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Summary 
Roads are the infrastructural backbone of civilization, in 

ancient Egypt for example, roads had their own hieroglyph: 

𓈐 
which can be translated into road-with-shrubs [1]. Throughout 

the times, different construction techniques have been used for 

roads, nowadays the most common road surfaces are asphalt 

concrete pavement or unbound gravel. Both types of road 

surfaces consist primarily of mineral aggregates, typically 

crushed rock, while for asphalt pavement the aggregates are 

compounded with bitumen, with a volume fraction of roughly 

5%. Despite the importance of aggregates, most research into 

improving asphalt pavements has focused on the bitumen, for 

example to reduce the permanent deformation by incorporating 

polymers into the bitumen or adding bitumen rejuvenators to 

facilitate the recycling of asphalt pavement. But there is a 

growing interest to shift the attention towards aggregates, one 

example is a 2014 report of the United Nations Environment 

Programme (UNEP) [2] that concludes that viable construction 

aggregates are becoming rare globally. To tackle this problem, 

different studies have investigated the replacement of virgin 

aggregates with aggregates derived from waste materials such 

as demolition waste. While other studies have investigated the 

manufacturing of artificial aggregates via sintering of waste 

incineration ash or the bonding of mineral powders with 

cementing agents. Each of these studies however have yielded 

aggregates of random shapes, the question whether artificial 

aggregates with specifically designed shapes could improve the 
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properties of asphalt pavements has not been addressed widely 

in previous work. 

This dissertation aims to address this question by first 

investigating how non-convex aggregate shapes of varying 

sphericity affect the porosity and permeability of the bulk-

structure that is formed by aggregates, the so-called packing. 

The results show that (i) the porosity increases with decreasing 

aggregate sphericity, (ii) porosities exceeding 0.7 can be 

achieved, and (iii) the water permeability increases 

exponentially with increasing porosity. It was also revealed that 

permeabilities up to two magnitudes higher compared to the 

most permeable porous asphalt pavements made with packings 

of common crushed rock aggregates, which shows the potential 

of artificial aggregates to improve the properties of permeable 

pavements. 

To investigate whether the shape of artificial aggregates can be 

varied without affecting the structural properties of their 

packings, the probability distribution functions of the aggregate 

stresses were investigated. This investigation revealed that the 

stress distribution becomes more heterogeneous as the 

aggregate sphericity decreases, with some aggregates being 

subject to eight times the average stress. Consequently, the 

material for the manufacturing of such non-convex artificial 

aggregates needs to be chosen such that the aggregates can 

withstand such high stresses. 

Alumina ceramic was investigated as a material for the 

manufacturing of artificial aggregates. To be able to 

manufacture complex non-convex shapes, additive 

manufacturing was the method of choice. To this end a 

ceramic-polymer filament feedstock was prepared that can be 

used in consumer-grade 3D printers. The 3D printed parts were 
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subsequently heat treated to evaporate the polymer and sinter 

the remaining ceramic. This method was successfully used to 

manufacture complex aggregate shapes, and it was found that 

the 3D printed parts shrink anisotropically during sintering. 

The results also show that the parts should be placed in a 

powder bed during polymer removal to increase the 

compressive strength of the final aggregate. 

This dissertation shows that artificial aggregates with non-

convex shapes can improve certain properties of asphalt 

pavements and reports a protocol to manufacture such 

aggregates using additive manufacturing. Nonetheless, 

additional work focusing on the manufacturing, structural and 

functional durability of non-convex aggregates is necessary for 

the practical application of artificial aggregates in road 

pavements. 
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Zusammenfassung 
Straßen sind das infrastrukturelle Rückgrat einer Zivilisation, 

im alten Ägypten zum Beispiel hatten Straßen ihre eigene 

Hieroglyphe: 

𓈐 
welche als Strasse-mit-Sträuchern übersetzt werden kann [1]. 

Im Laufe der Jahrtausende wurden verschiedene Bauweisen für 

Straßen verwendet, heutzutage findet man am häufigsten 

Asphalt oder ungebundene Schotterbeläge. Beide Arten von 

Straßenbelägen bestehen hauptsächlich aus mineralischen 

Zuschlagstoffen, in der Regel gebrochenem Gestein, wobei für 

Asphaltbelägen die Zuschlagstoffe zusätzlich mit Bitumen mit 

einem Volumenanteil von etwa 5% gebunden werden. Trotz 

der grossen Bedeutung der mineralischen Zuschlagstoffe 

konzentrierte sich die Forschung zur Verbesserung von 

Asphaltbelägen bisher grossteils auf das Bitumen, z. B. durch 

die Zugabe von Polymeren zum Bitumen, um die dauerhafte 

Verformung des Belages zu reduzieren, oder die Benutzung 

von Bitumenverjüngungsmitteln, um das Recycling der 

Asphaltbeläge zu verbessern. Es werden jedoch immer mehr 

Forderungen laut, die Aufmerksamkeit mehr auf die 

Zuschlagstoffe zu lenken. Ein Beispiel dafür ist ein Bericht des 

Umweltprogramms der Vereinten Nationen (UNEP) aus dem 

Jahr 2014 [2], welcher zu dem Schluss kommt, dass brauchbare 

Bauzuschlagstoffe weltweit immer seltener werden. Um dieses 

Problem zu lösen, haben verschiedenen Studien der Ersatz von 

frischen Zuschlagstoffen durch Abfallmaterialien wie 

Bauschutt untersucht. Andere Studien untersuchten die 

Herstellung künstlicher Gesteinskörner durch Sintern von 
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Müllverbrennungsasche oder die Bindung von Mineralpulver 

mit Zement. Jede dieser Studien hat jedoch Gesteinskörner mit 

zufälligen Formen hervorgebracht. Die Frage, ob künstliche 

Gesteinskörner mit speziell entwickelten Formen die 

Eigenschaften von Asphaltbelägen verbessern könnten, wurde 

bisher kaum behandelt. 

In dieser Dissertation wurde zunächst untersucht, wie sich 

nichtkonvexe Gesteinskörner mit unterschiedlicher Sphärizität 

auf die Porosität und die Wasserdurchlässigkeit der von den 

Gesteinskörnern gebildeten Schüttung, auswirken. Die 

Ergebnisse zeigten, dass (i) die Porosität mit abnehmender 

Sphärizität der Gesteinskörner zunimmt, (ii) Porositäten von 

über 0,7 erreicht werden können und (iii) die 

Wasserdurchlässigkeit mit zunehmender Porosität exponentiell 

zunimmt. Es wurden Wasserdurchlässigkeiten beobachtet, 

welche um bis zu zwei Größenordnungen höher sind verglichen 

zu den durchlässigsten porösen Asphaltbelägen aus 

gewöhnlichem Schotter, was zeigt, dass künstliche 

Gesteinskörner das Potential haben die Eigenschaften von 

durchlässigen Belägen zu verbessern. 

Um zu untersuchen, ob die Form der künstlichen 

Gesteinskörner beliebig variiert werden kann, ohne die 

strukturellen Eigenschaften ihrer Schüttungen zu 

beeinträchtigen, wurden die Wahrscheinlichkeitsverteilungen 

der mechanischen Spannungen in den Gesteinskörnern 

untersucht. Dabei zeigte sich, dass die Spannungsverteilung 

mit abnehmender Sphärizität der Gesteinskörner heterogener 

wird, wobei einige Gesteinskörner dem Achtfachen der 

durchschnittlichen Belastung ausgesetzt sind. Folglich muss 

das Material, welches für die Herstellung solcher 

nichtkonvexer künstlichen Gesteinskörner verwendet wird, so 
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gewählt werden, dass die Gesteinskörner diesen hohen 

Belastungen standhalten können. 

Aluminiumoxidkeramik wurde als Material für die Herstellung 

künstlicher Aggregate untersucht. Um die komplexen 

nichtkonvexen Formen herstellen zu können, war additive 

Fertigung die Methode der Wahl. Zu diesem Zweck wurde ein 

Keramik-Polymer-Filament hergestellt, das in normalen 3D-

Druckern für Heimanwender verwendet werden kann. Die 3D-

gedruckten Teile wurden anschließend wärmebehandelt, um 

das Polymer zu verdampfen und die Keramik zu sintern. Mit 

dieser Methode konnten erfolgreich künstliche 

Gesteinskörnern mit komplexen Formen hergestellt werden. 

Dabei stellte sich heraus, dass die 3D-gedruckten Teile 

während des Sinterns anisotrop schrumpfen. Es zeigte sich 

auch, dass die Teile während der Polymerentfernung in ein 

Pulverbett gelegt werden sollten, um Mikrorisse zu vermeiden 

und die Druckfestigkeit der fertigen Gesteinskörner zu 

erhöhen. 

Diese Dissertation zeigt, dass künstliche Gesteinskörner mit 

nichtkonvexen Formen bestimmte Eigenschaften von 

Asphaltbelägen verbessern können und ein Vorgehen, welches 

zeigt wie solche Gesteinskörner mittels additiver Fertigung 

hergestellt werden können. Für die praktische Anwendung von 

künstlichen Gesteinskörnern in Straßenbelägen ist jedoch 

weitere Forschungsarbeit nötig, welche sich insbesondere mit 

der Herstellung, sowie der Dauerhaftigkeit der Struktur und der 

funktionellen Eigenschaften von nichtkonvexen 

Gesteinskörnern befasst. 
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1 Introduction 
Road surfaces cover 2.1% of Switzerland [3]. These surfaces 

are largely made up of roads paved with asphalt concrete or 

unbound roads, usually with a surface of compacted gravel. 

Both construction techniques are based on aggregates, typically 

crushed rock or gravel. For gravel roads the aggregates are 

poured and compacted, while for asphalt concrete the 

aggregates are bound by bitumen with a fraction of 

approximately 5%. In Switzerland, gravel surfaces are 

exclusively used for poorly frequented agricultural roads, more 

important roads such as urban roads or highways are always 

paved. Consequently, in the past research has focused on the 

improvement of asphalt pavements. 

 

1.1 State of the art in pavement research 
To improve the performance and sustainability of asphalt 

pavements some general trends have been identified, such as 

polymer modification of the bitumen phase to decrease the 

permanent deformation of pavement [4,5], fiber reinforcement 

of asphalt [6] and the incorporation of recycled asphalt 

pavement [7]. Further research lead to novel developments 

such as self-healing asphalt [8] and energy harvesting from 

pavements [9]. The modification of bitumen by polymers 

expands the temperature range for which a bitumen is viable. 

For example, the addition of specific polymers add 

reinforcement that can help to prevent permanent deformations 

(rutting) of the pavement at high temperatures. If instead of a 

polymer-modified soft bitumen, a hard grade bitumen would be 

used to prevent rutting at high temperatures the hard bitumen 

becomes brittle at low temperatures which leads to cracking of 

the pavement. To reduce the environmental impact of the 
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pavement the virgin polymer can be replaced by a waste 

polymer, for example from plastic bottles or tires [10,11]. A 

further method to reduce the environmental impact of 

pavement is to recycle the pavement itself, by grinding up the 

old pavement and re-using it as a material called reclaimed 

asphalt pavement (RAP) [7]. Since the bitumen in recycled 

pavement is subject to ageing, which hardens the bitumen, 

virgin bitumen is added to the recycled pavement before re-use. 

However, adding virgin bitumen negatively affects the 

environmental impact of pavement recycling and is also costly. 

A different approach is to soften the aged bitumen by adding 

rejuvenators to the recycled pavement [12]. Fiber 

reinforcement serves a similar purpose as polymer 

modifications in that it can be used to increase the rutting 

resistance of the pavement. For this method steel, glass, or 

polymer fibers are compounded with aggregates and bitumen 

to produce a pavement material with a longer service life than 

conventional asphalt concrete. The service life can also be 

improved by incorporating rejuvenator capsules into the 

material [8]. When an aged pavement cracks under stress the 

capsules break open, releasing the rejuvenator into the 

pavement and closing the cracks. In doing so, the capsules give 

the pavement self-healing capabilities. 

This non-exhaustive review, on the research into improving 

asphalt concrete, shows that research has focused mostly on 

improving the bitumen phase, while the aggregate phase has 

not been modified. A reason for the lack of research on 

aggregates might be the abundance of viable aggregate 

material, e.g. limestone, in developed countries such as 

Switzerland, the European Union and the United States of 

America. Globally however, viable aggregate materials are less 

abundant and becoming sparse, a problem which is also 



3 

highlighted by a 2014 report of the United Nations 

Environment Programme (UNEP) [2].  

1.2 Artificial aggregates 
To address the scarcity of viable aggregate materials, some 

researchers have investigated the replacement of virgin crushed 

rock aggregates by other (waste) materials [13–15]. Among the 

investigated materials are polymers [13,16,17], ash from 

municipal solid waste incineration (MSWI) [18,19], blast 

furnace slag [14,20,21] and even seashells [15] or palm oil 

clinker [22]. Zoorob & Suprama have replaced 30 vol.-% of the 

aggregates in asphalt concrete with low density polyethylene 

(LDPE) polymer pellets, creating a material termed Plastiphalt 

[13]. They report that the Plastiphalt has superior mechanical 

properties compared to the control containing only mineral 

aggregates. Another study investigated cross-linked 

polyethylene (XLPE) waste polymer obtained by shredding 

cable insulation and found that replacing more than 5 vol.-% of 

aggregates in roller compacted concrete pavement leads to a 

loss of the materials strength [17]. MSWI ash frequently finds 

application in construction materials such as asphalt concrete, 

since deposing of the ash is costly as it is classified as 

hazardous waste. The idea is that the bitumen encapsulates the 

MSWI ash and prevents hazardous contents such as heavy 

metals from leaching into the environment. This practices 

however has been criticized by some researchers who termed 

the construction of roads with such waste materials “linear 

landfilling” [23]. Nevertheless, one study found that replacing 

15 wt.-% and 20 wt.-% of aggregates with MSWI ash sieved to 

be smaller than 4.75 mm yields a material that satisfies the 

Marshal test requirements for a road surface course [18]. Heavy 

metal leaching is also a problem for blast furnace slag used in 

asphalt pavements, however it was found that aggregates of 
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crushed copper slag can be used to control the resilient modulus 

value of asphalt mixtures with RAP owing to the shape of the 

crushed slag aggregates [14]. Beneficial aggregate shapes were 

also obtained for crushed steel slag, whereby the slag 

aggregates were used to replace coarse limestone aggregates in 

a hot mix asphalt [21]. The study found that replacing 39 vol.-

% and 62 vol-% of the coarse aggregates leads to improved 

mechanical properties of the mixture, replacing 100% of the 

coarse aggregates however decreases the indirect tensile 

strength and the resistance to moisture damage. Two recent 

studies have investigated aggregates derived from organic 

waste, namely crushed seashells of Peruvian Scallops and 

crushed palm oil kernels [15,22]. The results show that crushed 

palm oil kernels can replace up to 100% of the fine aggregate 

in stone mastic asphalt, while maintaining the Marshall mix 

design requirements. Tests with crushed seashells show that 

replacing 30 wt.-% of the aggregates size 0.3–2.36 mm reduces 

the Marshall stability of the mixture, however replacing 4 wt.-

% of the fine aggregates with crushed seashells can reduce the 

permanent deformation of mixtures, due to the angular shape 

of the aggregates. 

While some of these studies on aggregate replacements have 

controlled the aggregate size by crushing and sieving, which 

are also done for common (limestone) aggregates, in none of 

these studies the aggregate shape was explicitly designed. Even 

though the results of some of the studies indicate that the 

aggregate shape, rather than the material are what influences 

the asphalt performance. A further type of study has 

investigated the manufacturing of artificial aggregates from 

waste materials such as slag and fly ash, which gives some 

control over the aggregate shape, these artificial aggregates 

however have not been considered as aggregates for pavements 
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but instead for concrete [24,25]. Two different approaches for 

the manufacturing of artificial aggregates can be distinguished, 

which are cold-bonding using cementitious materials [26,27] 

and sintering at high temperatures [28,29].  

