necessary to utilize all available memory bandwidth

(Sec. 2.4), and to achieve parallel architectures through vectorization (Sec. 2.3.1). In

practice, this is typically done either by unrolling loops and relying on the tool to infer wide

data accesses, or by using types that explicitly specify the vector size, such as OpenCL

vector types for Intel OpenCL, or ap uint for Vitis HLS. OpenCL vector types only

expose a small, limited set of types and vector lengths, and ap uint requires tedious and

error-prone casting to implement vector types in hardware.

hlslib provides the templated DataPack class for Vitis HLS, which exposes a versatile

interface for implementing wide buses, registers, memory interfaces, and computations

that consist of multiple data elements. Unlike ap uint, DataPack is typed, allowing

native indexing of elements for both reading and writing, supports element-wise operations

(shown in Lst. 17), and convenience functions for concerting to and from C-style arrays

and ap uint types.

1 hlslib::DataPack<float, 4> Direction(hlslib::DataPack<float, 4> &a, hlslib::DataPack<float, 4> &b) {

2 auto d = b - a; // Vector operations

3 auto len = c[0] + c[1] + c[2] + c[3]; // Indexing

4 return 1/len * d; // Element-wise operations

5 }

Listing 17: Overview of hlslib::DataPack functionality.

When used as the data type for pointer or stream arguments, DataPack enforces bus widths

corresponding to the byte width formed by the data type vector size. If used consistently,

simply changing the width of a centrally defined DataPack-based type will be su�cient to

adjust registers, buses, bu↵ers, and interfaces throughout an HLS code.

3.3.3 Shift Registers with Parallel Access

A common pattern for FPGA algorithms [165] is to bu↵er elements streamed in for a

constant number of cycles, thus “delaying” them for future iterations, as described in

Sec. 2.2.2 (e.g., to be used as a di↵erent element of a sliding window in a stencil computa-

tion [52, 166]). This is similar to a FIFO bu↵er, with the added constraint that elements

pushed and popped are at a constant distance (e.g., for a bu↵er of size 4, an element

pushed can only be accessed again when it comes out at the end, i.e., after 4 additional

pushes). We will refer to these types of bu↵ers as shift registers according to the Intel
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FPGA nomenclature, although it also common to implement these in BRAM/M20K on-

chip memory. We assume that shift registers have a single input, but can have multiple

parallel outputs (known as “taps”).

In Intel OpenCL, shift registers are inferred as a pattern when an unrolled loop shifts an

array by a constant o↵set every cycle of a pipelined section, and the remainder of the

section only accesses the array using constant indices. The compiler can then infer the

distance between each tap, allowing it to instantiate separate bu↵ers in hardware between

them, e↵ectively partitioning the single array into multiple smaller bu↵ers. Vitis HLS, on

the other hand, does not recognize this as a high-level pattern (as of writing this work),

and will textually unroll the shifting loop in the preprocessor and analyze the unrolled

code, which does not scale with large shift registers.

We express the parallel shift register abstraction as a templated class in hlslib, transpar-

ently managing bu↵ers between each tap. Unlike the Intel ecosystem, hlslib shift registers

are explicitly instantiated by the programmer (as opposed to relying on pattern detection),

and enforce constant o↵set access at compile-time, while providing the full abstraction to

the Vitis HLS ecosystem, which otherwise requires this pattern to be implemented man-

ually. An implementation of a 4-point 2D stencil code based on an hlslib shift register is

shown in Lst. 18.

+ + + ×

DR
AM

Seq.
south

east west north

1 void Stencil(hlslib::Stream<float> &in, hlslib::Stream<float> &out) {

2 // Explicitly declare taps as template arguments

3 hlslib::ShiftRegister<float, 0, W - 1, W + 1, 2 * W> sr;

4 // H and W are compile-time constants

5 for (int i = 0; i < H; ++i) {

6 for (int j = 0; j < W; ++j) {

7 #pragma HLS PIPELINE

8 sr.Shift(in.Pop()); // Push new element and shift buffer

9 if (i >= 2 && j >= 1 && j < W - 1) { // Ignore boundary

10 // Specify tap to access using compile-time indices

11 float res = 0.25 * (sr.Get<2 * W>() + sr.Get<W - 1>() +

12 sr.Get<W + 1>() + sr.Get<0>());

13 out.Push(res);

14 } } } }

Listing 18: Explicit shift register abstraction provided by hlslib.
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1 using Vec = DataPack<float, 8>;

2 void Reduce(hlslib::Stream<Vec> &in, hlslib::Stream<Vec> &out) {

3 for (int i = 0; i < 1024; ++i) {

4 #pragma HLS PIPELINE

5 auto v = in.Pop();

6 auto r = hlslib::TreeReduce<float, hlslib::op::Add<float>, 8>(v);

7 out.Push(r);

8 } }

Listing 19: Explicit balanced tree reduction of an array.

Variadic template arguments are used to instantiate taps, where the distance between each

consecutive index is used to compute the respective bu↵er size (as a result, indices must

be specified in ascending order).

3.3.4 Tree Reduction with Functors

To perform a fully pipelined reduction of an array of elements for an associative operator,

it is common to implement the reduction as a balanced binary tree to minimize latency and

resource utilization. Implementing reduction trees in an imperative language requires the

compiler to recognize unrolled loops that accumulate into a single variable, and requires

explicitly allowing the compiler to reorder non-associative operations, such as floating

point addition.

To guarantee that a reduction is performed as a balanced binary tree, hlslib provides the

TreeReduce templated function, which uses variadic templates to explicitly instantiate the

full tree in hardware. The template supports any type, array size, and binary operator.

An example is shown in Lst. 19.

hlslib supports a set of common binary operators by default, but custom operators can be

implemented with a functor struct that defines the Apply binary function and an identity

for the operator. These functors are conveniently expressible using C++ templated classes.

3.4 Projects Using hlslib

All the features described in this work were tested to meet the demands of concrete HLS

codes. The repository holds additional niche features left out here, as well as a compilation

of examples testing and demonstrating various concepts.

We maintain a list of projects leveraging hlslib on the repository page. The matrix mul-
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tiplication code described in Chapter 4 uses hlslib vector types (§3.3.2), the simulation

framework (§3.2.3) and thread-safe streams (§5.7.5), and the OpenCL wrapper (§3.2.2).

The Data Centric Parallel Programming (DaCe) project (Chapter 5) uses hlslib emulation

functionality (§3.2.3), streams (§5.7.5), and vector types (§3.3.2) are used to generate code

for the Xilinx backend. The OpenCL wrapper (§3.2.2) is used for generating code for host-

device interaction, and CMake is used for configuration (§3.2.1). The reference implemen-

tation of the Streaming Message Interface (SMI) [40], a distributed memory inter-FPGA

communication model specification unifying message passing with the streaming model of

pipelined HLS codes, also uses hlslib for OpenCL integration.

3.5 Summary

hlslib is a collection of tools that aims to improve the productivity of HLS developers, in-

cluding CMake integration, and classes for vectorization, thread-safe simulation, reduction

patterns, and host/device interaction. As tools develop, hlslib aims to continue to evolve

and adapt to new features and incorporate new ideas for how to close the productivity

gap. For HLS development to become truly productive, the field must see many open

source e↵orts, with active exchange of knowledge and pooling of developer e↵ort, so that

hardware design can reap the benefits of open source development that we know from the

software domain.

As of writing, the open source hlslib repository (see link on page 47) has 178 stars, 33

forks, and 5 contributors on GitHub.
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Chapter 4

A Case Study with Matrix Multiplication

This chapter is based on work published at FPGA’20 [39]. The theory on minimizing I/O in

matrix multiplication that serves as background for the I/O model was developed by Grze-

gorz Kwasniewski [91]. The model developed for this work incorporates FPGA hardware

constants to guide the architecture, and was done in collaboration between Grzegorz Kwas-

niewski and myself. I designed the hardware architecture, wrote the code, and conducted

all experiments. The resulting open source implementation1 won the Compute Acceleration

category of the Xilinx Open Hardware Competition 2020 2.

4.1 Minimizing I/O of Linear Algebra Kernels

In this chapter, we will apply the techniques described in Chapter 2 in a thorough case

study of Matrix-Matrix Multiplication (MMM), where we use a theoretical I/O model to

optimize data movement in addition to computational performance, following a trend in

both academia [134, 126, 44, 5] and industry [73, 9] to reduce data movement to miti-

gate the diverging evolution of computational speeds and memory bandwidth discussed in

Sec. 1.1. Being ubiquitious in both scientific and industrial applications, linear algebra has

been the subject of much work on this topic [80, 75, 134, 56, 10]. Minimizing I/O impacts

not only performance, but also reduces bandwidth usage in a shared system. MMM is

typically used as a component of larger applications [143, 42], where it co-exists with other

algorithms, e.g., memory bound linear algebra operations such as matrix-vector/vector-

vector operations, which benefit from a larger share of the bandwidth, but do not require

large amounts of compute resources.

4.1.1 Minimizing I/O on FPGAs

FPGAs are an excellent platform for accurately modeling performance and I/O to guide

algorithm implementations. In contrast to software implementations, replacing cache with

1https://github.com/spcl/gemm_hls
2http://www.openhw.eu/2020-results.html
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explicit on-chip memory, and isolation of the instantiated architecture, can yield fully de-

terministic behavior in the circuit: accessing memory, both on-chip and o↵-chip, can be

done explicitly, rather than by a cache replacement scheme fixed by the hardware. The

models established so far, however, pose a challenge for their applicability on FPGAs.

They often rely on abstracting away many hardware details, assuming several idealized

processing units with local memory and all-to-all communication [134, 5, 80, 75]. Those

assumptions do not hold for FPGAs, where the physical area size of custom-designed pro-

cessing elements (PEs) and their layout are among most important concerns in designing

e�cient FPGA implementations [98]. Therefore, performance modeling for reconfigurable

architectures requires taking constraints like logic resources, fan-out, routing, and on-chip

memory characteristics into account.

With an ever-increasing diversity in available hardware platforms, and as low-precision

arithmetic and exotic data types are becoming key in modern DNN [17] and linear solver [68]

applications, extensibility and flexibility of hardware architectures will be crucial to stay

competitive. Existing high-performance FPGA implementations [109, 82] are implemented

in hardware description languages (HDLs), which drastically constrains their maintenance,

reuse, generalizability, and portability. Furthermore, the source code is not disclosed, such

that third-party users cannot benefit from the kernel or build on the architecture.

In this chapter, we address the above issues, while showcasing a real-world scenario of

applying the toolbox of transformations presented in Chapter 2. We present a high-

performance, communication avoiding MMM algorithm, which is based on both computa-

tional complexity theory [80] (Sec. 4.3.2), and on detailed knowledge of FPGA-specific fea-

tures (Sec. 4.4). Our architecture is implemented in pure C++ with a small and readable

code base, and to the best of our knowledge, was the first open source, high-performance

MMM FPGA code. We do not assume the target hardware, and allow easy configuration

of platform, degree of parallelism, bu↵ering, data types, and matrix sizes, allowing kernels

to be specialized to the desired scenario. The contributions of this chapter are:

• We model a decomposition for matrix multiplication that simultaneously targets

maximum performance and minimum o↵-chip data movement, in terms of hardware

constants.

• We design a mapping that allows the proposed scheme to be implemented in hard-

ware, using the model parameters to lay out the architecture.
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1 for (i = 0; i < M; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < K; k++)

4 C[i, j] = C[i, j] + A[i, k]*B[k, j];

Listing 20: Classical MMM algorithm.

• We provide a plug-and-play, open source implementation of the hardware architec-

ture in pure HLS C++, enabling portability across FPGA and demonstrating low

code complexity.

• We include benchmarks for a wide range of floating point and integer types, and show

the e↵ect of adjusting parallelism and bu↵er space in the design, demonstrating the

design’s flexibility and scalability.

4.2 Optimization Goals

In this section we introduce what we optimize. In Sec. 4.3.2, 4.3.3, and 4.4 we describe

how this is achieved. We consider optimizing the schedule of a classical MMM algorithm,

that is, given a problem of finding C, where C = AB, A 2 Rm⇥k, B 2 Rk⇥n, C 2 Rm⇥n,

an algorithm performs F = mnk multiplications and additions (pseudocode shown in

Lst. 20). We therefore exclude Strassen-like routines [137] from our analysis, as the classical

algorithms often perform better on practical problems and hardware [34]. We require that

the optimal schedule: (1) achieves highest performance (has the lowest time-to-solution

time), while (2) performing the least number of I/O operations, by (3) making the most

e�cient use of resources.

4.2.1 Optimizing Computations

On load/store architectures, such as CPUs and GPUs, optimizing the computations of

scientific applications typically only require targeting the native vector units and spawning

enough parallel threads to saturate all vectorized processor cores. In contrast, exploiting

all available computational logic on an FPGA requires significantly more engineering e↵ort,

as computations must be grouped and distributed on the chip in a routable fashion, and

the degree of parallelism that must be exploited is very high due to the (relatively) low

clock frequencies. Laying out the computational logic must thus be taken into account

when decomposing the target application for hardware execution.
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4.2.2 Optimizing I/O

The decomposition of a problem for execution on a parallel architecture is constrained by

the data movement between the memory subsystem and the computational units, and by

the data movement between computational units. Both aspects are related to the relevant

FPGA resources (e.g., o↵-chip bandwidth and on-chip memory) and the dependencies

between operators on the chip (e.g., partitioning of on-chip memory, and fan-in/fan-out

to o↵-chip and on-chip memory).

4.2.3 Optimizing Resources

When targeting a high utilization design on FPGA, it is critical to maintain characteristics

that aid the routing process. Routing reacts poorly to large fan-in or fan-out, which

typically occurs when these are dependent on the degree of parallelism: that is, if N

determines the degree of parallelism in the program, 1-to-N and N -to-1 connections in

the architecture should be avoided. This is true both on the granularity of individual logic

units, and on the granularity of coarse-grained modules instantiated by the programmer.

To accommodate this, we can regulate the size of PEs, and favor PE topologies that are

easily mapped to a plane, such as grids or chains. Furthermore, mapping of a hardware

architecture to the chip logic and interconnect (placement and routing) may reduce the

clock frequency due to long routing paths. Due to the intractable size of the configuration

space, this cannot be e�ciently modeled and requires empirical evaluation of designs. The

routing challenges are exasperated in FPGA chips that consist of multiple “chiplets”, such

as the Xilinx UltraScale+ VU9P chip used in the following experiments, which hosts three

“super-logical regions” (SLRs). Crossing the chiplets consumes highly limited routing

resources and carries a higher timing penalty. Limiting these crossings is thus key to

scaling up resource utilization.

4.2.4 Notation

Throughout this chapter, we use a two-level notation for naming parameters (Tab. 4.1).

Most parameter names are on the form of ↵�, where ↵ refers to some quantity, such as the

total number of objects, and � denotes the object of interest. For example, Nc, Nb, sb are:

total number of (N) compute units (c), memory blocks (b), and the size of each memory

block (s), respectively.

The target hardware contains d types of di↵erent logic resources. This typically consists of
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M
M

M

~i, ~j, ~k Unit vectors in the 3D iteration space.

m, n, k Matrix sizes in ~i, ~j, and ~k dimensions, respectively.

A, B Input matrices A 2 Rm⇥k and B 2 Rk⇥n.

C = AB Output matrix C 2 Rm⇥n.

n
a
m
in
g

↵� Parameter naming convention. ↵ is some quantity

(i.e., size or number of objects), � is an object that

↵ refers to.

↵�,max Hardware limit on a parameter ↵�.

↵tot =
Q

� ↵� The product of all tile sizes.

↵

N Total number of objects.

x, y Number of objects in the ith jth dimension of the

given tile.

s Intrinsic size of an object.

w Bit width of object (e.g., of port or data type).

~r Vector of logic resources.

�

c Compute units in a processing element.

p Processing elements in a compute tile.

t Compute tiles in a block tile.

b Block tiles in a memory tile.

o
p
ti
m
iz
a
ti
o
n

S = Nb · sb Total size of available on-chip memory.

Nc  Nc,max Total number of compute units.

Q Total number of o↵-chip memory transfers.

F = n · m · k Total number of multiply-addition operations

required to perform MMM.

f  fmax Achieved and maximum design frequency.

T = F
f ·Nc

Design total execution time.

Table 4.1: The most important symbols used in this chapter.
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general purpose logic, such as lookup tables (LUTs), and more specialized arithmetic units,

such as digital signal processing units (DSPs). We represent a quantity of these resources as

a vector ~rmax = [r1,max, ..., rd,max]. As a basic logical entity, we consider a “compute unit”,

which is a basic circuit able to perform a single multiply-addition operation in a single

cycle. Each unit is implemented on the target hardware using some combination of logic

resources ~rc. Depending on the numerical precision, di↵erent numbers of computational

resources ~rc are needed to form a single compute unit, so the maximum number of compute

units that can be instantiated, Nc, may vary. The compute units are organized into Np

processing elements (PEs), which encapsulate a closed logical task (e.g., a vector operation)

of xc ·yc compute units. Each PE additionally consumes ~rp logic resources as orchestration

overhead. This gives us the following constraint, which enforces that the total amount of

resources consumed by compute units and their encompassing PEs should not exceed the

total resources available:

81idNcri,c + Npri,p  ri,max,

or equivalently 81idNp(ri,p + ri,c · xcyc)  ri,max

(4.1)

where d is the dimensionality of the resource vector.

4.3 Optimization Models

In this section, we describe the models for computation, I/O, resource usage, and con-

straints by the resources used that achieve the goals defined in Sec. 4.2 in terms of FPGA

hardware constants, which lay the ground for the decomposition that will guide the im-

plementation.

4.3.1 Computation Model

To optimize computational performance we minimize the total execution runtime, which is

a function of achieved parallelism (total number of compute units Nc) and the design clock

frequency f . The computational logic is organized into Np PEs, and we assume that every

PE holds xc · yc compute units in dimensions x and y (see Tab. 4.1 for an overview of all

symbols used). We model the factor Nc directly in the design, and rely on empirically fixing

f , which is limited by the maximum size of data buses between PEs (i.e., xcwc  wp,max

and ycwc  wp,max, where wp,max depends on the architecture, and typically takes values

up to 512 bit). Formally, we can write the computational optimization problem as follows:
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minimize T =
F

f · Nc
=

mnk

f · Np · xcyc

subject to:

81idNp(ri,p + ri,c · xc · yc)  ri,max

xcwc  wp,max

ycwc  wp,max

f  fmax

(4.2)

That is, the time to completion T is minimized when f ·Nc is maximized, where the

number of parallel compute units Nc is constrained by the available logic resources ~rmax

of the design (this can be the full hardware chip, or any desired subset resource budget).

We respect routing constraints by observing a maximum bus width wp,max, and must stay

within the target frequency fmax.

4.3.2 I/O Model

Previous work on I/O models for linear algebra [80, 74, 134] assume a system with a

fixed number of processors p, each with a fixed size local memory of some constant size

S. Under these assumptions, COSMA [91] shows that each processor should perform

mnk/S subcomputations (a subcomputation is denoted Vi), each loading 2
p

S operands

from matrices A and B, then performing S multiply-addition operations. When consid-

ering FPGAs, these assumptions no longer hold: computational logic and fast memory is

distributed on the chip, such that the granularity of “processors” (or processing elements)

is determined by the programmer and depends on the types of resources available on the

target device, and on the types of operations performed (thus varying the number of pro-

cessing elements p). The mapping between these processing elements and the fast memory

that they access is furthermore constrained by the port widths, capacities, and routing

constraints of the types of on-chip memory resources used (such as registers and BRAM).

For the I/O model developed here, we make the assumption that compute and memory

resources must be equally distributed among processing elements, posing additional restric-

tions on a number of available resources and their distribution for each subcomputation

to secure maximum arithmetic throughput and routing feasibility:

1. The number of parallel compute units Nc is maximized.
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2. The work is load balanced, such that each compute unit performs the same number

of computations.

3. Each memory block is routed to only one compute unit (i.e., they are not shared

between compute units).

4. Each processing element p performs the same logical task, and consumes the same

amount of computational and memory block resources.

4.3.2.1 Memory Resources

To model the memory resources of the FPGA, we consider the bit-length of each operand,

wc, which depends on the chosen precision (e.g., 16 bit for half precision floating point,

or a 64 bit for long unsigned integers). The machine contains Nb on-chip memory blocks,

each capable of holding sb words of the target data type, yielding a maximum of

S = Nb · sb

words that can be held in on-chip memory. sb takes di↵erent values depending on wc (the

relationship between sb is not necessarily linear, as memory resources can expose a fixed

number of “configurations” that map one to the other). We model each memory block as

supporting one read and one write of up to wb bits in a single cycle in a pipelined fashion.

4.3.2.2 FPGA-constrained I/O Minimization

We denote each subcomputation Vi as a memory tile M , as its size in ~i and ~j dimensions

determines the memory reuse. To support a hierarchical hardware design, each M is

further decomposed into several levels of tiling. This decomposition encapsulates hardware

features of the chip, and imposes several restrictions on the final shape of M . The tiling

scheme is illustrated in Fig. 4.1. We will cover the purpose and definition of each layer in

the hierarchy shortly in Sec. 4.3.3.

Following the result from COSMA [91], a schedule that minimizes the number of I/O

operations loads xtot elements of one column of matrix A, ytot elements of one row of matrix

B and reuses xtotytot previous partial results of C, thus computing an outer product of

the loaded row and column. The arithmetic intensity of the program then corresponds to

the arithmetic intensity of a single subcomputation, which we can write in terms of xtot

and ytot as:

xtotytot

xtot + ytot

. (4.3)
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1 // Memory tiles m

2 for (im = 1; im  n; im = im + xtot)

3 for (jm = 1; jm  m; jm = jm + ytot)

4 for (k = 1; k  k; k = k + 1) // Full dimension k

5 // [ Sequential ] Block tiles b in memory tile

6 for (ib = im; ib  im + xtot; im = im + xtxcxp)

7 for (jb = jm; jb  jm + ytot; jm = jm + ytypyc)

8 // [ Sequential ] Compute tiles t in block tile

9 for (it = ib; it  ib + xtxpxc; ib = ib + xcxp)

10 for (jt = yb; jt  jb + ytypyc; jt = jt + ycyp)

11 // [Parallel] Processing elements p in compute tile

12 forall (ip = it; ip  it + xpxc; it = it + xc)

13 forall (jp = jt; jp  jt + ypyc; jp = jp + yc)

14 // [Parallel] Compute units c in processing element

15 forall (ic = ip; ic  ip + xc; ic = ic + 1)

16 forall (jc = jp; jc  jp + yc; jc = jc+1)

17 C(ic, jc) = C(ic, jc) + A(ic, k) ·B(k, jc)

Listing 21: Pseudocode of the tiled MMM algorithm.

To minimize I/O, we maximize the arithmetic intensity given the total amount of fast

memory available on the device S, yielding

maximize
xtotytot

xtot + ytot

subject to: xtot + ytot + xtotytot  S,
(4.4)

and the total number of I/O operations performed by the program, denoted as the com-

munication volume Q is

Q = mn +
mnk

xtot

+
mnk

ytot

= mn

✓
1 + k

✓
1

xtot

+
1

ytot

◆◆
. (4.5)

This expression is minimized when:

xtot = ytot =
p

S (4.6)

That is, a memory tile M should be a square of area S with sides xtot and ytot. Eq. 4.5

therefore gives us a theoretical lower bound on Q  2mnk/
p

S, assuming that all available

memory can be used e↵ectively. However, the assumptions stated in Sec. 4.3.2 constrain

the perfect distribution of hardware resources, which we model in Sec. 4.3.3.

4.3.3 Resource Model

Based on the I/O model and the FPGA constraints, we create a logical hierarchy which

encapsulates various hardware resources, which will guide the implementation to maximize
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Figure 4.1: Decomposition of MMM achieving both performance and I/O optimality in

terms of hardware resources.

