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A B S T R A C T

Developing high-performing scientific applications is a challenging task,
as it requires a deep understanding of not only algorithmic aspects but
also ever-changing hardware characteristics. To guide code development,
rigorous performance models are crucial: they reveal underlying mecha-
nisms that determine code behavior, predict performance bottlenecks, and
help discover previously unexplored optimization opportunities. In this
thesis, we focus on data oblivious programs — programs whose execution
trace may be derived solely from the source code and (possibly, symbolic)
parameters, but does not depend on the input data. Within this domain,
we develop new mathematical tools that capture key aspects that deter-
mine programs’ performance: arithmetic, parallel, and input/output (I/O)
complexities.

To model performance, we begin with the arithmetic and parallel com-
plexities. We model the execution of loop nests as a multidimensional linear
system. Our representation allows us to derive non-polynomial loop iter-
ation counts that appear, e.g., in parallel reductions. We then proceed to
minimize data movement, a vital optimization step for modern scientific
applications. To model the I/O complexity, we define a class of programs
called SOAP: Simple Overlap Access Programs that covers a wide range
of performance-critical programs, such as linear algebra libraries, stencil
computations, and neural networks. Within SOAP, we use the red-blue
pebble game abstraction to precisely model data movement, capturing such
motifs as recomputation and data reuse across kernels. We show that the
SOAP model is both more precise than state-of-the-art methods, improving
previous I/O lower bounds for many important kernels, e.g., the Polybench
suite, by up to 14 times; and more general, allowing us to establish first
I/O lower bounds for entire neural networks.

To show the importance and applicability of data movement minimiza-
tions, we apply our methodology to matrix multiplication and matrix
factorizations, both LU and Cholesky. We start by deriving their new paral-
lel I/O lower bounds. We then implement our I/O minimizing distributed
algorithms and compare them to the state-of-the-art libraries: MKL, SLATE,
cuBLAS, CTF, CARMA, CANDMC, and CAPITAL. Our experiments on
the Piz Daint supercomputer confirm the clear advantage of our algo-
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rithms, providing up to 12.8x speedup for matrix multiplication, 3x for LU
factorization, and 1.8x for Cholesky factorization.

In summary, this thesis contributes the SOAP model together with its
implementation, which automatically generates I/O lower bounds for in-
put programs written in C or Python. It also provides high-performance
distributed implementations of matrix multiplication (COSMA), LU factor-
ization (COnfLUX), and Cholesky factorization (COnfCHOX) with their
thorough complexity analysis. All provided tools are available as open-
source libraries.
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Z U S A M M E N FA S S U N G

Die Entwicklung leistungsstarker wissenschaftlicher Anwendungen ist eine
anspruchsvolle Aufgabe, da sie ein tiefes Verständnis nicht nur algorithmis-
cher Aspekte, sondern auch der sich ständig ändernden Hardwareeigen-
schaften erfordert. Um die Codeentwicklung zu leiten, sind rigorose Leis-
tungsmodelle von entscheidender Bedeutung: Sie zeigen zugrunde liegende
Mechanismen auf, die das Codeverhalten bestimmen, sagen Leistungseng-
pässe vorher und helfen dabei, bisher unerforschte Optimierungsmöglich-
keiten zu entdecken. In dieser Arbeit konzentrieren wir uns auf sogenan-
nte "data-oblivious" Programme — Programme, deren Ablaufverfolgung
allein aus dem Quellcode und (möglicherweise symbolischen) Parame-
tern abgeleitet werden kann, aber nicht von den Eingabedaten abhängt.
In diesem Bereich entwickeln wir neue mathematische Werkzeuge, die
Schlüsselaspekte erfassen, die die Leistung solcher Programmen bestim-
men: arithmetische, parallele und Eingabe/Ausgabe-(I/O)-Komplexitäten.

Um die Leistung zu modellieren, beginnen wir mit der arithmetischen
und parallelen Komplexität. Wir modellieren die Ausführung verschachtel-
ter Schleifen als mehrdimensionales lineares System. Unsere Darstellung er-
möglicht es uns, nicht-polynomielle Schleifeniterationszählungen abzuleiten,
die z. B. in parallelen Reduktionen auftreten. Anschließend minimieren
wir die Datenbewegung, ein wichtiger Optimierungsschritt für moderne
wissenschaftliche Anwendungen. Um die I/O-Komplexität zu modellieren,
definieren wir eine Klasse von Programmen namens SOAP: Simple Overlap
Access Programs, die eine breite Palette leistungskritischer Programme
abdecken, wie z. B. Bibliotheken für lineare Algebra, Stencil-Berechnungen
und neuronale Netze. Innerhalb von SOAP verwenden wir die Red-Blue-
Pebble-Abstraktion, um die Datenbewegung präzise zu modellieren und
Motive wie Neuberechnung und Datenwiederverwendung über Kernel hin-
weg zu erfassen. Wir zeigen, dass das SOAP-Modell präziser ist als beste-
hende Methoden und die früheren I/O-Untergrenzen für viele wichtige
Kernel, z. B. die Polybench-Suite, um das bis zu 14-fache verbessert; und
allgemeiner, ermöglicht es uns, erste I/O-Untergrenzen für ganze neuronale
Netze festzulegen.

Um die Bedeutung und Anwendbarkeit von Datenbewegungsminimierun-
gen zu zeigen, wenden wir unsere Methodik auf Matrixmultiplikation
und Matrixfaktorisierungen an, sowohl LU als auch Cholesky. Wir begin-
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nen mit der Ableitung ihrer neuen unteren Grenzen für parallele E/A.
Anschließend implementieren wir unsere I/O-minimierenden verteilten
Algorithmen und vergleichen sie mit den State-of-the-Art-Bibliotheken:
MKL, SLATE, cuBLAS, CTF, CARMA, CANDMC und CAPITAL. Unsere
Experimente auf dem Supercomputer Piz Daint bestätigen den klaren
Geschwindigkeitsvorteil unserer Algorithmen, die eine bis zu 12,8-fache
Geschwindigkeit für die Matrixmultiplikation, 3x für die LU-Faktorisierung
und 1,8x für die Cholesky-Faktorisierung bieten.

Zusammenfassend trägt diese Arbeit das SOAP-Modell zusammen mit
seiner Implementierung bei, das automatisch I/O-Untergrenzen für Eingabe-
programme generiert, die in C oder Python geschrieben sind. Es bietet
auch leistungsstarke verteilte Implementierungen von Matrixmultiplikation
(COSMA), LU-Faktorisierung (COnfLUX) und Cholesky-Faktorisierung
(COnfCHOX) mit ihrer gründlichen Komplexitätsanalyse. Alle bereitgestell-
ten Tools sind als Open-Source-Bibliotheken verfügbar.
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1
I N T R O D U C T I O N

1.1 path to optimality

Humanity is rarely satisfied with a working solution - we strive towards
finding the best solution. Naturally, two fundamental questions arise: What
is the best solution? And how can we achieve it?

In computer science, the pursuit of optimality is at least as old as general-
purpose computers themselves: computational models, such as the Turing
machine [1] introduced in 1936, establish frameworks and set the rules by
which we define what “optimality” actually is. As laid down by Hartmanis
and Stearns in their seminal paper from 1965 [2], complexity theory attempts
to answer the first fundamental question: what is the best solution for a
given problem. In some sense, it answers where not to look for it, providing
minimum requirements on any valid solution. For example, an optimal
n-input comparison-based sorting network cannot have a depth smaller
than Ω(log n) [3]. The second fundamental question then appears: How
can we construct such a network? It is easy to construct a valid sorting
network with depth O(n). Is it possible to do better?

Bridging the gap between the lower bound, imposed by the computational
complexity, and the upper bound, emerging from a currently best-known
algorithm, requires effort from both sides. On the one hand, advances in the-
ory can improve the lower bound. For example, Plaxon and Suel [4] showed
that the optimal sorting network requires at least Ω(log2 n/ log log n) depth.
On the other hand, Batcher [5] presented a solution with O(log2 n) depth.
Similar progress can be seen for other algorithmic problems, with the
matrix-matrix multiplication (MMM) being a prime example. The lower
bound on the number of elementary multiplications for multiplying two
N × N matrices is Ω(N2) [6]. A “straightforward” MMM algorithm re-
quires O(N3) multiplications. However, this upper bound was improved
at least twelve times, beginning with the Strassen algorithm [7] introduced
in 1969. As of 2021, the best asymptotic upper bound is given by Alman
and Williams [8]. Whether there exists an MMM algorithm that achieves
the asymptotic lower bound is still an open question.

However, with all these advancements in both the lower bounds and the
algorithm design, another question arises — how practical are these results?
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2 introduction

In the case of sorting, the solution presented by Batcher is widely used,
especially in hardware design [9, 10]. However, in the case of MMM, it
turns out that except for the Strassen algorithm, almost none of the asymp-
totically better algorithms are used due to the prohibitive constant factors,
which are hidden behind the asymptotic notation. Ballard et al. [11] pre-
sented a practical, high-performance parallel Strassen MMM algorithm that
asymptotically matches the communication lower bound of the so-called
Strassen-like schemas [12]. Despite its applicability, a classical (O(N3))
MMM algorithm can still perform better on GPUs on smaller matrices [13].

1.2 optimality metrics

Before asking what the optimal solution is, we first need to define a metric
of optimality.

1.2.1 Arithmetic complexity

Arguably, the most natural measure of optimality is the arithmetic com-
plexity, that is, the number of elementary arithmetic operations required to
evaluate an algorithm. It is the basis of the classical complexity theory, which
defines algorithmic complexity classes, such as P, NP, and EXPTIME [14].
It reflects the fact that the number and the speed of arithmetic operations
traditionally dominated the overall runtime.

The definition of an “elementary arithmetic operation” may depend on
the context. For most numerical algorithms, it is a single operation such as
addition or multiplication performed on elementary words of data. How-
ever, even in this context, usually only the “most expensive” operations are
counted. For instance, for the matrix-matrix multiplication, both additions
and multiplications are performed. However, since multiplying two w-digit
numbers requires asymptotically more operations than adding them [15],
only the number of elementary multiplications is accounted in the asymp-
totic complexity of MMM. For combinatorial algorithms, such as sorting or
graph analytics, an elementary operation is usually a single comparison of
two words.

With the introduction of vector machines and SIMD instructions, the
elementary operation may be defined as performing one of the arithmetic
or logic instructions on the whole input vector. This, in turn, depends on
both the instruction vector width v, as well as the length of the elementary
word w. Thus, e.g., reducing the floating-point precision allows for packing
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more words into the input vector, reducing the total number of performed
vector instructions [16].

1.2.2 Input/output (I/O) complexity

Simply counting arithmetic operations does not take into account funda-
mental aspects of how von Neumann’s architecture [17] works — namely,
both the program instructions and the input data are stored in the memory.
Despite the increasing popularity of “spatial” architectures [18], the von
Neumann and other temporal architectures are still dominant. In this model,
a single “useful” operation requires (1) fetching an instruction from mem-
ory, (2) decoding it, (3) loading the operands, (4) executing the operation,
(5) storing the result. It is clear that only step 4 advances an algorithm,
while much traffic in and out of the memory is required. To reduce the
pressure on the main memory, both the instructions and the operands may
be kept in the processor’s cache or registers. However, the cache capacity is
usually much too small to fully prevent expensive memory operations. This
phenomenon is called von Neumann’s bottleneck [19] and always has been
a major concern in algorithmic design. Firstly, due to the scarce hardware
resources of early computers, some algorithms might not execute at all due
to the insufficient number of registers [20]. Moreover, even if the execution
is possible, Tarjan and Paul [21] showed that adding “a bit” of extra memory
(that is, polynomially increasing its size) can reduce the total number of
load-compute-store operations exponentially. The first I/O cost model of a
machine equipped with a two-level memory system — the red-blue pebble
game — was introduced by Hong and Kung in their seminal work [22].
Since then, I/O complexity has become an essential field of algorithmic
study [23–25].

1.2.3 Parallel complexity

The end of Dennard scaling [26] in the mid-2000s brought a fundamental
shift in designing high-performance hardware, which inevitably resulted
in changes in algorithm design principles to harness the potential of new-
generation machines. Dennard scaling states that, while shrinking a hard-
ware feature, the power density of transistors stays constant, simultaneously
reducing voltage and current. This improves performance due to higher
transistor counts and higher operating frequency without increasing the
effective power consumption. While this stayed true for most of the 20th
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century, increasing performance “for free”, that is, without any algorithmic
changes, is no longer the case anymore. The laws of physics unavoidably
led to the increase of the power density when the transistor manufacturing
technology went below 20nm [27]. This led to a rapid multicore architecture
evolution [28], where overall performance is increased due to parallelism
instead of individual operation’s speedup.

This generates another question about optimality: can an optimal sequen-
tial algorithm yield suboptimal performance on a parallel machine? To put
it in other words, can an algorithm A, which is slower than algorithm B on
a sequential machine, eventually “catch up” and produce a solution faster
than B if both A and B are given the same number of parallel processors p?
The answer is yes: e.g., for a Single Source Shortest Path (SSSP) problem,
an optimal sequential algorithm is given by Dijkstra [29]. However, it is
inherently sequential and cannot efficiently utilize parallel resources. On
the other hand, the Bellman-Ford algorithm [30], while not being work-
efficient — on a sequential machine, it is slower than Dijkstra’s — is trivially
parallelizable. If both algorithms are run on the same machine with large
enough p, Bellman-Ford will eventually outperform Dijkstra’s.

A classical way to reason about the runtime of parallel algorithms is
the work-depth model that represents an evaluation of an algorithm as
a directed acyclic graph (DAG) G = (V, E). The vertices correspond to
elementary computations, while the edges encode data dependencies. The
work-depth model further defines work W equal to the total number of
vertices |V|, and depth D as the length of the longest path in G. The key
observation is that, independently of the number of parallel processors p,
the overall runtime is lower-bounded by this longest sequential chain of
operations D. Brent’s lemma [31] bounds the overall execution time Tp of G
on a machine with p processors by W

p ≤ Tp ≤ W
p + D. Valiant [32] intoduced

the bulk-synchonous parallel (BSP) computation model to capture the
number of synchronization steps required in a parallel machine. Grama et
al. [33] formalized the parallel scalability of algorithms with the isoefficency
metric: it measures how fast a problem size must increase with p to maintain
a constant parallel efficiency.

1.2.4 Hardware performance

In practice, an efficient implementation may impact measured performance
more than an improved algorithm. Modern hardware requires a lot of
programming effort to harness the potential of wide vector instructions,
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hardware prefetching, efficient data layouts, and spatial locality. An algo-
rithm with lower arithmetic complexity may still perform worse due to,
e.g., a random access pattern, deep conditional branches, and misaligned
data. Therefore, the efficiency of implementation is often measured by %
of achieved peak hardware FLOPs performance. Sometimes, a simple loop
permutation may increase performance by more than 10x [34] over a naive
code. As we show in Chapter 3, highly tuned linear algebra libraries may
reach up to 88% of hardware’s peak performance.

However, the aforementioned end of Dennard scaling has yet another
consequence, that is, the increasing gap between the compute cost and data
movement cost. This is tightly related to the I/O complexity analysis, in
which it is often assumed that computation is “for free” and only the data
movement cost is counted. Because of this, not only classically memory-
bound applications, such as sorting [23] or stencil computations [35], are
limited by the memory or network bandwidth: minimizing data movement
can also speed up algorithms that are deemed to be compute-bound, as we
demonstrate in Chapters 3 and 4.

1.2.5 Combining different metrics

For some problems, it can be proven that no algorithm can be optimal in
all metrics. Snir [36] showed that for the n-input parallel prefix computa-
tion, one can either achieve the work optimality W = n− 1 or the depth
optimality D = log2 n, but not both: W + D ≥ 2n− 2. Solomonik et al. [37]
proved that many linear algebra algorithms cannot be at the same time
compute-optimal, I/O-optimal, and latency-optimal.

Similar tradeoffs also apply to hardware-related metrics. In our work
on simulating the global climate [38], we observe that while evaluating
large stencil programs, it is impossible to achieve peak memory bandwidth
without redundant data accesses. To fully saturate the memory bus, long
bursts of aligned data accesses are required [39]. However, due to the access
pattern imposed by stencil computations that require misaligned, offset
accesses, a significant fraction of memory bandwidth might be lost. If one
optimizes solely for % of achieved memory bandwidth, it is possible to
perform redundant loads to create aligned accesses. However, reporting just
the bandwidth would be misleading, as these redundant loads do not speed
up actual computation. To capture this tradeoff, between the granularity of
the irregular access pattern and the imposed bandwidth, we designed the
Memory Usage Efficiency (MUE) metric, defined as follows:
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MUE = I/O efficiency · BW efficiency =
Q
D
· B

B̂
, (1.1)

where Q is the I/O lower bound of an algorithm, D is the actual number of
data transfers executed, B is the bandwidth achieved by an implementation,
and B̂ is the maximum achievable bandwidth. It is designed to compare
the efficiency of different algorithms (with a different number of data
transfers D) that solve the same general problem, such as large-scale weather
simulations.

1.3 optimality in linear algebra

Linear algebra is a backbone for scientific computing. Most of the time-
consuming numerical problems are solved using linear methods, such as
matrix multiplications [40], factorizations [41], and general tensor contrac-
tions [42]. With its ubiquity and importance on the one hand and precise
computation models [25, 43] on the other, linear algebra algorithms are
crucial targets for performance modeling and algorithmic design. In this
field, we observe constant progress in all metrics discussed in Section 1.2.

• Arithmetic complexity can be decreased, for example, by exploit-
ing data sparsity [44], using approximate solutions [45] or by using
mixed-precision arithmetic [46], especially in conjunction with mod-
ern hardware features such as tensor cores [47]1.

• Improving I/O complexity of linear algebra requires tiling [48, 49]
and loop fusion [25, 50].

• Parallel complexity involves finding optimal parallel decomposi-
tions [51] that minimize communication between parallel processors.
This is often done on par with the I/O complexity optimizations:
parallel machine models can impose restrictions on the size of the lo-
cal memory available to each processor, yielding memory-dependent
parallel lower bounds and algorithms [11, 52–55].

Here we want to state one of the motivations of this thesis: bridging
the gap between the lower and the upper bounds. We note that until re-
cently [56], lower bounds were usually given in the asymptotic notation [37,
57–59], or the constant terms were not tight [51]. However, as illustrated with

1 in the context of mixed precision arithmetic, the “elementary arithmetic operation” is defined
as a single SIMD instruction.
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Figure 1.1: Illustrative depiction of the path towards the parallel I/O optimal matrix-matrix
multiplication algorithm. Over the 60 years, significant improvement was achieved
both in the algorithm design (the upper bound), as well as improving the I/O
models (the lower bound). In 2019, we introduced the COSMA algorithm [65],
as well as proved the matching parallel I/O lower bound, thus, bridging the gap
between the upper and lower bounds.

the example of the MMM algorithms, the asymptotic improvement may be
misleading. Especially in the context of linear algebra, where all complexity
terms are polynomials with a small degree (usually, up to 3), the constant
terms may play a crucial role in determining the final performance of an
implementation. We illustrate this in Figure ??: the asymptotic I/O lower
bound of MMM was established as early as in 1981 by Hong and Kung [22].
However, this bound was refined multiple items, most notably by Irony et
al. [51] and later, by Smith and van de Geijn [56]. The algorithmic improve-
ments span more than 60 years [52, 60–64], with just a single asymptotic
improvement from O(N3/

√
p), to max{O(N3/(p ·

√
S)),O(N2/(p2/3)},

where S is the size of local memory per parallel processor. In Chapter 3, we
finally prove the tight parallel I/O lower bound and introduce COSMA —
an algorithm that matches this bound for all combinations of parameters p
and S, as well as for non-square matrices.
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1.3.1 Thesis contributions

The key motivation of this thesis is a design of provably optimal and high-
performance parallel algorithms for scientific computing. In this work, we
mainly focus on the parallel and data movement complexities of data
oblivious programs: that is, programs whose execution trace depends only
on the program parameters (input size, number of processors, size of the fast
memory), but not on data contents. Such programs are typically constructed
as a series of operations on multidimensional arrays nested within loop
nests and constitute a significant fraction of performance-critical scientific
applications.

In Chapter 2, we establish a mathematical framework to precisely model
iteration spaces that extend beyond Presburger arithmetic representation [66].
This allows us to capture the parallel efficiency of algorithms that involve
operations such as parallel reductions, possibly yielding logarithmic terms
that could not be modeled by classical polyhedral analysis. Our analysis
is automated and written as an LLVM [67] pass: given an input program
written in C, C++, or Fortran, it automatically generates the work-depth
analysis and the code’s parallel efficiency.

In Chapter 3, we focus on the parallel I/O complexity. Within the scope
of our analysis, we seek to establish tight I/O lower bounds. The tightness
of the bounds is relevant not only for the theoretical analysis but, most
importantly, it provides corresponding I/O optimal schedules. Taking the
red-blue pebble game [22] as a starting point, we define the X-Partitioning
abstraction that precisely captures data reuse. Applying it to the classical
MMM algorithm, we obtain the tight parallel I/O lower bound QMMM ≥
2MNK/(p ·

√
S), where M, N, and K are matrix dimensions. The C++

implementation of our algorithm, COSMA, both communicates least and
performs best compared to the state-of-the-art libraries: MKL, CARMA,
and CTF.

In Chapter 4, we generalize our results from Chapter 3 to a class of
programs we denote DAAP: Disjoint Array Access Programs. This class
covers a wide variety of fundamental scientific kernels, such as matrix
factorizations and tensor contractions. The key idea behind DAAP is that
by restricting the array access structure, we can precisely count the set
sizes required by the X-Partitioning abstraction. It allows us to improve
the existing sequential I/O lower bound of Cholesky factorization QChol ≥
N3/(3

√
S) and generalize it to a parallel machine. We then design parallel

LU and Cholesky factorizations algorithms that are within a small factor
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from the established lower bounds. Our experiments show that similarly to
COSMA, our implementations outperform state-of-the-art solutions: MKL,
SLATE, CANDMC, and CAPITAL.

Finally, in Chapter 5, we broaden our I/O analysis to capture programs
with stencil-like access patterns. Such kernels are ubiquitous not only in
weather models or finite-difference methods but also form the basis of
convolution operations – crucial components of many machine learning
algorithms. Furthermore, with our Symbolic Directed Graph (SDG) abstrac-
tion, we explicitly capture data flow in large programs containing multiple
kernels, allowing for computation motifs such as recomputation and input
and output data reuse. We use it to establish first I/O lower bounds for
entire neural networks, such as LeNet-5.

In summary, we believe that this thesis contributes both to a better
understanding of fundamental concepts of data oblivious programs, such
as work-depth analysis, parallel efficiency, and I/O complexity, as well
as practical principles in designing high-performance parallel algorithms.
COSMA (Chapter 3) is already integrated into CP2K [68] — a popular
quantum chemistry software package developed by the Swiss National
Supercomputing Centre, with ongoing work on integrating our matrix
factorization libraries, COnf LUX and COnf CHOX (Chapter 4). The SOAP
I/O analyzer (Chapter 5), written in Python, is also being integrated into
the DaCe data-centric framework [69], aiming to automate the process of
generating provably I/O optimal parallel code.





2
PA R A L L E L E F F I C I E N C Y A N D P R E C I S E I T E R AT I O N
C O U N T S

2.1 introduction

Parallelism in today’s computers is still growing exponentially, currently
doubling approximately every two years. This implies that programmers
need to expose exponentially growing parallelism to exploit the full po-
tential of the architecture. Parallel programming is generally hard and
practical implementations may not always expose enough parallelism to
be considered future-proof. This is exaggerated by continuous application
development and the fact that applications are developed on systems with
significantly lower core counts than their production environment. Thus,
it is increasingly important that programmers understand bounds on the
scalability of their implementation.

Parallel codes are manifold and numerous programming frameworks
exist to implement parallel versions of sequential codes. We define the class
of explicitly parallel codes as applications that statically divide their work-
load into several pieces which are processed in parallel. Explicitly parallel
codes are the the most prevalent programming style in large-scale paral-
lelism using the Pthreads, OpenMP, the Message Passing Interface (MPI),
Partitioned Global Address Space (PGAS), or Compute Unified Device
Architecture (CUDA) APIs. Many high-level parallel frameworks (e.g., [70])
and domain-specific languages (e.g., [71]) compile to such explicitly parallel
languages.

The work and depth model is a simple and effective model for parallel
computation. It models computations as vertices and data dependencies as
edges of a directed acyclic graph (DAG). The total number of vertices in
the graph is the total work W and the length of the longest path is called the
depth D (sometimes also called span). We will now describe more properties
of the model and possible analyses.

11
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2.1.1 Work and depth and parallel efficiency

In practice, analyses are often not used to predict the exact running times
of an implementation on a particular architecture. Instead, they often deter-
mine how the running time behaves with regard to the input size. The work
and depth model links sequential running time and parallelism elegantly.
The work W is proportional to the time T1 required to compute the problem
on a single core. The depth D is the longest sequential chain and thus
proportional to a lower bound to the time T∞ required to compute the
problem with an infinite number of cores.

Work and depth models are often used to develop parallel algorithms
(e.g., [72]) or to describe their properties (e.g., in textbooks [73, 74]). Those
algorithms are then often adapted in practical settings. We propose to use
the same model, somewhat in the inverse direction, to analyze existing
applications for bounds on their scalability and available parallelism. Our
results can also be used to prove an implementation asymptotically optimal
with regards to its parallel efficiency if bounds on work and depth of the
problem are known. In our analysis, we use the assumption from [31]
that all operations are performed in unit time and the time required for
accessing data, storing results, etc., is ignored.

Brent’s lemma [31] bounds running times on p cores with W
p ≤ Tp ≤ W

p +

D. D measures the sequential parts of the calculation and is equivalent to
time t needed to perform an operation with sufficient number of processes,
W is equivalent to the number of operations q in Brent’s notation and B = D

W
is a lower bound of the sequential fraction that limits the returns from
adding more cores. Applying Amdahl’s law [75] shows that the speedup is
limited to Sp = T1

Tp
≤ 1

B+ 1−B
p

. If we consider the parallel efficiency Ep =
Sp
p ,

then we can bound the maximally achievable efficiency using the work
and depth model as Ep = T1

pTp
≤ 1

1+B(p−1) . We observe that for fixed B,
limP→∞ Ep = 0 such that every fixed-size computation can only utilize a
limited number of cores efficiently, i.e., Ep ≥ 1− ε.

This observation allows us to define available parallelism and good scaling
in terms of ε as the maximum number of processes p for which Tp may
decrease. Bounds on work and depth for certain problems also allow us
to differentiate between a problem that is hard to parallelize (e.g., depth
first search (DFS)) and a suboptimal parallelization; we can also define the
distance of a given parallel code to a parallelism-optimal solution.

Work and depth are typically functions of the input size. In structured
programming [76], loops and recursion are the only techniques to increase
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the work depending on program input parameters. Here, we focus on loops
only and we assume that each program can be abstracted as a set of loops
that determine the number of executions for each statement. We model each
statement as a work item that takes unit time. To simplify the explanation
further, we also assume that there is only one statement in each loop (since
all statements will have identical iteration counts). Now, the problem of
determining the work is equivalent to determine the loop iteration counts
for each statement. The depth is relative to a special parameter p that
represents the number of processes. We now discuss a simple motivating
example:

example i : parallel sorting skeleton Assume the following loop
is executed by p > 0 processes1 (p equally divides n, n>0 and n is a power of
2):

1 for(x=0; x<n/p; x++)

2 for(y=1; y<n; y*=2) S1;

All variables that are not changed in the loop but influence the iteration
counts are called parameters. The parameter n represents the size of the input
problem. S1 is an arbitrary computation statement that models one work
item. We now analyze work and depth for this explicitly parallel loop.

For any loop, the elements that determine the number of iterations can
be split into three classes:

1. Initial assignment: x=0, y=1
2. Loop guards: x<n/p, y<n
3. Loop updates: x++, y*=2

The number of iterations of statement S1 in this loop (depending on the
parameters n and p) can be counted as

N(n, p) = Tp = n/p · log2(n).

From N(n, p), we can determine that the total work and depth is

W(n) = N(n, 1) = T1 = n · log2(n)

D(n) = N(n, ∞) = T∞ = log2(n).

The parallelization is work-conserving and the parallel efficiency Ep = 1.
If this loop implements parallel sorting, then our analysis shows that it is

1 We use typewriter font to denote source code variables
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asymptotically optimal in work and depth [77], and thus exposes maximum
parallelism. In this paper, we will show how to perform this analysis
automatically.

example ii : parallel reductions Our second example illustrates
a common problem in parallel shared memory codes: reductions. Pro-
grammers often employ inefficient algorithms because efficient tree-based
schemes are significantly harder to implement. A sequential reduction
would be implemented as follows (addition operations on the variable sum

are performed atomically):

1 sum=0; for(i=0; i<n; i++) sum=sum+a[i];

A simple parallelization (assuming n > p) would be

1 for(i=id*n/p; i<min((id+1)*n/p,n); i++)

2 s[id]+=a[i];

3 for(i=0; i<p; i++) sum=sum+s[i];

where id is the thread number and s is an array of size p for keeping
the partial sums of each thread. The total number of iterations of the
most loaded process is N(n, p) = Tp = dn/pe+ p and the efficiency Ep =
(n+ 1)/(p dn/pe+ p2). This implementation is not work-efficient because
the lower bound is Tp = Ω(n/p+ log2(p)) and the efficiency decreases
with p2. The lower bound can be achieved if we combine partial results of
the sum in a tree structure

1 for(i=id*n/p; i<min((id+1)*n/p,n); i++)

2 s[id]+=a[i];

3 for(i=1; i<p; i*=2) combine_partial_sums(s);

with the iteration count of the most loaded process N(n, p) = Tp = dn/pe+
dlog2(p)e. The work of this solution is W(n) = T1 = n and the depth
D(n) = T∞ = ∞ because the parallelization is not work-conserving (more
work is created as threads are added). The parallel efficiency is Ep =
n/(p dn/pe+ p dlog2(p)e) which decreases slowly because log2(p) work is
added per process. From Ep, we can derive that the available parallelism is
n.

This example shows that it is crucial to catch loop behavior in the analysis
of parallel programs. Different implementations solving the same problem
may have different work and depth, some of which resulting in limited
scalability. Experiments at a small scale may not expose those limitations as
the constants are often rather small. However, our analysis enables us to
find those issues early during the development.
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The main contributions of this Chapter are:

• We develop a mechanism to symbolically bound the number of itera-
tions in program loops depending on the input parameters and the
number of processes.

• We show how to interpret the iteration counts in terms of work and
depth. This allows the user to determine the parallel efficiency of a
given code.

• We briefly outline how our method can be implemented in a compiler
or code analysis tool.

• We demonstrate the applicability of our method and analyze a set
of real-world applications for their parallel work and depth and
efficiencies.

2.2 problem description

Counting numbers of loop iterations of arbitrary codes is impossible be-
cause even termination of arbitrary loop nests cannot be decided [1]. In
our work, we focus on the class of loops where all loop update functions
and loop guards are affine functions of iteration variables, i.e., variables that
change during loop execution. It was shown in previous works that a subset
of this class covers many important codes in parallel computing [43].

Our method is strictly more powerful than other iteration counting
approaches (e.g., [78]) that require that loop update functions are valid
expressions in Presburger arithmetic (which supports only addition and
subtraction of symbolic values and constants). We refer the reader to Sec-
tion 2.8 for a more detailed differentiation. In this paper, we focus on the
extraction of work and depth for affine loop nests. To do so, we need to
find the number of iterations of the program as a function of the number of
processes.

Affine loop. Let x ∈ Zm be an integer-valued iteration variable vector and
x0 its initial assignment right before entering the loop. We call a loop affine if
we can present it in the form2 :

1 x ← x0 // Initial assignment

2 while(cT x < g) // Loop guard

2 We use an arrow (←) symbol to denote an assignment in math notation
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3 x ← Ax + b // Loop update

Listing 2.1: Affine Loop

The loop guard cTx < g is determined by the constant vector c ∈ Rm and
bounded by a scalar constant g. The loop update function Ax + b, consisting
of a real matrix A ∈ Rm×m and a constant vector b ∈ Rm, determines how
the iteration variables are updated during each iteration. Each constant may
represent a symbolic loop parameter.

Perfectly Nested Loops. We extend our definition to a program consist-
ing of r nested affine loops:

1. Each loop guard cT
k x < gk at level k is an affine predicate of the iteration

variables from levels 1 . . . k.

2. Each loop body at levels 1 . . . r− 1 consists of three elements:

a) initial assignment - Akx + bk

b) nested loop(s)

c) loop update - Ukx + vk

We require well-structured programs [76]: For a loop at level k, the initial
assignment, loop guard and loop update may only use variables defined at
the same or higher levels 1 . . . k. Iteration variables of any parent loop at
level 1 . . . k− 1 may not be changed in nested loops at levels k . . . r. Such
loops can thus be expressed in the general form

1 while(cT
1 x < g1) {

2 x ← A1x + b1

3 while(cT
2 x < g2) {

4 . . .
5 x ← Ak−1x + bk−1

6 while(cT
k x < gk) {

7 x ← Akx + bk

8 while(cT
k+1x < gk+1) {. . .}

9 x ← Ukx + vk }

10 x ← Uk−1x + vk−1}

11 . . .
12 x ← U1x + v1
13 }

where Ak, Uk ∈ Rm×m, bk, vk, ck ∈ Rm, gk ∈ R and k = 1 . . . r. Furthermore,
∀i < k, i 6= j : Ak,i,j = Uk,i,j = 0, ∀i < k, i = j : Ak,i,j = Uk,i,j = 1 and
∀i > k : gk,i = 0.

Note that even though all the assignments and loop guards are affine, the
number of iterations of such a nested loop may not be affine. For example
the following affine loop will iterate dlog2(n)e times:
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1 x=1;

2 while(x<n) x=2*x;

Perfectly nested loops are rare and loops often contain multiple loops at
the same level. We now outline how our scheme also supports multipath
loops.

Multipath Loops are loops that may contain multiple nested loops in
one parent loop body. The example in Listing 2.2 shows such a loop: Inside
the outer loop body we have two inner loops. How multiple loops are
combined to fit the model description is covered in Section 2.4.5.

1 x=1;

2 while(x<n/p+1) {

3 y=x;

4 while(y<m) {S1; y=2*y;}

5 z=x;

6 while(z<m) {S2; z=z+x;}

7 x=2*x;

8 }

Listing 2.2: Complex Multipath Loop Nest

It is time-consuming and error-prone for humans to derive work and depth
of complex loops like the one shown in Listing 2.2. Our algorithm computes
work and depth for each statement automatically. For example, the number
of executions N of the statement S2 is bounded by

2m

(
1−

⌈
n

p
+ 1
⌉−1

)
− log2

(⌈
n

p
+ 1
⌉)
≤ N ≤ m

(
2−

⌈
n

p
+ 1
⌉−1

)
.