Two studies by Cioffi et al. [30] and Colangelo and Cioffi [24], 

which investigated the cold-bonding of MSWI bottom ash as 

well as cement kiln dust, slag and marble sludge, produced 

lightweight artificial aggregates that satisfy the technical 

requirements for structural use in Italy [24,30]. Lightweight 

aggregates which could be used in concrete preparation were 

also produced in a further study from red mud and fly ash [31]. 

In all of these studies on cold-bonding, the aggregates are 

granulated from waste powder using a rotating pelletizer. The 

rotating pelletizer process, however, yields nearly spherical 

aggregates, while the only shape parameters that can be varied 

are the size of the aggregates and the surface asperity, as 

confirmed in a review on the cold-bonding of artificial 

aggregates [27]. Therefore, cold-bonding of artificial 

aggregates leaves little flexibility for the design of the 

aggregate shape. While spherical aggregate shapes are desired 

for concrete made with portland cement, asphalt concrete 

requires angular aggregates to reduce the permanent 

deformation of pavements. 

High temperature sintering has been investigated for waste 

materials such as MSWI fly ash [28] and MSWI bottom ash 

[29]. It has been found that sintering produces lightweight 

aggregates with sufficiently high compressive strength for 

building applications [28,29]. For high temperature sintering, 

the waste material powder is first pressed into an intermediate 

specimen, typically of cylindrical shape, which are 

subsequently sintered at up to 1000°C [32]. This process gives 
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more control over the aggregate shape than rotating 

pelletization used for cold-bonding. Yet, the intermediate 

specimens are very fragile which require the shapes to be 

convex, e.g. cubes or cylinders, while non-convex shapes such 

as stars or tetrapods are infeasible. Non-convex aggregate 

shapes however have the potential (i) to improve the strength 

of certain types of asphalt with aggregate-aggregate 

interlocking for instance for stone mastic asphalt or porous 

asphalt, (ii) to increase the porosity of permeable asphalt 

pavements and (iii) to unlock novel applications such as energy 

harvesting from pavements. Such non-convex aggregate shapes 

have thus far not been investigated for the use in asphalt 

pavements, which is hence the topic of this dissertation.  

To this end, a major question to be addressed is how the 

aggregate shape influences the bulk-structure formed by the 

pouring (and compressing) aggregates. This question is also an 

open field of research in soft condensed matter physics, where 

aggregates are typically called particles and the bulk-structure 

of poured (and compressed) particles is called a packing. 

 

1.3 Particle packings 

1.3.1 Spheres 
Arguably the most basic particle shape is the sphere. For 

packings of equal spheres two different packing configurations, 

viz. face-centered-cubic and hexagonal close packing, are 

known to yield the closest possible packing configuration with 

a packing density 𝜑 =
𝜋

3√2
≈ 0.7405. These closest possible 

packing configurations have been conjectured by Kepler in 

1611 and yet a formal proof of the conjecture was only 

accepted in 2017 [33]. This 406 year long duration for 
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establishing a formal proof of the densest possible sphere 

packing hints towards the complexity of studying particle 

packings. A further sign is that for ellipsoids, which differ ever 

so slightly from spheres, no densest possible packing 

configuration is known yet. Fortunately, the closest possible 

packing configurations are uncommon in nature and industry, 

as granular materials only attain these configurations under 

particular circumstances, for example due to the combined 

compression and shearing of monodisperse (equally sized) 

spheres [34] or the oscillatory shearing of cubes [35]. More 

often, the packings encountered in nature and industry are in a 

random configuration. 

The packing formed by pouring spheres into a vibrated 

container is often called the random close packing (RCP) and 

is often quoted with a packing density of φ ≈ 0.64 [36]. 

However, if the sphere packing is not agitated by vibration, 

packing densities of φ ≈ 0.6 and less can be found [37]. In fact 

it has been argued by Torquato et al. [38] that the RCP is ill-

defined and that the packing density of spheres increases 

monotonically with increasing order, until the closest possible 

configuration is reached. Torquato et al. [38] further argue that 

instead of a RCP one should define a maximally random 

jammed (MRJ) packing, whereby a jammed packing is defined 

as a packing in which no particle can be moved without any 

displacement of other particles. A different definition of 

jamming is that of a packing which can transmit a load without 

the rearrangement of the particles [39]. This second definition 

makes it evident that jamming is essential for an aggregate 

packing used in construction applications. 
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1.3.2 Ellipsoids 
Turning now to non-spherical particles this literature review 

will first focus on ellipsoids, since they are an affine 

transformation of spheres. Some of the most important works 

on ellipsoid packings have been reported by Donev et al. [40–

42]. In their seminal work [40], they found that the densest 

lattice packing of ellipsoids has the same packing density as the 

densest sphere packing (φ ≈ 0.7405), which can be derived 

analytically, utilizing that ellipsoids are an affine 

transformation of spheres. However, in the same work they 

reported even denser non-lattice periodic packings for prolate 

ellipsoids (American-football shaped) with aspect ratios (αelli) 

exceeding √3 and for oblate ellipsoids (lentil shaped) with αelli 

< 1/√3, where αelli = b/a and a,b and c (b = c) are the lengths of 

the ellipsoids’ semi-axes. These crystalline non-lattice 

packings are composed of periodically replicated unit cells of 

multiple particles, contrary to lattice packings where the unit 

cell consists of single particles. For these crystalline packings 

Donev et al. [40] have found a packing density of φ = 0.7707 

but did not claim that this density is the densest possible 

ellipsoid packing. For disordered packings Donev et al. [41] 

have observed that the packing density varies with αelli, 

displaying an M-shaped curve with a (local) minimum with φ 

≈ 0.64 at αelli = 1 (spheres) and two peaks, both with φ ≈ 0.71, 

at αelli = 0.6 and αelli = 1.5. This M-shaped curve has been 

confirmed by multiple follow-up studies [37,43–45], which 

found that the packing density value at the peaks varies slightly 

with the packing protocol (0.68 ≤ φ ≤ 0.72), the peak positions 

(αelli = 0.6 and αelli = 1.5) however are unaffected by the packing 

protocol. 
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1.3.3 Superquadric particles 
In numerical works, the surface of ellipsoidal particles is often 

modelled using the superquadric equation, because the contact 

detection between such particles can be solved numerically 

efficiently [46]. While the superquadric equation can be 

formulated more generally [47], the most common formulation 

found in particle simulations is that for superellipsoids: 

𝑓(𝑥, 𝑦, 𝑧) =

((
𝑥

𝑎
)
2/𝑛2

+ (
𝑦

𝑏
)
2/𝑛2

)

𝑛2/𝑛1

+ (
𝑧

𝑐
)
2/𝑛1

− 1 (1.1)
 

In Eq. (1.1) a, b and c are the half-lengths of the particle along 

its principal axes (equal to the ellipsoid semi-axes) and the 

parameters n1 and n2 determine the so-called blockiness of the 

particles, whereby the particles gain sharper corners, i.e.  the 

blockiness increases, for n1 and n2 decreasing from 1 to 0, or 

for n1 and n2 increasing from 1 to ∞. In practice the values for 

n1 and n2 are typically limited to n1 < 2 and n2 < 2, which yields 

convex particles, due to limitations of the contact detection 

algorithm [46]. The shapes that can be represented include 

spheres (a=b=c and n1=n2=1), ellipsoids (a≠b and n1=n2=1), 

cubes (a=b=c and n1=n2<1), cylinders (a=b, n1<1 and n2=1), 

octahedra (a=b=c and n1=n2=2) and the Steinmetz solid 

(a=b=c, n1=1 and n2=0). 

Delaney & Cleary [43] have published some of the earliest 

work on random packings of superquadric particles. They 

varied the aspect ratio (αelli=a/b) and blockiness (0.4 < n1 < 1.0) 

while keeping n1 = n2. For low blockiness values (n1 = n2 =1) 

and varying αelli they recover the M-shaped φ-αelli-curve for 

oblate and prolate ellipsoids, the results are reproduced in 

Figure 1. It was further found that for increasing blockiness 
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values (i.e. decreasing n1 and n2) φ increases, because the 

particle faces become more and more planar, leading to face-

to-face alignments of neighboring particles and leading in turn 

to an increase in φ. Their results show that the φ-αelli-curves are 

equidistant for αelli < 0.6 and αelli > 1.5. Specifically, for αelli = 

0.5 and n1 = n2 = 1 they find φ ≈ 0.70 while for the same aspect 

ratio and n1 = n2 = 0.4 they find φ ≈ 0.76, similarly, for αelli = 3 

and n1 = n2 = 1 φ ≈ 0.66, and for n1 = n2 = 0.4 and αelli = 3 φ ≈ 

0.72. For 0.6 < αelli < 1.5 however the increase of φ with 

decreasing n1 and n2 is higher compared to increase of φ with 

decreasing n1 and n2 for αelli < 0.6 and αelli > 1.5. Additionally, 

for 0.6 < αelli < 1.5 the rate of this increase with decreasing n1 

and n2 increases the closer αelli is to 1 (spheres/cubes). So, while 

for n1 = n2 = 0.67 one still observes a flattened M-shaped φ-

αelli-curve, the local minimum at αelli = 1 cannot be observed for 

n1 = n2 = 0.5. When increasing the blockiness of cubes further, 

i.e. n1 = n2 = 0.4, one even observes a distinct local maximum 

at αelli = 1 with φ ≈ 0.82. The rate with which φ increases with 

increasing blockiness is higher the closer αelli is to 1 because of 

the large planar surfaces of cubes which favors a face-to-face 

alignment of particles. Compared to cubes (αelli = 1), the planar 

faces of cuboids (αelli ≠ 1) are smaller and therefore a face-to-

face alignment is less likely. The results of Delaney & Cleary 

[43] have been reproduced by multiple follow-up studies 

[45,48–50] and Zhao et al. [45] have additionally investigated 

particles with n1 > 1 and n2 > 1 (0.4 < n1 = n2 < 1.4), for which 

a sphere transforms into an octahedron instead of a cube. For 

such shaped particles, when increasing the blockiness by 

increasing n1 and n2 from 1 to 1.4 similar results are obtained 

as for increasing the blockiness from n1 = n2 = 1 to n1 = n2 = 

0.4, i.e. φ increases with increasing blockiness and the rate of 

the increase is higher the closer αelli is to one. However, this 

correlation of increasing φ with increasing blockiness (for 1 < 
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n1 = n2 < 1.4) is only observable for 0.5 < αelli < 1.5, while 

outside of this range no clear correlation between particle 

blockiness and φ can be identified. 

 

Figure 1: Packing fraction as a function of aspect ratio of 

superquadric particles. This data is reproduced from Delaney & 

Cleary [43]. 

 

1.3.4 Spherocylinders 
Visually similar to prolate ellipsoids are spherocylinders which 

consists of a cylinder with hemispherically-capped ends. 

Spherocylinders of different shape are usually distinguished by 

their aspect ratio αscyl which is defined as the length of the 

spherocylinder divided by its diameter. An important early 

work on random spherocylinder packings was reported by 
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Williams & Philipse [51] who already identified the most 

striking features of their φ-αscyl-curve, which are a peak at αscyl 

= 1.5 with φ = 0.70 and a monotonic decrease for αscyl > 1.5. 

They further found that the packing density of spherocylinders 

reaches an asymptotic value of φ ≈ 0.05 for αscyl ≥ 80. The shape 

of the φ-αscyl-curve with a peak at αscyl = 1.5 has since been 

confirmed in multiple further studies [37,52,53]. However, the 

maximum packing density of spherocylinders has varied on the 

packing protocol (0.65 ≤ φ ≤ 0.72). Overall, the packing density 

versus aspect ratio curve is similar for spherocylinders and 

prolate ellipsoids. 

As the number of particle shapes is infinite, a plethora of other 

convex particle shapes have been investigated, for example 

tetrahedra [54–56], other polyhedral [57] or natural shapes such 

as rice [58] crushed rock [59]. These shapes will not be 

discussed in detail here. Instead, in the following a different 

group of particles will be discussed, namely non-convex 

particles. 

 

1.3.5 Non-convex particles 
The convexity of particles could be quantified, for example by 

defining the convexity as the volume of a particle divided by 

the volume of its convex hull. However, in the following no 

rigorous definition for the convexity will be considered and 

instead the particles in this group share visual similarities, for 

example that they are constructed by intersecting multiple 

(sphero-)cylinders. Nevertheless, if the convexity of such 

particles would be quantified, the values for the convexity 

would undoubtedly differ significantly from the values 

obtained for particles such as spheres, ellipsoids, or cubes. 
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While later studies often use spherocylinders to model non-

convex particles, in an early numerical study by Malinouskaya 

et al. [60] a sphere was crossed by equally sized ellipsoids to 

create “spiky” particles. They created different particles using 

3, 4 or 6 ellipsoids, with the center of each ellipsoid being 

congruent with the center of the central sphere and using equal 

angles between every ellipsoid. By varying the aspect ratio of 

the ellipsoids, the particles changed their shape from a sphere 

with bumps to “spiky stars” with a barely visible sphere. The 

particle shapes are characterized by their sphericity Ψ, defined 

as the surface area of a volume equivalent sphere divided by 

the surface area of the particle itself. For Ψ = 1 (spheres) φ = 

0.64 as expected, and for decreasing Ψ the packing fraction 

decreases almost linearly, reaching a very low packing fraction 

of φ = 0.08 at Ψ = 0.4. Interestingly the different particle types, 

which are constructed using 3, 4 and 6 ellipsoids show 

congruent φ-Ψ-curves. 

Gravish et al. [61] experimentally investigated packings of 

paper staples which they referred to as U-shaped particles and 

complemented these experiments with numerical simulations 

in which the staples were assembled from three connected 

spherocylinders of equal diameter. The central spherocylinder 

of the U-shaped particles has an aspect ratio (length/diameter) 

of αscyl = 14, while the aspect ratio of the outer arms αscyl,o was 

varied (1 ≤ αscyl,o ≤ 14) such that it matched the staples. By 

increasing αscyl,o the sphericity of the particles decreases from 

Ψ = 0.52 to Ψ = 0.38 and the packing fraction (vibrated during 

packing) decreased from φ = 0.28 to φ = 0.08. This observation 

confirmed the finding that the packing fraction decreases with 

decreasing particle sphericity, which was previously also 

shown by Malinouskaya et al. [60]. The numerical results of 

Gravish et al. [61] are matched well by the experimental data 
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using staples. An interesting feature of the U-shaped particles 

with long arms is that they entangle and therefore can be used 

to construct packings in a cylindrical container which do not 

collapse when the confining cylinder is removed. 

The entangling of non-convex particles was also investigated 

by Murphy et al. [62] for three different particle shapes, each 

made from three spherocylinders: (1) U-shaped particles 

similar to  the ones of Gravish et al. [61], (2) Z-shaped particles 

for which one of the outer arms of the U-shaped particles is 

rotated by 180° around its attachment point to the central 

spherocylinder, such that the arm points to the opposite 

direction of the other arm and (3) a particle shape termed Z90 

for which one of the arms is rotated by 90° compared to the U-

shaped particles such that it points upwards. For all of these 

particle shapes the central spherocylinder is of αscyl = 12 and 

the two outer spherocylinders are of αscyl = 6 (therefore all 

shapes have the same sphericity Ψ = 0.45). To investigate the 

entangling properties of the particles a three-point bending test 

on unconfined horizontal packing columns was performed. It 

was found that the Z90-shaped particles performs best, possibly 

because they are truly three-dimensional which leads to a 

stronger entangling, whereas the U- and Z-shaped particles are 

planar. Regarding the packing fraction it was found that the Z-

shaped particles had a packing fraction of φ = 0.26, while for 

the U- and Z90-shaped particles φ = 0.22 was found.  