I/O and performance. We assume a chip contains ~rmax = {r1,max, . . . , rt,max} di↵erent

hardware resources (see Sec. 4.2.4). The dimensionality and length of a vector depends

on the target hardware – e.g., Intel Arria 10 and Stratix 10 devices expose native floating

point DSPs, each implementing a single operation, whereas a Xilinx UltraScale+ device

requires a combination of logic resources. We model fast memory resources separately

as memory blocks (e.g., M20K blocks on Intel Stratix 10, or Xilinx BRAM units). We

consider a chip to contains Nb memory blocks, where each unit can store sb elements of

the target data type and has a read/write port width of wb bits. The scheme is organized

as follows (shown in Fig. 4.1):

1. A compute unit c consumes ~rc hardware resources, and can output a result of a

single multiplication and addition per cycle. Their maximal number

Nc,max  min
1it

⇣ri,max

ri,c

⌘

for a given numerical precision is a hardware constant, given by the available re-

sources ~rmax.

2. A processing element p encapsulates xc · yc compute units. Each processing element

requires additional ~rp resources for overhead logic.

3. A compute tile t encapsulates xp · yp processing elements. One compute tile contains

all available compute units

xc · yc · xp · yp = Nc.

4. A block tile b encapsulates xt·yt = sb compute tiles, filling the entire internal capacity

sb of currently allocated memory blocks in a cyclic pattern (§2.2.2).
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5. A memory tile M encapsulates xb · yb =
j

Nb
Nb,min

k
block tiles (discussed below), using

all available Nb memory blocks.

Pseudocode showing the iteration space of this decomposition is shown in Lst. 21, con-

sisting of 11 nested loops. Each loop is either a sequential for-loop, meaning that no

iterations will overlap, and will thus correspond to pipelined loops in the HLS code; or a

parallel forall-loop, meaning that every iteration is executed every cycle, corresponding

to unrolled loops in the HLS code (§2.3.1 and §2.3.2). We require that the sequential loops

are coalesced (§2.2.6) into a single pipeline, such that no overhead is paid at iterations of

the outer loops.

4.3.4 Parallelism and Memory Resources

The available degree of parallelism, counted as a number of simultaneous computations

of line 17 in Lst. 21, is determined by the number of compute units Nc. Every one of

these compute units must read and write an element of C from fast memory every cycle.

This implies a minimum number of parallel fast memory accesses that must be supported

in the architecture. Memory blocks expose a limited access width wb (measured in bits),

which constrains how much data can be read from/written to them in a single cycle. We

can thus infer a minimum number of memory blocks necessary to serve all compute units

in parallel, given by:

Nb,min = xpyp ·
⇠

wc · xcyc
wb

⇡
, (4.7)

where wc is the width of the data type in bits, and xcyc denotes the granularity of a

processing element. Because all xcyc accesses within a processing element happen in

parallel, accesses to fast memory can be coalesced into long words of size wc · xcyc bits.

For cases where wb is not a multiple of wc, the ceiling in Eq. 4.7 may be significant for the

resulting Nb,min. When instantiating fast memory to implement the tiling strategy, Eq. 4.7

defines the minimum “step size” we can take when increasing the tile sizes.

Within a full memory tile, each updated value C[i, j] is reused after all xtot ·ytot elements in

a single memory tile are evaluated (§2.2.2), and computation proceeds to the next iteration

of the k-loop (line 4 in Lst. 21). Given the intrinsic size of each memory block sb, we can

thus perform sb iterations of the compute tile before a single batch of Nb,min allocated

memory blocks has been filled up. If the total number of memory blocks Nb,max � 2Nb,min,
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Figure 4.2: Utilization of memory blocks with memory tile size. For icjc = 8 and ipjp =

144, we can utilize 60.4% · Nb,max.

i.e., the number of blocks required to support the parallel access requirements is less than

the total number of blocks available, we can perform additional
j

Nb
Nb,min

k
iterations of the

block tile, using all available memory blocks (up to the additive factor of Nb mod Nb,min).

However, for large available parallelism Nc, this additive factor may play a significant role,

resulting in a part of available on-chip memory not being used. This e↵ect is depicted in

Fig. 4.2 for di↵erent values of Nc for the case of single precision floating point (FP32) in

Xilinx BRAM blocks, where sb = 1024 and wb = 36 bit. The total number of memory

blocks that can be e�ciently used, without sacrificing the compute performance and load

balancing constraints, is then:

Nb =

�
Nb,max

Nb,min

⌫
Nb,min. (4.8)

In the worst case, this implies that only Nb,max/2+1 memory blocks are used. In the best

case, Nb,max is a multiple of Nb,min, and all memory block resources can be utilized. When

Nc > Nb,max/2, the memory tile collapses to a single block tile, and the total memory

block usage is equal to Eq. 4.7.

4.4 Hardware Mapping

With the goals for compute performance and I/O optimality set by the model, we now

describe a mapping to a concrete hardware implementation.
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4.4.1 Layout of Processing Elements

For Eq. 4.2 to hold, all Np PEs must run at maximum throughput for the duration of

the kernel execution, computing distinct contributions to the output tile. In terms of the

proposed tiling scheme, we must evaluate a full compute tile t (second layer in Fig. 4.1)

every cycle, which consists of xp ·yp PE tiles (first layer in Fig. 4.1, via vertical unrolling of

the bu↵ered dimension §2.3.2), each performing xc·yc calculations in parallel (via horizontal

unrolling §2.3.1), contributing a total of Nc multiplications and additions towards the outer

product currently being computed. Assuming that Np elements of A and a full row of ytot

elements of B have been prefetched, we must – for each of the xp rows of the first layer in

Fig. 4.1 – propagate xc values to all yp horizontal PEs, and equivalently for columns of B.

If this was broadcasted directly, it would lead to a total fan-out of xp · yp for both inputs.

Rather than broadcasting, we can exploit the regular grid structure, letting each column

forward values of A, and each row forward values of B, in a pipelined fashion, implemented

as a dataflow architecture (§2.3.3). Such an architecture is sometimes referred to as a

systolic array, and is illustrated in Fig. 4.3. In this setup, each processing element has

three inputs and three outputs (for A, B, and C), and dedicated Feed A and Feed B

modules send prefetched contributions to the outer product at the left and top edges of

the grid, while Store C consumes the output values of C written back by the PEs. The

number of inter-module connections for this design is 3xpyp, but more importantly, the

fan-out of all modules is now constant, with 6 data buses per PE. Each PE is responsible

for fully evaluating xtotytot/Np elements of the output tile of C. The elements of each PE

tile in Fig. 4.1 are stored contiguously (the first layer), but all subsequent layers are not

– only the compute tile as a whole is contiguous in C. Final results must thus be written

back in an interleaved manner to achieve contiguous writes back to C.

4.4.1.1 Collapsing to a 1D array

Although the 2D array of PEs is intuitive for performing matrix multiplication, it requires

a grid-like structure to be routed on the chip. While this solves the issue of individual

fan-out – and may indeed be su�cient for monolithic devices with all logic arranged in

a rectangular structure – we wish to map e�ciently onto general interconnects, including

non-uniform and hierarchical structures, as well as multiple-chiplet FPGAs (or, potentially,

multiple FPGAs). To achieve this, we can optionally collapse the 2D array of PEs into

a 1D array by fixing yp = 1, resulting in Np = xp PEs connected in sequence. Since this

results in a long, narrow compute tile, we additionally fix xc = 1, relying on yc to regulate
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Figure 4.3: Compute arranged in a 2D grid.

the PE granularity. Forming narrow compute tiles is possible without violating Eq. 4.6, as

long as xtot and ytot are kept identical (or as similar as possible), which we can achieve by

regulating the outer block and tiling layers (the memory and block tile layers in Fig. 4.1).

4.4.1.2 Double bu↵ering

Since each PE in the 1D array now computes one or more full rows of the compute tile,

we can bu↵er values of A in internal registers, rather than from external modules. These

can be propagated through the array from the first element to the last, then kept in local

registers and applied to values of B that are streamed through the array from a bu↵er

before the first PE. Since the number of PEs in the final design is large, we overlap the

propagation of new values of A with the computation of the outer product contribution

using the previous values of A, by using double bu↵ering, requiring two registers per PE,

i.e., 2Np total registers across the design.

By absorbing the bu↵ering of A into the PEs, we have reduced the architecture to a simple

chain of width 1, reducing the total number of inter-module connections for the compute to

3Np, with 3 buses connecting each PE transition. When crossing interconnects with long

timing delays or limited width, such as connections between chiplets, this means that only

3 buses must cross the gap, instead of a number proportional to the circumference of the

number of compute units within a single chiplet, as was the case for the 2D design. As a

situational downside, this increases the number of pipeline stages in the architecture when
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Figure 4.4: Module layout of final kernel architecture.

maximizing compute, which means that the number of compute tiles must be larger than

the number of PEs, i.e., ytxt � Np. This extra constraint is easily met when minimizing

I/O, as the block tile size is set to a multiple of sb (see Sec. 4.3.3), which in practice is

higher than the number of PEs, assuming that extreme cases like xc = yc = 1 are avoided

for large Nc.

4.4.2 Handling Loop-carried Dependencies

Floating point accumulation is often not a native operation on FPGAs, which can intro-

duce loop-carried dependencies on the accumulation variable (see Sec. 2.2). This issue is

circumvented with our decomposition. Each outer product consists of xpxm · ypym inner

memory tiles. Because each tile reduces into a distinct location in fast memory, collisions

are separated by xpxm · ypym cycles, and thus do not obstruct pipelining for practical

memory tile sizes (i.e., where xpxm · ypym is bigger than the accumulation latency).

For data types such as integers or fixed point numbers, or architectures that support

(and benefit from) pipelined accumulation of floating point types, it is possible to make k

the innermost loop, optionally tiling n and m further to improve e�ciency of reads from

o↵-chip memory. The hardware architecture for such a setup is largely the same as the

architecture proposed here, but changes the memory access pattern.
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4.4.3 Optimizing Column-wise Reads

In the outer product formulation, the A-matrix must be read in a column-wise fashion.

For memory stored as row-major, this results in slow and wasteful reads from DDR mem-

ory (in a column-major setting, the same argument applies, but for B instead). For DDR4

memory, a minimum of 512 bits must be transferred to make up for the I/O clock mul-

tiplier, and much longer bursts are required to saturate DDR bandwidth in practice. To

make up for this, we can perform on-the-fly transposition of A as part of the hardware

design in an additional module (an advanced form of memory bu↵ering §2.4.2), by reading

wide vectors and pushing them to separate FIFOs of depth �xbxm, which are popped in

transposed order when sent to the kernel (this module can be omitted in the implementa-

tion at configuration time if A is pre-transposed, or an additional such module is added

if B is passed in transposed form).

4.4.4 Writing Back Results

Each final tile of C is stored across the chain of processing in a way that requires interleav-

ing of results from di↵erent PEs when writing it back to memory. Values are propagated

backwards through the PEs, and are written back to memory at the head of the chain,

ensuring that only the first PE must be close to the memory modules accessing o↵-chip

memory. In previous work, double bu↵ering is often employed for draining results, at the

significant cost of reducing the available fast memory from S to S/2 in Eq. 4.5, resulting

in a reduction in the arithmetic intensity of
p

2. To achieve optimal fast memory usage,

we can leave writing out results as a sequential stage performed after computing each

memory tile. It takes nm/yc cycles to write back values of C throughout kernel execution,

compared to nmk/Nc cycles taken to perform the compute. When k/Nc � 1, i.e., the

matrix is large compared to the degree of parallelism, this e↵ect of draining memory tiles

becomes negligible.

4.4.5 Final Module Layout

With the constraints and considerations accumulated above, we fix the final hardware

architecture. The module layout is shown in Fig. 4.4, and consists of 4 + Np modules.

The Feed B module bu↵ers the outer product row of B, whereas Np values of A are kept

in PE registers. The vast majority of fast memory is spent in bu↵ering the output tile

of C (see Sec. 4.3.2), which is partitioned across the PEs, with xtot·ytot
Np

elements stored

in each. The Read A and Transpose modules are connected with a series of FIFOs, the
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Figure 4.5: Architecture of a single PE.

number of which is determined by the desired memory e�ciency in reading A from DRAM.

In our provided implementation, PEs are connected in a 1D sequence, and can thus be

routed across the FPGA in a “snake-like” fashion [98] to maximize resource utilization

with minimum routing constraints introduced by the module interconnect.

The PE architecture is shown in Fig. 4.5. I) Each PE is responsible for storing a single

double-bu↵ered value of A. Values are loaded from memory and passed through the array,

while the previous outer product is being computed. II) Values of B are streamed through

the chain to be used at every PE. III) Every cycle accumulates into a di↵erent address

of the output C until it repeats after xtxb · ytyb cycles. IV) When the outer tile has been

computed, it is sent back through the PEs and written back at the memory interface.

4.5 Evaluation

4.5.1 Parameter Selection

Using the performance model and hardware mapping considerations, parameters for kernel

builds used to produce results are chosen in the following way, in order to maximize perfor-

mance and minimize I/O based on available compute and memory resources, respectively:

1. The PE granularity is fixed at xc = 1, and yc is set as high as possible without

impairing routing (determined empirically).

2. fNc is maximized by scaling up parallelism Nc = Np · yc (we fixed xc = 1) when the

benefit is not eliminated by reduction in frequency, according to Eq. 4.2.
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3. Memory tile sizes are maximized according to Eq. 4.8 to saturate on-chip memory

resources.

For a given set of parameters, we build kernels in a fully automated end-to-end fashion,

leveraging the abstractions provided by the high-level toolflow.

4.5.2 Code Complexity

The MMM kernel architecture used to produce the results in this chapter is implemented

in Xilinx’ Vivado HLS tool with hlslib (Chapter 3) extensions, and as of writing, consists

of 620 and 291 SLOC of C++ kernel and header files, respectively. This is a general-

ized implementation, and includes variations to support transposed/non-transposed input

matrices, variable/fixed matrix sizes, and di↵erent configurations of memory bus widths.

Additionally, the operations performed by compute units can be specified, e.g., to compute

the distance product by replacing multiply and add with add and minimum, respectively.

The full source code is available on GitHub under an open source license (see page 57).

4.5.3 Experimental Setup

We evaluate our implementation on a Xilinx VCU1525 accelerator board, which hosts an

Virtex UltraScale+ XCVU9P FPGA. The board has four DDR4 DIMMs, but due to the

minimal amount of I/O required by our design, a single DIMM is su�cient to saturate the

kernel. The chip is partitioned into three chiplets, that have a total of 1,033,608 LUTs,

2,174,048 flip-flops (FFs), 6834 DSPs, and 1906 BRAMs available to our kernels. This

corresponds to 87%, 92%, 99.9%, and 90% of data sheet numbers, respectively, where the

remaining space is occupied by the provided shell.

Our kernels are written in Vivado HLS targeting the xilinx:vcu1525:dynamic:5.1 plat-

form of the SDAccel 2018.2 framework (both SDAccel and Vivado HLS have been absorbed

into the Vitis platform since these experiments were conducted), and -O3 is used for com-

pilation. We target 200 MHz in Vivado HLS and SDAccel, although this is often reduced

by the tool in practice due to congestion in the routed design for large designs, in partic-

ular paths that cross between chiplets on the FPGA (see Sec. 4.2.3). Because of the high

resource utilization, each kernel build takes between 8 and 24 hours to finish successfully,

or between 4 and 24 hours to fail placement or routing.

On the Virtex UltraScale+ architecture, floating point operations are not supported na-

tively, and must be implemented using a combination of DSPs and general purpose logic
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provided by the toolflow. The resource vector ~r thus has the dimensions LUTs, FFs, and

DSPs. The Vivado HLS toolflow allows choosing from multiple floating point implemen-

tations, that provide di↵erent trade-o↵s between LUT/FF and DSP usage. In general, we

found that choosing implementations of floating point addition that does not use DSPs

yielded better results, as DSPs replace little general purpose logic for this operation, and

are thus better spent on instantiating more multiplications.

Memory blocks are implemented in terms of BRAM, where each block has a maximum

port width of 36 bit of simultaneous read and write access to 18 kbit of storage. For

wider data types, multiple BRAMs are coalesced. Each BRAM can store sb,36 bit = 1024

elements in 36 bit configuration (e.g., FP32), sb,18 bit = 2048 elements in 18 bit configuration

(e.g., FP16), and sb,72 bit = 512 elements in 72 bit configuration (e.g., FP64). For this

implementation, we do not consider UltraRAM, which is a di↵erent class of memory blocks

on the UltraScale+ architecture, but note that these can be exploited with the same

arguments as for BRAM (according to the principles in Sec. 4.3.3). For benchmarked

kernels we report the compute and memory utilization in terms of the hardware constraints,

with the primary bottleneck for I/O being BRAM, and the bottleneck for performance

varying between LUTs and DSPs, depending on the data type.

4.5.4 Results

We evaluate the computational performance and communication behavior of our approach

by constructing kernels within varying logic and storage budgets, based on our C++

reference implementation. To explore the scaling behavior with increased parallelism,

we measure strong scaling when increasing the number of PEs, shown in Fig. 4.6, by

increasing Nc for 16384⇥16384⇥16384 matrices. The toolchain does not support specifying

a random seed for placement and routing, so the first compiled bitstream is used. We

report the median across 20 runs, and omit confidence intervals, as all kernels behaved

deterministically, making errors negligible. To measure power e�ciency, we sample the

direct current power draw of the PSU in the host machine, then determine the FPGA

power consumption by computing the di↵erence between the machine at idle with no

FPGA plugged in, and the FPGA plugged in while running the kernel. This method

includes power drawn by the full VCU1525 evaluation board, including the integrated fan.

The kernels compile to maximum performance given by each configurations at 200 MHz

until the first chiplet/SLR crossing, at which point the clock frequency starts degrading.

This indicates that the chiplet crossings are the main contributor to long timing paths in
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Figure 4.6: Strong scaling for single precision floating point, n=m=k=16384 matrices.

the design that bottleneck the frequency.

Tab. 4.2 shows the configuration parameters and measured results for the highest per-

forming kernel built using our architecture for half, single and double precision floating

point types, as well as 8-bit, 16-bit, and 32-bit unsigned integer types. Timing issues from

placement and routing are the main bottleneck for all kernels, as the frequency for the

final routed designs start to be unstable beyond 33% resource usage, when the number

of chiplet crossings becomes significant (shown in Fig. 4.6). When resource usage exceeds

80�90%, kernels fail to route or meet timing entirely. Due to the large step size in BRAM

Type xp yc xtot ytot Freq. Perf. Pow. e↵. Arith. int. LUTs FFs DSPs BRAM

FP16 112 16 1904 1920 171.3 MHz 606 GOp

s
15.1 GOp

J
956 Op

Byte
53% 24% 70% 90%

FP32 192 8 960 1632 145.7 MHz 409 GOp

s
10.9 GOp

J
302 Op

Byte
81% 46% 48% 80%

FP64 96 4 864 864 181.2 MHz 132 GOp

s
3.13 GOp

J
108 Op

Byte
38% 28% 80% 82%

uint8 132 32 1980 2176 186.5 MHz 1544 GOp

s
48.0 GOp

J
2073 Op

Byte
15% 8% 83% 51%

uint16 210 16 1680 2048 190.0 MHz 1217 GOp

s
33.1 GOp

J
923 Op

Byte
20% 11% 69% 88%

uint32 202 8 1212 1360 160.6 MHz 505 GOp

s
13.8 GOp

J
320 Op

Byte
58% 11% 84% 86%

Table 4.2: Highest performing kernels built for each data type.
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Figure 4.7: Fraction of maximum compute throughput for varying matrix size.

consumption for large compute tiles when targeting peak performance (see Sec. 4.3.3),

some kernels consume less BRAM than what would otherwise be feasible to route, as

increasing the memory tile by another stage of Nb,min would exceed Nb,max.

In contrast to previous implementations, we achieve optimal usage of the on-chip memory

by separating the drain phase of writing out results from the compute phase. This requires

the number of computations performed per memory tile to be significantly larger than the

number of cycles taken to write the tile out to memory (see Sec. 4.4.4). This e↵ect is shown

in Fig. 4.7 for small Nc (left) and large Nc (right). For large Nc, the time spent in draining

the result is significant for small matrices. In either scenario, optimal computational

e�ciency is approached for large matrices, when there is su�cient work to do between

draining each result tile.

Fig. 4.8 demonstrates the reduction in communication volume with increasing values of the

outer I/O tiles (i.e., xtxb · ytyb). We plot the arithmetic intensity, corresponding to 2⇥ the

computational intensity in Eq. 4.3 (1 addition and 1 multiplication), and verify that the

communication volume reported by the runtime is verified to match the analytical value
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Figure 4.8: FP32 arithmetic intensity with memory tile size.

computed with Eq. 4.5. We also report the average bandwidth requirement needed to run

each kernel (in practice, the bandwidth consumption is not constant during runtime, as

memory accesses are done as bursts each time the row and column for a new outer product

is loaded). There is a slight performance benefit from increasing memory tile size, as larger

tiles increase the ratio of cycles spent in the compute phase to cycles spent writing back

results, approaching perfect compute/DSP e�ciency for large matrices. For the largest tile

size, the kernel consumes 350 MByte/s at 100 GOp/s, which corresponds to 350

19200
= 1.8% of

the maximum bandwidth of a single DDR4 module. Even at the highest measured single

precision performance (Tab. 4.2) of 409 GOp/s, the kernel requires 1.35 GByte/s. This

brings the I/O of matrix multiplication down to a level where nearly the full bandwidth

is left available.

4.6 Related Work

Much of previous work focuses on the low level implementation for performance [82],

explores high-level optimizations [47], or implements MMM in the context of neural net-

works [61, 109]. To the best of our knowledge, this is the first matrix multiplication

accelerator to minimize I/O on FPGA in terms of hardware constants, and the first open

source implementation to benefit of the community. We relate our work to the most

relevant works below.

Tab. 4.3 shows a hybrid qualitative/quantitative comparison to previously published MMM

implementations on FPGA. Cells are left empty when numbers are not reported by the

authors, or when the given operation is not supported. Most previous work does not
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Year Device
% Logic

util.

Freq.

[MHz]

Perf. FP16

[GOp

s
]

Perf. FP32

[GOp

s
]

Perf. FP64

[GOp

s
]

Energy e↵.

FP32 [GOp

J
]

Multiple

data types

Lang.

(Portable)

Open

source

I/O

model

Zhuo [161] 2004 Virtex-II Pro 98 128 - 2 2 - � HDL (�) � �

Dou [49] 2005 Virtex-II Pro 99 177 - - 39 - � HDL (�) � �

Kumar [88] 2009 Virtex-5 61 373† - - 30† - � HDL (�) � �

Jovanović [82] 2012 Virtex-6 100 403 - 203 - - � HDL (�) � �

D’Hollander [47] 2016 Zynq-7000 99 100 - 5 - - � HLS (�) � �

Guan [61] 2017 Stratix V 95 150 - 100 - 2.92 � HDL/HLS (�) � �

Moss [109] 2018 HARPv2 99 313 - 800 - 22.0 � HDL (�) � �

Ours 2019 VCU1525 69�90 146�190 606 409 122 10.9 � HLS (�) � �

Vitis BLAS [155] 2021 U250 15† 242 - 346 - - � HLS (�) � �

Table 4.3: Comparison to previous FPGA implementations. *Simulation only. † Utiliza-

tion reported by the authors appears to be incompatible with the reported performance.

publish their code, and we resort to report the performance given by the authors and

the respective FPGA that it was executed on. The closest comparison can be drawn to

the implementation in Xilinx’ own Vitis BLAS library, which is reported to achieve 85%

of the performance of our 32-bit floating point kernel, on an FPGA that has 167% the

number of LUTs and 180% the number of DSPs relative to the VCU1525 board used for

our experiments.

Zhuo and Prasanna [161] discuss two matrix multiplication implementations on FPGA,

include routing in their considerations, and support multiple floating point precisions.

The authors suggest two algorithms, where both require a number of PEs proportional to

the matrix size. While these only require loading each matrix once, they do not support

matrices of arbitrary size, and thus do not scale without additional CPU orchestration.

Dou et al. [49] design a linear array of processing elements, implementing 64-bit floating

point matrix multiplication – no support is o↵ered for other data types, as the work

emphasizes the low-level implementation of the floating point units. The authors derive

the required o↵-chip bandwidth and bu↵er space required to achieve peak performance on

the target device, but do not model or optimize I/O in terms of their bu↵er space usage,

and do not report their tile sizes or how they were chosen. Furthermore, the authors

double-bu↵er the output tile, reducing the maximum achievable computational intensity

by a factor
p

2 (see Sec. 4.4.4).