This bounds the work W on a single process

2m
(

1− (n+ 1)−1
)
− log2(n+ 1) ≤W ≤ m

(
2− (n+ 1)−1

)
and the depth D

0 ≤ D ≤ m.

2.3 sketch of the algorithm

We first introduce the concept of a closed-form affine representation. The
affine representation of a single affine loop consists of two elements:

1. A single affine statement, which represents the value of the vector x
after i iterations of the loop

x(i) = L(i) · x0 + p(i), and



18 parallel efficiency and precise iteration counts

2. the counting function n(x0) that states how many times the loop will
iterate before the loop guard cTx(i) < g is violated.

The variable i represents the current iteration step. We will refer to i as the
iteration counter; x0 is the value of the vector x before entering the loop.

We now provide an intuitive sketch of our algorithm: Given r perfectly
nested affine loops, starting from the inner loop, we replace each loop with
its affine representation. For r nested loops the result is

x(i1, . . . , ir) = A f inal(i1, . . . , ir)x0 + b f inal(i1, . . . , ir) (2.1)

where ik = 0 . . . nk(x0,k), matrix A f inal and vector b f inal are the compositions
of all Lk and pk, k = 1 . . . r.

The function nk(x0,k) represents the number of iterations in the kth loop
with the starting conditions x0,k. The starting conditions depend on iteration
counters of all the loops at higher levels, i.e., x0,k = φk(i1, . . . , ik−1).

Number of iterations. We can compute the total number of iterations of
the innermost loop using the counting function of each loop:

N =
n1(x0,1)

∑
i1=0

n2(x0,2)

∑
i2=0

. . .
nr−1(x0,r−1)

∑
ir−1=0

nr(x0,r). (2.2)

To solve Equation (2.2), we need to compute:

1. the affine representations for all the loops together with their counting
functions nk(x0,k),

2. the starting conditions for all loops as functions of iteration counters
x0,k = φk(i1, . . . , ik−1), and

3. all the sums in Equation (2.2).

Work and depth analysis. The number of processes in explicitly parallel
programs is always available as a special variable which we call p. In
parallelized codes, p is used in loop guards or loop update functions to
divide the work into p pieces. Our algorithm determines the number of
iterations as a function of all program parameters. We can then define the
work of a program as W = N|p=1 and depth D = N|p→∞. Parallel efficiency
and exposed parallelism can be computed as described in Section 2.1.1.

2.4 algorithm description

We now describe all the steps and approximations needed to solve Equa-
tion (2.2) which determines the final loop count.
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2.4.1 Affine representation of nested loops

We now explain how we transform a perfectly nested loop into a single
affine statement. This statement can then be combined with the initial
assignments and the original loop update function of the parent loop into a
new loop update function that represents the whole loop nest.

Each loop update statement x ← Ax + b is a recursive formula for the
value of the vector x in the current step, given the value in the previous
step. The closed-form of that formula for vector x after i iterations and with
the starting value x0 can be written as

x̂(i, x0) = Ai · x0 +
i−1

∑
j=0

Ajb. (2.3)

Using x(i, x0), we compute the number of iterations d after which the
loop guard is not satisfied

n(x0) =

⌈
arg min

d
(cT · x(d, x0) ≥ g)

⌉
. (2.4)

Equation (2.4) defines the counting function n(x0). Let L = Ai and p =

∑i−1
j=0 Ajb from Equation (2.3). After we have obtained the closed affine form

of a loop at level k + 1, we can transform the loop nest at level k to

1 while(cT
k x < gk) {

2 x ← Akx + bk // Initial assignment (x0,k+1)

3 x ← Lkx + pk // Nested loop (aff. rep.)

4 x ← Ukx + vk // Loop update

5 }

where x = Lkx + pk is the closed-form representation of the (k + 1)st loop.
Furthermore, the three affine statements can be combined to one

x ← Uk(Lk(Akx + bk) + pk) + vk. (2.5)

We can then use it to form the affine representation of the parent loop.
Applying this procedure recursively for all k loop nests will produce the
final affine representation x = A f inal x0 + b f inal that expresses the whole
loop nest (cf. Equation (2.1)).

example of an affine representation The following example
illustrates how to transform a loop into its affine representation. Consider
the following loop
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1 y=y0; z=z0;

2 while(y<z) {y+=2; z--;}

that we can write in matrix form as

x0 =

(
y0

z0

)
, x(i + 1) =

(
1 0

0 1

)
x(i) +

(
2

−1

)
, c =

(
1

−1

)

and g = 0. Using Equation (2.3), we get the affine representation of that loop

x(d, x0) =

(
1 0

0 1

)
x0 +

(
2d

−d

)
.

Equation (2.4) results in⌈
arg min

d

((
1 −1

)
·
((

1 0

0 1

)
x0 +

(
2d

−d

))
≥ 0

)⌉
,

that can be simplified to
⌈
arg mind(z0 − y0 ≤ 3d)

⌉
. A symbolic solver (e.g.,

MuPAD [79]) will determine the solution for dd = (z0 − y0)/3e, which
leads to the counting function n(x0) = d(y0 − y0)/3e.

2.4.2 Starting conditions

The starting conditions x0,k+1 for a loop at level k + 1 are determined by
the value of the vector x before entering the loop. For each loop, at depths
k = 1, . . . , r, let x̂k denote the corresponding function defined in equation
(2.3), giving the ikth initial assignment at level k, for ik = 1, . . . , nk(x0,k),

x0,k+1 = Ak · x̂k(ik, x0,k) + bk. (2.6)

We can now count the starting conditions recursively until we reach the
top level, where x0,1 = x0. In general, the starting condition at level k are
compositions of affine representations and initial assignments of all the
loops from level 1 . . . k− 1, treating all iteration variables i1, i2, . . . , ik−1 as
parameters.

example of the starting condition We now show a small exam-
ple to illustrate the computation of the starting conditions for inner loops.
Given the two nested loops
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1 y=y0; z=z0;

2 while(y<m) {

3 z=y;

4 while(z<m) {z++;}

5 y*=2;

6 }

Listing 2.3: Nested Loop

The affine representation for the inner loop with iterator i2 and starting
conditions x0,2(i1) depending on the outer loop

x(i2) =

(
1 0

0 1

)
x0,2(i1) +

(
0

i2

)
, n2 = m−

(
0 1

)
· x0,2(i1),

and for the outer loop with iterator i1 and starting conditions x0

x(i1) =

(
2i1 0
2i1
2 0

)
x0 +

(
0

i2

)
, n1 =

log2

 m(
1 0

)
· x0

 .

The initial assignment for the outer loop is

A1 =

(
1 0

1 0

)
; b1 =

(
0

0

)
; x0 =

(
y0

z0

)
.

Starting conditions for the inner loop using Equation (2.6) are

x0,2(i1) = A1x(i1) + b1 =

(
2i1 0

2i1 0

)
x0 =

(
2i1y0

2i1y0

)
.

Using Equation (2.2) leads to the exact number of iterations.

2.4.3 Counting the number of iterations

All counting functions and starting conditions can be combined into
a final symbolic iteration count. First, we compute all r starting con-
ditions x0,1, x0,2, . . . , x0,r in the form x0,1 = x0, x0,2 = f2(i1, x0), . . .,
x0,r = fr(i1, i2, . . . , ir−1, x0). Then, we compute all counting functions in
the form n1(x0,1), n2(x0,2), . . ., nr(x0,r). This enables us to calculate the
sums of Equation (2.2) and solve for the final loop iteration count and
derive work and depth from this. We use a symbolic solver to simplify and
solve the equations.

In some cases, it is not possible to symbolically determine the exact
solution from Equation (2.2). We differentiate two cases:
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1. The counting function contains a ceiling, e.g.,

∑
d n

2 e
i=1 i =

 (n+2)n
8 if n is even

(n+3)(n+1)
8 if n is odd

2. The symbolic solver cannot find a closed form, e.g.,
∑n

i=1 i · log2(i).

In both cases, we derive lower and upper bounds of the respective sum.
Bounded Sum Approximation (BSA) Algorithm. We now show our

BSA algorithm that tightly approximates lower and upper bounds of Equa-
tion (2.2) in the two cases where the exact solution cannot be determined.

Obtaining bounds in the first case is simple. For a function d f (n)e, we
determine the upper bound as f (n) + 1 and the lower bound as f (n).

For the second case, with no symbolic solution for a sum, we approximate
the sum with an integral [80]. For a non-decreasing function f1(i)∫ n+1

0
f1(x− 1)dx ≤

n

∑
i=0

f1(i) ≤
∫ n+1

0
f1(x)dx,

and for a non-increasing function f2(i)∫ n+1

0
f2(x− 1)dx ≥

n

∑
i=0

f2(i) ≥
∫ n+1

0
f2(x)dx.

If f (i) is not monotonic in the interval [0, n], then we split it into smaller
intervals in which f (i) is monotonic. For this, we compute the first d f

di and

second d2 f
di2 derivatives symbolically. Then we apply the approximation in

each segment and combine them to get the proper upper and lower bounds.
While solving Equation (2.2) we need to carry the lower and upper

bounds forward recursively. In the branch of the lower bounds, we only
consider lower bounds of parent loops and similarly in the upper bound
branch. We may require case differentiations if some counting functions
are not monotonic. However, we rarely observed non monotonic counting
functions in practice.

example of bounded sum approximation Assume the following
nested loop:

1 k=1; l=2;

2 while(k>0) {

3 m = k;
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4 while(m<s) m++;

5 k = k+l;

6 l--;

7 }

We see that k0,1 = k0 = 1 and l0,1 = l0 = 2. The counting function for the
inner loop is

n2 = s− k0,2

and for the outer loop

n1 =

⌈
l0,1 +

√
4l0,1

2 + 4l0,1 + 8k0,1 + 1 + 1
2

⌉
= 6.

The starting conditions for the inner loop are

k0,2 = k0,1 + i1 · l0,1 −
i1 · (i1 − 1)

2
= −1

2
i21 +

5
2

i1 + 1.

The number of iterations of the loop nest, according to Equation 2.2 is

N =
n1

∑
i1=0

n2 =
n1

∑
i1=0

(s+
1
2

i21 −
5
2

i1 − 1)

We now approximate this sum with an integral. Analyzing the first and
second derivative of n2 shows that within the interval (0,n1) the function
is decreasing in (0,2.5) and increasing in (2.5,n1). The sum can then be
bounded from above by

U =
∫ 2

0
n2(i1 − 1)di1 + n2(2) +

∫ n1

3
n2(i1)di1 = 6s− 47

12

and from below by

L =
∫ 2

0
n2(i1)di1 + n2(2) +

∫ n1

3
n2(i1 − 1)di1 = 6s− 161

12
.

Figure 2.1 illustrates the example.

2.4.4 Correctness of the algorithm

All the steps of the algorithm except the sum approximation are proper
algebraic transformations. If no approximation is needed then the algorithm
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Figure 2.1: Series approximation. Bars represent the series n2(i), the red line shows the func-
tion n2(k) and the dashed green line shows the function n2(k− 1). The function
n2(k) over-approximates the series in the interval [0, 2] and under-approximates
it in the interval [3, 6]; the dot shows the saddle point.

produces the exact number of iterations. For example for the loops in
Listing 2.3 the total number of iterations of the inner loop is exactly

N = y0 − 2
⌈

log2

(
m
y0

)⌉
y0 + m

⌈
log2(

m

y0
)

⌉
.

If approximation is required, then we need to prove that we obtain proper
upper and lower bounds and that this property propagates further through
the algorithm.

Lemma 2.1. The Bounded Sum Approximation algorithm gives valid lower and
upper bounds for Equation (2.2).

Proof. Ceiling upper and lower bound for type 1 approximations are cor-
rect by the definition of the ceiling function. Let us consider type 2 sum
approximations.

First we need to prove that the upper and lower bounds for a series f (n),
where n = 0, . . . , k, found by the algorithm are correct. Let’s denote

U[a,b](x) =

 f (x), if ∀x ∈ [a, b] : d f
dx ≥ 0

f (x− 1), if ∀x ∈ [a, b] : d f
dx ≤ 0

L[a,b](x) =

 f (x− 1), if ∀x ∈ [a, b] : d f
dx ≥ 0

f (x), if ∀x ∈ [a, b] : d f
dx ≤ 0

as upper and lower bounds of the monotonic series f in the interval [a, b],
as stated in Section 2.4.3.
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Let c ∈ [0, k] be the only saddle point of function f (x). Intervals with
multiple saddle points can be split to smaller intervals where each contains
a single saddle point. Then, U and L will change from f (x− 1) to f (x) or
from f (x) to f (x− 1) at that point c. The upper bound U[0,bcc] = U[0,c] 6=
U[c,k] = U[dce,k] does not change in the intervals [0, bcc] and [dce, k]. We can
then bound the value of f (bcc) with U[0,c](bcc). Thus,

∫ bcc
0

U[0,c](x)dx ≥
bcc

∑
i=0

f (i),
∫ k

dce
U[c,k](x)dx ≥

k

∑
i=dce

f (i)

U[a,c](bcc) ≥ f (bcc).

From this follows that the upper bound of the non-monotonic sum of
series ∑k

i=0 f (i), with saddle point c, can be expressed as:

U =
∫ bcc

0
U[0,c](x)dx + U[0,c](c) +

∫ k

dce
U[c,n](x)dx ≥

k

∑
i=0

f (i).

The lower bounds discussion follows a similar reasoning.
We now prove propagation of this property through consecutive sums in

Equation 2.2: Let fk be the kth sum from Equation 2.2, and Uk and Lk upper
and lower bounds of fk. We then can present it as

nk

∑
ik=0

nk+1(i1, . . . , ik−1, x0) = fk(i1 . . . , ik, x0)

and bound it with

Lk(i1 . . . , ik−1, x0) ≤ fk(i1, . . . , ik−1, x0) ≤ Uk(i1, . . . , ik−1, x0).

The next sum at level k− 1 will be
nk−1

∑
ik−1=0

fk(i1, . . . , ik−1, x0)

Upper and lower bounds are not changed by summing, such that
nk−1

∑
ik−1=0

fk(i1, . . . , ik−1, x0) ≥
nk−1

∑
ik−1=0

Lk(i1, . . . , ik−1, x0)

and
nk−1

∑
ik−1=0

fk(i1, . . . , ik−1, x0) ≤
nk−1

∑
ik−1=0

Uk(i1, . . . , ik−1, x0)

implies L1(x0) ≤ f1(x0) = N ≤ U1(x0).
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2.4.5 Multipath loops

We formalize a loop containing multiple statements as
1 while(cT

k x < gk) {

2 x ← Ak,1x + bk,1
3 x ← Ak,2x + bk,2
4 . . .
5 x ← Ak,mx + bk,m
6 }

where each of the statements x ← Ak,ix + bk,i may be a simple assignment
or an affine representation of a loop. We compose them in the same way as
we did in Equation (2.5), forming a single affine statement.

Starting conditions. We compute the starting conditions for each loop
by generalizing Equation (2.6). For multipath loops the starting condition
for a loop represented by its affine representation x ← Ak,ix + bk,i is the
composition of all the affine statements that precede it:

x0,k+1,i = Ak,i−1(. . . (Ak,1 · x̂k(ik, x0,k−1) + bk,1) . . .) + bk,i−1

For illustration consider the following example loop:
1 while(cT

k x < gk) {

2 x ← Ak,1x + bk,1
3 x ← Ak,2x + bk,2
4 x ← Ak,3x + bk,3
5 x ← Ak,4x + bk,4
6 x ← Ak,5x + bk,5
7 }

Assume that in the example above, x ← Ak,2x + bk,2, x ← Ak,3x + bk,3 and
x ← Ak,4x + bk,4 are affine representations of three nested loops. Then, the
starting condition for the third loop x ← Ak,4x + bk,4 is

x0,k+1,4 = Ak,3(Ak,2(Ak,1 · x̂k(ik, x0,k−1) + bk,1) + bk,2) + bk,3.

Counting the number of iterations. We solve Equation (2.2) using the
appropriate counting function nr(x0,r) for each loop. The series of sums is
formed according to the hierarchy of loops starting at the innermost loop.

2.5 practical considerations

We now briefly outline how the developed method can be used to assess
work and depth of real applications. This paper is focusing on the funda-
mental techniques, yet, we want to provide a coarse view of how we apply
our method in practical settings.
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The whole mechanism can be implemented in a source-code analysis tool
or a compiler. We use the Low Level Virtual Machine (LLVM [81]) and will
outline the implementation. LLVM’s internal program representation uses
Single Static Assignment (SSA), which makes it simple to determine loops
(identified by back-edges), loop guards (identified by conditional branches
with back-edges), and all dependent variables.

From this information, we create initial assignments, loop guards, and
loop updates for each loop and apply the procedure described in Section 2.4.
While the vast majority of loops in practical programs are affine, some
loops may depend on more complex conditions and thus do not fit our
framework. However, one of the main strengths of our method is that
we can still compute the number of iterations of loop nests containing
non-affine functions as we will describe in the following section.

2.5.1 Extensions for non-affine loops

If a loop guard is not an affine function of iteration variables and constant
parameters then we may not be able to determine the exact number of
iterations statically. Examples are loops with iteration counts determined
by unknown functions or complex sources like arrays that keep dynamic
data. This is often the case in applications that iterate until a complex
convergence criterion is reached, e.g., conjugate gradient methods. If the
loop exit conditions cannot be represented as affine statements, then the
whole block is treated as a symbolic value u (undefined).

A strength of our method is that it still solves the remaining affine loop
nests symbolically as u is simply treated as a parameter that propagates
while solving Equation 2.2. In addition to just treating non-affine loops as
new symbolic parameters, our tool enables the user to annotate such loops
with affine upper and lower bound functions.

We demonstrate the technique with a loop that we found during one of
our case studies. The following Fortran code is extracted from the NAS CG
benchmark.

1 do j=1,lastrow-firstrow+1

2 sum = 0.d0

3 do k=rowstr(j),rowstr(j+1)-1

4 sum = sum + a(k)*p(colidx(k))

5 enddo

6 w(j) = sum

7 enddo
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Our tool traces the expression lastrow-firstrow+1 back to the program
parameter row_size = na

nprows or row_size = na
nprows + 1, depending on the

process id. This reflects the fact that nprows may not divide na, where na

is the problem size. However, the value of rowstr(j) cannot be determined
statically because it represents the location of the first nonzero value in row
j of one of the program arrays. Our algorithm then represents the previous
loop nest as:

1 j=1;

2 while(j<=row_size) {u; j++;}

u is treated as a loop with the fixed number of iterations
u =irowstr(j+1)-rowstr(j). The total number of iterations of this code frag-
ment for the most busy process is represented as

N =

⌈
na

nprows

⌉
u.

It is possible to provide the user with information about the exact code
fragment that is the origin of u. Users can then determine upper and lower
bounds for each unknown parameter.

2.6 case studies

In this section we present our results from analyzing several benchmarks.
We compute work and depth of several parallel programs to demonstrate
the insight we gained into the bounds on parallel efficiency of those practical
codes. Our analysis allows us to make statements about parallel efficiency
without studying the problem or implementation.

We analyzed major loops of the NAS parallel benchmarks version 3.2 [82]
and the Mantevo micro applications version 2.0 [83]. In all the cases pre-
sented, no approximation was needed, so presented results give exact
number of iterations (with respect to the introduced constants). If not stated
otherwise, in the following benchmarks m represents the problem scale,
n is a program parameter to NAS specifying the number of iterations to
perform, and p denotes number of processes. In some cases processes are
arranged into multiple dimensions. In those cases, p1, p2, . . . , pk represents
number of processes in corresponding dimensions and p = ∏k

i=1 pi. We
also assume that the decomposition is square, i.e., p1 ≈ p2 ≈ · · · ≈ pk. For
easier work-depth analysis, presented results are simplified by replacing
constant terms with auxiliary constants ci. We use constants instead of
asymptotic notation to retain lower-order terms.
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2.6.1 NAS Parallel Benchmarks: EP

The NAS EP benchmark represents a typical Monte Carlo simulation and
thus performs nearly no communication. Our analysis found that only
one out of seven loops could not be resolved due to a conditional goto
statement, resulting in a single u. The work of EP is

N =

⌈
2m−16 · (u + 216)

p

⌉
.

The following listing shows the non-affine loop that determines u after
removing all statements that do not influence the iteration count:

1 u : do i=1,100

2 ik =kk/2

3 if (ik .eq. 0) goto 130

4 kk=ik

5 continue

A programmer can easily determine that u ≤ 100, which is negligible
compared to 216. Thus, we can approximate the work using one thread
W = T1 ≈ 2m and depth D = T∞ ≈ 1. This shows that the parallelization is
work-optimal and the efficiency

Ep ≈
2m

p
⌈

2m

p

⌉ .

This means that Ep ≈ 1 if p . 2m and Ep ≈ 2m/p if p & 2m. We conclude
that the maximum available parallelism in EP is 2m, because N cannot
further decrease for p & 2m. This does not mean that the code will efficiently
execute with 2m tasks, however, it specifies an upper bound to the speedup.
This is an expected result since the code is considered “embarrassingly
parallel”.

2.6.2 NAS Parallel Benchmarks: CG

The NAS CG program represents a typical conjugate gradient solver. Our
tool found that only 2 out of 23 analyzed loops were not affine (cf. Sec-
tion 2.5.1). The two undefined loops had identical guards, resulting in a
single parameter u that can be bounded as 0 ≤ u ≤ m. This allows us to
bound the number of iterations
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N . n

(
g
⌈

m
p

⌉
+ (6 + 5g)

√⌈
m
p

⌉
+ (3g + 4) log2(

√
p)

)
where g is the program parameter cgitmax. We can approximate work on
one thread W = T1 . (g m +

√
m(5g + 6))n. However, CG is not work

optimal as the parallel work is monotonically growing. This causes the
depth to be D = T∞ = ∞. If we treat the problem size m as constant, then
CG’s parallel efficiency is

Ep = c1

(
c2 p log2(

√
p) + c3

⌈
m
p

⌉
+ c4

√⌈
m
p

⌉)−1

.

This means that the work per process increases with log2(
√

p) due to a
parallel reduction among

√
p processes. The available parallelism is m.

2.6.3 NAS Parallel Benchmarks: IS

The NAS IS program represents a parallel bucket sort algorithm. In each
iteration, all processes perform their local sorting and exchange informa-
tion. The communication overhead is expected to grow with the number
of processes. A total of 5 out of 15 analyzed loops were not affine. Those
five loops fall in two classes: the first class iterates over maximum and
minimum key value represented as u1=max_key_val-min_key_val+1; the
second class iterates over the buckets after redistribution and is represented
as u2=bucket_distrib_ptr2[k] - bucket_distrib_ptr1[k]. Both loop it-
eration counts depend on the structure of the input and the distribution
and can thus not easily be bounded tightly. The total number of iterations
of IS is

N = n
(

3(b + t) + 2
⌈

m
p

⌉
+ p + 2 · u1 + 2 · u2

)
where b is the number of buckets, t is the size of the test array, and m is the
number of keys to be sorted. The total work on one thread is

W = T1 = n(3(b + t) + 2m + 2u1 + 2u2 + 1).

The depth D = ∞ because the parallelization is not work efficient which is
due to the necessary inter-process communications. The parallel efficiency

of IS is Ep = c1/
(

p2 + c2 p + c3 p
⌈

m
p

⌉)
, which drops quickly with the
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number of processes used. The reason is that each process may need to
communicate with each other process. The available parallelism is also m
in this case.

2.6.4 Mantevo Benchmarks: CoMD

The Mantevo CoMD benchmark represents a classical molecular dynamics
simulation. Eight out of 18 analyzed loops contain non-affine statements.
The code distributes atoms to processes. The first class updates atoms in
the partitions and u1 represents the number of iterations of those loops.

1 u1: while(i<boxes->nAtoms[iBox]) {

2 int jBox=getBox(atoms->r[iOff+i]);

3 if (jBox!=iBox) moveAtom(i,iBox,jBox);

4 else ++i;

5 }

The second class u2=qsort(nAtoms[iBox]) is limited by the data sizes to
be sorted. The number of iterations of the CoMD Benchmark is

N = n
(

g(B + 3)
⌈

m
p

⌉
+ g T

(⌈
m
p

⌉
u1 + u2

)
+

⌈
m

p B

⌉
+ 2
)

where B is the fixed amount of atoms in each box, g is the print rate

program parameter, and T is the total number of boxes:

T = 2
(

3
√

m
p1

+ 2
)(

3
√

m
p2

+
3
√

m
p3

+ 2
)
+

3√m2

p2 p3
+

m
p1 p2 p3

.

If we bound u1 < B2 and u2 < B log2(B), then we can approximate
work and depth: W . c1 m + c2 m2/3 + c3 m1/3 + c4, and D . n(c5 +
c6 B(log2(B))). The implementation is work-optimal and the efficiency
Ep . c7/ (p + c8) is decreasing with number of processors, which is the
result of sequential parts of the program that cannot be parallelized. The
available parallelism is m.

scalability analysis We were able to determine bounds for work,
depth, parallel efficiency, and available parallelism for several real-world
applications. We see that the available parallelism in all investigated applica-
tions scales linearly with the input problem size. While this suggests good
scaling, we show that for CG and IS communication overheads increase
the work with the number of processes. For example, for IS, this overhead
grows linearly with the number of used processes.
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We were able to perform those analyses by pure code introspection which
was guided by our tool without requiring knowledge of the implemented
methods or algorithms. If the solved problem is known, then one could
even proof optimality in terms of parallel efficiency or available parallelism.
However, this is outside the scope of this paper.

2.7 discussion

We now discuss the limitations of our approach and briefly outline potential
additional use-cases.

limitations Since our analysis only counts loop iterations and does
not account for the exact costs of each loop, we can only provide bounds on
the expected execution time on a parallel system. However, those bounds
are always asymptotically correct. Since we limit ourselves to the work and
depth model, we cannot account for communication or synchronization
overheads in real codes. Yet, the bounds we provide are useful to determine
the relative behavior of work and depth and allow us to reason about
exposed parallelism and parallel efficiency just like the work and depth
model.

extending the models While outside the scope of this paper, it is
simple to extend our work and depth models to account for system pa-
rameters such as memory or network latency and bandwidth. Blelloch [84]
discusses further options.

model-based mapping to heterogeneous systems Having a
model for the work and depth of each loop in a program can be useful when
the program is to be mapped to future heterogeneous architectures. Those
systems will most likely contain Latency Compute Units (LCU, cf. today’s
CPU cores) and Throughput Compute Unites (TCU, cf. today’s accelerators
such as GPUs or Xeon Phi). A compiler would need to determine the target
architecture for each loop statically. It could use the generated work/depth
models to assign code pieces with low parallelism (small W/D) to LCUs
and code pieces with larger parallelism (large W/D) to TCUs.
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2.8 related work

Counting loop iterations and assessing scalability of parallel codes are
important research problems. Rodriguez-Carbonell and Kapur [85] find
polynomial loop invariants using an algebraic approach. Sharma et al. [86]
use a data-driven approach to iteratively guess the correct polynomial loop
invariant and then check its correctness, and Matringe et al. [87] generate
loop invariants also for non-linear differential systems. Loop invariants can
be used to bound loop iteration counts, but the resulting bounds are often
not tight.

Multiple research groups use the polyhedral model (PM) to determine the
exact number of loop iterations [88–90]. In this case, the number of iterations
can be approximated by counting integer points in that polyhedron using a
polynomial-time algorithm [78]. The PM is widely used, not only in loop
analysis [43]. However, it has a serious limitation - it requires that the
loop update function can be expressed in Presburger arithmetic and thus
cannot deal with non-constant updates such as x = 2 ∗ x. To the best of our
knowledge, no previous work handled such cases properly. Methods like
the one proposed by Blanc et al. [91] require explicitly that loops cannot
include such statements.

Other works utilize dynamic approaches to extrapolate program per-
formance and assess scalability in practical settings. Barnes et al. [92] use
regression to linear and logarithmic functions to predict scalability of nearly
linear-scaling HPC applications. Calotoiu et al. [93] select a scaling model
from a set of predefined candidate functions and fit the parameters with
regression. Other works, such as [94, 95] use multi-layer neural networks or
statistical techniques to predict scalability.

More complex performance prediction frameworks consider the effect
of communication [96, 97] and extrapolate single-node runs [98]. Partial
execution [99] can improve those techniques. Other studies provide advice
for modeling the general performance [100] and scalability [101] of parallel
applications. In addition, many application-specific studies exist but cannot
be generalized [102, 103].

We extend previous work significantly in two directions: first, we show
a technique that can tightly bound the numbers of iterations of arbitrary
affine loop nests and second, we show how this method can be used to
assess work and depth of parallel applications.
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2.9 summary

We show a method to symbolically count loop iterations of practical codes
in terms of their input sizes. Our method provides either an exact solution
or tight upper and lower bounds using bounded sum approximation. It
is applicable to affine and non-affine loops. While it can bound all affine
loops accurately, it handles non-affine loop counts as a symbolic constant
and allows the user to provide lower and upper bounds.

We show how to derive parallel work and depth from the loop count
models. Using the work and depth model, we approximate bounds on the
parallel efficiency of those codes. This technique allows us to specify upper
bounds to scalability of practical parallel codes. In general, our method
allows a developer to quickly check how an explicitly parallel code scales
with the numbers of processes and input sizes.

We are applying a standard algorithmic analysis technique (measuring
work and depth) to real source codes. Our developed techniques pave the
way to quickly and automatically assess program scalability and will thus
quickly become an important tool for future parallel application develop-
ment and analysis.
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I / O O P T I M A L PA R A L L E L M AT R I X M U LT I P L I C AT I O N

This chapter is an extended version of our publication at the SC’19 conference [65].
Here we introduce the X-Partitioning abstraction, which serves as a starting point
for further analysis in the following chapters. The COSMA C++ library was mainly
developed — and is still maintained — by Marko Kabić from CSCS.

3.1 introduction

Matrix-matrix multiplication (MMM) is one of the most fundamental build-
ing blocks in scientific computing, used in linear algebra algorithms [104–
106], (Cholesky and LU decomposition [104], eigenvalue factorization [105],
triangular solvers [106]), machine learning [107], graph processing [108–
113], computational chemistry [40], and others. Thus, accelerating MMM
routines is of great significance for many domains. In this chapter, we
focus on minimizing the amount of transferred data in MMM, both across
the memory hierarchy (vertical I/O) and between processors (horizontal I/O,
aka “communication”). We also focus only on “classical” MMM algorithms
that perform N3 multiplications and additions, in contrast to Strassen-like
routines [7]. We note there exist high-perfromance implementations of fast
matrix multiplications [11, 114, 115]. However, they usually outperform
classical algorithms only for large matrices [13, 116].

The path to I/O optimality of MMM algorithms is at least 50 years old.
The first parallel MMM algorithm is by Cannon [60], which works for square
matrices and square processor decompositions. Subsequent works [117,
118] generalized the MMM algorithm to rectangular matrices, different
processor decompositions, and communication patterns. PUMMA [61]
package generalized previous works to transposed matrices and different
data layouts. SUMMA algorithm [62] further extended it by optimizing the
communication, introducing pipelining and communication–computation
overlap. This is now a state-of-the-art so-called 2D algorithm (it decomposes
processors in a 2D grid) used e.g., in ScaLAPACK library [119].

Agarwal et al. [63] showed that in a presence of extra memory, one
can do better and introduces a 3D processor decomposition. McColl and

35
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Figure 3.1: Percentage of peak flop/s across the experiments ranging from 109 to 18,432
cores achieved by COSMA and the state-of-the-art libraries (Sec. 3.9).

60 61
62

52
64

Figure 3.2: Illustratory evolution of MMM algorithms reaching the I/O lower bound.

Tiskin [120] introduced a memory-efficient algorithm in a BSPRAM model
with a parametrized tradeoff between communication, synchronization, and
memory footprint. The 2.5D algorithm by Solomonik and Demmel [52] uses
analogous parametrized decomposition strategy, depending on the avail-
able memory. However, Demmel et al. showed that algorithms optimized
for square matrices often perform poorly when matrix dimensions vary
significantly [64]. Such matrices are common in many relevant areas, for
example in machine learning [121, 122] or computational chemistry [123,
124]. They introduced CARMA [64], a recursive algorithm that achieves
asymptotic lower bounds for all configurations of dimensions and memory
sizes. This evolution for chosen steps is depicted symbolically in Figure 3.2.

Unfortunately, we observe several limitations with state-of-the art algo-
rithms. ScaLAPACK [119] (an implementation of SUMMA) supports only
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2D [62] 2.5D [52] recursive [64] COSMA (this work)

Input:
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grid
Available memory
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matrix dimensions
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matrix dimensions

Step 1 Split M and N Split M, N, K
Split recursively

the largest dimension

Find the optimal

sequential schedule

Step 2
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to processor grid

Map matrices

to processor grid

Map matrices

to recursion tree

Map sequential

domain to matrices

� Requires

manual tuning

� Asymptotically

more comm.

- Optimal for

M = N

� Inefficient for

M� N or N � M

� Inefficient for

some p

- Asymptotically

optimal for all M, N, K, p

� Up to
√

3 times

higher comm. cost

� p must be

a power of 2

- Optimal for

all M, N, K

- Optimal for

all p

-- Best

time-to-solution

Table 3.1: Intuitive comparison between the COSMA algorithm and the state-of-the-art 2D,
2.5D, and recursive decompositions. C = AB, A ∈ RM×K, B ∈ RK×N

the 2D decomposition, which is communication–inefficient in the presence
of extra memory. Also, it requires a user to fine-tune parameters such as
block sizes or a processor grid size. CARMA supports only scenarios when
the number of processors is a power of two [64], a serious limitation, as
the number of processors is usually determined by the available hardware
resources. Cyclops Tensor Framework (CTF) [42] (an implementation of
the 2.5D decomposition) can utilize any number of processors, but its de-
compositions may be far from optimal (Section 3.9). We also emphasize
that asymptotic complexity is an insufficient measure of practical performance.
We later (Section 3.6.2) identify that CARMA performs up to

√
3 more

communication. Our observations are summarized in Table 3.1. Their prac-
tical implications are shown in Figure 3.1, where we see that all existing
algorithms perform poorly for some configurations.

In this chapter, we present COSMA (Communication Optimal S-partition-
based Matrix multiplication Algorithm): an algorithm that takes a new
approach to multiplying matrices and alleviates the issues above. COSMA
is I/O optimal for all combinations of parameters (up to the factor of√

S/(
√

S + 1 − 1), where S is the size of the fast memory1). The driv-
ing idea is to develop a general method of deriving I/O optimal schedules

1 Throughout this dissertation we use the original notation from Hong and Kung to denote the
memory size S. In literature, it is also common to use the symbol M [23, 51, 125].
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by explicitly modeling data reuse in the red-blue pebble game. We then
parallelize the sequential schedule, minimizing the I/O between processors,
and derive an optimal domain decomposition. This is in contrast with the
other discussed algorithms, which fix the processor grid upfront and then
map it to a sequential schedule for each processor. We outline the algorithm
in Section 3.3. To prove its optimality, we first provide a new constructive
proof of a sequential I/O lower bound (Section 3.5.2.7), then we derive the
communication cost of parallelizing the sequential schedule (Section 3.6.2),
and finally we construct an I/O optimal parallel schedule (Section 3.6.3).
The detailed communication analysis of COSMA, 2D, 2.5D, and recursive
decompositions is presented in Table 3.3. Our algorithm reduces the data
movement volume by a factor of up to

√
3 ≈ 1.73x compared to the asymp-

totically optimal recursive decomposition and up to max{M, N, K} times
compared to the 2D algorithms, like Cannon’s [126] or SUMMA [62].