In an entirely experimental study Athanassiadis et al. [63] 

investigated different particle shapes manufactured using 3D 

printing, which included also non-convex, star-shaped particles 

(also called jacks). These star-shaped particles are formed by 

three (sphero-)cylinders, that are all perpendicular to each 

other, with congruent centers of gravity. The aspect ratio of the 
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spherocylinders was varied such that the particles have 

sphericities of Ψ = 0.87, Ψ = 0.81, Ψ = 0.67 and Ψ = 0.61. 

Packings of these star-shaped particles were found to have 

packing densities of, respectively, φ = 0.54, φ = 0.52, φ = 0.46 

and φ = 0.39, confirming experimentally the finding that that 

packing fraction decreases with decreasing particle sphericity. 

These star-shaped particles, constructed from three intersecting 

spherocylinders, have also been investigated further in a 

numerical study by Meng et al. [64]. Here, αscyl was varied from 

2 to 11 (Ψ = 0.86 to Ψ = 0.42) yielding packing fractions 

decreasing from φ = 0.69 to φ = 0.28. Hence, Meng et al. [64] 

confirmed the monotonic decrease of φ with decreasing Ψ for 

star-shaped particles as observed by Athanassiadis et al. [63], 

yet overall higher values for φ were reported. In a follow up 

study Meng et al. [65] investigated the φ-Ψ-correlations of a 

variety of particle shapes, including the U- and Z-shaped 

particles. Unfortunately, only low aspect ratios were modelled. 

Owing to this limitation, their results for U- and Z-shaped 

particles cannot be compared quantitatively to the results of the 

previous studies by Gravish et al. [61] and Murphy et al. [62], 

respectively. However, qualitatively Meng et al. [65] observed 

higher packing fractions as expected. A more quantitative 

comparison is possible with the work of Meng et al. [66], in 

which star- and Z90-shaped particles, among others, were 

investigated. Also Meng et al. [66] observed that for 3 ≤ αscyl ≤ 

11 φ decreases monotonically with increasing αscyl and found 

that the φ-αscyl curves for all of the investigated particle shapes 

are congruent. For the Z90-shaped particles with Ψ = 0.45 φ = 

0.3, i.e. a value that is higher than the φ = 0.22 found by 

Murphy et al. [62] for particles Z90-shaped particles with Ψ = 

0.45. However, the Z90-shaped particles used in these two 

studies are not exactly identical, since Meng et al. [66] 
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construct their particles from three spherocylinders of the same 

length, whereas Murphy et al. [62] construct their particles 

from spherocylinders with shortened outer arms. An overview 

of the packing densities found for various particle shapes is 

shown in Figure 2. 

The above literature review leads to the conclusion that for non-

convex particles φ generally decreases with decreasing Ψ for Ψ 

< 0.87. For 1 < Ψ < 0.87 however the φ-Ψ-correlation is not 

well established and requires more research. Further research 

is also required to explore how the low φ obtained for low Ψ 

affects other properties of a packing, such as its structural 

stability or the transport properties of a fluid in its pore space. 

 

Figure 2: Overview of packing densities for a variety of particle 

shapes reported in literature: Malinouskaya et al. [60] (spiky 

particles);     Gravish et al. [61] (staples/U-shaped particles); Murphy 
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et al. [62] (U- and Z-shaped particles); Athanassiadis et al. [63] 

(stars); Meng et al. [64] and Meng et al. [66] (stars). 

 

1.4 Jamming of particle packings 
The author of this dissertation considers every particle packing 

as jammed, because of the previously described definition, that 

defines any packing as jammed that can transmit a load without 

any particle rearrangement. If an accumulation of particles is 

not stable in the presence of gravity, it has to be in the process 

of rearrangement, i.e. shifting or flowing, and therefore cannot 

be a packing. Once the flowing accumulation of particles 

reaches a stable state it returns to being a packing. A good 

summary of more rigorous definitions of jamming is given by 

Donev et al. [67] who write: “Kinematic. A packing is jammed 

if none of the particles can be displaced in a nontrivial way 

without introducing overlap between some particles. 

Static. A packing is rigid if it can resolve any externally applied 

forces through interparticle ones, without changing the packing 

configuration. 

Perturbation. A packing is stable if the structure of the packing 

changes smoothly for small perturbations of the packing.” 

These definitions detail the requirements for jamming of an 

entire packing. The question of how jamming affects the 

interactions on a particle-to-particle level, however, remains an 

active field of research. The following paragraphs will not go 

into detail on all aspects of this field of research, but instead 

will provide an overview on which an interested reader can 

base further inquiries. 
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One aspect pertains to the idea that a jammed packing which 

transmits loads should be in mechanical equilibrium. 

Mechanical equilibrium places constraints on the force and 

torque balance for each particle, requiring D equations for the 

force balance and D(D − 1)/2 equations for the torque balance, 

where D is the dimensionality of the system and the unknowns 

in the equation are the contact forces [39]. Since a contact force 

acts between two particles, a system of N particles has zavgN/2 

contact forces, where zavg is the average number of contacts of 

a particle. Consequently, a three-dimensional system of 

frictional particles requires z ≥ 12 to be able to solve the 

equation system describing mechanical equilibrium. If z = 12 

the system is considered to be isostatic, if z < 12 the system is 

called underconstrained or hypostatic and if z > 12 the system 

is called hyperstatic. It is generally accepted that packings of 

spherical particles tend to pack isostatically [68,69]. For non-

spherical particles however no consensus has been reached yet. 

For example, multiple studies have found packings of 

ellipsoids to be hypostatic [67,70], but another study has found 

packings of tetrahedra to be hyperstatic [71]. 

Another aspect to discuss are force chains, which emerge when 

a jammed packing is subject to a load. In a disordered packing 

this load is not distributed homogeneously among the particles 

[72,73]. Instead, a subset of the particles transmits most of the 

load to the confining walls. This subset of particles resembles 

a sparse network in the network of contacting particles [74]. 

Consequently, some authors have proposed methods adapted 

from network science to describe the topology of force chain 

networks [75–77]. Yet, to this date, there is no agreement 

among the scientific community on how to quantify the 

structure of force chains such that it can be compared to 

different packings. As an alternative to describing the contact 
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force network topology, the probability distribution of the 

contact forces is often discussed in publications [78,79]. A 

more detailed description of the contact force distributions can 

be found in chapter 4.2 of this dissertation. 

 

1.5 Motivation 
The literature review has shown that viable aggregate materials 

are becoming globally scarcer. Several studies have 

investigated the replacement of virgin aggregates, for example 

by using demolition waste or by manufacturing artificial 

aggregates from MSWI ash. All of these studies have yielded 

irregularly shaped aggregates and it has been suggested that the 

aggregates' shape, rather than the aggregates material, is what 

determines the performance of a pavement. Simultaneously 

studies in the area of soft condensed matter physics have shown 

that packings of non-convex particles can interlock and form 

highly porous packings. Both of these properties are beneficial 

for artificial aggregates and have the potential to improve road 

pavement and to unlock novel applications for pavements. 

The present dissertation is an exploratory investigation of the 

design and properties of complex non-convex aggregate shapes 

for their potential use in asphalt pavements. 

1.6 Structure of this dissertation 
Chapter 2 introduces the discrete element method (DEM) 

which is often used for the numerical modelling of granular 

systems, such as particle packings. Chapter 2.2 gives a detailed 

description of a newly developed DEM for the modelling of 

non-convex particles. This DEM was developed during this 

dissertation and was used for the numerical studies presented 

in the subsequent chapters. 



20 

In Chapter 3 it is shown how the use of non-convex aggregate 

shapes can improve the properties of packings. To this end, 

numerical packings with non-convex particle shapes are 

generated, which are compared to experimentally constructed 

packings of polymer aggregates of the same shapes, that have 

been manufactured via injection molding. Subsequently, these 

numerical and experimental packings are evaluated regarding 

their porosity, tortuosity, and water permeability. 

Chapter 4 investigates the physics of granular materials and 

describes how the distribution of the inter-particle contact 

forces and intra-particle stresses is affected when non-convex 

particles, with low sphericity, are used to construct a packing 

that is subject to an external load. 

Chapter 5 covers the manufacturing of artificial aggregates by 

showing that complex aggregate shapes made of ceramics can 

be manufactured via additive manufacturing using consumer-

grade 3D printers. 

Finally, chapter 6 summarizes the conclusions of this 

dissertation and outlines some remaining research challenges. 

In addition, this chapter points to future research that would 

help to advance the technology readiness level of non-convex 

artificial aggregates for the use in road pavements.  
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2 Development of a discrete element 

method for non-spherical particles 
 

Some sections of this chapter are also part of chapter 3.4.2, 

which is intended for subsequent publication as part of: 

N.A. Conzelmann, M.N. Partl, F.J. Clemens, C.R. Müller, L.D. 

Poulikakos, Effect of artificial aggregate shapes on the 

porosity, tortuosity, and permeability of their packings, Powder 

Technology (under revision). 
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2.1 The discrete element method (DEM) 
The DEM is a simulation method that models discrete 

elements, here called particles or aggregates, moving freely in 

space. Originally developed by Cundall & Strack [80] for 

spherical particles, the DEM has since been extended to model 

non-spherical particles [81]. To calculate the positions and 

velocities of the particles their acceleration (linear and 

rotational) is integrated with respect to time. The acceleration 

in turn is calculated from Newton’s second law of motion based 

on the collisional and external forces acting on a particle. The 

method resolves collisions between particles, collisions 

between particles and walls as well as external forces, such as 

gravity, acting on the particles. 

 

2.2 The DEM in this work 
In the initial phases of the development of artificial aggregates 

it was decided that one possibly beneficial shape to investigate 

is the tetrapod shape (see Figure 3a), which is used in coastal 

protection. Since a simple DEM representation using combined 

spheres (see Figure 3b) gives an inadequate representation of 

the tetrapod shape, an effort was made to explore a better suited 

DEM representation of such highly non-convex geometries. A 

comprehensive overview on the advances of non-spherical 

DEM and available techniques and non-spherical particle 

geometries was written by Lu et al. [81]. The non-spherical 

particle geometries include ellipsoids, super-quadrics, 

polygons and other non-geometric particles created from a 

combination of simpler geometric shapes, such as a tetrapod 

made from combining spheres shown in Figure 3b. Polygons 

are arguably the most versatile of these approaches, as they can 

be used to model any imaginable particle shape. However, 
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polygons are computationally expensive because contact 

detection between polygons is non-trivial.  

A rather simple particle shape is the so called spherocylinder 

(see Figure 3c), which is a cylinder with hemispherically 

capped ends. What makes this shape so simple is that every 

point on its surface has the same distance from its central axis. 

Hence, the spherocylinder particle shape was implemented in a 

new DEM developed within the scope of this work. By 

combining multiple spherocylinders, a close approximation of 

a tetrapod shape can be achieved (see Figure 3d), without 

significantly increasing the computational load. In the 

following, particles made by combining multiple 

spherocylinders are also called spherocylinder clusters. 
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Figure 3: (a) Non-convex tetrapod shape used in coastal protection. 

(b) Tetrapod made by combining multiple spheres. (c) Spherocylinder 

particle. (d) Tetrapod particle made by combining four 

spherocylinders. 

 

The method developed for this work is an extension to the 

“PONG 3D” DEM framework developed by Dr. Stuart Scott, 

Dr. Christoph Müller, and Dr. James Third at the University of 

Cambridge [82]. PONG 3D supports spherical particles, non-

spherical particles made from combining multiple spheres as 

well as infinite planar walls and infinitely long cylinders. Thus, 
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to construct a closed cylindrical container in PONG 3D an 

infinitely long cylinder is intersected with two infinite planar 

walls.  

All original elements of PONG 3D are preserved in the 

framework, all extensions for spherocylinders are added in 

separate subroutines and functions. This chapter will only 

describe the modelling of spherocylinders and spherocylinder 

clusters and where necessary the connection to the original 

parts of the PONG 3D DEM framework. 

 

2.2.1 Creating a spherocylinder cluster particle 
A DEM simulation usually starts by populating the simulation 

domain with particles, often with random positions and in the 

case of non-spherical particles with random orientation. In this 

work the particles are frequently created with a random 

velocity additional to the random orientation. Creating a 

spherocylinder cluster particle starts with the creation of the 

individual spherocylinders that make up the spherocylinder 

cluster. The major step in creating a spherocylinder is the 

calculation of the moment of inertia tensor for this particle 

relative to the global coordinate system. In the body fixed 

coordinate system (superscript b) where the first axis 

corresponds to the axis of the spherocylinder the moment of 

inertia tensor can be calculated geometrically: 

𝐼�̿�,0
𝑏 = [

1

2
𝑚𝑐𝑦𝑙𝑟𝑝

2 +
4

5
𝑚ℎ𝑒𝑚𝑖𝑟𝑝

2 0 0

0 𝐼22 0
0 0 𝐼33

] (2.1) 

With 
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𝐼22 = 𝐼33 =
1

4
𝑚𝑐𝑦𝑙𝑟𝑝

2 +
1

12
𝑚𝑐𝑦𝑙𝑙𝑐𝑦𝑙

2 +

2 [
83

120
𝑚ℎ𝑒𝑚𝑖𝑟𝑝

2 + 𝑚ℎ𝑒𝑚𝑖 (𝑙𝑐𝑦𝑙 +
3

8
𝑟𝑝)

2

] (2.2)
 

In Eq. (2.1) and Eq. (2.2) rp is the radius of the spherocylinder 

and lcyl is the length of the cylindrical section of the 

spherocylinder, i.e. the length of the spherocylinder excluding 

the hemispherical end caps. mcyl and mhemi are the mass of the 

cylindrical section of the spherocylinder and a hemispherical 

end cap, respectively, which are calculate according to: 

𝑚𝑐𝑦𝑙 = 𝜋𝑙𝑐𝑦𝑙𝑟𝑝
2𝜌 (2.3) 

and 

𝑚ℎ𝑒𝑚𝑖 =
2

3
𝜋𝑟𝑝

3𝜌 (2.4) 

Here ρ is the density of the spherocylinder.  