A customizable matrix multiplication implementation for deep neural network applications

on the Intel HARPv2 hybrid CPU/FPGA platform is presented by Moss et al. [109], tar-

geting single precision floating point (FP32), and fixed point/integer types. The authors

exploit native floating point DSPs on an Arria 10 device to perform accumulation, and do

not consider data types that cannot be natively accumulated on their chip, such as half or
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double precision. The I/O characteristics of the approach is not reported quantitatively.

Wu et al. [153] present a highly specialized architecture for maximizing DSP usage and

frequency of 16 bit integer matrix multiplication for DNN acceleration on two Xilinx Ul-

traScale chips, showing how peak DSP utilization and frequency can be reached, at the

expense of generality, as the approach relies on low-level details of the chips’ architecture,

and as no other data types are supported.

Kumar et al. [88] provide an analysis of the trade-o↵ between I/O bandwidth and on-

chip memory for their implementation of 64-bit matrix multiplication. The authors arrive

at a square output tile when deriving the constraints for overlapping I/O, although the

derived computational intensity is reduced by a factor
p

2 as above from double bu↵er-

ing. In our model, the fast memory utilization is captured explicitly, and is maximized

in terms of on-chip memory characteristics of the target FPGA, allowing tile sizes that

optimize both computational performance and computational intensity to be derived di-

rectly. Lin and Leong [102] model sparse MMM, with dense MMM as a special case, and

project that even dense matrix multiplication may become I/O bound in future FPGA

generations. Our model guides how to maximize utilization in terms of available on-chip

memory to mitigate this, by capturing their characteristics in the tiling hierarchy.

Finally, these works were implemented in hardware description languages, and do not

disclose the source code allowing their findings to be reproduced or ported to other FPGAs.

For the results presented here, we provide a high-level open source implementation, to

encourage reusability and portability of FPGA codes.

Designing I/O minimizing algorithms has been an active field of research for more than 40

years. Starting with register allocation problems [25], through single processor, two-level

memory system [80], distributed systems with fixed [75] and variable memory size [134].

Although most of the work focuses on linear algebra [134, 75, 56] due to its regular access

pattern and powerful techniques like polyhedral modeling, the implication of these opti-

mizations far exceeds this domain. Gholami et al. [57] studied model and data parallelism

of DNN in the context of minimizing I/O for matrix multiplication routines. Demmel and

Dinh [43] analyzed I/O optimal tiling strategies for convolutional layers of NN.

4.7 Summary

In this chapter we presented a high-performance, open source, flexible, portable, and scal-

able matrix-matrix multiplication implementation on FPGA, which simultaneously max-
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imizes performance and minimizes o↵-chip data movement. By starting from a general

model for computation, I/O, and resource consumption, we create a hardware architec-

ture using the transformations described in Chapter 2 that is optimized to the resources

available on a target device, and is thus not tied to specific hardware. We evaluate our

implementation on a wide variety of data types and configurations, showing 409 GOp/s 32-

bit floating point performance, and 1.5 TOp/s 8-bit integer performance, utilizing >80%

of hardware resources. We show that our model-driven I/O optimal design is robust and

high-performant in practice, yielding better or comparable performance to HDL-based

implementations, and conserving bandwidth to o↵-chip memory, while being easy to con-

figure, maintain and modify through the high-level HLS source code.

Since being published on GitHub, the open source repository (link on page 57) has received

significant interest: as of writing, the repository has 168 stars, 23 forks, and has inspired

or been used as a component of several other FPGA projects.
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Chapter 5

Data-Centric Design of Spatial Architectures

The DaCe framework1 is a long-running, massively collaborative e↵ort, with contributions

from many researchers and students. I co-wrote the core implementation of DaCe and co-

authored the original paper on the SDFG representation, which was led by Tal Ben-Nun and

published at SC’19 [16]. The SDFG representation was conceived by a team of researchers

in our lab consisting of Torsten Hoefler, Tal Ben-Nun, Timo Schneider, Alexandros Niko-

laos Ziogas and myself. For a full list of contributors to the DaCe source code, I refer to the

continuously updated author list2 hosted in the GitHub repository. I designed, developed,

and now maintain the FPGA backend of DaCe, which has received numerous contributions

since its inception, in particular from Tiziano De Matteis, who is now co-maintaining this

aspect of the framework, and conducts our Intel FPGA experiments. I also designed and

implemented the concept of Library Nodes that enables multi-level design in DaCe. FPGA

results are included from Ziogas et al. [164], where the Xilinx benchmarks were collected

by me, and the Intel FPGA benchmarks were collected by Tiziano De Matteis, using the

full DaCe stack with contributions from all authors.

5.1 Data-Centric Parallel Programming

Long ago, we passed the threshold where the full spectrum of optimization techniques re-

quired to e↵ectively target modern hardware can be known by any single person working

in the field of HPC, let alone a scientist who writes code to solve a problem within their

domain of natural sciences, but has no formal education in HPC. Scientists find themselves

juggling everything from single-core optimizations – like tiling for caches and vectorization

– through multi-core optimizations, implementing shared-memory parallelism via tech-

nologies like OpenMP – through targeting multi-node systems ranging from small clusters

to supercomputers with MPI – to exploiting accelerators using techniques like CUDA,

OpenMP 4.0, OpenACC, OpenCL, or HLS. It is clear that this kind of development is

1https://github.com/spcl/dace
2https://github.com/spcl/dace/blob/master/AUTHORS
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no longer a single person job, and will more often than not require people from multiple

di↵erent backgrounds to carry it out successfully.

Once the scientific software has been optimized, the next issue arises. After tiling, vec-

torizing, parallelizing, distributing, and/or accelerating the application, the code is un-

recognizable. Scattered with communication primitives, strip-mined and reordered loops,

pragmas, annotations, kernel launches, accelerator kernels that are often written in a

di↵erent language/technology, and/or thread synchronization primitives, the code has ef-

fectively become unmaintainable – including by the authors, but especially by any new

engineer joining the project, because the optimizations are so invasive to the source code.

We propose the Data-Centric parallel programming (DaCe) framework as a solution to

these issues. DaCe is built on the fundamental concept of separation of concerns. We

view the development process of an HPC application as a collaboration between at least

two roles: the domain scientist, who is an expert of the scientific domain in which the

application is trying to solve a program; and the performance engineer, who is an expert

in performance optimization. Although the roles do not necessarily need to refer to dif-

ferent people (one person can be an expert in both), they concern distinct aspects of the

development process, and should interfere with each other as little as possible.

To enable separation of concerns, DaCe employs the Stateful DataFlow multiGraph

(SDFG) [16] intermediate representation. SDFGs isolate performance optimization in

a data-centric graph-based representation, where all data movement is explicit, thereby

becoming analyzable and malleable by a skilled performance engineer. Promising work has

been done on auto-optimization using SDFGs [164], but the core philosophy is to enable

the performance engineer to perform guided optimization in a productive manner, using

transformations that employ graph-rewriting to reorganize the data movement of the pro-

gram. The domain scientist uses one or more frontends, such as NumPy or PyTorch, to

productively express the application that they wish to evaluate, which are then emitted

as SDFGs, ripe for optimization. Because optimizing the SDFG does not touch the input

program, it does not interfere with the maintainability of the scientific code, as optimizing

transformations can merely be re-applied if changes are made to the input.

Why data-centric? Since computing hit the memory wall [154] (as described in Sec. 1.1),

programming HPC applications has been almost exclusively about data movement.

Whether it be between memory and processor, between cache and processor, between

processor cores, between nodes, or between host and accelerator, most HPC optimizations

strive to improve temporal and spatial locality [141]. SDFGs exploit this by exposing all
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this data movement directly in the representation, explicitly annotating all data movement

for the performance engineer to manipulate.

Modern compiler techniques, such as polyhedral optimization, also allow sophisticated au-

tomatic optimization of low-level IR by detecting and transforming loop constructs [22],

but are restricted to the space of transformations that can be proven to be “safe”. Rather

than relying on fully automated optimization to exploit all available opportunities, DaCe

exposes powerful performance analysis capabilities and optimization tools that enable

knowledgeable performance engineers to perform guided optimization of programs. Trans-

formations are done via graph rewriting on the SDFG representation, expressed in terms of

the general dataflow and control flow of the program, thus facilitating knowledge exchange

between programs and domains.

When targeting a specific application domain, domain-specific languages (DSLs) can en-

able additional optimizations by restricting the input domain, allowing additional as-

sumptions to be made on the program’s behavior, but typically o↵er limited exchange of

knowledge and engineering e↵ort with other domains. To this end, the “Library Node”

extension to SDFGs enables a multi-level design methodology that exposes the best of

both worlds within the same framework, enabling the application of both domain-specific

and general purpose optimizations to SDFGs, described in Sec. 5.5.

Since their inception, SDFGs have been proven e↵ective in various domains, ranging from

linear algebra kernels and graph algorithms [16], through large scale machine learning [76]

and numerical weather prediction (Chapter 6), to supercomputer-scale quantum transport

simulations [162]. When SDFGs are manually authored or generated from specialized

domain-specific languages, their performance is on a par with or outperforms state-of-the-

art implementations and libraries. In the following, after giving an overview of the SDFG

represention and its benefits in a general setting, we will focus on employing SDFGs and

the DaCe framework as a next generation environment for developing FPGA programs.

5.2 A Primer on SDFGs

In this section, we give an overview of the core concepts and semantics of the graph-based

SDFG representation, using pictures from the graphical user interface for illustration. We

will describe the semantics of edges and di↵erent types of nodes in the graph in a general

setting, before covering the opportunities for optimizations that this unlocks in Sec. 5.3.

The background information in this section describes work done by the DaCe collaboration
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hello_world

a

b

res = (val + 1)

The incoming data is

renamed to “val”

by the connector.
a[0]

The “res” variable is

written to the

output connector.

b[0]

Figure 5.1: A trivial SDFG that reads, modifies, and writes a single data element.

as a whole.

In the following we will include some simple examples of SDFGs. From the domain

scientist’s point of view, the SDFG can be thought of as a program, which can be invoked

from a Python or C++ code as any other function with input and output arguments.

Arguments are typically one or more NumPy arrays (in the case of Python) or pointers to

data (in the case of C++), along with any scalar variables required by the program, such

as array sizes. From the performance engineer’s point of view, the host program can be

ignored, and all attention focused on the SDFG itself, which appears as a Python object

that can be stored and loaded as .sdfg files. The SDFG can be manipulated via built-in

or self-defined transformations that rewrite the graph, by directly manipulating objects

on the graph programmatically, or interactively using a graphical user interface.

Fig. 5.1 shows the simplest possible SDFG, where a single element from a is modified and

written to b. We will describe each of the primitives used in the following.

5.2.1 Tasklets

Tasklets represent the smallest granularity of computation, and typically operate on one

or more operands a single point in the iteration space. Because all data movement in

the program must be explicit, Tasklets can only access data that is explicitly connected

to them via dataflow edges. These edges are connected to ports on the Tasklet called

“connectors”, which gives the loaded or to-be-stored data a variable name for use in the
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code that described the computation. The actual computation is described by source code

operating on the input/output data, which as of writing can be provided in either Python

or C++. Tasklets are considered black boxes, and do not need to be analyzable, as long

as they provide code that successfully compiles.

The SDFG in Fig. 5.1 contains a single Tasklet called “hello world”, which adds one

to the input and writes the result to the output. It has one input connector on the top

named “val”, which exposes the incoming data from the a to the variable used in the

computation as the variable val, and one output connector on the bottom called “res”,

which writes the variable res in the computation out to b.

5.2.2 Access Nodes

Access nodes (or data nodes) point to data containers that have been defined on the SDFG.

When connected with dataflow edges, they indicate which data container is being accessed,

while the edge indicates which subset of the container is being accessed. Data containers

can be arrays, scalars, streams (FIFO queues, which we will use extensively for FPGA

programs), arrays of streams, or views into arrays. Containers are either “transient”/local

(i.e., temporary), meaning that they only exist in the scope in which they are used, or

non-transient/global, meaning that they are persistent outside the current scope (e.g.,

because they refer to NumPy arrays in a calling program).

The SDFG in Fig. 5.1 contains two access nodes. a is an input to the program, and b is

an output from the program, so they are both global containers. a is accessed read-only,

while b is accessed write-only.

5.2.3 Dataflow Edges

Edges between nodes in Dataflow States represent data movement, and are annotated

with the subset of data being accessed. When connecting two access nodes, Dataflow

Edges imply a memory copy, and a subset must be specified for both the source and

destination. In this case, it must be possible to copy between the source and destination

location (e.g., we can copy between CPU heap memory and FPGA global memory, but

not between FPGA local memory and GPU local memory). When connecting an access

node to a connector on a Tasklet, Dataflow Edges represent making the data available

(i.e., not necessarily copying the data unless it is actually used) to read or write to/from

the computational primitive (see Sec. 5.2.1).

The example in Fig. 5.1 contains two Dataflow Edges: one between a and the Tasklet, and
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vadd

a

b

res = (val + 1)

vadd[i=0:N]

vadd[i=0:N]

a[0:N]

a[i]

b[i]

b[0:N]

Figure 5.2: A simple vector addition example, using the map primitive.

one between the Tasklet and b. Both are annotated with a trivial subset of “0”, as they

just read and write a single element, respectively.

To support reduction-like patterns within Dataflow States, dataflow edges also support

“conflict resolution”, where writes than can potentially race with each other can resolved

atomically, using various techniques to achieve atomicity depending on the storage location

of the destination memory. These edges must specify how the resolution is done, by

providing a lambda function that takes the existing and proposed new value as inputs,

and outputs the value that should be written.

5.2.4 Maps

To do anything useful with SDFGs, we need to express parametric parallelism. A

marginally more interesting SDFG is shown in Fig. 5.2, where an arithmetic operation

is applied across all N elements of an array a and written to the array b.

Maps are the engine of parallelism in SDFGs. They appear as a pair of nodes in a Dataflow

State: the first node “opens” a parallel scope (called a “Map Entry”), and the second

node “closes” it (called a “Map Exit”). The Map is annotated with an iteration space of
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arbitrary dimensions. Any subgraph that appears between the entry and exit nodes are

semantically “repeated” for every iteration in this iteration space. This can map to any

kind of parallelism depending on the schedule defined on the Map, including vectorization,

multithreading, pipelining, unrolling, GPU threads etc., or even just sequential for-loops.

There is no restriction on what can appear within a Map scope, including other Maps, or

even complete SDFGs with their own nested control flow and dataflow. When connected

to/from a Map Entry/Exit node, the Dataflow Edges forms a “path” across the scope

node, where the outer edge indicates the union of all accesses carried out by the inner

edge across the iteration space of the Map.

The Map scope in Fig. 5.2 can be used to target any kind of parallelism, but will by default

parallelize the computation using OpenMP multithreading.

5.2.5 Dataflow States

Because we are primarily interested in optimizing data movement, the core environment of

SDFGs are pure Dataflow States. States are graphs, where nodes represent data accesses,

schedules, and computations, and edges between nodes represent data movement. Multiple

accesses to the same data container can coexist within the same Dataflow State, but will

ignore any read-after-write, write-after-write, or write-after-read dependencies (these are

handled via coarse-grained control flow or fine-grained conflict resolution, described in the

context of control flow edges and dataflow edges, respectively). Data containers have their

storage location annotated on them (e.g., CPU heap, FPGA global memory, GPU local

memory), which will determine how data is moved across edges connected to them.

States are visualized as the light blue rectangles surrounding the dataflow nodes in Fig. 5.1

and Fig. 5.2. These examples only include a single Dataflow State, but States are them-

selves embedded as nodes in a control flow graph formed by the containing SDFG, which

can again be embedded within Dataflow States, forming a nested control flow/dataflow

representation. Fig. 5.3 shows an example SDFG with multiple Dataflow States connected

by coarse-grained control flow between them. The Dataflow State init is used to initialize

the array tmp, before entering into a sequential loop, represented by Control Flow Edges

in the SDFG, described below.

5.2.6 Control Flow Edges

When an aspect of a program cannot be expressed by pure dataflow, we must resort to

control flow. As a general philosophy, coarse-grained control flow is only used or generated
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init

init[i=0:N, j=0:M]

tmp

stencil

a

tmp

a

jacobi_2d

jacobi_2d

end

guard

t = 0

t < T
t += 1

not t < T

Figure 5.3: An SDFG containing multiple dataflow states with coarse-grained control flow.
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in DaCe when strictly required by the program semantics. In the SDFG, Dataflow States

are connected to each other via control flow edges (called “interstate edges” in the code

base). If a State has multiple outgoing edges, the edges must be annotated with (mutually

exclusive) conditions that determines which State will be executed next. If a State only has

a single outgoing edge, no condition will be annotated on the edge. Control flow between

States are typically used to express patterns such as iterating until a certain condition

is met, or to resolve read-after-write, write-after-write, or write-after-read dependencies

on data containers that appear multiple times. To help implement conditional edges and

iterative patterns, control flow edges can also define and modify scalar variables, which

are exposed to (but are immutable by) the dataflow within States.

The SDFG in Fig. 5.3 contains four states, connected by control flow edges. As the only

state with no incoming edges, the init State will be executed first, where it initializes the

temporary array tmp with zeros. An outgoing edge leads to the State guard, which acts as

a loop guard for the loop body defined by the State stencil. On the edge between init

and guard, the symbol “t” is defined and set to zero. This checked on the outgoing edges

of guard, transitioning either to the loop body state, or the end state. On the back-edge

from the body State to guard, the loop iterator t is incremented.

5.2.7 Library Nodes

Finally, appearing as another Tasklet-like computational node in Dataflow States, sim-

ilar to nested SDFGs, are Library Nodes. Library Nodes are configurable meta-nodes

describing what should be computed, as opposed to how it should be computed, thereby

representing abstract behavior in the graph. Fig. 5.3 shows two library nodes, drawn as a

rectangle with a “folded” corner, representing the Jacobi 2D stencil operator being applied

to the input. Before compiling, these nodes will be “expanded” into lower-level primitives

implementing the operation. Library Nodes enable a multi-level design approach to kernel

development, and will be covered in more detail in Sec. 5.5.

5.2.8 Nested SDFGs

Dataflow States are nested within a control flow graph in a single SDFG. To also allow

nesting control flow within dataflow, we support nesting SDFGs within Dataflow States.

Such a nested SDFGs appears in the same way as a Tasklet: as a single node with input and

output connectors that are linked to data edges in the Dataflow State that it is contained

in, such that it can only access data from the parent State through these connectors.
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G Data: Array/Stream containersT S

A[i, 0:k] res (CR: Sum) Memlet: Data movement unit

State: Control dependencies

Map: Parametric parallelism scope…

c = a * b Tasklet: Fine-grained computationNested SDFG

GEMV Reduce Library: Predefined subgraph with 
platform-specific expansions

Figure 5.4: Glossary of nodes and edges in the SDFG representation.

An example of a nested SDFG appearing in a Dataflow State in shown in Fig. 5.5, showing a

subsection of the SDFG from Fig. 5.3 after it has been expanded to implement the stencil

operator with a method that targets shift registers on Intel FPGAs. The outer state

stencil contains a parallel Map scope, where each iteration executes the nested SDFG

that contains three sequential states to shift, update, and compute at the given index.

A glossary of all graph primitives included in the SDFG representation is shown in Fig. 5.4.

Combining all these primitives above, SDFGs can represent arbitrary programs in a data-

centric format. In the following, we will cover the advantages that this brings for perfor-

mance optimization.

5.3 Transforming the SDFG

The transformation methodology of DaCe was conceived by all authors of the SDFG pa-

per [16], and the engine was implemented by Tal Ben-Nun, myself, and others. Automatic

inference of data volumes along dataflow paths was implemented by Tal Ben-Nun, Alexan-

dros Ziogas, and Philipp Schaad. This section contains multiple transformation developed

by other DaCe authors, explicitly attributed in each subsection.

Because all data movement is explicitly annotated on the dataflow edges in the graph, we

can directly read the data volume being moved between subgraphs from the representation.
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stencil
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compute_jacobi_2d[_i0=0:N, _i1=0:M]

jacobi_2d_shift
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end
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Figure 5.5: Coarse grained control flow nested in dataflow using a nested SDFG.
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Figure 5.6: Data movement is captured and annotated on dataflow edges.

An example is shown in Fig. 5.6, where each iteration of a three-dimensional Map reads a

single value from the array B, which will be automatically annotated on the outer edge as

having a data movement volume of M ·N ·K, based on the iteration space of the Map.

Data volumes are automatically computed based on the accesses performed by compu-

tations and the parallel scopes that they exist in, and do thus not need to be provided

by the engineer implementing the application. When the number of accesses cannot be

determined exactly due to runtime-dependent accesses in the code, DaCe will state that

the access is dynamic and give an upper bound.

Understanding the data movement of the program lets the performance engineer easily

identify bottlenecks to make informed decisions on where optimizations should be applied.

For the example in Fig. 5.6, the performance engineer could perform tiling on the parallel

Map scope and/or insert local bu↵ers, progressively using the data volume annotations to

guide tile and bu↵er sizes to match the hardware being targeted (e.g., number of registers,

or size of L1, L2, or L3 caches).

The primary engine for optimizing programs using the SDFG representation are transfor-

mations, which are graph-rewriting rules that manipulate a subgraph of a Dataflow State,

a subgraph of the SDFG (in the control flow setting), or a combination of both. These

transformations can read and mutate both the structure of the graph itself and the an-

notations on the nodes and edges, manipulating the dataflow or control flow, for example

by rearranging schedules, inserting bu↵ers, changing where compuations are executed, or

changing where data is stored.

Transformations exist as classes in the DaCe framework, which can either be applied as is,

or via a central transformation engine that will scan the nested graphs for opportunities to

apply them. To determine whether a transformation can be applied, each transformation
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matmul[n=0:N, m=0:M, k=0:K]

matmul[n=0:N, m=0:M, k=0:K]

A B

matmul

Figure 5.7: A simple three-dimensional map.

class must implement a method can be applied, which takes a matched subgraph, and

inspects any number of nodes, edges, or general properties to determine whether the

transformation would be valid. To take e↵ect, the class must implement a method apply,

which based on a matched subgraph will manipulate the representation in the desired way,

by adding or removing edges and nodes, or changing properties on edges and nodes.

As of writing, the base repository includes 71 transformations (not counting specialized

transformations that are part of domain-specific extensions to DaCe, such as StencilFlow

(Chapter 6) or the DaCeML [1] repository for PyTorch and ONNX support). Below,

we give four examples of general purpose transformations that can be used to optimize

SDFGs.

5.3.1 Example: Vectorization

The “Vectorization” transformation was implemented by Tal Ben-Nun.

Vectorization is one of the most common optimizations applied in HPC, used to increase

spatial locality and to exploit vector units to increase computational throughput. In

procedural code, vectorization is typically done by relying on an auto-vectorizing compiler,

by using parallel loops, or by using explicit vector types.

Fig. 5.7 shows a simple three-dimensional Map scope computing products between

arrays A and B as part of a matrix-matrix multiplication implementation. To vec-

torize this computation using the standard Vectorization transformation part of

the DaCe toolbox, we can use the following lines of code on an sdfg object:
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matmul[k=0:K, n=0:N, m=0:M - 3:4]

matmul[k=0:K, n=0:N, m=0:M - 3:4]

A B

matmul

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul

Figure 5.8: The subgraph from Fig. 5.7 after applying the vectorization transformation

on the three-dimensional Map scope. The computation is split into a Map with 4-way

vectorized accesses, and a Map that computes leftover iterations if M mod 4 > 0.

matmul[n=tile_n:Min(N - 1, tile_n + 127) + 1, m=tile_m:Min(M - 4, tile_m + 127) + 1:4]

matmul[n=tile_n:Min(N - 1, tile_n + 127) + 1, m=tile_m:Min(M - 4, tile_m + 127) + 1:4]

A B

matmul

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul

matmul[k=0:K, tile_n=0:N:128, tile_m=0:M - 3:128]

matmul[k=0:K, tile_n=0:N:128, tile_m=0:M - 3:128]

Figure 5.9: The subgraph from Fig. 5.8 after applying the Map tiling transformation on

the n and m iterators in the vectorized Map.
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1 from dace.transformation.dataflow import MapDimShuffle, Vectorization

2 sdfg.apply_transformations(MapDimShuffle, options={"parameters": ("k", "n", "m")})

3 sdfg.apply_transformations(Vectorization) # Defaults to 4-way vectorization

Before we vectorize, we reorder the iteration space such that accesses into all three matrices

have a stride of 1. This is done using the MapDimShuffle transformation, where we spec-

ify the desired order of iterators. Applying these transformations results in the subgraph

shown in Fig. 5.8. The Map is split into a vectorized subgraph, and a subgraph handling

the “tail” of iterations left over if the vectorization size of 4 is not a multiple of the matrix

dimension M. If M was a constant, or if an extra option is passed to the Vectorization

transformation, the tail computation can be omitted (this might be important on spatial

architectures, where the extra branch would produce dedicated hardware).