Our implementation enables transparent integration with the ScaLA-
PACK data format [127] and delivers near-optimal computation through-
put. We later (Section 3.7) show that the schedule naturally expresses
communication–computation overlap, enabling even higher speedups using
Remote Direct Memory Access (RDMA). Finally, our I/O-optimal approach
is generalizable to other linear algebra kernels. We provide the following
contributions:

• We propose COSMA: a distributed MMM algorithm that is nearly-optimal
(up to the factor of

√
S/(
√

S + 1− 1)) for any combination of input parame-
ters (Section 3.3).

• Based on the red-blue pebble game abstraction [22], we provide a new
method of deriving I/O lower bounds (Lemma 3.4), which may be used
to generate optimal schedules (Section 3.4).

• Using Lemma 3.4, we provide a new constructive proof of the sequential
MMM I/O lower bound. The proof delivers constant factors tight up to√

S/(
√

S+− 1)(Section 3.5).

• We extend the sequential proof to parallel machines and provide I/O
optimal parallel MMM schedule (Section 3.6.3).

• We reduce memory footprint for communication buffers and guaran-
tee minimal local data reshuffling by using a blocked data layout (Sec-
tion 3.7.6) and a static buffer pre-allocation (Section 3.7.5), providing
compatibility with the ScaLAPACK format.
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• We evaluate the performance of COSMA, ScaLAPACK, CARMA, and
CTF on the CSCS Piz Daint supercomputer for an extensive selection of
problem dimensions, memory sizes, and numbers of processors, showing
significant I/O reduction and the speedup of up to 8.3 times over the
second-fastest algorithm (Section 3.9).

3.2 background

We first describe our machine model (Section 3.2.1) and computation model
(Section 3.2.2). We then define our optimization goal: the I/O cost (Sec-
tion 3.2.3).

3.2.1 Machine Model

We model a parallel machine with p processors, each with local memory of
size S words. A processor can send and receive from any other processor
up to S words at a time. To perform any computation, all operands must
reside in processor’ local memory. If shared memory is present, then it is
assumed that it has infinite capacity. A cost of transferring a word from
the shared to the local memory is equal to the cost of transfer between two
local memories.

3.2.2 Computation Model

We now briefly specify a model of general computation; we use this model
to derive the theoretical I/O cost in both the sequential and parallel setting.
An execution of an algorithm is modeled with the computational directed
acyclic graph (CDAG) G = (V, E) [20, 128, 129]. A vertex v ∈ V represents
one elementary operation in the given computation. An edge (u, v) ∈ E
indicates that an operation v depends on the result of u. A set of all
immediate predecessors (or successors) of a vertex are its parents (or children).
Two selected subsets I, O ⊂ V are inputs and outputs, that is, sets of vertices
that have no parents (or no children, respectively).
Red-Blue Pebble Game Hong and Kung’s red-blue pebble game [22] mod-
els an execution of an algorithm in a two-level memory structure with a
small-and-fast as well as large-and-slow memory. A red (or a blue) pebble
placed on a vertex of a CDAG denotes that the result of the corresponding
elementary computation is inside the fast (or slow) memory. In the initial
(or terminal) configuration, only inputs (or outputs) of the CDAG have
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blue pebbles. There can be at most S red pebbles used at any given time. A
complete CDAG calculation is a sequence of moves that lead from the initial
to the terminal configuration. One is allowed to: place a red pebble on any
vertex with a blue pebble (load), place a blue pebble on any vertex with a
red pebble (store), place a red pebble on a vertex whose parents all have
red pebbles (compute), remove any pebble, red or blue, from any vertex
(free memory). An I/O optimal complete CDAG calculation corresponds to a
sequence of moves (called pebbling of a graph) which minimizes loads and
stores. In the MMM context, it is an order in which all N3 multiplications
are performed.

3.2.3 Optimization Goals

Throughout the following chapters, we focus on the input/output (I/O) cost
of an algorithm. The I/O cost Q is the total number of words transferred
during the execution of a schedule. On a sequential or shared memory
machine equipped with small-and-fast and slow-and-big memories, these
transfers are load and store operations from and to the slow memory (also
called the vertical I/O). For a distributed machine with a limited memory
per node, the transfers are communication operations between the nodes
(also called the horizontal I/O). A schedule is I/O optimal if it minimizes the
I/O cost among all schedules of a given CDAG. We also model a latency
cost L, which is a maximum number of messages sent by any processor.

3.2.4 State-of-the-Art MMM Algorithms

Here we briefly describe strategies of the existing classical MMM algorithms.
As stated in the Introduction, we do not consider Strassen-like schemas [11].
Throughout the whole chapter, we consider matrix multiplication C = AB,
where A ∈ RM×K, B ∈ RK×N , C ∈ RM×N , where M, N, and K are matrix
dimensions. Furthermore, we assume that the size of each matrix element
is one word, and that S < min{MN, MK, NK}, that is, none of the matrices
fits into single processor’s fast memory.

We compare our algorithm with the 2D, 2.5D, and recursive decomposi-
tions (we select parameters for 2.5D to also cover 3D). We assume a square
processor grid [

√
p,
√

p, 1] for the 2D variant, analogously to Cannon’s
algorithm [60], and a cubic grid [

√
p/c,

√
p/c, c] for the 2.5D variant [52],

where c is the amount of the “extra” memory c = pS/(MK + NK). For the
recursive decomposition, we assume that in each recursion level we split
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Figure 3.3: Domain decomposition using p = 8 processors. In scenario (a), a straightforward
3D decomposition divides every dimension in p1/3 = 2. In scenario (b), COSMA
starts by finding a near optimal sequential schedule and then parallelizes it mini-
mizing crossing data reuse HR,i (Section 3.5). The total communication volume
is reduced by 17% compared to the former strategy.

the largest dimension M, N, or K in half, until the domain per processor fits
into memory. The detailed complexity analysis of these decompositions is in
Table 3.3. We note that ScaLAPACK or CTF can handle non-square decompo-
sitions, however they create different problems, as discussed in Section 3.1.
Moreover, in Section 3.9 we compare their performance with COSMA and
measure significant speedup in all scenarios.

3.3 cosma : high-level description

COSMA decomposes processors by parallelizing the near optimal sequen-
tial schedule under constraints: (1) equal work distribution and (2) equal
memory size per processor. Such a local sequential schedule is independent
of matrix dimensions. Thus, intuitively, instead of dividing a global domain
among p processors (the top-down approach), we start from deriving a near
I/O optimal sequential schedule. We then parallelize it, minimizing the I/O
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and latency costs Q, L (the bottom-up approach); Figure 3.3 presents more
details.

Algorithm 1 COSMA

Input: matrices A ∈ RM×K, B ∈ RK×N ,
number of processors: p, memory size: S, computation-I/O tradeoff
ratio ρ

Output: matrix C = AB ∈ RM×N

1: a← FindSeqSchedule(S, M, N, K, p) . sequential I/O
optimality (Section 3.5)

2: b← ParallelizeSched(a, M, N, K, p) . parallel I/O
optimality (Section 3.6)

3: (G, aopt, bopt)← FitRanks(M, N, K, a, b, p, δ)
4: for all pi ∈ {1 . . . p} do in parallel
5: (Al , Bl , Cl)← GetDataDecomp(A, B,G, pi)

6: s←
⌊

S−a2
opt

2aopt

⌋
. latency-minimizing size of a step (Section 3.6.3)

7: t←
⌈

bopt
s

⌉
. number of steps

8: for j ∈ {1 . . . t} do
9: (Al , Bl)← DistrData(Al , Bl ,G, j, pi)

10: Cl ← Multiply(Al , Bl , j) . compute locally
11: end for
12: C ← Reduce(Cl ,G) . reduce the partial results
13: end for

COSMA is sketched in Algorithm 1. In Line 1 we derive a sequential
schedule, which consists of series of a× a outer products. (Figure 3.4 b). In
Line 2, each processor is assigned to compute b of these products, forming
a local domain D (Figure 3.4 c), that is each D contains a× a× b vertices
(multiplications to be performed - the derivation of a and b is presented
in Section 3.6.3). In Line 3, we find a processor grid G that evenly distributes
this domain by the matrix dimensions M, N, and K. If the dimensions are
not divisible by a or b, this function also evaluates new values of aopt
and bopt by fitting the best matching decomposition, possibly not utilizing
some processors (Section 3.7.1, Figure 3.4 d-f). The maximal number of
idle processors is a tunable parameter δ. In Line 5, we determine the initial
decomposition of matrices A, B, and C to the submatrices Al , Bl , Cl that
are local for each processor. COSMA may handle any initial data layout,
however, an optimal block-recursive one (Section 3.7.6) may be achieved in
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a preprocessing phase. In Line 6, we compute the size of the communication
step, that is, how many of bopt outer products assigned to each processor
are computed in a single round, minimizing the latency (Section 3.6.3). In
Line 7 we compute the number of sequential steps (Lines 8–11) in which
every processor: (1) distributes and updates its local data Al and Bl among
the grid G (Line 9), and (2) multiplies Al and Bl (Line 10). Finally, the partial
results Cl are reduced over G (Line 12).

I/O Complexity of COSMA Lines 2–7 require no communication (as-
suming that the parameters M, N, K, p, S are already distributed). The loop
in Lines 8-11 executes

⌈
2ab/(S− a2)

⌉
times. In Line 9, each processor re-

ceives |Al |+ |Bl | elements. Sending the partial results in Line 12 adds a2

communicated elements. In Section 3.6.3 we derive the optimal values for

a and b, which yield a total of min
{

S + 2 · MNK
p
√

S
, 3
(

MNK
P

)2/3 }
elements

communicated.

3.4 arbitrary cdags : lower bounds

We now present a mathematical machinery for deriving I/O lower bounds
for general CDAGs. We extend the main lemma by Hong and Kung [22],
which provides a method to find an I/O lower bound for a given CDAG.
That lemma, however, does not give a tight bound, as it overestimates a
reuse set size (cf. Lemma 3.3). Our key result here, Lemma 3.4, allows us to
derive a constructive proof of a tighter I/O lower bound for a sequential
execution of the MMM CDAG (Section 3.5).

The driving idea of both Hong and Kung’s and our approach is to show
that some properties of an optimal pebbling of a CDAG (a problem which
is PSPACE-complete [130]) can be translated to the properties of a specific
partition of the CDAG (a collection of subsetsHi of the CDAG; these subsets
form subcomputations, see Section 3.2.2). One can use the properties of
this partition to bound the number of I/O operations of the corresponding
pebbling. Hong and Kung use a specific variant of this partition, denoted
as S-partition [22].

We first introduce our generalization of S-partition, called X-partition,
that is the base of our analysis. We describe symbols used in our analysis
in Table 5.1.

X-Partitions. Before we define X-partitions, we first need to define two
sets, the dominator set and the minimum set. Given a subset Hi ∈ V, define a
dominator set Dom(Hi) as a set of vertices in V, such that every path from
any input of a CDAG to any vertex in Hi must contain at least one vertex
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M
M

M
M, N, K Matrix dimensions
A, B Input matrices A ∈ RM×K and B ∈ RK×N

C = AB Output matrix C ∈ RM×N

p The number of processors

gr
ap

hs

G A directed acyclic graph G = (V, E)
Pred(v) A set of immediate predecessors of a vertex v:

Pred(v) = {u : (u, v) ∈ E}
Succ(v) A set of immediate successors of a vertex v:

Succ(v) = {u : (v, u) ∈ E}

I/
O

co
m

pl
ex

ity

S The number of red pebbles (size of the fast memory)
Hi An i-th subcomputation of an S-partition
Dom(Hi), Min(Hi) Dominator and minimum sets of subcomputation Hi

HR,i
The reuse set: a set of vertices containing red pebbles
(just before Hi starts) and used by Hi

H(S) The smallest cardinality of a valid S-partition
R(S) The maximum size of the reuse set
Q The I/O cost of a schedule (a number of I/O operations)
ρi The computational intensity of Hi
ρ = maxi{ρi} The maximum computational intensity

Sc
he

du
le

s S = {H1, . . . ,Hh} The sequential schedule (an ordered set of Hi)
P = {S1, . . . ,Sp} The parallel schedule (a set of sequential schedules Sj)
Dj =

⋃
Hi∈Sj

Hi The local domain (a set of vertices in Sj

a, b Sizes of a local domain: |Dj| = a2b

Table 3.2: The most important symbols used in this chapter.

in Dom(Hi). Define also the minimum set Min(Hi) as the set of all vertices
in Hi that do not have any children in Hi.

Now, given a CDAG G = (V, E), let H1,H2, . . .Hh ∈ V be a series
of subcomputations that (1) are pairwise disjoint (∀i,j,i 6=jHi ∩ Hj = ∅),
(2) cover the whole CDAG (

⋃
iHi = V), (3) have no cyclic dependencies

between them, and (4) their dominator and minimum sets are at most of
size X (∀i(|Dom(Hi)| ≤ X ∧ |Min(Hi)| ≤ X)). These subcomputations Hi
correspond to some execution order (a schedule) of the CDAG, such that at
step i, only vertices in Hi are pebbled. We call this series an X-partition or a
schedule of the CDAG and denote this schedule with S(X) = {H1, . . . ,Hh}.
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3.4.1 Existing General I/O Lower Bound

Here we need to briefly bring back the original lemma by Hong and Kung,
together with an intuition of its proof, as we use a similar method for our
Lemma 3.3.

Intuition. The key notion in the existing bound is to use
X = 2S-partitions for a given fast memory size S. For any subcomputation
Hi, if |Dom(Hi)| = 2S, then at most S of them could contain a red pebble
before Hi begins. Thus, at least S additional pebbles need to be loaded from
the memory. The similar argument goes for Min(Hi). Therefore, knowing
the lower bound on the number of sets Hi in a valid 2S-partition, together
with the observation that each Hi performs at least S I/O operations, we
phrase the lemma by Hong and Kung:

Lemma 3.1 ( [22]). The minimal number Q of I/O operations for any valid
execution of a CDAG of any I/O computation is bounded by

Q ≥ S · (H(2S)− 1) (3.1)

Proof. Assume that we know the optimal complete calculation of the CDAG,
where a calculation is a sequence of allowed moves in the red-blue pebble
game [22]. Divide the complete calculation into h consecutive subcompu-
tations H1,H2, ...,Hh, such that during the execution of Hi, i < h, there
are exactly S I/O operations, and in Hh there are at most S operations.
Now, for each Hi, we define two subsets of V, HR,i and HB,i. HR,i con-
tains vertices that have red pebbles placed on them just before Hi begins.
HB,i contains vertices that have blue pebbles placed on them just before
Hi begins, and have red pebbles placed on them during Hi. Using these
definitions, we have: ¶ HR,i ∪HB,i = Dom(Hi), · |HR,i| ≤ S, ¸ |HB,i| ≤ S,
and ¹ |HR,i ∪HB,i| ≤ |HR,i|+ |HB,i| ≤ 2S. We define similar subsets WB,i
and WR,i for the minimum set Min(Hi). WB,i contains all vertices in Hi
that have a blue pebble placed on them during Hi, and WR,i contains all
vertices in Hi that have a red pebble at the end of Hi. By the definition of
Hi, |WB,i| ≤ S, by the constraint on the red pebbles, we have |WR,i| ≤ S,
and by te definition of the minimum set,Min(Hi) ⊂ WR,i ∪WB,i. Finally, by
the definition of S-partition, H1,H2, ...,Hh form a valid 2S-partition of the
CDAG.
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3.4.2 Generalized I/O Lower Bounds

3.4.2.1 Data Reuse

A more careful look at sets HR,i,HB,i, WR,i, and WB,i allows us to refine the
bound on the number of I/O operations on a CDAG. By definition, HB,i is
a set of vertices on which we place a red pebble using the load rule; We call
HB,i a load set of Hi. Furthermore, WB,i contains all the vertices on which we
place a blue pebble during the pebbling of Hi; We call WB,i a store set of Hi.
However, we impose more strict HR,i and WR,i definitions: HR,i contains
vertices that have red pebbles placed on them just before Hi begins and – for
each such vertex v ∈ HR,i – at least one child of v is pebbled during the pebbling of
Hi using the compute rule of the red-blue pebble game. We call HR,i a reuse set of
Hi. Similarly, WR,i contains vertices that have red pebbles placed on them
after Hi ends and were pebbled during Hi and – for each such vertex v ∈WR,i
– at least one child of v is pebbled during the pebbling of Hi+1 using the compute
rule of the red-blue pebble game. We call WR,i a cache set of Hi. Therefore, if
Qi is the number of I/O operations during the subcomputation Hi, then
Qi ≥ |HB,i|+ |WB,i|.

We first observe that, given the optimal complete calculation, one can
divide this calculation into subcomputations such that each subcomputation
Hi performs an arbitrary number of Y I/O operations. We still have |HR,i| ≤
S, |WR,i| ≤ S, 0 ≤ |WB,i| (by the definition of the red-blue pebble game
rules). Moreover, observe that, because we perform exactly Y I/O operations
in each subcomputation, and all the vertices in HB,i by definition have to
be loaded, |HB,i| ≤ Y. A similar argument gives 0 ≤ |WB,i| ≤ Y.

Denote an upper bound on |HR,i| and |WR,i| as R(S)
(∀i max{|HR,i|, |WR,i|} ≤ R(S) ≤ S). Further, denote a lower bound
on |HB,i| and |WB,i| as T(S) (∀i0 ≤ T(S) ≤ min{|HB,i|, |WB,i|}). We can
use R(S) and T(S) to tighten the bound on Q. We call R(S) a maximum
reuse and T(S) a minimum I/O of a CDAG.

3.4.2.2 Reuse-Based Lemma

We now use the above definitions and observations to generalize the result
of Hong and Kung [22].

Lemma 3.2. An optimal complete calculation of a CDAG G = (V, E), which
performs q I/O operations, is associated with an X-partition of G such that

q ≥ (X− R(S) + T(S)) · (h− 1)
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for any value of X ≥ S, where h is the number of subcomputations in the
X-partition, R(S) is the maximum reuse set size, and T(S) is the minimum I/O
in the given X-partition.

Proof. We use analogous reasoning as in the original lemma. We associate
the optimal pebbling with h consecutive subcomputations H1, . . .Hh with
the difference that each subcomputation Hi performs Y = X− R(S) + T(S)
I/O operations. Within those Y operations, we consider separately qi,s store
and qi,l load operations. For each Hi we have qi,s + qi,l = Y, qi,s ≥ T(S),
and qi,l ≤ Y− T(S) = X− R(S).

∀i : |HB,i| ≤ ql,i ≤ Y− T(S)

∀i : |HR,i| ≤ qs,i ≤ R(S) ≤ S

Since HR,i ∪HB,i = Dom(Hi):

|Dom(Hi)| ≤ |HR,i|+ |HB,i|
|Dom(Hi)| ≤ R(S) + Y− T(R) = X

By an analogous construction for store operations, we show that
|Min(Hi)| ≤ X. To show that S(X) = {H1 . . .Hh} meets the remaining
properties of a valid X-partition S(X), we use the same reasoning as origi-
nally done [22].

Therefore, a complete calculation performing q > (X − R(S) + T(S)) ·
(h− 1) I/O operations has an associated S(X), such that |S(X)| = h (if
q = (X− R(S) + T(S)) · (h− 1), then |S(X)| = h− 1).

From the previous lemma, we obtain a tighter I/O lower bound.

Lemma 3.3. Denote H(X) as the minimum number of subcomputations in any
valid X-partition of a CDAG G = (V, E), for any X ≥ S. The minimal number Q
of I/O operations for any valid execution of a CDAG G = (V, E) is bounded by

Q ≥ (X− R(S) + T(S)) · (H(X)− 1) (3.2)

where R(S) is the maximum reuse set size and T(S) is the minimum I/O set size.
Moreover, we have

H(X) ≥ |V|
|Hmax|

(3.3)
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where Hmax = arg maxHi∈S(X) |Hi| is the largest subset of vertices in the CDAG
schedule S(X) = {H1, . . . ,Hh}.

Proof. By definition, H(X) = minS(X) |S(X)| ≤ h, so Q ≥ (X − R(S) +
T(S)) · (H(X)− 1) immediately follows from Lemma 3.2.

To prove Eq. (3.3), observe that Hmax by definition is the largest subset
in the optimal X-partition. As the subsets are disjoint, any other subset
covers fewer remaining vertices to be pebbled than Hmax. Because there are
no cyclic dependencies between subsets, we can order them topologically
as H1,H2, ...HH(X). To ensure that the indices are correct, we also define
H0 ≡ ∅. Now, define Wi to be the set of vertices not included in any subset
from 1 to i, that is Wi = V − ⋃i

j=1Hj. Clearly, W0 = V and WH(X) = ∅.
Then, we have

∀i |Hi| ≤ |Hmax|
|Wi| = |Wi−1| − |Hi| ≥ |Wi−1| − |Hmax| ≥ |V| − i|Hmax|

|WH(X)| = 0 ≥ |V| − H(X) · |Hmax|

that is, after H(X) steps, we have H(X)|Hmax| ≥ |V|.

From this lemma, we derive the following lemma that we use to prove a
tight I/O lower bound for MMM (Theorem 3.1):

Lemma 3.4. Define the number of computations performed byHi for one loaded el-
ement as the computational intensity ρi =

|Hi |
X−|HR,i |+|WB,i |

of the subcomputation

Hi. Denote ρ = maxi(ρi) ≤ |Hmax |
X−R(S)+T(S) to be the maximal computational

intensity. Then, the number of I/O operations Q is bounded by Q ≥ |V|/ρ.

Proof. Note that the term H(X)− 1 in Equation 3.2 emerges from a fact
that the last subcomputation may execute less than Y− R(S) + T(S) I/O
operations, since |HH(X)| ≤ |Hmax|. However, because ρ is defined as
maximal computational intensity, then performing |HH(S)| computations
requires at least QH(S) ≥ |HH(S)|/ρ. The total number of I/O operations
therefore is:

Q =
H(X)

∑
i=1

Qi ≥
H(X)

∑
i=1

|Hi|
ρ

=
|V|
ρ
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3.5 tight i/o lower bounds for mmm

In this section, we present our main theoretical contribution: a constructive
proof of a tight I/O lower bound for classical matrix-matrix multiplication.
In Section 3.6, we extend it to the parallel setup (Theorem 3.2). This result
is tight (up to diminishing factor

√
S/(
√

S + 1− 1)), and therefore may be
seen as the last step in the long sequence of improved bounds. Hong and
Kung [22] derived an asymptotic bound Ω

(
N3/
√

S
)

for the sequential
case. Irony et al. [51] extended the lower bound result to a parallel machine
with p processes, each having a fast private memory of size S, proving
the N3

4
√

2p
√

S
− S lower bound on the communication volume per process.

Recently, Smith and van de Gein [56] proved a tight sequential lower
bound (up to an additive term) of 2MNK/

√
S− 2S. Our proof improves

the additive term and extends it to a parallel schedule.

Theorem 3.1 (Sequential matrix multiplication I/O lower bound). Any
pebbling of MMM CDAG which multiplies matrices of sizes M×K and K×N by
performing MNK multiplications requires a minimum number of 2MNK√

S
+ MN

I/O operations.

The proof of Theorem 3.1 requires Lemmas 3.5 and 3.6, which in turn,
require several definitions.
Intuition: Restricting the analysis to greedy schedules provides explicit information of a

state of memory (sets Hr, HR,r, WB,r), and to a corresponding CDAG pebbling. Additional
constraints (Section 3.5.2.7) guarantee feasibility of a derived schedule (and therefore, lower
bound tightness).

3.5.1 Definitions

3.5.1.1 Vertices, Projections, and Edges in the MMM CDAG

The set of vertices of MMM CDAG G = (V, E) consists of three subsets
V = A∪ B ∪ C, which correspond to elements in matrices A, B, and MNK
partial sums of C. Each vertex v is defined uniquely by a pair (M, T), where
M ∈ {a, b, c} determines to which subset A, B, C vertex v belongs to, and
T ∈Nd is a vector of coordinates, d = 2 for M = a∨ b and d = 3 for M = c.
E.g., v = (a, (1, 5)) ∈ A is a vertex associated with element (1, 5) in matrix
A, and v = (c, (3, 6, 8)) ∈ C is associated with 8th partial sum of element
(3, 6) of matrix C.
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For every t3th partial update of element (t1, t2) in matrix C, and an
associated point v = (c, (t1, t2, t3)) ∈ C we define φc(v) = (t1, t2) to be a
projection of this point to matrix C, φa(v) = (a, (t1, t3)) ∈ A is its projection
to matrix A, and φb(v) = (b, (t3, t2)) ∈ B is its projection to matrix B. Note
that while φa(v), φb(v) ∈ V, projection φc(v) /∈ V has not any associated
point in V. Instead, vertices associated with all K partial updates of an
element of C have the same projection φc(v):

∀v=(c,(p1,p2,p3)),w=(c,(q1,q2,q3))∈C : (p1 = q1) ∧ (p2 = q2)

⇐⇒ φc(p) = φc(q) (3.4)

As a consequence, φc((c, (t1, t2, t3))) = φc((c, (t1, t2, t3 − 1))).
A t3th update of (t1, t2) element in matrix C of a classical MMM is

formulated as C(t1, t2, t3) = C(t1, t2, t3 − 1) + A(t1, t3) · B(t3, t2). Therefore
for each v = (c, (t1, t2, t3)) ∈ C, t3 > 1, we have following edges in the
CDAG: (φa(v), v), (φb(v), v), (c, (t1, t2, t3 − 1)), v) ∈ E.

3.5.1.2 α, β, γ, Γ

For a given subcomputation Hr ⊆ C, we denote its projection to matrix
A as αr = φa(Hr) = {v : v = φa(c), c ∈ Hr}, its projection to matrix B as
βr = φb(Hr), and its projection to matrix C as γr = φc(Hr). We further
define Γr ⊂ C as a set of all vertices in C that have a child in Hr. The sets
α, β, Γ therefore correspond to the inputs of Hr that belong to matrices A, B,
and previous partial results of C, respectively. These inputs form a minimal
dominator set of Hr:

Dom(Hr) = αr ∪ βr ∪ Γr (3.5)

Because Min(Hr) ⊂ C, and each vertex v ∈ C has at most one child w
with φc(v) = φc(w) (Equation 3.4), the projection φc(Min(Hr)) is also equal
to γr :

φc(Hr) = φc(Γr) = φc(Min(Hr)) = γr (3.6)

3.5.1.3 Red()

Define Red(r) as the set of all vertices that have red pebbles just before
subcomputation Hr starts, with Red(1) = ∅. We further have Red(P), P ⊂
V is the set of all vertices in some subset P that have red pebbles and
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Red(φc(P)) is a set of unique pairs of first two coordinates of vertices in P
that have red pebbles.

3.5.1.4 Greedy schedule

We call a schedule S = {H1, . . . ,Hh} greedy if during every subcomputation
Hr every vertex u that will hold a red pebble either has a child in Hr or
belongs to Hr:

∀r : Red(r) ⊂ αr−1 ∪ βr−1 ∪Hr−1 (3.7)

3.5.2 I/O Optimality of Greedy Schedules

Lemma 3.5. Any greedy schedule that multiplies matrices of sizes M× K and
K× N using MNK multiplications requires a minimum number of 2MNK√

S
+ MN

I/O operations.

Proof. We start by creating an X-partition for an MMM CDAG (the values
of Y and R(S) are parameters that we determine in the course of the proof).
The proof is divided into the following 6 steps (Sections 3.5.2.1 to 3.5.2.6).

3.5.2.1 Red Pebbles During and After Subcomputation

Observe that each vertex in c = (t1, t2, t3) ∈ C, t1 = 1 . . . M, t2 =
1 . . . N, t3 = 1 . . . K − 1 has only one child c = (t1, t2, t3 + 1). Therefore,
we can assume that in an optimal schedule there are no two vertices
(t1, t2, t3), (t1, t2, t3 + f ) ∈ C, f ∈N+ that simultaneously hold a red vertex,
as when the vertex (t1, t2, t3 + 1) is pebbled, a red pebble can be immediately
removed from (t1, t2, t3):

|Red(Hr)| = |φc(Red(Hr))| (3.8)

On the other hand, for every vertex v, if all its predecessors Pred(v) have
red pebbles, then vertex v may be immediately computed, freeing a red
pebble from its predecessor w ∈ C, due to the fact, that v is the only child
of w:

∀v∈V∀r : Pred(v) ⊂ Dom(Hr) ∪Hr =⇒ ∃t≤rv ∈ Ht (3.9)

Furthermore, after subcomputation Hr, all vertices in Hr that have red
pebbles are in its minimum set:

Red(r + 1) ∩Hr = Red(r + 1) ∩Min(Hr) (3.10)
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Combining this result with the definition of a greedy schedule (Equa-
tion 3.7), we have

Red(r + 1) ⊆ αr ∪ βr ∪Min(Hr) (3.11)

3.5.2.2 Surface and volume of subcomputations

By the definition of X-partition, the computation is divided into H(X) sub-
computations Hr ⊂ C, r ∈ {1, . . . H(X)}, such that Dom(Hr), Min(Hr) ≤
X.

Inserting Equations 3.5, 3.6, and 3.8, we have:

|Dom(Hr)| = |αr|+ |βr|+ |γr| ≤ X (3.12)

|Min(Hr)| = |γr| ≤ X

On the other hand, the Loomis-Whitney inequality [131] bounds the
volume of Hr:

Hr ≤
√
|αr||βr||γr| (3.13)

Consider sets of all different indices accessed by projections αr, βr, γr:

T1 = {t1,1, . . . , t1,a}, |T1| = a

T2 = {t2,1, . . . , t2,b}, |T2| = b

T3 = {t3,1, . . . , t3,c}, |T3| = c

αr ⊆ {(t1, t3) : t1 ∈ T1, t3 ∈ T3} (3.14)

βr ⊆ {(t3, t2) : t3 ∈ T3, t2 ∈ T2} (3.15)

γr ⊆ {(t1, t2) : t1 ∈ T1, t2 ∈ T2} (3.16)

Hr ⊆ {(t1, t2, t3) : t1 ∈ T1, t2 ∈ T2, t3 ∈ T3} (3.17)

For fixed sizes of the projections |αr|, |βr|, |γr|, then the volume |Hr| is
maximized when left and right side of Inequalities 3.14 to 3.16 are equal.
Using 3.5 and 3.9 we have that 3.17 is an equality too, and:

|αr| = ac, |βr| = bc, |γr| = ab, |Hr| = abc, (3.18)

achieving the upper bound (Equation 3.13).



3.5 tight i/o lower bounds for mmm 53

3.5.2.3 Reuse set HR,r and store set WB,r

Consider two subsequent computations, Hr and Hr+1. After Hr, αr, βr,
and Hr may have red pebbles (Equation 3.7). On the other hand, for the
dominator set of Hr+1 we have |Dom(Hr+1)| = |αr+1| + |βr+1| + |γr+1|.
Then, the reuse set HR,i+1 is an intersection of those sets. Since αr ∩ βr =
αr ∩ γr = βr ∩ γr = ∅, we have (confront Equation 3.11):

HR,r+1 ⊆ (αr ∩ αr+1) ∪ (βr ∩ βr+1) ∪ (Min(Hr) ∩ Γr+1)

|HR,r+1| ≤ |αr ∩ αr+1|+ |βr ∩ βr+1|+ |γr ∩ γr+1| (3.19)

Note that vertices in αr and βr are inputs of the computation: therefore,
by the definition of the red-blue pebble game, they start in the slow memory
(they already have blue pebbles). Min(Hr), on the other hand, may have
only red pebbles placed on them. Furthermore, by the definition of the
S-partition, these vertices have children that have not been pebbled yet.
They either have to be reused forming the reuse set HR,r+1, or stored back,
forming WB,r and requiring the placement of the blue pebbles. Because
Min(Hr) ∈ C and C ∩ A = C ∩ B = ∅, we have:

WB,r ⊆ Min(Hr) \ Γr+1

|WB,r| ≤ |γr \ γr+1| (3.20)

3.5.2.4 Overlapping computations

Consider two subcomputations Hr and Hr+1. Denote shared parts of their
projections as αs = αr ∩ αr+1, βs = βr ∩ βr+1, and γs = γr ∩ γr+1. Then,
there are two possibilities:

1. Hr and Hr+1 are not cubic, resulting in their volume smaller than the
upper bound |Hr+1| <

√
|αr+1||βr+1||γr+1| (Equation 3.13),

2. Hr and Hr+1 are cubic. If all overlapping projections are not empty,
then they generate an overlapping computation, that is, there ex-
ist vertices v, such that φik(v) ∈ αs, φkj(v) ∈ βs, φij(v) ∈ γs. Be-
cause we consider greedy schedules, those vertices cannot belong
to computation Hr+1 (Equation 3.9). Therefore, again |Hr+1| <√
|αr+1||βr+1||γr+1|. Now consider sets of all different indices ac-

cessed by those rectangular projections (Section 3.5.2.2, Inequali-
ties 3.14 to 3.16). Fixing two non-empty projections we define all
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three sets T1, T2, T3, which in turn, generate the third (non-empty)
projection, resulting again in overlapping computations which reduce
the size of |Hr+1|. Therefore, for cubic subcomputations, their vol-
ume is maximized |Hr+1| =

√
|αr+1||βr+1||γr+1| if at most one of

the overlapping projections is non-empty (and therefore, there is no
overlapping computation).

