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A B S T R A C T

Gear shaping is the most important process for manufacturing internal gears. Even if this method
is also suitable for the production of spur gears, these can be produced more effectively using
hobbing. Gear shaping is also interesting for manufacturing of face-gears. Since the shaper cutter
is quite simple compared to a hob and the tool costs are therefore relatively low, this method
is particularly suitable for small series production. This manuscript deals with the simulation
of gear shaping of face-gears with the aim of determining suitable process parameters such as
radial and rotary infeed and thus achieving a stable manufacturing process as fast as possible
and with low reject rate. The cutting forces are determined on the basis of the theoretical
uncut chip thickness, whereby the tool deflection can be calculated using these, provided that
the stiffness of the tool, machine tool and component holder is known. In addition, the tool
wear can be estimated using a suitable wear model. Experimentally determined cutting forces
during the shaping of a face-gear are used to validate the simulation model.

. Introduction

The most important processes for manufacturing of face gears are hobbing and shaping. A patent for a hob for producing face
ears was published by Miller [1] in 1942. A hob for a face-gear is a comparatively complex tool that cannot be used flexibly.
he hob for a cylindrical gear is based on a reference rack profile, which means that the helix angle and profile shift of the
orkpiece can be varied as required. In contrast, the hob for the production of face-gears is based on the shaper and is therefore
comparatively complex tool that cannot be used flexibly. This hob is practically only suitable for face-gears which are based on

he same shaper geometry. In addition, these tools are custom-made, which is why hobbing for the production of small quantities is
neconomical. The company Crown Gear B.V. (NL) has patents from 1992 [2] and 1994 [3] relating to the geometry of hob cutters
or the production of spur face-gears; another patent [4] from 1994 relates to a hob for producing helical face-gears. Wang et al. [5]
xamined the geometry generation of hob cutters for manufacturing of face gears and manufactured some gears and then measured
hem. Furthermore, Wang et al. [6] developed an assembly hob and examined it experimentally.

Gear shaping is not as effective as manufacturing using a hob, but the required tool is far less complex and therefore cheaper
o obtain. Although gear shaping is mentioned in many publications, detailed studies of this process in relation to manufacturing
f face-gears are rare. Shen and Tong [7] have dealt with the shaping of face gears and investigated this experimentally. The gear
haping of spur and ring gears has been researched much more intensely. Erkorkmaz et al. [8] developed a new model to predict
he uncut chip geometry and cutting forces in shaping. Katz et al. [9–11] intensified the research and expanded the model to take

∗ Corresponding author.
E-mail address: zschippang@inspire.ethz.ch (H.A. Zschippang).
vailable online 11 March 2022
094-114X/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.mechmachtheory.2022.104791
eceived 29 October 2021; Received in revised form 14 February 2022; Accepted 18 February 2022

http://www.elsevier.com/locate/mechmt
http://www.elsevier.com/locate/mechmt
mailto:zschippang@inspire.ethz.ch
https://doi.org/10.1016/j.mechmachtheory.2022.104791
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmachtheory.2022.104791&domain=pdf
https://doi.org/10.1016/j.mechmachtheory.2022.104791
http://creativecommons.org/licenses/by/4.0/


Mechanism and Machine Theory 172 (2022) 104791H.A. Zschippang et al.

d
s

into account tool deflection, elastic deformations and virtual gear metrology. Xu et al. [12] investigated the gear shaping of a gear
rack with a variable gear ratio. The focus was on the simulation of gear shaping and the calculation of the cutting forces.

In this manuscript, a method for the simulation of the gear shaping of face-gears is described. The resulting cutting forces, tool
eflection and tool wear are calculated. The experimentally determined cutting forces during shaping of a face-gear show that the
imulated forces agree well with the measured values.

Nomenclature

𝛼𝑠𝑐 Tip clearance angle of shaper cutter
�̄� Mean friction coefficient
�̄�𝑐ℎ𝑖𝑝 Mean temperature
𝛽 Helix angle
𝛽𝑎 Averaged friction angle
𝛽𝑛 Friction angle
𝛽𝑇𝑄 Taylor–Quinney coefficient
𝛥𝑥𝑑 , 𝛥𝑦𝑑 , 𝛥𝑧𝑑 Displacement due to tool deflection
𝜂𝑐 Chip flow angle
𝛾 Shaft angle
𝜙𝑠𝑛 Shear angle of the primary deformation zone
𝛾𝑛 Rake angle
𝛾𝑠𝑐 Tip rake angle of shaper cutter
𝜆𝑠 Inclination angle
𝜔2 Rotational speed of face-gear
𝜔𝑠𝑡 Rotational speed of cutting stroke
𝜙2 Angle of rotation of the face-gear
𝜙𝑐 Angle of rotation of the shaper cutter
𝛾1 Shear strain at the outflow of the primary shear band
𝜌𝑚 Density
𝜎𝑡 Normal stress along the rake face
𝜎𝑡0 Normal stress at the cutting edge
𝜏0 Shear stress at the entry of the primary shear band
𝜏𝑠 Shear stress in the primary deformation zone
𝑀2𝑐𝑑 (𝑡) Transformation matrix to transform the shaper cutter from its own coordinate system (system rotating

with the shaper cutter) to the face-gear coordinate system (system rotating with the face-gear) taking
tool deflection into account

𝑀2𝑐 (𝑡) Transformation matrix to transform the shaper cutter from its own coordinate system (system rotating
with the shaper cutter) to the face-gear coordinate system (system rotating with the face-gear)

𝐹 Total force vector
𝐹𝑐 , 𝐹𝑓 , 𝐹𝑝 Cutting, feed and passive force
𝑛∗𝑖 Mean normal direction
𝑟𝑐∕𝑐0 Position vector of cutting edge
𝑟𝑐2 Position vector of cutting edge in face-gear coordinate system 𝑆2
𝜉𝑑 Profile parameter
𝑎𝑟 Mean radial infeed
𝑎𝑎𝑐𝑐 Acceleration of radial infeed
𝑎𝑐𝑖𝑟𝑐 Circumferential infeed
𝑎𝑟𝑒𝑛𝑑 Radial infeed at end position of the shaper cutter
𝑎𝑟𝑠𝑡𝑎𝑟𝑡 Radial infeed at start position of the shaper cutter
𝑏 Chip width
𝑐 Specific heat capacity
𝐶1, 𝐶2 Wear characteristic constants for Usui formula
𝑑𝑟 Radial position of the shaper cutter
𝑑𝑟𝑒𝑛𝑑 Radial end position of the shaper cutter
𝑑𝑟𝑠𝑡𝑎𝑟𝑡 Radial starting position of the shaper cutter
2
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𝑑𝐿 Sliding distance
𝑑𝑡 Time increment
𝑑𝑊 Wear rate
𝐸 Axle offset
𝐹 𝑐𝑖 , 𝐹 𝑓𝑖 , 𝐹 𝑝𝑖 Cutting, feed and passive force vector
𝐹𝑠 Shear force
𝐹𝑐𝑒 , 𝐹𝑓𝑒 Edge force component of cutting and feed force
𝐹𝑐𝑠 , 𝐹𝑓𝑠 Shear component of cutting and feed force
𝑓𝑠𝑡 Cutting stroke frequency
ℎ Uncut chip thickness
𝐻2 Tooth height of the face-gear
ℎ𝑐 Measured chip thickness
ℎ𝑚𝑎𝑥 Maximum uncut chip thickness
𝑘 Thermal conductivity
𝑘𝑥, 𝑘𝑦 Stiffness
𝐾𝛾 Cutting force correction factor considering the rake angle
𝑘𝑐1,1, 𝑘𝑓1,1, 𝑘𝑝1,1 Specific cutting, feed and passive force
𝐾𝑐𝑒 , 𝐾𝑓𝑒 Specific cutting an feed force due to rubbing or ploughing at the tool cutting edge
𝐾𝑐𝑠 , 𝐾𝑓𝑠 Specific cutting and feed force due to shearing at the shear zone and friction at the rake face
𝐾𝑐 Cutting force correction factor in cutting direction
𝐾𝑓 Cutting force correction factor in feed direction
𝐾𝑠𝑝 Cutting force correction factor considering chip compression
𝐾𝑣𝑐 Cutting force correction factor considering the cutting speed
𝐾𝑤𝑒𝑎𝑟 Cutting force correction factor considering the tool wear
𝑙 Distance to the tool tip
𝑙∗2 Distance to the face-gear axis
𝑙𝑐 Position of the shaper cutter
𝑙𝑐𝑡𝑜𝑝 Upper stoke position of the shaper cutter
𝐿𝑐𝑟𝑎𝑛𝑘 Length of the driven crank
𝑙𝑐𝑡 Chip-tool contact length
𝑙𝑠𝑡 Stroke length of the shaper cutter
𝑙𝑡𝑜𝑝 Top overrun length of the shaper cutter
𝑚𝑐 , 𝑚𝑓 , 𝑚𝑝 Kienzle exponent for cutting, feed and passive force
𝑚2𝑐 Gear ratio between the shaper cutter and the face-gear
𝑁2 Number of teeth of the face-gear
𝑁𝑐 Number of teeth of the shaper cutter
𝑝𝑐 Pitch radius of shaper cutter
𝑟𝑐 Pitch radius of the shaper cutter
𝑟𝑐𝑜𝑚𝑝 Chip compression ratio
𝑡 Time
𝑡𝑟 Time required for the radial movement from the start to the end position
𝑇𝑤 Absolute temperature of the work-piece
𝑇𝑐ℎ𝑖𝑝1 Temperature at the outflow of the primary shear band
𝑇𝑐ℎ𝑖𝑝 Temperature of the chip surface
𝑣 Cutting speed
𝑣𝑐 Chip velocity
𝑣𝑟𝑒𝑛𝑑 Speed at which the shaper cutter is moved radially at end position
𝑣𝑟𝑠𝑡𝑎𝑟𝑡 Speed at which the shaper cutter is moved radially at start position