The next step is to determine the orientation of the 

spherocylinder relative to the global coordinate system for 

which the present work employs quaternions, which are also 

used in the original PONG 3D framework. Quaternions can be 

thought of as vector, with one real and three complex elements, 

that can be used to encode rotations: 

𝑞
0
+ 𝑞

1
𝑖 + 𝑞

2
𝑗 + 𝑞

3
𝑘  (2.5) 

While Euler angles may provide a conceptually simpler 

approach to compute rotations, compared to quaternions, they 

have limitations. The limitations arise from the fact that the 

rotation matrix based on Euler angles has singularities, a 

problem also known as gimbal lock. Determining the 
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orientation of the randomly oriented particle relative to the 

global coordinate system can be executed via two approaches; 

Either rotating the quaternion which describes the orientation 

of the particle relative to the global coordinate system to 

describe the random initial orientation of the particle, or 

rotating the body fixed moment of inertia tensor such that the 

body fixed coordinate system is initially congruent with the 

global coordinate system. The present work employs the 

second approach and rotates the moment of inertia tensor such 

that it is congruent with the global coordinate system and 

consequently also with the quaternion (1,0,0,0). To rotate the 

moment of inertia tensor one needs to construct the rotation 

matrix �̿�𝑏→𝑔, where the superscript g denotes the global 

coordinate system. Since a rotation matrix is a linear map, it is 

known that columns of the rotation matrix are given by the unit 

vectors that span the body fixed coordinate system, but 

expressed in the global coordinate system: 

�̿�𝑏→𝑔 = [�̅�1
𝑏→𝑔

�̅�2
𝑏→𝑔

�̅�3
𝑏→𝑔] (2.6) 

The first unit vector corresponds to the central axis of the 

spherocylinder, because this is how the body fixed coordinate 

system was defined for the calculation of the body fixed 

moment of inertia tensor (𝐼�̿�,0
𝑏 ). The first unit vector can 

therefore be calculated by normalizing the vector that 

corresponds to the central axis of the spherocylinder (�̅�𝑐𝑦𝑙): 

�̅�1
𝑏→𝑔

= �̅�𝑐𝑦𝑙/𝑙𝑐𝑦𝑙 (2.7) 

Due to the rotational symmetry of a spherocylinder, the second 

unit vector is any unit vector that is orthogonal to the first unit 

vector and can be found by computing the cross product (⊗) 

of the first unit vector with any arbitrary vector. Here we 
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choose the x-axis of the global coordinate system as the 

arbitrary vector:  

�̅�2
𝑏→𝑔

= �̅�1
𝑏→𝑔

⊗ [
1
0
0
] (2.8) 

A sanity check has to be performed to rule out that the resulting 

vector is the zero vector, which would happen if the axis of the 

spherocylinder is collinear with the x-axis of the global 

coordinate system. If the sanity check fails, one simply has to 

choose any arbitrary vector that is not collinear with (1,0,0), in 

the present work the vector (0,1,0) is used. To make �̅�2
𝑏→𝑔

 a 

unit vector it has to be normalized by its length. The third unit 

vector has to be orthogonal to the first two and is computed as: 

�̅�3
𝑏→𝑔

= �̅�1
𝑏→𝑔

⊗ �̅�2
𝑏→𝑔 (2.9) 

and also normalized. Finally, the moment of inertia tensor can 

be rotated to be congruent with the global coordinate system 

using the rotation matrix: 

𝐼 ̿𝑖,0
𝑔

= �̿�𝑏→𝑔 × 𝐼�̿�,0
𝑏 × �̿�𝑏→𝑔T

(2.10) 

 

Combining spherocylinders to a spherocylinder cluster requires 

two major steps, viz. computing the center of mass and the 

combined moment of inertia tensor of the cluster. The center of 

mass of the cluster (�̅�𝑐𝑜𝑚) is calculated according to: 

�̅�𝑐𝑜𝑚 =
1

∑ 𝑚𝑖𝑖
∑ �̅�𝑐𝑜𝑚,𝑖

𝑖
𝑚𝑖 (2.11) 
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Where the index i refers to all spherocylinders that make up the 

cluster, �̅�𝑐𝑜𝑚,𝑖 is the center of mass of each constituent 

spherocylinder and mi the mass of each spherocylinder.  

The combined moment of inertia tensor of a spherocylinder 

cluster can be computed by summing up the moment of inertia 

tensor of each constituent spherocylinder with the help of 

Steiner’s theorem, which moves the moment of inertia tensor 

of each constituent spherocylinder into the center of mass of 

the cluster. For the summation with Steiner’s theorem to be 

valid it has to be computed after the creation of the constituent 

spherocylinders, such that their moment of inertia tensors are 

all aligned with the global coordinate system. First, the vector 

pointing from the center of mass of the cluster (�̅�𝑐𝑜𝑚) to the 

center of mass of each constituent spherocylinder is computed 

(�̅�𝑐𝑜𝑚,𝑖): 

�̅�𝑖 = �̅�𝑐𝑜𝑚,𝑖 − �̅�𝑐𝑜𝑚 = [

𝑠1,𝑖

𝑠2,𝑖

𝑠3,𝑖

] (2.12) 

The combined moment of inertia tensor of the cluster at 

timestep 0 is congruent with the global coordinate system 

(𝐼�̿�𝑙𝑢𝑠𝑡,0
𝑔

) and is given as: 

𝐼�̿�𝑙𝑢𝑠𝑡,0
𝑔

= ∑ 𝐼�̿�,0
𝑔

𝑖
+

∑ 𝑚𝑖
𝑖

[

𝑠2,𝑖
2 + 𝑠3,𝑖

2 −𝑠1,𝑖𝑠2,𝑖 −𝑠1,𝑖𝑠3,𝑖

−𝑠1,𝑖𝑠2,𝑖 𝑠1,𝑖
2 + 𝑠3,𝑖

2 −𝑠2,𝑖𝑠3,𝑖

−𝑠1,𝑖𝑠3,𝑖 −𝑠2,𝑖𝑠3,𝑖 𝑠1,𝑖
2 + 𝑠2,𝑖

2

] (2.13)
 

For every timestep after the creating of a spherocylinder 

(cluster) it can no longer be guaranteed that the body fixed 

coordinate system is congruent with the global coordinate 
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system and therefore the moment of inertia tensor has to be 

considered body fixed (superscript b). 

 

2.2.2 Searching for particle contacts 
Checking for contacts between particles is computationally 

expensive, independent of the simulated particle shapes and the 

method used to compute the distance between particles to 

determine whether the particles are in contact [83]. The reason 

for the large computational effort is that checking for a contact 

between all N particles in a simulation requires at maximum N2 

computations of the (overlap-)distance between particles. To 

reduce the computational effort various methods have been 

developed to eliminate the need to check for contacts between 

all particles in a simulation. These methods include grid 

subdivision, the octree method and linked lists [84,85]. The 

original PONG 3D framework uses a grid subdivision approach 

(“boxing”), i.e. the simulation domain is subdivided into boxes 

and particles are sorted into certain boxes based on their 

position. Only particles that share a box are then checked for 

mutual contact, which means the computational effort grows 

linearly with the number of particles. The extension to 

spherocylinders also employs the boxing method from the 

original framework without any changes. Nevertheless, an 

explanation of the original boxing method for spherical 

particles is given below. 

For the boxing the simulation domain is subdivided into cubic 

boxes with edges of length B (see Figure 4), which have the 

same orientation as the global coordinate system. To determine 

in which box(es) a spherical particle with radius rp belongs to, 

an imaginary cube is projected around the particle. This cube is 

centered on the particle, is aligned with the global coordinate 
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system and has an edge length B = 2(rp+csph), where csph is the 

so-called contact tolerance for spherical particles. A particle is 

considered to be part of every box, where one of the vertices of 

the imaginary cube is positioned in (for a three-dimensional 

system there are up to eight boxes per particle). The sorting is 

done based on the vertices of the imaginary cube, since 

computing the corresponding box of one of the vertices is a 

computationally efficient problem. Sorting a particle into boxes 

based on the vertices of its imaginary cube poses puts a limit 

on the minimal size for the boxes, viz: 

𝐵 > 2(𝑟𝑝 + 𝑐𝑠𝑝ℎ) (2.14) 

If Eq. (2.14) is not considered, the vertices of the imaginary 

cube around a particle could be in two different boxes, neither 

of which contains the center point of the particle, which is 

shown for the particle in Figure 4 that has the contact tolerance 

cwrong. 
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Figure 4: Two-dimensional schematic of the boxing method. 

 

Adding the contact tolerance to the size of the imaginary cube 

has several computational benefits. First of all, it eliminates an 

issue that occurs when two particles sit right on the edge of two 

adjacent boxes and are touching (with zero contact force). 

These two particles will not be considered for a mutual contact 

search since both particles are sorted into different boxes. 

Adding the contact tolerance ensures that these two particles 
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would be part of the same box(es), even if they are close but 

not in physical contact (yet). Another computational benefit of 

adding the contact tolerance to the size of the imaginary cube 

is that it can be used to reduce the number of boxing operations 

for a particle, since a particle will note leave its assigned boxes, 

unless it has moved more than the distance csph. Consequently, 

in the present work the boxing operation for a particle is not 

performed unless a particle has accumulated a displacement of 

0.9csph. In the PONG 3D framework, particles are checked for 

contacts with other particles in their boxes immediately after 

boxing, which can be exploited for yet another computational 

benefit. The present work considers spherical particles to be in 

contact when their separation distance is less than 2csph, 

however, no contact forces are acting between the particles 

unless they are touching. Therefore, if a particle was not 

touching any particles it can be guaranteed that it will not touch 

any new particles unless it accumulated a displacement of csph. 

Therefore, in the present work the contact search for spherical 

particles is only started after a particle has been boxed, which 

only happens once the accumulated displacement is larger 

0.9csph. 

The boxing method described above could be used for 

spherocylinders without any changes, provided the edge length 

of the imaginary cube is at least as long as overall length of the 

spherocylinder (L) plus a contact tolerance. Two equally sized 

spherocylinders would then be considered in contact (but not 

touching) if their centers are separated by less than L plus a 

contact tolerance. According to Eq. (2.14) this would also 

require large enough boxes, which for granular systems of low 

density would be largely empty or for granular systems of high 

density would contain many particles. This makes the boxing 

method with large boxes, which are required for high aspect 
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ratio particles such as long spherocylinders, computationally 

inefficient. The efficiency can be improved by employing an 

approach proposed by Guo et al. [86], who suggested to 

subdivide long particles into smaller elements with lower 

aspect ratio for initial contact detection based on boxing. In the 

present work the spherocylinders are approximated by 

spherical particles for the boxing and initial contact detection. 

These massless spherical particles are termed virtual spheres, 

have the same diameter as the spherocylinder, always keep 

their positions within the spherocylinder particle and do not 

make contact with each other or other particles in the 

simulation. A visualization of the virtual spheres inside a 

spherocylinder is given in Figure 5. The first and last virtual 

sphere in a spherocylinder are congruent with the 

hemispherical caps of the spherocylinder, while the rest of the 

spherocylinder is filled equally spaced with Nfill virtual spheres, 

where 

𝑁𝑓𝑖𝑙𝑙 = 𝐹𝐿𝑂𝑂𝑅 (
𝐿 − 2𝑟𝑝

2𝑟𝑝
) (2.15) 

The FLOOR function rounds a number down to the nearest 

integer value. This method of filling a spherocylinder with 

virtual spheres guarantees that there are no gaps between the 

virtual spheres inside a spherocylinder. 
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Figure 5: Virtual spheres inside a spherocylinder. 

 

Figure 6a sketches a complication that occurs when using the 

virtual spheres for the initial contact detection of 

spherocylinders. If a spherocylinder touches another 

spherocylinder near the indentation between two virtual 

spheres, it might not be considered a contact if the contact 

tolerance for spherical particles csph is too small. A too small 

csph is illustrated in Figure 6a, where the green circle, 

representing csph around the first virtual sphere (dashed gray) of 

the red spherocylinder, does not overlap with any black circles 

of the blue spherocylinder. Therefore, no contact will be 

detected, since the separation between any virtual sphere of the 

red spherocylinder and any virtual sphere of the blue 

spherocylinder is larger than 2csph, although the 

spherocylinders are touching. The complication outlined above 

places a lower limit on the contact tolerance for spherical 

particles csph. A geometrical representation of this lower limit 

is shown in Figure 6b, where a separation distance for 

spherocylinders ccyl is introduced. The two distances a and b in 

Figure 6b are given as: a = 2rp+2ccyl and b = 2rp+2csph. If the 

requirement for a contact between spherocylinders is a 
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separation distance less than 2ccyl then the requirement for csph 

is: 

𝑐𝑠𝑝ℎ >
1

2
(√𝑟𝑝

2 + (𝑐𝑐𝑦𝑙 + 2𝑟𝑝)
2
− 2𝑟𝑝) (2.16) 

 

 

Figure 6: (a) Two spherocylinders are touching but are not 

recognized as contacting because the contact tolerance for the 
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spherical particles (csph) is too small. (b) The contact tolerance csph 

for spherical particles has to be chosen large enough such that 

spherocylinders are recognized as contacting when they are 

separated by a distance equal to twice the contact tolerance for 

spherocylinders (ccyl). 

 

Once a contact is found between the virtual spheres of 

spherocylinders, the two spherocylinders are considered in 

contact and the separation between the spherocylinders is 

calculated to determine whether the spherocylinders are 

touching. The separation between spherocylinders can be 

calculated by finding the minimal distance between the central 

axes of the spherocylinders, which in the present framework is 

done using the algorithm proposed by Lumelsky [87]. If the 

distance between the two central axes of the spherocylinder is 

less than the sum of the spherocylinder radii, the 

spherocylinders are touching. An illustration of 

spherocylinders in contact is given in Figure 7. The contact 

point between two spherocylinders is the middle point of the 

shortest line between the central axes of two contacting 

spherocylinders. In this contact point act the contact force 

between the spherocylinders (green arrows in Figure 7). If the 

central axes of two contacting spherocylinders share a parallel 

segment, as seen in Figure 7b, there is no single shortest line 

between the two central axes. In this case the contact point is 

the middle point of the line which is in the center of the parallel 

segment. 
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Figure 7: Schematic of two contacting spherocylinders: a) contact 

between a cylindrical section and a hemispherical end cap, b) 

parallel contact between spherocylinders. The red dashed lines 

denote the central axis of each spherocylinder. The blue line depicts 

the shortest distance between the central axis of the two 

spherocylinders and the contact point is the green middle point of the 

blue dotted line. 

 

2.2.3 Contact forces 
The contact force models are left unchanged from the original 

PONG 3D framework and the equations are repeated here for 

the sake of completeness. In PONG 3D the contact force in the 

normal direction is modelled by a linear spring-dashpot, i.e. a 
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Hookean spring. One could argue that a non-linear Hertzian 

contact model is more appropriate for contacts in granular 

materials. Other works however have shown that using the 

more complicated non-linear model over a linear model does 

not affect the probability distribution of the contact forces in 

packings of spherocylinders [88]. A benefit of the simpler 

linear contact model is that it yields a coefficient of restitution 

that is constant, i.e. independent of the relative velocity of the 

contacting particles [82]. It has also been argued that the 

material stiffness should increase with increasing contact area, 

e.g. in the case of a parallel contact between two 

spherocylinders (Figure 7b) [89–91]. However, a recent study 

has shown that varying the contact stiffness in the case of 

parallel contacts has little influence on the force distribution 

and the structure in packings of spherocylinders [88]. 

Consequently, in this work, the normal and tangential stiffness 

are assumed to be constant, regardless of the geometry of the 

contact. 

To calculate the contact forces between particles the positions 

of the particles in contact as well as their relative velocity has 

to be known. From the positions the overlap (δn) between the 

particles is calculated according to: 

𝛿n = 𝑟p,i  + 𝑟p,j  −  𝑑axes (2.17) 

In Eq. (2.17) rp,i and rp,j are the radii of the contacting 

spherocylinders i and j and daxes is the minimal distance 

between their central axes. The relative velocity between 

particles is calculated by considering the translational velocity 

(�̅�i and �̅�j) as well as the rotational velocity for the two 

contacting spherocylinders (�̅�i and  �̅�j): 

�̅�rel = �̅�i − �̅�j  + 𝑟i,c ⊗ �̅�i − 𝑟j,c ⊗ �̅�j (2.18) 
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�̅�i,c and �̅�j,c are the vectors pointing from the center of particle i 

and j, respectively to the contact point. The normal component 

of the relative velocity is the component of the relative velocity 

projected onto the normal vector (⊚ is the dot product): 

�̅�n = (�̅�rel ⊚ �̅�)�̅� (2.19) 

And the tangential component of the relative velocity can be 

found by subtracting the normal component from the total 

relative velocity: 

�̅�t = �̅�rel − �̅�n (2.20) 

To find the relative displacement in the tangential direction the 

relative velocity is integrated over time: 

�̅�t = ∫ �̅�t 𝑑𝑡 (2.21) 

 
With the information calculated above one can calculate the 

contact forces. The contact force in in the normal direction 

between particles i and j is given as: 

𝐹n = max (0,
𝑘𝑛

2
𝛿n − 𝜂n√2𝑚ij𝑘n𝑣n) (2.22) 

Here vn is the magnitude, i.e. the Euclidian norm, of the normal 

component of the relative velocity, kn is the normal stiffness of 

the particles and ηn is the normal damping factor. The so-called 

effective mass of the particles in contact mij is calculated from 

the mass of the individual particles: 

𝑚ij =
𝑚i𝑚j

𝑚i + 𝑚j

(2.23) 
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This normal contact force can be negative for particles which 

are in contact but with a negative relative velocity which 

indicates that the particles are separating from each other. This 

would yield an unphysical attractive normal contact force 

which has to be prevented, thus the normal contact force is set 

to zero if the above calculation yields a negative force. 