5.3.2 Example: Tiling

The tiling transformation “MapTiling” was implemented and is being maintained by Tal

Ben-Nun, Alexandros Ziogas, and others.

Tiling is one of the most common optimizations applied in HPC. It is typically used to

manipulate the access pattern into one or more memories to promote temporal locality on

CPU and GPU architectures, by reducing the reuse distance between accesses so they are

not flushed from the cache between them. In a procedural code, this typically involves

strip-mining a loop into the desired tile size, and reordering it with the existing loops.

In an SDFG State, iteration spaces are represented by the Map primitive. By ap-

plying the MapTiling transformation from the standard DaCe toolbox, we can tile

a Map into the desired tile size(s). Fig. 5.9 shows the subgraph from Fig. 5.8 af-

ter applying the MapTiling transformation, done with the following lines of code:

from dace.transformation.dataflow import MapTiling

# Tile the N and M dimensions with tile size 128. Don't tile the K-dimension

sdfg.apply_transformations(MapTiling, options={"tile_sizes": (1, 128, 128)})

If multiple Maps were present, we would either use an API that returns the possible appli-

cations and lets us choose from them, or an API that takes the specific nodes that we wish

to transform as inputs. The MapTiling is an example of nesting transformations to ease

development and avoid duplication of functionality, as it internally uses another transfor-

mation, StripMining, to split indices of a single Map into two Maps, before reordering
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A

gpu_A

B

gpu_B

matmul[n=tile_n:Min(N - 1, tile_n + 127) + 1, m=tile_m:Min(M - 4, tile_m + 127) + 1:4]

matmul[n=tile_n:Min(N - 1, tile_n + 127) + 1, m=tile_m:Min(M - 4, tile_m + 127) + 1:4]

matmul

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul[k=0:K, n=0:N, m=M - Mod(M, 4):M]

matmul

matmul[k=0:K, tile_n=0:N:128, tile_m=0:M - 3:128]

matmul[k=0:K, tile_n=0:N:128, tile_m=0:M - 3:128]

Figure 5.10: The subgraph from Fig. 5.9 after appling GPUTransformSDFG to o✏oad the

program to the GPU.

and adjusting the iteration space in the desired manner.

5.3.3 Example: GPU O✏oading

The GPU o✏oading transformation, “GPUTransformSDFG” was implemented and is being

maintained by Tal Ben-Nun, and uses internal components developed by Alexandros Ziogas,

Tiziano De Matteis, myself, and others.

As of writing, GPUs are the most popular accelerator in HPC due to the massive vector

parallelism and bandwidth that they o↵er. Targeting GPUs typically involves rewriting

performance critical kernels in CUDA/HIP/OpenCL, or using a library like cuBLAS or

TensorFlow to automatically o✏oad a fixed set of supported kernels.

To o✏oad an SDFG to the GPU, a user can simply use the GPUTransformSDFG

transformation to o✏oad an entire SDFG and all its content, or GPUTransformMap

to o✏oad just a single Map. This will generate all the appropriate kernel

code (CUDA or HIP), host/device memory copies, and kernel launches when the

SDFG is compiled. Fig. 5.10 shows the subgraph from Fig. 5.9 after applying

the GPUTransformSDFG transformation, achieved with the following lines of code:

98



5.3. Transforming the SDFG

from dace.transformation.interstate import GPUTransformSDFG

sdfg.apply_transformations(GPUTransformSDFG)

This has created GPU memory containers, and inserted accesses to them before the compu-

tation, such that memory is copied to the device before a kernel is launched to implement

the iteration space. While the particular example of matrix multiplication might seem

like a futile e↵ort considering the performance of libraries like MKL, cuBLAS, CUTLASS,

DaCe has been shown (with additional transformations) to reach 99%, 70%, and 90% of

MKL, cuBLAS, and CUTLASS performance on matrix multiplication [16], respectively,

and was even shown to significantly outperform both cuBLAS and CUTLASS on strided,

batched matrix multiplications on GPU [162].

5.3.4 Example: Control Flow Loops to Parallel Maps

The “LoopToMap” transformation described below was implemented by myself, Tal Ben-

Nun, and Alexandros Ziogas.

While the previous three example transformations focused on optimizing existing parallel

scopes, the DaCe repository also contains numerous transformations aimed at extracting

parallelism and dataflow from control flow or suboptimally expressed programs (this can

be thought of as a form of canonicalization towards a form with maximal dataflow sections

and minimal control flow).

The code in Lst. 22 shows an implementation of sparse matrix-vector multiplication

(SpMV) operating on a compressed sparse row (CSR) format, implemented in the Python

frontend of DaCe. The iterations over rows M are implemented as a Python for-loop, which

is a fundamental construct. We use the following code to parse the program into an SDFG:

sdfg = spmv.to_sdfg()

sdfg.apply_strict_transformations()

Calling the apply strict transformations method will exhaustively apply a suite of

“safe” transformations that are guaranteed to not decrease the performance of the SDFG.

Examples of this include fusing consecutive States that will not result in a race condition

(eliminating unnecessary control flow), or removing redundant data copies (when data is

copied, but the original data source can be used instead of the copy). The SDFG for this

program will look like Fig. 5.11, where the Python loop is implemented as State transitions

99



Chapter 5. Data-Centric Design of Spatial Architectures

call_11
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A_col

A_val

x

__tmp7

indirect_slice[__i0=0:-__tmp3 + __tmp4]

indirect_slice[__i0=0:-__tmp3 + __tmp4]
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Figure 5.11: The SDFG generated from

Lst. 22 after basic canonicalization.
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Figure 5.12: The SDFG from Fig. 5.11 after con-

verting the control flow loop into a parallel Map.
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1 import dace as dc

2

3 M, N, nnz = (dc.symbol(s, dtype=dc.int64) for s in ("M", "N", "nnz"))

4

5 @dc.program

6 def spmv(A_row: dc.uint32[M + 1], A_col: dc.uint32[nnz],

7 A_val: dc.float64[nnz], x: dc.float64[N]):

8 y = np.empty(M, A_val.dtype)

9

10 for i in range(M):

11 start = dc.define_local_scalar(dc.uint32)

12 stop = dc.define_local_scalar(dc.uint32)

13 start = A_row[i]

14 stop = A_row[i + 1]

15 cols = A_col[start:stop]

16 vals = A_val[start:stop]

17 y[i] = vals @ x[cols]

18

19 return y

Listing 22: A CSR-based sparse matrix-vector multiplication (SpMV) written in the

Python frontend of DaCe, adapted from the NPBench [163] repository.

in the coarse-grained control flow graph.

By employing the LoopToMap transformation from the standard DaCe suite, we can

detect control flow loops that are safe to convert into parallel Map scopes. This

is possible on an SDFG, because all memory accesses are explicit in the repre-

sentation, allowing us to detect if this conversion would result in a race condi-

tion. Because every write to the non-local data container return happens at as

distinct index i in Fig. 5.11, we can safely transform it with the following code:

from dace.transformation.interstate import LoopToMap

sdfg.apply_transformations(LoopToMap)

sdfg.apply_strict_transformations() # Clean up

This will result in the SDFG shown in Fig. 5.12, where the loop over rows is now a parallel

Map scope, which can be distributed on multiple cores, or transformed further to exploit

this newly extracted parallelism.

The transformations described above are a small sample of the zoo of transformations

available in the standard DaCe repository, provided as tools for the performance engineer

to perform guided optimization of programs. With the exception of the GPU transforma-
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tion, all the above transformations are also relevant in the context of optimizing spatial

architectures, which will be the focus of Sec. 5.6 and the remainder of this chapter. We

will also describe more FPGA-oriented transformations in that context.

5.4 The DaCe Framework

In the following, we give a high-level overview of the capabilities of the DaCe framework,

in addition to the transformations described in Sec. 5.3. All these aspects are developed

in a highly collaborative manner, so each subsection will contain explicit attribution to

the main contributors, ordered by degree of contribution on a best e↵ort basis.

5.4.1 Frontends

The Python-based frontend was built by Tal Ben-Nun and Alexandros Ziogas, and the

NumPy extensions were built by Alexandros Ziogas. DaCeML was built by Oliver Rausch

and Tal Ben-Nun. The SDFG graph API was built by Tal Ben-Nun, myself, and others.

While the SDFG is the proposed language for the performance engineer, the domain scien-

tist is expected to use one or more productive high-level frontends to produce the SDFGs

in the first place. We will not emphasize the general-purpose frontend languages in the

context of this dissertation (rather, we focus on the domain-specific language implemented

for StencilFlow in Chapter 6), but mention some of them briefly here.

The NumPy-focused Python frontend provides a highly versatile way for scientists famil-

iar with NumPy-based codes to create SDFGs. This was shown for the SpMV example

code in Lst. 22, and supports matrix and vector operations (such as all the linear algebra

multiplications implied by the Python operator “@”), element-wise operations, and general

Python control flow, such as conditional statements and loops. More details, comprehen-

sive benchmarks, and comparisons to competing frameworks for this frontend can be found

in our SC’21 paper [164].

To cater to the machine learning crowd, the DaCeML [1] extension provides support for

ONNX and PyTorch, in additional to the TensorFlow support included in the main DaCe

repository. DaCeML uses Library Nodes (Sec. 5.5) to target CPU, GPU, and FPGA, and

includes custom machine-learning oriented transformations.

For domain scientists that intersect with the performance engineering role, SDFGs can

also be authored “manually” by using a graph API to define the nodes and edges that
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describe the computation. Many convenience methods are defined on the various SDFG

objects to facilitate this. DaCe provides a graphical user interface, now maintained in

the form of a Visual Studio Code plugin3 developed by Philipp Schaad, which also allows

developers to see and manipulate the graphical representation of the SDFG directly.

All the above frontends produce SDFG objects, which can be serialized and stored into

JSON-based .sdfg objects, to be manipulated (if desired) by the performance engineer.

5.4.2 Code Generation

The central DaCe code generator was implemented by Tal Ben-Nun, myself, Alexandros

Ziogas, and others. GPU code generation was implemented by Tal Ben-Nun and others.

FPGA code generation was implemented by myself, Tiziano De Matteis, and others.

To actually execute an SDFG as a function, it must first be code generated into code

that can be compiled with a general purpose compiler. In the DaCe framework, this is

implemented as multiple backends that are each responsible for di↵erent targets, but reuse

a significant amount of code between them, as they all ultimately emit C-like procedural

code. This dissertation will focus on the FPGA backends, but even FPGA programs

utilize both the CPU backend for generating host code, and general purpose C++ code

generation shared across backends.

In the following, we give a brief overview of how di↵erent aspects of the code generator

interpret the SDFG representation to emit compilable code.

5.4.2.1 Graph Traversal

To generate code, the DaCe framework traverses the SDFG in topological order (both

in the dataflow layer and in the control flow layer), recursing into nested SDFGs in a

depth-first fashion as they are encountered. When cycles occur in the control flow graph,

dominator analysis is used to determine the order of traversal. When multiple weakly con-

nected components appear within the same Dataflow State (i.e., no edges exist between

two distinct sets of nodes), they are considered independent and can be executed in par-

allel (e.g., as software threads on the CPU, asynchronous GPU kernels, or as processing

elements on the FPGA). A control flow detection procedure emits if-conditions, for-loops,

or while loops, if they can be inferred from the control flow between Dataflow States.

3https://marketplace.visualstudio.com/items?itemName=phschaad.sdfv
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5.4.2.2 Scheduling Computations

Whenever a Map primitive is encountered, the code generator will dispatch to one of

many branches depending on the schedule property defined on the Map. By default,

this will use CPU multithreading using OpenMP, but if specified, can dispatch to GPU

kernels, GPU thread blocks, MPI processes, pipelined execution on the FPGA, unrolled

execution on the FPGA, or just a sequential for-loop. Not every combination of nested

schedules is valid: e.g., nesting a Map targeting a CPU multithreading schedule inside a

GPU kernel will fail the validation pass of the SDFG. Similarly, a computation scheduled

on the GPU cannot access FPGA memory. If transformed via transformations (such as

the GPU o✏oading described in Sec. 5.3.3), these schedules will in most cases be valid,

but invalid schedules can occur when manually manipulating the SDFG. Validation is

only triggered before code generation or after transformations, so invalid configurations

can exist intermittently during manual manipulation of the graph.

5.4.2.3 Computations

The core computations themselves are expressed with the Tasklet primitive, and can be

written in C++ or Python. For Tasklets implemented in Python, the code is first parsed as

a Python AST, then “un”parsed into C++, using information about which data is available

to the Tasklet and how it is accessed to ensure that the data movement semantics of the

SDFG are obeyed. For code implemented in C++, the code generator pastes the code

more or less as-is, relying on the programmer to adhere to SDFG semantics (e.g., not

exploiting pointers to access data that was not passed to the Tasklet). This procedure

is common for all backends, with the exception of the Intel FPGA backend, which needs

to emit more constrained code to target OpenCL (e.g., types must be deduced in DaCe

rather than leaving this to the compiler).

5.4.2.4 Memory Allocation

The storage property of data containers defines in which type of memory it is located.

When relevant, an additional location property is used to further qualify this (e.g.,

whether to allocate FPGA global memory in DDR bank 0 or HBM bank 22, or in a multi-

GPU system, which GPU’s global memory should be used). These properties will also

determine how the data is allocated during execution of the program (for data that is not

part of the arguments to the program). By default, any data container is allocated within

the most constrained scope in which it is used. For example, if a local bu↵er is only used

within a single Map, it will be allocated immediately before this Map is scheduled, and
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destroyed immediately after. If instead the bu↵er is used across multiple computations

within the same Dataflow State, it will be constructed and destroyed immediately before

and after the code for this State is emitted, respectively. Exceptions to this strategy occur

when the allocation strategy is manually overwritten by the performance engineer (as a

property on the data container), or when the emitted language does not allow this (e.g.,

FPGA global memory cannot be allocated from device code, and must be allocated from

the host code and passed to the kernel).

5.4.2.5 Memory Accesses

Computations can only access memory that has been explicitly passed to one of its connec-

tors (ports) in the graph. The o↵set and subset of data made available is computed from

the annotations on the dataflow edges originating from or arriving at data access nodes.

When SDFGs are nested, dataflow edges connected to the node representing the nested

SDFG are reinterpreted based on the accessed subset as a new data container within the

nested SDFG. The o↵set used to compute final pointer – and the strides used to access

such a pointer – is thus the result of all subsets passed throughout the nesting hierarchy.

For example, if a single column of a matrix stored in row-major format is passed to a

nested SDFG, the nested SDFG will only see and access the single column of data, but

the appropriate stride corresponding to the row size of the outer matrix will be used when

accessing consecutive elements in the column.

Once the C++/CUDA/OpenCL code has been emitted into a cache folder, the SDFG’s

configuration is passed to DaCe’s build system, which will perform the system configura-

tion, code compilation, and linking based on which platforms are targeted.

5.4.3 Build System

The DaCe build system was designed and built by myself, Tal Ben-Nun, and others.

DaCe uses a CMake-based build system to compile and link the generated code on the host

system. The CMake script uses a list of files provided by the Python-based framework,

determining which compilers are required based on the files provided – apart from a CPU

host compiler, a GPU and/or an FPGA compiler might be required. Which specific

compiler version to use is inferred from the user’s PATH and environment variables as per

the standard CMake flow, but can also be overwritten from the DaCe configuration file

(default location ~/.dace.conf). Options used for compilation and linking are also taken
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from the DaCe configuration file, including flags passed to the compiler/linker, and which

FPGA vendor (Xilinx or Intel FPGA) and which FPGA platform to target (e.g., the

xilinx u250 gen3x16 xdma 3 1 202020 1 shell when targeting an Alveo U250 board), if

FPGA kernels are present in the SDFG. If the build system is triggered for an SDFG that

has previously compiled with no changes, the code will not be recompiled, automatically

implementing ahead-of-time compilation even when not explicitly requested.

5.4.4 Instrumentation

The instrumentation engine in DaCe was implemented by Tal-Ben Nun, Philipp Schaad,

and others, and the FPGA instrumentation extension was built by myself.

Some component in an SDFG are amenable to instrumentation in the DaCe framework. In

particular, Map scopes, Dataflow States, individual Tasklets, and full SDFG objects can be

configured with the instrument property, automatically collecting profiling information

for their execution during runtime. DaCe will automatically instantiate the appropriate

profiling code for the given primitive and schedule in which it resides, such as OpenCL

events for FPGA execution, CUDA events for GPU execution, or regular timers for CPU

execution. The profiling information can be retrieved directly from the SDFG object after

running the program, or accessed conveniently in the Visual Studio Code extension.

5.4.5 Summary

To conclude the overview of SDFGs (Sec. 5.2), their transformations (Sec. 5.3), and the

DaCe framework (Sec. 5.4), we give an executive summary of the central concepts de-

scribed.

What is DaCe? DaCe is a Python-based, open source, HPC-oriented framework that is

used to produce, manipulate, and compile SDFGs.

What are SDFGs? SDFGs are a graph-based intermediate representation used by DaCe.

Optimizations are performed as graph transformations on the SDFG. They are compiled

into binaries that can be executed from Python or C++.

How are SDFGs made? Typically SDFGs are emitted by a frontend language. However,

they can also be written and manipulated directly, either programmatically or through a

graphical user interface.
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How are SDFGs executed? They are code generated into a C-based language and

compiled using o↵-the-shelf CPU, GPU, and/or FPGA compilers.

Is understanding SDFGs necessary to use DaCe? No. SDFGs are a useful tool for

developers to view and understand the dataflow in their program to address bottlenecks,

but can also be treated as a transparent intermediate step.

Who is DaCe for? Anyone interested in high-performance computing on CPUs, GPUs,

FPGAs, or any future supported platform. This includes software developers, hardware

developers, software developers interested in hardware, and pure performance engineers

looking to optimize programs. We distinguish between the domain scientist, who is

concerned with the output of the scientific application, and the performance engineer,

who is concerned with improving the runtime of the scientific application. These two roles

can be filled out by one, two, or more developers with the necessary expertise.

5.5 Multi-Level Design with Library Nodes

From this section and for the remainder of this chapter, I am the primary author of all

conceptual and engineering contributions described unless explicitly stated otherwise, with

Tiziano De Matteis and Tal Ben-Nun as significant contributors.

The data-centric view exposed in the SDFGs representation allows the performance engi-

neer to perform a myriad of general purpose transformations to optimize the data move-

ment of the application, such as the examples shown in Sec. 5.3. Some optimizations,

however, arise from knowledge about the underlying application domain (for example,

algebraic identities), which are di�cult or impossible to express generally without encod-

ing domain-specific knowledge into the representation. Furthermore, in some scenarios, it

might be more desirable to call external libraries, such as MKL or cuBLAS, rather than

implementing operators manually, or to reuse existing subgraphs of fine-grained dataflow

in DaCe across di↵erent applications.

To accommodate reuse of optimized subgraphs, external library support, and domain-

specific optimizations, we introduce the concept of Library Nodes, embedded in the

SDFG representation. These nodes represent an abstract behavior (the “what”) on the in-

coming and outgoing dataflow, as opposed to a concrete implementation of this behavior,

(the “how”). Library Nodes are “expanded” by replacing them with a subgraph, progres-
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Figure 5.13: Multiple levels of nested Library Node expansions.

1 @dace.program

2 def gemv(M: dace.float32[N, N], v: dace.float32[N], res: dace.float32[N]):

3 res[:] = M @ v

Listing 23: Simple DaCe program using the @ operator.

sively “lowering” them towards a concrete implementation of their behavior, inspired by

the MLIR [97] ecosystem. During this expansion, Library Nodes can inspect their context

using the surrounding nodes and edges, which may change the structure of the expanded

subgraph, e.g., by checking if inputs or outputs are streams or if they use vector types.

Because Library Nodes only represent what is computed before they are expanded into how

it is computed, all Library Nodes must be fully expanded before code can be generated

from the SDFG representation. However, they can go through several levels of expansions

(a.k.a. progressive lowering [97]) before reaching a fully expanded State.

Example. An example of progressive lowering using Library Nodes is illustrated in

Fig. 5.13, based on the simple DaCe program shown in Lst. 23 using the matrix mul-

tiplication operator “@”. In the generated SDFG, this will be represented as a generic

matrix multiplication Library Node, shown in Fig. 5.14. As we lower this operator, we

will mark the corresponding subgraph between consecutive stages with a dashed red out-

line in each figure. We go through the following phases of lowering and transformation to

end up at a tiled FPGA implementation of the input computation:

1. Based on the number of dimensions of the two input operands, the Library Node is

lowered to the corresponding BLAS-like operand: inner vector product (DOT); outer

vector product (GER); matrix-vector multiplication (GEMV); matrix-matrix multipli-

108



5.5. Multi-Level Design with Library Nodes

BinOp_11

M v

_MatMult_

res

Figure 5.14: ∂ Initial SDFG.
BinOp_11

M v

res

_MatMult_gemv

Figure 5.15: ∑ Inferred as GEMV.

gemv

fpga_M fpga_v

fpga_res

_MatMult_gemv

pre_gemv

M

fpga_M

v

fpga_v

res

fpga_res

post_gemv

res

fpga_res

Figure 5.16: ∏ O✏oaded to FPGA.

fpga_M fpga_v

fpga_res

y_tiles[ty=0]

y_tiles[ty=0]

x_tiles[tx=0]

x_tiles[tx=0]

y[iy=0:N]

y[iy=0:N]

x[ix=0:N]

gemv_x_local

read_x[ix=0:N]

gemv_partial_sums

gemv_partial_sums

gemv_y_local

gemv_y_local

reduce_partial_sums[u=0:16]

gemv_accumulate_sum

gemv_accumulate_sum

combine_y

write_y[iy=0:N]

Figure 5.17: π Lowered to FPGA implementation.

109



Chapter 5. Data-Centric Design of Spatial Architectures

cation (GEMM); or batched matrix-matrix multiplication. Each of these operations are

represented by distinct type of Library Node. For the example code, the operator

will be inferred as a GEMV operation, shown in Fig. 5.15. In Fig. 5.16, we have applied

the transformation to o✏oad the computation to the FPGA, without expanding the

abstract GEMV operation.

2. Depending on which type of platform the user wants to target, the BLAS-like opera-

tion is then expanded either to a library call (e.g., MKL or cuBLAS), or to a di↵erent

subgraph that implements the operation. When targeting FPGA, there can be mul-

tiple implementations per operator depending on the desired tiling pattern [41], each

represented by a distinct type of Library Node. In Fig. 5.17, we have expanded the

GEMV computation to a tiled FPGA implementation. Some Map scopes have been

collapsed for readability (drawn as hexagons in the figure).

3. Once the implementation has been chosen, some subgraphs might have additional

specialization to the FPGA vendor. For example, the reduction in GEMV can be

implemented with a single-cycle accumulator for 32-bit floating point on Stratix 10

and Arria 10 architectures, but requires a custom accumulation circuit on Xilinx

FPGAs, where this is not natively supported.

Library Nodes are automatically emitted when the domain scientist uses a frontend that

exposes higher level concepts, such as NumPy, and directly translate into a fast imple-

mentation on the target platform. They expose additional domain knowledge, and can be

used by the performance engineer to target di↵erent backends, reuse fast implemen-

tations, and apply domain-specific transformations. A power user can write new Library

Nodes to build new libraries and form new abstractions, which can be harnessed in new

domain-specific transformations.