2. Process kinematics

The kinematics of gear shaping is the superposition of three different movement components: the double stroke movement of
he tool, the rotary feed movements of the tool and workpiece, which are proportional to the transmission ratio, and the radial
3
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Fig. 1. Gear shaping of a face-gear: Geometry and kinematics.

Fig. 2. Schematic view of a slider crank mechanism.

feed movement. During the cutting stroke, the chip removal takes place from the outside into the workpiece. The return stroke is
carried out with a tool offset to prevent the tool from rubbing against the workpiece. This process is shown schematically in Fig. 1.
Theoretically, all variants of face gears can be produced by means of gear shaping, i.e. with any shaft angle, axle offset and helix
angle. Limitations come more from the structure and the number of axes of the machine tool as well as the maximum possible stroke
length.

The stroke movement of the shaper cutter can be described using the slider crank equation

𝑙𝑐 (𝑡) = 𝑙𝑐𝑡𝑜𝑝 −
𝑙𝑠𝑡
2
(1 − cos(𝜔𝑠𝑡𝑡)) +

√

𝐿2
𝑐𝑟𝑎𝑛𝑘 −

𝑙2𝑠𝑡
4

sin2(𝜔𝑠𝑡𝑡) − 𝐿𝑐𝑟𝑎𝑛𝑘 (1)

where 𝑙𝑐 is the position of the shaper cutter, 𝑙𝑐𝑡𝑜𝑝 is the upper stoke position of the shaper cutter, 𝑙𝑠𝑡 is the stroke length (distance of
the upper to the lower stroke position), 𝐿𝑐𝑟𝑎𝑛𝑘 is the length of the driven crank and 𝜔𝑠𝑡 is the cutting stroke angular velocity. The
slider crank mechanism is shown schematically in Fig. 2.

If the length of the crank is much larger than the stroke length, Eq. (1) simplifies to

𝑙𝑐 (𝑡) = 𝑙𝑐𝑡𝑜𝑝 −
𝑙𝑠𝑡
2
(1 − cos(𝜔𝑠𝑡𝑡)) (2)

An investigation by Katz [11] shows that the simplification is permissible for modern gear shaping machines and that the deviations
from the exact equation are minimal. The cutting stroke angular velocity 𝜔𝑠𝑡 can be calculated by

𝜔𝑠𝑡 = 2𝜋 𝑓𝑠𝑡 (3)

where 𝑓𝑠𝑡 is the cutting stroke frequency.
The rotary feed is defined by a circumferential infeed 𝑎𝑐𝑖𝑟𝑐 on the pitch circle of the cutter per double stroke. Regarding the

angular velocity of the face-gear follows

𝜔2 = 𝑎𝑐𝑖𝑟𝑐
𝑓𝑠𝑡 𝑚2𝑐

𝑟𝑐
(4)

where 𝑟𝑐 is the pitch radius of the shaper cutter and 𝑚2𝑐 is the gear ratio between the shaper cutter and the face-gear

𝑚2𝑐 =
𝑁𝑐 (5)
4

𝑁2
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𝑁𝑐 is the number of teeth of the shaper cutter and 𝑁2 is the number of teeth of the face-gear. For the angle of rotation of the
face-gear over time it thus follows

𝜙2(𝑡) = 𝜔2 𝑡 (6)

The angle of rotation of the shaper cutter 𝜙𝑐 is coupled to the angle of rotation of the face-gear 𝜙2 via the transmission ratio.
However, if a helical face-gear is to be cut, the shaper cutter must be rotated synchronously with the double stroke movement
according to the helix angle. Thus, for the angle of rotation 𝜙𝑐 of the shaper cutter follows

𝜙𝑐 (𝑡) =
𝜔2 𝑡
𝑚2𝑐

+ 𝑙𝑐 (𝑡) 𝑝 (7)

where the pitch 𝑝 is linked to the helix angle 𝛽 and is determined by

𝑝 =
tan 𝛽
𝑟𝑐

(8)

The radial feed takes place along the tooth height of the face-gear, starting from the tooth tip to the tooth root. The radial
eed thus refers to the shaper cutter. However, the tooth root is only ideal as the end point. Usually, after the first gear has been
anufactured, the flanks are measured and the maximum immersion depth is adjusted according to the shape deviations and the

esulting tooth thickness. There is also the option of implementing a small offset between the shaper cutter and the face-gear if
orrections to the symmetry of the teeth are necessary. Such fine adjustments are especially of great advantage after regrinding the
haper cutter. Assuming that the radial infeed 𝑑𝑟 is zero at the position where the tooth tip of the face-gear touches the addendum
iameter of the shaper cutter, 𝑑𝑟𝑠𝑡𝑎𝑟𝑡 is the starting position of the shaper cutter and 𝑑𝑟𝑒𝑛𝑑 is the end position of the radial infeed. Thus
𝑟𝑠𝑡𝑎𝑟𝑡 must be less than or equal to zero. The radial infeed can be varied depending on the gear shaping machine and its control. It
s common to reduce the radial infeed over the submerged depth in order to counteract an increase in the machining forces. In the
vent that the acceleration of the radial infeed is to be constant, the time-dependent radial position 𝑑𝑟(𝑡) of the shaper cutter can
e calculated simply based on two given infeeds 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 and 𝑎𝑟𝑒𝑛𝑑 at the radial start and end position. The speeds at which the shaper
utter is moved radially at the start and end position are thus

𝑣𝑟𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 𝑓𝑠𝑡 (9)

nd

𝑣𝑟𝑒𝑛𝑑 = 𝑎𝑟𝑒𝑛𝑑 𝑓𝑠𝑡 (10)

From the equation of motion of an uniformly accelerated movement, one obtains the time 𝑡𝑟 which is required for the radial
ovement from the start to the end position and the acceleration 𝑎𝑎𝑐𝑐

𝑡𝑟 =
2(𝑑𝑟𝑒𝑛𝑑 − 𝑑𝑟𝑠𝑡𝑎𝑟𝑡 )
𝑣𝑟𝑠𝑡𝑎𝑟𝑡 + 𝑣𝑟𝑒𝑛𝑑

(11)

𝑎𝑎𝑐𝑐 =
𝑣𝑟𝑒𝑛𝑑 − 𝑣𝑟𝑠𝑡𝑎𝑟𝑡

𝑡𝑟
(12)

The mean radial infeed 𝑎𝑟 is therefore

𝑎𝑟 =
𝑎𝑟𝑠𝑡𝑎𝑟𝑡 + 𝑎𝑟𝑒𝑛𝑑

2
(13)

For the time-dependent radial position 𝑑𝑟 of the shaper cutter it follows

𝑑𝑟(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑎𝑐𝑐
2

𝑡2 + 𝑣𝑟𝑠𝑡𝑎𝑟𝑡 𝑡 + 𝑑𝑟𝑠𝑡𝑎𝑟𝑡 , 𝑡 < 𝑡𝑟
𝑑𝑟𝑒𝑛𝑑 , 𝑡 ≥ 𝑡𝑟

(14)

3. Calculation of undeformed chip geometry

In order to calculate the material removal and the theoretical uncut chip thickness along the tool cutting edge, the tool
engagement with the workpiece is calculated for each cutting stroke. In this way, the face-gear tooth geometry is calculated stroke
by stroke. The differences between the individual geometries between two cutting strokes thus correspond to the material removal
per cutting stroke, from which in turn the undeformed chip geometry can be derived. For this purpose, the tool cutting edge is
first discretized. It does not matter whether the end face of the shaper cutter is conical or, as in the case of shaper cutters for the
production of helical gears, each individual tooth is set at a helix angle. The individual points 𝑟𝑐0 should simply correspond to the
exact contour of the tool. To simulate gear shaping, the tool is first shifted in its own tool coordinate system according to the stroke
position. The following applies to every single point on the tool cutting edge

𝑟𝑐 (𝑡) = 𝑟𝑐0 +
⎡

⎢

⎢

0
0

⎤

⎥

⎥

(15)
5

⎣𝑙𝑐 (𝑡)⎦
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Fig. 3. Left: Discretization of the too cutting edge; right: Shifting the tool according to the stroke position.