The contact force in the tangential direction acts in the opposite 

direction of the relative tangential velocity and is limited in 

magnitude by Coulomb’s friction law: 

𝐹t = min(𝜇
𝑘n

2
𝛿n,

𝑘t

2
𝛿t − 𝜂t√2𝑚ijkt𝑣t) (2.24) 

Here μ is the coefficient of friction, ηt is the tangential damping 

factor, kt is the tangential stiffness and vt is the magnitude of 

the tangential component of the relative velocity between the 

particles. 

 

2.2.4 Calculating the acceleration via Newton’s third 

law 
Once all contact forces acting on a particle i have been 

calculated they are summed up and the resulting force Fsum,i 

yields the acceleration of the particle in the next timestep as per 

Newton’s second law of motion: 

�̅�𝑖(𝑡 + Δ𝑡) =
�̅�𝑠𝑢𝑚,𝑖

𝑚𝑖

(2.25) 

For non-spherical particles all contact forces also induce a 

momentum Mi: 

�̅�𝑖(𝑡 + Δ𝑡) = ∑ �̅�c ⊗ (�̅�𝑛,c + �̅�𝑡,c)
c

(2.26) 
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where the index c loops over all contacts of particle i and rc is 

the vector pointing from the center of gravity of the particle to 

the contact point. 

 

2.2.5 Updating positions and velocities 
The velocity of a particle i is found by the numerical integration 

of the acceleration �̅�(𝑡) acting on the particle: 

�̅�𝑖(𝑡) = �̅�𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23�̅�𝑖(𝑡 − Δ𝑡) − 16�̅�𝑖(𝑡 − 2Δ𝑡) + 5�̅�𝑖(𝑡 − 3Δ𝑡)] (2.27)

 

The position is updated in similar fashion: 

�̅�𝑖(𝑡) = �̅�𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23�̅�𝑖(𝑡 − Δ𝑡) − 16�̅�𝑖(𝑡 − 2Δ𝑡) + 5�̅�𝑖(𝑡 − 3Δ𝑡)] (2.28)

 

Modelling non-spherical particles additionally necessitates 

keeping track of the particle orientation, angular velocity �̅�(𝑡), 

and angular momentum 𝐽(̅𝑡). The angular momentum of 

particle i at timestep t is found by integrating the net torque 

�̅�(𝑡) acting on the particle due to the off-center forces. For the 

integration the present framework employs a third order 

Adams-Bashforth scheme: 

𝐽�̅�(𝑡) = 𝐽�̅�(𝑡 − Δ𝑡) +
Δ𝑡

12
[23�̅�𝑖(𝑡 − Δ𝑡) − 16�̅�𝑖(𝑡 − 2Δ𝑡) + 5�̅�𝑖(𝑡 − 3Δ𝑡)] (2.29)

 

Subsequently, the quaternion is updated to the current timestep 

by integrating the past quaternion derivatives: 
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�̅�𝑖(𝑡) = �̅�𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23�̇̅�𝑖(𝑡 − Δ𝑡) − 16�̇̅�𝑖(𝑡 − 2Δ𝑡) + 5�̇̅�𝑖(𝑡 − 3Δ𝑡)] (2.30)

 

Where: 

�̅�𝑖(𝑡) = [

𝑞0

𝑞1

𝑞2

𝑞3

] (2.31) 

To find the angular velocity, the angular momentum is divided 

by the moment of inertia tensor 𝐼�̿�
b of the particle. As described 

in section 2.2.1, the moment of inertia tensor is given in the 

body fixed coordinate system, albeit congruent with the global 

coordinate system at the timestep of the particle creation. The 

angular momentum and angular velocity however are in the 

global coordinate system. Therefore, the moment of inertia 

tensor needs to be rotated from the body fixed to the global 

coordinate system for the calculation of the angular velocity. 

Quaternions are  used to construct the rotation matrix from the 

global to the body fixed coordinate system (�̿�𝑔→𝑏): 

�̿�𝑔→𝑏 = [�̅�1 �̅�2 �̅�3] (2.32𝑎) 

with: 

�̅�1 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2

2(𝑞1𝑞2 − 𝑞0𝑞3)

2(𝑞1𝑞3 + 𝑞0𝑞2)

] (2.32𝑏) 

�̅�2 = [

2(𝑞1𝑞2 + 𝑞0𝑞3)

𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2

2(𝑞2𝑞3 − 𝑞0𝑞1)
] (2.32𝑐) 
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�̅�3 = [

2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞2𝑞3 + 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (2.32𝑑) 

The rotation matrix is then used to rotate the angular 

momentum to the body fixed coordinate system: 

𝐽�̅�
𝑏(𝑡) = �̿�𝑔→𝑏 × 𝐽̅𝑖

𝑔(𝑡) × �̿�𝑔→𝑏𝑇
 

which can then be used to calculate the angular velocity in the 

body fixed coordinate system: 

�̅�𝑖
𝑏(𝑡) = 𝐼�̿�

𝑏−1
× 𝐽�̅�

𝑏(𝑡) (2.33) 

Finally, the body fixed angular velocity is used to find the 

quaternion derivative of the current timestep: 

�̇̅�𝑖(𝑡) =

[
 
 
 
�̇�1(𝑡)

�̇�2(𝑡)

�̇�3(𝑡)

�̇�4(𝑡)]
 
 
 

=

1

2
[

𝑞1(𝑡) −𝑞2(𝑡) −𝑞3(𝑡) −𝑞4(𝑡)
𝑞2(𝑡) 𝑞1(𝑡) −𝑞4(𝑡) 𝑞3(𝑡)
𝑞3(𝑡) 𝑞4(𝑡) 𝑞1(𝑡) −𝑞2(𝑡)
𝑞4(𝑡) −𝑞3(𝑡) 𝑞2(𝑡) 𝑞1(𝑡)

]

[
 
 
 
 

0
𝜔𝑖,𝑥

𝑏 (𝑡)

𝜔𝑖,𝑦
𝑏 (𝑡)

𝜔𝑖,𝑧
𝑏 (𝑡)]

 
 
 
 

(2.34)

 

  



45 

3 Effect of artificial aggregate shapes 

on the porosity, tortuosity, and 

permeability of their packings 
 

Adapted from: 

N.A. Conzelmann, M.N. Partl, F.J. Clemens, C.R. Müller, L.D. 

Poulikakos, Effect of artificial aggregate shapes on the 

porosity, tortuosity, and permeability of their packings, Powder 

Technol. 397 (2022). doi:10.1016/j.powtec.2021.11.063.  
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3.1 Abstract 
Natural aggregates such as gravel are used in many 

construction applications for which porous structures are 

needed, for example to allow water drainage. However, the 

range of attainable porosities is limited due to the irregular 

shapes of natural aggregates. Here we investigate artificial 

aggregates of engineered shapes, which allow structures with 

porosities exceeding 0.7. In this study packings of a variety of 

artificial aggregate shapes are examined by both numerical and 

experimental techniques. We can establish a correlation 

between the porosity of a packing and the sphericity of the 

aggregates. Furthermore, we confirm that the Carman-Kozeny 

correlation can be used to predict accurately the permeability 

of a packing for a wide range of porosities (0.33 – 0.78). 

Establishment of this basic relationship between the porosity 

and permeability of a packing is critical for the design of 

artificial aggregates for novel applications such as energy 

harvesting from pavements. 

 

3.2 Introduction 
Aggregates in the form of sand, gravel or crushed rock are the 

basis of many construction and building materials such as 

concrete and asphalt in which the aggregates are compounded 

with a binder. Other construction applications, such as 

subsurface drainage systems employ unbound aggregates 

which are poured or mechanically compacted to form rigid 

structures [92], so-called aggregate packings [93,94]. One 

specific application of a bound permeable material is porous 

asphalt concrete. However, due to the relatively low open 

porosity ε of 0.15 < ε < 0.25 and the relatively small size of its 

pores, porous asphalt for road pavements is prone to clogging 
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[95–97]. Increasing the porosity of asphalt concrete would not 

only reduce the clogging problem but also enable applications 

such as energy harvesting from roads. To harvest energy from 

pavements, one approach proposes to embed air filled tubes 

into the pavement [98]. With increasing pavement temperature, 

the air expands and drives a turbine to generate electricity. A 

positive side effect of this technology is the alleviation of urban 

heat islands in modern cities, through cooling of the pavement 

[99–101]. However, introducing tubes into the asphalt 

pavement complicates the recycling of the pavement material. 

A pavement material that is highly porous and permeable to air 

and water but does not contain foreign objects such as tubes 

could enable energy harvesting while retaining its recyclability. 

Another drawback of porous asphalt with conventional 

aggregates is that the pavement durability decreases with 

increasing porosity [102]. The durability could potentially be 

improved by engineered interlocking aggregates that form a 

rigid yet porous packing. 

An associated challenge is the accurate determination of the 

water permeability of construction materials that are composed 

of packings of aggregates. Studies correlating the packing 

porosity and permeability are thus far limited by the narrow 

range of porosities that can be achieved with conventional 

aggregates. The earliest method to determine the permeability 

of an aggregate packing was proposed by Darcy [103] in 1856 

by relating the water flux q through a packing with its 

permeability k and the pressure gradient 
𝜕𝑝

𝜕𝑥
 over the packing, 

viz:  

𝑞 = −
𝑘

𝜈𝑤𝜌𝑤

𝑑𝑝

𝑑𝑥
(3.1) 
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where νw and ρw are the kinematic viscosity and density of 

water. However, measuring simultaneously the flux and 

pressure drop can be challenging. For Reynolds numbers (Re) 

< 1, an empirical correlation to determine the permeability of a 

packing based on ε and the aggregate sphericity Ψ and diameter 

dp, was proposed by Kozeny in 1927 [104], and later refined by 

Carman [105,106]: 

𝑘 =  
𝛹2𝑑𝑝

2휀3

150(1 − 휀)2
(3.2) 

The original equation of Kozeny incorporates tortuosity τ, a 

parameter that gives the mean path length of a fluid particle 

when percolating through the packing. In the revised version of 

Carman, tortuosity is incorporated in the scaling constant (150) 

using experimental data. To this day, the validity of the 

Carman-Kozeny correlation [Eq. (3.2)] has been confirmed by 

a vast number of studies [107–110]. However, the physical 

packings studied in these works usually covered only a small 

range of ε, e.g. for pervious concrete [110] and fiber mats [108] 

porosities in the range of, respectively, 0.1 < ε < 0.35 and 0.5 < 

ε < 0.8 were typically encountered. Other studies have 

investigated wider ranges of ε, but considered non-physical 

packings such as randomly placed obstacles [107,111], or 

fractal geometries [109]. A critical evaluation of the validity of 

the Carman-Kozeny correlation over a wide range of ε for 

physical packings is missing thus far. 

Above we have outlined two current challenges: (i) the 

requirement of aggregate packings to accommodate a large 

porosity to enable novel applications such as energy harvesting 

from pavements, without reducing their durability, and (ii) the 

open validation of the Carman-Kozeny correlation for physical 

packings covering a wide range of ε. Both challenges persist 
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because current methods for aggregate production yield 

irregularly shaped aggregates, which in the case of crushed 

rock and gravel are approximately cubical [112]. The use of 

irregularly, cubically, shaped aggregates, however, limits the 

range of attainable packing porosities, as cubes form relatively 

dense packings compared to other shapes [48,59,63]. Despite 

the practical importance of aggregates as construction 

materials, they are commonly used in their “natural state” and 

their shape is not specifically designed to optimize the 

aggregate packing for certain properties. Yet, recently a new 

type of artificial aggregate with engineered shapes, such as 

stars, tetrapods, and dolosse has been proposed [63,113,114]. 

Indeed such shapes have been also used in marine engineering 

to construct breakwaters, since shapes such as tetrapods and 

dolosse have been shown to form porous yet stable packings 

[115]. Advances in 3D printing have unlocked the 

manufacturing capabilities of such artificial aggregates using 

polymers [113], or even ceramics [116]. Additionally, 

aggregate shapes can be designed to be geometrically 

interlocking, enabling freestanding loadbearing structures of 

unbound aggregates [62,114,117,118]. This loadbearing 

property makes the construction of unbound building facades 

possible, for example in urban canyons, allowing the porosity 

to be optimized for noise absorption in addition to the 

mitigation of heat islands as discussed above [119]. 

Simultaneously, however, the interlocking property reduces the 

compactibility and workability of the material, as evidenced by 

an increase of the shear strength with decreasing aggregate 

sphericity [120]. 

Here we investigate artificial aggregates of different shapes and 

quantify their packing properties such as porosity, tortuosity, 

and water permeability, and in doing so assess the validity of 
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the Carman-Kozeny correlation for physical packings covering 

a wide range of porosities for Re = 0.56. Packings are 

constructed both experimentally from model polymer 

aggregates in an unbound configuration and numerically using 

the discrete element method (DEM). Subsequently, the 

permeability is computed numerically using the lattice 

Boltzmann method (LBM) and validated experimentally using 

the falling pressure head method. 

 

3.3 Materials and Methods 
Figure 8 gives an overview of the materials and methods 

employed in this work which are divided into a numerical and 

experimental part. In the numerical part, the DEM is used to 

create packings composed of three different types of non-

spherical aggregate shapes, viz. tetrapods, dolosse and 

tetrahedra (see Figure 9). Since the full 3D geometrical 

information is known for the packings generated with the 

DEM, the porosity of these packings can be determined with 

high accuracy. Computing the tortuosity requires an 

intermediate step in which the 3D geometric information is 

converted into binary data sets, that distinguish between 

aggregate matter and voids and are stored as images that slice 

the packing horizontally. To compute the permeability of water 

in a given numerical packing, the geometrical information is 

converted into a stereolithographic (STL) file which requires 

triangular tessellation of the aggregate surfaces. Subsequently, 

the STL file is used to construct the geometry to compute the 

permeability via LBM simulations. 

In the experimental part of this work, aggregates of two 

different tetrapod shapes are constructed from acrylonitrile 

butadiene styrene (ABS) polymer via injection molding. These 
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aggregates are poured into a container to construct packings, 

which are then used to determine the packing porosity from the 

weight of water filling the voids. The packings are further used 

to determine their water permeability via the falling pressure 

head method. One of the constructed packings, i.e. using 

tetrapods with sphericity Ψ = 0.53, is imaged using X-ray 

computed tomography (CT) to obtain identical, full 3D 

geometry information as from the DEM simulations. This 

experimentally obtained 3D geometry of the packing is used to 

compute the porosity, tortuosity and permeability of the 

packing utilizing the same numerical methods as for the DEM 

packings. 
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Figure 8: Overview of the materials and methods applied in the 

numerical and experimental parts. 

 

3.4 Numerical materials and methods 

3.4.1 Aggregate shapes 
The aggregate shapes studied here are constructed by 

intersecting identical spherocylinders, i.e. cylinders with 

hemispherically capped ends. In doing so, three different types 

of artificial aggregate shapes are constructed, viz. tetrapods, 

dolosse and tetrahedra. The aggregate shapes are visualized in 

Figure 9. 
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A tetrapod is constructed from four spherocylinders, which 

extend from the center of gravity of a regular tetrahedron to the 

four vertices of the tetrahedron. The hemispherical endcaps of 

the spherocylinders in the center of gravity are congruent with 

a sphere around the center of gravity of the tetrahedron. 

Dolosse are constructed by combining three spherocylinders 

such that they form a H. The base point of each hemispherical 

endcap of the central spherocylinder lies exactly at the center 

of the central axis of an outer spherocylinder. To complete a 

dolos, one of the outer spherocylinders is then rotated by 90° to 

be perpendicular to the other two spherocylinders. 

