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Abstract 

The process parameter selection of manufacturing processes heavily influences 

production costs and the quality of produced parts. Optimal process parameters 

depend on the individual specification of the manufacturing process such as 

machine, tool, workpiece, and cooling lubricant. For most manufacturing 

processes an enormous variety of combinations exist, new combinations are 

added continuously, and some properties are unknown due to trade secrets, 

making the selection of process parameters demanding. In industrial 

environments, the selection of process parameters is mainly performed by 

experienced operators, using a combination of experience and trial and error. 

Hence, the performance of today’s manufacturing processes is heavily influenced 

by operator experience and operator availability. 

In this work, procedures for autonomous parameter selection based on Gaussian 

process models and Bayesian optimization are developed and tested exemplarily 

for turning and grinding. Using a few experiments, autonomous parameter 

selection is successfully applied to the selection of feed per revolution and cutting 

speed for longitudinal turning of 1.4125 steel bars. The objective of the turning 

optimization is to minimize the production costs, while fulfilling the maximum 

allowed surface roughness of the final workpiece. 

Afterwards, autonomous parameter selection is extended to plunge face grinding 

of tungsten carbide and polycrystalline cubic boron nitride (PCBN) cutting 

inserts. For plunge face grinding, the grinding wheel wear and the grinding 

temperature is measured by utilizing optical fibers embedded perpendicular to the 

grinding wheel surface in the abrasive layer. The fibers are used by a pyrometer 

to measure temperature at the contact zone of grinding wheel and workpiece, and 

an interferometer is used to measure grinding wheel wear. For grinding of 

tungsten carbide, the axial grinding feed rate and cutting speed are optimized to 

minimize the individual production costs, while fulfilling constraints of 

temperature and surface roughness. For grinding of PCBN, axial grinding feed 

rate and average conditioning feed rate are optimized to minimize individual 

production costs, while considering grinding process stability. Gaussian process 

classification is used for modeling of the grinding process stability, extending the 

previous Gaussian process regression approach. 
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Finally, the use of prior knowledge and transfer of knowledge is demonstrated for 

the optimization of cutting speed in longitudinal turning. All approaches utilizing 

prior knowledge or transfer of knowledge reduce the number of experiments by 

at least 40% compared to a standard approach without prior knowledge.  
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Zusammenfassung 

Die Prozessparameterauswahl von Fertigungsprozessen beeinflusst die 

Produktionskosten und die Qualität der gefertigten Teile stark. Optimale 

Prozessparameter hängen von der individuellen Spezifikation des 

Fertigungsprozesses wie der Maschine, dem Werkzeug, dem Werkstück und dem 

Kühlschmiermittel ab. Für die meisten Fertigungsprozesse existiert eine enorme 

Vielfalt von Kombinationen, neue Kombinationen werden kontinuierlich 

hinzugefügt und einige Eigenschaften sind aufgrund von Betriebsgeheimnissen 

unbekannt, was die Auswahl der Prozessparameter anspruchsvoll macht. In 

industriellen Umgebungen wird die Auswahl der Prozessparameter hauptsächlich 

von erfahrenen Bedienern durchgeführt, welche eine Kombination aus Erfahrung 

und Versuch und Irrtum nutzen. Daher wird die Leistung heutiger 

Fertigungsprozesse stark von der Bedienererfahrung und Bedienerverfügbarkeit 

beeinflusst. 

In dieser Arbeit werden Vorgehensweisen zur autonomen Parameterauswahl 

basierend auf Gauss Prozessmodellen und Bayesscher Optimierung entwickelt 

und exemplarisch für das Drehen und Schleifen getestet. Unter Verwendung von 

wenigen Experimenten wird die autonome Parameterauswahl erfolgreich für die 

Auswahl des Vorschubs pro Umdrehung und der Schnittgeschwindigkeit beim 

Längsdrehen von 1.4125 Stahlstangen angewendet. Das Ziel der Drehoptimierung 

ist die Minimierung der Produktionskosten bei gleichzeitiger Einhaltung der 

maximal zulässigen Oberflächenrauheit des fertigen Werkstücks. 

Danach wird die autonome Parameterauswahl auf das Querseiten-Planschleifen 

von Wendeschneidplatten aus Hartmetall und polykristallinem kubischem 

Bornitride (PKB) erweitert. Beim Querseiten-Planschleifen werden der 

Schleifscheibenverschleiss und die Schleiftemperatur unter Ausnutzung optischer 

Fasern gemessen, die senkrecht zur Schleifscheibenoberfläche in die 

Schleifschicht eingebettet sind. Die Fasern werden von einem Pyrometer 

verwendet, um die Temperatur an der Kontaktzone von Schleifscheibe und 

Werkstück zu messen und ein Interferometer wird verwendet, um den 

Schleifscheibenverschleiss zu messen. Beim Schleifen von Hartmetall werden die 

axiale Vorschubgeschwindigkeit und die Schnittgeschwindigkeit optimiert, um 

die individuellen Produktionskosten zu minimieren und gleichzeitig die 

Temperatur- und Oberflächenrauheitsrandbedingungen zu erfüllen. Für das 

Schleifen von PKB werden die axiale Vorschubgeschwindigkeit und die 



xvi 

durchschnittliche Konditioniergeschwindigkeit optimiert, um die individuellen 

Produktionskosten zu minimieren und gleichzeitig wird die 

Schleifprozessstabilität berücksichtigt. Die Gauss Prozess Klassifizierung wird 

zur Modellierung der Schleifprozessstabilität verwendet, was den 

vorangegangenen Gauss Prozess Regressions Ansatz erweitert. 

Schliesslich wird die Nutzung von Vorwissen und Übertragung von Wissen zur 

Optimierung der Schnittgeschwindigkeit beim Längsdrehen demonstriert. Alle 

Ansätze, welche Vorwissen oder Übertragung von Wissen nutzen, reduzieren die 

Anzahl der Experimente um mindestens 40% im Vergleich zu einem 

Standardansatz ohne Vorwissen. 
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1 Introduction 

In general, the aim of manufacturing is to produce high quality products at low 

cost. Figure 1.1 shows the cost structure of typical automotive parts, where 

manufacturing costs account for 72 - 82% of the total cost and are much larger 

compared to material costs. Within the manufacturing costs the biggest share is 

attributed to mechanical processing with a contribution of 42 - 67% to the total 

cost. Therefore, mechanical processing costs have a substantial impact on final 

cost, which requires careful selection of process parameters to keep the processing 

costs minimal. 

 

Figure 1.1: Cost structure of different automotive parts according to [168] 

Producing high quality products typically reduces the process window in 

manufacturing, which makes finding acceptable machine settings challenging and 

often leads to solutions where the cost-efficient parameters are close to the 

boundary of the process window. For example, producing parts with a high 

surface quality can only be achieved with a small subset of machine settings, 

whereas a larger subset of machining settings is feasible to produce parts with a 

low surface quality. Consequently, producing high quality products typically 

increase the need for elaborate parameter selection. 

An important and continuing trend is the shift from mass production with high 

product volume per variant and low product variety to customized products with 

increased product variety, to better meet the demand, as described in [87]. The 
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trend towards an increased product variety leads to smaller batch sizes, which 

requires frequent adjustment of the process set-up. 

Today the process set-up is mainly performed by machine operators, as in 

previous decades. Typically, the machine settings, such as feed rate and cutting 

speed, are determined based on trial and error tests and operator experience. Very 

often, the tuning is performed in a non-standardized way due to the different 

operator experience levels and different operator approaches. Typically, expert 

operators find optimal solutions with only a few experiments, whereas novice and 

less skilled operators require many costly experiments to find optimal solutions, 

propose suboptimal solutions or in worst case are unable to find process 

parameters which fulfill the product requirements. 

The selection of machining parameters is therefore a bottleneck for cost efficient 

production. Due to the demand for high quality products and smaller batch sizes, 

this situation will likely escalate. To allow a frequent process set-up with 

increased requirements on product quality, methods supporting the less skilled 

and novice operators are needed.  

Expert systems have been proposed to support the parameter selection of 

manufacturing processes. According to [72], expert systems represent human 

knowledge and make use of it to simulate human reasoning. The underlying 

motivation to apply expert systems is to support less skilled or novice users by 

using collected knowledge of domain experts. However, the main difficulty of 

expert systems is knowledge acquisition because knowledge must be transferred 

painstakingly from human experts to a format suitable for computers, as reported 

in [42]. Therefore, the scope of this thesis is to autonomously acquire knowledge 

for parameter selection of manufacturing processes by interaction with the 

manufacturing system. The autonomous parameter selection of the frequently 

used turning and grinding process are investigated exemplarily. 
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2 Fundamentals of manufacturing processes 

First, a brief introduction to manufacturing processes is provided, which serves as 

a foundation for autonomous parameter selection. Manufacturing processes can 

be categorized according to DIN 8580 [34], defining primary shaping, forming, 

dividing, joining, coating, and modifying material properties as the main groups. 

In [34] the main groups are further subdivided up to the level of a single process. 

For example, within the main category dividing, turning is categorized as cutting 

with defined cutting edge and grinding is categorized as cutting with undefined 

cutting edge. As illustrated in [34], there exist a vast variety of manufacturing 

processes. Many of them requiring the selection of parameters for cost efficient 

and high-quality production. In this thesis the fundamentals are focused on 

grinding and turning because autonomous parameter selection is demonstrated 

exemplarily for these two processes. Covering all manufacturing processes is out 

of scope of this thesis and the interested readers are referred to [80-84] for 

introductions to various manufacturing processes. Nevertheless, the optimization 

methods used are not limited to turning and grinding and might be adapted to 

other manufacturing processes.  

2.1 Turning 

According to DIN 8589-1 [35], within the class of turning operations there are 

different processes, such as facing, straight turning, and threading. Figure 2.1 

shows a schematic of the longitudinal straight turning process. The velocity at the 

interaction of the cutting insert and workpiece is called cutting speed cv . The 

cutting insert removes material from the workpiece with a fixed depth of cut pa  

and moves along the cylinder with a feed per revolution f . The depth of cut, 

cutting speed, and feed per revolution are input parameters for the cutting 

operation and must be selected.  

An important measure to characterize the turning process is the cross section of 

the undeformed chip, which is schematically shown in Figure 2.2. The 

undeformed chip is a theoretical measure to characterize the process and should 

not be confused with the actual chip of the cutting process. As reported in [167], 

the undeformed chip thickness can be calculated as 

 sinh f   (2.1) 
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and the width of the undeformed chip is, 

 
sin

pa
b


  (2.2) 

where   is the tool cutting edge angle. 

 

Figure 2.1: Longitudinal straight turning adapted from DIN 8589-1 [35] 

 

Figure 2.2: Undeformed chip thickness in turning according to [167] 

The undeformed chip thickness is often used to empirically relate process inputs 

with process outputs. For example, based on the undeformed chip thickness h  

and the width of the undeformed chip thickness b , the cutting force cF  can be 

estimated according to the Kienzle equation, as described in [81], 
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 (1 )

1,1
cm

c cF k h b


  (2.3) 

where 
1,1ck  and cm are model coefficients. 

Based on the process kinematics one can also estimate the surface roughness of 

the final workpiece. The final surface roughness is often predicted by the 

kinematic surface roughness tR  , which according to [81] can be calculated as 

follows, 

 
2

8
t

f
R

r



 (2.4) 

where f  is the feed per revolution and r  is the corner radius of the tool. As 

explained in [81], the underlying principle for the surface roughness generation is 

that the tool moves with a specific feed per revolution f  along the workpiece, 

creating a distinct groove pattern on the workpiece surface. Figure 2.3 shows a 

surface roughness fit based on experimental data. The roughness model can 

accurately model the general roughness trend but is unable to predict the 

experiments precisely. Overall, a high feed per revolution leads to a deterioration 

of the surface roughness but also to a reduction of the cycle time. Hence, surface 

roughness requirements must be balanced with process cycle time. 

 

Figure 2.3: Surface roughness for turning of 1.4125 steel bars using a coated cemented 

carbide cutting tool with a corner radius of 0.2 mm and a constant depth of cut of 0.3 mm 

Another important aspect of turning is cutting insert wear. Figure 2.4 top 

schematically shows different wear measures of the cutting insert. According to 
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ISO 3685 [70] different criteria, such as maximum width of the flank wear land 

,maxBVB  or average width of the flank wear land BVB  are used as wear measures. 

Figure 2.4 bottom shows the determination of the tool life by continuously 

measuring the average width of the flank wear land until the maximum allowed 

average width of the flank wear land is reached, which serves as the tool life 

criterion. 

 

 

Figure 2.4: Measurement of tool life according to ISO 3685 [70] 
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Afterwards the tool life T  can be correlated with the cutting speed cv  according 

to the Taylor equation, as described in [81], 

 
k

v cT C v   (2.5) 

where vC  and k  are model coefficients. Figure 2.5 shows exemplarily the tool 

life and a Taylor equation fit for cutting of 1.4125 steel bars using a coated 

cemented carbide cutting tool. Similar to the previous surface roughness model, 

the general trend of the tool life model is captured accurately but the tool life 

model does not match experiments precisely. For high cutting speeds the tool life 

is shorter and accordingly the insert must be replaced more frequently for high 

cutting speeds. However, higher cutting speeds lead to shorter cycle times due to 

a faster operation. To optimize the turning process, it is necessary to balance cost 

of cycle time and cost of tool wear. 

 

Figure 2.5: Tool life for manufacturing of 1.4125 steel bars using a coated cemented 

carbide cutting tool with a corner radius of 0.2 mm and a constant depth of cut of 0.3 mm 

The measured turning quantities such as surface roughness and tool life do not 

only depend on the selected process parameters but also on the properties of 

cooling lubrication, turning machine, workpiece and cutting tool. Table 2.1 

summarizes the main groups and the corresponding properties, which influence 

the turning process. According to [81], typical cutting materials are tool steels, 

cemented carbides, ceramics, boron-nitride and diamond, sometimes coated in 

order to enhance the cutting properties. Besides the different tool materials also 

different tool geometries exist, which are specified in DIN ISO 1832 [39]. As 

listed in DIN ISO 513 [37], typical workpiece materials are steel, stainless steel, 
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cast iron, non-ferrous metals, superalloys, titanium, and hard materials. Both, 

workpiece and tool materials can be further subdivided by their individual 

material composition leading to an enormous variety of workpiece and tool 

combinations. 

Table 2.1: Summary of main groups and properties influencing the turning process 

 

2.2 Grinding 

Figure 2.6 shows the interdependency of the grinding process. Special to grinding 

is the coupling of the grinding process with the conditioning process. A review on 

conditioning of grinding wheels is presented in [178]. According to [145], the 

conditioning process can be subdivided in profiling, sharpening, and cleaning of 

the grinding wheel. 

 

Figure 2.6: Causalities of the grinding process adapted from [68] 

Group Properties 

Process parameters Feed per revolution 

Cutting speed 

Depth of cut 

Turning machine Machine stiffness 

Maximum power of drives 

Maximum rotational speed of spindle 

Accuracy of machine tool 

Cutting tool Cutting material and coating type 

Tool geometry 

Workpiece Workpiece material 

Workpiece geometry 

Cooling lubrication Cooling lubricant specification 

Cooling nozzle type 

Cooling flow rate, velocity, and orientation 
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As listed in DIN 8589-11 [36], there are various grinding processes such as 

surface grinding, cylindrical grinding, and profile grinding. A special surface 

grinding operation is plunge face grinding, often used for grinding of cutting 

inserts and investigated in this thesis. The plunge face grinding operation is 

schematically shown in Figure 2.7. Special to plunge face grinding is that there is 

a surface contact between grinding wheel and workpiece and not only a line 

contact as for many other grinding operations. In plunge face grinding, the 

grinding wheel moves with an axial feed rate fav  towards the workpiece, while it 

is rotating with a constant cutting speed cv  and oscillates with a frequency oscf . 

The grinding wheel is oscillated with a fixed frequency to ensure uniform wear of 

the grinding wheel. At the end of the grinding process, the programmed workpiece 

position is kept constant for a predefined spark-out period to allow a reduction of 

residual grinding forces. The reduction of residual grinding forces is important to 

allow a minimization of geometry errors of the final workpiece. 

 

Figure 2.7: Schematic of plunge face grinding 

Similar to turning, the undeformed chip thickness is often used to empirically 

relate input parameters with process outputs. Friemuth [45] developed a relation 

for the undeformed chip thickness for plunge face grinding, assuming circular 

abrasive grains, 
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where Gd  is the abrasive grain size and C  is the grain concentration. The 

dependency developed by Friemuth is in line with previous work from Wobker 

[183] and Fritsch [46], who qualitatively obtained the same results as Friemuth, 

with slightly different numerical values due to different model assumptions. As 

an application example of the undeformed chip thickness, Friemuth [45] showed 

that a high undeformed chip thickness is correlated with higher residual 

compressive stress of the final workpiece. 

Another important aspect of grinding is grinding wheel wear. According to [189], 

grinding wheel wear can be classified into attritious wear of grains, grain fracture, 

and bond fracture. Attritious wear corresponds to flattening of the grains and leads 

to a dulling of the wheel, which finally results in high grinding forces, as reported 

in [110]. Grain and bond fracture cause a self-sharpening effect of the grinding 

wheel [189]. Grinding wheal wear heavily depends on the process parameters, 

workpiece and grinding wheel. Furthermore, grinding wheel wear can be 

classified according to the resulting wear pattern in radial and edge wear, as 

described in [82]. 

The workpiece materials in plunge face grinding of cutting inserts are cutting 

materials as previously introduced in section 2.1. Various grinding wheels with 

different properties are used as tools. Figure 2.8 shows grinding wheel 

specification details. For plunge face grinding of inserts mainly diamond 

abrasives are used. One can choose the grain size and the concentration, which 

specifies the grain volume in carat per unit abrasive layer. Furthermore, one is 

free to choose the bond material. Vitrified bonds are the hardest bonds, resin 

bonds show the lowest hardness and metallic bonds are in between, as listed in 

[112]. In plunge face grinding of inserts the conventional ceramic grinding 

materials are used for dressing of the grinding wheel, mostly the abrasive 

materials of the dressing wheel are either aluminum oxide or silicon carbide, 

depending on the bond type of the grinding wheel. Furthermore, the grinding and 

dressing wheels can be specified according to hardness and structure, which must 

be selected depending on the grinding process. 



Grinding  |  2.2 

11 

 

Figure 2.8: Specification of grinding wheel abrasive: CBN and diamond (top) and 

conventional ceramic (bottom) by Tyrolit [172]. The specification of the conventional 

ceramic grinding material of Tyrolit is in line with the DIN ISO 525 [38]. 

Similar to turning, many different machine, workpiece, tool, cooling lubrication 

and dressing setup combinations exist in grinding, which influence the selection 

of optimal process parameters. Table 2.2 summarizes the main groups and 

corresponding properties, which influence the plunge face grinding process. As 

can be seen in Table 2.1 and Table 2.2, the coupling of the grinding and 

conditioning process leads to a higher complexity and more properties to select 

compared to turning, where a worn out tool is replaced with a new one instead of 

resharpening the tool on the machine. 
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Table 2.2: Summary of main groups and properties influencing the plunge face grinding 

process 

2.3 Manufacturing costs 

The main goal of autonomous parameter selection is to propose parameters which 

are optimal or close to optimal with respect to one or multiple objectives. In this 

thesis the focus is on minimization of manufacturing costs because this is most 

demanded by industry. However, other objectives such as minimization of 

environmental impact or maximization of energy efficiency are also possible 

alternatives. According to [169], the total manufacturing costs per part TC  can be 

calculated as follows, 

Group Properties 

Process parameters grinding Cutting speed 

Axial feed rate 

Oscillation frequency of grinding wheel 

Spark-out time 

Process parameters 

conditioning 

Axial feed rate of dressing wheel 

Duration of conditioning operation 

Rational speed of grinding wheel and dressing 

wheel 

Spark-out time 

Grinding machine Machine stiffness 

Maximum power of drives 

Maximum rotational speed of grinding wheel 

Accuracy of machine tool 

Grinding wheel Abrasive material 

Abrasive grain size 

Grain concentration 

Bond specification 

Dressing wheel Abrasive material 

Abrasive grain size 

Bond type 

Workpiece Workpiece material 

Workpiece geometry 

Cooling lubrication Cooling lubricant specification 

Cooling nozzle type 

Cooling flow rate, velocity, and orientation 
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where VOC  are the preparatory costs containing for example the procurement costs 

of measuring instruments, AWC  are the order repetition costs containing for 

example the machine set-up time, FEC  are the individual production costs, FOC  

are the follow-up costs such as quality assessment and storage costs, A  are the 

number of orders, and L  is the lot size. As explained in [169], the individual 

production costs FEC  are the combination of job time et , machine hour rate MHC  , 

labor costs LHC , and tool wear costs per time WHC . 