The discretization of the cutting edge and the shift of the tool according to the stroke position are shown schematically in Fig. 3.
In the next step, the tool geometry and also kinematics are transformed into the coordinate system of the face-gear, taking into

account the individual infeeds. The corresponding transformation matrix 𝑀2𝑐 also takes into account the time-dependent position
of the shaper cutter. Here, 𝛾 is the shaft angle, 𝐸 is the axle offset and 𝐻2 is the tooth height of the face-gear. The transformation
matrix is given by

𝑀2𝑐 (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos𝜙𝑐 cos𝜙2 − sin𝜙𝑐 cos𝜙2 − sin𝜙2 sin 𝛾 −𝐸 cos𝜙2
+ sin𝜙𝑐 sin𝜙2 cos 𝛾 +cos𝜙𝑐 sin𝜙2 cos 𝛾

−cos𝜙𝑐 sin𝜙2 sin𝜙𝑐 sin𝜙2 −cos𝜙2 sin 𝛾 𝐸 sin𝜙2
+ sin𝜙𝑐 cos𝜙2 cos 𝛾 +cos𝜙𝑐 cos𝜙2 cos 𝛾

sin𝜙𝑐 sin 𝛾 cos𝜙𝑐 sin 𝛾 cos 𝛾
𝐻2 − 𝑑𝑟(𝑡)

sin 𝛾
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

with
𝜙𝑐 = 𝜙𝑐 (𝑡)

𝜙2 = 𝜙2(𝑡)
(17)

For a single point 𝑟𝑐 on the cutting edge of the tool, the corresponding point 𝑟𝑐2 in the face-gear coordinate system 𝑆2 is given
by

𝑟𝑐2(𝑡) = 𝑀2𝑐 (𝑡)𝑟∗𝑐 (𝑡)

with 𝑟∗𝑐 (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟𝑐𝑥 (𝑡)
𝑟𝑐𝑦 (𝑡)
𝑟𝑐𝑧 (𝑡)
1

⎤

⎥

⎥

⎥

⎥

⎦

(18)

In order to keep the gear shaping simulation as efficient as possible, to keep the computing time to a minimum, the face-gear
is discretized across the tooth flank length. For a shaft angle of 𝛾 = 90◦, there are therefore cutting lines of the tooth geometries
on cylinder surfaces, for a shaft angle of 𝛾 ≠ 90◦ there are therefore cutting lines on individual cones. The unmachined face-gear
thus consists at the beginning of a number of points building circular lines in the individual sections, which represent the tooth tip.
In the following, the individual sections are cut with the contour of the shaper cutter for a cutting stroke. To calculate the correct
intersection points, the time 𝑡 must be determined iteratively for each individual point 𝑟𝑐2(𝑡) on the cutting edge until it lies on the
respective cylinder or cone. The equation to be fulfilled is thus

𝑙∗2 =

⎧

⎪

⎨

⎪

⎩

√

𝑟𝑐2𝑥 (𝑡)
2 + 𝑟𝑐2𝑦 (𝑡)

2, 𝛾 = 90◦

cos 𝛾
(

𝑟𝑐2𝑧 (𝑡) + tan 𝛾
√

𝑟𝑐2𝑥 (𝑡)
2 + 𝑟𝑐2𝑦 (𝑡)

2
)

, 𝛾 ≠ 90◦
(19)

where 𝑙∗2 is the given distance to the face-gear axis for a section. The points of intersection between the tool and the resulting
face-gear can now be determined in the coordinate system of the cylinders or cones. The geometries of the face-gear and tool are
approximated for this in a simplified manner by connecting the individual points using straight lines. The contour of the face-gear
is replaced with the contour of the shaper cutter between the two points of intersection between the tool and the face-gear. The
respective difference thus corresponds to the material removal, i.e. the undeformed chip.

The uncut chip thickness for a point on the tooth cutting edge 𝑟𝑐2(𝑡) is determined in the direction of its normal vector. If
the theoretical chip removal is now calculated from cutting stroke to cutting stroke, the face-gear tooth geometry develops with
6

increasing time 𝑡. Fig. 4 shows the simulation of the chip removal for the gear shaping of a face-gear for a selected cutting stroke.
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Fig. 4. Simulation of the chip removal for the gear shaping of a face-gear for a selected cutting stroke. The theoretical material removal is determined for a
given number of sections across the tooth width.

4. Cutting forces

The Kienzle equation [13] is ideally suited for estimating the cutting forces in orthogonal cutting. The general form of the Kienzle
equation is as follows

𝐹𝑐 = 𝑘𝑐1,1 ℎ
1−𝑚𝑐 𝑏𝐾𝑐

𝐹𝑓 = 𝑘𝑓1,1 ℎ
1−𝑚𝑓 𝑏𝐾𝑓

𝐹𝑝 = 𝑘𝑝1,1 ℎ
1−𝑚𝑝 𝑏𝐾𝑝

(20)

where 𝐹𝑐 is the cutting force in cutting direction, 𝐹𝑓 in the feed direction and 𝐹𝑝 is the passive force component orthogonal to both
other forces. The corresponding specific forces 𝑘𝑐1,1, 𝑘𝑓1,1 and 𝑘𝑝1,1 relate to a chip cross-section of a chip width of 𝑏 = 1 mm and an
uncut chip thickness of ℎ = 1 mm. The exponents 𝑚𝑐 , 𝑚𝑓 and 𝑚𝑝 describe the slope of the curves. The Kienzle parameters are usually
determined experimentally by lathing attempts in orthogonal cutting. 𝐾𝑐 , 𝐾𝑓 and 𝐾𝑝 are corresponding correction factors to take
into account parameters that differ from the experiments. The correction factors have been steadily expanded over the years to take
into account, for example, the influence of tool wear, the tool material, the cutting speed, the rake angle and others. However, an
application of this equation is made more difficult if it is no longer an orthogonal cut. Either the parameters of the Kienzle equation
were determined with a corresponding angle of inclination, or an extended model is required to estimate the cutting forces. Yazar
et al. [14] refer, for example, to experimental investigations by König [15] and their extensions of the Kienzle equation in order to
take into account the influence of the tool inclination angle. However, the availability of the data for many materials is limited.

Another possibility is to use a model proposed by Budak et al. [16] or Altintas [17] to transform orthogonal to oblique cutting.
Kaymakci et al. [18] builds on this, for example, a unified cutting force model for turning, boring, drilling and milling operations.
Erkorkmaz et al. [8] and Katz et al. [9–11] follow this strategy to estimate the cutting forces for gear shaping.