Tetrahedra are constructed from six spherocylinders each lying 

on one of the six edges of a tetrahedron. The hemispherical 

endcaps of the spherocylinders are congruent in the four 

vertices of the tetrahedron. 

For each type of aggregate, a variety of aggregates of varying 

sphericity (Ψ) are constructed by changing the length and 

diameter of the constituent spherocylinders. Here the sphericity 

is defined as the surface area of a sphere with the same volume 

as the non-spherical aggregate divided by the surface area of 

the non-spherical aggregate. A visual representation for this is 

shown in  Figure 10, where the sphere (blue) that has the same 

volume as the red tetrapod. All aggregates considered in this 

study have the same volume of 733 mm3. The diameters and 

aspect ratios of all of the simulated aggregate shapes can be 

found in the Table 1-Table 3, where the aspect ratio is defined 

as a spherocylinders length divided by its diameter. An infinite 

number of aggregate shapes could be constructed by varying 

the diameters and aspect ratios of the intersecting 

spherocylinders, which would lead to arbitrarily complex 

packings. The reason for using identical spherocylinders to 
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construct an aggregate is to reduce complexity. For the same 

reason, packings are created by using only aggregates of 

identical type and sphericity. 

In addition to sphericity (Ψ), the shape of the aggregates is also 

described quantitatively by their convexity (Ω). The convexity 

is defined as the volume of the aggregate divided by the volume 

of the convex hull enveloping the aggregate. The convex hull 

is the smallest convex polygon which completely envelopes the 

aggregate. A more figurative description of the convex hull is 

this: Imagine wrapping an aggregate with a cloth and pulling 

the cloth as tight as possible. The cloth will then have the same 

shape as the convex hull. A visualization of the convex hull for 

a tetrapod with Ψ = 0.53 (AR = 3.5) is shown in Figure 11. 

Coincidentally, the convex hull for all of the three aggregate 

types investigated here, viz. tetrapods, dolosse and tetrahedra 

takes the shape of a tetrahedron, albeit an irregular-shaped 

tetrahedron for dolosse. 
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Figure 9: The different artificial aggregate types and aggregate 

sphericities that are investigated in this work. 

 

Figure 10: Tetrapod with Ψ = 0.53 (red) and sphere of the same 

volume as the tetrapod (transparent blue). 

Table 1: Shape parameters for tetrapods and number of aggregates 

used to construct the respective packings. 

Sphericity AR dp [mm] Number of aggregates 

0.99 1.1 9.8 2470 

0.94 1.3 8.11 2520 

0.86 1.5 7.15 2470 

0.80 1.75 6.41 2300 

0.75 2 5.9 2160 

0.67 2.5 5.22 1920 

0.62 3 4.78 1690 

0.58 3.5 4.46 1490 

0.55 4 4.205 1350 

0.53 4.5 4 1350 
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0.51 5 3.835 1330 

0.47 6 3.568 1100 
 

Table 2: Shape parameters for dolosse and number of aggregates 

used to construct the respective packings. 

Sphericity AR dp [mm] Number of aggregates 

1.00 1.1 10.068 3000 

0.95 1.4 8.15 3000 

0.92 1.5 7.73 3000 

0.85 1.8 6.838 2900 

0.81 2 6.425 2800 

0.73 2.5 5.705 2700 

0.68 3 5.228 2600 

0.60 4 4.61 2200 

0.55 5 4.206 2000 

0.52 6 3.917 1650 

0.49 7 3.692 1550 
 

Table 3: Shape parameter for tetrahedra and number of aggregates 

used to construct the respective packings. 

Sphericity AR dp [mm] Number of aggregates 

0.99 1.1 10.28 3000 

0.97 1.5 7.94 3000 

0.93 2 6.32 3000 

0.87 2.5 5.312 3000 

0.81 2.75 4.95 3300 

0.74 3 4.67 3600 

0.65 3.5 4.25 3300 
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0.58 4 3.947 2800 

0.51 5 3.525 2400 

0.43 7 3.04 1600 
 

 

Figure 11: Visualization of the convex hull (cyan) enveloping a 

tetrapod with Ψ = 0.53 (red). 

 

3.4.2 Discrete element method (DEM) 
The DEM was originally developed by Cundall & Strack [80] 

for spherical particles, and has been extended to model non-

spherical particles [81,121–123]. In this work, an in-house 

DEM framework is used which models non-convex aggregates 

by combining multiple intersecting spherocylinders to form the 

aggregates shown in Figure 9. 

The DEM treats each aggregate as a discrete element moving 

freely in space. In the DEM time is advanced by performing the 
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following operations in a timestep: (i) based on the known 

position of the particles, x(t), determine whether contacts exist, 

(ii) calculate the contact forces, (iii) determine the acceleration 

acting on the individual aggregates via Newton’s second law of 

motion and (iv) update the new position of the aggregated, 

x(t+Δt) through Eq. (3.3) and (3.4). 

The velocity vi of an aggregate i at timestep t is calculated 

through a third-order Adams-Bashforth scheme: 

𝑣𝑖(𝑡) = 𝑣𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23𝑎𝑖(𝑡 − Δ𝑡)

−16𝑎𝑖(𝑡 − 2Δ𝑡) + 5𝑎𝑖(𝑡 − 3Δ𝑡)] (3.3)
 

where ai(t) is the acceleration of aggregate i. The new position 

xi of the aggregate is then obtained via:  

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23𝑣𝑖(𝑡 − Δ𝑡)

−16𝑣𝑖(𝑡 − 2Δ𝑡) + 5𝑣𝑖(𝑡 − 3Δ𝑡)] (3.4)

Modelling non-spherical aggregates requires information on 

the aggregate orientation, angular velocity ω(t), and angular 

momentum J(t). The angular momentum of aggregate i is found 

by integrating the net torque M acting on the aggregate:  

𝑱𝑖(𝑡) = 𝑱𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23𝑀𝑖(𝑡 − Δ𝑡)

−16𝑀𝑖(𝑡 − 2Δ𝑡) + 5𝑀𝑖(𝑡 − 3Δ𝑡)] (3.5)
 

To obtain the angular velocity ωi the angular momentum is 

divided by the moment of inertia matrix I of the aggregate: 

𝜔𝑖(𝑡) =
𝑱𝑖(𝑡)

𝑰𝑖
= 𝑱𝑖(𝑡)𝑰𝑖

−1 (3.6) 

The orientation of the aggregate can be described by a rotation 

matrix based on Euler angles. However, this rotation matrix has 
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the disadvantage of having singularities. To circumvent this 

limitation, the DEM commonly employs quaternions [81]. The 

rotation matrix which describes the aggregate orientation can 

be calculated from the quaternion q, while the quaternion is 

calculated for each timestep by integration: 

𝑞𝑖(𝑡) = 𝑞𝑖(𝑡 − Δ𝑡) +
Δ𝑡

12
[23�̇�𝑖(𝑡 − Δ𝑡)

−16�̇�𝑖(𝑡 − 2Δ𝑡) + 5�̇�𝑖(𝑡 − 3Δ𝑡)] (3.7)
 

with 

[
 
 
 
 
�̇�𝑖,1(𝑡)

�̇�𝑖,2(𝑡)

�̇�𝑖,3(𝑡)

�̇�𝑖,4(𝑡)]
 
 
 
 

=

1

2

[
 
 
 
 
𝑞𝑖,1(𝑡) −𝑞𝑖,2(𝑡) −𝑞𝑖,3(𝑡) −𝑞𝑖,4(𝑡)

𝑞𝑖,2(𝑡) 𝑞𝑖,1(𝑡) −𝑞𝑖,4(𝑡) 𝑞𝑖,3(𝑡)

𝑞𝑖,3(𝑡) 𝑞𝑖,4(𝑡) 𝑞𝑖,1(𝑡) −𝑞𝑖,2(𝑡)

𝑞𝑖,4(𝑡) −𝑞𝑖,3(𝑡) 𝑞𝑖,2(𝑡) 𝑞𝑖,1(𝑡) ]
 
 
 
 

[
 
 
 

0
𝜔𝑖,𝑥(𝑡)

𝜔𝑖,𝑦(𝑡)

𝜔𝑖,𝑧(𝑡)]
 
 
 

(3.8)

 

Once the new positions, orientations, and (angular) velocities 

of all aggregates have been updated a new contact search starts. 

Detecting contacts between spherocylinders requires the 

calculation of the distance between the central axes of 

neighboring spherocylinder (shown in red in Figure 12). If the 

distance between the central axes of two spherocylinders is 

smaller than two times the spherocylinder radius r the 

aggregates are in contact. In the present DEM framework, 

finding the distance between two line segments (i.e. central 

axes) is solved using the algorithm proposed by Lumelsky [87]. 

The contact point between two spherocylinders is the middle 

point of the shortest line between the central axes of two 



60 

contacting spherocylinders (see green line in Figure 12a). The 

contact forces (blue arrows in Figure 12) act at the contact point 

between two spherocylinders. If the central axes of two 

contacting spherocylinders share a parallel segment, as seen in 

Figure 12b, there is no single shortest line between the two 

central axes. In this case the contact point is the middle point 

of the line which is in the center of the parallel segment. 

The contact force acting at the contact point can be decomposed 

into a normal contact force Fn and, assuming a non-zero friction 

coefficient, a tangential contact force Ft. Both contact forces 

are modelled by a linear spring dashpot which yields a constant 

coefficient of restitution. The contact force in the normal 

direction between aggregate i and j is given as: 

𝐹𝑛 = max(0,
𝑠𝑛

2
𝛿𝑛 − 𝜂𝑛√2𝑚𝑖𝑗𝑠𝑛𝑣𝑛) (3.9) 

where sn is the normal stiffness of the aggregate, δn is the 

overlap between the contacting spherocylinders, ηn is the 

normal damping factor, vn is the normal component of the 

relative velocity between the aggregates at the contact point 

and mij is the effective inertial mass of aggregates i and j which 

is given by: 

𝑚𝑖𝑗 =
𝑚𝑖𝑚𝑗

𝑚𝑖 + 𝑚𝑗

(3.10) 

In the tangential direction the contact force is modelled 

following Coulomb’s law of friction: 

𝐹𝑡 = min(𝜇
𝑠𝑛

2
𝛿𝑛,

𝑠𝑡

2
𝛿𝑡 − 𝜂𝑡√2𝑚𝑖𝑗𝑠𝑡𝑣𝑡) (3.11) 
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where μ is the coefficient of friction, ηt is the tangential 

damping factor, st is the tangential stiffness and vt is the 

tangential component of the relative velocity between the 

aggregates at the point of contact. The accumulated tangential 

displacement at the contact point is calculated as 𝛿𝑡 = ∫ 𝑣𝑡  𝑑𝑡. 

 

Figure 12: Sketch depicting two contacting spherocylinders. (a) 

Oblique contact. (b) Parallel contact. 

 

Once all contact forces acting on a given aggregate i have been 

calculated they are summed up and the resulting force Fsum,i 

allows to calculate the acceleration acting on aggregate i: 

𝑎𝑖(𝑡 + Δ𝑡) =
𝐹𝑠𝑢𝑚,𝑖

𝑚𝑖

(3.12) 

For non-spherical aggregates contact forces also induce a 

torque Mi: 

𝑀𝑖(𝑡 + Δ𝑡) = ∑ 𝑟c × (𝐹𝑛,c + 𝐹𝑡,c)
c

(3.13) 

where the index c loops over all contacts of aggregate i and rc 

is the vector pointing from the center of gravity of the aggregate 

to the contact point.  

The values of the parameters used in the DEM simulations were 

chosen to model the properties of ABS aggregates [124]. The 
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parameters are listed in Table 4. It is worth noting that the DEM 

values chosen to describe the stiffness of the aggregates are 

commonly much lower than the physical values to allow for 

larger time steps as the time step size is typically ~20 times the 

collision time tcol which is given by [125]: 

𝑡𝑐𝑜𝑙 =
𝜋

√
𝑠𝑛
𝑚𝑖𝑗

(1 − 𝜂𝑛
2)

(3.14)
 

In the present work, as it has been shown that the magnitude of 

the stiffness has negligible effects on the packing properties, a 

value of 10'000 N/m was chosen for the normal stiffness, which 

allows for a ∆t of 10-5 s, [126]. The value for the tangential 

stiffness was chosen as half the normal stiffness in accordance 

with previous studies [118,121,127]. 

Table 4: Parameters used for DEM simulations. 

Parameter Symbol Value 

Density ρ 1000 kg/m3 

Normal stiffness sn 10'000 N/m 

Tangential stiffness st 5'000 N/m 

Coefficient of restitution e 0.3 

Normal damping factor ηn 0.35 

Tangential damping factor ηt 0.3 

Coefficient of friction μ 0.35 

Wall friction coefficient μw 0.1 

Time step ∆t 10-5 s 

 

All aggregate packings are modelled in a cylindrical simulation 

domain with a diameter of 100 mm and a height of 700 mm, 

which matches the acrylic cylinder used for the physical 

experiments. The DEM domain is filled by creating aggregates 
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at a height of 600 mm in batches of 3 by 3 aggregates. Between 

each aggregate, there is a gap of the same size as the diameter 

of the constituent spherocylinders of the aggregate. 

Additionally, each aggregate is given a random orientation and 

a random initial velocity in both horizontal directions of vini (-

0.5 m/s < vini < 0.5 m/s). Immediately upon their creation, the 

aggregates fall to the bottom of the cylinder domain and after 

0.11 s a new 3 by 3 batch of aggregates is created. This step is 

repeated until a sufficient number of aggregates has been 

created to yield a packing height of at least 350 mm. The 

number of aggregates used to model each packing is given in 

Table 1-Table 3. Once all aggregates are created, the packing 

obtains its equilibrium position within one second and the 

simulation is stopped. 

The DEM data is exported as a stack of black and white 

(binary) images that represent horizontal slices through the 

packing. These slices are rendered using the ray tracing 

software POV-Ray [128]. An extended description of the 

rendering of the slices is given in chapter 3.4.5. The porosity ε 

of the DEM packings is determined by: 

휀 =
1 − 𝑉𝑎𝑔𝑔

𝑉𝑑𝑜𝑚𝑎𝑖𝑛

(3.15) 

where Vagg is the total volume of all aggregates and Vdomain is 

the volume of the cylindrical domain, i.e. from the bottom to 

the highest point of the aggregate packing. For each type of 

aggregate, a fourth-order polynomial was fitted to the ε versus 

Ψ data points to yield an ε-Ψ relationship which can be used to 

evaluate the Carman-Kozeny equation. To construct the fluid 

domain for the LBM simulations, the geometrical information 

of the DEM packings is converted into STL files. An 

explanation of this conversion process is given in chapter 3.4.6. 



64 

 

3.4.3 Computing the tortuosity of a packing 
The tortuosity is defined as the length of the shortest path 

through the pore space of a packing divided by the length of a 

straight line through the packing. In the present work the goal 

is to compute the tortuosity solely based on geometric 

information of the packing, i.e. the so-called geometric 

tortuosity [129]. Alternative methods to calculate the 

tortuosity, e.g. the hydraulic tortuosity which can be computed 

e.g. through the method proposed by Duda et al. [130], require 

also information on the fluid velocity in the porous medium. A 

separate investigation described in section E of the 

supplemental material shows that the method by Duda et al. 

[130] is a less suitable measure of the tortuosity of pavements 

constructed of artificial aggregates compared to the geometric 

tortuosity. Hence, a method to calculate the geometric 

tortuosity of packings was developed in this work. This method 

relies on the binary horizontal slices through the packing. 

Neighboring slices have a vertical separation of 0.2 mm. For all 

DEM packings investigated, the top and bottom 30 mm are 

ignored for the tortuosity analysis due to wall and free-surface 

effects.  