3.5.2.5 Maximizing computational intensity

Computational intensity ρr of a subcomputation Hr is an upper bound on
ratio between its size |Hr| and the number of I/O operations required. The
number of I/O operations is minimized when ρ is maximized (Lemma 3.4):

maximize ρr =
|Hr|

X− R(S) + T(S)
≥ |Hr|

Dom(Hr)− |HR,r|+ |WB,r|
subject to:

|Dom(Hr)| ≤ X

|HR,r| ≤ S

To maximize the computational intensity, for a fixed number of I/O
operations, the subcomputation size |Hr| is maximized. Based on Observa-
tion 3.5.2.4, it is maximized only if at most one of the overlapping projec-
tions αr ∩ αr+1, βr ∩ βr+1, γr ∩ γr+1 is not empty. Inserting Equations 3.13,
3.12, 3.19, and 3.20, we have the following three equations for the computa-
tional intensity, depending on the non-empty projection:

αr ∩ αr+1 6= ∅ :

ρr =

√
|αr||βr||γr|

|αr|+ |βr|+ |γr| − |αr ∩ αr+1|+ |γr|
(3.21)

βr ∩ βr+1 6= ∅ :

ρr =

√
|αr||βr||γr|

|αr|+ |βr|+ |γr| − |βr ∩ βr+1|+ |γr|
(3.22)

γr ∩ γr+1 6= ∅ :

ρr =

√
|αr||βr||γr|

|αr|+ |βr|+ |γr| − |γr ∩ γr+1|+ |γr \ γr+1|
(3.23)

ρr is maximized when γr = γr+1, γr ∩ γr+1 6= ∅, γr \ γr+1 = ∅ (Equa-
tion 3.23).
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Then, inserting Equations 3.18, we have:

maximize ρr =
abc

ac + cb
subject to:

ab + ac + cb ≤ X

ab ≤ S

a, b, c ∈N+,

where X is a free variable. Simple optimization technique using Lagrange
multipliers yields the result:

a = b = b
√

Sc, c = 1, (3.24)

|αr| = |βr| = b
√

Sc, |γr| = b
√

Sc2,

|Hr| = b
√

Sc2, X = b
√

Sc2 + 2b
√

Sc

ρr =
b
√

Sc
2

(3.25)

From now on, to keep the calculations simpler, we use assume that√
S ∈N+.

3.5.2.6 MMM I/O complexity of greedy schedules

By the computational intensity corollary:

Q ≥ |V|
ρ

=
2MNK√

S

This is the I/O cost of putting a red pebble at least once on every vertex in C.
Note however, that we did not put any blue pebbles on the outputs yet (all
vertices in C had only red pebbles placed on them during the execution). By
the definition of the red-blue pebble game, we need to place blue pebbles
on MN output vertices, corresponding to the output matrix C, resulting in
additional MN I/O operations, yielding final bound

Q ≥ 2MNK√
S

+ MN
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3.5.2.7 Attainability of the Lower Bound

Restricting the analysis to greedy schedules provides explicit information
of a state of memory (sets Hr, HR,r, WB,r), and therefore, to a corresponding
CDAG pebbling. In Section 3.5.2.5, it is proven that an optimal greedy
schedule is composed of MNK

R(S) outer product calculations, while loading√
R(S) elements of each of matrices A and B. While the lower bound

is achieved for R(S) = S, such a schedule is infeasible, as at least some
additional red pebbles, except the ones placed on the reuse set HR,r, have
to be placed on 2

√
R(S) vertices of A and B.

A direct way to obtain a feasible greedy schedule is to set X = S, ensuring
that the dominator set can fit into the memory. Then each subcomputation
is an outer-product of column-vector of matrix A and row-vector of B, both
holding

√
S + 1− 1 values. Such a schedule performs 2MNK√

S+1−1
+ MN I/O

operations, a factor of
√

S√
S+1−1

more than a lower bound, which quickly
approach 1 for large S. Listing 3.1 provides a pseudocode of this algorithm,
which is a well-known rank-1 update formulation of MMM. However, we
can do better.

Let’s consider a generalized case of such subcomputation Hr. Assume,
that in each step:

1. a elements of A (forming αr) are loaded,

2. b elements of B (forming βr) are loaded,

3. ab partial results of C are kept in the fast memory (forming Γr)

4. ab values of C are updated (forming Hr),

5. no store operations are performed.

Each vertex in αr has b children in Hr (each of which has also a parent in
βr). Similarly, each vertex in βr has a children in Hr, each of which has
also a parent in αr. We first note, that ab < S (otherwise, we cannot do any
computation while keeping all ab partial results in fast memory). Any red
vertex placed on αr should not be removed from it until all b children are
pebbled, requiring red-pebbling of corresponding b vertices from βr. But, in
turn, any red pebble placed on a vertex in βr should not be removed until
all a children are red pebbled.

Therefore, either all a vertices in αr, or all b vertices in βr have to be hold
red pebbles at the same time, while at least one additional red pebble is
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needed on βr (or αr). W.l.o.g., assume we keep red pebbles on all vertices
of αr. We then have:

maximize ρr =
ab

a + b
subject to:

ab + a + 1 ≤ S

a, b ∈N+, (3.26)

The solution to this problem is

aopt =


√
(S− 1)3 − S + 1

S− 2

 <
√

S (3.27)

bopt =

−2 S +
√
(S− 1)3 − S2 − 1√

(S− 1)3 − S + 1

 <
√

S (3.28)

Listing 3.1: Pseudocode of near optimal sequential MMM

1 for i1 = 1 :
⌈

M
aopt

⌉
2 for j1 = 1 :

⌈
N

bopt

⌉
3 for r = 1 : K
4 for i2 = i1 · T : min((i1 + 1) · aopt, M)
5 for j2 = j1 · T : min((j1 + 1) · bopt, N)
6 C(i2, j2) = C(i2, j2) + A(i2, r) · B(r, j2)

3.5.3 Greedy vs Non-greedy Schedules

In Section 3.5.2.6, it is shown that the I/O lower bound for any greedy
schedule is Q ≥ 2MNK√

S
+ MN. Furthermore, Listing 3.1 provide a schedule

that attains this lower bound (up to a aoptbopt/S factor). To prove that this
bound applies to any schedule, we need to show, that any non-greedy can-
not perform better (perform less I/O operations) than the greedy schedule
lower bound.

Lemma 3.6. Any non-greedy schedule computing classical matrix multiplication
performs at least 2MNK√

S
+ MN I/O operations.
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Proof. Lemma 3.3 applies to any schedule and for any value of X. Clearly,
for any general schedule we cannot directly model HR,i, HB,i, WR,i, and
WB,i, and therefore T(S) and R(S). However, it is always true that 0 ≤ T(S)
and R(S) ≤ S. Also, the dominator set formed in Equation 3.5 applies for
any subcomputation, as well as a bound on |Hr| from Inequality 3.13. We
can then rewrite the computational intensity maximization problem:

maximize ρr =
|Hr|

X− R(S) + T(S)
≤

√
|αr||βr||γr|

|αr|+ |βr|+ |γr| − S

subject to:

S < |αr|+ |βr|+ |γr| = X

(3.29)

This is maximized for |αr| = |βr| = |γr| = X/3, yielding

ρr =
(X/3)3/2

X− S
Because MNK/ρr is a valid lower bound for any X > S (Lemma 3.4), we

want to find such value Xopt for which ρr is minimal, yielding the highest
(tightest) lower bound on Q:

minimize ρr =
(X/3)3/2

X− S
subject to:

X ≥ S

(3.30)

which, in turn, is minimized for X = 3S. This again shows, that the upper
bound on maximum computational intensity for any schedule is

√
S/2,

which matches the bound for greedy schedules (Equation 3.25).

We note that Smith and van de Gein [56] in their paper also bounded
the number of computations (interpreted geometrically as a subset in a
3D space) by its surface and obtained an analogous result for this surface
(here, a dominator and minimum set sizes). However, using computational
intensity lemma, our bound is tighter by 2S (+MN, counting storing the
final result).
Proof of Theorem 3.1:
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Lemma 3.5 establishes that the I/O lower bound for any greedy schedule is
Q = 2MNK/

√
S + MN. Lemma 3.6 establishes that no other schedule can

perform less I/O operations.

Corollary: The greedy schedule associated with an X = S-partition
performs at most

√
S√

S+1−1
more I/O operations than a lower bound. The

optimal greedy schedule is associated with an X = aoptbopt + aopt + bopt-

partition and performs
√

S(aopt+bopt)
aoptbopt

I/O operations.

3.6 optimal parallel mmm

We now derive the schedule of COSMA from the results from Section 3.5.2.7.
The key notion is the data reuse, that determines not only the sequential
execution, as discussed in Section 3.4.2 , but also the parallel scheduling.
Specifically, if the data reuse set spans across multiple local domains, then
this set has to be communicated between these domains, increasing the
I/O cost (Figure 3.3). We first introduce a formalism required to parallelize
the sequential schedule (Section 3.6.1). In Section 3.6.2, we generalize
parallelization strategies used by the 2D, 2.5D, and recursive decomposi-
tions, deriving their communication cost and showing that none of them
is optimal in the whole range of parameters. We finally derive the optimal
decomposition (FindOptimalDomain function in Algorithm 1) by expressing
it as an optimization problem (Section 3.6.3), and analyzing its I/O and la-
tency cost. The remaining steps in Algorithm 1: FitRanks, GetDataDecomp, as
well as DistrData and Reduce are discussed in Section 3.7.1, Section 3.7.6, and
Section 3.7.2, respectively. For a distributed machine, we assume that all ma-
trices fit into collective memories of all processors: pS ≥ MN + MK + NK.
For a shared memory setting, we assume that all inputs start in a common
slow memory.

3.6.1 Sequential and Parallel Schedules

We now describe how a parallel schedule is formed from a sequential
one. The sequential schedule S partitions the CDAG G = (V, E) into
H(S) subcomputations Hi. The parallel schedule P divides S among p
processors: P = {D1, . . .Dp},

⋃p
j=1Dj = S . The set Dj of all Hk assigned to

processor j forms a local domain of j (Fig. 3.4c).
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If two local domains Dk and Dl are dependent, that is,
∃u, ∃v : u ∈ Dk ∧ v ∈ Dl ∧ (u, v) ∈ E, then u has to be communicated
from processor K to l. The total number of vertices communicated between
all processors is the I/O cost Q of schedule P . We say that the parallel
schedule Popt is communication–optimal if Q(Popt) is minimal among all
possible parallel schedules.

The vertices of MMM CDAG may be arranged in an [M × N × K] 3D
grid called an iteration space [48]. The orthonormal vectors i, j, K correspond
to the loops in Lines 1-3 in Listing 3.1 (Figure 3a). We call a schedule P
parallelized in dimension d if we “cut” the CDAG along dimension d. More
formally, each local domain Dj, j = 1 . . . p is a grid of size either [M/p, N, K],
[M, N/p, K], or [M, N, K/p]. The schedule may also be parallelized in two
dimensions (d1d2) or three dimensions (d1d2d3) with a local domain size
[M/pm, N/pn, K/pk] for some pm, pn, pk, such that pm pn pk = p. We call
G = [pm, pn, pk] the processor grid of a schedule. E.g., Cannon’s algorithm is
parallelized in dimensions ij , with the processor grid [

√
p,
√

p, 1]. COSMA,
on the other hand, may use any of the possible parallelizations, depending
on the problem parameters.

3.6.2 Parallelization Strategies for MMM

The sequential schedule S (Section 3.5) consists of MNK/S elementary
outer product calculations, arranged in

√
S×
√

S× K “blocks” (Figure 3.4).
The number p1 = MN/S of dependency-free subcomputations Hi (i.e.,
having no parents except for input vertices) in S determines the maximum
degree of parallelism of Popt for which no reuse set HR,i crosses two local
domains Dj, Dk. The optimal schedule is parallelized in dimensions ij.
There is no communication between the domains (except for inputs and
outputs), and all I/O operations are performed inside each Dj following the
sequential schedule. Each processor is assigned to p1/p local domains Dj

of size
[√

S,
√

S, K
]
, each of which requires 2

√
SK + S I/O operations (The-

orem 3.1), giving a total of Q = 2MNK/(p
√

S) + MN/p I/O operations
per processor.

When p > p1, the size of local domains |Dj| is smaller than
√

S×
√

S×K.
Then, the schedule has to either be parallelized in dimension K, or has
to reduce the size of the domain in ij plane. The former option creates
dependencies between the local domains, which results in additional com-
munication (Figure 3.4e). The latter does not utilize the whole available
memory, making the sequential schedule not I/O optimal and decreasing
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(a) MMM CDAG (b) Optimal 

i j

k

matrix A

matrix B

3D itera�on space

matrix C
(c) Local domain

output size: 

input size: elements elements

elements

Figure 3.4: (a) An MMM CDAG as a 3D grid (iteration space). Each vertex in it (except for
the vertices in the bottom layer) has three parents - blue (matrix A), red (matrix
B), and yellow (partial result of matrix C) and one yellow child (except for vertices
in the top layer). (b) A union of inputs of all vertices in Hi form the dominator
set Dom(Hi) (two blue, two red and four dark yellow). Using approximation√

S + 1− 1 ≈
√

S, we have |Dom(Hi,opt)| = S. (c) A local domain D consists
of b subcomputations Hi, each of a dominator size |Dom(Hi)| = a2 + 2a. (d-f)
Different parallelization schemes of near optimal sequential MMM for p = 24 >
p1 = 6.

the computational intensity ρ (Figure 3.4d). We now analyze three possi-
ble parallelization strategies (Figure 3.4) which generalize 2D, 2.5D, and
recursive decomposition strategies; see Table 3.3 for details.

Schedule Pij. The schedule is parallelized in dimensions i and j. The

processor grid is Gij =
[M

a , N
a , 1
]
, where a =

√
MN

p . Because all dependen-
cies are parallel to dimension K, there are no dependencies between Dj

except for the inputs and the outputs. Because a <
√

S, the corresponding
sequential schedule has a reduced computational intensity ρij <

√
S/2.

Schedule Pijk. The schedule is parallelized in all dimensions. The proces-

sor grid is Gijk =
[ M√

S
, N√

S
, pS

MN
]
. The computational intensity ρijk =

√
S/2 is

optimal. The parallelization in K dimension creates dependencies between
local domains, requiring communication and increasing the I/O cost.

Schedule Pcubic. The schedule is parallelized in all dimensions. The grid

is
[M

ac
, N

ac
, K

ac

]
, where ac = min

{(MNK
p
)1/3,

√
S
3

}
. Because ac <

√
S, the

corresponding computational intensity ρcubic <
√

S/2 is not optimal. The
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parallelization in K dimension creates dependencies between local domains,
increasing communication.

Schedules of the State-of-the-Art Decompositions. If M = N, the Pij
scheme is reduced to the classical 2D decomposition (e.g., Cannon’s algo-
rithm [60]), and Pijk is reduced to the 2.5D decomposition [52]. CARMA [64]
asymptotically reaches the Pcubic scheme, guaranteeing that the longest di-
mension of a local cuboidal domain is at most two times larger than the
smallest one. We present a detailed complexity analysis comparison for all
algorithms in Table 3.3.

3.6.3 I/O Optimal Parallel Schedule

Observe that none of those schedules is optimal in the whole range of
parameters. As discussed in Section 3.5, in sequential scheduling, inter-
mediate results of C are not stored to the memory: they are consumed
(reused) immediately by the next sequential step. Only the final result
of C in the local domain is sent. Therefore, the optimal parallel schedule
Popt minimizes the communication, that is, sum of the inputs’ sizes plus
the output size, under the sequential I/O constraint on subcomputations
∀Hi∈Dj∈Popt |Dom(Hi)| ≤ S ∧ |Min(Hi)| ≤ S.

The local domain Dj is a grid of size [a × a × b], containing b outer
products of vectors of length a. The optimization problem of finding Popt
using the computational intensity (Lemma 3.4) is formulated as follows:

maximize ρ =
a2b

ab + ab + a2 (3.31)

subject to:

a2 ≤ S (the I/O constraint)

a2b =
MNK

p
(the load balance constraint)

pS ≥ MN + MK + NK (matrices must fit into memory)

The I/O constraint a2 ≤ S is binding (changes to equality) for p ≤ MNK
S3/2 .

Therefore, the solution to this problem is:

a = min
{√

S,
(MNK

p

)1/3}
, b = max

{MNK
pS

,
(MNK

p

)1/3}
(3.32)
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The I/O complexity of this schedule is:

Q ≥ a2b
ρ

=


2MNK

p
√

S
+ S p ≤ MNK

S3/2

3
(

MNK
p

) 2
3

p > MNK
S3/2

(3.33)

This can be intuitively interpreted geometrically as follows: if we imagine
the optimal local domain "growing" with the decreasing number of proces-
sors, then it stays cubic as long as it is still "small enough" (its side is smaller
than

√
S). After that point, its face in the ij plane stays constant

√
S×
√

S
and it "grows" only in the K dimension. This schedule effectively switches
from Pijk to Pcubic once there is enough memory (S ≥ (MNK/p)2/3).

Theorem 3.2. The I/O complexity of a classic matrix multiplication algorithm
executed on p processors, each of local memory size S ≥ MN+MK+NK

p is

Q ≥


2MNK

p
√

S
+ S p ≤ MNK

S3/2

3
(

MNK
p

) 2
3

p > MNK
S3/2

Proof. The theorem is a direct consequence of Lemma 3.3 and the compu-
tational intensity (Lemma 3.4). The load balance constraint enforces a size
of each local domain |Dj| = MNK/p. The I/O cost is then bounded by
|Dj|/ρ. Schedule Popt maximizes ρ by the formulation of the optimization
problem (Equation 3.31).

I/O-Latency Trade-off. As showed in this section, the local domain D
of the near optimal schedule P is a grid of size [a× a× b], where a, b are
given by Equation (3.32). The corresponding sequential schedule S is a
sequence of b outer products of vectors of length a. Denote the size of the
communicated inputs in each step by Istep = 2a. This corresponds to b steps
of communication (the latency cost is L = b).

The number of steps (latency) is equal to the total communication volume
of D divided by the volume per step L = Q/Istep. To reduce the latency,
one either has to decrease Q or increase Istep, under the memory constraint
that Istep + a2 ≤ S (otherwise we cannot fit both the inputs and the outputs
in the memory). Express Istep = a · h, where h is the number of sequential
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subcomputations Hi we merge in one communication. We can express the
I/O-latency trade-off:

min(Q, L)

subject to:

Q = 2ab + a2, L =
b
h

a2 + 2ah ≤ S (I/O constraint)

a2b =
MNK

p
(load balance constraint)

Solving this problem, we have Q = 2MNK
pa + a2 and L = 2MNK

pa(S−a2)
, where

a ≤
√

S. Increasing a we reduce the I/O cost Q and increase the latency

cost L. For minimal value of Q (Theorem 3.2), L =
⌈

2ab
S−a2

⌉
, where a =

min{
√

S, (MNK/p)1/3} and b = max{MNK
pS , (MNK/p)1/3}. Based on our

experiments, we observe that the I/O cost is vastly greater than the latency
cost, therefore our schedule by default minimizes Q and uses extra memory
(if any) to reduce L.

3.7 implementation

We now present implementation optimizations that further increase the
performance of COSMA on top of the speedup due to our near I/O optimal
schedule. The algorithm is designed to facilitate the overlap of commu-
nication and computation Section 3.7.3. For this, to leverage the RDMA
mechanisms of current high-speed network interfaces, we use the MPI
one-sided interface Section 3.7.4. In addition, our implementation also of-
fers alternative efficient two-sided communication back end that uses MPI
collectives. We also use a blocked data layout Section 3.7.6, a grid-fitting
technique Section 3.7.1, and an optimized binary broadcast tree using static
information about the communication pattern (Section 3.7.2) together with
the buffer swapping (Section 3.7.5). For the local matrix operations, we use
BLAS routines for highest performance. Our code is publicly available at
https://github.com/eth-cscs/COSMA.
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(a) 1× 5× 13 grid

single
idle 

process

(b) 4× 4× 4 grid with one idle processor

Figure 3.5: Processor decomposition for square matrices and 65 processors. (a) To utilize all
resources, the local domain is drastically stretched. (b) Dropping one processor
results in a symmetric grid which increases the computation per processor by
1.5%, but reduces the communication by 36%.

3.7.1 Processor Grid Optimization

Throughout this analysis, we assume all operations required to assess
the decomposition (divisions, roots) result in natural numbers. We note
that in practice it is rarely the case, as the parameters usually emerge
from external constraints, like a specification of a performed calculation
or hardware resources (Section 3.8). If matrix dimensions are not divisi-
ble by the local domain sizes a, b (Equation 3.32), then a straightforward
option is to use the floor function, not utilizing the “boundary” proces-
sors whose local domains do not fit entirely in the iteration space, which
result in more computation per processor. The other option is to find fac-
tors of p and then construct the processor grid by matching the largest
factors with largest matrix dimensions. However, if the factors of p do
not match M, N, and K, this may result in a suboptimal decomposition.
Our algorithm allows to not utilize some processors (increasing the com-
putation volume per processor) to optimize the grid, which reduces the
communication volume. Figure 3.5 illustrates the comparison between
these options. We balance this communication–computation trade-off by
"stretching" the local domain size derived in Section 3.6.3 to fit the global
domain by adjusting its width, height, and length. The range of this tuning
(how many processors we drop to reduce communication) depends on the
hardware specification of the machine (peak flop/s, memory and network
bandwidth). For our experiments on the Piz Daint machine we chose the
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maximal number of unutilized cores to be 3%, accounting for up to 2.4
times speedup for the square matrices using 2,198 cores (Section 3.9).

3.7.2 Enhanced Communication Pattern

As shown in Algorithm 1, COSMA by default executes in t = 2ab
S−a2 rounds.

In each round, each processor receives s = ab/t = (S − a2)/2 elements
of A and B. Thus, the input matrices are broadcast among the i and j
dimensions of the processor grid. After the last round, the partial results
of C are reduced among the K dimension. The communication pattern is
therefore similar to ScaLAPACK or CTF.

To accelerate the collective communication, we implement our own binary
broadcast tree, taking advantage of the known data layout, processor grid,
and communication pattern. Knowing the initial data layout (Section 3.7.6)
and the processor grid (Section 3.7.1), we craft the binary reduction tree in
all three dimensions i, j, and K such that the distance in the grid between
communicating processors is minimized. Our implementation outperforms
the standard MPI broadcast from the Cray-MPICH 3.1 library by approxi-
mately 10%.

3.7.3 Communication–Computation Overlap

The sequential rounds of the algorithm ti = 1, . . . , t, naturally express
communication–computation overlap. Using double buffering, at each
round ti we issue an asynchronous communication (using either MPI_Get
or MPI_Isend / MPI_Irecv, Section 3.7.4) of the data required at round
ti+1, while locally processing the data received in a previous round. We
note that, by the construction of the local domains Dj (Section 3.6.3), the
extra memory required for double buffering is rarely an issue. If we are
constrained by the available memory, then the space required to hold the
partial results of C, which is a2, is much larger than the size of the receive
buffers s = (S− a2)/2. If not, then there is extra memory available for the
buffering.

Number of rounds: The minimum number of rounds, and therefore
latency, is t = 2ab

S−a2 (Section 3.6.3) . However, to exploit more overlap,
we can increase the number of rounds t2 > t. In this way, in one round
we communicate less data s2 = ab/t2 < s, allowing the first round of
computation to start earlier.
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3.7.4 One-Sided vs Two-Sided Communication

To reduce the latency [132] we implemented communication using MPI
RMA [133]. This interface utilizes the underlying features of Remote Direct
Memory Access (RDMA) mechanism, bypassing the OS on the sender side
and providing zero-copy communication: data sent is not buffered in a
temporary address, instead, it is written directly to its location.

All communication windows are pre-allocated using MPI_Win_allocate
with the size of maximum message in the broadcast tree 2s−1D (Sec-
tion 3.7.2). Communication in each step is performed using the MPI_Get
and MPI_Accumulate routines.

For compatibility reasons, as well as for the performance comparison, we
also implemented a communication back-end using MPI two-sided (the
message passing abstraction).

3.7.5 Communication Buffer Optimization

The binary broadcast tree pattern is a generalization of the recursive struc-
ture of CARMA. However, CARMA in each recursive step dynamically
allocates new buffers of the increasing size to match the message sizes
2s−1D, causing an additional runtime overhead.

To alleviate this problem, we pre-allocate initial, send, and receive buffers
for each of matrices A, B, and C of the maximum size of the message ab/t,
where t = 2ab

S−a2 is the number of steps in COSMA (Algorithm 1). Then, in
each level s of the communication tree, we move the pointer in the receive
buffer by 2s−1D elements.

3.7.6 Blocked Data Layout

COSMA’s schedule induces the optimal initial data layout, since for each
Dj it determines its dominator set Dom(Dj), that is, elements accessed by
processor j. Denote Al,j and Bl,j subsets of elements of matrices A and B
that initially reside in the local memory of processor j. The optimal data
layout therefore requires that Al,j, Bl,j ⊂ Dom(Dj). However, the schedule
does not specify exactly which elements of Dom(Dj) should be in Al,j and
Bl,j. As a consequence of the communication pattern (Section 3.7.2), each
element of Al,j and Bl,j is communicated to gm, gn processors, respectively.
To prevent data reshuffling, we therefore split each of Dom(Dj) into gm
and gn smaller blocks, enforcing that consecutive blocks are assigned to
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processors that communicate first. This is unlike the distributed CARMA
implementation [64], which uses the cyclic distribution among processors
in the recursion base case and requires local data reshuffling after each
communication round. Another advantage of our blocked data layout is a
full compatibility with the block-cyclic one, which is used in other linear-
algebra libraries.

3.8 evaluation

We evaluate COSMA’s communication volume and performance against
other state-of-the-art implementations with various combinations of ma-
trix dimensions and memory requirements. These scenarios include both
synthetic square matrices, in which all algorithms achieve their peak perfor-
mance, as well as “flat” (two large dimensions) and real-world “tall-and-
skinny” (one large dimension) cases with uneven number of processors.

Comparison Targets
As a comparison, we use the widely used ScaLAPACK library as provided
by Intel MKL (version: 18.0.2.199)2, as well as Cyclops Tensor Framework3,
and the original CARMA implementation4. We manually tune ScaLAPACK
parameters to achieve its maximum performance. Our experiments showed
that on Piz Daint it achieves the highest performance when run with
4 MPI ranks per compute node, 9 cores per rank. Therefore, for each
matrix sizes/node count configuration, we recompute the optimal rank
decomposition for ScaLAPACK. Remaining implementations use default
decomposition strategy and perform best utilizing 36 ranks per node, 1

core per rank.

Infrastructure and Implementation Details
All implementations were compiled using the GCC 6.2.0 compiler. We use
Cray-MPICH 3.1 implementation of MPI. The parallelism within a rank of
ScaLAPACK5 is handled internally by the MKL BLAS (with GNU OpenMP
threading) version 2017.4.196. To profile MPI communication volume, we
use the mpiP version 3.4.1 [134].

2 the latest version available on Piz Daint when benchmarks were performed (August 2018). No
improvements of P[S,D,C,Z]GEMM have been reported in the MKL release notes since then.

3 https://github.com/cyclops-community/ctf, commit ID 244561c on May 15, 2018

4 https://github.com/lipshitz/CAPS, commit ID 7589212 on July 19, 2013

5 only ScaLAPACK uses multiple cores per ranks
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Experimental Setup and Architectures
We run our experiments on the CPU partition of CSCS Piz Daint, which has
1,813 XC40 nodes with dual-socket Intel Xeon E5-2695 v4 processors (2 · 18
cores, 3.30 GHz, 45 MiB L3 shared cache, 64 GiB DDR3 RAM), intercon-
nected by the Cray Aries network with a dragonfly network topology. We
set p to a number of available cores6 and S to the main memory size per
core (Section 3.2.1). To additionally capture cache size per core, the model
can be extended to a three-level memory hierarchy. However, cache-size
tiling is already handled internally by the MKL.

Matrix Dimensions and Number of Cores
We use square (M = N = K), “largeK” (M = N � K), “largeM” (M� N =
K), and “flat” (M = N � K) matrices. The matrix dimensions and number
of cores are (1) powers of two M = 2r1 , N = 2r2 , M = 2r3 , (2) determined
by the real-life simulations or hardware architecture (available nodes on
a computer), (3) chosen adversarially, e.g, N3 + 1. Tall matrix dimensions
are taken from an application benchmark, namely the calculation of the
random phase approximation (RPA) energy of water molecules [40]. There,
to simulate w molecules, the sizes of the matrices are M = N = 136w and
K = 228w2. In the strong scaling scenario, we use w = 128 as in the original
paper, yielding M = N = 17,408, K = 3,735,552. For performance runs, we
scale up to 512 nodes (18,432 cores).

Selection of Benchmarks
We perform both strong scaling and memory scaling experiments. The mem-
ory scaling scenario fixes the input size per core ( pS

I , I = MN + MK + NK),
as opposed to the work per core ( MNK

p 6= const). We evaluate two cases: (1)

"limited memory" ( pS
I = const), and (2) "extra memory" ( p2/3S

I = const).
To provide more information about the impact of communication op-

timizations on the total runtime, for each of the matrix shapes we also
separately measure time spent by COSMA on different parts of the code.
for each matrix shape we present two extreme cases of strong scaling - with
smallest number of processors (most compute-intense) and with the largest
(most communication-intense). To additionally increase information pro-
vided, we perform these measurements with and without communication–
computation overlap.

6 for ScaLAPACK, actual number of MPI ranks is p/9
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Programming Models
We use either the RMA or the Message Passing models. CTF also uses both
models, whereas CARMA and ScaLAPACK use MPI two-sided (Message
Passing).

Experimentation Methodology
For each combination of parameters, we perform 5 runs, each with different
node allocation. As all the algorithms use BLAS routines for local matrix
computations, for each run we execute the kernels three times and take the
minimum to compensate for the BLAS setup overhead. We report median
and 95% confidence intervals of the runtimes.

3.9 results

We now present the experimental results comparing COSMA with the
existing algorithms. For both strong and memory scaling, we measure total
communication volume and runtime on both square and tall matrices. Our
experiments show that COSMA always communicates least data and is the
fastest in all scenarios.

total comm. volume per rank [MB] speedup

shape benchmark ScaLAPACK CTF CARMA COSMA min mean max

A C

B strong scaling 203 222 195 107 1.07 1.94 4.81
limited memory 816 986 799 424 1.23 1.71 2.99
extra memory 303 350 291 151 1.14 2.03 4.73

A C

B
strong scaling 2636 2278 659 545 1.24 2.00 6.55
limited memory 368 541 128 88 1.30 2.61 8.26
extra memory 133 152 48 35 1.31 2.55 6.70

C

B

A

strong scaling 3507 2024 541 410 1.31 2.22 3.22
limited memory 989 672 399 194 1.42 1.7 2.27
extra memory 122 77 77 29 1.35 1.76 2.8

A C

B strong scaling 134 68 10 7 1.21 4.02 12.81
limited memory 47 101 26 8 1.31 2.07 3.41
extra memory 15 15 10 3 1.5 2.29 3.59

overall 1.07 2.17 12.81

Table 3.4: Average communication volume per MPI rank and measured speedup of COSMA
vs the second-best algorithm across all core counts for each of the scenarios.
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(a) Strong scaling, N = M = K = 16,384 (b) Strong scaling, N = M =17,408, K =
3,735,552

(c) Limited memory, N = M = K =
√

pS
3 (d) Limited memory,M = N = 979p

1
3 ,

K =1.184p
2
3

(e) Extra memory,N = M = K =

√
p2/3S

3
(f) Extra memory„M = N = 979p

2
9 ,

K =1.184p
4
9

Figure 3.6: Total communication volume per core carried out by COSMA, CTF, ScaLAPACK
and CARMA for square and “largeK” matrices, as measured by the mpiP profiler.
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Summary and Overall Speedups
As discussed in Section 3.8, we evaluate three benchmarks – strong scaling,
“limited memory” (no redundant copies of the input are possible), and “ex-
tra memory” (p1/3 extra copies of the input can fit into combined memory
of all cores). Each of them we test for square, “largeK”, “largeM”, and , “flat”
matrices, giving twelve cases in total. In Table 3.4, we present arithmetic
mean of total communication volume per MPI rank across all core counts.
We also report the summary of minimum, geometric mean, and maxi-
mum speedups vs the second best-performing algorithm. Communication

Volume
As analyzed in Sections 3.5 and 3.6, COSMA reaches I/O lower bound
(up to the factor of

√
S/(
√

S + 1− 1)). Moreover, optimizations presented
in Section 3.7 secure further improvements compared to other state-of-the-
art algorithms. In all cases, COSMA performs least communication. Total
communication volume for square and “largeK” scenarios is shown in
Figure 3.6.

Square Matrices
Figure 3.7 presents the % of achieved peak hardware performance and total
runtime for square matrices in all three scenarios. As COSMA is based on
the near optimal schedule, it achieves the highest performance in all cases.
Moreover, its performance pattern is the most stable: when the number of
cores is not a power of two, the performance does not vary much compared
to all remaining three implementations. We note that matrix dimensions
in the strong scaling scenarios (M = N = K = 214) are very small for
distributed setting. Yet even in this case COSMA maintains relatively high
performance for large numbers of cores: using 4k cores it achieves 35% of
peak performance, compared to <5% of CTF and ScaLAPACK, showing
excellent strong scaling characteristics.

Tall and Skinny Matrices
Figure 3.8 presents the results for “largeK” matrices. For strong scaling,
the minimum number of cores is 2048 (otherwise, the matrices of size
M = N =17,408, K =3,735,552 do not fit into memory). Again, COSMA
shows the most stable performance with a varying number of cores.

“Flat” Matrices
Matrix dimensions for strong scaling are set to M = N = 217 =131,072

and K = 29 =512. Our weak scaling scenario models the rank-K update
kernel, with fixed K =256, and M = N scaling accordingly for the “limited”
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and “extra” memory cases. Such kernels take most of the execution time in,
e.g., matrix factorization algorithms, where updating Schur complements is
performed as a rank-K gemm operation [47].

Unfavorable Number of Processors
Due to the processor grid optimization (Section 3.7.1), the performance is
stable and does not suffer from unfavorable combinations of parameters.
E.g., the runtime of COSMA for square matrices M = N = K =16,384

on p1 =9,216= 210 · 32 cores is 142 ms. Adding an extra core (p2 =9,217=
13 · 709), does not change COSMA’s runtime, as the optimal decomposition
does not utilize it. On the other hand, CTF for p1 runs in 600 ms, while
for p2 the runtime increases to 1613 ms due to a non-optimal processor
decomposition.

Communication-Computation Breakdown
In Figure 3.9 we present the total runtime breakdown of COSMA into com-
munication and computation routines. Combined with the comparison of
communication volumes (Figure 3.6, Table 3.4) we see the importance of our
I/O optimizations for distributed setting even for traditionally compute-
bound MMM. E.g., for square or “flat” matrix and 16k cores, COSMA
communicates more than two times less than the second-best (CARMA).
Assuming constant time-per-MB, COSMA would be 40% slower if it com-
municated that much, being slower than CARMA by 30%. For “largeK”,
the situation is even more extreme, with COSMA suffering 2.3 times slow-
down if communicating as much as the second-best algorithm, CTF, which
communicates 10 times more.

Detailed Statistical Analysis
Figure 3.10 provides a distribution of the achieved peak performance across
all numbers of cores for all six scenarios. It can be seen that, for example,
in the strong scaling scenario and square matrices, COSMA is comparable
to the other implementations (especially CARMA). However, for tall-and-
skinny matrices with limited memory available, COSMA lowest achieved
performance is higher than the best performance of CTF and ScaLAPACK.