So the cutting forces can be determined using the Kienzle equation for the orthogonal cut. The passive force is zero for the
orthogonal cut, which means that only the cutting force 𝐹𝑐 and feed force 𝐹𝑓 are calculated. All corrections due to the rake angle,
cutting speed, tool wear, etc. are taken into account. This is followed by the transformation of the cutting forces for the orthogonal
cut to oblique cut depending on the local inclination of the tool cutting edge. The calculation steps required for this are based on the
publications by Budak et al. [16] and Altintas [17] and are briefly explained below. The relevant angles and the forces for oblique
cutting are shown in Fig. 5

The cutting force 𝐹𝑐 and the feed force 𝐹𝑓 can each be divided into a shear component (𝐹𝑐𝑠 , 𝐹𝑓𝑠 ) and an edge force component
(𝐹𝑐𝑒 , 𝐹𝑓𝑒 )

𝐹𝑐 = 𝐹𝑐𝑠 + 𝐹𝑐𝑒 = 𝐾𝑐𝑠 ℎ 𝑏 +𝐾𝑐𝑒 𝑏

𝐹𝑓 = 𝐹𝑓𝑠 + 𝐹𝑓𝑒 = 𝐾𝑓𝑠 ℎ 𝑏 +𝐾𝑐𝑒 𝑏

𝐹𝑝 = 0

(21)

where 𝐾𝑐𝑠 and 𝐾𝑓𝑠 are the specific cutting forces due to shearing at the shear zone and friction at the rake face in relation to the
chip cross-sectional area; 𝐾𝑐𝑒 and 𝐾𝑓𝑒 are the edge forces per unit width of the cutting edge due to rubbing or ploughing [17]. The
edge forces can be estimated approximately by extrapolating the measured forces for an uncut chip thickness to ℎ = 0. The Kienzle
equation itself is unsuitable for this, since the forces are also zero with an uncut chip thickness of ℎ = 0. Since the tip rake angle of
the shaper cutters is rather small, the differences in the forces from the orthogonal cut, converted to oblique cut, are rather small,
7
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Fig. 5. Forces and angles for oblique cutting.
Source: Adapted from Altintas [17].

so that, for the sake of simplicity, the cutting force 𝐹𝑐 and the feed force 𝐹𝑓 are equated with the respective shear component. The
shear force 𝐹𝑠 can be determined from the shear force components in the cutting and feed directions

𝐹𝑠 = 𝐹𝑐𝑠 cos𝜙𝑠𝑛 − 𝐹𝑓𝑠 sin𝜙𝑠𝑛 (22)

where 𝜙𝑠𝑛 is the shear angle of the primary deformation zone. For the shear stress 𝜏𝑠 in the primary deformation zone follows

𝜏𝑠 =
𝐹𝑠 sin𝜙𝑠𝑛

𝑏ℎ
(23)

The shear angle 𝜙𝑠𝑛 can be determined experimentally by measuring the chip thickness ℎ𝑐 and the uncut chip thickness ℎ. The
following applies:

tan𝜙𝑠𝑛 =
𝑟𝑐𝑜𝑚𝑝 cos 𝛾𝑛

1 − 𝑟𝑐𝑜𝑚𝑝 cos 𝛾𝑛
, with 𝑟𝑐𝑜𝑚𝑝 =

ℎ
ℎ𝑐

(24)

where 𝑟𝑐𝑜𝑚𝑝 is the chip compression ratio and 𝛾𝑛 is the rake angle. However, it is time-consuming to run tests first to measure the
chips and data on the shear angle are often missing in the literature for some materials. The shear angle can therefore be estimated
using the formula by Lee and Shaffer [19]

𝜙𝑠𝑛 =
𝜋
4
+ 𝛾𝑛 − 𝛽𝑎 (25)

It is a fairly simple but workable formula. The solution of the shear angle 𝜙𝑠𝑛 depends only on the rake angle 𝛾𝑛 and the averaged
friction angle 𝛽𝑎. Kovrizhnykh [20] compared the results with experiments and came up with good matches. However, this equation
can be expanded to improve the results [20]. In this case, the original Lee and Shaffer formula is used. The averaged friction angle
𝛽𝑎 for orthogonal cutting is calculated by

𝛽𝑎 = 𝛾𝑛 + arctan
𝐹𝑓𝑠
𝐹𝑐𝑠

(26)

The edge forces in relation to the chip width 𝐾𝑐𝑒 and 𝐾𝑓𝑒 as calculated for the orthogonal cut, can be taken over to oblique cutting.
The situation with the cutting forces due to shear in the shear zone and friction on the rake face in relation to the cross-sectional
area of the chip is different. According to Altintas [17] and Armarego [21] the cutting forces for oblique cutting can be calculated
8
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Fig. 6. Schematic representation of the discretization of the cutting edge and the necessary geometric parameters to determine the individual cutting forces.
The distances between the points along the cutting edge are much smaller in practical use.

by

𝐹𝑐 =
𝜏𝑠𝑏ℎ
sin𝜙𝑠𝑛

⋅
cos(𝛽𝑛 − 𝛾𝑛) + tan 𝜆𝑠 tan 𝜂𝑐 sin 𝛽𝑛

√

cos2(𝜙𝑠𝑛 + 𝛽𝑛 − 𝛾𝑛) + tan2 𝜂𝑐 sin2 𝛽𝑛
+𝐾𝑐𝑒 cos 𝜆𝑠 𝑏

𝐹𝑓 =
𝜏𝑠𝑏ℎ

sin𝜙𝑠𝑛 cos 𝜆𝑠
⋅

sin(𝛽𝑛 − 𝛾𝑛)
√

cos2(𝜙𝑠𝑛 + 𝛽𝑛 − 𝛾𝑛) + tan2 𝜂𝑐 sin2 𝛽𝑛
+𝐾𝑓𝑒 𝑏

𝐹𝑝 =
𝜏𝑠𝑏ℎ
sin𝜙𝑠𝑛

⋅
cos(𝛽𝑛 − 𝛾𝑛) tan 𝜆𝑠 − tan 𝜂𝑐 sin 𝛽𝑛

√

cos2(𝜙𝑠𝑛 + 𝛽𝑛 − 𝛾𝑛) + tan2 𝜂𝑐 sin2 𝛽𝑛
+𝐾𝑐𝑒 sin 𝜆𝑠 𝑏

(27)

where 𝜆𝑠 is the inclination angle and 𝜂𝑐 is the chip flow angle. The friction angle 𝛽𝑛 is calculated by

tan 𝛽𝑛 = tan 𝛽𝑎 cos 𝜂𝑐 (28)

The shear stress 𝜏𝑠, the normal shear angle 𝜙𝑠𝑛 and the average friction angle 𝛽𝑎 are determined for the orthogonal cut and are
assumed to be identical for oblique cutting. As an approximation, it can be assumed that the angle of inclination 𝜆𝑠 and the chip
flow angle 𝜂𝑐 are identical, which may be approximately correct at least for small angles of inclination. For more precise calculations,
the formula by Armarego [21] can be used to estimate the chip flow angle 𝜂𝑐 . This formula describes the relationship between the
individual angles for classical oblique cutting:

tan(𝛽𝑛 + 𝜙𝑠𝑛) =
tan 𝜆𝑠 cos 𝛾𝑛

tan 𝜂𝑐 − sin 𝛾𝑛 tan 𝜆𝑠
(29)

To calculate the cutting forces when shaping face-gears, the cutting edge is discretized, as shown in Fig. 3. The cutting edge is
thus divided into 𝑁 edge elements based on the individual points on the cutting edge 𝑟𝑐2𝑖 , and the forces are calculated for each
element. It is assumed that the various elements do not affect each other, since the changes in uncut chip thickness from element
to element are small. It is assumed that slightly larger gradients in uncut chip thickness across the cutting edge, which occur in a
tapered manner, are negligible when determining the total force acting on the tool. The normal rake angle 𝛾𝑛𝑖 , the angle of inclination
𝜆𝑖, the uncut chip thickness ℎ𝑖 and the current cutting speed 𝑣𝑐𝑖 are determined for each individual point 𝑟𝑐2𝑖 (𝑡). The uncut chip
thickness ℎ𝑖 is determined in each case based on the previously calculated uncut chip thicknesses in the face-gear sections. For this
purpose, the distance to the face-gear axis 𝑙2 is determined for the point 𝑟𝑐2𝑖 (𝑡) according to Eq. (19). The uncut chip thickness ℎ𝑖
is calculated using the corresponding uncut chip thicknesses in the adjacent face-gear sections defined by 𝑙∗2 by linear interpolation
over the distance. For the calculation of the individual cutting forces, two adjacent points 𝑟𝑐2𝑖 and 𝑟𝑐2𝑖+1 on the cutting edge are taken
into account. Thus, all parameters are averaged over the adjacent points. The chip width 𝑏𝑖 is the distance between two adjacent
points. The cutting force 𝐹 𝑐𝑖 points into the cutting direction, the feed force 𝐹 𝑓𝑖 points into the mean normal direction 𝑛∗𝑖 and the
passive force 𝐹 𝑝𝑖 is orthogonal to both other forces. To obtain the total forces acting on the tool, the individual cutting forces are
summed up over the entire tool cutting edge. The discretization of the cutting edge and the necessary geometric parameters to
determine the individual cutting forces are shown in Fig. 6.