The tortuosity calculation starts with the top slice of the central 

section of the packing. A grid of dots spaced 5 mm is drawn on 

this slice, see black dots in Figure 13. These black dots are 

drawn in the same positions on all slices. If a black dot lies 

inside an aggregate, the closest point not lying inside the 

aggregate is found (blue dots in Figure 13). For each blue dot a 

line is drawn connecting the blue dot and the associated black 

dot. The following restriction for finding the blue dots is 

applied: If the angle between the two lines connecting the black 
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dot with its associated blue dots on two subsequent slices is 

larger than 45° the blue dot on the second slice is rejected. 

Instead, a new blue dot is found which is closest to the center 

of the line connecting the black dot and the blue dot on the first 

of the two neighboring slices. This scheme is illustrated in 

Figure 13a where one of the black dots has been highlighted in 

yellow. The closest surface point to the yellow dot in the first 

slice, Figure 13a, is the red dot. In the following slice, Figure 

13b, the closest surface point to the yellow dot is the green dot. 

The red dot from slice Figure 13a is superimposed on the slice 

in Figure 13b for demonstration. Since the angle between the 

line connecting the red and yellow dots and the line connecting 

the green and yellow dots is larger than 45°, the green dot will 

be rejected. Instead, a new closest surface point (purple dot) is 

found for the center of the line connecting the red and yellow 

dots. In the aggregate packings investigated here less than 

0.01% of the dots were rejected. Furthermore, varying the 

rejection angle between 0° and 90° has no measurable effect on 

the calculated tortuosity values. However, changing the vertical 

resolution, i.e. the distance between slices could affect the 

determined tortuosity values. 

Once all slices have been processed, a tortuous path through the 

packing is obtained by connecting each black dot with the 

corresponding black dot on the subsequent slice or with the 

corresponding closest blue dot if the black dot lies inside an 

aggregate. Such a tortuous path is sketched in Figure 13c. The 

tortuosity of one path is calculated by dividing the length of the 

path by the length of a straight line connecting the start and end 

of the path. To calculate the tortuosity of an entire packing the 

tortuosity of all paths for the given packing is averaged. 

Typically, 208 paths per packing are calculated. When varying 
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the number of paths from 80 to 3500 the computed tortuosity 

values fluctuate by only ± 2%. 

 

Figure 13: (a) Horizontal slice through a packing of tetrapods with 

Ψ = 0.53. (b) Horizontal slice that is located 0.2 mm below the slice 

shown in (a). (c) Illustration of the construction of a tortuous path 

through the packing. 

 

3.4.4 Lattice Boltzmann method (LBM) 
Owing to its high versatility for complex boundary systems, the 

LBM method is used to calculate the flow field in the aggregate 

packings. Here we use the open source LBM framework 

Palabos [131]. To this end the STL files are imported and the 
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surface of the aggregates is modelled by bounce-back walls. At 

the inlet a Poiseuille flow profile is prescribed with an average 

velocity u = 0.05 mm/s. This ensures a low Reynolds number 

laminar flow. Unfortunately, high Reynolds number flows, as 

encountered in the falling head experiments, cannot be 

modelled due to stability limitations of the LBM approach. 

Nonetheless, it is possible to compare the results of the falling 

head experiments and the simulations, provided that the 

experiments are evaluated with the Darcy-Forchheimer 

equation that is appropriate for turbulent flows [Eq. (3.18)], 

while the simulations are evaluated with the Darcy equation for 

laminar flows [Eq. (3.17)]. 

The outlet is modelled with a Neumann boundary condition, 

i.e. a zero-velocity gradient and a constant pressure equal to the 

ambient pressure. The modelled fluid is water with a density 

(ρw) of 1000 kg/m3 and a kinematic viscosity (νw) of 10-6 m2/s. 

The LBM solver uses the incompressible Bhatnagar-Gross-

Krook (BGK) model [132]. The non-dimensional lattice 

viscosity νlat is varied between 0.01 and 0.05 to yield optimal 

convergence. The time step size dt and the lattice viscosity are 

related through: 

𝑑𝑡 =  
𝜈𝑙𝑎𝑡

𝜈𝑤𝑑𝑥2
(3.16) 

where dx is the lattice spacing. The fluid space is discretized 

using a D3Q19 lattice with equally spaced nodes in all three 

directions, i.e. dx = dy = dz = 133.33 μm, yielding up to 540 

million nodes per simulation, with computations running on 

420 CPU cores for approximately 12 hours. 

Once the LBM simulations have reached a steady state, the 

permeability k is determined by applying Darcy’s law: 
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𝑘 =  
𝐿𝜈𝑤𝜌𝑤𝑢

∆𝑃
(3.17) 

where L is the height of the packing and ∆P is the pressure drop 

between the inlet and outlet. 

3.4.5 Rendering binary slices from DEM packings 
Modelling an aggregate packing with the discrete element 

method (DEM) yields a full geometric description of the 

packing. To calculate the tortuosity of this packing the 

geometric information needs to be presented as binary images 

of horizontal slices through the packing. In these images a 

white pixel denotes aggregate matter, whereas a black pixel 

denotes void space (see Figure 14). 

The image slices are rendered using the ray tracing software 

POV-Ray [128]. The tabulated geometric information obtained 

from the DEM modelling is translated into a scene file for each 

slice using a python script. Scene files contain all information 

needed by POV-Ray to generate an image, such as the positions 

and dimension of all aggregates, as well was the position of the 

camera and light sources. The scene is set up such that an 

orthographic camera observes the packing form above with the 

light sources above/behind the camera and a black background. 

The aggregates are represented in the scene file as white 

objects, which are intersected by a flat rectangular box of 

0.2 mm height to extract a slice. For subsequent slices this flat 

box is offset vertically by 0.2 mm. 
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Figure 14: Horizontal binary slices of 0.2 mm height through a 

packing of tetrapods with Ψ = 0.53. (a) DEM packing with the slice 

being generated by ray tracing using the software POV-ray. (b) 

Physical packing imaged by X-ray CT. The software Avizo is used to 

post-process the data and to export the slice. 

 

3.4.6 Creating the surface geometry of DEM packings 
A DEM simulation yields the positions and orientations of the 

aggregates in a packing. From such a packing a 120 mm high 

central section is extracted. To be able to use the geometry data 

of this packing section as an input for the LBM simulations, the 

data needs to be converted into STL files. This is done via a 

python script using the package trimesh [133]. The script 

converts the position of each constituent spherocylinder of an 

aggregate into a trimesh object with the same position and 

orientation as the spherocylinder, representing the surface of a 

spherocylinder composed of triangles (see Figure 15a). When 

the objects corresponding to the aggregate-forming 

spherocylinders are combined, the resulting object has internal 

walls, as shown in the transparent view in Figure 15b. Such an 

object with internal walls is called non-manifold and is 
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generally undesired in STL files. Using a non-manifold STL 

file would lead to computational errors in the LBM simulations. 

To remove internal walls, the software trimesh computes the 

boolean union of the object shapes and generates the surface of 

the aggregate composed of triangles (see Figure 15c).  

The only variable parameter in this process is the number of 

triangular facets used to represent a surface. Decreasing the 

number of facets would make a round surface to become more 

angular. For the cylindrical surfaces used here it was found that 

32 facets along the length of a spherocylinder are sufficient to 

resolve the curvature of the surface. Increasing the number of 

facets further does not affect the results of the permeability 

simulations. Finally, the complete 120 mm high packing 

section is placed centrally into a 150 mm long cylinder with 

diameter 100 mm. This cylinder represents the fluid domain 

considered for the permeability computations. Additional 

simulations confirmed that increasing the cylinder length 

beyond 150 mm does not affect the permeability values 

obtained. A visualization of the STL surface of a packing 

section (tetrapods Ψ = 0.53) is given in Figure 15d. 
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Figure 15: (a) Four objects which correspond to the triangulated 

surfaces of the spherocylinders of a tetrapod (Ψ = 0.67). (b) 

Transparent view of the tetrapod showing internal walls. (c) Boolean 

union of the four objects of a tetrapod which removes internal walls. 

(d) Visualization of a tetrapod (Ψ = 0.53) packing section. 

 

3.5 Experimental materials and methods 

3.5.1 Polymer aggregates 
To verify the numerical results experimentally, physical 

tetrapods of two different sphericities (Ψ = 0.87 and Ψ = 0.53) 

are used. These physical aggregates are manufactured from an 

ABS polymer via injection molding with identical geometries 

as the numerical aggregates. Images of the physical aggregates 
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can be found in Figure 16. These two tetrapod shapes are 

chosen to cover the wide range of tetrapod sphericities that 

were investigated numerically (0.99 ≤ Ψ ≤ 0.47). Since initial 

comparisons of the experimentally and numerically determined 

porosity showed good agreement it was deemed unnecessary to 

manufacture additional shapes for validation. 

 

Figure 16: Physical tetrapods of different sphericities packed into an 

acrylic pipe with 100 mm diameter, the sphericities of the tetrapods 

are: (a) Ψ = 0.87 and (b) Ψ = 0.53. 

 

3.5.2 Volumetric porosity determination 
To create the packings, the injection molded aggregates are 

poured into an acrylic cylinder of inner diameter 100 mm and 

a height of 140 mm. While pouring, it is ensured that the 

resulting packing is random, for example by not vibrating the 

packing, which could reduce randomness by aligning 
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aggregates and potentially increasing the packings load-

bearing capacity. Ensuring randomness can lead to large voids 

in packings of low sphericity (e.g. tetrapods with Ψ = 0.53), due 

to arching of the aggregates. Such large voids are tolerated and 

are considered part of the statistical variations in the packings. 

The porosity of these packings is measured by filling the 

interstitial void space between the aggregates with water such 

that the aggregates are fully submerged. The porosity is given 

by the weight of the water divided by the density of water and 

the volume of the pipe containing the aggregates. Since the 

aggregates are buoyant in water the packing is weighed down 

by a wire mesh placed on top. 

 

3.5.3 Permeability using the falling head method 
The permeability of the packings is determined using the so-

called falling head method, a schematic of the experimental 

setup is shown in Figure 17. An acrylic cylinder with 100 mm 

inner diameter and a height of 1.8 m is covered at the bottom 

with a wire mesh with a mesh size of 8 mm. Aggregates are 

poured onto this wire mesh to create a packing with a height of 

120 mm. For aggregates that are small enough to fall through 

this wire mesh a second layer of wire mesh is added, rotated by 

45°. The packing is kept in place against buoyance by a 

weighted wire mesh placed on top, which also prevents a 

rearrangement of the aggregates due to turbulences during an 

experiment. For a typical experiment a plate is pushed against 

the bottom of the cylinder to seal it, and the cylinder is filled 

with water to a height of 1.6 m above the sample. While filling 

the cylinder it was ensured that the water jet does not impinge 

on the packing, to prevent any disturbance of the packing. If a 

rearrangement of the aggregates is observed while filling the 
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cylinder with water or during an experiment, the experiment is 

repeated with a freshly prepared packing. An experiment is 

started by removing the sealing-plate abruptly. The water level 

is recorded using a Canon EOS 77D camera at 50 frames per 

second. For the evaluation of the permeability the water level 

decrease from 1.6 m to 1.3 m is disregarded to ensure the water 

column is not subject to inertial effects. The recording is 

stopped once the water level drops to 0.1 m above the packing 

sample. Hence, the water level from 1.3 m to 0.1 m above the 

sample is used to determine the permeability of the packing.  

 

Figure 17: Schematic of the setup for the falling head experiments. 
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During a falling head experiment the decrease of the water level 

h is recorded as a function of time, yielding h(t)-curves which 

are plotted in Figure 18. For each of the tetrapod shapes [(a) Ψ 

= 0.87 and (b) Ψ = 0.53] three different packings were 

constructed and for each of these samples three falling head 

experiments were performed, yielding 9 h(t)-curves for each 

tetrapod shape, which agree very well with each other. A 

second order polynomial was fitted to each h(t)-curve to allow 

for a smooth, differentiable function. These h(t)-curves are 

used to determine the permeability of the packing via the 

Darcy-Forchheimer equation for turbulent flows through 

porous media, viz.  

−
𝑑𝑝

𝑑𝑥
= −

𝜌𝑤𝑔(ℎ(𝑡) + 𝐿)

𝐿
=

𝜈𝑤𝜌𝑤

𝑘

𝑑ℎ

𝑑𝑡
+

𝜌𝑤

𝑘in
|
𝑑ℎ

𝑑𝑡
|
𝑑ℎ

𝑑𝑡
(3.18) 

Here, 
𝜕𝑝

𝜕𝑥
 is the pressure drop across the height of the sample L 

which is equal to the hydrostatic pressure of the water column, 

ρw is the density of water, νw is the kinematic viscosity of water 

and g is the acceleration due to gravity. As the experiments are 

performed at room temperature the values at 20°C are used for 

ρw and νw, varying these values between 5°C and 40°C has 

negligible effects on the results. Using the Darcy-Forchheimer 

equation [Eq. (3.18)] for turbulent flow instead of the Darcy 

equation [Eq. (3.17)] for laminar flow (Re < 1) is necessary 

since high flow velocities with Re > 9000 are observed in the 

experiments. 

To calculate the permeability k and the inertial permeability kin, 

a system of two Darcy-Forchheimer equations is constructed: 
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𝑘
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= [
−

𝜌𝑤𝑔(ℎ(𝑡1) + 𝐿)

𝐿

−
𝜌𝑤𝑔(ℎ(𝑡2) + 𝐿)

𝐿

] (3.19)

 

This system of equations is solved for each h(t)-curve in 

intervals of 0.1 s and with t2 = t1 + 0.1 s. The results of this 

evaluation are shown in Figure 19 which plots the permeability 

k as a function of the water level h. This approach yields 

permeabilities that decrease with decreasing water level, 

although one would expect k to be independent of the water 

level (and flow velocity). The reason for these varying values 

of k are most likely flow-rate dependent pressure losses in the 

falling head setup that are not accounted for in Eq. (3.19). To 

correct for this, kin which also varies with h, is fixed to the mean 

kin-value that is obtained from an initial evaluation of each 

curve where kin is allowed to vary. Fixing kin leads to fairly 

stables values of k that show little variation with h. In a final 

step the k values obtained from the re-evaluation of the h(t)-

curves are averaged over the whole range of h and subsequently 

also averaged over all of the 9 curves that were acquired for 

each of the two tetrapod shapes. The error-bars give one 

standard deviation of the 9 k values obtained from the final 

averaging step. 
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Figure 18: h(t)-curves acquired during falling head experiments for 

packings of tetrapods with (a) Ψ = 0.87 and (b) Ψ = 0.53. The dashed 

lines show the polynomials fitted to each h(t)-curves. 
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Figure 19: Permeabilities obtained by evaluating the h(t)-curves 

shown in Figure 18 using two different approaches. The green and 

red curves show the results for tetrapods with Ψ = 0.87 and Ψ = 0.53, 

respectively. 

 

3.5.4 X-ray computed tomography 
The full, 3D structure of the physical packings of tetrapods with 

Ψ = 0.53 (see Figure 9 and Figure 16b) is recorded using X-ray 

computed tomography (CT). Due to the effort required to 

prepare a CT it was decided not to image also the second 

experimental tetrapod type (Ψ = 0.87). A packing of height  

400 mm was poured into an acrylic cylinder (100 mm inner 

diameter), ensuring randomness and making this packing equal 

to the experimental packings used for the porosity and 

permeability investigations. The different height of the packing 

used for CT and other experimental packings does not affect 
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the packing structure, which was confirmed by numerical 

simulations. From the packing of 400 mm height a central 

section of 150 mm height (120 mm diameter) was recorded. 

The height of this central section is limited by the field of view 

of the X-ray setup. The X-ray CT setup consisted of an X-ray 

source (Viscom XT9160) operated at 70kV and 140 μA, a 

digital detector with 2048x2048 pixels (XRD 1621 CN3 ES, 

Perkin Elmer) and a CsI(Tl) scintillator yielding a high spatial 

resolution of 66.41 × 66.41 × 66.41 μm3 per voxel.  