  FE e MH LH WHC t C C C    (2.8) 

The follow-up costs FOC  depend on the performance of the high-level production 

planning and control system and not on the specific machine parameters. The 

order repetition costs AWC  depend on automatic tool changers, robots, and 

intralogistics and not on machine parameters. Therefore, follow-up costs and 

order repetition costs were not considered in this study. From equation (2.7) it 

follows that for a large lot size the contributions of the preparatory costs VOC  and 

the order repetition costs AWC  to the manufacturing costs per part are small. In 

this case the manufacturing costs per part are primarily determined by the 

individual production costs FEC  and the follow up costs FOC . Consequently, for 

very large lot sizes performing many initial experiments to find optimal machine 

parameters and thereby reducing the individual production cost FEC  is beneficial 

because the contribution of the preparatory costs to the total manufacturing costs 

per part is minimal. However, when switching to medium and small lot sizes the 

cost of initial experiments significantly influences the total manufacturing costs 

per part. Hence, for medium and small batch sizes it is crucial to reduce the cost 

of initial experiments as much as possible. Throughout this thesis the cost unit is 

Swiss franc but for the sake of universality it is denoted as U .
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3 State of the art in parameter selection of manufacturing 

processes 

Over the past many different approaches have been proposed for parameter 

selection in manufacturing. Parameter selection in manufacturing builds on 

various areas such as artificial intelligence, optimization, process modelling, and 

sensorial process feedback. Rowe et al. [139] listed various approaches for 

artificial intelligence systems in grinding such as knowledge-based systems, 

expert systems, fuzzy logic systems, neural net systems, and adaptive control 

optimization techniques. A comprehensive overview on optimization and 

modelling techniques for machine tools and applications to grinding and turning 

is given in [131], listing the following techniques: statistical regression technique, 

fuzzy set theory, artificial neural networks, gray relational analysis, Taguchi 

robust design method, Taguchi fuzzy-based approach, factorial design method, 

response surface methodology (RSM), knowledge-based expert systems, 

principal component analysis, mathematical iterative search methods and meta-

heuristics. Another review focusing on modeling and simulation in grinding is 

conducted by Brinksmeier et al. [15]. They categorized regression analysis, 

artificial neural networks, and rule-based approaches as applicable for process 

control, whereas other models such as molecular dynamic models, kinematic 

models, finite element models, and models based on first principle are not 

categorized as applicable for process control.  

Based on the previous publications a rich set of methods for parameter selection 

in manufacturing exist. Figure 3.1 shows on a high level components for 

parameter selection of manufacturing processes. Human operators typically 

follow this schema for parameter selection of manufacturing process. The 

operators combine domain knowledge and knowledge of similar tasks with 

process state information such as temperature or force readings and process 

performance measures such as tool wear, process time and final surface roughness 

of the workpiece. A method for autonomous parameter selection is the use of 

expert systems, which are heavily based on integration of domain knowledge and 

only a few of these systems utilize state or performance feedback of the process. 

A different approach for autonomous parameter selection is to optimize the 

process parameters by considering domain knowledge, state measurements and 

performance measures. Systems based on optimization typically consist of a 
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model of the process, a method for the selection of parameters to improve the 

model by using state and performance measures, and an optimization procedure 

to find the best parameters according to the model. The influence of domain 

knowledge in optimization depends on the model choice and can vary greatly. 

Physical models based on first principles are heavily based on domain knowledge 

while neural network models are mainly based on state and performance 

measurements. Optimization approaches heavily based on state and performance 

measurements are often referred to data-driven optimization. An effective 

autonomous system for parameter selection should combine domain knowledge 

with state and performance measurements, similar to human operators. Therefore, 

expert systems and systems based on optimization are introduced in the following 

sections.  

In this work the parameters are selected in the beginning of the manufacturing 

process and are not affected by the current state of the process such as the current 

tool wear state. A simple example for state based parameter adaption is force-

controlled grinding, as shown in [171]. However, such systems are not applicable 

to autonomous parameter selection for general cases because they are too 

simplistic and do not consider performance measures. A more sophisticated 

method, using state and performance measurements for continues adaption of 

process parameters is reinforcement learning. [144] demonstrates reinforcement 

learning for cylindrical plunge grinding in simulation by selecting the infeed rate 

while considering the remaining grinding stock and the decrement rate of the 

workpiece radius as state parameters, and size and decrement rate of the 

workpiece radius in the end as performance measures. In total they conducted 

5000 iterations for learning of optimal parameters, the first 70 iterations failed and 

afterwards the performance improved. Such methods work in a simulation 

environment. In real grinding applications their use is limited due to the high 

experimental costs. Therefore, expert systems and self-optimizing systems which 

select the parameters initially are currently closest to industrial applicability due 

to reasonable experimental costs. 
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Figure 3.1: Overview of parameter selection for manufacturing processes  

3.1 Expert systems 

Figure 3.2 shows a typical structure of expert systems. The core of each expert 

system is the knowledge base where domain specific knowledge is stored. 

Specific domain knowledge is typically translated to a suitable expert system 

format by a knowledge engineer, after collection through interviewing human 

domain experts. Expert systems also have a user interface, where an inference 

engine is used to provide recommendations based on the knowledge base. 

Sometimes, expert systems are also equipped with an explanation module to 

provide reasons for the proposed recommendations. 

 

Figure 3.2: Structure of expert systems adapted from [44] and [177] 
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Different methods to represent the knowledge of the expert systems exist, as 

illustrated in Figure 3.3. For example, [118] recommends cutting tools for milling 

and turning by using a database for knowledge representation. Another example 

is given by [114], utilizing a rule-based system for selection of grinding 

parameters. Instead of using exact rules it is also possible to apply fuzzy logic, 

such as shown in [59] for recommending cutting speeds in turning, based on depth 

of cut and workpiece material hardness. As explained in detail in [136], fuzzy 

logic allows to represent imprecise information by fuzzy sets, where elements are 

members of a set with varying degrees – this is in contrast to classical Boolean 

logic, where an element can or cannot belong to a set. In [101] an ontology is used 

for a manufacturing control system. The simplified manufacturing system in [101] 

consists of two grinding machines, two milling machines, two lathes, three robot 

arms, and two automated guided vehicles for the production of three different 

products. 

 

Figure 3.3: Knowledge representation methods adapted from [60, 61] 
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Figure 3.4 shows a performance comparison of human operators and an industrial 

expert system. The performance and the degree of task fulfillment varies heavily 

between the 75 operators, clearly showing improvement potential. The expert 

system shows a good performance and a degree of fulfillment of 100%. The 

comparison also shows the limitation of the expert system used in this case, 

because some operators outperform the expert system. This is obvious because 

the expert system cannot surpass the performance of the domain expert and 

knowledge engineer designing the expert system. This disadvantage becomes 

even more dominant for the setup of new machine, workpiece, and tool 

combinations where precise knowledge is missing.  

 

Figure 3.4: Performance comparison between human experts and an industrial expert 

system (F. Gaegauf, personal communication, 2011) 

As described in Feigenbaum and McCorduck [42], the main shortcoming of 

expert systems is the acquisition of knowledge, which requires to transform 

human knowledge in a format suitable for computers. For example, they identified 

flexibility of expert system updating and the motivation for experts to share their 

knowledge as barriers. In order to overcome the knowledge acquisition bottleneck 

systems including self-learning capabilities have been developed. [143] presents 

an expert system with a learning module, which uses data from a grinding 

database to automatically generate fuzzy production rules. However, a 

shortcoming of the proposed system is that no data-efficient method is provided 

to collect the data. Instead, the expert system performance in [143] is 

demonstrated for one grinding case using 500 randomly simulated data points.  
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Another system considering learning is presented in [120] combining a database 

for knowledge representation with different methods for grinding parameter 

selection. The system in [120] uses a burn algorithm, a time constant algorithm, 

and a wheel dressing algorithm for parameter adjustment and gains knowledge by 

saving the adjusted parameters in the database for later use. The disadvantage of 

this learning method is that the adjusted parameters are not necessarily optimal 

according to a certain objective such as minimal costs because the parameter 

adjustment is a result of combining procedures and rules and not by optimization. 

As shown in [120], starting parameters for new grinding tasks can be obtained by 

transferring knowledge from stored tasks to new tasks by defining a total 

similarity S , 
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where iw  are weights, and is  is the similarity for feature i . Following [120], for 

binary features the similarity for feature i  can take values of one (feature is the 

same) or zero (feature not the same). For continuous features they calculated the 

similarity by a distance measure which is normalized by the feature range. In [120] 

the weights are specified based on the importance of each feature and the 

complexity of the modification. However, they do not explain how importance or 

the complexity of modification is quantified – in the spirit of expert systems the 

weights need to be defined by domain experts. 

Besides the drawbacks of the current systems, the idea of acquiring knowledge by 

interaction with the machine is promising to overcome the knowledge acquisition 

bottleneck. Therefore, the next chapter investigates different optimization 

approaches as a method for autonomous acquisition of knowledge.  
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3.2 Optimization 

Typically, the goal of optimization approaches is to find the process parameters 

x , which minimize or maximize an objective function ( )f x  subject to (s.t.) 

constraints. For a minimization problem this can be written as follows, 

 argmin ( ), . . ( )min maxx f x s t c x c   (3.2) 

where ( )c x  is a constraint quantity and maxc  is the maximum allowed value of the 

constraint.  

Table 3.1 and Table 3.2 list various optimization approaches for grinding and 

turning with their optimization objectives and constraints. The optimization 

approach can be subdivided in methods for experiment selection, process 

modelling, and determine optimal parameters. Different quantities are considered 

as an objective such as production costs, geometry error, and cycle time. For 

simplified optimizations, the objective might be the machining time only.  It is 

also possible to define multiple objectives, where different objectives such as 

surface roughness, grinding time and production costs are optimized 

simultaneously, as for example shown in [49]. The constraints are mainly 

introduced by the process and the final workpiece requirements such as a desired 

surface roughness. 

3.2.1 Process modeling 

Empirical models, such as the Kienzle equation (2.3), kinematic surface 

roughness equation (2.4), and the Taylor equation (2.5), are often used for 

optimization purposes, as shown in Table 3.1. The advantage of empirical models 

is the extensive literature and the simplicity of use. The simplicity of the models 

is also their main disadvantage. They might be able to show general trends but are 

inaccurate to match reality. For example, according to the kinematic surface 

roughness equation the surface roughness is only a function of feed per revolution 

(see equation (2.4)). As described in [81], for real turning experiments the surface 

roughness is not only influenced by the feed per revolution but also by built-up 

edge, which is not considered by the kinematic surface roughness model. A 

straightforward way would be to include these additional factors in the models. In 

practice this approach is difficult because an enormous variety of process 

configurations exist. Furthermore, these additional factors of the models depend 

on the individual process set up specification, such as workpiece, tool, cooling 

lubricant, and machine properties. Unfortunately, workpiece, tool, cooling 
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lubricant and machine properties are only known partially due to trade secrets of 

the respective manufacturers, quantities that are difficult to measure, and lack of 

documentation. Consequently, including additional factors in the empirical 

models is difficult for parameter selection in an industrial environment. 

Polynomial fits are another class of models, which are commonly used. Most 

often polynomial fits are used up to the second order, as shown in Table 3.1. The 

advantage of these models is their flexibility of use because they are not restricted 

to specific tool, workpiece, cooling lubricant and machine combinations. The 

main disadvantage of polynomial fits in the context of autonomous parameter 

selection is the restriction of the function form to a second order polynomial, 

which can lead to inaccurate predictions of the real machining process. For 

example, the tool life is typically predicted according to the Taylor equation (2.5) , 

which is a power function with a real valued exponent. A second order polynomial 

fit is only able to provide a rough approximation of this function and therefore 

leads to model errors. 

To overcome the limitations of the second order polynomial, one can fit higher 

order polynomials. This is seldom done in the process optimization literature. 

Instead, as shown in Table 3.1 and Table 3.2, neural network models are chosen, 

offering a great model flexibility. The great model flexibility allows for data-

driven optimization. Recently, systems using neural networks have made great 

progress in modelling complex dependencies in various fields, where large 

amounts of training samples are available, such as image recognition [91], speech 

recognition [55], and handwriting recognition [56]. In contrast to these big data 

applications, in manufacturing often only a few training samples are available. 

Due to the high flexibility of neural networks, it is necessary to fit many model 

parameters such as weights and biases for each layer. The combination of few 

training samples and many model parameters often results in overfitting, where 

the main shortcoming of neural networks is that they typically do not provide any 

uncertainty estimations of the prediction. For example, when making predictions 

for input parameters far away from measurements, the neural network predicts a 

result with the same confidence as for input parameters close to data points. This 

property is in clear contrast to human intuition. As shown in [47], model 

uncertainty information can be obtained by combining Bayesian methods with 

neural networks. However, to avoid the added complexity in modeling, most 

neural network approaches are used without model uncertainty estimations. 
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Gaussian process (GP) models are a class of probabilistic models, which provide 

uncertainty estimations. According to [134], a Gaussian process is a non-

parametric model, which can be used to describe a distribution over functions. 

Therefore, Gaussian process models have a greater flexibility compared to a 

single function fit, such as a second order polynomial fit. Given the Gaussian 

process model and available data, a mean value and a variance can be calculated 

for arbitrary input combinations, as described in [134]. Typically, Gaussian 

process models predict lower variances close to measured points and higher 

variances for unexplored parameter values. The in-build uncertainty prediction 

makes Gaussian process models very suitable for modelling processes with only 

a few data points, especially in comparison to traditional neural networks. The use 

of Gaussian process models accelerated in recent years e.g. for wind power 

forecasts [21], data-efficient learning in robotics [27], control of a gas-liquid 

separation plant [100] and sensor placement [57]. For machining operations only 

a few studies using Gaussian process models exist. Focusing only on modelling, 

in [86] Gaussian process models are successfully used for tool wear prediction 

based on force measurement features in turning. The use of Gaussian process 

models for turning process optimization is demonstrated in [1, 5]. A detailed 

introduction on the underlying equations of Gaussian process models follows in 

chapter 4. 
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Table 3.1: State of the art optimization methods and objectives in grinding 

Source Method for 

selection of 

experiments 

Modelling 

techniques for 

grinding process 

Method to determine 

optimal parameters 

Objective & Constraints on output 

[97] Not stated 1) Parametric 

regression of 

empirical 

models 

2) fuzzy basis 

function 

network 

Evolution strategy (described 

in [98]) 

Objectives: 

1) Minimization of grinding costs  

2) Minimization of cycle time 

3) Weighted sum minimization of difference 

between roughness, grinding power, and G-

ratio to desired values 

Constraints: 

Maximum grinding power, minimum G-ratio, 

maximum surface roughness, maximum residual 

stress 

[49] Taguchi method 

(orthogonal array) 

Parametric 

regression of 

empirical models 

 

Genetic algorithm Multi-objective optimization of surface 

roughness, grinding time, and production costs 

constrained to workpiece removal parameters 

and wheel wear parameters 

[147] Full factorial 

design 

Neural networks Combination of weighting 

method (described in [190]), 

branch and bound method, 

and generalized reduced 

gradient method  

Multi-objective optimization of power, normal 

force, surface roughness, and material removal 

rate 

[99] Fractional 

factorial design 

Neural networks Back propagation algorithm 

with Boltzmann factor 

Weighted multi-objective optimization of 

material removal rate, surface roughness, 

grinding force per width, and grinding power per 

width constrained to a maximum grinding power 

per width and a maximum surface roughness 
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Table 3.1: State of the art optimization methods and objectives in grinding (continued) 

Source Method for 

selection of 

experiments 

Modelling 

techniques for 

grinding process 

Method to determine 

optimal parameters 

Objective & Constraints on output 

[94] Taguchi method 

(orthogonal array) 

Second order 

polynomial fit 

(RSM) 

1) Taguchi (signal to noise 

ratio) 

2) Graphically 

1) Minimize geometric error 

2) Minimize geometrical error with surface 

roughness and material removal constraint 

[89] Central composite 

design 

Second-order 

polynomial fit 

(RSM) 

1) Non-linear programming 

2) Genetic algorithm 

Minimization of surface roughness 

[128, 

132, 

179] 

No experiments 

for modelling 

Empirical models 

from literature 

[179]:  

Quadratic programming 

[128]: 

Particle swarm optimization 

[132]: 

1) Artificial bee colony 

algorithm 

2) Harmony search algorithm 

3) Simulated annealing 

algorithm 

1) Rough grinding: weighted multi-objective 

optimization of production costs and 

production rate constrained to thermal 

damage, wheel wear, machine tool stiffness, 

and surface roughness 

2) Finish grinding: weighted multi-objective 

optimization of production costs and surface 

roughness constrained to thermal damage, 

wheel wear, machine tool stiffness, and 

production rate 

[111] Taguchi method 

(orthogonal array) 

None Grey relational analysis Optimization of material removal rate, surface 

roughness, and grinding force 

[152] Taguchi method 

(orthogonal array) 

None Principal component analysis 

combined with grey relational 

analysis 

Optimization of surface roughness, out of 

cylindricity, and diametral tolerance 

[140] Box-Behnken 

design 

Second-order 

polynomial fit 

(RSM) 

Multi-objective genetic 

algorithm 

Optimization of vibration and surface roughness 
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Table 3.2: State of the art optimization methods and objectives in turning 

Source Method for 

selection of 

experiments 

Modelling 

techniques for 

turning process 

Method to determine 

optimal parameters 

Objective & Constraints on output 

[186] Taguchi method 

(orthogonal array) 

None Taguchi (signal to noise 

ratio) 

 

Optimization of tool life and surface 

roughness individually 

 

[123] Taguchi method 

(orthogonal array) 

None Taguchi (signal to noise 

ratio) 

 

Multi objective optimization of tool life, 

cutting force and surface finish 

 

[65] Full factorial design Neural networks Genetic algorithm Optimization of flank wear constrained to 

surface roughness 

[5] Full factorial design Gaussian process 

regression 

Strength Pareto 

Evolutionary Algorithm 

Multi objective optimization of surface 

roughness, tool wear, and productivity 

[1] with details 

provided in 

[142] 

1) Full factorial 

design 

2) m-EGO 

(adaptive 

sampling) 

Gaussian process 

regression 

 

Construct Pareto frontier 

from available 

measurements 

Multi-objective optimization of surface 

quality and material removal rate  

 



3  |  State of the art in parameter selection of manufacturing processes 

26 

3.2.2 Selection of experiments 

As displayed in Figure 3.5, design of experiments (DoE) methods can be grouped 

in sequential DoE and one-shot DoE. As can be seen in Table 3.1 and Table 3.2, 

experiment selection in process optimization is mostly performed using one-shot 

DoE. As described in [160], one-shot DoE typically requires specifying levels, for 

each factor where the experiments are conducted, based on experience and 

theoretical knowledge. Factors typically represent different process parameters 

such as cutting speed and feed rate. Using a full factorial design, one performs 

experiments for each level and factor, which leads to kl  experiments, where l  are 

the levels and k  are the factors, as described in [141]. Hence, this approach 

requires many experimental trials, especially for cases with several factors. 

Alternatively, to reduce the number of trials, fractional factorial designs are used, 

where for a two-level design 2k p  experiments are performed, as described in 

[141]. For this case, the experiments of the full factorial approach 2k
 are reduced 

by 2 p
. For example, setting 2p   reduces the number of experiments by 1/4. 

Various methods exist to create factorial design schemas. Similar to fractional 

factorial design, the Taguchi method [162] uses orthogonal array test plans. As 

pointed out by [141], orthogonal arrays are not always fractional factorial designs, 

but fractional factorial designs are always orthogonal arrays. A disadvantage of 

one-shot DoE is that one needs to design the experiments in the beginning where 

the least is known of the process, as explained by [14]. They concluded that this 

favors the use of sequential designs because it allows to incorporate knowledge 

gained during testing. The initial specification of experiments has a second 

disadvantage. It is not possible to end the experimental run early as more data 

become available – all experiments must be finished before conclusions can be 

made. 

Sequential experimental designs are investigated next, which according to Figure 

3.5 can be categorized in space-filling and adaptive designs. As described in 

[146], space filling algorithms are used for parameter optimization of computer 

simulations, sampling the whole design space evenly. Examples for space filling 

methods are Latin Hypercube sampling [113] and Sobol sequence [158]. As 

reviewed in [102], another sequential DoE strategy is adaptive sampling. As 

shown in Figure 3.5, the idea of adaptive sampling is that more sample points are 

performed close to the optimum, whereas points far away from the optimum are 

sampled less often. As reported in [48] for several test cases, adaptive sampling 
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finds points significantly closer to the optimum than space filling approaches 

while keeping the number of experiments the same. Therefore, adaptive sampling 

is suitable for optimization problems with costly experiments or costly computer 

simulations. In computer science, Bayesian optimization (BO) is frequently used 

for adaptive sampling combined with Gaussian process models for parameter 

optimization of machine learning algorithms, such as shown in [156], but was also 

successfully applied to photovoltaic power plants [2] and robotics [103]. As 

described in [150], to select the next experimental point, an algorithm must 

balance exploration versus exploitation. For optimization problems this implies 

that the algorithm must make sure to not only search near the local optimum, but 

also investigate potential other optimal regions. [1] uses the m-EGO algorithm, 

an early implementation of BO for selecting the next experiment in turning. They 

reported 36% fewer samples compared to a full factorial design approach. 

 

Figure 3.5: Categories of DoE methods according to [102]. For one-shot DoE, 30 

experiments are used. For sequential DoE, 20 experiments are used for initialization 

(black dots) and 10 experiments are selected based on the corresponding sequential 

experimental design (red dots). 

3.2.3 Determination of optimal parameters 

Determination of optimal parameters by using model optimization techniques 

heavily depends on computing power. In the last decades there has been a massive 

surge in computing power following Moore’s law, first described in [119]. The 

higher computing power also shifted the applied algorithms from computational 
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inexpensive methods such as gradient methods, which are prone to get stuck in 

local optima, to computationally more demanding methods such as meta-

heuristics for global search. There exist many different algorithms for model 

optimization (see Table 3.1 and Table 3.2). The model complexity of typical 

process optimization models is moderate. Accordingly, algorithms for model 

optimization are not considered as the main hindrance for autonomous parameter 

selection of manufacturing processes. 