The total force that acts on the tool is thus

𝐹 =
𝑁−1
∑

𝐹 𝑐𝑖 + 𝐹 𝑓𝑖 + 𝐹 𝑝𝑖 (30)
9
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Fig. 7. Substitute model to take into account the stiffnesses determined orthogonal to the stroke direction to determine the tool deflection.

5. Tool deflection

In order to take the tool deflection into account, the rigidity of the shaping machine tool, the shaper cutter and the workpiece
clamping must be known. It is often difficult to calculate these stiffnesses, since the internal structure and dimensions of the machine
tool are usually not known in detail. The experimental determination of the total stiffness is therefore much simpler. Measurement of
the stiffness using piezo sensors is ideal for this purpose. Such a sensor is mounted on the workpiece clamp in place of the workpiece
in accordance with the direction of the stiffness to be measured. Then, instead of a shaper cutter, a cylindrical tool with similar
dimensions is moved to the piezo sensor using the machine axis in small steps in the measuring direction and the resulting force
curve is recorded at the same time. The resulting force divided by the infeed thus corresponds to the stiffness of the overall system
in the measured direction, with all relevant components being automatically included in the result except for the stiffness of the
workpiece itself.

The relevant directions with regard to the tool deflection are those orthogonal to the stroke direction. Since the stroke direction
in the tool coordinate system is the 𝑧-direction, the stiffnesses must be determined in the 𝑥- and 𝑦-directions. Since the tool deflection
is generally quite small compared to the tool dimensions, rotational displacements as a result of tool bending are neglected and, for
the sake of simplicity, it is assumed that the tool is only displaced translationally as a result of the cutting forces. The substitute
model for the shaper cutter thus consists of springs in the 𝑥- and 𝑦-directions, as shown in Fig. 7.

The displacement vector of the shaper cutter as a result of tool deflection can thus be calculated by

⎡

⎢

⎢

⎣

𝛥𝑥𝑑
𝛥𝑦𝑑
𝛥𝑧𝑑

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑘−1𝑥 0 0
0 𝑘−1𝑦 0
0 0 0

⎤

⎥

⎥

⎦

𝐹 (31)

The transformation matrix 𝑀2𝑐𝑑 (𝑡) to transform the shaper cutter from its own coordinate system 𝑆𝑐 into the face-gear coordinate
system 𝑆2 taking the tool deflection into account is given by

𝑀2𝑐𝑑 (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos𝜙𝑐 cos𝜙2 − sin𝜙𝑐 cos𝜙2 − sin𝜙2 sin 𝛾 −(𝐸 + 𝛥𝑥𝑑 ) cos𝜙2
+ sin𝜙𝑐 sin𝜙2 cos 𝛾 +cos𝜙𝑐 sin𝜙2 cos 𝛾

−cos𝜙𝑐 sin𝜙2 sin𝜙𝑐 sin𝜙2 −cos𝜙2 sin 𝛾 (𝐸 + 𝛥𝑥𝑑 ) sin𝜙2
+ sin𝜙𝑐 cos𝜙2 cos 𝛾 +cos𝜙𝑐 cos𝜙2 cos 𝛾

sin𝜙𝑐 sin 𝛾 cos𝜙𝑐 sin 𝛾 cos 𝛾
𝐻2 − 𝑑𝑟(𝑡) + 𝛥𝑦𝑑

sin 𝛾
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

with
𝜙𝑐 = 𝜙𝑐 (𝑡)

𝜙2 = 𝜙2(𝑡)
(33)

It is thus obvious that the material removal per cutting stroke is also dependent on the tool deflection and therefore the material
removal, the cutting forces and the tool deflection must be determined iteratively. For a cutting stroke, the uncut chip thicknesses
without deflection are calculated first. Then the cutting forces are calculated and thus the tool deflection is determined. This results
in new uncut chip thicknesses, cutting forces and tool deflections in the following iteration. The number of iterations required
depends on how large the calculated tool deflections of two subsequent iterations may deviate from each other (abort criterion). In
practice, the stiffness of the shaping machine tool is quite high, which means that the achieved tool deflection is very small compared
10
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to the uncut chip thickness, which means that the deflection can be neglected when calculating the cutting forces. However, for
shaping machine tools or clamping systems with low stiffness, tool deflection has a non-negligible influence on the cutting forces.

6. Tool wear

According to Usui et al. [22], the tool wear can be estimated by

𝑑𝑊
𝜎𝑡 𝑑𝐿

= 𝐶1 exp
(

−
𝐶2

𝑇𝑐ℎ𝑖𝑝[K]

)

(34)

here 𝑑𝑊 is the material removal normal to the surface due to wear, 𝜎𝑡 is the normal stress, 𝑑𝐿 is the sliding distance, 𝑇𝑐ℎ𝑖𝑝 is the
emperature of the chip surface in Kelvin and 𝐶1 and 𝐶2 are wear characteristic constants that depend on the cutting tool material

and the material to be cut. For machining of 0.45C carbon steel with tungsten carbide P20 under classic cutting conditions and
usual cutting speeds, Usui et al. [22] found the corresponding equation to estimate crater wear

𝑑𝑊
𝜎𝑡 𝑣𝑐 𝑑𝑡

= 0.01198 exp
(

− 21′950
𝑇𝑐ℎ𝑖𝑝[K]

)

(35)

where 𝑣𝑐 is the chip velocity and 𝑑𝑡 is a time increment. The equation to estimate flank wear is

𝑑𝑊
𝜎𝑡 𝑣 𝑑𝑡

= 7.8 ⋅ 10−9 exp
(

− 5301.6
𝑇𝑐ℎ𝑖𝑝[K]

)

(36)

where 𝑣 is the cutting speed. In order to estimate the temperature and the normal stress on the rake face, the model according to
Moufki et al. [23] is applied. This model applies to the orthogonal cut, but is also used here for the oblique cut due to the small
tool inclination angles. Moufki et al. [23] have chosen a distribution of the normal stress 𝜎𝑡 along the rake face as

𝜎𝑡(𝑙) = 𝜎𝑡0

(

1 − 𝑙
𝑙𝑐𝑡

)𝜉𝑑
(37)

where 𝜎𝑡0 is the normal stress at the cutting edge acting orthogonally on the rake face, 𝑙𝑐𝑡 is the chip-tool contact length, 𝑙 is the
distance to the cutting edge and 𝜉𝑑 is a profile parameter. Moufki et al. [23] have shown that a profile parameter of 𝜉𝑑 = 2 represents
the pressure profile well. According to Moufki et al. [23] the normal stress at the tool tip 𝜎𝑡0 can be calculated by

𝜎𝑡0 = 𝐹𝑠
cos 𝛽𝑛

cos(𝜙𝑠𝑛 + 𝛽𝑛 − 𝛾𝑛)
⋅
𝜉𝑑 + 1
𝑏 𝑙𝑐𝑡

(38)

here 𝐹𝑠 is the shear force, 𝛽𝑛 is the friction angle, 𝜙𝑠𝑛 is the shear angle and 𝛾𝑛 is the rake angle. The equation for the tool-chip
ontact length 𝑙𝑐𝑡 is given by

𝑙𝑐𝑡 = ℎ
𝜉𝑑 + 2

2
⋅
sin(𝜙𝑠𝑛 + 𝛽𝑛 − 𝛾𝑛)
sin𝜙𝑠𝑛 cos 𝛽𝑛

(39)

where ℎ is the uncut chip thickness. According to Moufki et al. [23] the interface temperature along the rake face is calculated by

𝑇𝑐ℎ𝑖𝑝(𝑙) =
�̄� 𝜎𝑡0

√

𝑣𝑐
√

𝜋 𝑘 𝜌 𝑐

(

𝑙−𝜉𝑑𝑐𝑡

𝜉𝑑
∑

𝑖=0

2
2𝑖 + 1

𝐶 (𝑖)
𝜉𝑑
(𝑙𝑐𝑡 − 𝑙)𝜉𝑑−𝑖 𝑙

2𝑖 + 1
2

)

+ 𝑇𝑐ℎ𝑖𝑝1

with 𝐶 (𝑖)
𝜉𝑑

=
𝜉𝑑 !

(𝜉𝑑 − 1)! 𝑖!