5.5.1 Domain-Specific Optimizations

By embedding the high-level behavior of operations into the SDFG, we unlock access

to domain-specific transformations that exploit the abstract behavior of Library Nodes.

We will see an example of this in Chapter 6, where we can fuse stencil operations based

on their abstract representation, independent of the final platform that the program will

be compiled for. This can done using the standard transformation framework of DaCe

without any further extensions, by matching on patterns that include one or more Library

Nodes of the desired type(s) and their properties.
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5.5.2 Targeting Vendor Libraries

A typical use-case of Library Nodes is to hook into external libraries that already provide

fast implementations of the desired high-level operation. Linear algebra operations, such

as the one shown above, is a common use-case, where users may wish to simply call MKL

or cuBLAS without having to manually optimize this aspect of their application. Other

examples include FFT (calling FFTW or cuFFT), sparse linear algebra, solvers, and neural

network operators. Embedding these library calls into DaCe has multiple benefits:

• By embedding high-level operators from one of the productive frontends to DaCe,

the performance engineer can immediately target a range of vendor libraries without

having to modify the code. DaCe libraries support setting a default Library Node

expansion that will be used when the graph is compiled without any further inter-

vention (e.g., setting MKL as the default BLAS expansion will automatically compile

all supported linear algebra calls to call MKL routines).

• Swapping out a library for a di↵erent one becomes a trivial change: changing between

OpenBLAS and MKL, or between cuBLAS and an AMD equivalent, becomes a

single line of code. Even swapping between a CPU and GPU backend is trivial,

although additional transformations would be recommended to avoid unnecessary

data transfers between host and device for multiple consecutive calls.

• The performance engineer can simultaneously benefit from applying DaCe optimiza-

tions to the aspects of the SDFG implemented as fine-grained dataflow, and from

o✏oading other aspects to vendor libraries while keeping their coarse-grained data

movement within the representation. DaCe thus becomes a one stop shop for both

fine-grained and coarse-grained optimizations.

• After quickly reaching a performant implementation by calling external libraries, the

performance engineer can proceed to experiment with using fine-grained expansions

instead for selected Library Nodes, which might expose cross-operation optimization

opportunities (e.g., fusing maps schedules across operators, which was shown to be

greatly beneficial for batched matrix multiplications in OMEN [162]).

While targeting FPGA libraries would have the same benefits as for CPU and GPU pro-

grams, the set of available FPGA libraries is very limited, and fine-grained implementations

in DaCe can be as good or better than what is provided by the vendors (e.g., the matrix
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multiplication accelerator presented in Chapter 4 as of writing outperforms libraries pro-

vided by Xilinx). Furthermore, one of the most important optimizations when targeting

FPGAs is streaming data between operators, which requires operators to be compiled into

the same bitstream. DaCe has support for embedding IP cores into SDFGs for the Xilinx

backend, but for external libraries the source code would be required. We explore the

topic of FPGA libraries in more detail in our work on FBLAS [41].

5.5.3 A Note on MLIR

As previously noted, the multi-level design methodology implemented with the Library

Node abstraction in DaCe was inspired by the concept of lowering in the MLIR [97]

framework. As the DaCe project predates MLIR, the SDFG transformation machinery was

developed earlier. SDFGs have since been implemented as an experimental MLIR dialect4,

which would allow data-centric transformations to be expressed within this framework

instead. While MLIR o↵ers appealing integration with various frontends and backends,

the visual and interactive approach taken by the DaCe optimization flow – as opposed to

automatic compiler passes – remains a central component of the DaCe philosophy, and

remains the primary approach to optimizing SDFGs.

For the remainder of this dissertation, we will focus on the capabilities of the SDFG rep-

resentation and the DaCe framework applied to spatial computing systems – specifically,

Xilinx and Intel FPGA platforms.

5.6 Data-Centric Programming for FPGAs

After a decades long transition, HLS languages have become an accepted and widespread

programming model in the reconfigurable computing community [105], complementing –

albeit not fully replacing – behavioral register transfer level (RTL) design. In the domain

of high-performance computing in particular, HLS has allowed programmers from a wider

range of backgrounds to start using FPGAs as an alternative accelerator architecture, by

interfacing with software using familiar abstractions such as OpenCL [32].

While reconfigurable computing was transitioning from RTL to C-based languages, the

HPC community has begun to transition from C++ to Python as the preferred language for

application development [164] following the trend in the general software community [58],

4https://github.com/spcl/mlir-dace
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owing to Python’s high productivity and extensive library support. The FPGA community

is following this trend: the API for programming Xilinx FPGAs is exposed in Python

bindings through the PYNQ package; and domain-specific frameworks targeting FPGAs

typically provide their frontend interface as Python bindings [140, 38]. While some work

exists to bring the core kernel development of FPGA kernels into Python [93], the majority

of such development is still done in HLS and RTL languages. It is thus an ongoing e↵ort

to develop the abstractions and tooling necessary to lift FPGA kernel development into

Python in a way that simultaneously preserves Python’s productivity and the quality-of-

result of lower-level approaches.

SDFGs allow representing programs by their dataflow and control flow independent of the

chosen FPGA backend, enable compatibility across FPGA vendors through code genera-

tion, and are amenable to optimizing transformations performed on the graph representa-

tion, instead of intrusive optimizations to the source code (hardware development su↵ers

from the same issue of making optimized code unreadable as software, perhaps even more

due to the low-level nature of hardware code).

5.7 From SDFG to Spatial Architecture

In the following, we provide an overview of how SDFGs represent FPGA programs, and

how the key concepts described throughout Sec. 5.2 are translated into fast HLS code for

the two major vendors: Xilinx, through the Vivado HLS [160] C++-based compiler; and

Intel, through the Intel OpenCL SDK for FPGA [32].

5.7.1 Code Generating SDFGs

DaCe follows the guiding principle that as many optimization opportunities as possi-

ble should be kept part of the representation — where they can be manipulated by the

performance engineer — rather than happening as “magic” during code generation. Nev-

ertheless, emitting functional and e�cient code from SDFGs poses a significant design

and engineering challenge, with numerous kinks and subtleties arising from moving into

the hardware domain. The code generator must translate the final representation into

structured HLS code that is easily digestible by the compiler, faithfully follows the func-

tional semantics of the SDFG, and successfully achieves all parallelism implied by the

representation.

The FPGA backend of DaCe is modularized into a generic part, which orchestrates the
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Figure 5.18: Kernel State with four processing elements (right), with pre- and post-States

(left) copying memory between host and device.

traversal of the SDFG, and two lower level specialized backends for Xilinx and Intel, which

are responsible for emitting vendor specific code for Vivado HLS (C++) and the Intel

OpenCL compiler, respectively. The generic backend contains the most sophistication in

terms of interpreting the representation and delegating code generation tasks, whereas the

two specialized components are primarily concerned with vendor-specific semantics (e.g.,

how processing elements and memory interfaces are expressed) and syntax (e.g., vector

data types and stream objects). In particular, the highly restricted syntax supported by

OpenCL requires more verbose syntax to be emitted than for backends that support C++.

5.7.2 Parallelism, Pipelining, and Unrolling with Maps

� Representation. Parallel sections in SDFGs are expressed via the Map construct. In

software, these scopes can target multi-core and SIMD parallelism for both CPUs and

GPUs. In hardware, we can exploit the parallelism implied by Maps in two ways: with

pipelining, where iterations are executed in sequence, but exploit pipeline parallelism in the

mapped computation; or with unrolling, representing parametrically replicated hardware,

such as systolic arrays (see Sec. 5.7.6) or SIMD-style vectorization. Unrolling is annotated

as a property on the Map object, while all non-unrolled Maps are pipelined. The purple

box in Fig. 5.18 contains an inner Map, which will be generated as a pipelined inner loop,

and an outer Map over tiles, orchestrating the bu↵ering behavior.
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� Code generation. During code generation, the graph is traversed from outermost to

innermost nesting to detect the innermost Map that is not unrolled, which will be pipelined

by injecting a pragma at the generated loop. Furthermore, loop coalescing pragmas are

automatically injected whenever loops generated from Maps are perfectly nested, and

when necessary, pragmas to ignore false dependencies (see Sec. 5.7.7). Maps designated as

being unrolled will annotate the generated loops with the vendor-specific unroll pragma,

or be manually unrolled in the code if necessary.

5.7.3 Representing FPGA Kernels

� Representation. The pure dataflow representation of SDFG States is a natural fit

for mapping to streaming dataflow kernels on FPGA. When traversing the SDFG, the

framework detects States that only access memory situated on the FPGA, designating

these as FPGA kernels. Although FPGA kernels are always inferred from pure Dataflow

States, coarse-grained control flow is still achievable within the kernel by embedding nested

SDFGs as nodes.

Moving data between the host and device is represented as memory copies in the rep-

resentation. Data nodes are annotated with a data location via the storage attribute:

an enumeration that includes FPGA Global (o↵-chip memory, such as DRAM or HBM),

and FPGA Local, representing on-chip memory. When connected by direct data-to-data

edges in a Dataflow State, this will result in the appropriate copy operation depending on

the source and destination storage. Streaming transfers can be natively represented using

stream data nodes, but due to the OpenCL abstraction adopted by both the Xilinx and

Intel toolflows, the backend currently only supports bulk transfers. Host/device streaming

will be introduced once either backend exposes su�cient support to end-users (e.g., using

the QDMA [156] subsystem for Xilinx FPGAs).

� Code generation. When the code generation traversal encounters a subgraph that is

detected as an FPGA kernel (when all data in the State resides on the FPGA), the

dataflow section is dispatched to the FPGA backend. Before continuing the traversal to

generate the hardware itself, the kernel “boundary” is generated by inferring the necessary

arguments that must be passed to the resulting OpenCL kernel launch(es). Interaction

with the OpenCL API is wrapped in the interface provided by hlslib (see Chapter 3), as

shown in Lst. 25.
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5.7.4 Processing Elements

� Representation. The notion of partitioning the functionality of a kernel into multiple

independently scheduled modules, commonly referred to as processing elements (PEs), is

central to designing large FPGA architectures (see Sec. 2.3.2). Native support for this

concept is thus a core consideration in the SDFG representation. At the same time, this

should not introduce new FPGA-specific concepts to the representation.

SDFG States imply pure dataflow by representing data movement and data dependencies

(e.g., everything contained in a blue rectangle Fig. 5.18 or Fig. 5.19), the latter of which

must be respected by the code generating backend. When a dataflow graph contains

more than one weakly connected component (i.e., at least two subgraphs G0 and G1 with

no dataflow edge (u, v) connecting any node u2G0 with any node v2G1), the backend

has the liberty to schedule each weakly connected component in parallel. For software

backends, this can enable launching multiple concurrent GPU kernels, or running di↵erent

concurrent tasks on multiple CPU threads. When appearing within an FPGA kernel, these

are also scheduled as independent “tasks”, exposing the concept of processing elements

to the programmer. In the example in Fig. 5.18, each of the four connected components

represent an independent processing element scheduled in parallel: the components in the

red and the black box are memory reader/prefetcher modules, which read from arrays

(solid borders) in o↵-chip memory into data streams (dashed borders). The red box is a

simple copy of the full array dimensions, implemented by a single dataflow edge, where

the black box repeats multiple reads of the array, using a Map to generate the desired

access pattern. The blue box inversely writes from a stream back to memory.

� Code generation. In the Vivado HLS toolflow, processing elements are expressed by an-

notating a scope in the C++ code with the DATAFLOW pragma, resulting in every loop and

function call in the scope to be scheduled as a distinct processing element. This requires a

top-level “entry” function that contains the processing elements, and is annotated with ad-

ditional pragmas that designate the hardware interfaces used by the kernel to interact with

the FPGA shell, and instantiates the on-chip streams (i.e., FIFOs) that facilitate inter-PE

communication, shown for an example in Lst. 24. The Xilinx backend uses the simu-

lation extensions from hlslib (see Sec. 3.2.3), providing the HLSLIB DATAFLOW FUNCTION

macro wrappers and the thread-safe and bounded hlslib::Stream class (see Sec. 3.3.1),

to achieve actually concurrent simulation of parallel processing elements, including sup-

port for feedback/back-edges in the dataflow. The Intel OpenCL flow takes a di↵erent

approach: rather than being contained in a top-level function, every processing element
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1 void mm(float *A, float *B, float *C, int n) {

2 // ...interface pragmas omitted...

3 #pragma HLS DATAFLOW

4 HLSLIB_DATAFLOW_INIT();

5 dace::FIFO<float, 1, 4> A_pipe[P + 1];

6 dace::FIFO<float, 1, 1> B_pipe[P + 1];

7 dace::FIFO<float, 1, 1> C_pipe[P + 1];

8 HLSLIB_DATAFLOW_FUNCTION(read_A, A, A_pipe, n);

9 HLSLIB_DATAFLOW_FUNCTION(read_B, B, B_pipe, n);

10 for (size_t p = 0; p < P; p += 1) {

11 #pragma HLS UNROLL

12 HLSLIB_DATAFLOW_FUNCTION(compute, p, A_pipe, B_pipe,

13 C_pipe, n);

14 }

15 HLSLIB_DATAFLOW_FUNCTION(write_C, C, C_pipe, n);

16 HLSLIB_DATAFLOW_FINALIZE();

17 }

Listing 24: Processing elements are implemented

as top-level function calls in the Vitis HLS ecosys-

tem. Only mm is invoked from the host code.

1 hlslib::ocl::Kernel kernels[] = {

2 program.MakeKernel("read_A", A, n),

3 program.MakeKernel("read_B", B, n),

4 program.MakeKernel("compute", n),

5 program.MakeKernel("compute_1", n),

6 program.MakeKernel("compute_2", n),

7 program.MakeKernel("compute_3", n),

8 program.MakeKernel("write_C", C, n)};

9 std::vector<cl::Event> events = {

10 kernels[0].ExecuteTaskFork(),

11 kernels[1].ExecuteTaskFork(),

12 kernels[2].ExecuteTaskFork(),

13 kernels[3].ExecuteTaskFork(),

14 kernels[4].ExecuteTaskFork(),

15 kernels[5].ExecuteTaskFork(),

16 kernels[6].ExecuteTaskFork()};

17 cl::Event::waitForEvents(events);

Listing 25: Processing elements are

launched as kernels from the host code

in the Intel OpenCL ecosystem.

must be expressed as a separate OpenCL kernel in the top-level scope, where they are

connected using global channel objects. Launching each processing element is thus done

from the host code, shown in Lst. 25. These two methods of expressing kernels thus af-

fect both the host code (which kernels are generated and launched) and the kernel code

(one vs. multiple top-level kernels, global channel objects vs. local stream objects). If a

generated OpenCL kernel has no arguments, it will be generated as an “autorun” kernel,

which is always active and will run whenever data is available on the connected channels,

and thus does not need to be invoked from the host code.

5.7.5 Channels/Streams/FIFOs

� Representation. Streams are a native data container construct in the SDFG represen-

tation, representing first-in, first-out queues, that can be used to communicate between

subgraphs in dataflow sections. In CPU and GPU codes, these are employed as single-

or multi-producer queues: for example, a breadth-first search kernel can produce tasks

to a queue that is consumed by multiple workers, dynamically distributing work. Stream

semantics are the same in FPGA kernels, but with additional constraints due to the under-

lying hardware implementation that they imply: streams cannot be unbounded, and must

be single-producer, single-consumer. Streams facilitate communication between process-
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stream, used to verify correctness of the program.

ing elements, while simultaneously acting as synchronization primitives between kernels

through the producer-consumer relationship. Even though the components in Fig. 5.18 do

not have dataflow edges between them, they synchronize by pushing/popping the same

stream data container.

Because all data movement is explicitly captured in the SDFG, programmers can benefit

from the information annotated on dataflow edges to verify the correctness of producer/-

consumer relationships, which are automatically inferred by the tool based on the access

pattern expressed by Map scopes in the graph. Fig. 5.20 shows the annotation of a dataflow

edge written by the processing element prefetching the matrix B from Fig. 5.19 into the

stream object B pipe, and the corresponding read from B pipe within the processing ele-

ment. The matrix of size K⇥M is read N/P times, where P is the tile size introduced by

the systolic array (see Sec. 5.7.6), resulting in a data volume of K · M · N
P annotated on

the dataflow edge/memlet.

� Code generation. Due to the distinct methods of expressing processing elements, the

semantics of allocating streams varies significantly between the Xilinx and Intel backends.

When generating Xilinx code, streams are emitted in the top-level kernel function as local

objects, where they must be passed as arguments to the producer and consumer accessing

them (see Lst. 24). For Intel OpenCL codes, they must be emitted to the global kernel

scope, where the appropriate producer and consumer will read them directly (i.e., rather

than receiving them as arguments).

5.7.6 Parametric Processing Elements: Systolic Arrays

� Representation. Systolic arrays [89] are a powerful pattern to express parametric par-

allelism through deep pipelines, and are the most potent source of parallelism on modern
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FPGAs (see Sec. 2.3.2 and Sec. 2.3.3) when applicable. SDFGs implement this pattern

with unrolled Map scopes in the FPGA Dataflow State, with a parametric — but compile-

time specialized — number of iterations, coupled with arrays of stream objects. When

such a Map is unrolled, each instance semantically becomes a weakly connected compo-

nent in the State, resulting in them being instantiated as separate processing elements

according to the semantics in Sec. 5.7.4. This is equivalent to any other Map construct in

the SDFG: namely, they represent independently executable replications of the contained

subgraph (unrolled Maps can occur at any level of nesting in the program), but are rec-

ognized as a special case by the code generator when appearing in the top-level scope of

an FPGA kernel.

An SDFG implementing a one-dimensional systolic array for matrix multiplication (C =

A⇥B) is shown in Fig. 5.19, where the Map nodes annotated by red borders instantiate the

systolic array. Each element implements the same content (highlighted), but reads from

a distinct index in three arrays of stream objects (“pipes”) for A, B, and C, respectively.

Since every processing element is only connected to the previous and the next, they must

pass data along the chain from the head towards the tail (see Sec. 4.4.1). The processing

elements implement a simply bu↵ering scheme where each element stores one element of

A in a local bu↵er, then streams over the full B matrix, before writing back a complete

output tile of C. This simple SDFG already yields 364 and 188 GOp/s on 8k⇥8k matrices

when compiled for an Intel Stratix 10 and a Xilinx Alveo U250 board, respectively, with

much potential for additional optimization.

� Code generation. Systolic array code generation varies between vendors due to the

di↵erent ways of expressing processing elements. In Xilinx codes, it is su�cient to unroll

a loop in the C++ kernel code with bounds known at compile time, letting constant

propagation fix all the indices in each instantiation to lay out the systolic array, as shown

in Lst. 24. For Intel, the OpenCL kernel itself is replicated and specialized directly in the

code generator (see Lst. 25).

5.7.7 Memory Hierarchy

� Representation. Not all data movement is born equal: dataflow can have significantly

di↵erent performance impact depending on the location and storage type of the source

and destination, even if the number of bytes moved are the same. The FPGA backend

exposes global memory, which represents data present in o↵-chip, memory-mapped storage

such as DDR or HBM; local memory, representing any on-chip memory implementation
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such as registers, BRAM/M20K, LUTRAM, or UltraRAM (left up to the HLS compiler),

i.e., memory that is physically local to the computational logic; registers, which is a subset

of local memory, but forces the HLS compiler to allow fully parallel read/write access to

every entry of the container; and experimental support for shift registers, implementing

cyclic bu↵ering patterns with multiple access points (natively supported by Intel OpenCL).

Combining these allows implementing highly specialized memory hierarchies, as well as

host/device interaction, in a way that is compatible with both Xilinx and Intel devices.

� Code generation. Local memories can be emitted as regular C arrays directly in the

kernel code, while o↵-chip memory is allocated with API calls in the host code and passed

to the kernel arguments. The FPGA backend gives the underlying HLS compilers addi-

tional scheduling freedom by generating a distinct pointer argument for every access to

the same DRAM memory container present in the kernel and marking them as restrict

in OpenCL, such that every read and write can be performed independently, which is safe

due to SDFG semantics.

Whenever both reads and writes are emitted to local memory, and the write is not marked

as a potential conflict, the generated code is annotated with pragmas to instruct the

compiler to ignore dependencies (HLS DEPENDENCE for Xilinx and ivdep for Intel). This

is implied by SDFG semantics, where these accesses are either in dataflow sections (where

conflicts must be annotated), or in control flow scopes, that are inherently sequentialized.

With the above concepts, we have covered how SDFGs are interpreted as a spatial archi-

tecture and code generated for the two major FPGA vendors. We will now take a step

back, and introduce higher-level abstractions into the SDFG representation in the form

of Library Nodes, built on top of these concepts to constitute the last important tool for

accelerating productivity and promoting portability within the framework.

5.8 Optimizations for Spatial Architectures

Apart from the general purpose transformations described in Sec. 5.3, we can design and

apply spatial computing-oriented transformations, that target the hardware optimization

goals that we described in the context of HLS optimizations in Chapter 2.

We will use the input code shown in Lst. 26 as a running example, which implements

AXPYDOT, a small composite BLAS kernel that sums two input vectors, then takes the dot

product with the resulting vector and a third input vector. The SDFG generated by the
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1 n = dace.symbol("n")

2 a = dace.symbol("a", dace.float32)

3

4 @dace.program

5 def axpydot(x: dace.float32[n], y: dace.float32[n],

6 w: dace.float32[n], result: dace.float32[1]):

7 z = np.ndarray([n], x.dace.float32)

8 blas.Axpy(a, x, y, z)

9 blas.Dot(z, w, result)

Listing 26: Implementation of AXPYDOT using the stan-

dard DaCe Python frontend and BLAS library calls.

x y

z

axpy

w

result

dot

Figure 5.21: SDFG generated

from Lst. 26.

axpydot

fpga_x fpga_y

fpga_w

fpga_result

fpga_z

axpy

dot

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

Figure 5.22: The SDFG from Fig. 5.21 automatically transformed for FPGA execution.

frontend for this code is shown in Fig. 5.21. The BLAS operators are instantiated as the

axpy and dot Library Nodes, reading and writing from array inputs/outputs. The two

kernels exchange data through the array z, which will be first written by axpy and then

read by dot, in sequence. Kernels that are composed of BLAS level 1 and 2 routines, such

as AXPYDOT, are fully memory bound, but expose a promising opportunity for streaming

computation by pipelining temporaries directly between subroutines [41] on the FPGA,

which we will exploit in the following.

5.8.1 Transformation: O✏oading to the FPGA

As a first step, we o✏oad the full SDFG for FPGA execution using the FPGATransformSDFG

transformation shown in Sec. 5.9 (and following a similar approach to Sec. 5.3.3). This de-
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tects all DRAM accesses in the graph, then create additional pre- and post-states perform-

ing memory transfers between host and device. The memories accessed by the transformed

subgraph are replaced with their FPGA equivalents.

Fig. 5.22 shows the AXPYDOT example from Fig. 5.21 after applying the FPGATransformSDFG

transformation. Occurrences of the DRAM memories x, y, and w and replaced with corre-

sponding FPGA memories fpga x, fpga y, and fpga w in the kernel graph, the memories

are copied to the FPGA before the kernel is executed in the state pre axpy, and the

output array result is copied back in the state post axpy. This program can already be

generated and compiled for both Xilinx and Intel boards using appropriate expansions of

the two Library Nodes axpy and dot.

5.8.2 Architecture Specialization

For computations that need to perform accumulation, such as the DOT operator used in

Fig. 5.21, it is beneficial to specialize the computation based on whether the underlying

architecture supports accumulation on the given data type. Intel Arria 10 and Stratix 10

architectures supports native 32-bit floating point accumulation, which allows a stream of

floats to be directly summed into an output register. Contemporary Xilinx FPGAs, such

as the Alveo U250, do not have native 32-bit floating point units, and cannot directly

accumulate floating point numbers into a single register, as this results in a loop-carried

dependency induced by the multiple-cycle latency of the addition operation. For 64-bit

floating point, neither Xilinx nor Intel support accumulation, and both must address the

issue of loop-carried dependencies.