3.3 Performance measurement in grinding  

As explained in the previous section, process feedback is required to interact with 

the machining process. For general grinding applications many different sensors 

exist, as shown in an extensive review in [170]. Another review by [178] 

investigates monitoring of grinding wheels related to conditioning of grinding 

wheels. Measuring performance in the context of autonomous parameter selection 

is challenging for plunge face grinding because the process is mainly investigated 

to improve the process understanding and not for process parameter optimization. 

While for plunge face grinding consensus is missing about performance 

measurement and corresponding sensors for autonomous parameter selection, the 

studies focusing on an improved process understanding can shed some light on 

important measured quantities. Table 3.3 summarizes some studies for plunge 

face grinding of cemented tungsten carbide, ceramic, cermet, and polycrystalline 

cubic boron nitride (PCBN) insert material. The influence of many different 

grinding settings on various quantities has been investigated. 
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Table 3.3: Studies on plunge face grinding of inserts 

Source Workpiece 

material 

Varied input/property Measured quantity 

[26]  cemented 

tungsten 

carbide 

 cutting speed 

 axial feed rate 

 wheel binder material 

 insert quality 

 specific energy 

 grinding wheel 

topography 

[45] ceramic  removed material 

 cutting speed 

 axial feed rate 

 radius speed 

 grinding wheel grain size 

 grinding wheel bond type 

 dressing type 

 dressing parameter 

 lubrication type 

 ceramic type 

 cutting edge quality 

 surface quality 

 forces 

 grinding wheel 

topography 

 grinding wheel wear 

 residual stress in the final 

workpiece surface 

 tool wear in a subsequent 

hard turning test of the 

ground inserts 

[183] ceramic  conditioning parameters 

 removed material 

 ceramic type 

 grinding parameters  

 bond type 

 grain type 

 diamond concentration 

 lubrication type 

 forces 

 surface roughness 

 wear 

 workpiece surface zone 

analysis 

 temperature 

 flexural strength of final 

workpiece 

 wear of the ground insert 

in a subsequent turning 

operation 

[46]  cermet  removed material 

 grinding parameters 

 grain size 

 diamond concentration 

 bond type 

 lubrication type 

 wedge angle of insert 

 cermet type 

 forces 

 grinding wheel wear 

 surface roughness 

 cutting edge roughness 

 structure and crack 

analysis of workpiece 

 residual stress in the final 

workpiece surface 

[29]  PCBN  grinding parameters  grinding wheel wear 

[32]  PCBN  grinding parameters 

 grain size 

 bond type 

 dressing feed rate 

 wheel topography 

 maximum edge chipping 

 surface roughness 

 grinding forces 
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Table 3.3: Studies on plunge face grinding of inserts (continued) 

[31]  PCBN  different PCBN types  wheel topography 

 insert quality 

 grinding forces 

 material removal 

mechanism 

[7]  PCBN  grinding parameters  normal and tangential 

forces 

 surface roughness 

 wheel loading 

[28]  PCBN  grinding parameters 

 PCBN type 

 grinding wheel type 

 grinding wheel wear 

 insert quality 

[30]  PCBN  feed rate 

 cutting speed 

 oscillation frequency 

 process time 

 cutting forces 

 cutting energy 

 wheel wear 

 insert quality 

 

For process optimization it is necessary to optimize individual production costs 

while fulfilling constraints, as exemplarily shown in Figure 3.6 for plunge face 

grinding of cutting inserts. For simplicity only the grinding process parameters 

are shown as inputs. A full list of properties influencing the grinding process is 

given in Table 2.2. Cost quantities, such as dressing time, maximum dressing 

interval and grinding time, as well as cost parameters, such as machine hourly 

costs and cost of the grinding wheel influence the individual production costs of 

the grinding operation. The cost parameters are not measured during grinding - 

these parameters depend on the cost structure of the factory. They depend on the 

location of the production site, purchasing contracts and/or actual workload of 

machines. The plunge face grinding process is bound by workpiece quality 

constraints such as surface roughness, cutting edge roughness, and grinding burn. 

Furthermore, the process can be constrained by process quantities. For example, 

high grinding temperatures can cause an ignition of grinding oil, which must be 

avoided to ensure a safe process. Often it is difficult to directly measure cost and 

quality quantities, hence process quantities such as force measurements are used 

to infer on cost and quality quantities. The considered cost quantities and 

constrained quantities are mainly determined by the grinding application. 
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Figure 3.6: Process parameter, cost quantities, cost parameter, process quantities, and 

workpiece quality quantities of plunge face grinding of inserts for calculation of 

individual production costs and constrained quantities 

3.3.1 Cost quantity measurement 

Some cost quantities such as the grinding time and dressing time can be 

determined in a straightforward manner for a specific grinding setup. Both 

quantities depend on the programmed path and programmed velocity of the 

machine axes. Grinding wheel wear is another important cost quantity and several 

methods to measure or estimate grinding wear and related quantities have been 

proposed. For example, in [28] a microscope is used to directly measure 

macroscopic grinding wheel wear. Instead of directly measuring the grinding 

wheel wear, in [182] an imprint of the grinding wheel is used, which is later 

evaluated using a tactile measurement device. A similar procedure is used in [3] 

to measure corner wear optically by using an imprint and microscope 

measurements. The disadvantage of the proposed measurement procedures is that 

they often involve a lengthy measurement process and require a qualified 

operator. In [17] an external measurement system based on an optical 

triangulation sensor is integrated in the grinding machine for online measurement 

of micro and macro wear. The disadvantage of optical measurement systems is 
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that they get heavily disturbed by cooling lubricant and are mainly applicable to 

dry grinding. Another option for wear measurement is to measure the change of 

the workpiece size during batch grinding and to infer on the macro wear, often 

utilized in an industrial environment and applied in [8, 9]. While this method 

allows continuous correction of geometrical errors of workpieces, it does not 

provide a separation of grinding wheel wear and thermal deviation of the machine. 

3.3.2 Workpiece quality measurement 

Workpiece surface roughness can be measured by tactile or optical measurement 

devices. For example, in [7] a microscope is used to measure the final surface 

roughness after plunge face grinding of inserts. Cutting edge quality, often 

referred to cutting edge roughness or chipping, is another important property 

when grinding inserts, which describes the form deviation of the insert edge 

directly after grinding. In industry the quality of the cutting edge is often judged 

qualitatively by an operator using a magnifier or a microscope. In contrast to the 

qualitative industrial procedure, in [45] a tactile line measurement is used to 

quantify the cutting edge quality. 

Grinding burn is another challenge in grinding of inserts, which causes severe 

damage of the workpiece. Several methods for grinding burn detection of the final 

workpiece exist, such as optical inspection, nital etching [71], Barkhausen noise 

analysis [76], Hall probe [165], or by using X-ray diffractometry [155]. Optical 

inspection means inspection of the workpiece surface for color changes after the 

grinding operation. Similar to optical inspection, nital etching is based on a final 

optical inspection but the workpiece is pretreated chemically by acids to improve 

the visibility of tempering and rehardening of the workpiece, as standardized in 

[71] for investigation of gears. As described in [76], Barkhausen noise analysis 

generates a varying magnetic field and measures the magnetization change of the 

workpiece which is influenced by the workpiece microstructure. Another method 

to measure the magnetization of the workpiece is to use a Hall probe, as shown in 

[165]. X-ray diffractometry on the other hand allows for chemical characterization 

of the workpiece by sending X-rays to the workpiece and measuring diffracted X-

rays, as described in [155]. Hence many different measurement techniques based 

on different physical principles are available for grinding burn detection. 
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3.3.3 Process quantity measurement 

Instead of measuring cost and quality quantities directly, process quantities such 

as force, power, and temperature can be used to estimate them. Often the 

estimation is supported by models, relating the process quantities with the cost 

and quality quantities. In an industrial environment, operators also detect grinding 

burn during operation indirectly by burn of grinding lubricant, which can be 

detected olfactorily. Table 3.4 summarizes industrial and lab sensors for process 

quantities in grinding and their applications. [73] shows grinding burn detection 

of cylindrical grinding using grinding temperature measurements at the contact 

zone. Using temperature measurements of the grinding zone directly is very 

promising for grinding burn detection as it allows to directly measure the cause 

of the grinding burn. It is also possible to combine different sensor signals. For 

example, the ratio between normal force and tangential force has been used in 

[90] as a wheel sharpness indicator. Another example is given in [148], utilizing 

acoustic emission, spindle electric current, and power signals for classification of 

grinding burn. Figure 3.7 and Figure 3.8 show different sensor types and sensor 

locations in grinding. For process quantities a great variety of sensors and sensor 

locations exist. 

Table 3.4: Sensors for process monitoring and their applications in grinding 

 

Reference Measured quantity Application 

[171] Normal force Grinding contact detection and force-controlled 

grinding 

[53] Normal force Chatter detection  

[90] Normal force 

Tangential force 

Wheel sharpness indicator 

[120] Power Spark-out time reduction  

[67] Power Burn detection and grinding wheel life detection 

[73] Temperature Prediction of workpiece surface layer properties  

[77] Acoustic emission Conditioning monitoring  

[96] Acoustic emission Detection of run-out error  

[187] Acoustic emission Classification of sharp and dull grinding wheel 

[188] Acoustic emission Grinding burn detection 

[148] Acoustic emission 

Electric current 

Power 

Classification of grinding burn 
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Figure 3.7: Grinding wheel-based sensors for measuring process quantities adapted from 

[13] 

                             

Figure 3.8: Sensors at machine or workpiece for measuring process quantities adapted 

from [13] 

  

Rotating optical fiber and 
stationary thermal radiation 
sensor [184] 

Thermocouple [16, 85] 

Foil-based thermocouple 
leg placed between halves 
of grinding wheel [153] 

Strain gauge [58, 66, 79] 
Foil-based thermocouple [125] 

Thermocouple leg [185] 

Acoustic emission 

sensor [174] 

Thermocouple (cutting ability) [50, 88] 

Current & power sensor [148] 

Pyrometer (temperature) 
[173] 

Contacting thermocouple [24] 

Thermal deformation [181] 

Machine table 

Micro-magnetic sensor 
(Barkhausen noise) [76] 

Thermal deformation sensor 
(grinding burn) [130] 

Workpiece 

Thermal radiation 
sensor [18, 64]  

Acoustic emission sensor [41] 

Embedded thermocouple [22, 138] 

Force sensor [13, 16, 174] 

Grinding wheel condition: 
- laser triangulation sensor [17, 180] 
- charge-coupled divice camera [6, 43, 95] 
- pneumatic sensor  [163, 166] 
- radar sensor [64] 

Thermocouple(s) [13, 127] 

Diamond stylus (topography) [126] 

Accoustic emission sensor [148] 

 

Dynamometer [41, 164, 191] 
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3.4 Performance measurement in turning 

Similar to grinding, the main goal of performance measurement in turning is to 

characterize individual production costs and constraints. The individual 

production costs in turning consist of cost parameters, such as machine hourly 

costs and cost of the cutting insert, and cost quantities such as tool life and cutting 

time. The cutting time can be easily calculated by the specified feed per 

revolution, the cutting speed, and the initial and final workpiece geometry. The 

tool life on the other hand is not known a priori and must be determined 

experimentally by measurements. Typically, the tool life is quantified based on 

microscopic measurements of the inserts, such as used in [20]. Overcoming the 

limitations of offline measurements, online tool wear measurement based on 

digital images has been shown in [19]. 

Maximum surface roughness of the final workpiece is a typical constraint for the 

turning process. Similar to grinding, the surface roughness can be measured by a 

tactile measurement device such as for example used in [154]. And in [176] online 

surface roughness measurement based on laser-scattering is demonstrated. 

Because measuring cost and quality quantities is sometimes challenging – 

especially in-process – process quantities are used to infer on these properties, in 

line with the approach in grinding. For example, in [23] force measurements are 

used to predict tool wear and in [40] an acoustic emission signal is investigated 

for surface roughness prediction. 

3.5 Research gap 

As shown in the state of the art an ideal system for autonomous parameter 

selection in manufacturing is able to include prior and domain knowledge to limit 

the number of experiments and at the same time autonomously acquire knowledge 

by interacting with the manufacturing process. 

3.5.1 Data-driven optimization for knowledge acquisition 

As identified in the state of the art, Gaussian process models and adaptive 

sampling are flexible and data efficient methods for the optimization of process 

parameters. However, only a few studies exist using Gaussian process models or 

adaptive sampling in grinding or turning. For optimization of a turning process, 

Gaussian process models have been used in combination with a full factorial 

design in [5]. Unfortunately, the authors do not provide any details of the specific 

Gaussian process model. However, a full factorial design is not a data-efficient 
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way to acquire knowledge. In [1] Gaussian process models have been combined 

with adaptive sampling for optimization of turning, where adaptive sampling 

showed superior performance compared to a full factorial design (details of the 

algorithm are presented in [142]). However, this early implementation has several 

shortcomings such as, 

 The GP model assumes noise free experiments 

 A fixed sample budged is used 

 Constraints on outputs such as a maximum surface roughness are not 

considered 

 Only material removal rate and surface roughness are considered, tool life 

is missing 

Assuming noise free experiments, the Gaussian process model is forced to fit the 

measured data precisely, which leads to a poor model performance. This 

shortcoming is probably a consequence of the adaptation of the algorithm initially 

provided in [74], which is primarily designed for deterministic computer 

experiments. Using a fixed sample budget is also critical because too few samples 

lead to poor convergence and to many samples lead to a decrease in sample 

efficiency. Therefore, the research gap is the setup of a data-driven optimization 

for knowledge acquisition of expert systems in an industrial environment, 

avoiding the aforementioned shortcomings. 

3.5.2 Quantification of process performance by sensor setup 

For data-driven optimization it is necessary to provide process performance 

feedback. Many sensors exist for grinding and turning in general. However, the 

autonomous selection of process parameters for new machining tasks requires the 

combination of data-driven optimization with suitable sensors, which provide 

informative feedback on the process performance. As for example in [1], the tool 

life has not been considered for performance measurement in turning. 

Performance measurement is particular challenging for plunge face grinding of 

inserts because it is a special grinding operation which has been mainly researched 

to improve the process understanding but not in the context of autonomous 

parameter selection. Therefore, for plunge face grinding it is necessary to establish 

a suitable performance measurement in the context of autonomous parameter 

selection and to combine it with appropriate sensors. 
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3.5.3 Prior knowledge and transfer of knowledge 

The use of prior knowledge and the transfer of knowledge between similar tasks 

are approaches to improve the sample efficiency of data-driven optimizations. The 

used prior knowledge should be very general, simple to implement, and 

compatible with the data-driven optimization. Otherwise, one ends up with the 

same problems as traditional expert systems. As shown in the introduction, a 

common source of prior knowledge are physical or empirical models. For 

example, [116] demonstrates the combination of Gaussian process models with 

an analytical surface roughness model to improve the prediction accuracy in 

turning. Using this approach, they reported an improved model accuracy, 

especially for cases where only a few training samples are available. While the 

authors demonstrated data-efficient modelling of surface roughness, it is 

necessary to extend the use of prior knowledge to autonomous parameter 

selection, where it has tremendous cost saving potential. 

Another approach to further increase the sample efficiency is transferring 

knowledge between similar cases by using the concept of similarity, as shown in 

eq. (3.1). However, the similarity must be determined by an expert in advance. 

For most practical applications it is difficult to specify similarity a priori. 

Accordingly, a data-driven approach is a possibility to overcome these limitations. 

In the Gaussian process literature learning from related tasks is often referred to 

multi-task learning, where correlations between different tasks are learned and 

used for model improvement, as shown in [161]. However, to the author’s best 

knowledge such methods have not been published for autonomous parameter 

selection of turning and grinding. 

3.6 Objectives 

Based on the identified research gap the objectives of this thesis are: 

 Quantification of the performance of grinding and turning by a sensor 

setup for subsequent optimization 

 Establish a data-driven optimization for knowledge acquisition of 

manufacturing processes by improving the shortcomings of the current 

approaches 

 Experimental demonstration of data-driven optimization for 

autonomous parameter selection exemplarily for longitudinal turning 

and plunge face grinding 
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 Incorporation of existing prior knowledge and transferring knowledge 

to further improve autonomous parameter selection for previously 

unexplored tasks 

3.7 Outline of thesis 

After a brief introduction in chapter 1, a summary on machining fundamentals in 

chapter 2, and an overview on the state of the art in chapter 3, chapter 4 provides 

an introduction to Gaussian process models and Bayesian optimization, which are 

used heavily throughout this thesis. Afterwards the turning process is investigated 

first because the process is considered simpler compared to grinding. Chapter 5 

compares different optimization approaches for a simulated turning process. 

Using this experience, the autonomous parameter selection is demonstrated 

experimentally on a longitudinal turning machine in chapter 6. Building on the 

successful optimization of the turning process, the plunge face grinding process 

is investigated. Chapter 7 investigates different sensors for performance 

measurement in plunge face grinding of tungsten carbide. Based on the 

performance measurement and the tested optimization strategy, chapter 8 

demonstrates autonomous parameter selection of tungsten carbide plunge face 

grinding. Plunge face grinding of PCBN is investigated in chapter 9, which is 

considered by human operators a difficult to control process and requires 

additional grinding wheel wear measurements. To further reduced the number of 

machining experiments, chapter 10 shows the incorporation of prior knowledge 

and the transfer of knowledge to improve data-efficiency. Finally, chapter 11 

provides a short conclusion and an outlook. 
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4 Gaussian process models and Bayesian optimization 

Before jumping to autonomous parameter selection, an introduction to Gaussian 

process models and Bayesian optimization is provided first. The introduction to 

the topic focuses on aspects, which are interesting for autonomous parameter 

selection for machining processes. A general introduction to Gaussian process 

models is given in [134] and an introduction to Bayesian optimization can be 

found in [150]. Parts of this chapter have been previous published in [105-109] 

4.1 Gaussian process regression 

According to [134], a Gaussian process can represent a distribution over functions 

and is a collection of random variables, which have a joint Gaussian distribution. 

A Gaussian process is fully defined by a mean function ( )m x  and a covariance 

function ( , )k x x  often referred as the kernel. Table 4.1 summarizes some typical 

kernels for Gaussian processes according to [134], where   is the gamma 

function, vK  is the modified Bessel function, 
2

f  is the signal variance, and r  is 

the distance between the input data points x  and x  (in this case, the input data 

are process parameters that have to be optimized). The parameter   determines 

the smoothness of the function – a higher   leads to a smoother function. 

Throughout chapter 4 the Matern-5 kernel is used exemplarily. According to 

[134], the distance between the input data points x  and xcan be calculated as 

follows, 

    1T
r x x P x x     (4.1) 

  2 2 2

1 2diag , ,..., DP l l l  (4.2) 

where P  is a diagonal matrix containing characteristic length scale parameters 2

il  

for each input space dimension up to dimension D . The kernel function specifies 

the relation between the function values at process parameters x  and x , where 

for a short distance between the process parameters the corresponding function 

values are similar whereas for larger distances higher variations are observed. 
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Table 4.1: Matern and square exponential kernels according to [134]. The distance 

measure r  is calculated following equation (4.1). 

Kernel name Formula 

Matern  
   

1
2 2

( , ) 2 2
( )

fk x x r K r
 

  




 


 

Matern 1 ( 1/ 2  ) 2( , ) exp( )fk x x r    

Matern 3 ( 3 / 2  )   2( , ) exp 3 1 3fk x x r r     

Matern 5 ( 5 / 2  ) 
 2 25

( , ) exp 5 1 5
3

fk x x r r r
 

     
 

 

Square exponential ( ) 2
2( , ) exp

2
f

r
k x x 

 
   

 
 

 

Based on a Gaussian process prior conditioned on t  available measurements 
t

y  

at process parameter points 
1:t

x , predictions for an arbitrary process parameter 

point *x  can be made following [134], 

      
1

2

* ** 1:
( ) ( ) ( )

T

t N tt
x m x k x K I y m x 



     (4.3) 

       
1

2 2

* * * * *( ) ,
T

t Nx k x x k x K I k x 


    (4.4) 

 

   

   

1 1 1

1

, ,

, ,

t

t t t

k x x k x x

K

k x x k x x

 
 

  
 
 

 (4.5) 

where t  is the posterior mean, 2

t  is the posterior variance, I  is the identity 

matrix, 11:
( ) ( ) ... ( )  

T

tt
m x m x m x is the mean function vector, K  is the 

covariance matrix, and  * * 1 *( ) ( , ) ... ( , )
T

tk x k x x k x x  is the covariance vector. 

The measurements are assumed to be corrupted by Gaussian noise  20, NN  , 

normally distributed noise with zero mean and variance 
2 N . If not otherwise 

stated, the Gaussian process prior mean function ( )m x  is assumed zero throughout 

this thesis, which is a common choice in Gaussian process regression to specifying 

no expert knowledge. Figure 4.1 graphically illustrates the Gaussian process 
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regression. The left figure shows four arbitrary functions of the Gaussian process 

prior (dashed green lines), the Gaussian process prior mean (solid read line) and 

the confidence interval (shaded area). It can be seen that vastly different functions 

can be obtained from the same Gaussian process. The right figure shows four 

arbitrary functions (dashed green lines) of the posterior distribution after four 

experiments are available. Furthermore, the resulting predicted mean (solid red 

line) and the confidence interval (shaded area) are displayed, which can be 

calculated with equations (4.3) and (4.4). Predictions for process parameters close 

to the measurements show a lower uncertainty compared to predictions for 

process parameters far away from the measurements. For comparison, the true 

function (solid black line) is also shown which is typically unknown for real 

optimization tasks. 