(40)

where �̄� is the mean friction coefficient, 𝑘 is the thermal conductivity, 𝜌𝑚 is the density and 𝑐 is the specific heat capacity of the
material to be cut. 𝑇𝑐ℎ𝑖𝑝1 is the temperature at the outflow of the primary shear band and according to Moufki et al. [23] it is
determined by

𝑇𝑐ℎ𝑖𝑝1 = 𝑇𝑤 +
𝛽
𝜌 𝑐

(

𝜌(𝑣 sin𝜙𝑠𝑛)2
𝛾21
2

+ 𝜏0 𝛾1

)

(41)

here 𝑇𝑤 is the absolute temperature of the work-piece, 𝛽𝑇𝑄 is the Taylor–Quinney coefficient, 𝛾1 is the shear strain at the outflow
f the primary shear band and 𝜏0 is the shear stress at the entry of the band. The shear strain at the outflow of the primary shear
and 𝛾1 is calculated by

𝛾1 = tan(𝜙𝑠𝑛 − 𝛾𝑛) +
1

tan𝜙𝑠𝑛
(42)

In order to estimate the shear stress 𝜏0 at the entry of the band a simplification is made compared to the approach by Moufki
et al. [23]: The shear stress 𝜏0 is determined by

𝜏0 = 𝜏1 − 𝜌(𝑣 sin𝜙𝑠𝑛)2𝛾1 (43)

with

𝜏 =
𝐹𝑠 sin𝜙𝑠𝑛 (44)
11
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Fig. 8. Gear shaping measurement setup. Left: Setup before experiment; Right: Setup after experiment.

The mean friction coefficient �̄� depends on the temperature as well. For this, Moufki et al. [23] use the dependency of the mean
friction coefficient �̄� on a mean temperature �̄�𝑐ℎ𝑖𝑝. They found following empirical equations for steel on steel friction

�̄� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 3.44 ⋅ 10−4 �̄�𝑐ℎ𝑖𝑝, 25 ◦C ≤ �̄�𝑐ℎ𝑖𝑝 ≤ 955 ◦C

0.68
(

1 −
�̄�𝑐ℎ𝑖𝑝 − 𝑇 ∗

𝑇𝑚 − 𝑇 ∗

)𝑞
, 955 ◦C ≤ �̄�𝑐ℎ𝑖𝑝 ≤ 1500 ◦C

with 𝑇 ∗ = 955 ◦C, 𝑇𝑚 = 1500 ◦C, 𝑞 = 1.7

(45)

The mean temperature �̄�𝑐ℎ𝑖𝑝 is calculated by

�̄�𝑐ℎ𝑖𝑝 =
�̄� 𝜎𝑡0

√

𝑣𝑐 𝑙𝑐𝑡
√

𝜋 𝑘 𝜌 𝑐

𝜉𝑑
∑

𝑖=0

2
2𝑖 + 1

𝐶 (𝑖)
𝜉𝑑

(𝜉𝑑−1
∑

𝑗=0
(−1)𝑗𝐶 (𝑗)

𝜉𝑑−1
2

2(𝑖 + 𝑗) + 3

)

+ 𝑇𝑐ℎ𝑖𝑝1 (46)

It is therefore obvious that the coefficient of friction and the temperature are interdependent. The two equations are solved
numerically. The following equation can be used as a starting value for the mean coefficient of friction

�̄� = tan 𝛽𝑛 (47)

The crater wear can be estimated with the normal stress and temperature curves determined in this way. For the flank wear, the
normal stress and temperature at the tool tip are used in a simplified manner. Unfortunately, it turns out that unrealistic values are
determined for small chip thicknesses. On the one hand, the Kienzle equation is only correct to a limited extent for very small chip
thicknesses, unless tests were carried out directly with small chip thicknesses. On the other hand, the temperatures are significantly
overestimated. However, it has been shown that plausible values are calculated from an uncut chip thickness of approximately
ℎ = 25 μ m. For this reason, uncut chip thicknesses smaller than ℎ = 25 μ m are not taken into account when calculating the wear.
It is clear that an exact prediction with regard to the wear is not possible, however, a qualitative assessment of various machining
parameters with regard to the wear should be feasible.

7. Experimental validation

In order to validate the gear shaping simulation, the cutting forces for an example face-gear made of 20MnCr5 (1.7147) were
measured and compared with the simulated forces. The Kienzle parameters were taken from the table book of Apprich et al. [24].
The machining took place on a Lorenz gear shaping machine tool, which was equipped with an additional rotary table as 𝐴-axis for
the production of face-gears. Due to the limited installation space, the outer diameter of the face-gear is the maximum possible value
of 𝑑𝑎2 = 120 mm, with the shaper cutter having a significantly higher number of teeth than the face-gear. This made it possible to
install a dynamometer between the rotary table and the workpiece without the device colliding with the spindle. The dynamometer
used is the 9257-A from KIAG Swiss. Fig. 8 shows the measurement setup.

The shaper cutter is made of high speed steel and has a tip rake angle of 𝛾𝑠𝑐 = 5◦ ( Table 1). Since the rake face of the shaper
cutter is conical, the effective rake angle changes along the cutting edge in such a way that it corresponds to the tip rake angle
at the tooth addendum, but the effective rake angle drops until 0◦ starting from the addendum along the flanks. At the flanks, the
tip rake angle thus practically acts as the inclination angle. The tip clearance angle of the shaper cutter is 𝛼𝑠𝑐 = 6◦ ( Table 1). The
effective clearance angle is also not constant over the cutting edge. Starting from the tool addendum, the effective clearance angle
decreases along the flank.
12
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Table 1
Design parameters and main data of the test face-gear for manufacturing by gear shaping.

Design parameter/component Symbol Unit Value

Shaper cutter

Number of teeth 𝑁𝑠𝑐 — 68
Normal module 𝑚𝑛 mm 2
Normal pressure angle 𝛼𝑛 ◦ 20
Tip rake angle 𝛾𝑠𝑐 ◦ 5
Tip clearance angle 𝛼𝑠𝑐 ◦ 6
Helix angle 𝛽 ◦ 0
Material HSS coated

Face-gear

Number of teeth 𝑁2 — 48
Shaft angle 𝛾𝑠 ◦ 90
Axle offset 𝐸 mm 0
Inner diameter 𝐷𝑖2 mm 100
Outer diameter 𝐷𝑎2 mm 120
Material 20MnCr5 (1.7147)

Kienzle parameter [24]

Specific cutting force 𝑘𝑐1,1 Nmm−2 2140
Cutting exponent 𝑚𝑐 — 0.25
Specific feed force 𝑘𝑓1,1 Nmm−2 340
Feed exponent 𝑚𝑓 — 0.68

Gear shaping parameter

Cutting stroke frequency 𝑓𝑠𝑡 min−1 428
Radial start infeed 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 mm 0.003
Radial end infeed 𝑎𝑟𝑒𝑛𝑑 mm 0.003
Circumferential infeed 𝑎𝑐𝑖𝑟𝑐 mm 0.1
Stroke length 𝑙𝑠𝑡 mm 23.8
Top overrun length 𝑙𝑡𝑜𝑝 mm 3

In order to avoid a collision of the dynamometer with the rotary table of the 𝐶-axis, a face-gear segment of approximately
20◦ was manufactured. This segment includes the complete radial immersion of the cutter as well as an area in which only the
ircumferential feed is active. After the tool is completely immersed in the radial direction, the cutting forces show a practically
ecurring pattern until the starting angle of the face-gear is reached. Thus, even when processing a larger segment, no additional
ain in knowledge would be expected. A representative comparison of the measurements with the simulation is thus given with the
iven face-gear segment. Table 1 lists the data of the shaper cutter and face-gear as well as the selected process data.