To avoid the loop-carried dependency for DOT, we can use the single-loop accumulation

interleaving transformation from Sec. 2.2.1.3. We sum up the incoming data into a number

of partial sums, stored in a bu↵er of a size larger than the latency of the addition operation.

In Fig. 5.23 and Fig. 5.24, the AXPY and DOT operators have both been expanded for

Xilinx and Intel, respectively. AXPY uses a generic implementation (identical to the CPU

implementation), while DOT is implemented using specialized expansions depending on the

target architecture. The Xilinx-targeted expansion included in Fig. 5.23 uses a partial

sum strategy to resolve the loop-carried dependency, using two unrolled maps. The first

(“unroll”) sums up all entries of the vector containing the product of contributions from

x and y using a fully unrolled circuit (i.e., W�1 adders, where W is the vectorization

width), resulting in a single element contribution. This contribution is added into the

partial sum bu↵er, accessed with a cyclic index. The second unrolled map (“reduce”) is
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axpydot

fpga_x fpga_y

fpga_w

fpga_result

fpga_z

axpy_map

axpy_map

axpy_task

dot_input_x dot_input_y

stream

stream

multiply

dot_product dot_reduce_vector

dot_reduce_vector

unroll

unroll

reduce_vector

dot_partial_sums

dot_partial_sums

partial_sum

reduce

reduce

reduce

dot_reduce

dot_reduce

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

Figure 5.23: AXPYDOT expanded for Xilinx, using a partial sum and reduce phase.
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Figure 5.24: AXPYDOT expanded for Intel, accumulating into a single register.
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performed after the main streaming phase, and sums up all values in the partial sums bu↵er

into a single output, which is written to the output (again consuming W�1 adders. In a

resource-constrained scenario, this could be reduced to a single adder without impacting

the asymptotic runtime). The Intel specialization included in Fig. 5.24 instead accumulates

into a single register, saving the partial bu↵er and additional reduction.

5.8.3 Transformation: Memory Access Extraction

The StreamingMemory transformation was implemented by Tal Ben-Nun, based on con-

cepts developed in Chapter 2 and for FBLAS [41] by myself and Tiziano De Matteis.

When the memory access pattern of a certain computation is known ahead of time, it

is often beneficial to “prefetch” data from memory and stream the data into the FPGA

processing elements, as described in Sec. 2.4.1. Creating streaming accessors has many

benefits, including exploiting burst accesses in memory controllers, doing in-memory re-

ordering of data streams (Sec. 4.4.3), broadcasting o↵-chip memory to multiple processing

elements, or implementing custom caching mechanisms. On the writing side, having a

dedicated writer can prevent backpressure from flushing writes to memory.

DaCe provides the “StreamingMemory” transformation, which extracts the access pattern

from an existing memory read or write into a separate reader/writer module. The trans-

formation looks for all recurring access patterns of unique symbolic expressions. If the

range accessed consists of one scalar or vector element, the transformation can be applied.

It then extracts the read/write out of the computation by introducing another component

that accesses the memory in the same order as the computation, and communicates be-

tween them via a Stream object. The corresponding outgoing/incoming dataflow edges

are replaced by edges that access the stream instead.

If more than one PE uses the same memory access order, the transformation generates a

single streaming component that connects one array node to multiple streams. In order to

avoid deadlocks, the transformation also detects dependencies by computing reachability

from the destinations/sources of the memlet paths (inherently given by the construction

of the SDFG). If accesses are dependent, separate components are created, even for the

same access pattern.
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5.8.4 Transformation: Pipeline Fusion

The StreamingComposition transformation was implemented by Tal Ben-Nun, based on

concepts developed for FBLAS [41] by Tiziano De Matteis and myself.

As convered extensively by FBLAS [41], fusing consecutive pipelines is a critical optimiza-

tion for spatial architectures to transition from a centralized memory design accessing

DRAM to on-chip dataflow, where data is moved directly across the chip between compu-

tations. As described in Sec. 2.2.4, fusing two consecutive pipelines reduces the minimum

number of cycles required to evaluate them by N + N to just N , assuming that they both

run for N iterations and are fully pipelined with I = 1.

In the SDFG for AXPYDOT shown in Fig. 5.22 after expanding the two Library Nodes with

FPGA implementations, the intermediate memory z is stored in o↵-chip memory, resulting

in a round-trip through global memory between the axpy and dot operators.

The StreamingComposition can be used to convert a temporary bu↵er in o↵-chip memory

into streaming communication directly between the two endpoints. This transformation

is similar in structure to the memory access extraction described in the previous section.

The current implementation (as of writing) checks for array nodes with in-degree and

out-degree of one, which are read/written with equivalent access patterns that can be

composed. To do so, the transformation traces the dataflow through Map scopes and

nested SDFGs, canonicalizing the expressions found on the edges. If the read and write

subsets match exactly, the result of the first computation can be streamed into the sec-

ond. Similarly to StreamingMemory, we replace the memory access nodes and neighboring

memlets with streams, converting global memory arrays into local streams. This procedure

can eventually be extended to recognize more complex patterns, such as having multiple

consumers connected to a single producer.

In Fig. 5.25 we show the AXPYDOT example after applying both Memory Access Extrac-

tion and Pipeline Fusion to the SDFG from Fig. 5.22. The StreamingMemory transfor-

mation is applied on all three input/output vector accesses, namely x, y, and w, and

StreamingComposition is used to stream the z-vector directly between the AXPY and DOT

components, avoiding accesses to o↵-chip memory and letting the two pipelines run in

parallel.
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Figure 5.25: The AXPYDOT program after automatically extracting memory accesses into

processing elements and streaming between operators. Streams are color-coded by name

for pipeline visualization.
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Table 5.1: E↵ect of optimizing AXPYDOT for FPGA execution with N = 16 · 106.

Runtime E↵ective bandwidth Speedup

Alveo U250 (non-streaming) 12.0 ms 21 GByte/s -

Alveo U250 (streaming) 4.9 ms 52 GByte/s 2.42⇥

Stratix 10 (non-streaming) 11.4 ms 23 GByte/s -

Stratix 10 (streaming) 3.8 ms 71 GByte/s 3.11⇥

5.8.5 AXPYDOT Evaluation

The following results are based on Library Node implementations that I have implemented,

while the benchmarks were designed and measured by Tiziano De Matteis.

For the following experiment, we target the Alveo U250 for Xilinx execution and the

BittWare 520N housing a Stratix 10 for Intel execution. Both FPGAs are equipped with

4⇥ DDR4 memory banks, with a maximum total bandwidth of 77 GByte/s and 86 GByte/s

for the Xilinx and Intel board, respectively.

We evaluate the performance of the composed AXPYDOT kernel before and after applying

the two spatial transformations (extraction and fusion), but after applying the FPGA

o✏oading and expanding the Library Nodes to the respective e�cient FPGA implemen-

tations, in Tab. 5.1. The kernels are executed for single-precision floating point with

16-way vectorization to saturate the memory inferfaces, and are configured to access all

four DDR4 banks. The e↵ective bandwidth is computed as 4N times the operand size (we

use 4 Bytes for single-precision floating point), which does not include the extra 2N mem-

ory accesses required to write z back to memory from AXPY and then reading it from DOT.

The non-streamed implementations thus in practice achieve 33 GByte/s and 34 GByte/s

for the Alveo U250 and the Stratix 10, but where 2N accesses are unnecessary.

Although we are only fusing two consecutive pipelines of size N , the speedup after trans-

formations is greater than 2, because the total data volume accessed from o↵-chip memory

becomes smaller by eliminating w from memory, reducing the runtime of the memory bound

application; and because more DRAM banks can be used in parallel: 4 in the streaming

version (accessing x, y, w, and result in parallel) versus 3 in the non-streaming version

(accessing either x, y, and z in parallel in the first sequential phase, or z, w, and result

in parallel in the second phase). Finally, moving the memory accesses out of the core
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computation allows memory accesses and computations to run asynchronously.

Fast FPGA implementations are provided for many BLAS Library Nodes in the DaCe

repository, which can be fused into fully pipelined kernels using the methodology described

above when their access patterns agree. By adding transformations specialized to target

properties of spatial computing systems to the arsenal of DaCe, we further boost the

productivity of the performance engineer, allowing him to transform input programs into

e�cient, streaming FPGA implementations.

5.9 Automatically Compiling NumPy to FPGAs

This section uses results from our SC’21 [164] paper led by Alexandros Ziogas, where the

Xilinx results were collected by myself, and the Intel FPGA results were collected by Tiziano

De Matteis, using elements of the DaCe frontend, transformations, and code generation

that have received contributions from all authors.

In the following, we show how DaCe can be leveraged to target FPGAs directly from

NumPy-based kernels. We o✏oad programs using the DaCe transformation shown for

GEMV in Sec. 5.5, and where relevant, the streaming transformations described in Sec. 5.8,

then compile them for both Xilinx and Intel FPGAs. By embedding high-level operations

from NumPy in the SDFG, such as the example shown in Sec. 5.5, we can preserve their

semantics in order to emit pre-optimized library implementations specialized for FPGA

execution, with no additional e↵ort on the user’s behalf.

To compile a Python function operating on NumPy arrays for FPGA using DaCe, such as

the one shown in Fig. 5.26, it simply needs to be annotated with the @dc.program decorator.

Optionally, in order to enable ahead-of-time (AoT) compilation – which is typically desired

for FPGA programs – the data types of the function arguments must be specified. If

this annotated function is called as-is, DaCe will transparently generate the SDFG, code

generate C++ from the SDFG, compile, and run the resulting binary. The program can

be run as is, or additional optimization opportunities exposed by transforming into the

data-centric representation can be exploited by further transforming the SDFG.

By default, the IR generated from Fig. 5.26 will target CPU execution. Applications

must first be transformed to be executed on the FPGA. This is achieved by a graph

transformation that can be applied directly to the program:
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1 import numpy as np

2 import dace as dc

3

4 N = dc.symbol('N', dtype=dc.int64)

5

6 @dc.program

7 def gesummv(alpha: dc.float32, beta: dc.float32,

8 A: dc.float32[N, N], B: dc.float32[N, N],

9 x: dc.float32[N]):

10

11 return alpha * A @ x + beta * B @ x

Figure 5.26: A simple Python program operating on NumPy arrays, annotated with a

decorator and type hints on the arguments to be compiled with DaCe.

1 sdfg = gesummv.to_sdfg()

2 sdfg.apply_transformation(FPGATransformSDFG)

3 sdfg(alpha, beta, A, B, x)

The first line produces the SDFG from the program gesummv, and the second line applies

the transformation in-place to o✏oad the computation to the FPGA. The transformation

will instantiate all memory used in the computation as FPGA arrays, and insert host-

to-device and device-to-host copies before and after the computation, respectively. The

computation itself will be annotated for FPGA execution, and can be compiled for either

FPGA vendor using the relevant backend. Executing the transformed program is no

di↵erent from the initial program, and is done by calling the object as a function and

providing the necessary arguments in the form of NumPy arrays and scalars, as shown on

the third line. If the kernel was not compiled ahead of time, it will be compiled implicitly

before executing the program, but will be cached for future use.

To demonstrate the coverage and versatility the DaCe framework, we consider all 30 ker-

nels from the PolyBench [118] benchmark suite from their NumPy implementations in

the NPBench [163] repository, building bitstreams for a Xilinx Alveo U250 board using

Vitis 2020.2 and targeting the xilinx u250 xdma 201830 2 shell, and for the BittWare

520N accelerator housing an Intel Stratix 10 FPGA, using Quartus and the Intel OpenCL

SDK for FPGAs version 20.3 and targeting the p520 max sg280h shell. To the best of

our knowledge, no previous work has successfully built and run the full Poly-

Bench suite, or indeed allowed FPGA kernels to be built and run directly from

NumPy code. The results included below build on the results published in the original
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Figure 5.27: All 30 kernels from the PolyBench test suite, compiled from their NumPy

implementation in the NPBench [163] project, to be executed on both Xilinx and Intel

FPGAs, using the LARGE dataset size.

paper proposing SDFG representation [16], where all NumPy kernels were shown, but were

compiled from manually authored SDFGs.

Results are shown in Fig. 5.27. The best results are obtained for benchmarks that rely

on capturing high-level operations from the NumPy formulation, which are translated

into Library Nodes, which can be then lowered into specialized hardware implementa-

tions. This is the case of benchmarks relying on BLAS-like routines, namely atax, bicg,

gemm, k2mm, and k3mm. Here, matrix multiplications are instantiated as a high-throughput

systolic array, and other linear algebra operations use e�cient tiled implementations, ex-

ploiting device-specific features such as the presence of hardened floating-point units on

the Stratix 10. In stencil-like applications (e.g., jacobi1d, jacobi2d, heat3d), Intel

FPGA outperforms Xilinx, due to stencil pattern detection in the Intel compiler. Other

benchmarks, such as adi, floyd-warshall, and lu su↵er from heavy control flow and/or

complicated dependencies that do not map well to dataflow on the device out of the box.

The productivity benefit of Python as the input language over manual HLS designs can be
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quantified by the di↵erence in verbosity of the code: The SLOC of the input Python codes

in NPBench is an average of 28⇥ and 29⇥ less than the corresponding generated code

targeting Intel FPGA and Xilinx, respectively, with the former requiring no boilerplate

code for host/device interaction.

With this, we have demonstrated the versatility of the DaCe framework when targeting

FPGAs, by building a large set of applications for execution on FPGAs from both vendors.

5.10 Summary

We introduced the data-centric SDFG representation, which exposes pure dataflow in the

form of States where all data movement of a program is explicitly defined. This allows

a skilled performance engineer to apply graph-based transformations, such as tiling or

vectorization, to optimize the data movement of the program. Computations can even

be o✏oaded to accelerators by simply changing the data storage location and schedule of

computations on the graph nodes. SDFGs are obtained from one of several productive

high-level frontends, and can be optimized independent of the frontend, resulting in a

separation of concerns between program definition and its optimization.

The data-centric nature of SDFGs makes them a natural fit for mapping to spatial archi-

tectures, mapping data movement in the graph to data movement on the spatial device.

SDFGs can implement streaming computation across fast on-chip memory, providing auto-

matic memory management, portability between FPGA vendors, and seamless integration

with host programs. By expressing hardware programs as SDFGs, performance engineers

also gain access to the rich suite of data-centric optimizations in the DaCe toolbox, en-

abling knowledge transfer and code reuse between software and hardware optimization.

We show how we can compile a large benchmarks suite for execution on both Xilinx and

Intel FPGAs directly from a NumPy representation, demonstrating the coverage and flexi-

bility of the code generating backends and our ability to transform arbitrary computations

to be o✏oaded to the FPGA. Along with the general purpose optimizations of DaCe, we

also provide transformations specialized for spatial architectures, allowing the performance

engineer to fuse consecutive pipelines to greatly boost the performance of kernels that can

be composed in this way.

DaCe is published as an open source repository on GitHub (see page 83). As of writing,

the repository has 192 stars, 50 forks, received contributions from 36 contributors, and
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has fueled a large body of research into data-centric optimization. Ziogas et al. [162] even

scaled a large DaCe application to a full supercomputer, winning the 2019 Gordon Bell

award. As the project develops, we hope that it continues to inspire great research and

become the technical foundation of many more applications systems.

In the next chapter, we will exploit all the tools described here to further raise the level

of abstraction to a domain-specific frontend, utilizing the multi-level design enabled by

Library Nodes to embed domain information into the SDFG, using DaCe’s powerful code

generator to target both Xilinx and Intel FPGA platforms.
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StencilFlow: Domain-Specific Dataflow

This chapter is based on work published at CGO’21 [38], which was extended from work

developed with Andreas Kuster for his bachelor thesis. Tal Ben-Nun and Dominic Hofer

worked on extracting and canonicalizing stencil programs from the COSMO model for

use in StencilFlow. Tiziano De Matteis developed the extension to DaCe required to run

distributed experiments on Intel FPGAs, and ran the experiments on University of Pader-

born’s Noctua cluster. I co-authored the paper on SMI [40], which is used for distributed

computations in StencilFlow. The StencilFlow stack is published as an open source repos-

itory1 built on top of the DaCe framework, with support for both Xilinx and Intel FPGAs.

The temporal locality in iterative or dependent stencil computations is challenging to

exploit on load/store architectures, as they require complex tiling schemes [106] and se-

lective fusion of code segments [64, 65]. In contrast, exploiting this reuse via dataflow is

intuitive, as consecutive stages can be pipelined and synchronized via their fine-grained

dependencies [124]. Implementations of stencils achieving high performance on reconfig-

urable hardware often assume idealized iterative stencils, as this enables temporal blocking

of consecutive timesteps [166, 27], which maps naturally to pipelined architectures.

In this chapter, we consider the challenging case of arbitrary stencil DAGs, motivated

by their existence in numerical climate and weather prediction, where each node is a

(potentially complex) stencil operation reading from one or more input memories, and

writing its output to one or more consumers. As a motivating case study, we target an

application from the Consortium for Small-scale Modeling (COSMO). The consortium

consists of eight national weather services which aim to develop, improve and maintain

a non-hydrostatic local area atmospheric model. The COSMO model is used for both

operational [15, 150] and research [96, 117] applications by the members of the consortium

and many universities worldwide. The stencils used in these simulations are dominated by

series of heterogeneous stencil computations. Unlike the uniform codes often evaluated in

high-performance computing research, these programs run many di↵erent stencil opera-

1https://github.com/spcl/stencilflow
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"inputs": {
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Figure 6.1: Overview of the StencilFlow end-to-end system.

tions on many di↵erent inputs of varying dimensionality, and exhibit complex dependency

patterns between them.

We present a full-stack solution, from a high-level stencil DSL to low-level spatial program

definitions, that are code generated for hardware execution, summarized in Fig. 6.1. We

introduce a method that maps stencil programs to spatial architectures by using dataflow

principles to form compositions that are deadlock free and maximize the number of active

pipelines, based on an analysis of iteration patterns and the computational source code.

Fully code-generated architectures emitted by StencilFlow evaluated on an Intel FPGA

testbed reach 1.32 TOp/s and 4.18 TOp/s in single-device and multi-device experiments,

respectively, which to the best of our knowledge is the highest performance recorded for

stencil programs executed on FPGA hardware to date, and 765 GOp/s on a Xilinx acceler-

ator platform, which to the best of our knowledge is the highest performance recorded for

stencil programs executed on a Xilinx FPGA to date. The full source code is available on

GitHub (see page 135), exposing productive high-level Python interfaces, while compiling

to highly e�cient hardware through the code-generating backend.

Clear separation of concerns at multiple levels of the stack is a key concept in our ap-

proach, as provided by SDFGs and the Library Node abstraction. An input program is

formulated as a high-level DSL, constraining the program to an analyzable and optimizable

form. Input programs are first optimized on a domain-specific level, where we can perform

specialized transformations, such as fusing consecutive stencil nodes. Then, programs are

lowered to standard DaCe dataflow nodes, where we can control and optimize for data

movement. The dataflow representation is then specialized for the targeted architecture,

and finally code-generated to be compiled and synthesized for hardware.
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6.1 Definition of a Stencil Program

As the input format of StencilFlow, we define a “stencil program” as a directed acyclic

graph of stencil operations on a structured grid (an example is shown in Fig. 6.2), where

each node is either a stencil operation performed on the full output domain or a memory

container, and edges are dependencies between stencils and memories: i.e., outputs pro-

duced by one stencil that are consumed by one or more other stencils, and/or are read

from/written to memory. Each stencil takes one or more inputs, that are sourced either

from o↵-chip memory, or fed by a previous stencil evaluation, and produces exactly one

output. To support a broader class of computations present in weather models considered,

we furthermore allow stencils to read from lower-dimensional inputs: e.g., a 3D stencil can

read from a 2D, 1D, or even “0D” (scalar) arrays using subsets of its indices. A stencil

node is defined by:

• A definition of each logical input that is read, which we refer to as “fields”, with a cor-

responding data type, and a sequence of o↵sets relative to the center (“field accesses”).

• A code segment describing the computation at each point in the iteration space, where

only the specified input accesses (including 0D constants) can be used in computations.

Since it is important to know the latency of computations, the code is restricted to

be analyzable (i.e., no external data structures or external functions, with the excep-

tion of standard math functions). However, ternary functions/conditionals are allowed,

including data-dependent branches.

• A series of boundary conditions, defining how out-of-bounds accesses should be handled.

Currently supported boundary conditions include: constant, where out of bounds accesses

are replaced with a given constant value; copy, where out of bounds accesses are placed

by the value at o↵set 0 in all dimensions (the “center” value); and shrink, where all

computed values that read out of bounds values are simply ignored in the output. The

former two are specified per input, whereas shrink is specified on the output.

To facilitate productive definition of stencil programs, we define a simple JSON-based

input format, which only requires the minimum amount of information necessary to in-

stantiate the stencil DAG to be specified explicitly. An example is shown in Lst. 27. In

practice, the definition must additionally provide data sources for each input field. Stencil

programs can have 1, 2, or 3 dimensions, but assume all stencils iterate over the same

iteration space (although they can have variable constant o↵sets into the output field).
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1 { "inputs": {"a0": {"dtype": "float32",

2 "dims": ["i","j","k"]},

3 "a1": {"dtype": "float32",

4 "dims": ["i","j","k"]},

5 "a2": {"dtype": "float32",

6 "dims": ["i","k"]} },

7 "outputs": ["b4"], "shape": [32, 32, 32],

8 "program": {

9 "b0": {"code": "a0[i,j,k] + a1[i,j,k]",

10 "boundary_condition": {

11 "a0": {"type": "constant",

12 "value": 1},

13 "a1": {"type": "copy"} } },

14 "b1": {"code": "0.5*(b0[i,j,k] + a2[i,k])",

15 "boundary_condition": "shrink"},

16 "b2": {"code": "0.5*(b0[i,j,k] - a2[i,k])",

17 "boundary_condition": "shrink"},

18 "b3": {"code": "b1[i-1,j,k] + b1[i+1,j k]",

19 "boundary_condition": "shrink"},

20 "b4": {"code": "b2[i,j,k] + b3[i,j,k]",

21 "boundary_condition": "shrink"} } }

Listing 27: Program description.
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Figure 6.2: Corresponding DAG.
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Figure 6.3: Hardware mapping.

6.2 Mapping to Distributed Hardware

There is a substantial body of previous work on mapping single stencil operations to

reconfigurable hardware [166, 124, 53, 27], where high performance is achieved by chaining

many consecutive timesteps together as a rich source of temporal locality. Some of this

methodology carries over to the more general scenario we consider here, but we must

additionally consider forks and joins in the stencil program, inputs and outputs shared by

multiple producers and consumers, heterogeneity and complexity in stencil computations,

and mapping the graph to multiple devices.

6.2.1 Mapping to Hardware

For our hardware mapping, we work from the base assumption that every stencil operation

in the dependency graph is mapped to simultaneous dedicated logic (stencil units/operators),

even if this requires the design to span multiple devices. All stencil operations are sched-

uled simultaneously, operating in a fully pipeline parallel manner. In this scenario,

production and consumption rates are identical across the dataflow graph, allowing the

runtime to be modeled as a single, deep pipeline (described in Sec. 6.7.1).

Each stencil unit executes a pipeline, which processes a number of cells equal to the product
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of the input dimensions, where logic required to handle out-of-bound accesses is predicated

into the pipeline. The next cell is evaluated as soon as all inputs required for that cell are

ready. This way, all dependencies between stencils become fine-grained on a per-cell level.

This spatial computing view is distinct from the load/store view, as we default to perfect

data reuse (i.e., we exploit all available temporal locality). In contrast, the e�ciency of

computations on load/store architectures relies on maintaining a task granularity suitable

for the architecture (large number of identical threads on GPU, small number of large

tasks on CPU). Kernel fusion is thus a critical optimization to achieve the right task

granularity [65] for performance through spatial locality, whereas StencilFlow programs

are executed in a fully “fused” schedule, but are instead concerned with satisfying the o↵-

chip and on-chip memory constraints (fusing stencil operators takes a di↵erent meaning,

described in Sec. 6.4.1).