 

Figure 4.1: Illustration of the Gaussian process regression with a Matern 5 kernel and 

hyperparameters 
2 0.81f  , 1 0.38l  , and 2 0N  . The left figure shows exemplarily 

four arbitrary functions of the Gaussian process prior. The right figure shows the 

posterior distribution after four data points are available, where the dashed lines show 

four arbitrary functions and the solid red line represents the predicted mean *( )t x . The 

predicted mean *( )t x  is calculated using eq. (4.3). The green shaded area shows the 

95% confidence interval, which is 0 2 f  for the prior distribution and 

* *( ) 2 ( )t tx x   for the posterior distribution. The predicted variance 2

*( )t x  is 

calculated using eq. (4.4). 

The length scales 2

il  in eq.  (4.2), the signal variance 
2

f  in Table 4.1, and the 

signal noise 2

N  in eq. (4.3) and eq. (4.4) are hyperparameters of the Gaussian 

processes regression, which can be summarized in a hyperparameter vector  . It 
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is possible to specify these hyperparameters based on expert knowledge. Another 

method, as described in [134], is to determine the hyperparameters 
*

  based on 

available measurements by maximization of the marginal log likelihood 

 log |
t

p y  . 

    
1

2 21 1
log | log | | log2

2 2 2

T

N Nt t t

t
p y y K I y K I

 
   



       (4.6) 

  *
argmaxlog |

t
p y   (4.7) 

A   subscript is added to the covariance matrix in equation (4.6) to show its 

dependence on the hyperparameters   explicitly. If not otherwise stated, in this 

study a conjugate gradient method from the GMPL library [133] is used for the 

maximization of the marginal log likelihood, because preliminary tests indicated 

its suitability. 

Figure 4.2 shows the Gaussian process regression results exemplarily for different 

hyperparameters. In the example the true cost function is set to  
2

0.2y x   and 

displayed for illustration (dotted black line). The true cost function is evaluated at 

several process parameter values. The measurements are noisy observations of the 

true function y y   , where (0,5 4)N e  . These measurements are the 

input data points to the Gaussian process regression. The red line displays the 

predicted mean cost and the shaded green area shows the corresponding 95% 

confidence interval of the cost prediction. Figure 4.2 (a) shows the Gaussian 

process regression for the hyperparameters maximizing the marginal log 

likelihood using equation (4.7). It can be seen that with these hyperparameters the 

fit of the data is very good. A GP regression using the same data points but a high 

signal noise hyperparameter is shown in Figure 4.2 (b). The prediction of the true 

cost function is still reasonable but shows a high overall uncertainty. Figure 4.2 

(c) shows the Gaussian process regression for a short length scale hyperparameter. 

In this case more complex functions are also plausible candidates, which leads to 

high uncertainties between the measurements, where data is missing. In Bayesian 

optimization, short length scales lead to additional experiments and slow down 

the optimization. In contrast, Figure 4.2(d) shows the Gaussian process regression 

for a very long length scale hyperparameter. In this case the generalization from 

the observed measurements results in a simple (nearly linear) function for the 
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mean function of the Gaussian process and in low uncertainty over the whole 

range. In this case the true cost function is not always within the 95% confidence 

interval of the Gaussian process regression due to the predominant generalization. 

In Bayesian optimization, selecting very long hyperparameters may lead to sub-

optimal parameter predictions. As pointed out in [134], an advantage of 

maximizing the marginal log likelihood to determine the hyperparameters is that 

it naturally trades off model complexity and goodness of model fit. The advantage 

for Bayesian optimization is that it minimizes the number of experiments while 

still providing a good model fit. 

 

Figure 4.2: Gaussian process regression for different hyperparameters. Panel (a): 

hyperparameters determined by maximizing the marginal log likelihood using equation 

(4.7). Panel (b): results for high signal noise  N . Panel (c): results for short length scale 

parameter 1l . Panel (d): results for long length scale parameter 1l . 
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4.2 Gaussian processes for multi-task learning 

Gaussian process models can be extended to learn multiple-tasks/multiple-outputs 

simultaneously, as investigated in detail in [4]. The motivation for such an 

approach is to exploit relations between tasks with the aim of improving the 

individual model accuracy without increasing the amount of data for the specific 

task. For manufacturing processes, a task corresponds to the optimization of a 

specific process setup. For example, in a first task the coating of the cutting tool 

might be from type A and in a second task it might be from type B, while the rest 

of the setup remains unchanged. In multi-task learning, the tasks are learned 

simultaneously, which allows to exploit correlation between the tasks’ responses. 

This approach is in contrast to the conventional single-task/single-output 

approach, where each task is learned individually without exploiting correlations 

between tasks. Similar to the single task case, a Gaussian process for multi-task 

learning is defined as reported in [4], 

 ( , )f GP m K  (4.8) 

where m  is a vector of mean functions for each task, and K  expresses the 

covariance between the different tasks. 

The main difference between Gaussian processes for a single task and multiple-

tasks is the specification of the covariance matrix. For the multi-task case, it is 

necessary to find a suitable expression for the matrix K , which specifies the 

relation between different tasks. The linear model of coregionalization (LMC) 

allows the specification of a valid covariance matrix K  by expressing the 

different output functions ( )df x  as linear combinations of random functions as 

reported in [4, 52, 75], 

 ,

1 1

( ) ( )
qRQ

i i

d d q q

q i

f x a u x
 

  (4.9) 

where ( )i

qu x  are latent functions (hidden functions), ,

i

d qa  are scalar coefficients, 

Q  is the number of kernels, and 
qR  is the number of latent functions in each group 

with the same kernel. Figure 4.3 illustrates equation (4.9) graphically. Several 

latent functions are determined based on different kernels. Afterwards, the final 

functions are calculated by linear combination of the latent functions. The latent 
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functions ( )i

qu x  are used for model construction but cannot by directly measured 

and therefore are hidden. Only the output functions ( )df x  can be measured. In the 

manufacturing process example, the output function 1( )f x  corresponds to the 

production cost of the first manufacturing task with cutting tool coating A and the 

output function 2 ( )f x  corresponds to the production cost of the second 

manufacturing task with cutting tool coating B. 

 

Figure 4.3: Illustration of LMC, as described in [4, 52, 75] 

By using the LMC, ( , ')K x x  can be stated as in [4, 52, 75], 

 
1

( , ') ( , ')
Q

qq
q

K x x B k x x


  (4.10) 

where 
q

B  is the coregionalization matrix with entries , ' , ',1

Rq i i

d d d q d qi
b a a


  and 

rank 
qR .  

As shown in [4], by setting 1Q   the general LMC is reduced to the intrinsic 

coregionalization model (ICM) and by setting 1qR   the general LMC is reduced 

to the semiparametric latent factor model (SLFM). Hence, both the ICM and the 

SLFM are special cases of the general LMC. As described in [25], different 

special cases ( B I  and 1B  ) can be derived from the ICM, which are illustrated 

in Figure 4.4. If 
q

B  is equal to the identity matrix as shown in the left panel of 

Figure 4.4, the tasks are modelled independently, but share the same kernel. The 

kernel only restricts the considered function space of the outputs but has no impact 

on the relation of the outputs. On the other hand, if all entries of the matrix 
q

B  
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are filled with 1, the outputs are perfectly related and only have different noise 

levels. 

 

Figure 4.4: Illustration of special cases for the IMC, as described in [25]. The left panel 

shows the case where the tasks are modelled independently but share the same kernel. 

The right panel shows the case where all tasks are perfectly related. 

As described in [4, 134], based on the data and the model, predictions for an 

arbitrary process parameter point *x  follow a joint normal distribution 

* * ***
( ( ), ( , ))N f x K x x .  

  
**

1
2

*( ) ( , ) diag( )   
T

Nx N
f x K K X X I y



    (4.11) 

  
* *

1
2

* * * **
( , ) ( , ) ( , ) diag( )

T

Nx N x
K x x K x x K K X X I K



     (4.12) 

For simplicity, the prior mean functions m  are assumed zero. The measured 

output vector is 1,1 ,1 1, ,( ,..., ,..., ,..., )T

N D N Dy y y y y , where D  is the number of tasks 

and N is number of data samples per task, assumed to be the same for all outputs 

for notation simplicity. The measurements of each output are assumed to be 

corrupted with an individual Gaussian noise with zero mean and variance  2

N
d

  . 

The matrix ( , )K X X  has dimensions ND x ND  and the matrix 
*x

K has 

dimensions D x ND . Both matrices are calculated based on equation (4.10). 

Further details on the calculation are provided in the Appendix A . 
N

I  is the 

identity matrix with dimensions N  x N , X are the input points for all 



Gaussian process classification  |  4.3 

47 

measurements of all tasks, and  is the Kronecker product. The Kronecker 

product of 
2

diag( )N N
I   multiplies each element of the matrix 

2
diag( )N  

(dimensions D x D ) with matrix 
N

I  (dimensions N x N ), which results in a 

matrix with dimensions ND x ND . For multi-task learning the prediction in eq. 

(4.11) and (4.12) is given as a joint normal distribution. The prediction of a single 

function *( )df x  at a test parameter point *x  as for the single output case, 

corresponds to the marginal distribution of the joint normal distribution. For the 

prediction of the single function *( )df x , the mean is  * **
( ) ( )d

d
x f x   and the 

variance is  2

* * ** ,
( ) ( , )d d d
x K x x  , which directly follows from the properties of 

a joint normal distribution, as listed in [135]. 

The LMC has a number of hyperparameters collected in the vector  , such as the 

elements of each coregionalization matrix 
q

B , the signal noise vector 
2

N , and 

the parameters for each kernel ( , ')qk x x . By using Matern kernels, each kernel has 

length scale parameters 
2

il  for each input dimension and a signal variance 

parameter 
2

f . The hyperparameters can be computed by maximizing the 

marginal log likelihood, similar to equation (4.7) for the single output case, as 

described in [4, 134]. 

 
 

1
2

2

1
log ( | , ) ( , ) diag( )

2

1
log | ( , ) diag( ) | log 2

2 2

T

N N

N N

p y X y K X X I y

ND
K X X I

 

 



   

   

 (4.13) 

 
*

log ( | , )  argmax p y X   (4.14) 

4.3 Gaussian process classification 

Gaussian processes can also be applied to classification tasks such as binary 

classification with two outcomes. An application is to classify a manufacturing 

process as stable or unstable. The main difference is that outputs of the Gaussian 

process regression are in the interval (- , ), while outputs in Gaussian process 

classification are probabilities in the interval [0,1], as pointed out in [134]. 

Therefore, the general idea of Gaussian process classification is to use a Gaussian 

process prior over a latent function ( )lf x  and use a response function to transform 
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the latent function to valid probabilities, as described in [134]. A typical approach 

is called probit regression and uses the cumulative Gaussian distribution of a 

standard normal distribution  2( ) 1 2 exp / 2
Z

F Z t dt


  as a response 

function, as explained in [134]. 

Making predictions is more challenging for Gaussian process classification than 

for Gaussian process regression because the posterior distribution in classification 

is non-Gaussian and therefore analytically not traceable, as pointed out in [134]. 

Instead, one needs to use approximation methods such as expectation propagation 

[115] or sampling methods such as Markov chain Monte Carlo [122] to make 

predictions. In this study expectation propagation is applied for prediction and 

calculation of the marginal log likelihood because sampling methods increase the 

computational effort drastically. Details on calculating the marginal log likelihood 

and on making predictions using the expectation propagation algorithm are 

provided in Appendix B . 

4.4 Bayesian optimization 

Once a GP model of the objective is available, in Bayesian optimization an 

acquisition function is used to determine the candidate parameters where the next 

experimental trial is conducted. In general, the acquisition function provides an 

implicit trade-off between process parameters which are associated with a high 

uncertainty (exploration), and process parameters with a low predicted value 

(exploitation) [150]. Various acquisition functions can be used in Bayesian 

optimization such as expected improvement [117], probability of improvement 

[93], upper confidence bounds [159], and predictive entropy search [63]. In [48] 

good performance is demonstrated for constraint optimization based on an 

expected improvement acquisition function. As shown in [62], predictive entropy 

search is able to outperform expected improvement for constraint optimization, 

but this comes at the cost of increased complexity, potential numerical instabilities 

and analytical intractability. Hence, in a conservative approach the expected 

improvement acquisition function is used in this thesis. 

For an unconstrained cost minimization task, the expected improvement function 

can be calculated following [74, 117], 

   [max( ( ),0)]EI mina x C f x    (4.15) 
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where minC  is the so far lowest measured cost. By using a Gaussian process model 

for ( )f x , equation (4.15) stays analytically traceable and the expected 

improvement can be calculated following [74, 117], 

         , , ( )EI min t co t coa x C x F Z x Z      (4.16) 

 
 

 
,

,

min t co

t co

C x
Z

x






  (4.17) 

where  ,t co x  is the predicted mean cost after t  measurements obtained by 

Gaussian process regression using equation (4.3),  2

,t co x  is the predicted 

variance of the cost after t  measurements obtained by Gaussian process 

regression using equation (4.4),  F Z  is the cumulative standard normal 

distribution   2( ) 1 2 exp / 2
Z

F Z t dt


  , and ( )Z  is the probability 

density function of a standard normal distribution  2( ) 1 2 exp / 2Z Z   . A 

standard normal distribution is a normal distribution with zero mean and standard 

deviation of one. The acquisition function is displayed exemplarily for a cost 

minimization problem in Figure 4.5(a) using the Gaussian process regression from 

Figure 4.2(a). Based on the acquisition function the next experiment is conducted 

at a process parameter of 0.25, which maximizes the acquisition function. 

Most machining operations require fulfilling constraints such as workpiece 

quality, process or safety constraints. As proposed in [48], the expected 

improvement acquisition function can be extended to constrained Bayesian 

optimization (CBO), 

     ,

1

( )
n

EIC EI f i

i

a x a x p x


   (4.18) 

where  EIa x  is the expected improvement without constraints (4.16), n  is the 

number of constraints, and  ,f ip x  is the probability that the constraint i  is 

fulfilled. For the constrained case the best observed value minC  is the minimal 

measured cost value, which fulfills all constraints - and not the absolute minimal 

measured cost as in the case without constraints. For the classification case, where 

the result of the constraint is binary such as a stable process or an unstable process, 
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the probability that the constraint i  is fulfilled is calculated directly by Gaussian 

process classification. For the regression case, where the constraint is not allowed 

to exceed a specific value such as a maximum surface roughness, the probability 

that the constraint i  is fulfilled can be calculated following [48], 

  
  
 

max,

2

,

, 2

,,

1
exp

22

i i

ii

c t c

f i

t ct c

t x
p x dt

x



  

  
 
 
 

  (4.19) 

where 
max,ic  is the maximum allowed value for constraint i , , ( )

it c x  is the 

predicted mean of constraint i  after t  iterations calculated using (4.3), and 

 2

, it c x  is the variance of the constraint i  after t  iterations calculated using (4.4) . 

Following [48, 74, 117], the next experiment is conducted for process parameters 

nextx , which maximize the constrained expected improvement acquisition 

function. 

  argmaxnext EICx a x  (4.20) 

The acquisition functions can have multiple optima, as shown in [74]. Hence, 

throughout this thesis for a one-dimensional input space a grid-based evaluation 

is used for the optimization of the acquisition function with approximately 10'000 

equally distributed parameters. For a two-dimensional input space, random search 

(generated by a Sobol sequence [158]) is used instead with 30'000 points because, 

as shown in [10], random search is more data-efficient than the commonly used 

grid search approach for multiple dimensions, especially for cases where the 

outputs are not equally sensitive to all input parameters. 

Figure 4.5(b) shows exemplarily the result of a Gaussian process regression for a 

constraint quantity. In a real application, the quantity might be surface roughness 

of the workpiece or the temperature during the machining process and must stay 

below a specified limit, which depends on the requirements such as the final 

workpiece quality. In this example, the limit is set to 250. The probability that the 

constraint is fulfilled is displayed in Figure 4.5(c) and can be calculated using 

equation (4.19) and the Gaussian process regression of the constraint, as displayed 

in Figure 4.5(b). Finally, the constrained expected improvement acquisition 

function is displayed in Figure 4.5(d) and can be calculated according to equation 

(4.18), using the Gaussian process regression of the cost (displayed in Figure 

4.2(a)) and the Gaussian process regression of the constraint (displayed in Figure 
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4.5 (b)). The constrained expected improvement acquisition function is maximal 

for a process parameter value of 0.61, which is the next experimental parameter 

value. The constrained expected improvement acquisition function favors higher 

process parameters than the acquisition function without considering constraints 

because according to the Gaussian process regression of the constraint the 

probability that low process parameters fulfill the maximum allowed constraint of 

250 is low. After the next experiment is conducted at a process parameter value 

of 0.61, the optimization procedure is repeated with the newly available 

measurements until a maximum number of iterations or a stopping criterion is 

reached. 

 

Figure 4.5: Panel (a) shows the calculation of the acquisition function without 

considering constraints using equation (4.16) and the Gaussian process regression model 

of the cost as displayed in Figure 4.2(a). Panel (b) shows the Gaussian process regression 
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model of the constraint exemplarily, calculated by maximizing the marginal log 

likelihood. Panel (c) shows the probability that the constraint is fulfilled, calculated 

using equation (4.19) and the Gaussian process regression of the constraint, as displayed 

in panel (b). Panel (d) shows the result of the acquisition function considering 

constraints, which can be calculated using equation (4.18). 

Different stopping criteria can be used in practice. A simple and often used 

stopping criterion is to limit the maximum number of iterations, as applied in [48]. 

For real optimization problems with unknown objective and constraint functions 

it is infeasible to a priori specify the number of iterations until convergence is 

reached. As a result, this approach is limited to optimization tasks, where the 

optimization budged is fixed. For optimization tasks without a fixed budged, [175] 

proposed to limit the number of experiments based on the estimated uncertainty 

at the predicted optimal parameter values optx , 

 , ( )optt co stopx   (4.21) 

where stop  is a predefined threshold value. Another stopping criteria has been 

proposed by [74], which can be calculated as follows. 

 
min

max( )EI
stop

a

C
  (4.22) 

In this case the algorithm uses the maximum expected improvement normalized 

with the current best value as a stopping criterion, which must be below a certain 

threshold value stop . A summary of the Bayesian optimization procedure is 

displayed in Figure 4.6. 
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Figure 4.6: Procedure of Bayesian optimization 
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5 Optimization of simulated turning process 

The autonomous parameter selection is first tested in a simulated turning 

environment before switching to an experimental optimization. In this section 

constrained Bayesian optimization is compared to unconstrained Bayesian 

optimization in addition to the comparison of different kernel functions. Part of 

this chapter has been previously published in [106]. 

5.1 Methodology 

The optimization task in this section is to produce high quality turning parts at 

minimal individual production costs. High quality workpieces must fulfill certain 

quality constraints, which in this section correspond to the surface roughness Ra. 

The maximum allowed surface roughness Ra,max is assumed to be 0.7 µm. The 

production costs are determined by the production time and the tool life T. In this 

chapter, the cutting speed cv  and feed per revolution f  are the unknown 

machining parameters to be optimized, and the depth of cut is fixed at 0.5 mm. 

5.1.1 Simulation environment 

An empirical model for the turning process from [78] is used to test parameter 

tuning. The model from [78] is derived using Taguchi method and response 

surface methodology for finishing hard turning of cylindrical AISI 52100 bearing 

steel bars with a diameter of 41 mm and a length of 300 mm using a cubic boron 

nitride (CBN) tool. 

 
2127.5365 0.84629 144.21 0.001703 0.3656c ccT v f v v f      (5.1) 

 
20.9094 0.010035 7.0877 0.000034 0.018969 ca ccR v f v v f      (5.2) 

The range of parameter values (100 m/min ≤ cv  ≤ 200 m/min and 0.08 mm/rev ≤ 

f  ≤ 0.16 mm/rev), where this model can be applied, is also used as the 

optimization domain. Furthermore, the diameter D and the length l  of the 

workpiece were assumed to be equal as in [78]. The individual production costs 

FEC  were defined as follows, 

 ( )
( )

c M
W

FE H

C
C t x C

T x

 
  

 
 (5.3) 
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c

c

lD
t

fv


  (5.4) 

where ct  is the cutting time, WC  are the tool wear costs, and MHC  are the machine 

hourly costs. For the optimization, it is assumed that the machine hourly costs are 

40 U/h and the tool wear costs are 50 U. Figure 5.1 shows an overview of the 

simulation environment. 

 

Figure 5.1: Overview simulation environment 

5.1.2 Convergence of optimization 

Convergence of the optimization is evaluated based on a comparison with the true 

minimal cost ,mintC . The true minimum of the cost is, 

 , ,min ( ) . . ( )FE
x X

at min a maxC C x s t R x R


   (5.5) 

where the cost and roughness are evaluated based on (5.2) and (5.3). The 

minimum of the true objective is obtained using a grid-based evaluation, where 

the model is tested for evenly distributed parameter combinations with an 

increment of 0.1 m/min for the cutting speed and 0.001 mm/rev for the feed per 

revolution. The optimal parameters of the true function are a feed per revolution 

of 0.131 mm/rev and a cutting speed of 163.4 m/min. The error of the 

optimization is defined as ,| ( ) |opt FE t mt inC x C  , where  optFEC x  is the cost 
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evaluated for the best estimated parameters of the optimization. Similarly, the 

relative error is defined as 
,min/R t tC . 