3.9 results 75

(a) Strong scaling, N = M = K = 16,384, % of
peak performance

(b) Strong scaling, N = M = K = 16,384, total
runtime

(c) Limited memory, N = M = K =
√

pS
3 , % of

peak performance
(d) Limited memory, N = M = K =

√
pS
3 , total

runtime

(e) Extra memory, M = N = K =

√
p2/3S

3 , % of
peak performance

(f) Extra memory, M = N = K =
√
(p2/3S)/3,

total runtime

Figure 3.7: Achieved % of peak performance and total runtime by COSMA, CTF, ScaLA-
PACK and CARMA for square matrices, strong and weak scaling. We show
median and 95% confidence intervals.
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(a) Strong scaling, N = M =17,408, K =
3,735,552, % of peak performance

(b) Strong scaling, N = M =17,408, K =
3,735,552, total runtime

(c) Limited memory, M = N = 979p
1
3 ,

K =1.184p
2
3 , % of peak performance

(d) Limited memory, M = N = 979p
1
3 ,

K =1.184p
2
3 , total runtime

(e) Extra memory,M = N = 979p
2
9 ,

K =1.184p
4
9 , % of peak performance

(f) Extra memory, M = N = 979p
2
9 ,

K =1.184p
4
9 , total runtime

Figure 3.8: Achieved % of peak performance and total runtime by COSMA, CTF, ScaLA-
PACK and CARMA for “largeK” matrices. We show median and 95% confidence
intervals.
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Figure 3.9: Time distribution of COSMA communication and computation kernels for strong
scaling executed on the smallest and the largest core counts for each of the matrix
shapes. Left bar: no communication–computation overlap. Right bar: overlap
enabled.

Figure 3.10: Distribution of achieved % of peak performance of the algorithms across all
number of cores for “flat” and square matrices.

Figure 3.11: Distribution of achieved % of peak performance of the algorithms across all
number of cores for tall-and-skinny matrices.
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3.10 related work

Works on data movement minimization may be divided into two categories:
applicable across memory hierarchy (vertical, also called I/O minimization),
or between parallel processors (horizontal, also called communication mini-
mization). Even though they are “two sides of the same coin”, in literature
they are often treated as separate topics. In our work we combine them:
analyze trade–offs between communication optimal (distributed memory)
and I/O optimal schedule (shared memory).

3.10.1 General I/O Lower Bounds

Hong and Kung [22] analyzed the I/O complexity for general CDAGs
in their the red-blue pebble game, on which we base our work. As a
special case, they derived an asymptotic bound Ω

(
N3/
√

S
)

for MMM.
Elango et al. [24] extended this work to the red-blue-white game and
Liu and Terman [130] proved that it is also P-SPACE complete. Irony et
al. [51] extended the MMM lower bound result to a parallel machine with
p processors, each having a fast private memory of size S, proving the

N3

2
√

2p
√

S
− S lower bound on the communication volume per processor.

Chan [135] studied different variants of pebble games in the context of
memory space and parallel time. Aggarwal and Vitter [23] introduced
a two-memory machine that models a blocked access and latency in an
external storage. Arge et al. [125] extended this model to a parallel machine.
Solomonik et al. [37] combined the communication, synchronization, and
computation in their general cost model and applied it to several linear
algebra algorithms. Smith and van de Geijn [56] derived a sequential lower
bound 2MNK/

√
S− 2S for MMM. They showed that the leading factor

2MNK/
√

S is tight. We improve this result by 1) improving an additive
factor of 2S, but more importantly 2) generalizing the bound to a parallel
machine. Our work uses a simplified model, not taking into account the
memory block size, as in the external memory model, nor the cost of
computation. We motivate it by assuming that the block size is significantly
smaller than the input size, the data is layout contiguously in the memory,
and that the computation is evenly distributed among processors.
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3.10.2 Shared Memory Optimizations

I/O optimization for linear algebra includes such techniques as loop tiling
and skewing [48], interchanging and reversal [136]. For programs with mul-
tiple loop nests, Kennedy and McKinley [137] showed various techniques
for loop fusion and proved that in general this problem is NP-hard. Later,
Darte [138] identified cases when this problem has polynomial complexity.

Toledo [139] in his survey on Out-Of-Core (OOC) algorithms analyzed
various I/O minimizing techniques for dense and sparse matrices. Mo-
hanty [140] in his thesis optimized several OOC algorithms. Irony et al. [51]
proved the I/O lower bound of classical MMM on a parallel machine.
Ballard et al. [12] proved analogous results for Strassen’s algorithm. This
analysis was extended by Scott et al. [141] to a general class of Strassen-like
algorithms.

Although we consider only dense matrices, there is an extensive literature
on sparse matrix I/O optimizations. Bender et al. [142] extended Aggarwal’s
external memory model [23] and showed I/O complexity of the sparse
matrix-vector (SpMV) multiplication. Greiner [143] extended those results
and provided I/O complexities of other sparse computations.

3.10.3 Distributed Memory Optimizations

Distributed algorithms for dense matrix multiplication date back to the
work of Cannon [60], which has been analyzed and extended many
times [144] [126]. In the presence of extra memory, Aggarwal et al. [63] in-
cluded parallelization in the third dimension. Solomonik and Demmel [52]
extended this scheme with their 2.5D decomposition to arbitrary range of
the available memory, effectively interpolating between Cannon’s 2D and
Aggarwal’s 3D scheme. A recursive, memory-oblivious MMM algorithm
was introduced by Blumofe et al. [145] and extended to rectangular matri-
ces by Frigo et al. [146]. Demmel el al. [64] introduced CARMA algorithm
which achieves the asymptotic complexity for all matrix and memory sizes.
We compare COSMA with these algorithms, showing that we achieve better
results both in terms of communication complexity and the actual run-
time performance. Lazzaro et al. [147] used the 2.5D technique for sparse
matrices, both for square and rectangular grids. Koanantakool et al. [148]
observed that for sparse-dense MMM, 1.5D decomposition performs less
communication than 2D and 2.5D schemes, as it distributes only the sparse
matrix.
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3.11 summary

In this chapter we present a new method (Lemma 3.3) for assessing tight
I/O lower bounds of algorithms using their CDAG representation and the
red-blue pebble game abstraction. As a use case, we prove a tight bound for
MMM, both for a sequential (Theorem 3.1) and parallel (Theorem 3.2) exe-
cution. Furthermore, our proofs are constructive: our COSMA algorithm is
near I/O optimal (up to the factor of

√
S√

S+1−1
, which is less than 0.04% from

the lower bound for 10MB of fast memory) for any combination of matrix di-
mensions, number of processors and memory sizes. This is in contrast with
the current state-of-the-art algorithms, which are communication-inefficient
in some scenarios.

To further increase the performance, we introduce a series of opti-
mizations, both on an algorithmic level (processor grid optimization (Sec-
tion 3.7.1) and blocked data layout (Section 3.7.6)) and hardware-related (en-
hanced communication pattern (Section 3.7.2), communication–computation
overlap (Section 3.7.3), one-sided (Section 3.7.4) communication). The ex-
periments confirm the superiority of COSMA over the other analyzed
algorithms - our algorithm significantly reduces communication in all
tested scenarios, supporting our theoretical analysis. Most importantly,
our work is of practical importance, being maintained as an open-source
implementation and achieving a time-to-solution speedup of up to 12.8x
times compared to highly optimized state-of-the-art libraries.

The important feature of our method is that it does not require any
manual parameter tuning and is generalizable to other machine models
(e.g., multiple levels of memory) and linear algebra kernels. In the following
chapter, we extend this analysis to LU or Cholesky factorizations. We
believe that the “bottom-up” approach will lead to developing more efficient
distributed algorithms in the future.



4
I / O O P T I M A L M AT R I X FA C T O R I Z AT I O N S

This chapter presents our work published at the SC’21 conference [149]. It is
a continuation of the previous Chapter, both in terms of theory (extending the
X-Partitioning to a general class of programs), as well as practice (matrix multipli-
cation is one of the building blocks of matrix factorizations). The COnf LUX library
was developed by me, Marko Kabić from CSCS, Alexandros Nikolaos Ziogas, and
two of my students: André Gaillard and Jens Eirik Saethre.

4.1 introduction

Matrix factorizations, such as LU and Cholesky decompositions, play a
crucial role in many scientific computations [104, 121, 150], and their per-
formance can dominate the overall runtime of entire applications [151].
Therefore, accelerating these routines is of great significance for numer-
ous domains [40, 68]. The ubiquity and importance of LU factorization
is even reflected by the fact that it is used to rank top supercomputers
worldwide [152].

Since the arithmetic complexity of matrix factorizations is O(N3) while
the input size is O(N2), these kernels are traditionally considered compute-
bound. However, the end of Dennard scaling [26] puts increasing pressure
on data movement minimization, as the cost of moving data far exceeds its
computation cost, both in terms of power and time [153, 154]. Thus, deriving
algorithmic I/O lower bounds is a subject of both theoretical analysis [22,
51, 57] and practical value for developing I/O-efficient schedules [37, 113,
155].

While asymptotically optimal matrix factorizations were proposed,
among others, by Ballard et al. [53] and Solomonik et al. [52, 155], we
observe two major challenges with the existing approaches: First, the pre-
sented algorithms are only asymptotically optimal: the I/O cost of these
proposed parallel algorithms can be as high as 7 times the lower bound
for LU [52] and up to 16 times for Cholesky [155]. This means that they
communicate less than “standard” 2D algorithms like ScaLAPACK [127]
only for almost prohibitively large numbers of processors — e.g., according
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Figure 4.1: Left: measured runtime speedup of COnfLUX vs. fastest state-of-the-art li-
brary (S=SLATE [156], C=CANDMC [157], S=MKL [158]). Right: COnfLUX’s
achieved % of machine peak performance.

to the LU cost model [52], it requires more than 15,000 processors to commu-
nicate less than an optimized 2D algorithm. Second, their time-to-solution
performance can be worse than highly-optimized, existing 2D-parallel li-
braries [155].

To tackle these challenges, we first provide a general method for deriving
precise I/O lower bounds of Disjoint Array Access Programs (DAAP) — a
broad range of programs composed of a sequence of statements enclosed
in an arbitrary number of nested loops. We then illustrate the applicability
of our framework to derive parallel I/O lower bounds of Cholesky and
LU factorizations: 1

3
N3

p
√

S
and 2

3
N3

p
√

S
elements, respectively, where N is the

matrix size, p is the number of processors, and S is the local memory size.
Moreover, we use the insights from deriving the above lower bounds to

develop COnf LUX and COnf CHOX, near communication-optimal parallel
LU and Cholesky factorization algorithms that minimize data movement
across the 2.5D processor decomposition. For LU factorization, to further
reduce the latency and bandwidth cost, we use a row-masking tournament
pivoting strategy resulting in a communication requirement of N3

p
√

S
+O(N2

p )

elements per processor, where the leading order term is only 1.5 times
the lower bound. Furthermore, to secure high performance, we carefully
tune block sizes and communication routines to maximize the efficiency
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of local computations such as trsm (triangular solve) and gemm (matrix
multiplication).

MATRIX FACTORIZATIONS (SECTIONS 4.6-4.10)

GENERAL I/O LOWER BOUNDS (SECTIONS 4.2-4.5)

▪Optimized layout 
transformations 
(COSTA)

▪ Tuned block sizes
▪ local densification
▪BLAS optimizations

Input program (Sec. 4.2.2)

for (k=0; k<N; k++) {

for (i=k+1; k<N; i++){

A[i,k] /= A[k,k];

for (j=k+1;j<N; j++){

A[i,j] -= A[I,k]

*A[k,j];}}}

cDAG,  (Sec. 4.2.3) X-partitioning, comp. 
intensity     (Sec. 4.2.3)

.

.

.

How to represent 
a schedule?

How to bound 
the I/O cost?

How to find  
and                      ?
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.       (Sec 4.3.1)
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Lemma 4.3
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Parallel I/O Lower 
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Near-I/O optimal 
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Figure 4.2: From the input program through the I/O lower bounds to communication-
minimizing parallel schedules and high performing implementations. In this paper,
we mainly focus on the Cholesky and LU factorizations. The proofs of the lemmas
presented in this work can be found in the AD/AE appendix.

We measure both communication volume and achieved performance of
COnf LUX and COnf CHOX and compare them to state-of-the-art libraries: a
vendor–optimized Intel MKL [158], SLATE [156] (a recent library targeting
exascale systems), as well as CANDMC [157, 159] and CAPITAL [155,
160] (codes based on the asymptotically optimal 2.5D decomposition). In
our experiments on the Piz Daint supercomputer, we measure up to 1.6x
communication reduction compared to the second-best implementation.
Furthermore, our 2.5D decomposition communicates asymptotically less
than SLATE and MKL, with even greater expected benefits on exascale
machines. Compared to the communication-avoiding CANDMC library
with I/O cost of 5N3/(p

√
S) elements [52], COnf LUX communicates five

times less. Most importantly, our implementations outperform all compared
libraries in almost all scenarios, both for strong and weak scaling, reducing
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the time-to-solution by up to three times compared to the second best
performing library (Figure 4.1).
In this work, we make the following contributions:

• A general method for deriving parallel I/O lower bounds of a broad
range of linear algebra kernels.

• COnf LUX and COnf CHOX, provably near-I/O-optimal parallel algo-
rithms for LU and Cholesky factorizations, with their full communication
volume analysis.

• Open-source and fully ScaLAPACK-compatible implementations of our
algorithms that outperform existing state-of-the-art libraries in almost all
scenarios.

A bird’s eye view of our work is presented in Figure 4.2.

4.2 background

We now establish the background for our theoretical model (Sections 4.3-
4.5). We use it to derive parallel I/O lower bounds for Cholesky and LU
factorizations (Section 4.6) that will guide the design of our communication-
minimizing implementations (Section 4.7).

4.2.1 Machine Model

We use similar machine model to the one introduced in Chapter 3. Here we
briefly outline its key features.
Sequential machine. A computation is performed on a sequential machine
with a fast memory of limited size and unlimited slow memory. The fast
memory can hold up to S elements at any given time. To perform any
computation, all input elements must reside in fast memory, and the result
is stored in fast memory.
Parallel machine. The sequential model is extended to a machine with p
processors, each equipped with a private fast memory of size S. There is
no global memory of unlimited size — instead, elements are transferred
between processors’ fast memories.
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4.2.2 Input Programs

We consider a general class of programs that operate on multidimensional
arrays. Array elements can be loaded from slow to fast memory, stored from
fast to slow memory, and computed inside fast memory. These elements
have versions that are incremented every time they are updated. We model
the program execution as a computational directed acyclic graph (CDAG,
details in Section 4.2.3), where each vertex corresponds to a different version
of an array element. Thus, for a statement A[i, j]← f (A[i, j]), a vertex corre-
sponding to A[i, j] after applying f is different from a vertex corresponding
to A[i, j] before applying f . In a CDAG, this is expressed as an edge from
vertex A[i, j] before f to vertex A[i, j] after f . Initial versions of each ele-
ment do not have any incoming edges and thus form the CDAG inputs.
The distinction between elements and vertices is important for our I/O lower
bounds analysis, as we will investigate how many vertices are computed
for a given number of loaded vertices.

An input program is a collection of statements S enclosed in loop nests,
each of the following form (we use the loop nest notation introduced by
Dinh and Demmel [49]):

for ψ1 ∈ D1, for ψ2 ∈ D2(ψ1), . . . , for ψl ∈ Dl(ψ1, . . . , ψl−1) :

S : A0[φ0(ψ)]← f (A1[φ1(ψ)], A2[φ2(ψ)], . . . , Am[φm(ψ)]),

where (cf. Figure 4.3 for a summary) for each innermost loop iteration,
statement S is an evaluation of some function f on m inputs, where every
input is an element of array Aj, j = 1, . . . , m, and the result of f is stored to
the output array A0.

Each loop has an associated iteration variable ψt that iterates over
its domain ψt ∈ Dt. All l iteration variables form the iteration vector
ψ = [ψ1, . . . , ψl ]. Array elements are accessed by an access function vec-

tor φj = [φ1
j , . . . , φ

dim(Aj)

j ] that maps dim(Aj) iteration variables to a unique
element in array Aj (note that the access function vector is injective). Only
vertices associated with the newest element versions can be referenced.
Furthermore, a given vertex can be referenced by only one access function
vector per statement. We refer to this as the disjoint access property. The
access dimension of Aj(φj), denoted dim(Aj(φj)), is the number of different
iteration variables present in φj. We call such programs Disjoint Access
Array Programs.
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Example: Consider statement S1 of LU factorization (Figure 4.3). The loop
nest depth is l = 2, with two iteration variables ψ1 = k and ψ2 = i forming
the iteration vector ψ = [k, i]. For access A[k, k], the access function vector
φj = [k, k] is a function of only one iteration variable k. Therefore, dim(Aj) = 2,
but dim(Aj(φj)) = 1.

4.2.3 I/O Complexity and Pebble Games

We now establish the relationship between DAAP and the X-Partitioning
abstraction introduced in Chapter 3. For completeness, we briefly sketch
key features of the red-blue pebble game [22], dominator and minimum
sets, as well as the X-Partitioning itself. For complete description, we refer
readers to Chapter 3.

4.2.3.1 CDAG and the red-blue pebble game

Every vertex v ∈ V represents the result of a unique computation stored in
some memory, and a directed edge (u, v) ∈ E represents a data dependency.
Vertices without any incoming (outgoing) edges are called inputs (outputs).
To perform a computation, i.e., to evaluate the value corresponding to
vertex v, all vertices that are direct predecessors of v must be loaded into
fast memory. The vertices that are currently in fast memory are marked by
a red pebble on the corresponding vertex of the CDAG. Since the size of
fast memory is limited, we can never have more than S red pebbles on the
CDAG at any moment. Analogously, the contents of the slow memory (of
unlimited size) is represented by an unlimited number of blue pebbles.

4.2.3.2 Dominator and Minimum Sets

For any subset of vertices H ⊂ V, a dominator set Dom(H) is a set such that
every path in the CDAG from an input vertex to any vertex in H must
contain at least one vertex in Dom(H). In general, for a givenH, its Dom(H)
is not uniquely defined. The minimum set Min(H) is the set of all vertices in
H that do not have any immediate successors in H. In this work, to avoid
the ambiguity of non-uniqueness of dominator set size (in principle, for
any subset, its valid dominator set is always the whole V), we will refer
to Dommin(H) as a minimum dominator set, i.e. a dominator set with the
smallest size.
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Intuition. One can think of H’s dominator set as a set of inputs required to
execute subcomputation H, and of H’s minimum set as the output of H. We
use the notions of Dommin (H) and Min (H) when proving I/O lower bounds.
Intuitively, we bound computation “volume” (number of vertices in H) by its
communication “surface”, comprised of its inputs - vertices in Dommin (H) - and
outputs - vertices in Min(H).

4.2.3.3 X-Partitioning

Introduced in Chapter 3, X-Partitioning generalizes the S-partitioning ab-
straction [22]. An X-partition of a CDAG is a collection of s mutually disjoint
subsets (referred to as subcomputations) S(X) = {H1, . . . ,Hs},

⋃s
i=1Hi = V

with two additional properties:

• S(X) has no cyclic dependencies between subcomputations.

• ∀H, |Dommin (H)| ≤ X and |Min (H)| ≤ X.

For a given CDAG and for any given X > S, let Π(X) denote a set of all
its valid X-partitions, S(X) ∈ Π(X). In Chapter 3 we prove that an I/O
optimal schedule of G that performs Q load and store operations has an
associated X-partition Sopt(X) ∈ Π(X) with size |Sopt(X)| ≤ Q+X−S

X−S for
any X > S (Lemma 3.3).

4.2.3.4 Deriving lower bounds

To bound the I/O cost, we further need the computational intensity ρ. For each
subcomputation Hi, ρi is defined as a ratio of the number of computations
(vertices) in Hi to the number of I/O operations required to pebble Hi,
where the latter is bounded by the size of the dominator set Dom(Hi).

Observe that Lemma 3.4 requires the sizes of the maximum reuse set
R(S) and the minimum I/O set T(S). Knowing them in advance may be
infeasible in the general case. However, we can bound them by R(S) ≤ S
and T(S) ≥ 0. Substituting these bounds to Lemma 3.4, we obtain the
following result:

Lemma 4.1. For any constant Xc, the number of I/O operations Q required
to pebble a CDAG G = (V, E) with |V| = n vertices using S red pebbles is
bounded by Q ≥ n/ρ, where ρ = |Hmax |

Xc−S is the maximal computational intensity
and Hmax = arg maxH∈S(Xc)

|H| is the largest subcomputation among all valid
Xc-partitions.
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4.3 general sequential i/o lower bounds

We now present our method for deriving the I/O lower bounds of a sequen-
tial execution of programs in the form defined in Section 4.2.2. Specifically,
in Section 4.3.2 we derive I/O bounds for programs that contain only a sin-
gle statement. In Section 4.4 we extend our analysis to capture interactions
and reuse between multiple statements.

We start by stating our key lemma:

Lemma 4.2. If |Hmax| can be expressed as a closed-form function of X, that is if
there exists some function χ such that |Hmax| = χ(X), then the lower bound on
Q can be expressed as

Q ≥ n
(X0 − S)

χ(X0)
,

where X0 = arg minX ρ = arg minX
χ(X)
X−S .

Intuition. χ(X) expresses computation “volume”, while X is its input “surface”.
The term X− S bounds the required communication and it comes from the fact that
not all inputs have to be loaded (at most S of them can be reused). X0 corresponds
to the situation where the ratio of this “volume” to the required communication is
minimized (corresponding to a highest lower bound).

Proof. Note that Lemma 4.1 is valid for any Xc (i.e., for any Xc, it gives a
valid lower bound). Yet, these bounds are not necessarily tight. As we want
to find tight I/O lower bounds, we need to maximize the lower bound. X0
by definition minimizes ρ; thus, it maximizes the bound. Lemma 4.2 then
follows directly from Lemma 4.1 by substituting ρ = χ(X0)

X0−S .

Note. If function χ(X) is differentiable and has a global minimum, we

can find X0 by, e.g., solving the equation
d χ(X)

X−S
dX = 0. The key limitation

is that it is not always possible to find χ, that is, to express |Hmax| solely
as a function of X. However, for many linear algebra kernels χ(X) exists.
Furthermore, one can relax this problem preserving the correctness of the
lower bound, that is, by finding a function χ̂ : ∀Xχ̂(X) ≥ χ(X).

To find χ(X), we take advantage of the DAAP structure. Observe that
every computation (and therefore, every compute vertex v ∈ V in the
CDAG G = (V, E)) is executed in a different iteration of the loop nest, and
thus, there is a one-to-one mapping from a value of the iteration vector ψ to
the compute vertex v. Moreover, each vertex accessed from any of the input
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arrays Ai is also associated with some iteration vector value - however, if
dim(Ai) < l, this is a one-to-many relation, as the same input vertex may
be used to evaluate multiple compute vertices v. This is, in fact, the source
of the data reuse, and exploiting this relation is a key to minimizing the
I/O cost. If for all input arrays Ai we have that dim(Ai) = l, then for each
compute vertex v, m different, unique input vertices are required, there is
no data reuse and it implies a trivial computational intensity ρ = 1

m .
The high-level idea of our method is to count how many different iteration

vector values φ can be formed if we know how many different values each iteration
variable φ1, . . . , φl takes. We now formalize this in Lemmas 4.3-4.8.

4.3.1 Iteration vector, iteration domain, access set

Each execution of statement S is associated with the iteration vector value
ψ = [ψ1, . . . , ψl ] ∈Nl representing the current iteration, that is, the values
of iteration variables ψ1, . . . ,ψl . Each subcomputation H is uniquely defined
by all iteration vectors’ values associated with vertices pebbled in H =
{ψ1, . . . , ψ|H|}. For each iteration variable ψt, t = 1, . . . , l, denote the set of
all values that ψt takes during H as Dt. We define D = [D1, . . . , Dt] ⊆ D as
the iteration domain of subcomputation H.

Furthermore, recall that each input access Aj[φj(ψ)] is uniquely defined

by dim(φj) iteration variables ψ1
j , . . . , ψ

dim(φj)

j . Denote the set of all values

each of ψk
j takes during H as Dk

j . Given D, we also denote the number of
different vertices that are accessed from each input array Aj as |Aj(D)|.

We now state the lemma which bounds |H| by the iteration sets’ sizes
|Dt| (the intuition behind the lemma is depicted in Figure 4.4):

Lemma 4.3. Given the ranges of all iteration variables Dt, t = 1, . . . , l during
subcomputation H, if |H| = ∏l

t=1 |Dt|, then ∀j = 1, . . . , m : |Aj(D)| =

∏
dim(φj)

k=1 |Dk
j | and |H| is maximized among all valid subcomputations that it-

erate over D = [D1, . . . , Dt].

Intuition. Lemma 4.3 states that if each iteration variable ψt, t = 1, . . . , l takes
|Rt

h| different values, then there are at most ∏l
t=1 |Dt| different iteration vectors

ψ which can be formed in H. So, intuitively, to maximize |H|, all combinations of
values ψt should be evaluated. On the other hand, this also implies maximization

of all access sizes |Aj(D)| = ∏
dim(φj)

k=1 |Dk
j |.

To prove it, we now introduce two auxiliary lemmas:
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Lemma 4.4. For statement S, the size |H| of subcomputation H (number of
vertices of S computed during H) is bounded by the sizes of the iteration variables’
sets Rt

h, t = 1, . . . , l:

|H| ≤
l

∏
t=1
|Dt|. (4.1)

Proof. Inequality 5.2 follows from a combinatorial argument: each com-
putation in H is uniquely defined by its iteration vector [ψ1, . . . , ψl ]. As
each iteration variable ψt takes |Rt

h| different values during H, we have
|R1

h| · |R
2
h| · · · · · |R

t
h| = ∏l

t=1 |Dt| ways how to uniquely choose the iteration
vector in H.

Now, given D, we want to assess how many different vertices are accessed
for each input array Aj. Recall that this number is denoted as access size
|Aj(D)|.

We will apply the same combinatorial reasoning to Aj(D). For each
access Aj[φj(ψ)], each one of ψk

j , k = 1, . . . , dim(φj) iteration variables

loops over set Rk
h,j during subcomputation H. We can thus bound size of

Aj(D) similarly to Lemma 5.1:

Lemma 4.5. The access size |Aj(D)| of subcomputation H (the number of vertices
from the array Aj required to compute H) is bounded by the sizes of dim(φj)

iteration variables’ sets Rk
h,j, k = 1, . . . , dim(φj):

∀j=1,...,m : |Aj(D)| ≤
dim(φj)

∏
k=1

|Dk
j | (4.2)

where Dk
j 3 ψk

j is the set over which iteration variable ψk
j iterates during H.

Proof. We use the same combinatorial argument as in Lemma 5.1. Each

vertex in Aj(D) is uniquely defined by [ψ1
j , . . . , ψ

dim(φj)

j ]. Knowing the

number of different values each ψk
j takes, we bound the number of different

access vectors φj(ψh).

Example: Consider once more statement S1 from LU factorization in Figure 4.3.
We have φ0 = [i, k], φ1 = [i, k], and φ2 = [k, k]. Denote the iteration subdomain for
subcomputation H as D = {[k1, i1], . . . , [k|H|, i|H|] }, where each variable k and
i iterates over its set kg ∈ {ψk,1, . . . , ψk,K} = Dk and ig ∈ {ψi,1, . . . , ψi,I} = Di,
for g = 1, . . . , |H|. Denote the sizes of these sets as |Dk| = K and |Di| = I, that is,
during H, variable k takes K different values and i takes I different values. For φ1,
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both iteration variables used are different: k and i. Therefore, we have (Equation 5.3)
|A1(D)| ≤ Kh · Ih. On the other hand, for φ2, the iteration variable k is used
twice. Recall that the access dimension is the minimum number of different iteration
variables that uniquely address it (Section 4.2.2), so its dimension is dim(A2) = 1
and the only iteration variable needed to uniquely determine φ2 is k. Therefore,
|A2(D)| ≤ Kh.

Dominator set. Input vertices A1, . . . , Am form a dominator set of vertices
A0, because any path from graph inputs to any vertex in A0 must include
at least one vertex from A1, . . . , Am. This is also the minimum dominator set,
because of the disjoint access property (Section 4.2.2): any path from graph
inputs to any vertex in A0 can include at most one vertex from A1, . . . , Am.

Proof of Lemma 4.3. For subcomputation H, we have |⋃m
j=1 Aj(D)| ≤ X

(by the definition of an X-partition). Again, by the disjoint access prop-
erty, we have ∀j1 6= j2 : Aj1(D) ∩ Aj2(D) = ∅. Therefore, we also have
|⋃m

j=1 Aj(D)| = ∑m
j=1 |Aj(D)|. We now want to maximize |H|, that is to

find Hmax to obtain computational intensity ρ (Lemma 4.2).
Now we prove that to maximize |H|, inequalities 5.2 and 5.3 must be

tight (become equalities).
From proof of Lemma 5.1 it follows that |H| is maximized when iteration

vector ψ takes all possible combinations of iteration variables ψt ∈ Dt

during H. But, as we visit each combination of all l iteration variables, for

each access Aj every combination of its [ψ1
j , . . . , ψ

dim(φj)

j ] iteration variables
is also visited. Therefore, for every j = 1, . . . , m, each access size |Aj(D)|
is maximized (Lemma 5.2), as access functions are injective, which implies

that for each combination of [ψ1
j , . . . , ψ

dim(φj)

j ], there is one access to Aj.

∏l
t=1 |Rt

h| is then the upper bound on |H|, and its tightness implies that all

bounds on access sizes |Aj(D)| ≤ ∏
dim(φj)

k=1 |Dk
j | are also tight.

Intuition. Lemma 4.3 states that if each iteration variable ψt, t = 1, . . . , l takes
|Dt| different values, then there are at most ∏l

t=1 |Dt| different iteration vector
values ψ that can be formed in H. Thus, to maximize |H| all combinations of values
of ψt should be evaluated. On the other hand, this also implies the maximization

of all access sizes |Aj(D)| = ∏
dim(φj)

k=1 |Dk
j |. This result is more general than, e.g.,

polyhedral techniques [57, 161, 162] as it does not require loop nests to be affine.
Instead, it solely relies on set algebra and combinatorial methods.
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4.3.2 Finding the I/O Lower Bound

Denoting Hmax = arg maxH∈P(X) |H| as the largest subcomputation among
all valid X-partitions, we use Lemma 4.3 and combine it with the dominator
set constraint from Section 4.2.3.3. Note that all access set sizes are strictly
positive integers |Dt| ∈ N+, t = 1, . . . , l. Otherwise, if any of the sets is
empty, no computation can be performed. However, as we only want to
find the bound on the number of I/O operations, we relax the integer
constraints and replace them with |Dt| ≥ 1. Then, we formulate finding
χ(X) (Lemma 4.2) as the following optimization problem:

max
l

∏
t=1
|Dt| s.t.

m

∑
j=1

dim(φj)

∏
k=1

|Dk
j | ≤ X

∀1 ≥ t ≥ l : |Dt| ≥ 1 (4.3)

We then find |Hmax| = χ(X) as a function of X using Karush
–Kuhn–Tucker (KKT) conditions [163]. Next, we solve

d χ(X)
X−S
dX

= 0. (4.4)

Denoting X0 as the solution to Equation (4.4), we finally obtain

Q ≥ |V| (X0 − S)
χ(X0)

. (4.5)

Computational intensity and out-degree-one vertices. There exist CDAGs
where every non-input vertex has at least u ≥ 0 direct predecessors that are
input vertices with out-degree 1. We can use this fact to put an additional
bound on the computational intensity.

Lemma 4.6. If in a CDAG G = (V, E) every non-input vertex has at least u
direct predecessors with out-degree one that are graph inputs, then the maximum
computational intensity ρ of this CDAG is bounded by ρ ≤ 1

u .

Proof. By the definition of the red-blue pebble game, all inputs start in slow
memory, and therefore, have to be loaded. By the assumption on the CDAG,
to compute any non-input vertex v ∈ V, at least u input vertices need to
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have red pebbles placed on them using a load operation. Because these
vertices do not have any other direct successors (their out-degree is 1), they
cannot be used to compute any other non-input vertex w. Therefore, each
computation of a non-input vertex requires at least u unique input vertices
to be loaded.

Example: Consider Figure 4.5. In a), each compute vertex C[i, j] has two
input vertices: A[i, j] with out-degree 1, and b[j] with out-degree n, thus
u = 1. As both array A and vector b start in the slow memory (having
blue pebbles on each vertex), for each computed vertex from C, at least one
vertex from A has to be loaded, therefore ρ ≤ 1. In b), each computation
needs two out-degree 1 vertices, one from vector a and one from vector b,
resulting in u = 2. Thus, ρ ≤ 1

2 .

4.4 data reuse across multiple statements

Until now, we have analyzed each statement separately. However, almost
all computational kernels contain multiple statements connected by data
dependencies — e.g., a column update (S1) and a trailing matrix update
(S2) in LU factorization (Figure 4.3). The challenge here is that, in general,
I/O cost Q is not composable: due to the data reuse, the total I/O cost of
the program may be smaller than the sum of I/O costs of its constituent
kernels. In this section we examine how these dependencies influence the
total I/O cost of a program.

We derive I/O lower bounds for programs with w statements S1, . . . , Sw
in two steps. First, we analyze each statement Si separately, as in Section 4.3.
Then, we derive how many loads could be avoided at most during one
statement if another statement owned shared data. There are two cases
where data reuse can occur: I) input overlap, where shared arrays are inputs
for multiple statements, and II) output overlap, where the output array of
one statement is the input array of another.

Case I). Assume there are w statements in the program, and there are k ar-
rays Aj, j = 1, . . . , k that are shared between at least two statements. We still
evaluate each statement separately, but we will subtract the upper bound
on shared loads Qtot ≥ ∑w

i=1 Qi− ∑k
j=1 |Reuse(Aj)|, where |Reuse(Aj)| is

the reuse bound on array Aj (Section 4.4.1). Case II). Consider each pair
of “producer-consumer” statements S and T, that is, the output of S is the
input of T. The I/O lower bound QS of statement S does not change due to
the reuse, as the same number of loads has to be performed to evaluate S.
On the other hand, it may invalidate QT , as the dominator set of T formu-
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lated in Section 4.3.1 may not be minimal — inputs of a statement may not
be graph inputs anymore. For each “consumer” statement T, we reevaluate
Q′T ≤ QT using Lemma 4.8. Finally, for a program consisting of w state-
ments in total, connected by the output overlap, we have Qtot ≥ ∑w

i=1 Q′i.
Note that for each “producer” statement i, Q′i = Qi, i.e. output overlap
does not change their I/O lower bound.

4.4.1 Case I: Input Reuse and Reuse Size

Consider two statements S and T that share one input array Ai. Let
|Ai(RS)| denote the total number of accesses to Ai during the I/O op-
timal execution of a program that contains only statement S. Naturally,
|Ai(RT)| denotes the same for a program containing only T. Define
Reuse(Ai) := min{|Ai(RS)|, |Ai(RT)|}. We then have:

Lemma 4.7. The I/O cost of a program containing statements S and T that share
the input array Ai is bounded by

Qtot ≥ QS + QT − Reuse(Ai),

where QS, QT are the I/O costs of a program containing only statement S or T,
respectively.