Inputs are provided to each stencil unit through on-chip channels with a compile-time

fixed size, where the producer can either be another stencil unit (i.e., a dependency), or a

memory unit reading directly from o↵-chip memory. If one or more inputs are not ready,

the pipeline must stall while waiting for the remaining inputs to arrive. For any DAG

that is not a multi-tree, this can result in deadlocks if channel capacities are insu�cient

to bu↵er inputs ready early until inputs ready later arrive, due to the circular dependency

implied by each data exchange requiring the receiver and sender to not be full and not

be empty, respectively. We must thus take all paths through the DAG into account when

deciding the size of bu↵ers between dependencies.

In the example shown in Fig. 6.4, the stencil unit computing C requires data from both

stencil units A and B to begin streaming. The results streamed out of A are also required

by B. On the left hand side, C is waiting for data from B (i.e., for the data stream to not be

empty), B is waiting for additional data from A, and A is waiting for C to accept the data

(i.e., for the data stream to not be full), thus forming a circular dependency. Without

additional bu↵ering, this results in a deadlock. By adding an appropriate bu↵er between

A and C (right hand side), we can inject su�cient credits to tolerate the delay induced by

the path through B. We describe how StencilFlow computes the bu↵er depths required to

prevent deadlocks and ensure continuous streaming operation in Sec. 6.3.2.

6.2.2 Mapping to the Distributed Setting

To scale beyond the o↵-chip memory bandwidth, on-chip memory capacity, and logic

resources available on a single chip, we let designs scale to multiple devices. For modeling
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Figure 6.5: Stencil program spanning two devices.
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and code generation, this means that certain inter-stencil connections will cross devices,

and thus imply communication across the network. Furthermore, data located in o↵-chip

memory must be present on any device that accesses it, implying potential replication to

multiple devices that require it. In the example shown in Fig. 6.5, a2 is accessed by stencils

on either device, requiring it to exist in both DRAM memories.

To implement inter-node communication in practice, we leverage the Streaming Message

Interface [40] (SMI), which exposes communication as channels with FIFO semantics, re-

sulting in inter-node communication being nearly identical to intra-device communication

between stencils in the generated code. With the target in mind, the following will describe

the program analysis, and the central components of the StencilFlow stack, required to

build these spatial architectures.

6.3 From DAG to Dataflow

The StencilFlow framework analyzes the stencil DAG, and uses this to construct a dataflow

graph that maps to e�cient hardware. Data reuse happens both internally in each stencil,

facilitated by “internal bu↵ers”, and on the edges between stencil nodes, referred to as

“delay bu↵ers”.
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6.3.1 Internal Bu↵ers for Intra-Stencil Reuse

The most straightforward source of temporal locality comes from within each stencil op-

eration, where the same input field is often accessed at multiple o↵sets relative to the

center, illustrated in Fig. 6.6 for accesses {[�1, 0], [0, �1], [0, 1], [1, 0]} in a 2D iteration

space. Furthermore, in the global dataflow setting, the core assumption of StencilFlow is

that data should only be loaded once, streaming directly between kernels without going

through o↵-chip memory.

A stencil node has 0 or 1 internal bu↵ers per field accessed, depending on whether there are

multiple accesses to the given field within the stencil. The size of each bu↵er is determined

by the largest distance between any two o↵sets in memory order, plus one (or plus the

vector width, in the case of vectorized kernels) in the stencil iteration space: e.g., in a

3D iteration space of shape {K, J, I}, two accesses a[0, 1, 0] and a[0, -1, 0] require

bu↵ering two 1D rows (2I +W elements, where W is the vector width), while two accesses

b[0, 0, 0] and b[1, 0, 0] require bu↵ering a 2D slice (2IJ + W ), shown in Fig. 6.7

top and bottom, respectively. In general, bu↵ers sizes can be up to a constant number of

(D � 1)-dimensional slices for a D-dimensional stencil.

StencilFlow computes the internal bu↵er size for each field, for each stencil, independently.

However, the schedule for when the pipeline starts writing each bu↵er is dependent on the

other fields accessed. For example, if a stencil reads multiple fields with internal bu↵er

sizes {B1, . . . , BF}, each internal bu↵er can be only start to be filled after the first Bi �
max{B1, . . . , BF} iterations (the largest bu↵er(s) will always start reading immediately),

so it is synchronized with the other fields. Additional accesses in between the “highest”

and “lowest” o↵set in memory order do not a↵ect the total bu↵er size, although they

can a↵ect the bu↵er implementation in practice by adding more parallel accesses into the

bu↵er.

Filling the internal bu↵ers also a↵ects the latency, and transitively the runtime, of the

stencil program. A stencil node cannot begin computations before all operands are avail-

able, which only happens once all internal bu↵ers have been filled. As the size of bu↵ers is

exactly the distance between the lowest and highest accessed index in order of the stencil

iteration space, the initialization phase of a stencil is given by max{B1, . . . , BF}, which is

crucial to the delay bu↵er calculation described in the following.
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Figure 6.8: Delay bu↵ers on edges enable reuse and deadlock freedom.

6.3.2 Delay Bu↵ers for Inter-Stencil Reuse

Edges between stencils in the DAG enable data reuse by replacing expensive round-trips to

o↵-chip memory with direct dataflow. Furthermore, if multiple stencils require data from

the same input field, it is su�cient to read it from memory once, and stream the data to

all stencils requiring it. StencilFlow exploits all such opportunities, while preventing the

deadlock scenario illustrated in Fig. 6.4. This requires synchronizing inputs to consumers

by adding bu↵ers that delay the data (i.e., inject su�cient credits) until all inputs are

ready without blocking the producer(s). We annotate these delay bu↵ers on edges in the

dataflow graph, corresponding to FIFO channel depths.

There are two factors that determine delays in the DAG. First, the AST formed by com-

putation of a stencil operation forms another DAG, whose critical path adds a delay

between a sequence of inputs entering and exiting the pipeline. Computing the critical

path requires latency information for each operation performed, which is both type and

architecture dependent. As a result, these latencies can be provided as configuration to

the framework, and default to conservative values to account for the worst case scenario.

We note that these delays are typically small (<100 cycles), and do not contribute signif-

icantly to the overall fast memory usage, even when conservatively overestimated. More

importantly, delays occur in the initialization phases within each stencil, where internal

bu↵ers are being filled before enough data is available to start computations. Each stencil

node in the stencil program will contribute max{B1, . . . , BF} elements to this delay, where

{B1, . . . , BF} is the set of F internal bu↵er sizes for the given stencil.
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To determine the size of delay bu↵ers on the edges arriving at a given node, we traverse

the DAG backwards from the node, computing the latency contributions along all possible

paths, from all possible source nodes, and for each edge, including the contribution of the

initialization phase of the node itself, recording the highest delay encountered per edge.

The bu↵er size on each edge is then the highest delay found for that edge, subtracted

from the highest delay found across all edges (it follows that each node will have at least

one incoming edge with delay size zero). Similar to internal bu↵ers, the maximum size

of delay bu↵ers is proportional to the size of a (D � 1)-dimensional slice of the iteration

space. An example of annotated delay bu↵ers in shown in Fig. 6.8.

For scenarios where there is su�cient reuse to not be memory bound, there could be

a potential trade-o↵ between o↵-chip memory bandwidth spent on doing round-trips to

memory, and the resource consumption of delay bu↵ers required to move the access into

fast memory: We could choose one or the other for each connection. We do not consider

this trade-o↵ for two reasons. First, the fast memory consumption can ultimately be

bounded using tiling, making it an attractive choice even when the capacity requirements

would be large. Second, the weather simulation kernels we consider in this work are

predominantly memory bound, consistently making moving communication into on-chip

delay bu↵ers the superior choice.

6.3.3 Vectorization

When insu�cient reuse is present in a target program, we can employ vectorization to

increase parallelism and memory bandwidth utilization, in order to approach a compute

logic or memory bandwidth bound. To this end, we allow StencilFlow input programs to

specify a vectorization factor, which will not only a↵ect the generated hardware, but also

the dataflow analysis. Vectorizing by a factor of W reduces the number of iterations in

the inner loop of all stencils in the program by a factor of W , which a↵ects the size of ini-

tialization phases, and transitively the delay bu↵ers in the system. In addition to directly

increasing the bandwidth requirement and parallelism in the program, vectorization can

also have the subtler e↵ect of coarsening stencil nodes, increasing the ratio of “useful”

compute logic to overhead logic. We can thus also use vectorization in time tiling-like

scenarios to coarsen simple stencils and increase the achievable performance.

Once the stencil program has been enriched with the appropriate internal bu↵er and delay

bu↵er sizes, the resulting graph is emitted to the data-centric backend for domain-specific

and low-level optimizations.
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Figure 6.9: Transformations used.

(DS: Domain-Specific, GP: General-Purpose).

6.4 Data-Centric Abstract Representation

To support the functionality required by StencilFlow, we introduce a Library Node rep-

resenting stencil computations, provide three new transformations, and extend the Map

scope concept with specialized Pipeline scopes that provide a convenient abstraction for

initialization/draining phases in pipelined computations. The StencilFlow-specific Library

Node Stencil was developed as the primary computational driver for StencilFlow, and

will be used extensively throughout the following. Since the high-level semantics of Li-

brary Node types are known, they allow performance engineers to develop domain-specific

transformations, such as algebraic contractions (e.g., double transposition). With Library

Node expansions potentially containing other Library Nodes, multi-level coarsening and

transformations are thus enabled in SDFGs, inspired by the MLIR [97] stack (see Sec. 5.5).

As a useful shorthand for pipelined iteration spaces, we introduce the Pipeline Scope,

augmented with information on initialization and draining phases, to easily allow the

programmer to inject specialized behavior during initialization, streaming, and draining

phases. For StencilFlow, this allows encoding the internal bu↵er initialization phase, and

draining phases where results are still being computed only using data present in local

bu↵ers, thus omitting reads from inputs.

With the domain-specific concepts enabled by Library Nodes, we are able to develop trans-
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Figure 6.10: Unlike load/store fusion, spatial fusion only reduces latency.

formations for stencil programs on reconfigurable hardware. We develop both domain-

specific and a general-purpose transformation, summarized in Fig. 6.9. NestDim resched-

ules stencil computations by taking multiple, parametrically-parallel stencils and creating

one stencil, which can be mapped into di↵erent schedules on hardware. StencilFusion

schedules multiple dependent stencils as one stencil with multiple statements, di↵ering

from standard map fusion by taking boundary conditions and redundancy into account.

For general-purpose transformations, we add the MapFission transformation, which splits

a parallel subgraph into multiple parallel subgraphs (which can in turn be rescheduled),

introducing temporary storage between the subgraph components. The NestDim and

MapFission transformations are used as a tool to extract stencil programs from existing

SDFGs to analyze them in StencilFlow, while StencilFusion is an optimization for both

load/store and spatial architectures, described in the context of StencilFlow below.

6.4.1 Spatial Stencil Fusion

On load/store architectures, fusing consecutive stencils is used to increase performance by

improving data locality, reducing write/read roundtrips from o↵-chip memory, and reduc-

ing context scheduling overhead [72]. When applying the transformation on StencilFlow

dataflow graphs, the e↵ect is somewhat di↵erent, as the schedule of the spatial architecture

is already fully “fused” into a global pipeline. Instead, fusing stencils has the following

e↵ects:

• The critical path through the program can be reduced by combining the initialization

phases (see Sec. 6.3.1) of two consecutive stencils.
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• Internal bu↵ers for the same input field are combined into a single internal bu↵er.

• Multiple smaller delay bu↵ers can be combined into fewer, larger bu↵ers, which a↵ects

hardware utilization, depending on the granularity of on-chip memory on the target

platform.

• Combined code sections increase the opportunity for common subexpression elimination

by the optimizing compiler.

• Coarser stencil nodes increase the ratio of “useful” logic to the number of pipelines

instantiated, which can a↵ect spatial resource overhead.

The di↵erence between fusing tasks on load/store architectures and the spatial fusion

performed here is illustrated in Fig. 6.10. On load/store architectures (Fig. 6.10a), the

total number of scheduled kernels is reduced when fusing task 0 and task 2 into a single

kernel. In Fig. 6.10b, all operators are already scheduled in parallel, but the initialization

latency can be reduced if the fused nodes sA and sB are on the critical path.

When canonicalizing an input program obtained from the COSMO suite, we define a

collection of heuristics for fusing two stencils so that these e↵ects are observed. Firstly,

the necessary conditions for fusion are checked, namely that the two stencils operate on the

same data shape (correlating to iteration space) and that they have the same StencilFlow

boundary condition definitions. Then, we only consider stencils that are connected by

one data container node u with deg(u)=2, in order to ensure that all stencils (fused or

otherwise) have a single output. Finally, we ensure no other instances of u exist in other

states, so that it can be completely removed from the graph without adding an extra write

to o↵-chip memory.

For the experiments in the following, we perform aggressive stencil fusion of input pro-

grams, as this is observed to reduce overall logic through the coarsening of stencil nodes,

and slightly reduces runtime by pruning initialization latencies.

6.5 Architecture Generation

StencilFlow relies on DaCe backends to generate the final kernel code, which is passed

to an optimizing compiler. For the experiments performed in the following, we primarily

target the Intel FPGA SDK for OpenCL backend [32], but also include results collected on

a Xilinx Alveo accelerator card. DaCe automatically performs necessary annotations for

pipelining, unrolling, and coalescing loops emitted from parametric maps in the dataflow
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graph, splits parallel sections into processing elements (i.e., OpenCL kernels), annotates

bu↵er depth properties for channels, declares kernels as autorun when possible, inlines

constants, and performs conversions between vectorized and non-vectorized data types.

Host code necessary to interface with the kernel and the necessary memory copies are

generated, and the final program can be called by using the high-level Python interface.

By using DaCe for code generation and by using the Library Node abstraction for stencil

computations, we can support both Xilinx and Intel FPGAs. To eventually emit RTL code

directly, or to target other spatial systems entirely, will only require adapting the stencil

Library Node expansion, provided that support for the desired architecture is present

in/added to the DaCe framework.

When targeting the FPGA backends, delay bu↵ers are represented as DaCe streams with

a given bu↵er size, which are mapped to the Intel OpenCL channel abstraction and

Vitis HLS stream objects, respectively, that are in turn mapped to FIFOs in hardware.

The computation itself is represented by stencil Library Nodes, which will be expanded to

di↵erent subgraphs depending on whether Intel or Xilinx is targeted.

This full graph returned by either Library Node expansion eill be wrapped in a parametric

scope that defines the iteration space of the stencil program, which is fully pipelined,

such that all three phases are executed in a pipeline parallel manner. The input and

output streams (drawn with dashed borders) are connected to the appropriate producers

and consumers in the global dataflow graph. Source nodes are instantiated as dedicated

prefetchers that can read ahead of computations, and dedicated writers are instantiated

at sink nodes that can bu↵er data while waiting for DRAM writes.

6.5.1 Intel Stencil Node Expansion

We target the shift register pattern in Intel’s OpenCL compiler to e�ciently implement

internal bu↵ers within each stencil node. To achieve this in DaCe, a data container

spanning the full width of each internal bu↵er is created, injecting and shifting elements

every cycle. “Tap” points (constant o↵set accesses) into the array are then connected to

the stencil, where o↵sets are generated from the distance between accesses flattened into

a 1D iteration space.

The processing done per cell in a stencil Library Node expanded for Intel FPGA is shown

in Fig. 6.11. The graph contains three consecutive components: a shift phase, containing

a fully unrolled Map scope where a Tasklet shifts each entry of the shift register memory

by the vectorization width to i+W ; an update phase, where new values are read from the
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Figure 6.11: Stencil Library Node expansion targeting Intel FPGAs.

input channel into the front of each shift register by a tasklet; and a compute phase, where

the bu↵ers are accessed at all tap points and fed to the main computation tasklet, which

is parametrically unrolled to treat each element in the vector with potentially di↵erent

boundary conditions, and passes through another tasklet that conditionally writes the

output stream if the stencil is not in the initialization phase.

6.5.2 Xilinx Stencil Node Expansion

Xilinx does not expose a scalable shift register abstraction. Instead, the bu↵ers be-

tween each stencil access must be deduced, instantiated, and accessed explicitly, which

is challenging due to vectorization resulting in non-aligned accesses into the vector strides.

Fig. 6.12 shows a Xilinx expansion, implementing the same pattern as Fig. 6.11, but with-

out the aid of shift registers. In this example, a 4-point stencil has four access points, which

with 4-way vectorization requires 14 unique o↵set. O↵sets are computed as the distance

from the “earliest access” relative to the iteration pattern. These o↵sets are translated

into major indices (which bu↵er is accessed, according to the vector stride) and minor

indices (indices into each accessed vector). The major indices become the “access points”

into the vectorized bu↵ers, resulting in 4 bu↵ers for this example. At each iteration, the

bu↵ers are read at a cyclic index along with the value from the wavefront. Because the

kernel is vectorized, a full vector must be read from each bu↵er first, after which the in-

dividual scalar elements can be extracted by the kernel (implemented by the 14 dataflow

edges between the bu↵ers and the computation b0). Finally, each bu↵er is updated with

the value from the following access point, and the front access point (i.e., highest flattened
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Figure 6.12: Stencil Library Node expansion targeting Xilinx FPGAs.
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index) is updated from the wavefront.

6.5.3 Reference Expansion

While exploring CPU and GPU performance is out of the scope of this work, we exploit

the Library Node abstraction to also generate naive CPU-executed graphs for reference,

where stencil evaluations are executed sequentially in topological order (i.e, no fusion or

parallelism between stencil evaluations), which we can use to verify the generated hardware

kernels.

6.5.4 Generating Distributed Programs

To code-generate distributed implementations, we integrate an OpenCL implementation

of the Streaming Message Interface [40] (SMI) into the DaCe backend. SMI extends HLS

with a distributed memory programming model for reconfigurable hardware that unifies

message passing with pipelined stream-based communication of data, such that cross-chip

communication is expressed the same way as on-chip communication.

When a stencil program spans multiple devices, the computation running on each device

is represented by a separate DaCe program, as it will compile to separate bitstreams

that must be configured to each device in the sequence. Devices communicate via remote

streams, which are DaCe streams annotated with having a source/destination located

on a di↵erent device, which will trigger the SMI backend to code generate the relevant

networking code and emit streaming message communication.

If multiple network connections are present between two endpoints, SMI can split a com-

munication stream into two or more substreams following di↵erent channels across the

network, and recombine them at the other end, allowing for a multiplicative increase in

achievable bandwidth. In StencilFlow, we exploit this to increase the vectorization width

and number of channels spanning across devices.

6.6 Workflow and Artifacts

To summarize the stack described throughout the above, an overview of the StencilFlow

workflow is shown in Fig. 6.13. The StencilFlow framework is a pure Python code (⇡5300

SLOC at the time of writing).

The input program to StencilFlow can either be given as the JSON-based program de-

scription described in Sec. 6.1, or as a DaCe dataflow graph containing domain-specific
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Progam Description Dataflow Graph Expanded

Stencil DAG Hardware Mapping
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Buffering 
analysis

SDFG generation

Library node 
expansion

Code generation

DS 
optimization

GP
optimization

Intel FPGA OpenCL

Reference C++

Parse and dependency analysis

StencilFlow Framework DaCe Framework

͙

"inputs": {
"a0": {...},
"a1": {...}, 

},
"outputs": ["b4"],
"shape": [32,32,32],
"program": {
"b0": "...",
"b1": "...",
"b2": "...",

Figure 6.13: Workflow overview, with code artifacts annotated on arrows. Dashed outline

indicates an existing feature that was extended.

stencil nodes. In the latter case, we developed software that performs canonicalization

passes to the DaCe graph, before extracting the stencil pattern to the standard program

description format. This allows us to read in external programs, which will be required

for the case study in Sec. 6.8.

StencilFlow can directly run the stencil program from the input description, transparently

executing parsing, dependency analysis, bu↵ering analysis, SDFG generation, domain-

specific optimization, Library Node expansion, general purpose optimization, code gener-

ation, compilation of the host code, compilation of the kernel (requiring the full synthesis,

placement and routing flow if FPGAs are targeted), execution of the program, and vali-

dation of results.

6.7 Benchmarks

We benchmark the architectures emitted by StencilFlow to establish the highest achievable

performance and bandwidth on a testbed platform, which we can use to analyze the

characteristics required to push performance of stencil applications.
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6.7.1 Computing Expected Runtime

We annotate benchmarks with the “expected” runtime, given by the lower bound on

number of cycles required to evaluate the program, assuming all data is available at the

earliest possible cycle. Because the full stencil DAG is executed in a pipeline parallel

manner, we can model the runtime as a single, global pipeline. It is generally true for a

pipelined circuit that the number of cycles required to process N inputs follows Eq. 2.1.

All architectures emitted by StencilFlow are fully pipelined, so we fix I=1 cycles

operand
. N is the

product of the domain dimensions (number of iterations in the iteration space), divided

by the vectorization width W when applicable. L is computed from the circuit latency

and initialization delay described in Sec. 6.3.2. N and L compose di↵erently: N covers

the streaming section where stencils can operate in a pipeline parallel fashion, whereas L

covers the initialization phase where stencil units are not feeding downstream consumers.

The depth of the DAG thus adversely a↵ects the performance upper bound, while the size

of the domain a↵ects it favorably, increasing the relatively number of “useful” cycles to

cycles spent in initialization. Since L is only proportional to D�1 or fewer dimensions

(see Sec. 6.3.2), it becomes negligible when the domain is large relative to the depth of the

stencil DAG. However, we include it when computing expected runtime for completeness.

6.7.2 Experimental Platforms

To evaluate the e�ciency of dataflow architectures laid out by StencilFlow, we map them

to state-of-the-art FPGA platforms from both major vendors. Our benchmarks focus

on 32-bit precision, as this is used in production by our motivating weather simulation

example, and because this precision is supported natively on the Stratix 10. However,

all parts of the StencilFlow stack support any data type recognized by the underlying

compiler, including double precision floating point and integer types.

For Intel FPGA execution, we target the BittWare 520N PCI-e attached board, with

an Intel GX 2800 Stratix 10 processor, 4 DDR4 memory banks with a combined peak

bandwidth of 76.8 GByte/s, and four network-attached QSFP ports rated at 40 Gbit/s.

The annotated OpenCL code generated from DaCe is compiled with version 19.1.0 of

the Intel FPGA OpenCL SDK and Quartus compiler, targeting the p520 max sg280l

shell o↵ered by BittWare. This shell supports networking via OpenCL channels, which

we target using the SMI library (Sec. 6.5.4). The FPGAs are installed in the Noctua

cluster at the Paderborn Center for Parallel Computing, which exposes a programmable,

fully connected optical switch, allowing us to chain FPGAs together in sequence with two
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Figure 6.14: Performance scaling for single and multi-node.
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Figure 6.15: Performance scaling with 4-way vectorization.

40 Gbit/s links between each consecutive device to explore multi-device scaling.

For Xilinx, we target the same Alveo U250 accelerator board used in Sec. 2.6, hous-

ing a 14 nm Xilinx UltraScale+ XCU250-FIGD2104-2L-E FPGA and four 2400 MT/s

DDR4 banks, built with a four chiplet architecture. We use Vitis 2020.2 to target the

xilinx u250 xdma 201830 2 shell. The board is hosted at the Xilinx Adaptive Compute

Cluster (XACC) at ETH Zurich. We do not evaluate multi-node stencils on Xilinx devices,

as this was not supported by the SMI reference implementation at time of writing.
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6.7.3 Iterative Stencil Performance

StencilFlow is built to handle complex stencil kernels, but is also capable of processing

traditional, iterative-style stencil codes. We produce benchmarks using such kernels to

establish the highest floating point performance reachable by StencilFlow, which can be

compared to previous work. This is achieved by chaining together long linear sequences

of stencils executed on a large input domain, analogous to time-tiled iterative stencils.

To evaluate scaling behavior of an iterative stencil, we gradually increase the number of

chained stencil computations until a single Stratix 10 device is fully utilized, then we

continue the chain across multiple nodes by replacing accesses to on-chip FIFOs with

network channels. We repeat the experiment with and without vectorization, to see the

e↵ect of coarsening stencil stages. The resulting benchmarks are shown in Fig. 6.14 and

Fig. 6.15 without and with vectorization, respectively.