5.1.3 Unconstrained Bayesian optimization 

In the conventional Bayesian optimization approach, the objective function is 

defined without constraints. This can be achieved by defining the optimization 

problem as a utility U  maximization problem. 

 max argmax ( )
X

x U x



x

 (5.6) 

In the case where the workpiece fulfills the quality constraints, the utility is 

calculated as the earnings from workpiece sale E  minus the individual production 

costs FEC . In the case where the workpiece quality is not acceptable, the utility is 

negative because workpieces cannot be sold and production costs are generated. 

 
,max

,max

( ),
( )

( ),

FE

FE

a a

a a

E C x for R R
U x

C x for R R

 
 

 
 (5.7) 

The price of the raw material is neglected and it is assumed that the individual 

production costs are equal to the total production costs for simplicity, as it would 

only shift the curve by a constant value. The earning is assumed to be 10 U, which 

only affects the utility of the workpieces that fulfill the surface roughness 

constraint. 

A single GP model is used to estimate the utility score, and the expected 

improvement acquisition function (4.16) is used to determine the parameters for 

the next cutting trial. The formulation of equation (4.16) slightly changes for a 

maximization task compared to a minimization task. However, instead of 

maximizing the utility one can minimize the negative utility. The optimal 

parameters optx  are defined as the maximum of the estimated mean utility function 

which is calculated using equation (4.3). Figure 5.2 summarizes the unconstrained 

Bayesian optimization approach. 
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Figure 5.2: Flow diagram of unconstrained Bayesian optimization 

5.1.4 Constrained Bayesian optimization 

The second approach is the minimization of the individual production costs 

subjected to constraints on surface roughness: 

 ,min argmin ( ), . . ( )FE
x X

a a maxx C x s t R x R


   (5.8) 

Two GP models are needed for optimization – one for the surface roughness 

constraint and one for the cost function. The parameters of the next cutting trial 
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are determined using the constrained expected improvement acquisition function 

(4.18). The estimated optimal parameters are defined as the parameters which 

minimize the estimated mean cost 
,t co  and result in an estimated mean surface 

roughness 
,t Ra which is below the maximum allowed roughness 

a,maxR : 

 , , ,maxargmin ( ), . . ( )t co t R aopt ax x s t x R    (5.9) 

Figure 5.3 summarizes the constrained Bayesian optimization approach. 

 

Figure 5.3: Flow diagram of constrained Bayesian optimization 
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5.2 Simulation results 

The convergence results for Bayesian optimization and constrained Bayesian 

optimization are presented in Figure 5.4 and Figure 5.5. For CBO, the 95% 

confidence interval of the estimated optimal cost is reduced very fast and the 

estimation is very certain about the best point after 10 iterations. The results of 

the estimation are confirmed by the error t , which decreases also very fast for 

CBO. In contrast to this very good result for CBO, BO does not achieve full 

convergence. For BO, the uncertainty of the estimated best point fluctuates and 

stays high for all iterations. The convergence behavior is confirmed by the error 

t . 

 

Figure 5.4: Convergence of constrained Bayesian optimization with Matern 5 kernel 

 

Figure 5.5: Convergence behavior of Bayesian optimization without constraints and 

Matern 5 kernel 
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The resulting costs for estimated optimal parameters of BO and CBO with 

different kernels were compared to the true optimal cost. To keep the results 

comparable all experiments are started with two identical turning parameter 

configurations. For the CBO case the same kernel is used for the surface 

roughness and the cost GP model – it would also be possible to model the surface 

roughness and cost with different kernels. Figure 5.6 shows the error after 30 

iterations for both methods and different kernel functions. The estimated optimal 

parameters of CBO lead to a cost much closer to the true minimal cost than BO 

for all kernels. For CBO, square exponential, Matern 3 and Matern 5 kernels show 

a very small error (below 0.1%) and the largest error is obtained for the Matern 1 

kernel. This behavior is typical because the smoothness of the considered 

functions decreases from squared exponential to Matern 5 to Matern 1 kernel, 

which leads to a slower convergence of the Matern 1 kernel compared to the other 

kernels. 

 

Figure 5.6: Convergence comparison of Bayesian optimization without constraints (BO) 

and constrained Bayesian optimization (CBO) for different kernel functions 

After 30 iterations, the predicted mean cost and mean surface roughness function 

of the CBO is very close to the true function (5.2) and (5.3). Figure 5.7 shows the 

true utility function and the predicted mean utility function of the Gaussian 

process regression used for BO. The sudden jump in utility, which is caused due 

to the surface roughness constraint, is not modelled precisely by the Gaussian 

process model. Therefore, the worse performance of BO compared to CBO can 

be explained by limitations of the tested Gaussian process models, which are 

unable to model jumps or discontinuities precisely. 
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Figure 5.7 Left: Predicted mean utility of Gaussian process regression used for Bayesian 

optimization without constraints after 30 iterations with a Matern 5 kernel. Right: True 

utility function calculated from equation (5.7). 

5.3 Conclusion 

In conclusion, constrained Bayesian optimization showed a superior performance 

compared to the standard Bayesian optimization approach for a typical turning 

optimization task, as a consequence of Gaussian process model limitations to 

accurately model jumps or discontinuities. It might be possible to improve the 

modelling of jumps or discontinuities by using a neural network kernel, as shown 

in [134]. However, this comes at the cost of an increase in model complexity, 

typically increasing the number of iterations Bayesian optimization needs to solve 

such problems. Therefore, it is recommended to set up the optimization task in a 

way to avoid discontinuities in the modelled functions. Furthermore, for the 

simulated turning optimization task, the influence of the kernel selection on the 

results of constrained Bayesian optimization is small. 
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6 Optimization of longitudinal turning 

After constrained Bayesian optimization outperformed conventional Bayesian 

optimization for parameter selection of a simulated turning process, the 

constrained Bayesian optimization approach is tested experimentally. Part of this 

chapter has been previously published in [109]. 

6.1 Methodology 

6.1.1 Optimization task and cost calculation 

The optimization task in this chapter is to produce turning parts with minimal 

individual production costs 
FEC  and produce workpieces which fulfill the 

roughness constraint 
,a maxR : 

    min ,argmin , . .FE a a max
x

x C x s t R x R


   (6.1) 

Where x  is a vector of the optimized parameters cutting speed 
cv  and feed per 

revolution f . In this section the individual production costs were calculated as 

follows, 

  
 
 

( ) I i MH o

FE c MH

C t C C
C x t x C

T x

  
   

 
 (6.2) 

where 
ct  is the cutting time and T  is the tool life. The individual production costs 

combine cost of machining time and tool replacement costs. The used cost and 

constraint parameters are listed in Table 6.1. 

Table 6.1: Cost and constraint parameters for optimization 

Parameter Description Value 

MHC  Machine hour-rate  60 U/h 

IC  Cost per cutting edge 10 U  

it  Time to change worn out insert 10 min 

oC  Operator cost per hour 100 U/h 

,a maxR  Maximum roughness 0.8 μm 
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6.1.2 Experimental set-up 

The used feedstock are steel bars made of 1.4125 (AISI440C, X105CrMo17) with 

an initial diameter of 7 mm. The longitudinal turning is performed with constant 

depth of cut of 0.3 mm. The bars are cut 6 times with a cutting length of 10 mm 

for each cut. This results in a final workpiece of length 10 mm and a final diameter 

of 3.4 mm. As shown in Figure 6.1, a CNC-Lathe (Deco Sigma 8 made by Tornos 

SA) is used for the experiments. The machine is equipped with an automatic bar 

feeder Robobar SBF-210 from Tornos SA. As cooling fluid Blasomill 15 mineral 

oil from Blaser Swisslube AG with a constant flow rate of 5.8 l/min is used. The 

cutting insert type VCGX-FN 120302 from Diametal AG, made of coated 

cemented carbide (Diametal specification: carbide M10/30 with coating D60, type 

number 388948) with a corner radius of 0.2 mm is used. The tool is mounted in a 

12 x 12 mm, right-hand tool holder of type SVAC 90° from Diametal AG. The 

roughness 
aR  of the machined parts is measured parallel to the axis of the cylinder 

using a MarSurf PS1 (from Mahr). The roughness values of all available parts are 

measured. In a conservative approach the average of the 5% highest roughness 

values is used. The tool life of the inserts is determined by maximum flank wear 

land width measurements using a Leica DCM3D microscope. The tool is 

considered worn out if VBB,max  >  0.07 mm. In this study tool life and roughness 

measurements are conducted by an operator. 

 

Figure 6.1: Turning machine Deco Sigma 8 
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The maximum cutting speed is limited at 80 m/min in order to avoid vibrations in 

the bar feeder. Based on recommendations from the tool manufacturer Diametal 

AG [33] the maximum feed per revolution is set to 0.1 mm/rev, which is half the 

tip radius of the indexable insert per revolution. The minimal parameters 

( 

minf  = 0.01 mm/rev and 
,c minv  =10 m/min) are selected to provide a wide range 

while still avoiding very slow experiments. 

6.1.3 Optimization implementation 

The optimization is implemented in MATLAB using the GPML library [133] for 

Gaussian process regression and [48] for constrained Bayesian optimization. 

Matern 5 kernels (see Table 4.1) are used to model the covariance cost and 

roughness function because in section 5 their suitability for turning applications 

has been demonstrated and they are a common choice. As specified in equation 

(4.1) and (4.2), different length scale parameters for cutting speed and feed per 

revolution are used because it is known that feed per revolution and cutting speed 

influence cost and roughness differently. As introduced in section 4, the marginal 

log-likelihood is maximized to select the hyperparameters of the GP model, which 

balances data fit and model complexity. The next experiment is determined by 

maximizing the constrained expected improvement acquisition function (4.18), as 

proposed by [48]. 

Figure 6.2 summarizes the workflow used for on-machine optimization. Data 

collected from the turning process is used to calculate the cost of the current 

experiment. These results are utilized to update the GP cost model. Roughness 

measurements of the workpiece are used to update the GP roughness model. The 

estimations of both GP models are used by the constrained Bayesian optimization 

algorithm to determine the next measurement point. This procedure is repeated 

until convergence is reached. Some experiments with slow cutting speed and slow 

feed per revolution took very long while already violating the required roughness 

constraints. To shorten the experiments, they were stopped when the roughness 

value was 20% higher than ,maxaR  and the share of cost to replace the insert was 

below 10% of the individual production costs. 
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Figure 6.2: Workflow of Bayesian optimization in turning 

6.1.4 Convergence criterion 

The best experimental point is defined where the posterior mean cost 
,t co  is 

minimal and the posterior mean roughness ,t Ra  fulfills the maximum allowed 

roughness , .a maxR  

    , , ,argmin , . .opt t co t Ra a maxx x s t x R    (6.3) 

Similar to [175], the cost uncertainty of the estimated optimal parameters 
optx  is 

used as a measure of convergence, 

  ,2 optt co stopx   (6.4) 

where  , optt co x  is the standard deviation at the current best mean and 
stop  is the 

convergence limit. The model estimates that 95% of all samples conducted at the 

optimal values will be within  , optt co stopx  . To improve the robustness of the 

convergence criterion, convergence is only reached if three consecutive values are 

below the convergence limit. The value for the convergence limit should be set as 

close as possible to the combined process and measurement uncertainty because 

the uncertainty of the estimated cost and roughness cannot be minimized below 
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this value as the convergence criterion cannot be met if the combined uncertainty 

is higher than the convergence limit. The convergence limit is set to 0.15 U which 

corresponds to 10% of an assumed final cost of 1.5 U. Full convergence can be 

reached when the convergence limit 
stop  is fulfilled, the predicted optimal cutting 

speed varies within less than 0.5 mm/min over three iterations and the predicted 

feed per revolution varies within less than 0.003 mm/rev over three iterations. 

6.2 Experimental results 

Figure 6.3 shows the results of the on-machine optimization. Both initial random 

parameters violate the roughness constraint. The algorithm used the third and 

fourth experiments to explore edges of the design space. The third measurement 

point fulfills the surface roughness constraint but at a high cost of 5.23 U. Most 

of the experiments between 5th and 12th iteration are located near the estimated 

optimal parameters. Full convergence is reached after 11 iterations, corresponding 

to optimal cutting speed of 16.1 m/min and optimal feed per revolution of 

0.026 mm/rev. The maximum of the expected improvement also confirms 

convergence after 11 iterations. The estimated optimal cutting speed is rather low 

because the cost to manually change an insert is assumed to be high (compare 

with Table 6.1). To validate the convergence criterion additional experiments 

were performed. The 12th experiment fulfilled the roughness constraint and 

showed the lowest measured cost of 2.22 U. This measurement point is very close 

to the estimated optimal parameters. The algorithm used the experiments 13 to 16 

to explore regions with high uncertainty (high feeds per revolution and high 

cutting speeds). From the 9th to the 16th iteration the estimated optimal speed was 

within an interval of 0.5 m/min width and the estimated optimal feed was within 

an interval of 0.003 mm/rev width. It might be that the current measured cost is 

below the estimated minimal cost because the measured cost might be low, but 

the constraint is not fulfilled for this experiment and can therefore not be 

considered optimal (see for example iteration 13 in Figure 6.3). Furthermore, it 

can be seen that the confidence interval of the prediction increases from the 4th to 

the 5th experiment. This is caused by updating the Gaussian process model with 

new available measurements. Figure 6.3(right) shows the experiments for which 

the constraint was fulfilled, and those, where it was exceeding the critical value 

.a maxR . It can be seen that adaptive sampling performs as expected – many 

experiments are performed close to the optimum and parameter values in other 

regions are only sampled sparsely. 
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Figure 6.3 left: Convergence of on-machine optimization. Right: Conducted 

experiments as a function of feed per revolution and cutting speed. Experiment with 

lowest cost was the 12th experiment. 

Figure 6.4 shows the predicted mean and the twofold standard deviation, 

corresponding to a 95% confidence interval of roughness and cost from the on-

machine cutting trials. At low cutting speeds the production costs are high because 

of the slow process, while at high cutting speeds the production costs increase due 

to high wear. At high feeds per revolution the production costs decrease since 

more parts can be produced during the lifetime of the tool. The roughness depends 

on the feed per revolution and cutting speed. A higher feed per revolution leads 

to a higher surface roughness, in line with the kinematic surface roughness 

equation (2.4) . At cutting speeds between 20 m/min and 50 m/min the roughness 

and the cost increase due to built-up edge on the tool. The cost is increased by a 

reduction of the tool life caused by built-up edge on the tool. The influence of the 

built-up edge on the surface roughness and tool life is known in literature, see [81] 

for comparison. In general, the uncertainties of the predictions are smaller close 

to available measurement points and increase for points further away from 

measurements, as shown in the bottom of Figure 6.4.  The highest cost and 

roughness uncertainties are reached in an area where the estimated mean 

roughness is much higher than the allowed roughness. 

The presented results demonstrate the applicability of Bayesian optimization for 

process set-up in turning. A promising direction to further automate the process 

set-up is the use of a handling system to exchange workpiece and tool between 

the machine and the measurement equipment and connect the tool wear and 

roughness measurement with the machine to exchange data. It might even be 
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possible to measure roughness and tool wear on-line, such as demonstrated in 

[176] for roughness and in [19] for tool wear. 

 

 

Figure 6.4: Predicted mean cost (top left), predicted mean roughness (top right), twofold 

standard deviation of cost (bottom left), and twofold standard deviation of roughness 

(bottom right) after 16 experiments 

The experimental data can also be used to estimate optimal process parameters 

for different system variables and constraint requirements (see Table 6.2). Only 

the time to change an insert, the machine operator cost, and the allowed surface 

roughness are changed - the other parameters are the same as those listed in Table 

6.1. The first parameter set corresponds to the baseline parameters as specified in 

Table 6.1. First the cost parameters are changed assuming an automatic change of 

the insert instead of a manual change. In this case it is assumed that the machine 

operator cost is reduced from 100 U/h to 0 U/h and the time to change an insert is 
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reduced from 10 min to 30 sec. The algorithm recommends a higher cutting speed 

which is expected, since according to the Taylor equation (2.5) tool wear increases 

with an increase in cutting speed and changing a worn-out tool is less costly for 

an automatic machine. The estimated optimal cutting speed is very close to the 

upper cutting speed limit of the optimization domain, which is selected to avoid 

bar feeder vibrations. Hence, in this case the cutting speed is limited by bar feeder 

vibrations. Another scenario is the loosening of the maximum roughness 

constraint from 0.8 μm to 1.2 μm. In that case the algorithm recommends an 

increase in feed per revolution, in line with the increase of the kinematic surface 

roughness, as higher feeds per revolution correspond to higher surface roughness 

according to equation (2.4). 

Table 6.2: Estimated optimal process parameters for different constraint requirements 

and system variables 

Cost & constraint 

parameters 

Estimated optimal 

parameters 

Estimated cost (U) 

OC  = 100 U/h 

it  = 10 min 

,a maxR  = 0.8 µm 

f  = 0.026 mm/rev 

cv = 16.1 m/min 

2.46±0.15 

OC = 0 U/h 

it = 0.5 min 

,a maxR = 0.8 µm 

f  = 0.071 mm/rev 

cv = 79.8 m/min 

0.88±0.09 

OC = 100 U/h 

it = 10 min 

,a maxR = 1.2 µm 

f  = 0.037 mm/rev 

cv = 18.4 m/min 

1.14±0.24 
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7 Performance measurement for grinding of tungsten 

carbide inserts 

In the previous chapter it has been demonstrated that Bayesian optimization 

combined with Gaussian process models is suitable for process parameter 

selection for longitudinal turning. To extend the optimization approach to other 

processes, plunge face grinding of tungsten carbide is investigated. In the past, 

plunge face grinding has been mostly investigated to improve the process 

understanding and not for parameter optimization. Therefore, this chapter focuses 

on the systematic measurement of cost and constraints in plunge face grinding of 

tungsten carbide cutting inserts, which can be used in a subsequent optimization. 

Parts of this chapter have been previously published in [104, 107, 108]. 

7.1 Experimental set-up 

7.1.1 Grinding operation 

Figure 7.1 shows a picture of the used plunge face grinding machine for grinding 

of cutting inserts. The grinding wheel rotates in counterclockwise direction. The 

rotational speed and the diameter of the grinding wheel specify the cutting speed. 

The grinding wheel can be moved in X-direction, which is the direction of the 

axial feed rate during grinding. To ensure a uniform wear of the grinding wheel, 

the grinding wheel is oscillated during grinding along the Y-direction with 1 Hz 

during grinding and 1.5 Hz during spark-out. The spark-out time is set sufficiently 

large to ensure reduction of residual grinding forces. The hard metal-bonded 

grinding wheel shows a limited self-sharpening effect. Hence, a dressing wheel is 

used for conditioning. The workpiece is clamped using a clamping device, which 

can rotate the workpiece along the B axis. Furthermore, the workpiece can be 

rotated along the C axis. An initially quadratic insert made of tungsten carbide is 

ground on two opposite sides, where on each side 2.25 mm of workpiece material 

is removed. The flow rate of the cooling lubricant is controlled manually by a 

lever and the angle between the nozzle and the grinding wheel is also adjusted 

manually. In this thesis, the flow rate and the angle between the cooling nozzle 

and the grinding wheel were set before the experimental run by an experienced 

operator. During the experimental runs, these parameters were kept constant. 

Table 7.1 summarize the specific grinding conditions. 
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The error of the final workpiece geometry is influenced by the thermal distortion 

of the grinding machine and the abrasive layer thickness of the grinding wheel, 

which experiences wear during the grinding operation. In this thesis the 

geometrical error of the workpiece was not considered in the parameter 

optimization because the used grinding machine allows adaptive correction of the 

geometrical error. The grinding machine is equipped with a sensor measuring the 

final workpiece dimension (see Figure 7.1). The sensor measurements of each 

workpiece then serve as corrective feedback for the grinding action. With the 

grinding parameters used in this thesis and the automatic insert handling switched 

on, the measurement interval is typically below 1 min, which allows frequent 

corrective adaption. For workpieces with a higher geometrical complexity or a 

long grinding time it might be beneficial to consider the geometrical error of the 

final workpiece in the optimization.  

 

Figure 7.1: Overview of plunge face grinding machine 
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Table 7.1: Experimental conditions for performance measurement 

Property Setup 

Grinding machine Agathon DOM Semi 

Grinding wheel Metal-bonded, diamond abrasive grains 

(Tyrolit D46C100M717) 

Insert material Tribo S25, tungsten carbide, grain size 2.5 µm, 

HV30 1470 

Initial insert geometry 14.5 mm x 14.5 mm x 4.76 mm 

Final insert geometry 10 mm x 14.5 mm x 4.76 mm 

Cooling lubrication Blasogrind HC 5 with constant flow rate 

Oscillation frequency 1 Hz during grinding, 1.5 Hz during spark-out 

Dressing wheel Tyrolit 89A 240 J5 AV217, aluminum oxide abrasive 

Dressing parameter Infeed 0.1 mm, grinding wheel speed 6 m/s, dressing 

wheel speed 12 m/s, feed rate 0.5 mm/min, spark-out 

time 1 sec 

 

7.1.2 Grinding burn 

Grinding burn is inspected optically after grinding. Workpieces with grinding 

burn show a distinct black coloring of the final workpiece surface (see Figure 7.2). 