Proof. Consider an optimal sequential schedule of a CDAG GS containing
statement S only. For any subcomputation Hs and its associated iteration
domain Rs its minimum dominator set is Dom(Hs) =

⋃m
j=1 Aj(Rs). To

compute HS, at least ∑m
i=1 |Aj(Rs)| − S vertices have to be loaded, as only

S vertices can be reused from previous subcomputations.
We seek if any loads can be avoided in the common schedule if we add

statement T, denoting its CDAG GS+T . Consider a subset Ai(Rx) of vertices
in Ai.

Consider some subset of vertices in Ai which potentially could be reused
and denote it Θi. Now denote all vertices in A0 (statement S) which depend
on any vertex from Θi as ΘS, and, analogously, set ΘT for statement T. Now
consider these two subsets ΘS and ΘT separately. If ΘS is computed before
ΘT , then it had to load all vertices from Θi, avoiding no loads compared to
the schedule of GS only. Now, computation of ΘT may take benefit of some
vertices from Θi, which can still reside in fast memory, avoiding up to |Θi|
loads.

The total number of avoided loads is bounded by the number of loads
from Ai which are shared by both S and T. Because statement S loads at
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most |Ai(RS)| vertices from Ai during optimal schedule of GS, and T loads
at most |Ai(RT)| of them for GT , the upper bound of shared, and possibly
avoided loads is Reuse(Ai) = min{|Ai(RS)|, |Ai(RT)|}.

The reuse size is defined as Reuse(Ai) = min{|Ai(RS)|, |Ai(RT)|}. Now,
how to find |Ai(RS)| and |Ai(RT)|?

Observe that |Ai(RS)| is a property of GS, that is, the CDAG containing
statement S only. Denote the I/O optimal schedule parameters of GS: VS

max,
XS

0 , and |Ai(RS
max(XS

0 ))| (Section 4.3.2). Similarly, for GT : VT
max, XT

0 , and
|Ai(RT

max(XT
0 ))|. We now derive: 1) at least how many subcomputations

does the optimal schedule have: s ≥ |V|
|Hmax | , 2) at least how many accesses

to Ai are performed per optimal subcomputation |Ai(Rmax(X0))|. Then:

Reuse(Ai) = min{|Ai(RS
max(XS

0 ))|
|VS|
|VS

max|
, (4.6)

|Ai(RT
max(XT

0 ))|
|VT |
|VT

max|
}

Note that Reuse(Ai) is an overapproximation of the actual reuse. Since
finding the optimal schedule is PSPACE-complete [130], we conservatively
assume that only the minimum number of loads from Ai is performed. Thus,
Lemma 4.7 generalizes to any number of statements S1, . . . , Sw sharing array
Ai — the total number of loads from Ai is lower-bounded by a maximum
number of loads from Ai among Sj, maxj=1,...,w |Ai(RSj)|.

4.4.2 Case II: Output Reuse and Access Sizes

Consider the case where the output A0 of statement S is also the input Bj
of statement T. Furthermore, consider subcomputation H of statement T
(and its associated iteration domain D). Any path from the graph inputs
to vertices in B0(D) must pass through vertices in Bj(D). The following
question arises: Is there a smaller set of vertices B′j(D), |B′j(D)| < |Bj(D)|
that every path from graph inputs to Bj(D) must pass through?

Let ρS denote computational intensity of statement S. With that, we can
state the following lemma:

Lemma 4.8. Any dominator set of set Bj(D) must be of size at least

|Dom(Bj(D))| ≥ |Bj(D)|
ρS

.
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Proof. By Lemma 4.1, for one loaded vertex, we may compute at most
ρS vertices of A0. These are also vertices of Bj. Thus, to compute |Bj(D)|
vertices of Bj, at least

|Bj(D)|
ρS

loads must be performed. We just need to show
that at least that many vertices have to be in any dominator set Dom(Bj(D)).
Now, consider the converse: There is a vertex set D = Dom(Bj(D)) such

that |D| < |Bj(D)|
ρS

. But that would mean, that we could potentially compute
all |Bj(D)| vertices by only loading |D| vertices, violating Lemma 4.1.

Corollary 4.1. Combining Lemmas 4.8 and 4.3, the data access size of |Bj(D)|
during subcomputation H is

|Dom(Bj(D))| ≥
∏

dim(φj)

k=1 |Dk
j |

ρS
. (4.7)

Similarly to case I, this result also generalizes to multiple “consumer”
statements that reuse the same output array of a “producer” statement, as
well as any combination of input and output reuse for multiple arrays and
statements. Since the actual I/O optimal schedule is unknown, the general
strategy to ensure correctness of our lower bound is to consider each pair
of interacting statements separately as one of these two cases. Since both
Lemma 4.7 and 4.8 overapproximate the reuse, the final bound may not
be tight - the more inter-statement reuse, the more overapporixmation is
needed. Still, this method can be successfully applied to derive tight I/O
lower bounds for many linear algebra kernels, such as matrix factorizations,
tensor products, or solvers.

4.5 general parallel i/o lower bounds

We now establish how our method applies to a parallel machine with p
processors (Section 4.2.1). Since we target large-scale distributed systems,
our parallel pebbling model differs from the one introduced e.g. by Alwen
and Serbinenko [164], which is inspired by shared-memory models like
PRAM [165]. Instead, we disallow sharing memory (pebbles) between the
processors, and enforce explicit communication — analogous to the load-
/store operations — using red and blue pebbles. This allows us to better
match the behavior of real, distributed applications that use, e.g., MPI.

Each processor pi owns its private fast memory that can hold up to S
words, represented in the CDAG as S vertices of color pi. Vertices with
different colors (belonging to different processors) cannot be shared between
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these processors, but any number of different pebbles may be placed on
one vertex.

All the standard red-blue pebble game rules apply with the following
modifications:

1. compute. Uf all direct predecessors of vertex v have pebbles of pi’s
color placed on them, one can place a pebble of color pi on v (no
sharing of pebbles between processors),

2. communication. If a vertex v has any pebble placed on it, a pebble of
any other color may be placed on this vertex.

From this game definition it follows that from a perspective of a single
processor pi, any data is either local (the corresponding vertex has pi’s
pebble placed on it) or remote, without a distinction on the remote location
(remote access cost is uniform).

Lemma 4.9. The minimum number of I/O operations in a parallel pebble game,
played on a CDAG with |V| vertices with p processors each equipped with S
pebbles, is Q ≥ |V|

p·ρ , where ρ is the maximum computational intensity, which is
independent of p (Lemma 4.1).

Proof. Following the analysis of Section 4.3 and the parallel machine model
(Section 4.5), the computational intensity ρ is independent of a number
of parallel processors - it is solely a property of a CDAG and private fast
memory size S. Therefore, following Lemma 4.1, what changes with p is the
volume of computation |V|, as now at least one processor will compute at
least |Vp| = |V|

p vertices. By the definition of the computational intensity, the
minimum number of I/O operations required to pebble these |Vp| vertices

is |Vp |
ρ .

4.6 i/o lower bounds of parallel factorization algorithms

We gather all the insights from Sections 4.2 to 4.5 and use them to obtain
the parallel I/O lower bounds of LU and Cholesky factorization algorithms,
which we use to develop our communication-avoiding implementations.

4.6.1 LU Factorization

In our I/O lower bound analysis we omit the row pivoting, since swapping
rows can increase the I/O cost by at most N2, which is the cost of permuting
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the entire matrix. However, the total I/O cost of the LU factorization is
O(N3/

√
S) [52].

LU factorization (without pivoting) contains two statements (Figure 4.3).
Observe that we can use Lemma 4.6 (out-degree one vertices) for statement
S1 : A[i,k] = A[i,k] / A[k,k]. The loop nest depth is lS1 = 2, with
iteration variables ψ1 = k and ψ2 = i. The dimension of the access function
vector (k,k) is 1, revealing potential for data reuse: every input vertex
A[k,k] is accessed N − k times and used to compute vertices A[i,k], k +
1 <= i < N. However, the access function vector (i,k) has dimension 2;
therefore, every compute vertex has one direct predecessor with out-degree
one, which is the previous version of element A[i,k]. Using Lemma 4.6,
we therefore have ρS1 ≤ 1.

We now proceed to statement S2 : A[i,j] = A[i,j] - A[i,k] *
A[k,j]. Let |Dk| = K, |Di| = I, |Dj| = J. Observe that there is an output
reuse (Section 4.4.2 and Figure 4.3, red arrow) of A[i,k] between statements
S1 and S2. We therefore have the following access size in statement S2:
|A2(DS2)| = | A[i,k]| = IK

ρS1
≥ IK (Equation 4.7). Note that in this case

where the computational intensity is ρS1 ≤ 1, the output reuse does not
change the access size |A2(DS2)| of statement S2. This follows the intuition
that it is not beneficial to recompute vertices if the recomputation cost is
higher than loading it from the memory. Denoting HS2 as the maximal
subcomputation for statement S2 over the subcomputation domain D, we
have the following (Lemma 4.3):

• |HS2| = KI J

• |A1(D)| = | A[i,j] | = I J

• |A2(D)| = | A[i,k] | = IK

• |A3(D)| = | A[k,j] | = KJ

• |Dom(HS2)| = |A1(D)|+ |A2(D)|+ |A3(D)| = I J + IK + KJ

We then solve the optimization problem from Section 4.3.2:

max KI J, s.t.

I J + IK + KJ ≤ X

I ≥ 1, J ≥ 1, K ≥ 1

Which gives |HS2| = χ(X) =
(

X
3

) 3
2

for K = I = J =
(

X
3

) 1
2
. Then,

we find X0 that minimizes the expression ρS2(X) = |Hmax |
X−S (Equation 4.4),
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yielding X0 = 3M. Plugging it into ρS2(X), we conclude that the maximum
computational intensity of S2 is bounded by ρS2 ≤

√
S/2.

We bounded the maximum computational intensities ρS1 and ρS2, that is,
the minimum number of I/O operations to compute vertices belonging to
statements S1 and S2. As the last step, we find the total number of compute
vertices for each statement: |V1| = ∑N

k=1(N − k − 1) = N(N − 1)/2, and
|V2| = ∑N

k=1 ∑N
i=k+1(N − k− 1) = N(N − 1)(N − 2)/3. Using Lemmas 4.1

(bounding I/O cost with the computational intensity) and 4.9 (I/O cost of
the parallel machine), the parallel I/O lower bound for LU factorization is
therefore

Qp,LU ≥
2N3 − 6N2 + 4N

3P
√

S
+

N(N − 1)
2P

=
2N3

3P
√

S
+O

(N2

p

)
.

Previously, Solomonik et al. [52] established the asymptotic I/O bound for
sequential execution Q = O(N3/

√
S). Recently, Olivry et al. [162] derived a

tight leading term constant Q ≥ 2N3/(3
√

S). To the best of our knowledge,
our result is the first non-asymptotic bound for parallel execution. The
generalization from the sequential to the parallel bound is straightforward.
Note, however, that this is only the case due to our pebble-based execution
model, and it may thus not apply to other parallel machine models.

4.6.2 Cholesky Factorization

We proceed analogously to our derivation of the LU I/O bound — here
we just briefly outline the steps. The algorithm contains three statements
(Listing 4.1). For statements S1 and S2, we can again use Lemma 4.6 (out-
degree-one vertices). For S1 : L(k,k) = sqrt(L(k,k)), the loop nest depth
is l1 = 1, we have a single iteration variable ψ1 = k, and a single input
array A1 = L with the access function φ1(ψ) =(k,k). Since there is only
one iteration variable present in φ1, we have dim(φ1) = 1 = l1. Therefore,
for every compute vertex v we have one direct predecessor, which is the
previous version of element L(k,k). We conclude that ρS1 ≤ 1 and |VS1| =
N.

For statement S2 : L(i,k) = (L(i,k)) / L(k,k), we also have output
reuse of L(k,k) between statements S2 and S1. However, as with the output
reuse considered in the LU analysis, the computational intensity is ρS1 ≤ 1.
Therefore, it does not change the dominator set size of S2. We then use the
same reasoning as for the corresponding statement S1 in LU factorization,
yielding ρS2 ≤ 1.



100 i/o optimal matrix factorizations

Listing 4.1 Cholesky Factorization
1 for k = 1:N

2 S1: L(k,k) = sqrt(L(k,k));

3 for i = k+1:N

4 S2: L(i,k) = (L(i,k)) / L(k,k);

5 for j = k+1:i

6 S3: L(i,j) = L(i,j) - L(i,k) * L(j,k);

7 end; end; end;

For statement S3, we derive its bound similarly to S2 of LU, with ρS3 =√
S/2 and |VS3| = ∑N

k=1 ∑N
i=k+1(i− k− 1) = N(N− 1)(N− 2)/6. Note that

compared to LU, the only significant difference is the iteration domain
|V3|. Even though Cholesky has one statement more – the diagonal element
update L(k,k) – its impact on the final I/O bound is negligible for large N.

Again, using Lemmas 4.1 and 4.9 we establish the Cholesky factorization’s
parallel I/O lower bound:

QChol ≥ Q1 + Q2 + Q3 =
|V1|
pρ1

+
|V2|
pρ2

+
|V3|
pρ3
≈ N3

3p
√

S
+

N2

2P
+

N
p

The derived I/O lower bound for a sequential machine (p = 1) improves
the previous bound Qchol ≥ N3/(6

√
S) derived by Olivry et al. [162]. Fur-

thermore, to the best of our knowledge, this is the first parallel bound for
this kernel.

4.7 near-i/o optimal parallel matrix factorization algo-
rithms

We now present our parallel LU and Cholesky factorization algorithms.
We start with the former, more complex algorithm, i.e. LU factorization.
Pivoting in LU poses several performance challenges. First, since pivots
are not known upfront, additional communication and synchronization
is required to determine them in each step. Second, the nondeterminis-
tic pivot distribution between the ranks may introduce load imbalance
of computation routines. Third, to minimize the communication a 2.5D
parallel decomposition must be used, i.e. parallelization along the reduc-
tion dimension. We address all these challenges with COnf LUX — a near
Communication Optimal LU factorization using X-Partitioning.
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4.7.1 LU Dependencies and Parallelization

Due to the dependency structure of LU, the input matrix is often divided
recursively into four submatrices A00, A10, A01, and A11 [52, 166]. Arith-
metic operations performed in LU create non-commutative dependencies
(Figure 4.6) between vertices in A00 (LU factorization of the top-left corner
of the matrix), A10, and A01 (triangular solve of left and top panels of the
matrix). Only A11 (Schur complement update) has no such dependencies,
and may therefore be efficiently parallelized in the reduction dimension. A
high-level summary is presented in Algorithm 2.

Algorithm 2 COnf LUX

Input: Input matrix A ∈ RN×N

Output: In-place factored matrix A, permutation matrix P
A1 ← A . First step
P← I . Permutation matrix is initially identity
for t = 1, . . . , N

v do

1. Reduce next block column . Cost: (N−t·v)·v·S
N2

2. [rows, Pt+1]← TournPivot(At, Pt) . Find next v pivots. Cost: v2
⌈

log( N√
S
)
⌉

3. Scatter computed A00 and v pivot rows . Cost: v2 + v
4. Scatter A10 . Cost: (N−t·v)v

p

5. Reduce v pivot rows . Cost: (N−t·v)·v·S
N2

6. Scatter A01 . Cost: (N−t·v)v
p

7. FactorizeA10(At) . 1D parallel., block-row
8. Send data from panel A10 . Cost: (N−t·v)N·v

p
√

S
9. FactorizeA01(At) . 1D parallel., block-column
10. Send data from panel A01 . Cost: (N−t·v)N·v

p
√

S
11. FactorizeA11(At) . 2.5D parallel.
At+1 ← At[rows, v :end] . Recursively process remaining rows and columns

end for

4.7.2 LU Computation Routines

The computation is performed in N
v steps, where v is a tunable block size.

In each step, only submatrix At of input matrix A is updated. Initially,
At is set to A. At can be further viewed as composed of four subma-
trices A00, A10, A01, and A11 (see Figure 4.7). These submatrices are dis-
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tributed and updated by routines TournPivot, FactorizeA10, FactorizeA01, and
FactorizeA11:

• A00. This v× v submatrix contains the first v elements of the current v
pivot rows. It is computed during TournPivot, and, as it is required to
compute A10 and A01, it is redundantly copied to all processors.

• A10 and A01. Submatrices A10 and A01 of sizes (N − t · v)× v and v×
(N− t · v) are distributed using a 1D decomposition among all processors.
They are updated using a triangular solve. 1D decomposition guarantees
that there are no dependencies between processors, so no communication
or synchronization is performed during computation, as A00 is already
owned by every processor.

• A11 This (N − t · v)× (N − t · v) submatrix is distributed using a 2.5D,
block-cyclic distribution (Figure 4.7). First, the updated submatrices A10
and A01 are broadcast among the processors. Then, A11 (Schur comple-
ment) is updated. Finally, the first block column and v chosen pivot rows
are reduced, which will form A10 and A01 in the next iteration.

Block size v. The minimum size of each block is the number of processor
layers in the reduction dimension (v ≥ c = pS

N2 ). However, to secure high
performance, this value should be adjusted to hardware parameters of a
given machine (e.g., vector length, prefetch distance of a CPU, or warp size
of a GPU). Throughout the analysis, we assume v = a · pS

N2 for some small
constant a.

4.7.3 Pivoting

Our pivoting strategy differs from state-of-the-art block [167], tile [168], or
recursive [166] pivoting approaches in two aspects:

• To minimize I/O cost, we do not swap pivot rows. Instead, we keep track
of which rows were chosen as pivots and we use masks to update the
remaining rows.

• To reduce latency, we take advantage of our derived block decomposition
and use tournament pivoting [169].

Tournament Pivoting. This procedure finds v pivot rows in each step that
are then used to mask which rows will form the new A01 and then filter the
non-processed rows in the next step. It is shown to be as stable as partial
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COnf LUX (LU) COnf CHOX (Cholesky)

descriptioncomm. cost comp. cost description comm.
cost

comp.
cost

pivoting TournPivot v2dlog2(
√

p1)ev3/3dlog2(
√

p1)e (no pivot-
ing)

— —

A00 local
getrf

0 0 (done
during
TournPivot)

potrf v2 v3/6

A10
and
A01

reduction,
local
trsm

2(N−tv)vM
N2

2(N−tv)v2

2P (similar
to LU)

2(N−tv)vM
N2

2(N−tv)v2

2P

A11 scatter,
local
gemm

2(N−tv)v
p

(N−tv)2v
p scatter, lo-

cal gemmt

(trian-
gular
gemm)

2(N−tv)v
p

(N−tv)2v
2P

Table 4.1: Comparison of the implemented LU and Cholesky factorizations. Even though
Cholesky performs half as many computations (the use of gemmt instead of gemm
in A11), it communicates the same amount of data, since the number of elements
needed to perform gemm and gemmt is the same.
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pivoting [169], which might be an issue for, e.g., incremental pivoting [170].
On the other hand, it reduces the O(N) latency cost of partial pivoting,
which requires step-by-step column reduction to find consecutive pivots, to
O
(N

v
)
, where v is the tunable block size parameter.

Row Swapping vs. Row Masking. To achieve close to optimal I/O cost,
we use a 2.5D decomposition. This, however, implies that in the presence
of extra memory, the matrix data is replicated pS

N2 times. This increases the

row swapping cost from O
(N2

p ) to O
( N3

p
√

S

)
, which asymptotically matches

the I/O lower bound of the entire factorization. Performing row swapping
would then increase the constant term of the leading factor of the algorithm
from N3

p
√

S
to 2N3

p
√

S
. To keep the I/O cost of our algorithm as low as possible,

instead of performing row-swapping, we only propagate pivot row indices.
When the tournament pivoting finds the v pivot rows, they are broadcast to
all processors with only v cost per step.
Pivoting in COnf LUX. In each step t of the outer loop (line 1 in Algo-
rithm 2), N√

S
processors perform a tournament pivoting routine using a

butterfly communication pattern [171]. Each processor owns
√

S N−vt
N rows,

among which it chooses v local candidate pivots. Then, final pivots are
chosen in log( N√

S
) “playoff-like” tournament rounds, after which all N√

S
processors own both v pivot row indices and the already factored, new
A00. This result is distributed to all remaining processors (line 2). Pivot
row indices are then used to determine which processors participate in
the reduction of the current A01 (line 4). Then, the new At is formed by
masking currently chosen rows At ← At[rows, v : end] (Line 12).

4.7.4 I/O cost of COnf LUX

We now prove the I/O cost of COnf LUX, which is only a factor of 1
3 higher

than the obtained lower bound for large N.

Lemma 4.10. The total I/O cost of COnf LUX, presented in Algorithm 2, is
QCOnfLUX = N3

p
√

S
+O

(
N2

p

)
.

Proof. We assume that the input matrix A is already distributed in the block
cyclic layout imposed by the algorithm. Otherwise, data reshuffling imposes
only Ω

(N2

p
)

cost, which does not contribute to the leading order term. We
first derive the cost of a single iteration t of the main loop of the algorithm,
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proving that its cost is Qstep(t) =
2Nv(N−tv)

p
√

S
+O

(
Nv
p

)
. The total cost after

N
v iterations is:

QCOnfLUX =

N
v

∑
t=1

Qstep(t) =
N3

p
√

S
+O

(
N2

p

)
.

We define p1 = N2

S and c = pS
N2 . p processors are decomposed into

the 3D grid [
√

p1,
√

p1, c]. We refer to all processors that share the same
second and third coordinate as [:, j, k]. We now examine each of 11 steps in
Algorithm 2.
Step 2. Processors with coordinates [:, t mod

√
p1, t mod c] perform the

tournament pivoting. Every processor owns the first v elements of N− (t−
1)v rows, among which they choose the next v pivots. First, they locally
perform the LUP decomposition to choose the local v candidate rows.
Then, in dlog2(

√
p1)e rounds they exchange v× v blocks to decide on the

final pivots. After the exchange, these processors also hold the factorized
submatrix A00. I/O cost per processor: v2dlog2(

√
p1)e.

Steps 3, 4, 6. Factorized A00 and v pivot row indices are broadcast. First
v columns and v pivot rows are scattered to all p. I/O cost per processor:
v2 + v + 2(N−tv)v

p .
Steps 1 and 5. v columns and v pivot rows are reduced. With high probabil-

ity, pivots are evenly distributed among all processors. There are c layers to
reduce, each of size (N − tv)v. I/O cost per processor: (N−tv)vc

p = 2(N−tv)vM
N2 .

Steps 7, 9, 11. The updates FactorizeA10, FactorizeA01, and FactorizeA11 are
local and incur no additional I/O cost.
Steps 8 and 10. Factorized A10 and A01 are scattered among all processors.

Each processor requires v(N−tv)
c
√

p1
elements from A10 and A01. I/O cost per

processor: 2(N−tv)Nv
p
√

S
.

Summing steps 1 – 11: Qstep(t) =
2Nv(N−tv)

p
√

S
+O

(
Nv
p

)
.

Note that this cost is a factor 1/3 over the lower bound established in
Section 4.6.1. This is due to the fact that any processor can only maximally
utilize its local memory in the first iteration of the outer loop. In this
first iteration, a processor updates a total of

√
S×
√

S elements of A. In
subsequent iterations, however, the local domain shrinks as less rows and
columns are updated, which leads to an underutilization of the resources.
Since the shape of the iteration space is determined by the algorithm, this
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behavior is unavoidable for p ≥ N2/S. Note that the bound is attainable by
a sequential machine, however.

4.7.5 Cholesky Factorization

From a data flow perspective, Cholesky factorization can be viewed as
a special case of LU factorization without pivoting for symmetric, posi-
tive definite matrices. Therefore, our Cholesky algorithm — COnf CHOX—
heavily bases on COnf LUX, using the same 2.5D parallel decomposition,
block-cyclic data distribution, and analogous computation routines.

For both algorithms, the dominant cost, both in terms of computation
and communication, is the A11 update. Due to the Cholesky factorization’s
iteration domain, which exploits the symmetry of the input matrix, the
compute cost is twice as low, as only one half of the matrix needs to be
updated. However, the input size required to perform this update is the
same — therefore, the communication cost imposed by A11 is similar. We
list the key differences between the two factorization algorithms in Table 4.1.

4.8 implementation

Our algorithms are implemented in C++, using MPI for inter-node com-
munication. For static communication patterns (e.g., column reductions)
we use dedicated, asynchronous MPI collectives. For runtime-dependent
communication (e.g., pivot index distribution) we use MPI one-sided [133].
For intra-node tasks, we use OpenMP and local BLAS calls (provided by
Intel MKL [158]) for computations. Our code is available as an open-source
git repository1.
Parallel decomposition. Our experiments show that the parallelization
in the reduction dimension, while reducing communication volume, does
incur performance overheads. This is mainly due to the increased commu-
nication latency, as well as smaller buffer sizes used for local BLAS calls.
Since formal modeling of the tradeoff between communication volume
and performance is outside of the scope of the paper, we keep the depth
of parallelization in the third dimension as a tunable parameter, while
providing heuristics-based default values.
Data distribution. COnf LUX and COnf CHOX provide ScaLAPACK wrap-
pers by using the highly-optimized COSTA algorithm [172] to transform the
matrices between different layouts. In addition, they support the COSTA

1 https://github.com/eth-cscs/conflux
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MKL [158] SLATE [156] CANDMC [157]CAPITAL [155] COnf LUX /
COnf CHOX

Decompo
-sition

2D, panel
decomp.

2D, block
decomp.

Nested 2.5D,
block decomp.

2.5D,
block decomp.

1D / 2.5D,
block decomp.

Block
size

user-
specified

user-
specified,
(default 16)

N3

p·S , N2

p
√

S
user-
specified

optimized,
≥ p·S

N2

Program
parame-
ters

required from
user �

required from
user �

provided
defaults -

optimized
defaults - -

optimized
defaults - -

Parallel
I/O
cost

N2
√

p +O
(

N2

p

)
N2
√

p +O
(

N2

p

)
5N3

p
√

S
+

O
(

N2

p
√

S

) 45N3

8p
√

S
+

O
(

N2

p
√

S

) N3

p
√

S
+O

(
N2

p
√

S

)

Table 4.2: Parallelization strategies and I/O cost models of the considered matrix factoriza-
tion implementations. MKL and SLATE require a user to specify the processor
decomposition and the block size. CANDMC provides default values, but our ex-
periments show that the performance was significantly improved when we tuned
the parameters. COnfLUX and COnfCHOX outperform all state-of-the-art li-
braries with out-of-the-box parameters. We validated our parallel I/O cost models:
for MKL, SLATE,COnfLUX, and COnfCHOX, the error was within +/-3%. For
CANDMC and CAPITAL, we used the models derived by the authors [52, 155],
which overappoximated the measured values by approx. 30-40%.

API for matrix descriptors, which is more general than ScaLAPACK’s layout,
as it supports matrices distributed in arbitrary grid-like layouts, processor
assignments, and local blocks orderings.

4.9 experimental evaluation

We compare COnf LUX and COnf CHOX with state-of-the-art implementa-
tions of corresponding distributed matrix factorizations.
Measured values. We measure both the I/O cost and total time-to-solution.
For I/O, the aggregate communication volume in distributed runs is
counted using the Score-P profiler [173]. We provide both measured values
and theoretical cost models. Local std::chrono calls are used for time mea-
surements and the maximum execution time among all ranks is reported.
Infrastructure and Measurement. We run our experiments on the XC40

partition of the CSCS Piz Daint supercomputer which comprises 1,813 CPU
nodes equipped with Intel Xeon E5-2695 v4 processors (2x18 cores, 64 GiB
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DDR3 RAM), interconnected by the Cray Aries network with a Dragonfly
network topology. Since the CPUs are dual-socket, two MPI ranks are
allocated per compute node.
Comparison Targets. We use 1) Intel MKL (v19.1.1.217). While the library
is proprietary, our measurements reaffirm that, like ScaLAPACK, the imple-
mentation uses the suboptimal 2D processor decomposition; 2) SLATE [156]
— a state-of-the-art distributed linear algebra framework targeted at exascale
supercomputers; 3) the latest version of the CANDMC and CAPITAL li-
braries [159, 160], which use an asymptotically-optimal 2.5D decomposition.
The implementations and their characteristics are listed in Table 4.2.
Problem Sizes. We evaluate the algorithms starting from 2 compute nodes
(4 MPI ranks) up to 512 nodes (1,024 ranks). For each node count, matrix
sizes range from N = 2,048 to N = 219 = 524,288, provided they fit into the
allocated memory (e.g., LU or Cholesky factorization on a double-precision
input matrix of dimension 262,144 × 262,144 cannot be run on less than 32

nodes). Runs in which none of the libraries achieved more than 3% of the
hardware peak are discarded since by adding more nodes the performance
starts to deteriorate.

Our benchmarks reflect real-world problems in scientific comput-
ing. The High-Performance Linpack benchmark uses a maximal size of
N = 16,473,600 [174]. In quantum physics, matrix size scales with 2qubits.
In physical chemistry or density functional theory (DFT), simulations re-
quire factorizing matrices of atom interactions, yielding sizes ranging from
N = 1,024 up to N = 131,072 [40, 175]. In machine learning, matrix factor-
izations are used for inverting Kronecker factors [176] whose sizes are
usually around N = 4,096. This motivates us to focus not only on exas-
cale problems, but also improve performance for relatively small matrices
(N ≤100,000).
Communication Models. Together with empirical measurements, we put
significant effort into understanding the underlying communication pat-
terns of the compared LU factorization implementations. Both MKL and
SLATE base on the standard partial pivoting algorithm using the 2D de-
composition [119]. For CANDMC and CAPITAL, the models provided by
the authors [52, 155] are used. For COnf LUX and COnf CHOX, we use the
results from Section 4.7. These models are summarized in Table 4.2.
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4.10 results

Our experiments confirm advantages of COnf LUX and COnf CHOX in
terms of both communication volume and time-to-solution over all other
implementations tested. A significant communication reduction can be
observed (up to 1.42 times for COnf LUX compared with the second-best
implementation for p = 1,024). Moreover, the performance models predict
even greater benefits for larger runs (expected 2.1 times communication re-
duction for a full-machine run on the Summit supercomputer – Figure 4.8c).
Most importantly, our implementations consistently outperform existing
implementations (up to three times – Figures 4.1 and 4.9).
Communication volume. Fig. 4.8a presents the measured communication
volume per node, as well as our derived cost models (Table 4.2) presented
with solid lines, for N = 16,384. Observe that COnf LUX communicates
the least for all values of p. Note that since both MKL and SLATE use
similar 2D decompositions, their communication volumes are mostly equal,
with a slight advantage for SLATE. In Fig. 4.8b, we show the weak scaling
characteristics of the analyzed implementations. Observe that for a fixed
amount of work per node, the 2D algorithms - MKL and SLATE - scale
sub-optimally. Figure 4.8c summarizes the communication volume reduc-
tion of COnf LUX compared with the second-best implementation, both
for measurements and theoretical predictions. It can be seen that for all
combinations of p and N, COnf LUX always communicates the least. For all
measured data points, the asymptotically optimal CANDMC performed
worse than MKL or SLATE. The figure also presents the predicted commu-
nication cost of all considered implementations for up to p = 262,144 based
on our theoretical models.
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X-partition (S2)
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cDAG
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Figure 4.3: In-place LU factorization (for simplicity, no pivoting is performed). The algorithm
contains two statements (S1 and S2), for which we provide key components of our
program representation together with the corresponding CDAG for N = 4. For
statement S2, we also provide a graphical visualization of a single subcomputation
H in its X-partition.



4.10 results 111

OPTIMIZATION PROBLEM:

Figure 4.4: Lemma 4.3 bounds the set sizes (both the subcomputation’s H and input access
sets’ |Aj(D)|) with the number of values |Dt| each iteration variable ψt takes
during the subcomputation.

non-input
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input vertex
(degree=1)
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(degree>1)
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non-input
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(degree=1)

input vertex
(degree=1)

vector a
vector b

non-input
vertex

a) b)

matrix C final value
of c

Figure 4.5: CDAGs with out-degree 1 input vertices. a) ua = 1, ρa ≤ 1. b) ub = 2, ρb ≤ 1
2 .
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Figure 4.6: LU Factorization CDAG for N = 4 with the logical decomposition into
A00, A10, A01, and A11. Dashed arrows represent commutative dependencies (re-
duction of a value). Solid arrows represent non-commutative operations, meaning
that any parallel pebbling has to respect the induced order (e.g., no vertex in
A11 can be pebbled before A00 is pebbled).
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Figure 4.7: COnfLUX’s parallel decomposition for p = 8 processors decomposed
into a [Px, Py, Pz] = [2, 2, 2] grid, together with the indicated steps
of Algorithm 2. In each iteration t, each processor [pi, pj, pk] updates
(2− b(t + pi)/Pxc)× (2− b(t + pj)/Pyc) tiles of A11. In the presented exam-
ple, there are v = 4 planes in dimension k to be reduced, which are distributed
among Pz = 2 processor layers (green and yellow tiles).
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(a) Communication volume per node for vary-
ing node counts p and a fixed N =16,384.
Only the leading factors of the models are
shown. The models are scaled by the ele-
ment size (8 bytes).

(b) Communication volume per node for
weak scaling (constant work per node),
N = 3200 · 3√p. 2.5D algorithms (CAN-
DMC and COnfLUX) retain constant com-
munication volume per processor.

(c) Communication reduction vs. second-best algorithm
(S=MKL, S=SLATE), for varying p, N, for both measured
and predicted scenarios.

Figure 4.8: Communication volume measurements across different scenarios for MKL,
SLATE, CANDMC, and COnfLUX. In all considered scenarios, enough mem-
ory S ≥ N2/p2/3 was present to allow for the maximum number of replications
c = p1/3.
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(a) Strong scaling, N = 217 = 131,072 (b) Strong scaling, N = 214 = 16,384

(c) Weak scaling, N = 8,192·√p

Figure 4.9: Achieved % of peak performance for LU factorization. We show median and
95% confidence intervals.
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Figure 4.10: Left: measured runtime speedup of COnfCHOX vs. fastest state-of-the-
art library (S=SLATE [156], C=CAPITAL [155], S=MKL [158]). Right:
COnfCHOX’s achieved % of machine peak performance.
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Performance. Our measurements show that both COnf LUX and
COnf CHOX outperform all considered state-of-the art libraries in almost
all scenarios (Figures 4.1 and 4.10). Thanks to the optimized block data de-
composition and efficient overlap of computation and communication, our
implementations achieve high performance already on relatively small ma-
trices (approx. 40% of hardware peak for cases where N2/p > 227). In cases
where the local domain per processor becomes very small (N2/p < 227) our
block decomposition does not add that much benefit, since the performance
is mostly latency-bound, and not bandwidth-bound. This is visible not
only in strong scaling (Figures 4.9 and 4.11, a) and b)), but also in weak
scaling (c)), where the input size per processor N2/p is constant. This is
again caused by latency overheads of scattering data between 1D and 2.5D
layouts.