Without vectorization, the highest performing bitstream yields 264 GOp/s on a single

Stratix 10 device, and scales up to 1.5 TOp/s across 8 FPGAs. A 4-way vectorized code

reaches 568.2 GOp/s and 4.2 TOp/s on single and multi-device, respectively. Vectorization

thus proves to be crucial to achieve high utilization of compute resources on the Stratix 10,

as it reduces the ratio of overhead logic to computational logic. This further motivates the

necessity of the stencil fusion transformation (Sec. 6.4.1) on input programs to coarsen

the granularity of stencil nodes. Frequencies across all benchmarks are consistently in the

range 292-317 MHz, which is factored into the upper bound calculation shown as dashed

black lines, computed from Eq. 2.1 as C/f , where f is the design frequency.

We additionally measure the highest performance achievable without networking on a sin-

gle device, as we are unable to vectorize the stencils in the distributed experiment further

due to the network bandwidth bottlenecking the computation, included in Tab. 6.1. As a

non-relative measure of device utilization, the table includes resource usage for the maxi-

mum performing stencil for each data type. The highest measured stencil performance of

1.3 TOp/s and 4.2 TOp/s for the Intel device, and 765 GOp/s for the Xilinx device, marks

a 9.4⇥, 30⇥, and 5.5⇥ speedup over the stencil performance reported for a single VCU1525

device in the original work on DaCe for single-device and multi-device, respectively (which

in turn outperformed a state-of-the-art HLS compiler by five orders of magnitude, showing

in inability of HLS compilers to yield satisfactory out-of-the-box performance).

For a more direct comparison on the Stratix 10 platform, we compare StencilFlow to a

handwritten stencil implementation. Zohouri et al. [166] combine spatial and temporal
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Performance ALM FF M20K DSP

Total 103 M 3.7 M 11.7 K 5760

Avail. 692 K 2.8 M 8.9 K 4468

Jacobi 3D
265 GOp/s

233 K 534 K 1495 784

(Ours) 33.6% 19.3% 16.7% 17.6%

Jacobi 3D
921 GOp/s

437 K 1207 K 2285 3072

W=8 (Ours) 63.1% 43.6% 25.5% 68.8%

Di↵usion 2D
1313 GOp/s

449 K 1329 K 2565 2304

W=8 (Ours) 64.8% 48.0% 28.6% 51.6%

Di↵usion 3D
1152 GOp/s

567 K 1606 K 5357 3072

W=8 (Ours) 81.9% 57.9% 59.8% 68.8%

Di↵usion 2D
527 GOp/s Alveo U250

W=4 (Ours)

Di↵usion 3D
765 GOp/s Alveo U250

W=4 (Ours)

Di↵usion 2D
913 GOp/s

471.4 K 1173.6 K 2204 3844

(Zohouri et. al. [166]) 68.0% 42.3% 24.6% 86.0%

Di↵usion 3D
934 GOp/s

450.5 K 1078.2 K 8684 3592

(Zohouri et. al. [166]) 65.0% 38.9% 97.0% 80.4%

Waidyasooriya
630 GOp/s Arria 10 GX 1150

and Hariyama [145]

SODA [27] 135 GOp/s ADM-PCIE-KU3

Niu et al. [112] 119 GOp/s Virtex-6 SX475T

Ben-Nun et al. [16] 139 GOp/s Virtex UltraScale+ VCU1525

Table 6.1: Highest performing kernels and their resource usage.
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blocking in an HLS-based design to achieve high performance on stencil codes on an

Arria 10 FPGA. We extend the authors’ work by building their code2 for Stratix 10,

using the Di↵usion 2D and 3D stencil codes. On advice from the authors, we configure

parameters to a vectorization width of 16, run enough repetitions that the kernel runs for

multiple seconds to hide initialization overhead, and disable burst interleaving. We include

the resulting performance in Tab. 6.1, along with other previous results by Niu et al. [112]

and Waidyasooriya and Hariyama [145], showing that StencilFlow is competitive even with

hand-tuned code. We also consider frameworks emitting stencil FPGA code, including

the Jacobi 3D result of SODA [27], which is the stencil backend of HeteroHalide [101] and

HeteroCL [93]. For previous work we note the FPGA used for evaluation by the respective

authors. We do not compare quantitatively to HeteroCL and Wang and Liang [147], as

the authors do not report absolute performance numbers.

6.7.4 O↵-Chip Memory Bandwidth

To measure achievable o↵-chip memory bandwidth by StencilFlow programs, we run two

series of benchmarks on the Stratix 10 target: first, we measure the e↵ective bandwidth

utilization when scaling up number of accesses, but accessing only 32-bits per cycle at

each access point. This stresses the routing on the device to deliver data to all end-

points every cycle. Second, we request the same total number of 32-bit operands, but at

fewer, vectorized endpoints, requiring more operands per cycle per endpoint. We found

the -global-ring and -duplicate-ring options to the Intel FPGA OpenCL compiler

to significantly increase the number of parallel access points supported in the architecture

before designs dropped in frequency. The resulting benchmarks, along with the analytically

computed performance upper bound, are shown in Fig. 6.16. For the non-vectorized green

bars, the x-axis corresponds to the number of access points, while the number of access

points for the vectorized orange bars is the number of operands divided by the vector size

of 4 (i.e., up to 12 access points are depicted).

After 24 parallel access points, we see a decrease in e↵ective memory performance relative

to peak, flattening out at 36.4 GByte/s, which is 36.4/76.8 = 47% of peak bandwidth.

This marks the limit of the memory controller crossbar, and of routing a large number

of memory accesses across the device. The 4-way vectorized scenario allows for higher

achievable bandwidth, but experiences a drop in e�ciency at a lower number of access

points (0.94⇥ at 12 access points), and flattens out at 58.3 GByte/s, which is 76% of peak

2https://github.com/zohourih/Diffusion_FPGA, commit 96588e2.
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Figure 6.16: E↵ective bandwidth with number of operands requested per cycle (i.e., num-

ber of operands served if infinite bandwidth).

bandwidth. No further increase was seen with more access points, and 8-way vectorized

programs achieve similar bandwidth.

6.8 Weather Simulation Application Study

To stress the full capability of the StencilFlow stack we evaluate the horizontal di↵usion

stencil program, a large real-life weather simulation kernel from the COSMO weather

model. Horizontal di↵usion is a 4th order explicit method performed on a staggered

latitude-longitude grid with Smagorinsky di↵usion to smoothen wind velocity compo-

nents [132]. We obtain the program from an input SDFGs using stencil Library Nodes,

shown for horizontal di↵usion in Fig. 6.17a, applying the NestDim and MapFission trans-

formations described in Sec. 6.4, resulting in an SDFG as the one shown in Fig. 6.17b,

from which the stencil program is extracted. The DAG in Fig. 6.17c is created after

aggressively fusing consecutive stencils (see Sec. 6.4.1). In the fully fused program, ini-

tialization latency (L in Eq. 2.1) accounts for ⇠0.7% of the total number of iterations

required to evaluate the program, and is thus a negligible overhead. This program is run

in production by the Swiss Federal O�ce of Meteorology and Climatology (MeteoSwiss),

where simulations are performed with 32-bit floating point on an NVIDIA Pascal Tesla

K80 cluster. We compare StencilFlow to the stronger TSMC 16 nm Tesla P100 GPU on

the same architecture (comparable release window to the Stratix 10), a TSMC 12 nm Tesla

V100 Volta GPU, and a 12-core Xeon CPU.
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Figure 6.17: Horizontal di↵usion stencil program from the COSMO model.
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6.8.1 Horizontal Di↵usion Analysis

The horizontal di↵usion DAG characterized by a high number of stencils reading the

same input locations (28 accesses of 10 unique fields), allowing for the communication

volume between them to be consolidated via delay bu↵ers, as well as complex dependencies

between stencil nodes (each non-source stencil receives data from 2�6 other stencil nodes).

This requires the full complexity of an arbitrary DAG, and allows us to stress the full stack

of StencilFlow.

Floating point operations in the DAG include 87 additions, 41 multiplications, and 2

square roots, in addition to 2 minimum and 2 maximum operations, and ternary operations

resulting in 20 data-dependent branches. With maximum reuse of all input fields and all

computed fields (i.e., perfect locality), the program reads 5IJK + 5I operands and writes

4IJK operands, for a total of 9IJK + 5I operands. Considering floating point arithmetic

only, this implies a upper bound arithmetic intensity of (square root is counted as one

operation):

(87 + 41 + 2)IJK [Ops]

9IJK + 5I [operands]
⇡ 130

9


Ops

operand

�
,

which for 32-bit floating point corresponds to

130/9
h

Ops

operand

i

4
h

Byte

operand

i =
65

18


Ops

Byte

�
. (6.1)

Using the benchmark of practically achievable bandwidth presented in Sec. 6.7.4 for the

Stratix 10 FPGA, the highest achievable performance in roofline model [151] terms is:

65

18


Ops

Byte

�
· 58.3


GByte

s

�
= 210.5


GOp

s

�
, (6.2)

or 277.3 GOp/s at the peak data sheet bandwidth of 76.8 GByte/s. This is well below what

is achievable by a stencil program with higher arithmetic intensity (see Sec. 6.7.3), indicat-

ing that high bandwidth is required to shine in realistic stencil applications. We compute

the bandwidth required to saturate the compute performance measured in Sec. 6.7.3 for

the arithmetic intensity of the studied program to be:

917.1
⇥

GOp

s

⇤

65/18
h

Op

Byte

i = 254.0


GByte

s

�
. (6.3)
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6.8. Weather Simulation Application Study

Runtime Performance Peak BW. %Roof.

Stratix 10 1178 µs 145 GOp/s 77 GByte/s 52%

Stratix 10⇤ 332 µs 513 GOp/s 1 GByte/s �
Xeon 12C 5270 µs 32 GOp/s 68 GByte/s 13%

P100 810 µs 210 GOp/s 732 GByte/s 8%

V100 201 µs 849 GOp/s 900 GByte/s 26%

⇤Without memory bandwidth constraints.

Table 6.2: Horizontal di↵usion benchmarks.

The ideal logic to bandwidth ratio is thus o↵ from the ideal ratio by a factor of ⇠3�4

on the target Stratix 10 platform. To explore the performance potential of the Stratix 10

without this memory bottleneck, we will include experiments with simulated “infinite”

memory bandwidth, by replacing memory accesses with compile-time constants fed to the

computational circuit (and omitting validation of functional correctness).

6.8.2 Horizontal Di↵usion Benchmark

We compile the DAG in Fig. 6.17c for the Stratix 10 from the constructed dataflow graph

by StencilFlow. As shown in the analysis above, the program is bandwidth-bound on this

platform, which requires us to saturate the bandwidth to maximize performance. Without

vectorization, the pipelined circuit requires approximately 9 operands/cycle, correspond-

ing to 10.8 GByte/s at 300 MHz for single precision floating point. We thus vectorize the

program by a factor of 8 for a maximum bandwidth of 86.4 GOp/s, in addition to building

a 16-way vectorized kernel with simulated input memory to evaluate performance without

the memory bottleneck. We target a 128⇥128⇥80 domain size, which is used for perfor-

mance benchmarking by MeteoSwiss. Specifically, a 128⇥128 horizontal domain is stacked

in 80 vertical layers. In addition to runtime and the e↵ective performance, we consider

peak memory bandwidth and the associated fraction of highest achievable performance

for the given arithmetic intensity computed according to Eq. 6.1 (%Roof.). The results

are listed in Tab. 6.2.

We include CPU and GPU performance as a point of comparison, using a 12-core Intel

Xeon 2.60/3.50 GHz E5-2690V3 CPU, and NVIDIA Tesla P100 and V100 GPUs, compiled

with CUDA v10.1 and gcc 8.3.0. The application is synthesized using the MeteoSwiss

Dawn [113] stencil-optimizing compiler toolchain3, which was also used to generate the

3https://github.com/MeteoSwiss-APN/dawn, commit 4ae6dc0.
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StencilFlow input program. Dawn is specifically designed to optimize weather and climate

stencil programs for GPU and CPU, employing data movement optimizations, GPU kernel

fusion, CPU multi-threading, vectorization, and e�cient GPU boundary scheduling. The

domain size of 128⇥128⇥80 is su�cient for saturating the GPU thread scheduler (i.e.,

larger domains do not significantly increase GPU performance). The horizontal di↵usion

program emitted by Dawn for CPU and GPU executes five components of horizontal

di↵usion as distinct kernels. We omit kernel launch overhead and report the raw kernel

execution time only, included in Tab. 6.2.

The FPGA platform outperforms the CPU by 4.5⇥ and is outperformed by either GPU,

but comes closest to the upper bound (Eq. 6.2) imposed by its roofline characteristics at

the given arithmetic intensity: 52% of the bandwidth upper bound (69% of the highest

measured bandwidth in Sec. 6.7.4), at 26% ALMs, 27% DSPs, and 20% M20K utilization,

respectively. The benchmark simulating infinite memory bandwidth shows significant

headroom for pushing the performance at this arithmetic intensity with higher bandwidth

o↵-chip memory: without the bandwidth bottleneck, the Stratix 10 would outperform the

P100, but falls at 60% of the performance of the V100, at 46% ALMs, 48% DSPs, and

20% M20Ks.

6.8.3 Silicon E�ciency

The Stratix 10 is estimated to be a 700 mm2 die [3] (half the Stratix 10M, which fuses

two Stratix 10 chiplets) on Intel’s 14 nm process, compared to 610 mm2 on TSMC 16 nm

and 815 mm2 on TSMC 12 nm for the P100 and V100, respectively. Using the benchmarks

from Tab. 6.2, this amounts to a silicon e�ciency of 0.21 and 0.71 GOp/s
mm

2 with and without

the memory bottleneck for the Stratix 10, respectively; 0.34GOp/s
mm

2 for P100; and 1.04GOp/s
mm

2

for the V100, when performing the horizontal di↵usion experiment.

6.8.4 Spatial Tiling

We have not considered spatial tiling, as on-chip memory requirements were not a restric-

tion for building the large weather stencil program evaluated. Both memory bandwidth

and logic were bottlenecks before on-chip memory capacity, despite minimizing o↵-chip

memory bandwidth in the program. Eventually, increasing the domain size will scale the

internal bu↵er and delay bu↵er sizes beyond what is feasible to bu↵er in on-chip memory.

Spatial tiling can be employed in this scenario, introducing redundant computation at the

domain boundaries proportional to the DAG depth and the tile surface-to-volume ratio.
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This is primarily a scheduling challenge, which can be e�ciently solved in practice [166].

6.9 Related Work

There are numerous works on stencil accelerators on FPGAs [53, 166, 145], including

for multi-device settings on up to 9 interconnected FPGAs [124], all of which we have

considered throughout this chapter. Other frameworks generating stencil architectures

have also been proposed [27, 93, 101, 147], which we consider in Sec. 6.7.3. Common to

these works is that they treat a single stencil operation applied iteratively, allowing them

to unroll the time dimension as a source of temporal locality. StencilFlow is on a par or

outperforms all the above on simple iterative stencils, and treats a much wider range of

input programs. Niu et al. [112] explore runtime reconfiguration of an FPGA to eliminate

idle operators during program execution. Runtime reconfiguration is not beneficial for

stencil programs considered by StencilFlow, as all operators are assumed to operate in the

same iteration space and fully in parallel after the initialization phase.

Darkroom [70] is a framework producing spatial accelerators of image processing pipelines

from a high-level input DSL. StencilFlow takes a similar approach, but accepts a wider

scope of input programs: in particular arbitrary DAGs of stencils, and 3D input/output

domains. Other DSLs [66, 67] do not consider spatial computing architectures.

For the application study, Singha et al. [129, 128] present a hand-tuned implementation

of the horizontal di↵usion application targeting an FPGA+CPU coherent system. The

authors report 129.9 GOp/s on an ADM-PCIE-9V3 board with the NARMADA accelera-

tor, and 485.4 GOp/s on an ADM-PCIE-9H7 board with the NERO accelerator, the latter

owing its large increase in performance to the introduction of HBM memory, e↵ectively

eliminating the memory bottleneck described by Eq. 6.3. The fully code generated kernels

emitted by StencilFlow outperform the DDR4-based accelerator when memory bound, and

the HBM-based when compute bound (i.e., when high memory bandwidth is simulated).

6.10 Summary

We introduced StencilFlow, an end-to-end analysis, optimization and code-generation

stack built on the DaCe framework, enabling the generation of complex high-performance

stencil programs on spatial architectures from a high-level input DSL. Based on a DAG

representation, StencilFlow automatically insert bu↵ers within and between stencil op-
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erations to achieve perfect reuse of all data in the program. Architectures emitted by

StencilFlow achieve the highest recorded single-device performance of 1.31 TOp/s, and the

highest recorded multi-device performance of 4.18 TOp/s on 8 FPGAs, and the highest

recorded stencil performance on Xilinx FPGAs of 765 GOp/s. We demonstrated the do-

main complexity supported by the framework by treating a large stencil program used in

production for weather prediction, comparing the generated architecture to state-of-the-

art GPU and CPU performance. We release StencilFlow as open source software, enabling

reproducibility and allowing scientists to easily target spatial computing accelerators with

complex stencil programs.

StencilFlow showcases how the powerful toolbox of DaCe can be used as a backend engine

for a DSL like StencilFlow, by exploiting the multi-level design methodology enabled by

Library Nodes to both embed domain-specific information and exploit the basic SDFG

primitives to build the dataflow architectures that is finally code-generated for either

FPGA vendor, directly from a Python code taking nothing but a .json-file as input.

To extend the applicability of the optimized stencil Library Node developed for Stencil-

Flow, a generalized version has been merged back into the main DaCe repository, which

can also read directly from memory in addition to reading from streams, and will instan-

tiate the appropriate internal bu↵ers when expanded for FPGAs. This can be used as a

drop-in stencil computation to make targeting FPGAs with stencil computations easy and

portable, and can also be expanded into a CPU implementation.
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Conclusion

Traditional load/store architectures spend the majority of their transistor and power bud-

gets on general-purpose cache, register files, and control logic, to mitigate the severe

memory bottleneck that has emerged from the diverging evolution of computational per-

formance and memory bandwidth. Spatial computing architectures can provide a leap for-

ward in performance and power e�ciency by shedding these in favor of moving data directly

between computational logic, rather than through centralized memory. Programmable

spatial architectures, such as FPGAs, can be used to create application-specific hardware

architectures. However, programming these devices is notoriously di�cult, and as a result,

they are not commonly used in the high-performance computing (HPC) domain.

With this dissertation, we set out to provide a rich toolbox of knowledge and systems to

improve productivity when programming spatial computing systems for HPC.

In Chapter 2, we proposed a set of source-to-source transformations for high-level syn-

thesis (HLS) languages, which target hardware-specific properties that were not covered

by traditional software optimization, such as enabling pipelining of operations, streaming

computations, on-chip bu↵ering, and vertical unrolling of computations to exploit tempo-

ral reuse. With the transformations described, the provided cheat sheet, and the example

reference codes, we empower HLS developers and compiler engineers to productively

optimize HPC applications for hardware acceleration.

In Chapter 3, we further improved the quality of life of HLS development with the open

source project hlslib, filling some of the gaps in existing HLS tools and providing useful

abstractions for project configuration, simulation, and compilation. hlslib has gathered

significant interest in the community, empowering HLS developers and compiler en-

gineers, and is used as a component in all following chapters.

In Chapter 4, we covered the end-to-end optimization of a matrix multiplication HLS code,

applying the proposed transformations from Chapter 2 in a concrete setting and using

the tools from Chapter 3, designing the architecture from a model that simultaneously

maximizes performance and minimizes I/O based on hardware constants of the target
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platform. The code was released as an open source repository, and like hlslib, has seen

significant interest in the community, empowering HLS developers by o↵ering one of

the most commonly used HPC kernels as a plug-and-play component.

In Chapter 5, we proposed a new abstraction for developing FPGA kernels by introducing

Stateful DataFlow multiGraphs (SDFG); a data-centric intermediate representation that

empowers performance engineers by giving them a platform to productively optimize

programs using graph-based transformations to manipulate their data movement. SDFGs

are created, optimized, and compiled using the Data-Centric (DaCe) parallel programming

framework. DaCe is based on the concept of separation of concerns, empowering domain

scientists by letting them define programs using a productive high-level frontend such

as NumPy or StencilFlow, then handing o↵ the generated SDFG for optimization by a

skilled performance engineer. We extend SDFGs with a multi-level design methodology,

allowing abstract functionality to co-exist with general dataflow, which can be progres-

sively lowered to library calls or specialized implementations, empowering performance

engineers to seamlessly target di↵erent libraries and implementations of key operators,

and empowering compiler engineers to build custom extensions and DSLs based on

the DaCe infrastructure. The DaCe project is a massively collaborative e↵ort that has

been shown to accelerate a large and diverse set of applications, ranging from single-node

programs to accelerators and distributed systems. For this dissertation, we showed how

DaCe can be used to build applications for both Xilinx and Intel FPGA devices, o↵ering

portability and knowledge transfer between software and hardware optimization.

Finally, in Chapter 6, we showed how DaCe can be employed as a powerful backend engine

for a domain-specific language, empowering the domain scientist by achieving ultimate

productivity within this domain with a full end-to-end stack, emitting highly e�cient

stencil architectures from a simple high-level input description. By providing optimized

parametric subgraph expansions for both FPGA vendors, we can reuse the remaining

dataflow through the DaCe code generator to achieve seamless portability between them.

With the set of optimization techniques, open source software, abstractions, and optimiza-

tion tools presented throughout this dissertation, we have shown how we can empower a

wide range of users, including HLS programmers, performance engineers, domain scientists,

and compiler engineer to tap into acceleration of HPC programs using application-specific

hardware architectures. With this dissertation as an academic contribution, our software

as engineering contributions, and our tutorial series as an eductional contribution, we hope

to contribute to bridge the gap between hardware development and HPC.
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7.1 Future Work

DaCe is a promising step forward in productivity when programming spatial architec-

tures, but there are still aspects of optimization that require a more manual intervention.

Forming systolic arrays by streaming between vertically unrolled computations is the most

potent source of parallelism on spatial architectures (Sec. 2.3.2–2.3.3), but these currently

still have to be manually inferred and implemented. Designing a dataflow transformation

on SDFGs that can automatically compose such architectures from a source of reuse would

allow us to productively form them, and potentially discover new opportunities for systolic

arrays by matching it against the large set of applications that already exist as SDFGs.

In the domain of FPGAs, a major roadblock for achieving higher performance on existing

platforms remains the placement and routing (P&R) process. By the nature of DaCe’s

dataflow-based representation, we could provide contextual information to perform a more

guided P&R to achieve higher resource utilization at high frequencies, and potentially

reducing compilation times by shrinking the design space. The first steps towards this has

been taken by Carl Johnsen, who has implemented support for embedding RTL directly

in DaCe, and taking more control of the build process for Xilinx devices.

In Chapter 6, we scaled stencil architectures across multiple interconnected FPGA devices.

However, more general support for distributing FPGA applications in DaCe remains a

challenge, partly due to the lack of consistent support by vendors. As of writing, only a

very recent community-implemented project, EasyNet [69], exists for MPI-style commu-

nication in HLS on Xilinx devices. Furthermore, the number of available FPGA-based

clusters with inter-node communication is extremely limited, making it challenging to test

solutions beyond the ecosystem of a single deployment per vendor. Once this landscape

has stabilized, however, DaCe can provide an excellent platform for portable multi-node

programs, as this can be transparently abstracted by the existing stream objects in the

SDFG combined with the SMI programming model for FPGA communication [40].

While FPGAs were chosen as the most viable spatial computing architecture to target in

this work, we wish to test the techniques and systems described against other and potential

future spatial architectures. The DaCe framework provides an excellent platform for this,

as the “only” extension required would be to add a new code generating backend, while

the mapping to the spatial domain and the existing infrastructure of transformations,

frontends, and libraries would remain. Currently announced platforms of interest could

be the Cerebras wafer-on-a-chip architecture and Xilinx’ CGRA-style AI Engines.
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[81] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically scheduled high-

level synthesis. In Proceedings of the 2018 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA’18), pages 127–136, 2018.
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