This approach is a simple approach for burn detection, which is widely used in 

industry. The main disadvantages of the method are that it is a subjective 

measurement and damage induced by grinding burn in the subsurface regions 

cannot be detected. Other methods for grinding burn detection exist, as introduced 

in section 3.3.2. However, the disadvantage of the commonly used nital etching 

is that it is a subjective measurement, and the disadvantage of the more 

sophisticated Barkhausen noise measurements is that it needs calibration and 

referencing, as reported in [76]. Using a Hall probe or X-ray diffractometry 

increases the measurement time and measurement complexity. Therefore, the 

simple inspection method is considered sufficient, as this approach is common 

practice in an industrial environment. In case of higher surface quality 

requirements, more sophisticated methods are recommended. 
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Figure 7.2: Optical detection of grinding burn 

7.1.3 Temperature measurement 

The grinding temperature is measured at the contact zone between grinding wheel 

and workpiece by use of an optical measurement system (FOS Messtechnik). The 

optical measurement system consists of four evenly distributed fibers which are 

embedded in the grinding wheel with an orientation perpendicular to the abrasive 

layer surface. The temperature signal is processed on the rotating cup wheel and 

transmitted wirelessly to a receiver unit outside the grinding machine. The 

receiver unit is connected to a measurement computer, where the data is post-

processed. Figure 7.3 illustrates the temperature measurement setup. The 

measurement system has a measurement range between 200 and 660°C. The 

emissivity of the workpiece is not measured. Therefore, the temperature readings 

can only be considered as relative measurements. However, a relative 

measurement is sufficient in this study because the final objective is to determine 

a threshold temperature for grinding burn detection. 

 

Figure 7.3: Experimental setup of temperature measurement 
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7.1.4 Gas measurement 

The gas concentration in the machining area is measured using a metal-oxide gas 

sensor (Sensirion SGP30). The sensor system is able to detect total volatile 

organic compounds (TVOC) and can provide a CO2 equivalent, which 

corresponds to the greenhouse gas emissions of the test gas. Originally, the sensor 

is designed for indoor air quality measurements. To protect the sensor from 

cooling lubricant, it is placed in a housing as shown in Figure 7.4. The sensor 

system is placed vertically inside the grinding machine in which the inlet is at the 

bottom and the outlet is at the top. A ventilator inside the housing is used to 

provide a steady circulation of the ambient process chamber gases. The gas enters 

the housing on the bottom and is guided through plates as fluid separators to the 

gas sensor. Afterwards, the gas leaves the housing through a U-shaped tube to 

protect the sensor from cooling fluid. 

 

Figure 7.4: Experimental setup of a gas sensor 

7.1.5 Surface roughness measurement 

The surface roughness of the ground workpiece is measured transversally to the 

grinding direction using a tactile measurement devise (Taylor Hobson Form 

Talysurf Series 2) with a tip radius of the measurement probe of 2 μm and a cut-

off wavelength of λc = 0.8 mm. The measurement length is reduced to 3.5 mm, 

since the total length of the workpiece was only 4.76 mm. The roughness was 

measured on both ground sides of the insert and subsequently averaged. 

7.2 Results of performance measurement 

7.2.1 In-process detection of grinding burn 

Figure 7.5 shows a comparison of in-process grinding burn detection based on 

maximum temperature measurements and on maximum gas concentration 

measurements. The experiments were conducted for different cutting speeds, feed 

rates, and wheel wear states of the grinding wheel. The temperature sensor is able 
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to distinguish grinding burn and no grinding burn with a 100% success rate. No 

grinding burn was observed for maximum temperature readings below 585°C. All 

temperature readings above the threshold value showed grinding burn. For 

process optimization, the measured temperature can be used as a constraint value 

and the maximum allowed temperature is determined to be 585°C. 

The maximum gas concentrations are correlated with the maximum grinding 

temperatures as shown in Figure 7.5. An increase in maximum temperature leads 

to an increase in maximum gas concentration. The sharp peak at high temperatures 

is caused by the measurement range of the temperature sensor, which is limited 

to 660°C. Physically the positive correlation between gas concentration and 

temperature can be explained by the chemical reaction speed because the chemical 

reaction speed depends on the Arrhenius equation /( )AE RTk Ae , as described in 

[92]. The components of the Arrhenius equation are rate constant k , Arrhenius 

factor A, activation energy 
AE , temperature T , and universal gas constant R . 

Therefore, higher temperatures lead to higher reaction speeds [92]. However, the 

current gas concentration does not only depend on the reaction speed but also on 

reaction time and the concentration of components, as explained in [92]. 

Especially the reaction time is critical for grinding burn detection because having 

the same maximum temperature for a very short time or a very long time influence 

the measured maximum gas concentration, while the maximum temperature is the 

same. Therefore, for the gas measurements no clear threshold limit for burn 

detection can be determined. A threshold limit of 2000 ppm detects all workpiece 

grinding burns but is a very conservative approach with respect to the grinding 

burn limit. A threshold of 6000 ppm is able to detect cases without wrongly 

classifying successful grinding operations as failures. A threshold limit of 

6000 ppm can be seen as a limit for very extreme cases. Hence, the gas sensor is 

a low-cost alternative for grinding burn detection with reduced sensitivity. 
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Figure 7.5: Comparison between measured maximum gas concentration and maximum 

temperature for in-process detection of grinding burn 

7.2.2 Grinding burn and surface roughness constraint 

Figure 7.6 shows the influence of feed rate and cutting speed on grinding burn for 

grinding the first side of the test insert directly after dressing. In general, grinding 

burn is favored by high feed rates and high cutting speeds. In general, high feed 

rates lead to a higher material removal rate, which increases the power demand 

and total heat dissipation. Without changing the axial feed rate, higher cutting 

speeds decrease the uncut chip thickness, according to eq. (2.6). As explained in 

[137], decreasing the uncut chip thickness increases the specific grinding energy 

(energy required to remove a unit volume of material). Due to a feed rate step size 

of 5 mm/min between measurements, an uncertainty bound is introduced as 

shown in gray. The measurements at cutting speeds of 18 m/s and 24 m/s show 

the same grinding burn boundary while the measurements at cutting speeds of 

12 m/s and 30 m/s confirm the general trend that grinding burn is favored by high 

cutting speeds. However, due to the uncertainty introduced by the measurement 

discretization, the measurements still support a linear trend of the grinding burn 

boundary. 
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Figure 7.6: Measured grinding burn limit of a freshly dressed plunge face grinding 

process 

Figure 7.7 shows the workpiece surface roughness as a function of cutting speed 

and feed rate. An increase in cutting speed leads to a decrease in surface roughness 

of the workpiece. This is in line with the findings of [7]. For the feed rate no 

general trend can be observed. 

 

Figure 7.7: Surface roughness of workpiece ground with a freshly dressed wheel for 

different feed rates and cutting speeds 
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7.2.3 Maximum dressing interval 

Grinding costs are influenced by maximum dressing intervals. To measure the 

maximum dressing interval, a freshly dressed wheel is used for grinding until 

grinding burn occurred. Figure 7.8 shows a typical temperature reading as a 

function of ground inserts for a full experimental run with constant input 

parameters. In general, the temperature is strongly influenced by the accumulated 

removed material volume, where towards the end of an experimental run the 

temperature increases. The second side of the 7th insert does not fulfill the 

constraint, resulting in grinding burn. Accordingly, the measured maximum 

dressing interval for this parameter set is 6.5 inserts. Depending on the grinding 

task, considering workpiece handling time may lead to positive natural numbers 

as optimal dressing intervals instead of positive real numbers due to time-saving 

of dressing and workpiece handling parallelization. The time-saving of dressing 

and workpiece handling parallelization is typical a few seconds. However, the 

actual time-saving depends on many factors such as the handling system, handling 

parameters, grinding time, dressing time, and movement speed of the grinding 

wheel. In this study, additional time caused by workpiece handling was neglected 

because it is considered short compared to the dressing time and strongly depends 

on the actual handling system and corresponding parameters. 

 

Figure 7.8: Typical temperature measurement as a function of ground inserts for a 

cutting speed of 24 m/s and a feed rate of 10 mm/min. The last side which fulfills the 

temperature constraint is the first side of plate 7. Therefore, the maximum dressing 

interval is 6.5 inserts. 

The maximum number of ground inserts until grinding burn occurred is used for 

comparison, which can be seen in Figure 7.9. After eight inserts, the experiment 
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was stopped to avoid unnecessarily long experiments. This limits the number of 

ground inserts for some experiments with low cutting speeds and low feed rates 

(yellow bars in Figure 7.9). Nevertheless, general trends influencing the number 

of maximum ground inserts can be observed. An increase in feed rate and an 

increase in cutting speed lead to a reduced number of maximum ground inserts 

because for higher feed rates and higher cutting speeds the grinding operation is 

already started at higher temperatures. Due to higher initial temperatures smaller 

changes in wheel sharpness are sufficient to reach the temperature limit and 

therefore the maximum dressing interval is reduced for higher feed rates and 

higher cutting speeds. 

 

 Figure 7.9: Maximum dressing interval until temperature exceeds maximum 

7.3 Conclusions 

The measurements show that there are tradeoffs for the feed rate and the cutting 

speed. Slow feed rates lead to high production costs due to a time-consuming 

manufacturing process, whereas fast feed rates favor grinding burn and lead to 

short dressing intervals, which requires frequent redressing. High cutting speeds 

also favor grinding burn and lead to short dressing intervals but improve the 

surface roughness quality. Hence, an optimization of the process parameters feed 

rate and cutting speed is required to balance grinding time, dressing interval, 

surface roughness, and grinding burn. Furthermore, the embedded temperature 

measurement was able to accurately classify grinding burn, while the gas sensor 

provided a lower accuracy. Despite the higher costs for the embedded temperature 

sensor, it is chosen for further optimization tasks due to a higher grinding burn 

classification accuracy. 
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8 Optimization of plunge face grinding of tungsten 

carbide 

In the previous chapter performance measurement of the plunge face grinding of 

tungsten carbide cutting inserts is shown. In this chapter the performance 

measurement is combined with constrained Bayesian optimization for 

autonomous process parameter selection. Part of this chapter has been previously 

published in [107, 108] and filed for patenting in [12]. 

8.1 Methodology 

8.1.1 Experimental setup 

The used grinding setup is specified in Table 8.1 and is similar to the grinding 

setup in chapter 7. Only the dressing wheel is slightly changed from Tyrolit 89A 

240 J5 AV217 to Tyrolit 89A 240 L6 AV217 due to unavailability of the previous 

dressing wheel. The new dressing wheel is slightly harder and has a slightly higher 

porosity. 

Table 8.1: Experimental conditions for process optimization 

Property Setup 

Grinding machine Agathon DOM Semi 

Grinding wheel Metal-bonded, diamond abrasive grains  

(Tyrolit D46C100M717) 

Insert material Tribo S25, tungsten carbide, grain size 2.5 µm, 

HV30 1470 

Initial insert geometry 14.5 mm x 14.5 mm x 4.76 mm 

Final insert geometry 10 mm x 14.5 mm x 4.76 mm 

Cooling lubrication Blasogrind HC 5 with constant flow rate 

Oscillation frequency 1 Hz during grinding, 1.5 Hz during spark-out 

Dressing wheel Tyrolit 89A 240 L6 AV217, aluminum oxide abrasive 

Dressing parameter Infeed 0.1 mm, grinding wheel speed 6 m/s, dressing 

wheel speed 12 m/s, feed rate 0.5 mm/min, spark-out time 

1 sec 

 

The temperature sensor, which has been introduced in chapter 7 is used for burn 

detection. The measured temperature of the first ground side after dressing is a 

constraint in the optimization procedure because in general the grinding 
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temperature increases during grinding due to grinding wheel dulling (compare 

with Figure 7.8). This leads to a workpiece quality, which is not fulfilled for the 

current and the following workpieces. 

The surface roughness is measured transversal to the grinding direction using a 

tactile measurement device as in chapter 7. Due to availability, the tactile 

measurement devise is changed from Form Talysurf Series 2 to Form Talysurf 

120 L both from Taylor Hobson. A measurement tip radius of 2 μm and a 

wavelength cut-off of 
c  = 0.8 mm is used. The evaluation length was reduced to 

4 mm because the total thickness of the insert was only 4.76 mm. In general, the 

roughness of both ground sides per insert is measured and averaged. If grinding 

burn occurred on a ground side the roughness was not measured on this side. 

Instead, the roughness measurement was repeated at a different location on the 

other ground side, where grinding burn did not occur. The measured roughness 

varies from insert to insert with no clear trend. Therefore, in a conservative 

approach, the maximum measured roughness value of one optimization run, 

grinding with a freshly dressed wheel until grinding burn occurred, was 

considered as a constraint for the optimization. 

8.1.2 Cost calculation 

Grinding costs cannot be measured directly with a single sensor because they are 

composed of process-related quantities such as grinding time and grinding wear, 

and of economic quantities such as machine hourly costs and cost of the grinding 

wheel. The individual production costs to grind one insert 
FEC  are calculated 

based on grinding time costs, dressing time costs, cost of grinding wheel wear 

during dressing, and cost of dressing wheel wear during dressing. 
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 (8.1) 

  grinding time     dressing time       cost of grinding wheel    cost of dressing wheel 

  costs         costs              wear during dressing      wear during dressing 

The axial feed rate 
fav , and the removed workpiece material until the wheel is dull 

wV  depend on the selected input parameters axial feed rate 
fav  and cutting speed 

cv , which are the process parameters used in Bayesian optimization. The other 

cost parameters are constants as summarized in Table 8.2. The macroscopic 

grinding wheel wear during dressing was considered and the macroscopic 
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grinding wear during grinding was neglected. This assumption is reasonable 

because, as described in [112], it is known that metal bonded grinding wheels hold 

the diamond grains very strongly, resulting in a high abrasive wear resistance 

whereby self-sharpening is limited. The limited self-sharpening of the grinding 

wheel requires redressing of the grinding wheel, which is assumed to be the main 

cause of macroscopic grinding wheel wear. The macroscopic grinding wheel wear 

during dressing 
,d gwa  was assumed to be 1 μm. Macroscopic grinding wheel wear 

during dressing is determined by the dressing parameters, which were fixed in this 

study and not considered in the optimization. In this study, macroscopic grinding 

wheel wear during dressing can be considered as a weight in the cost function. 

The spark-out time for each grinding operation was not considered for cost 

calculation because it was held constant in this study and therefore it only shifts 

the cost function up by a constant value without influencing the optimal 

parameters. 

Table 8.2: Parameters for cost calculation 

Parameter Description Value 

gV  Removed material per workpiece 310.6 mm3 

s  Number of ground sides 2 

pga  Infeed per side 2.25 mm 

dt  Dressing time 19 sec 

gwa  Abrasive layer thickness of grinding wheel 4 mm 

,d gwa  Macroscopic grinding wheel wear during dressing 1 μm 

dwa  Thickness of dressing wheel 65 mm 

,d dwa  Wear of dressing wheel during dressing 0.1 mm 

mC  Machine hourly cost 100 U/h 

gwC  Cost of grinding wheel 1500 U 

dwC  Cost of dressing wheel 95 U 
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8.1.3 Optimization Implementation 

The objective in this study is to find the process parameters minimizing the 

individual production costs 
FEC  and to fulfill the maximum temperature 

constraint 
max  and the maximum surface roughness constraint 

,a maxR . 
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The maximum allowed temperature was set to 585°C because in section 7.2.1 

experiments with 194 insert sides grinding burn has been classified with a 100% 

success rate using this temperature measurement system and the same workpiece-

wheel combination. The roughness limit depends on the grinding application. In 

the special case of plunge face grinding of inserts the allowed roughness limit is 

a trade secret of each insert manufacturer. In this study, the roughness was limited 

to 
,a maxR  = 230 nm, which leads to typical optimal cutting parameters. The 

algorithm was implemented in MATLAB using the GPML library [133] for 

Gaussian process regression. A flow diagram of the implementation is shown in 

Figure 8.1. The optimization is started with two experiments at random process 

parameters within the input optimization domain. The optimization domain for 

the Bayesian optimization was set based on experience to a minimal feed rate of 

10 mm/min and a maximum feed rate of 40 mm/min. The minimal cutting speed 

was set to 12 m/s and the maximum cutting speed was set to 30 m/s. In this way, 

a typical cutting speed range for plunge face grinding of tungsten carbide inserts 

was covered. To avoid unnecessary long experimental runs, the run was stopped 

after 8 inserts if the maximum temperature was not previously exceeded. For those 

cases the cost was calculated based on the eight inserts. After calculating the cost 

per part at the measured process parameter values and determining the 

hyperparameters, three Gaussian process regressions are calculated, to model the 

cost, the temperature, and the roughness. 

Based on the obtained probabilistic predictions at different (not previously 

probed) values of the process parameters, the optimal parameters that fulfill (8.2) 

can be calculated based on the obtained probability distributions for the cost, 

temperature and roughness. Using stochastic models allows for probabilistic 

statements about the fulfillment of the constraint limits. As discussed in detail in 

[151], the optimal parameters  , ,,opt c opt fa optx v v  are calculated as the parameters, 
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which minimize the expected cost  , ,t co c fav v  after t  experiments – calculated 

using equation (4.3) – and fulfill the roughness and temperature constraints with 

probabilities higher than user defined values 
,Ra minp  and 

,minp . 
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The minimal probability that a constraint is fulfilled can be chosen freely and 

depends on the requirements. For example, many parts for the aviation industry 

will require a high minimal probability that the constraints are fulfilled. On the 

other hand, if one produces disposable products (products for single use), it might 

be reasonable to accept a lower minimal probability that the constraints are 

fulfilled. The probability 
,f ip  that the constraint i  is below its maximum allowed 

value 
max,ic  can be calculated for temperature 

,fp 
 and roughness 

,f Rap  by using 

equation (4.19) and the maximum allowed temperature value 
max  = 585°C and 

the maximum allowed roughness value 
,a maxR = 230 nm. In general, it is possible 

to specify separate minimal probabilities for temperature and roughness. In this 

study, the parameters 
,minp  and 

,Ra minp  were set equal for simplicity. 

Afterwards the optimal parameters can be used to assess convergence as proposed 

in section 6.1.4 and equation (6.4). Full convergence is reached, when the 

stopping criterion 
stop  is below 0.04 U over three consecutive iterations, the 

optimal feed rate changes within an interval of 0.4 mm/min, and the optimal 

cutting speed changes within an interval of 0.2 m/s. If convergence is not reached, 

the next experimental parameters will be determined based on maximizing the 

constrained expected improvement acquisition function, as specified in equation 

(4.20), and the optimization continues. 
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Figure 8.1: Flow diagram of optimization implementation 

8.2 Results 

Figure 8.2 presents the on-machine optimization. Convergence was judged for a 

minimal allowed probability of quality defects of 0.5 ( ,Ra minp = ,minp = 0.5). The 
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first two experiments are conducted at random points in the parameter space to 

initialize the optimization. The first and the second experiment do not fulfill the 

constraints, therefore the algorithm does not approach convergence after these 

experiments. However, the proposed trial for the third measurement is at high 

cutting speeds and low feed rates, which reduces both surface roughness and 

temperature. The third measurement fulfills the constraints. The blue line on 

Figure 8.2 shows the current measured cost values. Experimental points explored 

due to high model uncertainty often result in high current measured costs, for 

example iterations 4, 7, and 9. In such cases, often the constraints are not fulfilled. 

Until the 8th iteration the uncertainty of the prediction is reduced drastically. After 

the 8th iteration, the uncertainty remains low until full convergence is reached after 

12 iterations. Experimentally, the best parameters are obtained at the 10th iteration 

with a cutting speed of 24.3 m/s, a feed rate of 11.7 mm/min, and a dressing 

interval of 7.5 inserts. After the 10th iteration, a slight increase in the cost and the 

uncertainty is observed, however within the convergence limits. In this study, 

convergence is reached after 12 iterations. The number of iterations is influenced 

by the complexity of the objective and constraint functions. Simple functions 

follow global trends, which can be modelled with a large length scale 

hyperparameter, resulting in a minimal number of iterations. On the other hand, 

complex functions will show very localized behaviors, which correspond to short 

length scales, and consequently require more iterations. 

 

Figure 8.2 left: Convergence of Bayesian optimization with a maximum allowed 

probability of quality defects ,Ra minp = ,minp = 0.5. Right: Conducted experiments for 12 

iterations. Experiment with lowest cost and fulfilled constraints was 10th experiment. 
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Figure 8.3 shows the predicted mean and twofold standard deviation after 12 

iterations for cost, roughness and temperature. The predicted cost is high for low 

feed rates because the operation is time consuming. On the other hand, higher feed 

rates lead to shorter dressing intervals, which results in high dressing costs. 

Optimal parameters are a trade-off between these two costs. After 12 experiments, 

the model uncertainty in the high feed rate range (above 25 m/min) is higher than 

the uncertainty corresponding to low feed rate. Considering the high predicted 

costs for these parameters, the uncertainty is still moderate. The variation of the 

uncertainty is mainly influenced by the availably of measurements close to the 

prediction. For predictions far away from measurements the uncertainties are 

high, whereas for predictions close to measurements the uncertainties are low. 