However, as the local domains become larger and may be more efficiently
pipelined and overlapped using asynchronous MPI routines and intra-
node OpenMP parallelism, the advantage becomes significant (Figures 4.9
and 4.11). COnf LUX outperforms existing libraries up to three times (for
p = 4, N = 4096, second-best library is SLATE – Figure 4.1) and COnf CHOX
achieves up to 1.8 times speedup (e.g., p = 4, N = 4,096, second-best is
again SLATE).
Implications for Exascale. Both the communication models’ predictions
(Figure 4.8c) and measured speedups (Figures 4.1 and 4.10) allow us to
predict that when running our implementations on exascale machines, we
can expect to see further performance improvements over state-of-the-art
libraries. Furthermore, throughput-oriented hardware, such as GPUs and
FPGAs, may benefit even more from the communication reduction of our
schedules. Thus, COnf LUX and COnf CHOX not only outperform the state-
of-the-art libraries at relatively small scales — which are most common use
cases in practice [40, 175, 176] — but also promise speedups on full-scale
performance runs on modern supercomputers.
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(a) Strong scaling, N = 217 = 131,072 (b) Strong scaling, N = 214 = 16,384

(c) Weak scaling, N = 8,192·√p

Figure 4.11: Achieved % of peak performance for Cholesky factorization. We show median
and 95% confidence intervals.

4.11 related work

Previous work on I/O analysis can be categorized into three classes (see
Table 4.3): work based on direct pebbling or variants of it, such as Vitter’s
block-based model [178]; works using geometric arguments of projections
based on the Loomis-Whitney inequality [131]; and works applying opti-
mizations limited to specific structural properties such as affine loops [179],
and more generally, the polyhedral model program representation [43, 50,
162]. Although the scopes of those approaches significantly overlap — for
example, kernels like matrix multiplication can be captured by most of the
models — there are important differences both in methodology and the
end-results they provide, as summarized in Table 4.3.

Dense linear algebra operators are among the standard core kernels in
scientific applications. Ballard et al. [55] present a comprehensive overview
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Pebbling [22, 24, 65,
128, 177]

Projection-based [49, 55,
57–59, 162]

Problem specific [23, 43,
50, 138, 175]

Scope -- General cDAGs - Programs with
a geometric structure of
the iteration space

� Individually tailored
for a given problem

Key
Features

- General scope
- Expresses complex

data dependencies
- Directly exposes

schedules
- Intuitive
� PSPACE-complete

in general case
� No guarantees that

a solution exists
� No well-established

method how to
automatically translate
code to cDAGs

- Well-developed
theory and tools

- Guaranteed to find
solution for given
class of programs

� Bounds are often not tight
� Fails to capture

dependencies
between statements

� Limited scope

- Takes advantage of
problem-specific features

- Tends to provide
best results in practice
� Requires large manual effort

for each algorithm separately
� Difficult to generalize
� Often based on heuristics

with no guarantees
on optimality

Table 4.3: Overview of different approaches to modeling data movement.

of their asymptotic I/O lower bounds and I/O minimizing schedules, both
for sparse and dense matrices. Recently, Olivry et al. introduced IOLB [162]
— a framework for assessing sequential lower bounds for polyhedral pro-
grams. However, their computational model disallows recomputation (cf.
Section 4.4.2).

Matrix factorizations are included in most of linear solvers’ libraries. With
regard to the parallelization strategy, these libraries may be categorized
into three groups: task-based: SLATE [156] (OpenMP tasks), DLAF [180]
(HPX tasks), DPLASMA [181] (DaGuE scheduler), or CHAMELEON [182]
(StarPU tasks); static 2D parallel: MKL [158], Elemental [183], or Cray
LibSci [184]; communication-minimizing 2.5D parallel: CANDMC [157]
and CAPITAL [155]. In the last decade, heavy focus was placed on heteroge-
neous architectures. Most GPU vendors offer hardware-customized BLAS
solvers [185]. Agullo et. al [186] accelerated LU factorization using up to 4

GPUs. Azzam et. al [47] utilize NVDIA’s GPU tensor cores to compute low-
precision LU factorization and then iteratively refine the linear problem’s
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solution. Moreover, some of the distributed memory libraries support GPU
offloading for local computations [156].

4.12 summary

In this chapter, we present a method of analyzing I/O cost of DAAP — a
general class of programs that covers many fundamental computational
motifs. We show, both theoretically and in practice, that our pebbling-based
approach for deriving the I/O lower bounds is more general: programs
with disjoint array accesses cover a wide variety of applications, more
powerful: it can explicitly capture inter-statement dependencies, more
precise: it derives tighter I/O bounds, and more constructive: X-partition
provides powerful hints for obtaining parallel schedules.

When applying the approach to LU and Cholesky factorizations, we are
able to derive new lower bounds, as well as new, communication-avoiding
schedules. Not only do they communicate less than state-of-the-art 2D and
3D decompositions — by a factor of up to 1.6× — but most importantly,
they outperform existing commercial libraries in a wide range of problem
parameters (up to 3× for LU, up to 1.8× for Cholesky). Finally, our code is
openly available, offering full ScaLAPACK layout compatibility.
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P R E C I S E D ATA M O V E M E N T M O D E L L I N G F O R
G E N E R A L C L A S S O F P R O G R A M S

This is the work published at SPAA’21 conference [25]. It further extends the
DAAP class of programs from the previous chapter to capture stencil programs.
Furthermore, it precisely formalizes data reuse between statements with the new
abstraction - SDG. I want to appreciate help from Tal Ben-Nun in implementing
the SOAP analyzer in Python using the DaCe framework.

5.1 introduction

I/O operations, both across the memory hierarchy and between parallel
processors, dominate time and energy costs in many scientific applica-
tions [153, 154, 187]. It is thus of key importance to design algorithms with
communication-avoiding or I/O-efficient schedules [37, 113]. To inform, and
occasionally inspire the development of such algorithms, one must first
understand the associated lower bounds on the amounts of communicated data.
Deriving these bounds has always been of theoretical interest [22, 57]. It
is particularly relevant for dense linear algebra, as many important prob-
lems in scientific computing [40, 121] and machine learning [188] rely on
linear algebra operations such as matrix factorization [104, 150] or tensor
contractions [189].

Analyzing I/O bounds of linear algebra kernels dates back to the seminal
work by Hong and Kung [22], who derived the first asymptotic bound
for matrix-matrix multiplication (MMM) using the red-blue pebble game
abstraction. This method was subsequently extended and used by other
works to derive asymptotic [190] and tight [65] bounds for more complex
programs. Despite the expressiveness of pebbling, it is prohibitively hard
to solve for arbitrary programs, as it is PSPACE-complete in the general
case [191].

Since analyzing programs with parametric sizes disallows the construc-
tion of an explicit Computation Directed Acyclic Graph (CDAG), some
form of parameterization is often needed [24, 162, 192]. However, we argue
that the widely-used approaches based on the Loomis-Whitney or the HBL

121
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Input program CDAG pebbling

for i in range(100):
for j in range(100):
C[i,j]=((A[i]+A[i+1])

*(B[j]+B[j+1]))
for i in range(100):
for j in range(100):
for k in range(100):
E[i,j]+=C[i,k]*D[k,j]

Ignoring
compute cost

X-partitioning Symbolic Directed Graph
A B D

C

E

SOAP

Ignoring loop-
carried dependencies

Minimal I/O cost 
→ opt. schedule

Features: Beyond polyhedral model (non-affine accesses); recomputation; dependency structure (SDG)
Improved lower bounds: Linear algebra (Cholesky, correlation, covariance); stencils (fdtd, jacobi, heat3d)
New lower bounds: Neural networks (LeNet-5, BERT Encoder); climate code (vertical adv., horizontal diff.)

Section 5.2

opt. schedule →
opt. pebbling

Section 5.2

opt. pebbling 
→ max. subset

reuse 
overapproximation

Section 5.4

max. subset 
→ rect. subcomp.

Section 5.6

rect. subcomp.
→ opt. subgraph

reuse 
overapproximation

Recompute and 
reuse upper bound

Comp./comm. ratio 
upper bound

Pebbling schedule 
lower bound

Tiled parallel 
code

Figure 5.1: High level overview of the combinatorial SOAP analysis. An input program’s
schedule is modeled as the red-blue pebble game. The X-Partitioning abstrac-
tion relaxes the pebbling problem to the graph partition problem. The SOAP
abstraction utilizes the static loop structure to upper-bound the size of the op-
timal X-partition. The Symbolic Directed Graph (SDG) models inter-statement
data dependencies. Our method derives I/O lower bounds together with accom-
panying tile sizes and loop fusions that can be used by a compiler to generate
an I/O optimal parallel code.

inequalities [57–59] (a) are often too restrictive, requiring the programs to
be expressed in the polyhedral model to count the points in the projection
polytopes; (b) do not capture pebbling motifs such as recomputation [162];
or (c) are limited to single-statement programs [49, 57–59].

In our work, we take a different approach based on a combinatorial
method. We directly map each elementary computation to a vertex in a
parametric CDAG, which allows us not only to operate on unstructured
iteration domains, but also to precisely count the sizes of dominator sets
and model vertex recomputation. Furthermore, to handle complex data
dependencies in programs that evaluate multiple arrays, we introduce the
Symbolic Directed Graph (SDG) abstraction, which encapsulates the data
flow between elementary computations. This allows us to cover a wider
class of programs and handle more complex data flow.

To enable precisely mapping every data access to the parametric CDAG
vertex, we extend the DAAP class of programs (Chapter 4) to Simple
Overlap Access Programs (SOAP), and present a general method to derive
precise I/O bounds of programs in this class. Specifically, SOAPs are defined
as loop nests of statements, whose data access sets can be modeled as
injective functions, and their per-statement data overlap can be expressed
with constant offsets. For programs that do not directly adhere to SOAP,
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with nontrivial overlaps and non-injective access functions, we show that
under a set of assumptions, we can construct SOAP “projections” of those
programs, which can be analyzed in the same way. Our method strictly
contains the polyhedral model and associated analysis methods.

To show the breadth of our approach, we demonstrate SOAP analysis on
a set of 38 applications, taking Python and C codes as input to create the
SDG. This automated analysis procedure generates symbolic bounds, which
match or improve upon previously-known results. Notably, we tighten the
known I/O lower bounds for numerous programs, including stencils by
up to a factor of 14, linear algebra kernels by a factor of two, and the core
convolution operation in deep learning by a factor of 8.

Since our derivation of the bounds is constructive — i.e., it provides loop
tilings and fusions after relaxing loop-carried dependencies — the results
can be used by a compiler to generate I/O optimal parallel codes. This can
both improve existing schedules and possibly reveal new parallelization
dimensions.
The paper makes the following contributions:

• A combinatorial method for precisely counting the number of data
accesses in parametric CDAGs.

• A class of programs — SOAP — on which I/O lower bounds can be
automatically derived.

• Symbolic dataflow analysis that extends SOAP to multiple-
statement programs, capturing input and output reuse between state-
ments, as well as data recomputation.

• I/O analysis of 38 scientific computing kernels, improving existing
bounds [162, 192] by up to a factor of 14, and new lower bounds for appli-
cations in deep learning, unstructured physics simulation, and numerical
weather prediction.

5.2 background

In this chapter, we continue our work on modelling data movement. Specif-
ically, we extend the DAAP model from Chapter 4 to capture overlapping
accesses, as well as explicitly capture complex data reuse in programs
containing multiple statements.

For the description of the program model (CDAG) and the memory
model (the red-blue pebble game, the dominator and minimum sets) we
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refer readers to the previous chapter. Here we only outline the definitions
necessary for the SOAP analysis. The bird’s eye view of our method is
presented in Figure 5.1.

5.2.1 General Approach of Modeling I/O Costs

Execution model: graph pebbling. An execution of a program represented
by a CDAG G = (V, E) is modeled as a sequence of four allowed pebbling
moves: 1) placing a red pebble on a vertex which has a blue pebble (load),
2) placing a blue pebble on a vertex which has a red pebble (store), 3)
placing a red pebble on a vertex whose parents have red pebbles (compute)
4) removing any pebble from a vertex (discard). At the program start,
all input vertices have blue pebbles placed on them. Execution finishes
when all output vertices have blue pebbles on them. A sequence of moves
leading from the start to the end is called a graph pebbling P. The number
of load and store moves in P is called the I/O cost of P. The I/O cost Q of a
program G is the minimum cost among all valid pebbling configurations.
A pebbling with cost Q is called optimal.

5.2.2 I/O Lower Bounds

Assume that the optimal pebbling Popt is given. For any constant X > S
we can partition this sequence of moves into subsequences, such that in
each subsequence except of the last one, exactly X − S load/store moves
are performed (the last subsequence contains at most X − S load/store
moves). Denote the number of these subsequences as h. Then observe that
(X− S)(h− 1) ≤ Q ≤ (X− S)h (Chapter 3).
Computational intensity. In previous chapters we proven that (a) Q is
lower bounded by the number of subsequences h in the optimal pebbling
Popt; (b) h is lower bounded by the size of the smallest X-partition |Pmin(X)|
for any value of X > S; (c) |Pmin(X)| is bounded by the maximum size
of a single subcomputation |HX,max| in any valid X-partition: |Pmin(X)| ≥
|V|/|HX,max|; and (d) if |HX,max| can be expressed as a function of X, that
is, χ(X) ≡ |HX,max|, then Q is bounded by

Q ≥ |V|X0 − S
χ(X0)

, (5.1)

where X0 = arg minX
χ(X)
X−S (Lemma 4.2). The expression ρ = χ(X)

X−S is called
the computational intensity.
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Input program: 
statements St1 and St2

Section 5.3
C[i,j]=(A[i]+A[i+1])

*(B[j]+B[j+1])

Input arrays: In(St1) = {A, B}  
Output array: Out(St1) = {C} 
Access function vectors:

statement St1     Section 5.4

n2 = 2 : two 1-dim 
access fun. vector 

components

E[i,j]+= C[i,k] * D[k,j]

Input arrays In(St2) = {C, D, E}  
Output array: Out(St1) = {E}  
Access function vectors:

statement St2           Section 5.4
n1= 1 : one 2-

dim access 
fun. vector 
component

Array A Array B Array D

Array E

Program CDAG for N=M=2, K=3 Program SDG
Section 5.6

Subgraph statement Section 5.6

for i in range(N): 

for j in range(M): 

St1: C[i,j] = (A[i]+A[i+1])

*(B[j]+B[j+1])

for i in range(N): 

for j in range(K): 

for k in range(M):

St2: E[i,j]+= C[i,k] * D[k,j]

A B D

C

E

A B D

C

E

Array C

Elements of C
are 

recomputed, 
decreasing the 

I/O cost!

Bounding 
by counting vertices in

Equivalent of 
executing statements 
St1 and St2 “together”

Figure 5.2: From the input code to the I/O lower bounds. First, for each statement, the
access function vectors φ are extracted from the input program (green and
blue fields). For each statement, the size of its dominator set is obtained using
Lemma 5.3 (Section 5.4.2), and then, the I/O lower bound is obtained using
inequality 5.9 (Section 5.4.5). For programs that contain multiple statements,
the SDG is constructed (Section 5.5.3) and all valid subgraph statements are
evaluated (Section 5.5.4). Lastly, the final I/O lower bound is obtained (Sec-
tion 5.5.5).

5.3 simple overlap access programs

In previous chapters, we show how the I/O cost of a program can be
bounded by the maximum size of a subcomputation H in any valid
X-partition of program CDAG. We now introduce Simple Overlap Ac-
cess Programs (SOAP): a class of programs for which we can derive tight
analytic bounds of |H|. We leverage the SOAP structure and design an
end-to-end method for deriving I/O lower bounds of input programs
(summarized in Figure 5.2).
What is SOAP? Before introducing the formal definition, we start with an
illustrative example, which we use in the following sections.

Example 5.1. Consider the following 3-point stencil code (we use the Python
syntax in code listings):
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1 for t in range(1,T):

2 for i in range(t,N-t):

3 A[i,t+1]=(A[i-1,t] + A[i,t] + A[i+1,t])/3 + B[i]

This is what we will refer to as a single-statement SOAP. The program consists of
one statement St : A[i,t+1]=(A[i,t] + ... which is placed in two nested loops.
All accessed data comes from static, disjoint, multi-dimensional arrays (A and B).
Furthermore, different accesses to the same array (array A is referenced by [i,t+1],
[i-1,t], [i,t],[i+1,t]) are offset by a constant stride [0,1], [-1,0],[0,0],
[1,0]. We denote such access pattern as a simple overlap and it is a defining
property of SOAP.
Why SOAP? We use the restriction on the access pattern to precisely count
the number of vertices in Dom(H). If we allow arbitrary overlap of array
accesses, we need to conservatively assume a maximum possible overlap
of accessed vertices. This reduces the lower bound on |Dom(H)|, which,
in turn, increases the upper bound on |H|, providing less-tight I/O lower
bound for a program.
This is not a fundamental limitation of our method. However, it allows a fully
automatic derivation of tight I/O lower bounds for input programs. If the restriction
is violated, additional assumptions on the access overlap are needed (Section 5.5).
SOAP definition. A program is a sequence of statements St1, . . . , Stk. Each
such statement St is a constant time computable function f enclosed in a
loop nest of the following form:

for ψ1 ∈ D1 :

. . .

for ψ` ∈ D`(ψ1, . . . , ψ`−1) :

St : A0[φ0(ψ)]← f (A1[φ1(ψ)], A2[φ2(ψ)], . . . , Am[φm(ψ)])

where:

1. The statement St is nested in a loop nest of depth `.

2. Each loop in the tth level, t = 1, . . . , ` is associated with its iteration
variable ψt, which iterates over its domain Dt ⊂ N. Domain Dt may
depend on iteration variables from outer loops ψ1, . . . , ψt−1 (denoted as
Dt(ψ1, . . . , ψt−1)).

3. All ` iteration variables form the iteration vector ψ = [ψ1, . . . , ψ`] and we
define the iteration domain D as the set of all values the iteration vector
iterates over during the entire execution of the program D ⊂N`.
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4. The dimension of array Aj is denoted as dim(Aj).

5. Elements of Aj are referenced by an access function vector φj which

maps dim(Aj) iteration variables ψj = [ψ1
j , . . . , ψ

dim(Aj)

j ] to a set of

nj elements from Aj, that is φj : D1
j×, . . . ,×Ddim(Aj)

j →
(

Ndim(Aj)
)nj

.

We then write φj = [φj,1, . . . , φj,nj ], where φj,k : D1
j×, . . . ,Ddim(Aj)

j →
Ndim(Aj), k = 1, . . . , nj. Furthermore, all access function components
φj,k(ψj) are injective.

6. All nj access function vector’s components are equal up to a constant
translation vector, that is, ∀k = 1, . . . , n : φj,k(ψ) = φj,1(ψ) + tk, where

tk = [t1
k , . . . , tdim(A)

k ] ∈Ndim(Aj). We call φj the simple overlap access.

7. Arrays A1, . . . Am are disjoint. If the output array A0 is also used as an
input, that is, A0 ≡ Aj, j ≥ 1, then φ0 ∪ φj is also the simple overlap
access (c.f. Example 5.1).

8. Each execution of statement St is an evaluation of f for a given value of
iteration vector ψ.

Iteration variables and iteration vectors. Formally, an iteration variable
ψt is an iterator: an object which takes values from its iteration domain
during the program execution. However, if it is clear from the context, we
will refer to a particular value of the iteration variable simply as ψt (or a
value of iteration vector as ψ).
Vertices as iteration vectors. Since by definition of CDAG, each compu-
tation corresponds to a different vertex, and by definition of SOAP, every
statement execution is associated with a single iteration vector ψ, every non-
input vertex in G is uniquely associated with an iteration vector ψ. Input
vertices are referred to by their access function vectors u = Aj[φj,k(ψ)]. We
further define CDAG edges as follows: for every value of iteration vector
ψ, we add an edge from all accessed elements to the vertex associated with
ψ, that is: E = {(u, v) : u = Aj[φj,k(ψ)], v = ψ, ψ ∈ D}.
X-Partitioning on SOAP’s CDAG. Recall that our objective is to bound
the maximum size of any subcomputation |H|. Given pebbling P and an
associated X-partition P(X), every subcomputation H ∈ P(X) is therefore
associated with the set of iteration vectors ψ of the vertices computed in H. In
the following section we will derive it by counting how many non-input
vertices (iteration vectors) can H contain by bounding its dominator set
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size |Dom(H)| - again, by counting vertices corresponding to each access
Aj[φj,k(ψ)].



5.3 simple overlap access programs 129

SO
A
P
de
fin

it
io
n
(§

5.
3)

A0
Output array of statement St (may overlap
with input arrays).

Aj, j = 1, . . . , m Mutually disjoint input arrays of statement St.

ψ = [ψ1, . . . , ψ`] Iteration vector composed of ` iteration variables.

D ⊆ D1×, . . . ,×D`
Iteration domain: a set of values that iteration
vector ψ takes during the entire program execution.

φj = [φj,1, . . . , φj,nj ]
Access function vector that maps dim(Aj) variables
[ψ1

j , . . . , ψ dim(Aj)
j ] to nj elements in array Aj.

tj,k = [t1
j,k, . . . , t

dim(Aj)
j,k ]

Translation vector of k-th access function vector’s
component φj,k, that is φj,k ≡ φj,1, k = 1, . . . , nj

Si
ng

le
-s
ta
te
m
en
t
su
bc
om

pu
ta
ti
on

(§
5.
4)

P(X) = {H1, . . . ,Hs}
An X-partition of CDAG G = (V, E) composed
of s disjoint subcomputations.

D = D1×, . . . ,×D`
Subcomputation domain: a Caresian product of
ranges of ` iteration variables during H.

H ⊆ D ⊆ V

Subcomputation H uniquely defined by a set
of |H| iteration vector’s values ψ ∈ D taken
during H. If H = D, we call it a rectangular
subcomputation Hrec.

A = φ[H]
Access set: a set of vertices from array A that are
accessed by φ during H.

t̂i = {ti
1, . . . , ti

n} \ {0}
Access offset set: set of all non-zero ith coordinates
among n translation vectors tk, k = 1, . . . , n.

Dom(H) Dominator set of subcomputation H.

ρ The computational intensity of the X-partition.

Q ≥ |D|∑
m
j=1 |Aj(X0)|−S

∏`
t=1 |Dt(X0)|

A number of I/O operations of a schedule.

SD
G

(§
5.
5.
3) GS = (VS, ES)

Symbolic Directed Graph, where every array
accessed in a program is a vertex, and edges
represent data dependencies between them.

I ⊂ VS Set of read-only arrays of the program.

GS[H], H ⊂ VS \ I
SDG subgraph that represents a subcomputation
in which at least one vertex from every
array in H is computed.

StH Subgraph SOAP statement.

Table 5.1: Notation used in this chapter.
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5.4 i/o lower bounds for single-statement soap

We now derive the I/O bounds for programs that contain only one SOAP
statement. We start with introducing necessary definitions that allow us to
bound the size of a rectangular subcomputation. The summary of the notation
is presented in Table 5.1.

5.4.1 Definitions

Definition 5.1. Subcomputation domain. Denote the set of all values which it-
eration variable ψt takes during subcomputationH as Dt ⊂ Dt, t = 1, . . . , `. Then,
the subcomputation domain D(H) ⊆ D is a Cartesian product of ranges of all
` iteration variables which they take during H, that is D(H) = D1×, . . . ,×D`.
We therefore have H ⊆ D(H) ⊂ N`. If it is clear from the context, we will
sometimes denote D(H) simply as D.

Example 5.2. Recall the program from Example 5.1. Consider subcomputation
H in which t ∈ {1, 2} and i ∈ {1, 2}. Then, subcomputation domain D =
{1, 2} × {1, 2} = {[1, 1], [1, 2], [2, 1], [2, 2]}, but computation itself can contain
at most 3 elements H ⊆ {[1, 1], [1, 2], [2, 2]}, since ψ = [2, 1] /∈ D does not
belong to the iteration domain.

Definition 5.2. Access set and access subdomain. Consider input array A and
its access function vector φ. Given H, the access set A of A is the set of vertices
belonging to A that are accessed during H, that is A = φ[H] = {A[φ(ψ)] :
ψ ∈ H}. If function φ = [φ1, . . . , φn] accesses n vertices from A, we analogously
define access sets for each access function component φk[H], k = 1, . . . , n. We then
have A =

⋃n
k=1 φk[H]. The access subdomain D(A) is minimum bounding

box of the access set A.

Example 5.3. For program in Example 5.1, consider subcomputation H
evaluated on only one iteration vector H = [i = 2, j = 2]. We have
two accessed arrays A and B. Furthermore, we have φA = [[i, t + 1], [i −

1, t], [i, t], [i − 1, t]]. Therefore, dim(A) = 2, and φB : N2 →
(

N2
)4

.

We further have φB = [[i]], dim(B) = 1, and φA : N → N.
To evaluate St for ψ = [2, 2], we need to access four elements of A (three loads
and one store), so its access set is A = φA[H] = {[2, 3], [1, 2], [2, 2], [2, 3]}.
Furthermore, we have the access subdomain D(A) = {2, 3} × {1, 2, 3}.

Definition 5.3. Access offset set. Given a simple overlap access φ =

[φ1, . . . , φn] consider its n translation vectors tk = [t1
k , . . . , t

dim(Aj)

k ] ∈



5.4 i/o lower bounds for single-statement soap 131

Ndim(A), k = 1, . . . , n. For each dimension i = 1, . . . , dim(Aj) we denote
t̂i = {ti

1, . . . , ti
n} \ {0} as the set of all unique non-zero ith coordinates among all

n translation vectors.

Definition 5.4. Rectangular subcomputation For a given subcomputation do-
main D, a subcomputation H is called rectangular if H = D and is denoted
Hrec(D). The size of rectangular computation is |Hrec(D)| = ∏`

t=1 |Dt|. If it is
clear from the context, we will denote Hrec(D) simply as Hrec.

Observation 1. Consider a simple overlap access φ = [φ1, . . . , φn] of array A
and a rectangular subcomputation Hrec(D). Then since all φk are equal up to
translation, the ranges of iteration variables they access are also equal up to the same
translation: ∀i = 1, . . . , dim(A) : ∀j = 1, . . . , n : φj[Di] = φ1[Di] + tj, which
also implies that ∀i = 1, . . . , dim(A) : ∀j = 1, . . . , n : |φj[Di]| = |φ1[Di]|.

To bound the sizes of rectangular subcomputations, we need Lemmas 5.1
and 5.2 from Chapter 4. Since SOAP extends the DAAP model with over-
lapping accesses and adds new definitions, here we reintroduce them using
the notation from Section 5.4.1:

Lemma 5.1. For statement St, given D, the size of subcomputation H (number of
vertices of S computed during H) is bounded by the sizes of the iteration variables’
sets Dt, t = 1, . . . , `:

|H| ≤
`

∏
t=1
|Dt|. (5.2)

Lemma 5.2. For the given access function φ = [φ1, . . . , φn] accessing array
A, A[φ(ψ)], the access set size of each of components |φk[H]| during sub-
computation H is bounded by the sizes of dim(φA) iteration variables’ sets
Di, k = 1, . . . , dim(φj):

|φk[H]| ≤
dim(φA)

∏
i=1

|Di| (5.3)

where Di 3 ψi is the iteration domain of variable ψi during H.

5.4.2 Bounding SOAP Access Size

Recall that our goal is to find the maximum size of the subcomputation
given its dominator size. We first do the converse: given the rectangular
subcomputation Hrec, we bound the minimum number of input vertices
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required to compute Hrec. In Section 5.4.4 we prove that indeed Hrec is the
subcomputation that upper-bounds the maximum computational intensity
ρ. Since arrays A1, . . . , Am are disjoint, the total number of input vertices
is the sum of their access set sizes: |Dommin(Hrec) ≥ ∑m

j=1 |Aj|. We now
proceed to bound individual access set sizes |Aj|.

Consider array A with dim(A) = d and its access function φ(ψ) =
[φ1(ψ), . . . , φn(ψ)] that access n elements from A (to simplify the notation,
we drop the subscript j, since we consider only one array). Observe that
during Hrec, all combinations of iteration variables ψ1 ∈ D1, . . . , ψ` ∈ D`

are accessed, so |Hrec| = ∏`
t=1 |Dt| (Lemma 5.1). This also implies that each

of k = 1, . . . , n accesses to A required |φk[Hrec]| = ∏d
t=1 |Dt| vertices from

A (Lemma 5.2 and Observation 1). Therefore, the total number of accesses
to array A during Hrec is |A| ≥ ∏d

t=1 |Dt|. However, the sets of vertices
accessed by different φk may overlap, that is, there may exist two accesses
φl and φm, for which φl [Hrec] ∩ φm[Hrec] 6= ∅. Therefore, we also obtain
the upper bound |A| ≤ ∑n

j=1 ∏d
t=1 |Dt|. We now want to narrow the gap

between the upper and the lower bounds.

Lemma 5.3. If a given input array A with dim(A) = d is accessed by a sim-
ple overlap access φ(ψ) = [φ1(ψ), . . . , φn(ψ)], its access set size |A| during
rectangular computation Hrec(D) is bounded by

|A| = |φ[Hrec(D)]| ≥ 2
d

∏
i=1
|Di| −

d

∏
i=1

(|Di| − |t̂i|), (5.4)

where |t̂i| is the size of the access offsets set in the ith dimension.

Proof. W.l.o.g., consider the first access function component φ1 and its
∏d

t=1 |Dt| accessed vertices φ1[Hrec]. We will lower bound the number of
accesses to A from remaining φk, k = 2, . . . , n, which do not overlap with
φ1[Hrec], that is |⋃n

k=2 φk[Hrec] \φ1[Hrec]|. Since by construction ofHrec, all
φk[Hrec] are Cartesian products of iteration variables’ ranges φk[D1]×, · · · ,
×φk[Dd], there is a bijection between φk[Hrec] and an d-dimensional hyper-
rectangle Hk ∈ Nd. To secure correctness of our lower bound on |A|, we
need to find the volume of the smallest union of these hyperrectangles.

Note that |t̂i| is a lower bound on the maximum offset between any two
Hj 6= Hk in dimension i: the union of all hyperrectangles

⋃n
k=1 Hk “stretches”

at least |Di| + |t̂i| elements in the ith dimension for all i = 1, . . . , d (see
Figure 5.3). To see this, observe that since Di ⊂ N, for each element in the
access offset set ti

j ∈ t̂i there is at least one element in Di + ti
j that is not

in Di, which implies that |(Di + ti
j) \ Di| ≥ 1. Since Di is finite, there is a
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Iteration vector (3 iteration variables)

Access function vector (2 components)

Iteration variables’ ranges

Figure 5.3: Intuition behind Lemma 5.3. Access sets φ[Hrec(D)] as 3-dimensional hyperrect-
angles. The union |⋃n

k=1 φk [Hrec]| (and therefore, the total number of accesses
|A| ) is minimized when the hyperrectangles are placed in two antipodal locations
of the subcomputation domain D.

single well-defined maximum and a minimum element, which implies that
(max{Di}+ ti

j /∈ Di) ∨ (min{Di}+ ti
j /∈ Di). Also, because by definition of

t̂i we have ∀ti
j, ti

k ∈ t̂i : ti
j 6= ti

k, then we also have that each ti
j accesses at

least one “non-overlapping” element independent of any other ti
k, that is

∀ti
j, ti

k ∈ t̂i : max{Di}+ ti
j 6= max{Di}+ ti

k.

The arrangement of hyperrectangles Hk, k = 1, . . . , n in a Nd lattice
s.t., their bounding box is D = (|D1| + |t̂1|) × · · · × (|Dd| + |t̂d|), which
minimizes the size of their union |⋃k Hk| satisfies two properties:

1. there exist two “extreme” Hp, Hq, such that Hq = Hp + v, u =

Zd, ∀i=1,...,d : |vi| = |t̂i|,

2. all the remaining Hk, k 6= p, q perfectly overlap with the “extreme”
hyperrectangles Hk ⊆ Hp ∪ Hq.

To see this, observe that for every non-zero |t̂i| we need two hyperrect-
angles Hi

p 6= Hi
q, s.t., Hi

q = Hi
p + [·, . . . , |t̂i|, . . . , ·], that is, Hi

q is offset from
Hi

p by |t̂i| in ith dimension. We therefore have
⋃

i,|t̂i |>0(Hi
p ∪ Hi

q) ⊆
⋃

k Hk.
Since Hi

p and Hi
q are pairwise non-equal, but there are no restrictions on

Hi
p, H j

p, i 6= j, we have that the union
⋃

i,|t̂i |>0(Hi
p ∪ Hi

q) is minimized if

∀i 6=jHi
p = H j

p.
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Finally, observe the volume of |⋃n
k=1 Hk| s.t. to the claimed arrangement

is:

∣∣∣ n⋃
k=1

Hk

∣∣∣ = |Hp ∪ Hq| = 2
d

∏
i=1
|Di| −

d

∏
i=1

(|Di| − |t̂i|) (5.5)

It shows that for any set of n hyperrectangles s.t. the given constraint, the
volume of their union is no smaller than the one in Equation 5.5. Since the
offset constraint is also a lower bound on the number of non-overlapping
accesses in each dimension, it also forms the bound on |⋃n

k=1 φk[Hrec]| =
|φ[Hrec]| = |A|.

5.4.3 Input-Output Simple Overlap

If one of the input arrays Ai, i ≥ 1, is also the output array A0, then their
access function vectors φ0 and φi form together a simple overlap access
(Section 5.3). In such cases, some vertices accessed by φi during Hrec may
be computed and do not need to be loaded. We formalize it in the following
corollary, which follows directly from Lemma 5.3:

Corollary 5.1. Consider statement St that computes array A, dim(A) = d and
simultaneously accesses it as an input A[φ0(ψ)] = f (A[φ1(ψ)]). If φ0 ∪φ1 is a
simple overlap access, the access set size |A| during rectangular computation Hrec
is bounded by

|A| ≥
d

∏
i=1
|Di| −

d

∏
i=1

(|Di| − |t̂i|), (5.6)

where t̂ is an access offset offset set of φ0 ∪φ1.

Proof. This result follows directly from Lemma 5.3. Since there are at
least 2 ∏d

i=1 |Di| −∏d
i=1(|Di| − |t̂i|) vertices accessed from Ai, and at most

∏d
i=1 |Di| of them can be computed during Hrec (Lemma 5.2) and therefore,

do not have to be loaded, then at least 2 ∏d
i=1 |Di| −∏d

i=1(|Di| − |t̂i|) −
∏d

i=1 |Di| elements have to be accessed from the outside of Hrec.