The correction factor 𝐾𝛾 to account for the influence of the rake angle on the cutting forces, the equation according to Andrich
t al. [24] is used

𝐾𝛾 = 1 −
𝛾 − 𝛾0
100◦

(48)

where 𝛾0 is the basic rake angle. For steel it is set to 𝛾0 = 6◦. The correction factor for chip compression is set to 𝐾𝑠𝑝 = 1.1 for
gear shaping according to Andrich et al. [24]. The influence of the cutting speed on the cutting forces is approximately taken into
account by the correction factor 𝐾𝑣𝑐 , calculated by

𝐾𝑣𝑐 =
(

100
𝑣

)0.1
, 𝑣 [m s−1] (49)

he correction factor 𝐾𝑤𝑒𝑎𝑟, which takes into account the influence of tool wear, is set to 𝐾𝑤𝑒𝑎𝑟 = 1, since an unworn tool was used.
ue to the short duration of the test and the fact that the tool does not make a full revolution during the test, no influence due to

ool wear is expected for the experiment. From this, for the overall cutting force correction factor it follows

𝐾𝑐 = 𝐾𝑓 = 𝐾𝛾 𝐾𝑠𝑝 𝐾𝑣 𝐾𝑤𝑒𝑎𝑟 (50)

Fig. 9 shows the measured cutting force and the values determined by simulation in 𝑥-direction, Fig. 10 shows the result in
-direction and Fig. 11 shows the corresponding result in 𝑧-direction. The results are given for the machine tool coordinate system,
here the 𝑧-direction corresponds to the stroke direction of the shaper cutter.

Qualitatively, there is good match between the simulation results and the measured values. The increased machining forces
hen plunging the tool are clearly recognizable and run analogously for the simulation as well as the measurement. In particular,

he cutting force in the 𝑧-direction shows good quantitative agreement. The force in the 𝑥-direction also shows good quantitative
greement, while the measured force in the 𝑦-direction corresponds to only about 50% of the calculated force. The dominant force
s the one in cutting direction, which is well reproduced by the simulation. Although the force component in the 𝑦-direction is quite
mall compared to the force in the cutting direction, the discrepancy between simulation and measurement is still relatively large,
specially considering the good agreements for the other two directions. Here, further research and experiments, with other tool and
13
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Fig. 9. Measured and simulated cutting force during gear shaping in the 𝑥-direction of the machine tool.

Fig. 10. Measured and simulated cutting force during gear shaping in the 𝑦-direction of the machine tool.

Fig. 11. Measured and simulated cutting force during gear shaping in the 𝑧-direction of the machine tool.
14
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Fig. 12. Test face-gear for manufacturing on a 5-axis machine tool.

face-gear geometries and also different materials, would be desirable in the future. It is also noticeable that some force peaks can
be found in the measurements, which indicates additional dynamic effects that are not considered in the simulation. It should also
be noted that the chip thicknesses are by no means constant over the stroke length, but the parameters from the Kienzle equation
were determined for constant chip thicknesses. Overall, a good agreement between simulation and measurement can be observed
despite the assumptions made.

It should also be mentioned that the calculated force in the 𝑧-direction is almost completely determined by the Kienzle parameters
in the cutting direction, while the parameters in the feed direction are decisive for the forces in the 𝑥- and 𝑦-direction. Usually, when
determining the Kienzle parameters, the focus is on the forces in the cutting direction, so that for less investigated materials often
only little information on the forces in the feed direction can be found in the literature. In the future, it could be a problem to
obtain the correct Kienzle parameters from the literature for some materials, especially if hardened or nitrided materials are used.
Here, an indirect parameter determination could be useful: First, the cutting forces during the machining of a face-gear must be
measured, then the simulations are carried out for the same geometry, whereby the Kienzle parameters are iteratively adjusted until
the calculated forces match the measured values.

8. Application of the gear shaping simulation

In the following, the application of the gear shaping simulation will be explained. The face-gear with the design parameters
according to Table 2 made of C45 steel serves as an example. Fig. 12 shows the face-gear. It is a straight-toothed face-gear without
axle offset with 43 teeth. The shaper cutter is made of solid tungsten carbide and has a tip rake angle of 𝛾𝑠𝑐 = 5◦ ( Table 2). Martinovs
et al. [25] built formulae for the specific heat capacity 𝑐 and the thermal conductivity 𝑘 of C45 steel. The formula for the specific
heat capacity 𝑐 is given by

𝑐 = 50 + 450 ⋅ exp
[

−
(

𝑇 − 980
50

)]

+ 20𝑇 0.53 − 0.0021𝑇 1.66 (51)

and the formula for the thermal conductivity 𝑘 is given by

𝑘 = 2 ⋅ 10−8𝑇 3 − 4 ⋅ 10−5𝑇 2 − 0.0045𝑇 + 54 (52)

where 𝑇 is the metal temperature. For the chip temperature calculations, however, the mean temperature �̄�𝑐ℎ𝑖𝑝 is used. Both
equations were determined by approximating experimental data provided by Lazić et al. [26].

The characteristic values of the Kienzle equation were taken from the book of tables by Apprich et al. [24]. The Taylor–Quinney
coefficient was assumed to be 𝛽𝑇𝑄 = 1. The relevant data are summarized in Table 2.

The cutting stroke frequency is chosen as 𝑓𝑠𝑡 = 400min−1 and the stroke length 𝑙𝑠𝑡 is selected according to the tooth width, or is
based on the specifications of the shaping machine tool. The initial circumferential infeed 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm is estimated considering
a certain maximum uncut chip thickness and requirements regarding maximum allowed deviations in the flank surface topography.
An initial radial infeed of 𝑎𝑟 = 0.05 mm is selected. In order to be able to estimate the tool deflection as an example, a stiffness of
the system consisting of workpiece, clamping system, tool and machine tool of 𝑘𝑥 = 𝑘𝑦 = 107N m−1 is assumed. Fig. 13 shows the
resulting cutting forces for these initial parameters in the coordinate system of the gear shaping machine tool as shown in Fig. 8.
In this particular configuration, the force in the 𝑦-direction corresponds to the cutting force, i.e. it is the direction of the double
stroke movement. The 𝑧-direction corresponds to the direction of the radial infeed and the 𝑥-direction is orthogonal to the other
two directions. At around 𝑡 = 13 s there is a peak force, which indicates that the radial infeed 𝑎𝑟 is chosen too high.

In the following, the radial feed is to be optimized in such a way that the radial infeed takes place as quickly as possible, but
there shall be no increase in the machining forces and the tool life shall not be adversely affected. For this purpose, the mean radial
15



Mechanism and Machine Theory 172 (2022) 104791H.A. Zschippang et al.
Table 2
Design parameters and main data of the test face-gear for manufacturing by gear shaping.

Design parameter/component Symbol Unit Value

Shaper cutter

Number of teeth 𝑁𝑠𝑐 — 14
Normal module 𝑚𝑛 mm 2.2
Normal pressure angle 𝛼𝑛 ◦ 20
Tip rake angle 𝛾𝑠𝑐 ◦ 5
Profile shift coefficient 𝑥𝑠𝑐 — 0.4931
Helix angle 𝛽 ◦ 0
Material Tungsten carbide

Face-gear

Face-gear number of teeth 𝑁2 — 43
Shaft angle 𝛾𝑠 ◦ 90
Axle offset 𝐸 mm 0
Face-gear inner diameter 𝐷𝑖2 mm 94.6
Face-gear outer diameter 𝐷𝑎2 mm 120.8
Material C45 (1.0503)
Density 𝜌 kg m−3 7800

Kienzle parameter, Usui constants

Specific cutting force 𝑘𝑐1,1 Nmm−2 1680
Cutting exponent 𝑚𝑐 — 0.26
Specific feed force 𝑘𝑓1,1 Nmm−2 340
Feed exponent 𝑚𝑓 — 0.68
𝐶1 0.01198 (crater wear), 7.8 ⋅ 10−9 (flank wear)
𝐶2 21’950 (crater wear), 5301.6 (flank wear)

Fig. 13. Simulated cutting forces for shaping the face-gear with the initially chosen infeeds. At a time of approximately 𝑡 = 13 s there is an increased force,
which indicates that the radial infeed 𝑎𝑟 is too high. 𝑓𝑠𝑡 = 400min−1, 𝑎𝑟 = 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑒𝑛𝑑 = 0.05 mm, 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm.

infeed 𝑎𝑟 is now varied, as well as the distribution between the start infeed 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 and the end infeed 𝑎𝑟𝑒𝑛𝑑 . Since the radial feed is
a uniformly accelerated movement, the manufacturing time also remains constant with a constant mean infeed. Fig. 14 shows how
the cutting forces, tool wear and the maximum uncut chip thickness behave depending on the radial infeed. The maximum uncut
16
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Fig. 14. Simulated results for shaping the face-gear with a cutting stroke frequency of 𝑓𝑠𝑡 = 400min−1, constant circumferential infeed 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm and varied
radial infeed 𝑎𝑟. Top left: Maximum cutting force 𝐹𝑧; Top right: Maximum uncut chip thickness ℎ𝑚𝑎𝑥; Bottom left: Crater wear calculated according to Eq. (35);
Bottom right: Flank wear calculated according to Eq. (36). 𝑎𝑟 = 0.5(𝑎𝑟𝑠𝑡𝑎𝑟𝑡 + 𝑎𝑟𝑒𝑛𝑑 .).