The roughness mostly depends on the cutting speed. An increase in cutting speed 

reduces the surface roughness whereas the feed rate only influences the roughness 

minimal. This is in line with the findings in section 7.2.2 for plunge face grinding 

with a similar setup, where an extensive series of experiments was conducted. The 

predicted uncertainty of the roughness is between 19.7 and 33.4 nm, which is 9 

and 15% of the maximum allowed roughness. An increase in feed rate or cutting 

speed leads to higher temperatures, again confirming the results reported in 

section 7.2.2. The predicted temperature uncertainty is between 59.5 and 76.5°C 

which is between 10 and 13% of the maximum allowed temperature. The 

temperature uncertainty is higher for high feed rates because only a limited 

number of experiments were conducted at high feed rates, due to high total costs 

at high feed rates. In such cases, the recommended process parameter 

configuration by the BO algorithm for the next trials moves to process parameters 

corresponding to lower costs, and the more unfavorable regions of the parameter 

space are not extensively explored. Figure 8.4 shows a comparison of the model 

predictions and the measured values after 12 iterations. The model shows very 

good agreement with the measured data. 
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Figure 8.3: Predicted mean cost (top left), cost twofold standard deviation (top right), 

predicted mean roughness (middle left), roughness twofold standard deviation (middle 

right), predicted mean temperature (bottom left), and temperature standard deviation 

(bottom right) after 12 iterations. 
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Figure 8.4: Comparison of model predictions with 95% confidence interval and 

measured temperature, roughness, and cost values after 12 iterations. 

Table 8.3 shows optimal parameters for several different values of 
,Ra minp  and 

,minp  computed from equation (8.3) after 12 iterations. The algorithm 

recommends an increase in cutting speed when the minimal probabilities that the 

constraints are fulfilled 
,Ra minp  and 

,minp  are increased, without a large 

modification of the feed. An increase in cutting speed leads to lower surface 

roughness and less probability to violate the surface roughness constraint. As 

expected, increasing the minimal probability that the constraints are fulfilled 

results in higher production costs. 

Table 8.3: Optimal predicted parameters after 12 iterations with different minimal 

probabilities that the temperature and roughness constraints are fulfilled. The predicted 

optimal costs and the predicted 95% confidence interval of the optimal costs is also 

given. 

Minimal probability that 

constraints are fulfilled (%) 

Optimal parameters Costs (U) 

50 
,fa optv  = 12.0 mm/min, 

,c optv  = 23.8 m/s 0.78±0.04 

84.1 
,fa optv  = 11.8 mm/min, 

,c optv = 25.2 m/s 0.83±0.05 

97.7 
,fa optv = 11.4 mm/min, 

,c optv  = 26.8 m/s 0.92±0.07 

99.9 
,fa optv  = 11.6 mm/min, 

,c optv  = 28.8 m/s 1.08±0.13 
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9 Optimization of plunge face grinding of PCBN 

Building on the optimization of plunge face grinding of tungsten carbide cutting 

inserts, in this chapter the grinding of PCBN cutting inserts is investigated. PCBN 

is a difficult to grind material, which typically leads to a fast deterioration of the 

grinding wheel cutting ability. Therefore, during grinding of PCBN cutting inserts 

the grinding wheel is typically conditioned simultaneously to the grinding 

operation. This grinding strategy contrasts with the intermittent dressing 

approach, which is commonly used for grinding tungsten carbide inserts. 

Continuous conditioning of the grinding wheel typically results in a high grinding 

wheel wear. Therefore, this chapter investigates grinding wheel wear 

measurement and subsequent optimization of axial grinding feed rate and 

conditioning feed rate. The optimization objective in this chapter is to reduce the 

individual production cost while achieving a stable grinding process. The 

definition for a stable grinding process is motivated by the judgement of human 

operators. They consider grinding processes unstable if the normal grinding force 

increases rapidly and exceeds a certain threshold value. Therefore, a grinding 

process is considered stable if the grinding normal force stays below 300 N for 

grinding four inserts consecutively after dressing of the grinding wheel. A 

maximum number of four inserts is chosen to reduce the number of inserts. In 

preliminary tests an unstable process typically resulted in a rapid increase of the 

normal grinding force and exceeding the threshold value of 300 N within four 

inserts. Part of this chapter has been filed for patenting in [149]. 

9.1 Methodology 

9.1.1 Grinding setup and machine 

The mechanical setup of the grinding machine is the same as in the previous 

chapters 7 and 8 with details of the grinding setup listed in Table 9.1. In this 

chapter the grinding task is to grind a quadratic PCBN insert on four sides evenly, 

resulting in a smaller but again quadratic insert. The conditioning procedure is 

specified by discrete steps, where each step consists of an infeed amount which is 

followed by a waiting time. Dividing the total infeed amount by the total time 

results in an average conditioning feed rate, which is used to specify the 

conditioning operation. The optimization is performed for axial grinding feed 

rates between 1 and 12 mm/min and average conditioning feed rates between 0 

and 0.01 mm/s. The parameters are varied between experimental runs but they 
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stay fixed during a single run. Each experimental run is started with a freshly 

dressed wheel to provide the same initial conditions for all experiments. 

Standardly, the grinding machine estimates the grinding normal force based on 

measurements of the drives, which are used to judge the stability of the process.  

Table 9.1: Grinding process specification 

Property Specification 

Insert material Element six DHA650, solid PCBN, CBN content 65%, 

CBN size < 4 μm, binder TiC/TiN,  

Vickers hardness 34.5±2.5 GPa 

Initial insert geometry 10 mm x 10 mm x 3.2 mm 

Final insert geometry 9 mm x 9 mm x 3.2 mm 

Grinding machine Agathon DOM Semi 

Grinding wheel Diamond grains with a vitrified bond (D10V from Tyrolit) 

Dressing wheel Aluminum oxide grains with ceramic bond  

(89A03202H5AV83 from Tyrolit) 

Grinding parameters Cutting speed 12 m/s, spark out time 3 sec, oscillation 

frequency grinding 1 Hz, and oscillation frequency spark 

out 1.5 Hz 

Dressing parameter Infeed 0.4 mm, cutting speed of the grinding wheel 

12 m/s, cutting speed of the dressing wheel 8 m/s, feed 

rate of dressing wheel 0.3 mm/min, and the spark out time 

2 sec.  

Conditioning 

parameters 

Cutting speed of grinding wheel 12 m/s, cutting speed of 

the dressing wheel 2 m/s, and average conditioning feed 

rate varied 

Cooling lubricant Blasogrind GTC 7 from Blaser Swisslube with constant 

flow rate 

9.1.2 Measurement fiber 

The wear measurement is based on a device developed originally for the 

monitoring of civil structures such as tunnels, bridges, dams, and power plants, as 

presented in [69]. Figure 9.1 shows the grinding wheel wear measurement which 

relies on low-coherence interference. The measurement system consists of a 

reference fiber and a measurement fiber. The measurement fiber is embedded 

inside the grinding wheel perpendicular to the grinding surface and the reference 

fiber is located on the back of the grinding wheel. For the length measurement, 

the optical signal of a light source is split, one signal is travelling through the 
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measurement fiber and the other through the reference fiber. The optical signal 

travelling through the reference fiber is reflected at the end by a mirror and the 

optical signal propagating through the measurement fiber is reflected at the end 

of the fiber. The measurement fiber is continuously shortened as the grinding 

wheel wears due to grinding, dressing, and conditioning. The length of the 

measurement fiber is calculated based on the reflections using a spectrum 

analyzer, part of the SOFO Lite reading unit (Smartec SA, measurement 

resolution 2 μm). Finally, the length of the measurement fiber is recorded five 

times and averaged by the measurement computer. The first measurement is taken 

at least one minute after stopping the grinding wheel and cooling lubricant to 

reduce the influence of cooling lubricant on the measurement. The difference in 

length between the measurement before and after an operation is the wear of the 

grinding wheel. In the current prototype setup, the optical cable is connected 

manually before and after each operation to measure the wear of the grinding 

wheel. To improve the industrial applicability, it is proposed to transmit the 

optical signal via a rotary joint from the rotating part to the non-rotating part, such 

as presented in [157], or to integrate the SOFO Lite reading unit in the grinding 

wheel and transmit the data through a wireless connection to the measurement 

computer, similar to the wheel integrated temperature measurement, as shown in 

section 7.1.3. 

 

Figure 9.1: Experimental set-up of wheel integrated wear measurement 
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9.1.3 Microscopic reference measurement 

The results of the wear measurements using the low-coherence interferometry 

were compared and validated against microscopic measurements. To measure the 

wear with a 3D microscope image reconstruction method, a rectangular pocket 

with approximately 5 mm length and 2 mm width is lasered into the grinding 

wheel abrasive layer. The bottom surface of the pocket serves as a reference and 

the top surface is the abrasive layer of the grinding wheel. Microscopic 

measurements are performed using the TOOLInspect microscope from Confovis 

with the focus variation method and a magnification of 10. A typical microscopic 

measurement is shown in Figure 9.2. 

 

Figure 9.2: Microscopic 3D measurement of reference 

The software MountainsMap 7 from Digital Surf is used to evaluate the height 

difference between the abrasive layer and the reference layer. The measured 

profiles in X-direction were averaged over the whole evaluation length in Y-

direction. The resulting average profile is shown in Figure 9.3. The blue line 

represents the average profile and the orange area represents the area used for 

calculating the step size between the upper and lower surface. In this way a mean 

height of the step between the abrasive surface and the reference surface can be 

calculated. The grinding wheel wear finally can be calculated as the difference 

between the step height before and after an operation. 

 

Figure 9.3: Average profile of microscopic reference measurement 
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9.1.4 Optimization objective and cost calculation 

The optimization objective is to find the process parameters minx , which minimize 

the individual production cost 
FEC  and result in a stable grinding process. 

The individual production cost 
FEC  are calculated based on grinding time costs, 

cost of grinding wheel wear, and cost of dressing wheel wear, 
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grinding time costs   cost of grinding wheel wear   cost of dressing wheel wear 

where 
fav  is the axial grinding feed rate, 

cov  is the average conditioning feed rate, 

gt  is the grinding time, 
coa  is the conditioning distance, and R is the ratio between 

grinding wheel wear and conditioning distance. The ratio R  is similar to the 

common G  ratio but is inverted and used for conditioning and not for grinding. 

The other cost parameters are listed in Table 9.2. In a first approach, the grinding 

wheel wear caused by grinding is neglected and the wear is assumed to be caused 

by the conditioning process alone. The optimal parameters are not influenced by 

a constant grinding wear independent of the process parameters because it only 

shifts the cost by a constant value. Only a significantly changing wear for different 

process parameter such as a change in feed rate values would result in a shift of 

optimal parameters. Making this assumption reduces the experimental effort and 

allows to decouple the cost and constraint measurements. The individual 

production cost can be measured without using inserts and only requires 

determining the wear ratio R  experimentally. After close to optimal parameters 

are found, this assumption is tested. 

Table 9.2: Cost parameters for optimization 

Parameter Description Value 

gwa  Abrasive layer thickness of the grinding wheel 5.8 mm 

dwa  Thickness of the dressing wheel 59 mm 

MHC  Machine hourly cost 100 U/h 

gwC  Cost of grinding wheel 1900 U 

dwC  Cost of dressing wheel 100 U 



Methodology  |  9.1 

95 

9.1.5 Optimization implementation 

A flowchart of the optimization is given in Figure 9.4. The individual production 

cost is calculated analytically according to equation (9.1) after measuring the ratio 

R  based on conditioning experiments. The analytical calculation of the cost is 

different compared to the previous chapters where the cost has been modelled 

with Gaussian process regression using the available cost measurements. After 

performing the conditioning experiments, it is unclear whether selected process 

parameters result in a stable or an unstable process. Therefore, a Gaussian process 

model is needed to model the process stability similar to the constraints in the 

previous chapters. The probability for process stability as a function of process 

parameters is predicted by Gaussian process classification. As described in section 

4.3 and Appendix B  , probit regression is used and predictions are calculated by 

the expectation propagation approximation method. The use of Gaussian process 

classification is also in contrast to the previous chapters using Gaussian process 

regression. As for the regression case in previous chapters, a zero mean function 

and a Matern 5 covariance function is used. The hyperparameters of the Gaussian 

process are determined by maximizing the marginal log likelihood, as described 

in section 4.3. Having obtained a model for the process stability, the next 

experiment is selected based on the constrained expected improvement equation 

(4.18) by multiplying the probability for a stable process with the expected 

improvement 
EIa . The parameters maximizing the constrained expected 

improvement are used in the subsequent experiment. The expected improvement 

is calculated similar to equation (4.15), 

   minmax ,0EI FEa C C   (9.2) 

where 
minC  is the lowest measured cost which results in a stable process and 

FEC  

is the individual production cost calculated according to equation (9.1). This 

approach slightly differs from the previous formulation because the individual 

production cost 
FEC  is deterministic and not modelled by a Gaussian process. The 

predicted optimal parameters show the lowest cost and result in a stable grinding 

process with a probability of 95%. Having obtained optimal parameters, 

convergence is reached when the optimal parameters vary less than 0.001 mm/s 

in average conditioning feed rate and 0.3 mm/min in axial feed rate for three 

consecutive experiments, similar to the previous approach as described in section 

6.1.4. The optimization is implemented in MATLAB using the GPML library 

[133] for Gaussian process classification. 
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Figure 9.4: Flowchart of PCBN grinding optimization 

9.2 Results 

9.2.1 Validation of wear sensor 

In a first step, interferometric wear measurements are compared to established 

microscopic wear measurements. For these experiments the grinding wheel is 

conditioned with different parameters and the grinding wheel wear is measured 

by both measurement principles. A comparison of the results obtained by the two 

measurement principles is shown in Figure 9.5. The overall agreement between 

the wear measurement by the optical fiber and the microscopic wear measurement 
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is good, with an empirical standard deviation of 7.5 μm. In total two fibers were 

embedded in the grinding wheel. However, only one fiber showed a reliable 

reading and was used for wear measurement in this study. To investigate the cause 

of the unreliable sensor, the results of 20 measurements at different abrasive layer 

heights, each measurement consisting of 5 repetitive measurements, are compared 

for both sensors. The fiber showing an unreliable reading showed fluctuations for 

repetitive measurements of up to 48 μm and an average fluctuation of 12.6 μm. 

These fluctuations are much larger compared to the properly working sensor 

which showed an average fluctuation of 4.8 μm and a maximum fluctuation of 

11 μm. Increasing the number of sensors in future might improve the overall 

accuracy compared to the current approach with one functioning sensor because 

localized wear effects are averaged. 

 

Figure 9.5: Comparison of wear measurement with integrated fiber and microscopic 

reference measurement 

9.2.2 Wear and grinding costs 

Figure 9.6 shows the grinding wheel wear caused by conditioning on the left hand 

side. For these measurements different conditioning infeed and waiting time 

combinations are tested, which result in different average conditioning feed rates. 

Specifically, the following combinations are tested: conditioning infeed 10 μm 

and waiting time 1 sec, conditioning infeed 1 μm and waiting time 1 sec, and 

conditioning infeed 1 μm and waiting time 0.1 sec. These three combinations are 

tested for conditioning distances around 1, 2, and 3 mm. However, no significant 

effect of the average conditioning feed rate on the grinding wheel wear is 

measured. The variation at each conditioning distance can be fully explained by 
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measurement noise. The R ratio between grinding wheel wear and conditioning 

distance is calculated by a linear fit and results in 1.15%. 

After the grinding wheel wear caused by conditioning is known, the grinding costs 

per part can be determined by equation (9.1). The results of the cost calculations 

are illustrated in the right panel of Figure 9.6. As expected, the grinding costs are 

lowest for fast axial feed rates and slow average conditioning feed rates. For slow 

axial feed rates the costs are heavily influenced by the axial feed rate and less 

sensitive to the average conditioning feed rates. For fast axial feed rates the effect 

of the average conditioning feed rate increases. 

 

Figure 9.6 Left: Grinding wheel wear caused by conditioning. Right: Grinding cost per 

part for PCBN grinding 

9.2.3 Grinding optimization 

The result of the optimization is illustrated in Figure 9.7. The optimization is 

started with two initial experiments. The first experiment results in a stable 

grinding process but at high costs and the second experiment results in an unstable 

process. From the second to the eighth experiment the process is unstable, as the 

algorithm tests for parameters with low costs. The biggest improvement in cost is 

achieved between the ninth and eleventh experiment, where all measurements 

resulted in stable grinding processes. During these tests the cost is reduced by an 

increase in axial feed rate and a reduction of the average conditioning feed rate. 

After the eleventh experiment, the tested parameters again result in an unstable 

grinding process. These experiments reduce the model uncertainty and confirm 

that close to optimal parameters are found. Convergence is reached after 13 

experiments with a predicted optimal axial feed rate of 3.5 mm/min and an 
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optimal average conditioning feed rate of 0.0066 mm/s. These parameters are very 

close to the eleventh experiment with an axial feed rate of 3.7 mm/min and an 

average conditioning feed rate of 0.0064 mm/s. 

 

Figure 9.7: Optimization of PCBN grinding process. Left: Conducted experiments with 

stability prediction of Gaussian process classification after 15 iterations. Right: Current 

best cost of the optimization. 

9.2.4 Wear of grinding and conditioning 

The grinding cost used for optimization included the grinding wheel wear caused 

by conditioning but not the grinding wheel wear caused by grinding. Therefore, 

the grinding wheel wear is measured during the optimization runs. Figure 9.8 

shows the grinding wheel wear for all experiments which resulted in stable 

grinding processes. The measured grinding wheel wear can be fully explained by 

wear caused by conditioning for the ninth, tenth, and eleventh experiment. For the 

first experiment the measured grinding wheel wear is smaller than the wear 

expected by conditioning. This indicates a higher measurement error for this 

experiment but does not indicate additional wear caused by grinding. Therefore, 

all these experiments support the initial assumption that the grinding wheel wear 

is mainly caused by conditioning and the wear caused by grinding is low. 

Furthermore, experiment eleven shows the lowest measured grinding wheel wear, 

confirming the optimization results. 
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Figure 9.8: Comparison of measured wear during optimization and predicted 

conditioning wear 

9.3 Discussion and conclusion 

The investigations show that measuring the wear of the grinding wheel is possible 

by means of interferometry, and that reflections at the end of the measurement 

fiber are sufficient for signal analysis. The potential advantages of the investigated 

interferometric wear measurement system are that it only needs a small 

installation space, allows fast in-process wear measurement, and does not require 

human intervention. However, the robustness and accuracy of the tested wear 

measuring system has potential for improvement. The brakeage of the 

measurement fiber caused by grinding wheel wear is random and happens locally. 

Therefore, in future it might be beneficial to include multiple sensors to average 

this effect and thereby increase the measurement accuracy. Multiple sensors also 

ease the filtering of inaccurate readings such as happened for the second sensor in 

this study. Another source of uncertainty might be introduced by disturbances 

caused by the cooling lubricant which disturbs the optical signal. In this study, the 

influence of the cooling lubricant was minimized by waiting at least one minute 

between stopping the grinding wheel and cooling lubricant and measuring 

grinding wheel wear. However, additional measures such as a more sophisticated 

post-processing of the data, including cooling lubricant effects, might be 

beneficial to further reduce the uncertainty. 

The optimization of axial grinding feed rate and average conditioning feed rate 

for grinding of PCBN cutting inserts was successfully demonstrated by using a 

deterministic cost function, Gaussian process classification to model process 
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stability and Bayesian optimization. The optimization approach reduced the 

grinding costs by around 50% compared to the cost of the first experiment, 

conducted with conservative parameters. Compared to the previous chapters the 

use of Gaussian processes was demonstrated for binary classification and thereby 

extending the previous regression cases. Furthermore, this chapter shows the 

incorporation of a precalculated deterministic cost function within the general 

Bayesian optimization framework. 
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10 Prior knowledge and transfer of knowledge 

In the previous chapters autonomous parameter selection is demonstrated using 

constrained Bayesian optimization for longitudinal turning of 1.4125 steel bars 

and plunge face grinding of PCBN and tungsten carbide inserts. Gaussian process 

regression and Gaussian process classification without utilizing expert knowledge 

or transfer of knowledge have been used for process modelling. This chapter 

focuses on extensions of the current approach to further improve the autonomous 

parameter selection, by incorporating prior knowledge and transfer of knowledge. 

Part of this chapter is published in [105]. 

10.1 Methodology 

10.1.1 Experimental setup 

The experiments are performed for longitudinal turning on a Swiss GT 32 turning 

machine from Tornos, shown in Figure 10.1. The machine is equipped with an 

automatic bar feeder Robobar SBF 326 from Tornos, which handles round bars 

made of 1.4125 martensitic stainless steel with an initial diameter of 20 mm and 

a length of 3 m. During the cutting operation, the diameter of the bar is reduced 

from 20 to 7 mm in 13 steps with a fixed depth of cut of 0.5 mm over a length of 

20 mm. In this chapter, the feed per revolution is fixed to 0.05 mm/rev and only 

the cutting speed is optimized. During cutting Blasomill 15 from Blaser Swisslube 

is used as a cooling lubricant with a constant flow rate for all experiments. The 

cutting operations are performed using carbide inserts from Diametal (carbide 

M10/30, coating D30, geometry DCGX-FR070301, corner radius of 0.1 mm, and 

article number 236157) mounted on a right-hand tool holder Topdec SDACR 

from Diametal. The tool life of the cutting tool is determined based on 

VBB,max  measurements using a Leica Wild M10 microscope, whereby a tool with 

VBB,max  ≥ 100 μm is considered worn out. 
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Figure 10.1: Picture of turning machine 

10.1.2 Optimization task and cost calculation 

In this chapter, the aim of the optimization is to find the cutting speed, which 

minimizes the individual production costs. 