5.4.4 Bounding Maximal Subcomputation

In Section 5.4.2 we lower-bounded the dominator set size of the rectangular
subcomputation |Dommin(Hrec)| = ∑m

j=1 |Aj| by bounding the sizes of sim-
ple overlap access sets sizes |Aj| (Lemma 5.3). Recall that to bound the I/O
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lower bound we need the size χ(X) of the maximal subcomputation Hmax
for given value of X (Inequality 5.1). We now prove that Hrec upper-bounds
the size of Hmax.

Given H, denote the the ratio of the size of the subcomputation to the
dominator set size δ(H) = |H|

∑m
j=1 |φj [H]| . By definition, Hmax maximizes δ

among all valid H ∈ P . We need to show that for a fixed subcompu-
tation domain D0, among all subcomputations for which D(H) = D0,
the rectangular subcomputation Hrec(D0) upper-bounds δ. Note that an
X-partition derived from the optimal pebbling schedule Popt may not include
Hrec. However, ∀X : χrec(X) ≥ χ(X), that is, given X, the size of Hrec s.t.,
∑m

j=1 |φj[Hrec]| = X will always be no smaller than the size of Hmax. To
show this, we first need to introduce some auxiliary definitions.

Iteration variables, their indices, and their values. To simplify the
notation, throughout the paper we used the iteration variables ψi and the
values they take for some iteration interchangeably. However, now we need
to make this distinction explicit. The iteration vector consists of ` iteration
variables ψ = [ψ1, . . . , ψ`]. Each access function φj is defined on dim(Aj)
≤ ` of them. Recall that ψj is the set of iteration variables accessed by φj
(Section 5.3, property (5)). To keep track of the indices of particular iteration
variables, denote Ψ = [`] = {1, . . . , `} ⊂ N, Ψj ⊆ Ψ, and Ψ′j = Ψ \ Ψj as

the sets of integers. If i ∈ Ψj, then the ith iteration variable ψi is accessed
by the access function φj. We further define ψ∗ ∈ N` as a specific value
of the iteration vector ψ that uniquely defines a single non-input vertex.
We analogously define ψ∗j , ψi,∗, and ψi,∗

j (the last one being a value of ith
iteration variable of the jth access). We also define θ(ψ∗j ,H) as the number
of vertices in H that have all their Ψj coordinates equal to ψ∗j , that is

θ(ψ∗j ,H) = |{ψ∗ : ψ∗ ∈ H ∧ (∀i ∈ Ψj : ψi,∗ = ψi,∗
j )}|.

We now formalize our claim in the following lemma:

Lemma 5.4. Given the subcomputation domain D0, Hrec(D0) maximizes δ(H)
for all H s.t. D(H) = D0.

∀H : δ(H) ≤ δ(Hrec) (5.7)

Proof. Instead of maximizing δ(H), we will minimize δ−1(H) =
(∑m

j=1 |φj[H]|)/|H| = ∑m
j=1 |φj[H]|/|H| over all possible H. Observe that

δ−1(H) is linear w.r.t. the ratios of individual access function sets sizes
|φj[H]| and the size of subcomputation |H|. Therefore, we can examine
each access φj[H] separately and show that every δ−1

j = |φj[H]|/|H|
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Extend in

remaining

domains

Figure 5.4: Intuition behind Lemma 5.4: extending the subcomputation in the free dimen-
sions w.r.t φj does not increase |φj[H]|. Once the subcomputation is almost
rectangular, extending H in the remaining dimensions keeps the ratio δ−1

j con-
stant.

is minimized for H = Hrec. Then, if Hrec minimizes each of δ−1
j , then

δ−1 = ∑m
j=1 δ−1

j is minimized, so indeed Hrec maximizes the ratio of the
subcomputation size to the dominator set size.

Observe now, that for any H we have that ∀j : δ−1
j is monotonically

decreasing w.r.t. θ(ψ∗j ,H) for all ψ∗j ∈ φj[H]. That is - pick any input vertex
ψ∗j from the set of vertices accessed by φj[H]. Adding compute vertices ψ∗

to H that access ψ∗j do not increase the access set size φj[H], since ψ∗j is

already accessed. However, it increases the size ofH. Clearly, δ−1
j reaches its

minimum if ∀ψ∗j ∈ φj[H] : θ(ψ∗j ,H) = ∏i∈Ψ′j
|Di|, that is, H computes all

vertices spanned by the access set φj[H] and all elements in the Cartesian
product of “free” (independent of the access function φj) iteration domains
Di, i ∈ Ψ′j.

We showed that for all j, given its initial access set φj[H], the ratio δ−1
j is

minimized for the “almost-rectangular” subcomputation, that is, H which
computes all vertices ψ∗ ∈ φj[H]×∏i∈Ψ′j

Di. We now need to show that

also extending H over the “dependent” ranges Ψj won’t increase the ratio
δ−1. When the access set size φj[H] increases by a factor x, H increases
proportionally by x too, keeping the ratio constant (See Figure 5.4 for an
example for ` = 3).

Since our goal is to minimize each δ−1
j separately, independently of

other δ−1
i , i 6= j, assume that we have already extended H to the “almost-

rectangular” subcomputation, that is, all combinations of ∏i∈Ψ′j
Di were



5.4 i/o lower bounds for single-statement soap 137

accessed in H. Observe now that θ(ψ∗j ,H) = ∏i∈Ψ′j
|Di| for any vertex ψ∗j .

Therefore, since |H| = ∑ψ∗j ∈φj [H] ∏i∈Ψ′j
|Di|, we see that δ−1

j is constant

w.r.t., the size of the access set: δ−1
j =

|φj [H]|
|H| = 1

∏i∈Ψ′j
|Di | . Therefore, we can

safely maximize φj[H] to the entire access set of the rectangular subcom-
putation Hrec without increasing δ−1

j . We conclude that for every access
function φj and every iteration variable index i, evaluating all vertices ψ∗
s.t. ψi iterates over the entire domain Di minimizes δ−1

j .

5.4.5 I/O Lower Bounds and Optimal Tiling

We now proceed to the final step of finding the I/O lower bound.
Recall from Section 5.2.2, that the last missing piece is χ(X); that is,
we seek to express |Hmax(D)| = ∏`

t=1 |Dt| as a function of X. Observe

that by Lemma 5.4, |Dommin(Hmax(D)) ≥ ∑m
j=1(2 ∏

dim(Aj)

i=1 |Di
j| −

∏
dim(Aj)

i=1 (|Di
j| − |t̂i

j|). On the other hand, by definition of
X-Partitioning, |Dommin(Hmax(D))| ≤ X. Combining these inequali-
ties, we solve for all |Dt| as functions of X by formulating it as the
optimization problem (Section 4.3.2):

max
`

∏
t=1
|Dt| s.t.

m

∑
j=1
|Aj| ≤ X

∀1 ≥ t ≥ ` : |Dt| ≥ 1 (5.8)

Solving the above optimization problem yields χ(X) = |Hmax(D)|. Since
Lemma 5.4 gives a valid upper bound on computational intensity for any
value of X, we seek to find the tightest (lowest) upper bound. One can
obtain X0 = arg minX

χ(X)
X−S , since χ(X) is differentiable. Finally, combining

Lemma 5.3, inequality 5.1, and the optimization problem 5.8, we obtain the
I/O lower bound for the single-statement SOAP program:

Q ≥ |D|
∑m

j=1 |Aj(X0)| − S

∏`
t=1 |Dt(X0)|

, (5.9)
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where |Aj(X0)| are the access set sizes obtained from Lemma 5.3 for the
optimal value of |Di| derived from the optimization problem 5.8.

Substituting X0 back to |Dt|(X) has a direct interpretation: they constitute
optimal loop tilings for the maximal subcomputation. Note that such tiling
might be invalid due to problem relaxations: e.g., we ignore loop-carried
dependencies and we solve optimization problem 5.8 over real numbers,
relaxing the integer constraint on |Dt| set sizes. However, this result can serve
as a powerful guideline in code generation. Furthermore, if derived tiling sizes
generate a valid code, it is provably I/O optimal.

5.5 projecting programs onto soap

By the definition of SOAP, one input array may be accessed by different
access function vector components, only if they form the simple overlap
access — that is, the accesses are offset by a constant stride. However, our
analysis may go beyond this constraint if additional assumptions are met.

5.5.1 Non-Overlapping Access Sets

Given input array A and its access function components φ(ψ) =
[φ1(ψ1), . . . , φn(ψn)], if all access sets are disjoint, that is: ∀i 6=jφi[D] ∩
φj[D] = ∅, then we represent it as n disjoint input arrays Ai accessed
by single corresponding access function component φi(ψi).

Example 5.4. Consider the following code fragment from LU decomposition:

1 for k in range(N):

2 for i in range(k+1,N):

3 for j in range(k+1,N):

4 St : A[i,j] = A[i,j] - A[i,k] * A[k,j]

The analysis of iteration variables’ domains Di,D j,Dk shows that for fixed value of
k0, there are no two iteration vectors ψ1 = [k0, i1, j1] and ψ2 = [k0, i2, j2] such that
[i1, k0] = [k0, j2] ∨[i1, j1] = [k0, j2] ∨[i1, j1] = [i1, k0], therefore, their access sets
are disjoint. Furthermore, for k0, all elements from A in range [(k0, N), (k0, N)]
are updated. Therefore, all accesses of form [i1, k1] = [k2, j2] access different
vertices. We model this as a SOAP statement with three disjoint arrays:

St2 : A1[i, j] = f (A1[i, j], A2[i, k], A3[k, j])
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5.5.2 Equivalent Input-Output Accesses

If array A is updated by statement St — i.e., it is both input and output —
then we require that the output access function φ0 is different than the input
access function φi. If the input program does not meet this requirement, we
can add additional “version dimension” to access functions that is offset by
a constant between input and output accesses.

Example 5.5. Consider again Example 5.4. Observe that array A1 is updated (it is
both the input and the output of St2. Furthermore, both access functions are equal:
φ0 = φ1 = [i, j]. We can associate a unique version (and therefore, a vertex) of
each element of A with a corresponding iteration of the k loop. We add the version
dimension associated with k and offset it by constant 1 between input and output:

St3 : A1[i, j, k + 1] = f (A1[i, j, k], A2[i, k], A3[k, j])

5.5.3 Non-Injective Access Functions

Given input array A and its access function vector φ, we require that
∀ψi 6= ψj : A[φ(ψi)] 6= A[φ(ψj)]. If this is not the case, then we seek
to bound the size of such overlap, that is, given subcomputation domain
D(H), how many different iteration vectors ψj map to the same array
element A[φ(ψi)]. We can solve this by analyzing the iteration domain
D and the access function vector φ. If one array dimension is accessed
by a function of multiple iteration variables g(φ1, . . . , φk) and g is linear
w.r.t. all φi, the number of different values g takes in D(H) is bounded by
maxi=1,...,k{|Di|} ≤ |g[H]| ≤ ∏k

i=1 |Di|, for Di 6= {0}, i = 1, . . . , k.

Example 5.6. A single layer of the direct convolution used in neural networks
may be written as seven nested loops with iteration variables b, c, k, w, h, r, s and
statement (c.f. [59]):

St : Out[k, h, w, b]+ = Image[r + σww, s + σhh, c, b]× Filter[k, r, s]

Depending on the value of σw and σh, the access function of Image, φ = [r +
σww, s + σhh, c, b] may not be injective. Yet, observe that:

1. σw ≥ |Dr| ∧ σh ≥ |Ds| =⇒ φ is injective =⇒ |φ[Hmax]| ≥ |Dr| ·
|Dw| · |Ds| · |Dh| · |Dc| · |Db|
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2. σw = 1∧ σh = 1 =⇒ |φ[Hmax]| ≥max(|Dr|, |Dw|) ·max(|Ds|, |Dh|) ·
|Dc| · |Db|,

Our analysis provides a conditional computational intensity: ρmin =
√

S/2 in
case (1) and ρmax = S/2 in case (2). Observe that case (2) yields the maximum non-
injective overlap (maximum number of different iteration vectors map to the same
element in Image). For any other values of σw and σh, we have ρmin ≤ ρ ≤ ρmax.

I/O lower bounds are not composable: the I/O cost of a program con-
taining multiple statements may be lower than the sum of the I/O costs of
each statement if evaluated in isolation. Data may be reused and merging
of statements may lower the I/O cost.

Note that the number of vertices in the program’s CDAG G depend on
domain sizes Di of each iteration variable. However, our derived upper
bound of the computational intensity ρ is independent of the CDAG size, as
it depends only on the access functions φj. This is also true for programs
that contain multiple statements - to bound ρ for multi-statement SOAP,
we only need to model dependencies between the arrays and how they
are accessed - e.g., one statement may take as an input an array that is an
output of a different statement.

We represent the data flow between the program statements with a
symbolic directed graph GS = (VS, ES). For a given statement Sti, denote
In(Sti) = {Ai,1, . . . , Ai,m} a set of input arrays of statement Sti. Analogously,
denote Out(Sti) the set containing the output array of Sti. Analogously to
program CDAG G that captured dependencies between particular array
elements, GS models dependencies between whole arrays (Figure 5.2).

Definition 5.5. Symbolic Digraph: SDG Given k-statement SOAP
St1, . . . , Stk, its symbolic digraph (SDG) GS = (VS, ES) is a directed graph
where VS =

⋃k
i=1(In(Sti) ∪Out(Sti)) and (Au, Av) ∈ ES ⇐⇒ ∃Sti : Au ∈

In(Sti) ∧ Av ∈ Out(Sti).

GS is a directed graph, where vertices represent arrays accessed by a pro-
gram, and edges represent data dependencies between them. Two arrays Au
and Av are connected if there is a statement that accesses Au and computes
Av. Each edge is annotated with the corresponding access function vector
of the statement that generates it.

Example 5.7. Consider the example in Figure 5.2. We have two statements
St1 and St2, with In(St1) = {A, B}, Out(St1) = {C}, In(St2) = {C, D, E},
Out(St2) = {E}. We then construct the SDG GS = (VS, ES), with VS =
In(St1) ∪Out(St1) ∪ In(St2) ∪Out(St2) = {A, B, C, D, E}. Furthermore, we
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have edges ES = {(A, C), (B, C), (C, E), (D, E), (E, E)}. The edges are annotated
with the corresponding access function vectors φSt1,1, . . . , φSt2,3.

Note: While the “explicit” program CDAG G = (V, E), where every
vertex represents a single computation is indeed acyclic, the SDG GS =
(VS, ES) may contain self-edges when a statement updates the loaded array
((E, E) in the example above). In G, one vertex corresponds to one version of
a single array element, while in GS, one vertex encapsulates all versions of
all array elements.

5.5.4 SDG Subgraphs

Denote I ⊂ VS set of input vertices of GS (∀A ∈ I : indegree(A) = 0).
Let H ⊂ VS \ I be a subset of the vertices of SDG GS = (VS, ES). The
SDG subgraph GS[H] is a subgraph of GS induced by the vertex set H. It
corresponds to some subcomputation in which at least one vertex from
each array in H was computed. We now use the analogous strategy to the
X-Partitioning abstraction: since the optimal pebbling has an associated
X-partition with certain properties (the dominator set constraint), we bound
the cost of any pebbling by finding the maximum subcomputation among
all valid X-partitions. We now show that every subcomputation in the
optimal X-partition has a corresponding SDG subgraph GS[H]. Therefore,
finding GS[Hopt] that maximizes the computational intensity among all
subgraphs bounds the size of the maximal subcomputation (which, in turn,
bounds the I/O cost of any pebbling).

Recall that an optimal pebbling P has an associated X-partition P(X),
where each H ∈ P(X) represents a sequence of operations that are not
interleaved with other subcomputations. Given GS, each H ∈ P(X) has
an associated subgraph GS[H] s.t. every array vertex Ai ∈ H represents an
array from which at least one vertex was computed in H.

Note that both the pebbling P and the partition P(X) depend on the
size of the CDAG that is determined by the sizes of the iteration domains
Di. However, the SDG does not depend on them. Thus, by finding the
subgraph that maximizes the computational intensity, we bound ρ for any
combination of input parameters.

Definition 5.6. The subgraph SOAP statement StH of subgraph GS[H] is a
single SOAP statement with the input In(StH) = {A : A /∈ H ∧ ∃B ∈ H :
(A, B) ∈ ES}. Additionally, for each vertex B ∈ H that is not computed in H, that
is @A ∈ H : (A, B) ∈ ES , self-edges (B, B) ∈ E are preserved (B ∈ In(StH)).
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Intuition. The subgraph statement StH is a “virtual” SOAP statement
that encapsulates multiple statements St1, . . . , Stk. Given H, its subgraph
statement’s inputs In(StH) are formed by merging inputs

⋃k
i=1 In(Sti) \

V(H) from all statements that form H, but are not in H. By the construction
of the SDG, this is equivalent to the definition above: take all vertices
A ∈ Vs \V(H) that have a child in V(H), that is ∃B ∈ V(H) : (A, B) ∈ ES
(see Figure 5.2).

This forms the lower bound on the number of inputs for a corresponding
subcomputation H: all the vertices from arrays Ai ∈ V(H) could potentially
be computed during H and do not need to be loaded, but at least vertices
from arrays In(StH) have to be accessed.

Example 5.8. Consider again the example from Figure 5.2. The set of input nodes
is I = {A, B, D}. There are three possible subgraph statements: H1 = {C}, with
In(StH1) = {A, B}, H2 = {C} with In(StH2) = {C, D, E}, and H3 = {C, E}
with In(StH3) = {A, B, D}. Note that by definition, the self-edge (C, C) is
preserved in H2, but not in H3. Subgraphs H1 and H2 correspond to the input
statements St1 and St2. Subgraph H3 encapsulates a subcomputation H that
computes some vertices from both arrays C and E, merging subcomputations St1
and St2 and reusing outputs from St1 to compute E.

Then, we establish the following lemma:

Lemma 5.5. Given an X-partition P(X) = {H1, . . . ,Hs} of the k-statement
SOAP, with its corresponding GS = (VS, ES), each subcomputationH has an asso-
ciated intensity ρH = |H|

|Dommin(H)|−S that is upper-bounded by the computational
intensity of the subgraph statement StH (Lemma 5.4).

Proof. Recall that given the subcomputation H, its corresponding SDG
subgraph H is constructed as follows: for each vertex v ∈ V computed
during H belonging to some array Ai, add the corresponding array vertex
si to H. Note that we allow a vertex recomputation: if some vertex is
(re)computed during the optimal schedule of H, its array vertex will belong
to H.

Observe that by this construction and by definition of the subgraph
statement, all arrays from which at least one vertex is loaded during H
are in In(StH). Furthermore, In(StH) is a subset of these arrays: during H,
there might be some loaded vertex from array Aj ∈ H, but, by definition
of StH , this array will not be in In(StH). Therefore, StH lower bounds the
input size of H.

The last step of the proof is to observe that by Lemma 5.4, the computa-
tional intensity of StH bounds the maximum number of computed vertices
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for any H′ ∈ P(X) that belong to H, that is, the union of all arrays in H.
But since all vertices that are computed in H belong to one of these arrays,
H cannot have higher computational intensity.

5.5.5 SDG I/O Lower Bounds

We now proceed to establish a method to derive the I/O lower bounds of
the multi-statement SOAP given its SDG GS = (VS, ES).

For each array vertex A ∈ VS, denote |A| as the total number of vertices
in the CDAG that belong to array A. Denote further S(A) the set of all
subgraphs of GS that contain A. Then we prove the following theorem:

Theorem 5.1. The I/O cost Q of a k-statement SOAP represented by the SDG
GS = (VS, ES) is bounded by

Q ≥ ∑
A∈VS

|A|
maxH∈S(A) ρH

(5.10)

where maxH∈S(A) ρH is the maximum computational intensity over all subgraph
statements of subgraphs H that contain vertex A.

Proof. This theorem is a direct consequence of Lemma 5.5 and the fact that
all vertices in CDAG G are associated with some array vertex in SDG GS.
Lemma 5.5, together with the definition of S(a), states that maxH∈S(a) ρH is
the upper bound on any subcomputation H that contains any vertex from
array a. Since there are |a| vertices associated with a, at least |a|

maxH∈S(a) ρH

I/O operations must be performed to compute these vertices. Since the
computational intensity expresses the average cost per vertex, even if some
subcomputation in an optimal X-partition spans more than one array, this
is already modeled by the set S(a). Therefore, we can sum the I/O costs
per arrays a, yielding inequality 5.10.

Note that applying Theorem 5.1 requires iterating over all possible sub-
graphs. In the worst case, this yields exponential complexity, prohibiting
scaling our method to large programs. However, many scientific applica-
tions contain a limited number of kernels with simple dependencies. In
practice we observed that our approach scales well to programs containing
up to 35 statements.

We evaluate our lower bound analysis on a wide range of applications,
ranging from fundamental computational kernels and solvers to full work-
loads in hydrodynamics, numerical weather prediction, and deep learning.
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The set of applications covers both the previously analyzed kernels (the
Polybench suite [193], direct convolution), and kernels that were never ana-
lyzed before due to complicated dependency structures (multiple NN layers,
diffusion, advection). Not only our tool covers broader class of programs
than state-of-the-art approaches, but also it improves bounds generated
by methods dedicated to specific narrower classes [162]. Improving I/O
lower bounds has not only theoretical implications: loose bounds may not
be applicable for generating corresponding parallel codes, as too many
overapproximations may yield an invalid schedule.

In our experiments we use DaCe [69] to extract SOAP statements from
Python and C code, and use MATLAB for symbolic analysis. ; see Appendix
A for implementation details.
Polybench. As our first case study, we analyze Polybench [193], a polyhe-
dral application benchmark suite composed of 30 programs from several
domains, including linear algebra kernels, linear solvers, data mining, and
computational biology. Prior best results were obtained by IOLB [162], a tool
specifically designed for analyzing I/O lower bounds of affine programs.
We summarize the results in Table 5.2, listing the leading order term for
brevity.

We find that SOAP analysis derives tight I/O lower bounds for all Poly-
bench kernels. Analyzing these programs as multi-statement SOAP either
reproduces existing tight bounds, or improves them by constant factors
(e.g., in Cholesky decomposition) on 14 out of 30 applications (Table 5.2).
Of particular note is adi (Alternating Direction Implicit solver). Our algo-
rithm detected a possible tiling in the time dimension, yielding the lower
bound (12N2T)/

√
S, compared to N2T reported by Olivry et al. [162]. How-

ever, due to dependency chains incurred by alternating directions, such
tiling may violate loop-carried dependency constraints, which our algo-
rithm relaxes. A parallel machine could potentially take advantage of this
tiling scheme, possibly providing super-linear communication reduction.
However, this is outside of the scope of this paper.
Neural Networks. Analyzing I/O lower bounds of neural networks is a
nascent field, and so far only single-layer convolution was analyzed [59,
192]. We improve the previously-reported bound reported by Zhang et
al. [192] by a factor of 8.
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Kernel SOAP I/O Bound Improvement over state-of-the-art
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Table 5.2: Simplified leading-order terms of the I/O lower bounds extracted from
multi-statement SOAP and previous state-of-the-art. For the direct con-
volution layer, the best previously known bound was published by Zhang
et al. [192].
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5.5.6 New Lower Bounds

Analyzing SOAP and the SDG representation enables capturing complex
data dependencies in programs with a large number of statements. To
demonstrate this, we study larger programs in three fields, where no
previous I/O bounds are known. If an application contains both SOAP and
data-dependent kernels, we find a SOAP representation that bounds the
access sizes from below.
LULESH. The Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) [194] application is an unstructured phy-sics simu-
lation. We analyze the main computational kernel, totaling over 60% of
runtime within one time-step of the simulation from the full C++ source
code. As LULESH falls outside the purview of affine programs, this result
is the first reported I/O lower bound.
Numerical Weather Prediction. We select two benchmark stencil applica-
tions from the COSMO Weather Model [195] — horizontal diffusion and
vertical advection — representatives of the two major workload types in the
model’s dynamical core.
Deep Neural Networks. For deep learning, we choose both individual rep-
resentative operators (Convolution and Softmax) and network-scale bench-
marks. Previous approaches only study data movement empirically [196].
To the best of our knowledge, we are the first to obtain I/O lower bounds
for full networks, including a Multi-Layer Perceptron (MLP), the LeNet-5
CNN [197], and a BERT Transformer encoder [198].

5.6 related work

I/O analysis spans almost the entire history of general-purpose computer
architectures, and graph pebbling abstractions were among the first meth-
ods to model memory requirements. Dating back to challenges with the
register allocation problem [128], pebbles were also used to prove space-
time tradeoffs [21] and maximum parallel speedups by investigating circuit
depths [199]. Arguably the most influential pebbling abstraction work is the
red-blue pebble game by Hong and Kung [22] that explicitly models load
and store operations in a two-level-deep memory hierarchy. This work was
extended numerous times, by: adding blocked access [23], multiple memory
hierarchies [200], or introducing additional pebbles to allow CDAG compo-
sitions [24]. Demaine and Liu proved that finding the optimal pebbling in a
standard and no-deletion red-blue pebble game is PSPACE-complete [191].
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Papp and Wattenhofer introduced a game variant with a non-zero compu-
tation cost and investigated pebbling approximation algorithms [201].

Although the importance of data movement minimization is beyond
doubt, the general solution for arbitrary algorithms is still an open problem.
Therefore, many works were dedicated to investigate lower bounds only
for single algorithms (often with accompanying implementations), like
matrix-matrix multiplication [52, 64, 65, 202], LU [52] and Cholesky decom-
positions [53, 155]. Ballard et al. [54] present an extensive collection of linear
algebra algorithms. Moreover, a large body of work exists for minimizing
communication in irregular algorithms [203, 204], such as Betweenness
Centrality [113], min cuts [205], BFS [112], matchings [206], vertex similarity
coefficients [207], or general graph computations [208, 209]. Many of them
use linear algebra based formulations [110]. Recently, convolution networks
gained high attention. The first asymptotic I/O lower bound for single-layer
direct convolution was proved by Demmel et al. [59]. Chen et al. [210]
propose a matching implementation, and Zhang et al. [192] present the first
non-asymptotic I/O lower bound for Winograd convolution.

In parallel with the development of I/O minimizing implementations
for particular algorithms, several works investigated I/O lower bounds
for whole classes of programs. Christ et al. [57] use a discrete version of
Loomis-Whitney inequality to derive asymptotic lower bounds for single-
statement programs nested in affine loops. Demmel and Rusciano [58]
extended this work and use discrete Hölder-Brascamp-Lieb inequalities
to find optimal tilings for such programs. The polyhedral model [161] is
widely used in practice by many compilers [211, 212]. However, polyhedral
methods have their own limitations: 1) they cannot capture non-affine
loops [213]; 2) while the representation of a program is polynomial, finding
optimal transformations is still NP-hard [138]; 3) they are inapplicable
for many neural network architectures, e.g., the Winograd algorithm for
convolution [192].

Recently, Olivry et al. [162] presented IOLB — a tool for automatic
derivation of non-parametric I/O lower bounds for programs that can be
modeled by the polyhedral framework. IOLB employs both “geometric”
projection-based bounds based on the HBL inequality [57], as well as the
wavefront-based approach from Elango [214]. To the best of our knowledge,
this is the only method that can handle multiple-statement programs. How-
ever, the IOLB model explicitly disallows recomputation that may be used
to decrease the I/O cost, e.g., in the Winograd convolution algorithm, back-
propagation, or vertical advection. Furthermore, the framework is strictly
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limited to affine access programs. Even then, our method is able to improve
those bounds by up to a factor of 6

√
6 (fdtd2d) using a single, general

method without the need to use application-specific techniques, such as
wavefront-based reasoning.

5.7 summary

In this chapter we introduce SOAP — a broad class of statically analyzable
programs. Using the explicit assumptions on the allowed overlap between
arrays, we are able to precisely count the number of accessed vertices on the
induced parametric CDAG. This stands in contrast with many state-of-the
art approaches that are based on bounding projection sizes, as they need to
underapproximate their union size, often resulting in a significant slack in
constant factors of their bounds. Our single method is able to reproduce or
improve existing lower bounds for many important scientific kernels from
various domains, ranging from 2× increase in the lower bound for linear
algebra (cholesky, syrk), to more than 10× for stencil applications (fdtd2d,
heat3d).

Our SDG abstraction precisely models data dependencies in multiple-
statement programs. It directly captures input and output reuse, and allows
data recomputation. Armed with these tools, we are the first to establish
I/O lower bounds for entire neural networks, as well as core components
of the popular Transformer architecture.

We believe that our work will be further extended to handle data-
dependent accesses (e.g., sparse matrices), as well as scale better with
input program size. The derived maximum subcomputation sizes can guide
compiler optimizations and development of new communication-optimal
algorithms through tiling, parallelization, or loop fusion transformations.
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In this dissertation, we improve deriving fundamental performance metrics
of scientific applications, such as arithmetic, parallel, and I/O complexities.
Our main goal is obtaining tight bounds, thus addressing the problem
of hidden constants that may impact actual performance. The proofs of
obtained bounds are often constructive, providing optimal or close to
optimal algorithms. We also put a significant effort into fine-tuning the
derived algorithms to utilize modern distributed machines equipped with
deep memory hierarchies and accelerators.

To achieve this goal, we first introduce new models of iteration spaces
and memory accesses within them. The precise count of both the number
of iterations and array references allows us to derive arithmetic and I/O
complexities and parallel efficiency for input programs written in C, For-
tran, and Python. The insights allow us to reason about the scalability of
input algorithms and obtain new algorithms that minimize both the I/O
movement across the memory hierarchy and between parallel processors.
Finally, we implement the derived I/O minimizing matrix multiplication
and factorizations algorithms using a series of optimizations, such as the
processor grid optimization, local densifications, latency-minimizing tour-
nament pivoting, and layout transformations. The resulting open-source
libraries outperform all compared state-of-the-art solutions, confirming not
only the theoretical contribution of the models but also providing practical
applications in the algorithmic design.

We start by presenting a method to symbolically count loop iterations,
even in the presence of loop updates that cannot be captured by the Pres-
burger arithmetic (Chapter 2). The obtained solution is either exact, or
both the upper and the lower bounds are provided by our bounded sum
approximation algorithm. In the presence of data-dependent control flow,
corresponding loop iterations are parametrized, allowing the user to pro-
vide appropriate expected upper and lower bounds. For explicitly parallel
programs, the parallel efficiency, as well as the work-depth analysis, is
provided.

We then focus our work on the data movement minimization. We use
the red-blue pebble game to establish the X-Partitioning abstraction and
prove Lemma 3.3, which explicitly captures data reuse between subcom-
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putations of the input CDAGs (Chapter 3). We then use it to analyze the
classical MMM algorithm and establish tight sequential (Theorem 3.1) and
parallel (Theorem 3.2) I/O lower bounds. The proofs are constructive: the
resulting COSMA algorithm is I/O optimal up to the factor of

√
S√

S+1−1
for all combinations of matrix dimensions, processor counts, and memory
sizes. Implemented optimizations, both algorithmic and hardware-oriented,
secure the best time-to-solution performance compared to the state-of-the-
art libraries in all evaluated benchmarks, providing up to 12.8x speedup.
Moreover, the “bottom-up” parallelization strategy can be generalized to
other algorithms that can operate on non-cubic domains.

We extend the results from Chapter 3, both theoretical and practical, to
cover a wide class of programs: DAAP. Within this class, we show how
we can apply Theorem 3.1 by precisely counting the number of array
accesses (Lemma 4.3), exploiting the disjoint access property. We use our
DAAP model to LU and Cholesky factorizations and obtain new parallel
I/O lower bounds, together with corresponding communication-avoiding
schedules. The resulting algorithms — COnf LUX and COnf CHOX— not
only communicate less than asymptotically optimal state-of-the-art 3D
algorithms by a factor of up to 1.6x but also outperform all evaluated
libraries by up to 3 times.

We then further generalize the DAAP model to model overlapping array
accesses: a common pattern in many scientific applications. The introduced
SDG abstraction allows for precise data movement analysis in large pro-
grams consisting of multiple computation kernels. We use SOAP to improve
existing lower bounds for a series of important compute kernels, covering
the entire Polybench suite and extending beyond the polyhedral model.
With our method, we tighten I/O lower bounds for 14 Polybench kernels
(up to 14 times) and we establish first I/O lower bounds for entire neural
networks, such as LeNet-5. The method provides powerful compiler hints
on the tiling, parallelization, and loop fusion transformations. Combined
with the precise loop counting algorithm from Chapter 2 and optimiza-
tions developed in Chapters 3 and 4, such as processor grid optimizations,
“bottom-up” parallel decomposition, and mixed 1D/2.5D parallelization,
our work can serve to automatically generate more communication-avoiding
high-performance implementations.



6.1 future work 151

6.1 future work

The path to optimality is open-ended: as discussed in Chapter 1, the notion
of optimality intrinsically depends on both the definition and the adopted
computation model. We plan to pursue several projects in the future that
can be categorized into three paths: theoretical analysis, algorithmic design,
and compiler automation.

Theoretical analysis. While the SOAP model proves to be (a) general:
it extends beyond the polyhedral analysis; (b) precise: it improves exist-
ing lower bounds; and (c) constructive: it provides direct information on
optimal kernel fusion and tiling, it can still be further extended. One of
the main directions we wish to continue our research is modeling sparse
data structures — notoriously hard objects to precisely model, especially
regarding the access pattern. While there is significant progress in de-
signing communication-avoiding, high-performance sparse linear algebra
algorithms [215–217] we wish to explore further possibilities of attaining
tight (presumably, structure-dependent) communication lower bounds, not
only for sparse matrix-matrix multiplication but for general linear algebra
algorithms. General graph computations, such as graph mining or graph
neural networks, are also promising candidates for I/O complexity analysis.

Algorithmic design. As shown in Chapter 4, complex data flow, such
as pivoting or loop-carried dependencies in the reduction dimension, pro-
hibits straightforward parallelization of sequential schedules. Furthermore,
communication optimality alone does not guarantee the best performance
in practice. We aim to continue implementing our algorithms on modern
hardware, such as GPUs and FPGAs, similarly to our work on porting
COSMA to HLS (High-Level Synthesis) [218]. Communication-avoiding par-
allel decompositions, combined with intra-node optimizations introduced
in Chapters 3 and 4, can also be used in general tensor operations. Com-
bined with possibly sparse data structures, achieving peak performance,
similar to dense MMM, is a challenging task worth pursuing.

Compiler automation. We implement our SOAP analysis in Python us-
ing the DaCe data-centric framework [69]. DaCe is a powerful tool that
compiles input codes to the data-centric intermediate representation, called
SDFG (Stateful DataFlow Graph). This representation allows performing a
multitude of dataflow-oriented optimizations, such as automatic paralleliza-
tion and tiling. It comes with multiple back-ends to target CPUs, GPUs,
and FPGAs.
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While the transformations can be applied automatically, their parame-
ters (e.g., tile sizes) have to be either provided by the user or inferred by
expensive (and possibly, suboptimal) autotuning. SOAP can be integrated
with DaCe to provide explicit data movement parametric cost and provide
DaCe with transformation parameters, offering a tool that can automatically
generate a provably data movement optimal, parallel, high-performance
code for all modern hardware platforms.
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