Fig. 15. Cutting forces 𝐹𝑥 during radial infeed. 𝑓𝑠𝑡 = 400min−1, 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm. Left: 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑒𝑛𝑑 = 0.05 mm, Right: 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 = 0.05 mm, 𝑎𝑟𝑒𝑛𝑑 = 0 mm.

chip thickness is the uncut chip thickness that has occurred over the entire machining process and along the active cutting edge.
This is important insofar as the forces alone do not allow any statement about a local overload of the tool. Pure optimization after
the flank or crater wear must also be used with caution, since it cannot determine overloading of the cutting edge: The problem is
that large chip thicknesses occurring for a short time can lead to cutting edge chipping while the calculated wear is still small. It can
be seen that with maximum radial infeed at the start and a reduction in the radial infeed over the immersion depth, the machining
forces and the maximum chip thickness decrease. The same applies to tool wear, but the differences are so small that the calculated
wear is not a suitable evaluation criterion. The optimum radial feed rates are therefore found if, with a further reduction in the
feed rates, there is no reduction in the cutting forces and no reduction in the maximum chip thickness. In this example, this point
is reached with a radial start infeed of 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 = 0.04 mm and an end infeed of 𝑎𝑟𝑒𝑛𝑑 = 0 mm.

Further calculations have shown that the radial start infeed can even be increased to 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 = 0.05 mm without increasing the
cutting forces and the maximum uncut chip thickness. Fig. 15 shows the cutting forces 𝐹𝑥 during radial infeed for the initial infeeds
as well as the forces for the optimized infeeds.

A further reduction of the radial infeed does not bring any advantages in terms of cutting forces, uncut chip thicknesses and
tool wear, but increases the machining time. The processing time depending on the radial infeed is shown in Fig. 16. It is obvious
that as the mean radial infeed becomes smaller, the production times increase drastically and thus the profitability decreases. This
is another reason why finding suitable values for the start and end infeeds is of particular interest.
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Fig. 16. Machining time over the mean radial infeed. 𝑓𝑠𝑡 = 400min−1, 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm.

Table 3
Design parameters and main data of test face-gear for manufacturing by gear shaping.

Parameter Symbol Unit Strategy 1 Strategy 2

Radial start infeed 𝑎𝑟𝑠𝑡𝑎𝑟𝑡 mm 0.033 0.0026
Radial end infeed 𝑎𝑟𝑒𝑛𝑑 mm 0 0.0014
Circumferential infeed 𝑎𝑐𝑖𝑟𝑐 mm 0.158 0.25
Maximum cutting force 𝐹𝑧 N 3009 3045
Maximum uncut chip thickness ℎ𝑚𝑎𝑥 mm 0.128 0.176
Crater wear 𝑊 μ m 18.43 17.14
Flank wear 𝑊 μ m 0.57 0.53
Machining time t s 322 504

Fig. 17. Resulting cutting forces 𝐹𝑧 for the both strategies chosen to reduce the maximum cutting force. Top: Reduced circumferential infeed 𝑎𝑐𝑖𝑟𝑐 . Bottom:
Reduced radial infeed 𝑎𝑟.

In the following, for example, the cutting forces should be reduced to a maximum of 𝐹𝑧 = 3 kN. For this purpose, two strategies
will now be compared: One strategy is the reduction of the circumferential infeed 𝑎𝑐𝑖𝑟𝑐 while at the same time optimizing the radial
infeed, as just presented. The second strategy is to keep the circumferential infeed at 𝑎𝑐𝑖𝑟𝑐 = 0.25 mm and to immerse the tool very
slowly in radial direction and to optimize the distribution of the radial infeed at start and end according to the crater wear. In
Table 3, the results for both strategies are listed. The cutting forces are shown in Fig. 17. It can be clearly seen that the machining
time with the reduced radial infeed is significantly higher with strategy 2. The maximum uncut chip thickness is also significantly
increased for strategy 2. In any case, the slightly lower tool wear cannot justify the significantly higher machining time. The problem
with the reduced radial infeed consists in the fact that, on average, the material removal per time is smaller, but the tip of the shaper
cutter teeth mainly contributes to the material removal. This means that tool wear is also concentrated on the tip of the shaper cutter
teeth. The crater wear for both strategies is shown in Fig. 18.

Fig. 19 shows an example of the pressure and temperature distribution along the cutting edge for a specific time point. These
distributions always change over the stroke movement, just as the area of the cutting edge in engagement shifts over time. The
pressure acting on the rake face decreases steadily from the cutting edge over the rake face. The highest temperatures, however,
are not reached on the cutting edge itself but on the rake face further inside, which causes the typical crater wear.

The common practice of choosing the radial infeed as large as possible is also confirmed when shaping face-gears, because with
this strategy the material removal is better distributed along the cutting edge. The tip area of the individual teeth of the shaper
cutter mainly contributes to the material removal in general and is therefore more affected by wear. Small radial infeeds lead to an
even bigger wear concentration at the tooth tips.
18
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Fig. 18. Crater wear of the two strategies. Left: Strategy 1, reduced circumferential infeed 𝑎𝑐𝑖𝑟𝑐 , Right: Strategy 2, reduced radial infeed 𝑎𝑟.

Fig. 19. Example of the pressure and temperature distribution along the cutting edge for a specific time point. Left: Pressure distribution along cutting edge,
Right: Temperature distribution along cutting edge.

Fig. 20. Tool Deflection for strategy 1 in 𝑥- and 𝑦-direction of the machine tool coordinate system according to Fig. 8.

For strategy 1, the tool deflection over time for the assumed stiffness in 𝑥- and 𝑦-direction of 𝑘𝑥 = 𝑘𝑦 = 108N m−1 is shown in
Fig. 20. If the system of machine tool, workpiece clamping and tool is stiff enough, the corresponding tool deflection is low. If the
corresponding deflections become too large, a reduction of the radial and/or circumferential infeed shall be considered, at least for
the finishing cut. It should be noted that the deflection shown is only an estimate, as dynamic effects are neglected. Katz et al. [10]
present an approach on how the dynamic behaviour when gear shaping cylindrical gears can be taken into account. The application
of this approach to the gear shaping of a face-gear could be the subject of future research.

Using the simulation of the shaping process, cutting forces, uncut chip thicknesses and tool wear can efficiently be estimated. In
this way, the process parameters, such as the individual infeeds, can be optimized. Optimization through experimental trials, on the
19
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other hand, is difficult. The problem is that some parameters, such as the uncut chip thickness, cannot be measured. Furthermore,
a measured force does not allow any conclusions to be drawn about the local stress along the cutting edge. The simulation enables
a deeper insight into the processes involved in gear shaping and thus helps to select infeeds in such a way that short machining
times are achieved in combination with a long tool lifetime.

9. Conclusions

Gear shaping is a complex manufacturing process. Depending on the infeeds selected, the uncut chip thicknesses change
onsiderably, as do the areas of the cutting edge that are involved in the material removal. Finding suitable machining parameters
s very much dependent on experience and multiple test gears are necessary before the manufacturing process runs satisfactorily.

The simulation of gear shaping has considerable advantages. Uncut chip thicknesses can be determined in advance and suitable
nfeeds can be found in the direction of the tooth height, so that the fastest possible immersion is possible without increasing the
achining forces. Different feed strategies can be compared with each other, also taking tool wear into account. The resulting

ptimization possibilities are very diverse: Depending on the requirements, e.g. tool life, machining time or their combinations can
e improved. The number of test gears for finding suitable parameters and the number of reject gears can thus be reduced. Above all,
any more parameter data sets can be tested through simulation, which would be very expensive and time consuming in practice

nd therefore quickly uneconomical.
At the moment, the assessment of tool wear is viewed more critically. The areas with the highest wear fit very well with practice

nd conclusions can also be drawn with regard to different parameter data sets, but proof of the quantitative correctness has yet to
e provided. There is enough potential for future research in this area in particular. In addition, gear shaping simulation offers the
otential to determine Kienzle parameters in an indirect way by measuring the cutting forces on the machine tool for the shaping
f a face-gear and adjusting the Kienzle parameters until the simulation result matches the measurement.
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