   ,min argmin ln ( )c FE cv C v  (10.1) 

The cutting speed is optimized over a large domain between 10 and 175 m/min. 

The upper bound of the cutting speed is selected based on the maximum rotational 

speed of the turning machine, reached during the final longitudinal cutting step. 

A wide range of cutting speeds results in costs that are different by orders of 

magnitudes. Having these large cost differences, accurate modelling typically 

requires short length scale parameters of the Gaussian process, which generally 

slows down optimization. Therefore, the logarithm of the individual production 

cost is modelled and optimized. By optimizing in the log space, the Gaussian noise 

is also changed from a normal to a log-normal distribution. The advantage of the 

log-normal distribution is that the predicted cost is always positive, which 

matches reality. The individual production costs 
FEC  are calculated as follows, 

 I
FE c MH

C
C t C

T

 
  

 
 (10.2) 

and the cutting time 
ct  for multiple cuts can be calculated as shown below. 
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In this chapter, the machine hour-rate 
MHC  is assumed to be 90 U/h and the cost 

per cutting edge 
IC is assumed with 10 U. 

10.1.3 Modelling 

The optimization is implemented in Python and uses the GPy library [54] for 

Gaussian process models. The aim of all Gaussian process models is to accurately 

model the production costs as a function of cutting speed. Four Gaussian process 

model versions are tested: 

 Model 1 - standard model without expert knowledge (benchmark) 

 Model 2 - model with fixed hyperparameters, determined from similar 

optimization tasks to transfer knowledge 

 Model 3 - model with non-zero prior mean function, incorporating 

knowledge from available empirical or analytical models 

 Model 4 - model based on multi-task learning, modelling several tasks 

together and transfer knowledge by utilizing correlations between different 

tasks 

Figure 10.4 illustrates the four Gaussian process model variants. 

The standard Gaussian process model (Model 1) uses a zero prior mean function 

and determines the hyperparameters by maximizing the marginal log likelihood 

based on available data points, as specified in equation (4.7). Throughout this 

chapter the maximization of the marginal log likelihood is performed by using the 

quasi-Newton method by Broyden, Fletcher, Goldfarb, and Shanno (BFGS) with 

1000 restarts. Details of the BFGS method are given in [124]. 

Instead of determining the hyperparameters by maximizing the marginal log 

likelihood, the hyperparameters can be fixed based on expert knowledge, which 

is investigated as a possible alternative in Model 2. 

The informative prior mean function of Model 3 can be specified based on known 

physical or empirical models. Therefore, the Taylor equation, as introduced in 

equation (2.5) , is used to model the tool life as a function of the cutting speed. 

The tool life predictions are then used in combination with equation (10.2) to 

calculate the individual production costs. The resulting deviation between the 
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measured cost and the prediction based on the Taylor equation is modelled by a 

standard Gaussian process model using a Matern 5 kernel. This corresponds to a 

two-step approach. The parameters of the Taylor equation are determined first by 

ordinary least squares using the scikit-learn library [129]. Afterwards, the 

hyperparameters of the Gaussian process model are determined by maximizing 

the marginal log likelihood, as specified in equation (4.7). The two-step approach 

is chosen to make the results comparable to standard curve fitting techniques 

based solely on the Taylor equation, which is identical to the first modelling step. 

For transferring knowledge between different tasks, Model 4 uses multi-task 

learning. As introduced in section 4.2, different multi-task learning models exist. 

In this chapter, the general idea of the used multi-task approach is to determine a 

common model for all tasks and model individual deviations to this model 

independently. Thus, a linear model of coregionalization, as specified in equation 

(4.9) and (4.10), is used. The used model is based on two Matern 5 kernels, 

resulting in two coregionalization matrices 
1

B  and 
2

B . The first coregionalization 

matrix 
1

B  is filled with ones and the hyperparameters of the associated Matern 5 

kernel are free. In this way, the combination of coregionalization matrix 
1

B  and 

the corresponding kernel models the fully related share of the task outputs. For 

the second coregionalization matrix and associated kernel, the coregionalization 

matrix is 
2

diag( )B  , the length scale hyperparameter of the kernel is free and 

the signal variance of the kernel is fixed to one because the signal variance is fully 

captured by the coregionalization matrix 
2

B . By specifying a diagonal 

coregionalization matrix, the outputs are modelled independently but share the 

same hyperparameters. The specifications of 
1

B  and 
2

B are identical to the special 

cases shown in Figure 4.4. The hyperparameters of the multi-task model are 

determined by maximizing the marginal log likelihood, as specified in equation 

(4.14). 
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Figure 10.2: Overview of tested Gaussian process model variants. The different 

Gaussian process variants are a standard Gaussian process, a Gaussian process with 

fixed hyperparameters, a Gaussian process with a prior mean function based on the 

Taylor equation, and a multi-task Gaussian process. 

The benchmark model (Model 1) and the model based on a non-zero prior mean 

function (Model 3) do not need additional information. For the multi-task learning 

model (Model 4) measurements from other tasks are necessary and the model with 

fixed hyperparameters (Model 2) requires the specification of the 

hyperparameters, which can also be achieved by using measurements from other 
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tasks. Figure 10.3 shows available results for optimization tasks using carbide 

cutting inserts with coating D10 and D60, which serve as prior knowledge for the 

current optimization task. The current optimization task is slightly different from 

the previous optimization tasks. In the current setup the carbide insert is coated 

with D30 instead of D10 or D60 – the rest of the setup remained unchanged. For 

the fixed hyperparameter case, the hyperparameters of the D60 coating 

determined by maximizing the marginal log likelihood utilizing all D60 

measurements are reused for the D30 case, which are 
1, 60 0.975Dl  , 

2

, 60 17.02f D  , and 2

, 60 0.015N D  . These hyperparameters correspond to a 

normalized cutting speed between zero and one. For the multi-task learning 

approach, the available observations from the D10 and the D60 coating are used 

together with the new observations from the D30 coating for model updating, as 

specified in equation (4.14), and for prediction, as specified in equation (4.11) and 

(4.12). 

 

Figure 10.3: Gaussian process regression for coating D10 and D60 

10.1.4 Optimization procedure 

The different Gaussian process models are tested within the general optimization 

procedure, as shown in Figure 10.4. Each optimization is started with two initial 

experiments. When the parameters are determined by maximizing the marginal 

log likelihood, the initial experiments should be chosen in an area, which allow a 

good characterization of the function shape. In Bayesian optimization, knowing 

the maximum gradient of the function allows to determine the smallest length 

scale of the Gaussian process model, which improves robustness of the 

optimization. Thus, the initial cutting speeds are set to 10 m/min and 30 m/min 
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because this region is the expected maximum slope of the cost. This selection is 

especially useful for the standard Gaussian process model. 

Each experiment is started with a fresh cutting insert, used for manufacturing until 

it is considered worn out following the VBB,max  criterion. For low cutting speeds 

it might take very long until the tool reaches the VBB,max  criterion, while the time 

costs are already very high. To avoid unnecessary long experiments, the 

experiments are stopped when the contribution of the cost for the cutting time 

exceeds 95% of the total cost. In this case, the cost is calculated as the average 

between the time cost alone, assuming an infinite tool life, and the cost, which 

would occur if the insert is assumed worn out directly after the next workpiece is 

manufactured. 

Having obtained the measurements, the Gaussian process model can be used to 

calculate the optimal parameters and assess convergence of the optimization. 

Similar to section 6.1.4, convergence is reached when over three consecutive 

iterations the change in the optimal predicted cost ( )optx  is less than 5%, the 

variance at the optimal predicted parameter is 2 ( ) / ( ) 25%opt optx x   , and the 

optimal cutting speed varies less than 15 m/min. If convergence is not reached, 

the cutting speed maximizing the expected improvement acquisition function, as 

specified in equation (4.16), is used as the next test parameter. In total four 

individual optimization runs have been performed. To reduce the total number of 

experiments for the optimization runs, measurements form previous optimization 

runs are reused when a measurement is available within ±2 m/min of the requested 

cutting speed value that is not used during this run yet. 

 

Figure 10.4: Flowchart of the general optimization procedure. The GP model can be 

represented by one of the four model variants as illustrated in Figure 10.2. 
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10.2 Experimental results 

Figure 10.5 left shows the model prediction after 10 experiments for the standard 

Gaussian process model without expert knowledge. The observations (black dots) 

are acquired by the Bayesian optimization procedure, as specified in Figure 10.4. 

After the two initial experiments at cutting speeds of 10 m/min and 30 m/min, the 

algorithm requests an experiment at the maximum cutting speed of 175 m/min 

because based on the two available experiments the model expects a decrease in 

cost for an increase in cutting speed. Having these three data points, the algorithm 

explains the data by a nearly linear model with a high length scale parameter and 

a high noise level, where the cost decreases slightly for higher cutting speed. 

Considering only these three data points, without additional information, the 

prediction is reasonable, but the model is too simple for the investigated process. 

Due to the simple initial model a cutting speed of 175 m/min is investigated four 

times until the model reduces the noise estimation to an adequate level and is able 

to distinguish between noise and signal. The following experiments are selected 

close to the optimum. After 10 experiments the algorithm reaches convergence. 

In addition to the observations, which are used by the Gaussian process 

regression, several validation points are shown, which are not used by the 

Gaussian process regression. It can be seen that all validation points are within 

the predicted confidence interval. The uncertainty prediction close to the data 

points is mainly explained by noise, whereas the uncertainty between 

measurement points is a combination of noise and uncertainty due to missing data. 

It can be observed that for high cutting speeds above 150 m/min the cost is more 

scattered. In the Gaussian process model the noise is assumed to be identical for 

all cutting speeds. Therefore, this approximation causes the model to overestimate 

the noise for lower cutting speeds. It would be possible to use a different 

likelihood which reflects the heteroscedasticity of the data (different noise levels 

for different process parameters), such as shown in [51, 121]. However, such 

approaches usually increase the model complexity and are typically analytically 

intractable. Consequently, approximation methods such as expectation 

propagation, as shown in [121], or computationally expensive sampling methods 

such as Markov chain Monte Carlo, as shown in [51], are needed. Due to the 

increased complexity and the good performance obtained by the simple model, no 

attempts have been made to improve the model. However, the use of a tailored 

likelihood might be an interesting direction for future research.  
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Figure 10.5 right shows the result for fixed hyperparameters (Model 2) instead of 

determining the hyperparameters by maximizing the marginal log likelihood. The 

two initial experiments are again at cutting speeds of 10 m/min and 30 m/min. As 

for the case without prior knowledge the next experiment is performed at the 

highest cutting speed of 175 m/min. However, the algorithm does not test high 

cutting speeds again because it is able to directly distinguish between noise and 

signal. Afterwards the algorithm selects parameters close to the optimum and 

reaches convergence after 6 experiments. The resulting posterior prediction of the 

standard Gaussian process model and the model with fixed hyperparameters is 

very similar after convergence but the model with fixed hyperparameters needs 6 

experiments instead of 10 experiments, which reduces the experimental effort 

significantly. 

 

 Figure 10.5 Left: Result of Bayesian optimization after 10 experiments using a 

standard Gaussian process model without expert knowledge (Model 1). Right: 

Result of Bayesian optimization after 6 experiments using fixed hyperparameters 

(Model 2). 

Another investigated approach is the specification of a non-zero prior mean 

function (Model 3), as displayed in Figure 10.6. At least two tool life 

measurements at different cutting speeds are required to fit the Taylor equation. 

In this case the optimization is again started at cutting speeds of 10 m/min and 

30 m/min. However, the experiment at the lowest cutting speed of 10 m/min takes 

very long without reaching the end of the tool life. Hence, the 95% criterion for 

the cost is reached before the insert is worn out and no tool life is measured for 

this experiment. To obtain a second measurement for the tool life, the third 

experiment is conducted at 175 m/min as requested by the optimization with the 

standard Gaussian process model (Model 1). After these three experiments, two 



Experimental results  |  10.2 

111 

tool life measurements are available and a prior mean function based on the Taylor 

equation can be calculated. Afterwards the algorithm starts to sample close to the 

optimum and converges after 6 experiments. As shown on the left of Figure 10.6, 

the Taylor equation shows a high error between measurements and predictions. 

Especially the tool life measurements at low cutting speeds influence the quality 

of the Taylor equation fit negatively. The tool life is reduced at low cutting speeds 

due to build up edge of the tool, as described in [81]. This effect is not captured 

by the Taylor equation and reduces the quality of the model fit. It would be 

possible to improve the Taylor equation fit by carefully choosing the range of 

cutting speeds where the Taylor equation is valid. However, no such attempt has 

been made in this study because the main objective is to demonstrate the 

combination of existing models describing general trends with Gaussian process 

models capturing the deviation between measurements and the existing models. 

As shown on the right of Figure 10.6, using the predicted tool life by the Taylor 

equation for cost calculation alone leads to high model errors. Although the Taylor 

equation fit is not very good, the data is explained well by the Gaussian process 

model using the cost calculated by the Taylor equation as a mean function. 

Therefore, the deviation between the cost predicted by the Taylor equation and 

the cost determined experimentally is modelled accurately by the Gaussian 

process model. Moreover, compared to the standard approach, the data-efficiency 

of the optimization is improved by using a Gaussian process model with a mean 

function based on the Taylor equation. Some of the validation points are outside 

the 95% confidence interval for cutting speeds of 175 m/min. This is again a result 

of the Gaussian likelihood, assuming identical noise for all cutting speeds. 

However, for this case, the model predicts the data very well near the optimum 

because more data is available in this range and a cutting speed of 175 m/min is 

only sampled once. 
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Figure 10.6: Taylor equation fit and Gaussian process regression with prior mean based 

on Taylor equation (Model 3) after 6 experiments 

The last investigated approach is multi-task learning (Model 4), as shown in 

Figure 10.7. As before, the multi-task learning case is started with two initial 

experiments at 10 m/min and 30 m/min. In addition to these two starting points, 

the multi-task model incorporates the results of the previous measurements with 

the D10 and D60 coating. As a consequence, the algorithm requests points close 

to the optimum and reaches convergence after 4 experiments. After these 4 

experiments the model is able to predict the data very well, especially close to the 

optimum. Only the variation at high cutting speed is again slightly underestimated 

due to the assumption of Gaussian noise that is modelled independently of the 

cutting speed. The model results for the D30 coating are very similar to the results 

of the D60 coating. This similarity is exploited by the multi-task learning 

approach, leading to a fast convergence. 

 

Figure 10.7: Results for multi-task learning (Model 4) after 4 experiments 
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Figure 10.8 shows a comparison of all tested models. It can be seen that the 

standard Gaussian process model without expert knowledge (Model 1) starts to 

sample close to the optimum only after 7 experiments and converges after 10 

experiments. The performance of the Gaussian process model with fixed 

hyperparameters (Model 2) and the non-zero prior mean function (Model 3) 

behave very similarly. They start to sample parameters close to the optimum after 

4 experiments and converge after 6 experiments. The best performance is 

achieved with the multi-task learning approach (Model 4), which first samples a 

parameter close to the optimum after 3 experiments and converges after 4 

experiments. In summary, all tested methods which include expert knowledge or 

share knowledge between tasks are suited to improve significantly the sample 

efficiency compared to the standard Gaussian process model. 

 

Figure 10.8: Performance comparison of different Gaussian process models 
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11 Conclusion and Outlook 

Based on the identified research gap, data-driven optimization for knowledge 

acquisition of expert systems, quantification of process performance by a sensor 

setup, and use of prior knowledge and transfer of knowledge have been 

investigated exemplarily for grinding and turning. 

Gaussian process models combined with Bayesian optimization for data-driven 

optimization have been demonstrated for grinding and turning. The tested 

approaches showed a high flexibility, produced physically plausible results, and 

can find optimal parameters within a few iterations. In this study up to two 

parameters have been used for optimization. In future it is recommended to extend 

the approach to additional parameters such as dressing wheel speed and oscillation 

frequency of the grinding wheel. Furthermore, the inclusion of constraints and a 

stopping criterion in the optimization have been demonstrated successfully. In this 

study, avoiding tool or machine damage by misspecification of machining 

parameters has been ensured by selecting an appropriate parameter optimization 

range and utilizing sensorial feedback. Future research is necessary to investigate 

whether this approach is sufficient. An alternative is to consider safety for the 

selection of test parameters as demonstrated in [11]. As shown in chapter 5, 

discontinuities or steps in the modelled function are not captured well by Gaussian 

process regression because predicts depend on correlations between nearby 

points. This topic is open to future research and a promising approach is to 

combine Bayesian methods with neural networks. For simplicity, the Gaussian 

process prior has been combined with a Gaussian likelihood for the regression 

case because in this way the modelling stays analytically traceable. Assuming a 

Gaussian likelihood is an approximation and does not always match reality 

precisely, as shown in chapter 10. A direction for future research is to use tailored 

likelihoods for the optimization task at hand, which typically requires the use of 

approximation or sampling methods. 

Process performance in longitudinal turning has been determined using tool life 

and surface roughness measurements. For plunge face grinding of tungsten 

carbide cutting inserts, a wheel integrated optical sensor has been used for 

temperature detection, which allowed accurate detection of grinding burn. For 

plunge face grinding of PCBN cutting inserts, the wear of the grinding wheel has 

been measured by a fiber embedded inside the abrasive layer of the grinding 
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wheel, and an interferometer. Furthermore, the surface roughness and the grinding 

forces have been measured. Having all these measurements allowed optimization 

of longitudinal turning and plunge face grinding. However, several extensions are 

possible. The used optical wear measurement requires to stop the grinding wheel, 

connect the fibers, and afterwards conduct a measurement. For industrial 

application it is recommended to investigate approaches, which do not require 

manual work for the wear measurement. An option is to transmit the optical signal 

by a rotary joint from the rotating to the non-rotating part, as shown in [157], or 

to place the electronics on the grinding wheel and to transmit the signal wireless 

to the non-rotating part, similar to the temperature measurement as described in 

section 7.1.3. Furthermore, approaches to further improve the measurement 

uncertainty of the wear measurement such as using more sensors are desired. 

Overall, the needed sensors strongly depend on the requirements on the final part 

and specific machining operation. Therefore, in future it is recommended to 

include additional sensorial feedback to cover a broad range of applications and 

thereby improve industrial applicability. Interesting quantities for future research 

are geometry errors of the workpiece and cutting edge roughness of the workpiece 

after grinding. 

Different methods to include expert knowledge and transfer of knowledge have 

been investigated. All methods utilizing expert knowledge or transfer of 

knowledge reduced the number of experiments by at least 40% compared to the 

standard approach without expert knowledge, showing the potential of the 

investigated methods. Due to the increased data-efficiency, it is recommended to 

use prior knowledge and transfer knowledge wherever possible.  

To further improve the industrial applicability, it is recommended to combine the 

investigated methods with an expert system for data handling. Figure 11.1 shows 

a concept for such a system. The procedure is started with a manufacturing task 

from a high-level production planning and control system. Afterwards similar 

tasks or prior knowledge are searched in the knowledge base and transferred to 

the Bayesian optimization algorithm. As the knowledge base grows it might be 

necessary to pre-filter similar tasks because supplying to many data points to 

Bayesian optimization will ultimately significantly increase the computational 

effort. Besides available knowledge, cost parameters must be provided to the 

optimization. The cost parameters depend on purchasing prices of the tool and 

machine but also on the workload of the factory and must be supplied by a high-

level production planning and control system. The cost parameters can be 
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provided to the parameter selection system based on fairly large time intervals 

such as once a day. Afterwards Bayesian optimization selects process parameters 

which are informative about the optimum. Performance measures and product 

quality data which results from operation with the selected process parameters is 

used to update the Bayesian optimization algorithm. Furthermore, the 

performance and quality data are stored in the knowledge base for later use for 

the optimization of similar cases. The Bayesian optimization algorithm selects 

process parameters until convergence is reached. Afterwards the manufacturing 

process is operated with the predicted best parameters. 

 

Figure 11.1: Concept for integration of Bayesian optimization in an expert system 
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Appendix A  Equations for multi-task learning 

In this section the calculation of  ,K X X  and 
*x

K  is shown based on [4]. The 

equation (4.10) can be written componentwise as follows, 
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where 
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q

d db  are the coefficients of the coregionalization matrix 
q

B modelling the 

covariance between the different outputs and ( , ')qk x x  are the kernels modelling 

the covariance between different process parameters. The matrix  ,K X X  with 

dimensions ND x ND , for N  data points per output and D  number of outputs 

can be calculated as follows, 
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where 
d

X  is the input training data for output d. The blocks   ' , '
,

d d d d
K X X  of 

the matrix  ,K X X  can be calculated as follows by using equation (A.1). 
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The matrix 
*x

K  with dimensions D x ND  and entries 
* , '( ( , ))j d dK x x  can be 

calculated as follows. 
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Appendix B  Expectation propagation algorithm 

 

Figure B.1: Calculation of log marginal likelihood with expectation propagation 

algorithm according to [134] 
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Figure B.2: Calculation of prediction with expectation propagation algorithm according 

to [134] 
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