The CT data is post-processed in multiple steps using the 

software Avizo v9.7 (Thermo Fisher Scientific). In the first step 

the grayscale data is thresholded to separate voxels that contain 

polymer aggregates from the voxels containing air. The 

thresholding value was found to have a negligible influence on 

the total aggregate volume in the CT data due to the large 

difference in the X-ray absorption between the ABS polymer 

and air, consequently a thresholding value of 0.2 was chosen 

(on a range from 0 to 1). The injection molding process 

produces holes within the aggregates that arise when ABS 

shrinks during cooling. In a post-processing step these holes are 

filled digitally such that they do not contribute to the porosity 

of the packings. Subsequently, a water-shedding algorithm is 

used to identify the individual aggregates in the CT data. At the 

top and bottom of the recorded 150 mm high section some 

aggregates are incomplete as they are not fully inside the 

imaged section. Digital sieving is used to remove incomplete 

aggregates such that only complete aggregates are used for 

further analysis. 

To be able to use the CT data for LBM simulations the post-

processed data is exported as a stereolithography (STL) file 

using Avizo. The STL file describes the surface of the 
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aggregates through triangular facets. The CT data is also 

exported as a stack of binary images that represent horizontal 

slices (thickness 0.2 mm) through the packing. These binary 

images allow to distinguish pixels that are aggregate matter or 

void. An example of such a binary slice is shown in Figure 14. 

 

3.6 Results and Discussion 

3.6.1 Convexity 
Figure 20 plots the convexity (Ω) as a function of sphericity. 

For all three aggregate shapes studied here, Ω decreases 

monotonically with decreasing Ψ. For tetrapods and dolosse the 

slope of the Ω-Ψ-curves increases for Ψ < 0.85. The reason for 

this change in slope is that for Ψ > 0.85 the cylindrical section 

of one (or more) of the constituent spherocylinders is 

completely or partially concealed. This can be seen for example 

in Figure 9 for dolosse with Ψ = 0.85. Here the central 

spherocylinder is completely concealed by the two outer 

spherocylinders. If the sphericity is decreased, e.g. dolosse with 

Ψ = 0.73 (Figure 9), the third (central) spherocylinder becomes 

exposed, leading to an increasing reduction in Ω with 

decreasing Ψ. For tetrahedra there is a change in the slope of 

the Ω-Ψ-curve for Ψ < 0.7. The reason is similar as discussed 

for the other two shapes, i.e. for tetrahedra with Ψ > 0.7 parts 

of the cylindrical surface of the constituent spherocylinders are 

concealed in the core of the aggregate. For Ψ < 0.7 the core of 

the aggregate is exposed fully to the outside and the previously 

concealed cylindrical surface sections contribute to the surface 

area of the aggregate, hence decreasing Ω. 
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Figure 20: Convexity of the aggregates studied here as function of 

the sphericity. 

 

3.6.2 Porosity 
Combining Darcy’s law, Eq. (3.1), with the Carman-Kozeny 

equation, Eq. (3.2), predicts that the permeability of a packing 

increases with increasing aggregate sphericity Ψ and increasing 

packing porosity ε.  

Figure 21 plots the porosity of a packing as a function of the 

sphericity of the packing-forming aggregates. The data in 

Figure 21 contains both porosity data from DEM simulations 

and porosity data obtained experimentally by either volumetric 

methods or the analysis of X-ray CT data. Comparing the 

numerical DEM data of tetrapods (blue crosses) with the results 

of the experimental packing of tetrapods (green and red 

crosses) shows excellent agreement, confirming that DEM is a 

viable numerical approach to investigate packings of complex-
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shaped aggregates. The excellent agreement also shows, that 

despite differences in the experimental and numerical pouring 

protocol, similar packings are created, because both pouring 

protocols ensure a high degree of randomness. The 

experimental tetrapod (Ψ = 0.53) packing with an X-ray CT 

determined porosity (red plus) of ε = 0.685 is lower than the 

porosity derived by DEM (ε = 0.7). This is due to the fact that 

the CT shows a denser-packed central section of the sample, 

while the DEM packing also includes aggregates in the porosity 

determination that are located at the bottom of the packing 

where the porosity is higher due to wall effects. Further 

evidence for the predictive nature of the DEM simulations is 

provided by the porosities determined for packings of almost 

spherical aggregates (Ψ = 0.99) which lie in the range 0.368 < 

ε < 0.399. These porosity values are close to the established 

value for a random packing of spheres of ε = 0.366 [68]. 

It is worthwhile to mention that for all three aggregate types 

there is a minimum in the packing porosity for Ψ ≈ 0.92. Such 

a minimum in the porosity of packings that are composed of 

slightly non-spherical shapes, i.e. 0.99 > Ψ > 0.9, is well 

established and has also been reported for other particle types 

such as ellipsoids or spherocylinders [37,41,45,134]. 

Generally, for Ψ < 0.92, the porosity of a packing increases 

with decreasing sphericity. While the behaviour of tetrapods 

and dolosse overlaps, the porosity of packings of tetrahedra 

increases to a lesser extend with decreasing sphericity. This 

finding shows that for non-spherical particles, the sphericity of 

an aggregate is not the only parameter affecting the porosity of 

a packing [135]. This observation is re-affirmed by Figure 20 

which shows that the convexity of tetrahedra can differ from 

the convexity of tetrapods by up to 0.47 for an equal sphericity. 

Nevertheless, for Ψ < 0.92 the monotonic increase of packing 
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porosity with decreasing sphericity holds for all aggregate 

shapes and shows that it is possible to construct packings of 

very high porosity when using aggregates of low sphericity, 

e.g. tetrapods with Ψ = 0.47 have ε = 0.78. Packings with such 

high porosities have the potential to enable novel applications 

such as energy harvesting from recyclable pavements. 

However, with regards to novel applications it has to be 

considered that variations in the sphericity of the aggregates 

also affects the structural properties of the aggregate packing 

such as stress distribution [118]. To be able to withstand the 

high inter-particle stresses found in packings of low sphericity 

aggregates requires material with sufficient mechanical 

strength. For the use in pavements tetrahedra with Ψ ≈ 0.5 

might offer a good compromise between high porosity and a 

high compressive strength, due to their convex shape. While 

lower sphericity tetrahedra would pack in a more porous way, 

tetrahedra with Ψ < 0.5 become so slender that their corners can 

penetrate into the core of other tetrahedra aggregates which 

would lead to interlocking and hence reduce the workability of 

the packing. Conversely, if a packing is required that can 

interlock, e.g. for freestanding structures, dolosse might be 

favorable since they have opposing faces. 

In the following we will utilize the observation that by varying 

aggregate sphericity, packings with a wide range of porosities 

can be constructed to assess the validity of the Carman-Kozeny 

correlation for differently shaped aggregates and a wide range 

of packing porosities. 
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Figure 21: Packing porosity ε as a function of the sphericity of the 

packing-forming aggregates Ψ. Each packing was constructed of 

aggregates of a single shape. 

 

3.6.3 Tortuosity 
Figure 21 has demonstrated that the packing porosity depends 

on the aggregate sphericity Ψ, as well as the aggregate 

convexity, and that aggregates of different shapes but similar 

sphericity do not necessarily form packings with the same 

porosity. However, there is a second question to be addressed: 

Do packings of aggregates of different shapes but similar 

sphericity form pore spaces of similar morphology? Answering 

this question requires a descriptor for the morphology of the 

pore space. In the following we will use the tortuosity τ as a 

descriptor for morphology of the pore space. Figure 22a plots 

the variation of τ with aggregate sphericity Ψ for the three 



85 

different aggregate shapes studied, we observe a convex-

shaped trend of τ with Ψ with a maximum in τ at Ψ ≈ 0.92 for 

tetrapods and dolosse. The overall behavior of tetrahedra is 

similar with a maximum in τ located at Ψ = 0.81.  

For tetrapods and dolosse the relationship between τ and Ψ 

(Figure 22a) shows a similar trend as the relationship between 

ε and Ψ (Figure 21), albeit mirrored along the Ψ axis. Both ε 

and τ have an extremum at Ψ ≈ 0.92. The tortuosity of the 

tetrapod packing (Ψ = 0.53) as determined by X-ray CT is τ = 

1.61, agrees well with the DEM derived tortuosity of the same 

packing which is τ = 1.58. The fact that for packings of 

tetrapods and dolosse of low Ψ we obtain high values of ε and 

low values of τ would suggest that these packings would feature 

a high permeability. 

Packings of tetrahedra show some differences to the tortuosity 

of packings of tetrapods and dolosse, viz. the tortuosity of 

packings of tetrahedra increases for Ψ > 0.81 with increasing 

Ψ, but drops sharply to τ = 2.4 at Ψ = 0.74. The reason for this 

drop is that at Ψ = 0.81 the inside space of the tetrahedron is 

closed and inaccessible from the outside, similar to the example 

shown for Ψ = 0.97 in Figure 9. The shortest path through a 

packing is a curve around the (outer) surface of the entire 

tetrahedron, leading to a long path length. Additionally, closed 

tetrahedra tend to align face to face leaving no void space 

between the aggregates, increasing the path length further. 

However, for Ψ ≤ 0.74 tetrahedra have an open structure, e.g. 

as shown for Ψ = 0.43 in Figure 9. For such an open tetrahedron 

the inside of the aggregate becomes accessible, offering a 

shortcut through the aggregate resulting in turn in a shorter path 

through a packing. For Ψ < 0.74, τ decreases with decreasing 

sphericity in a similar fashion as for tetrapods and dolosse, yet 
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for a given sphericity, the value of τ for packings of tetrahedra 

is higher than for tetrapods and dolosse. The results above show 

that aggregates of different shapes but similar sphericity do not 

necessarily form packings of similar pore space morphology. 

However, for all particle shapes we find overall similar trends 

between τ and Ψ and between ε and Ψ which hint towards a 

correlation between τ and ε. 

Figure 22b shows that there is a linear correlation between τ 

and ε for ε > 0.35 that can be approximated by: 

𝜏 =  −2.4 휀 +  3.27 (3.20) 

If this linear correlation is extended to higher values of ε, it 

gives τ → 1 for ε → 1. Indeed, a value of τ = 1 at ε = 1 is 

expected since a tortuous path through a volume without any 

aggregates is a simple straight path. However, for ε < 0.35 we 

observe a non-linear increase of τ with decreasing porosity for 

packings of tetrahedra. Packings with such high tortuosity 

values (i.e. τ > 2.5) correspond to the previously discussed 

packings of closed tetrahedra which align face to face. 

In the past, a large number of correlations relating τ to ε have 

been proposed [136–138]. However, similar to the Carman-

Kozeny correlation, these functions have typically not been 

tested for porous structures covering a wide range of values for 

ε, but rather packings of very specific particle shapes such as 

spherical packings ranging from the random-close to random-

loose packing limit (ε = 0.366 – 0.46) [139] or random packings 

of fibers (ε = 0.9 – 0.96) [140]. In other works the τ-ε 

correlations have been tested over a wider range of values for 

ε, but for artificial structures such as fractals or randomly 

placed obstacles [130,141]. Thus, in the following, the 

packings of aggregates model by DEM, which cover a wide 
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range of porosity values and that have been validated by 

physical experiments, are used to establish a τ-ε relationship, 

viz: 

𝜏 =  1 − 𝑝 𝑙𝑛(휀)   𝑤𝑖𝑡ℎ 𝑝 = 1.5 (3.21) 

However, it is worth noting that Eq. (3.21) cannot capture the 

non-linear behavior of tetrahedra for τ > 2.5. The reason is that 

Eq. (3.21), as most other τ-ε correlations, is developed for 

random isotropic porous structures. As tetrahedra tend to align 

face to face (and with the walls) for 0.97 ≤ Ψ ≤ 0.81 (ε < 0.35) 

such packings cannot be considered fully random.  

The linear correlation between τ and ε (when excluding 

particular aggregate structures), indicates that tortuosity might 

not be required as an additional parameter to determine the 

permeability of a packing, instead tortuosity can be capture by 

porosity through a scaling factor. 
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Figure 22: (a) Tortuosity of a packing as a function of the sphericity 

of an aggregate Ψ. (b) Tortuosity of a packing as a function of the 

packing porosity ε. 
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3.6.4 Comparing geometric and hydraulic tortuosity 
The previous section describes the method that was established 

in this work to compute the geometric tortuosity. There exist 

alternative methods to compute the tortuosity of a packing that, 

however, require e.g. information on the fluid velocity in the 

pore space (hydraulic tortuosity) [129]. One established 

method to compute the hydraulic tortuosity is the method 

proposed by Duda et al. [130] that can be reduced to the 

formula: 

𝜏ℎ𝑦𝑑 =
〈𝑢〉

〈𝑢𝑥〉
(3.22) 

where u denotes the magnitude of the fluid velocity and ux 

denotes the velocity in the main flow direction, i.e. in the axial 

direction of the cylinder containing the aggregate packing and 

⟨⟩ denotes the spatial average over all points of the fluid 

domain. The fluid velocities can be obtained from the Lattice 

Boltzmann method (LBM) simulations that are described in 

section 3.4.4. 

Figure 23 plots a comparison between the geometric tortuosity 

and the hydraulic tortuosity computed via Eq. (3.22). The 

results of the geometric tortuosity are represented by 

𝜏 =  1 − 1.5 𝑙𝑛(휀) (3.23) 

Figure 22 confirms that Eq. (3.23) is a good fit for the 

geometric tortuosity of aggregate packings. Figure 23 shows 

that the values of the (geometric) tortuosity represented by Eq. 

(3.23) are up to 200% higher compared to the values of the 

(hydraulic) tortuosity obtained for the same packings using Eq. 

(3.22). There are several reasons for this difference. Firstly, the 

differences in determining the tortuosity, while Eq. (3.23) 
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represents the geometric tortuosity using possible paths 

through a packing that contact with and curve around 

aggregates (see Figure 13), the paths used to calculate the 

hydraulic tortuosity, Eq. (3.22), follow streamlines of fluid 

elements. Such streamlines “cut” corners as they follow 

smoother and hence shorter paths compared to the paths that 

are considered for the geometric tortuosity. Secondly, the 

values of the geometric tortuosity consider all sections of the 

fluid domain equally, since they are calculated for paths 

originating from seed points that are evenly spaced over the 

cross-section of an aggregate packing. Conversely, when 

calculating the hydraulic tortuosity, spatial averaging leads to a 

dominance of higher velocities. In packings such as the ones 

investigated here a considerable fraction of the fluid bypasses 

the packing by flowing close to the cylindrical walls where the 

porosity approaches 1. Due to the high porosity in this annular 

region, the streamlines in this bypassing flow are also oriented 

predominantly in the main flow direction. Consequently, the 

hydraulic tortuosity is dominated by the high velocity bypass 

flow which coincidentally is also where the shortest streamlines 

are found, yielding in turn lower values for the (hydraulic) 

tortuosity. 

Figure 23 also plots the tortuosity values obtained by Duda et 

al. [130]. Duda et al. [130] applied Eq. (3.22) for artificial two-

dimensional structures that were created by the random placing 

of equally sized square-shaped obstacles. The tortuosity values 

of Duda et al. [130] lie between our values of the geometric and 

hydraulic tortuosity, which is not unsurprising since the 

artificial 2D structures investigated by Duda et al. [130] differ 

significantly from the packing structures (3D) investigated 

here.  
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The objective of the present work is to evaluate the 

permeability of artificial aggregate shapes for use in 

construction applications, such as porous asphalt concrete 

pavements. A road pavement can be considered as a semi-

infinite structure, with a short vertical dimension but large 

horizontal dimensions. Since the main flow direction of water 

through a porous pavement is the vertical direction, the water 

flow is not subject to wall effects. Consequently, the geometric 

tortuosity which does not over-represent wall effects, is more 

representative for the tortuosity of artificial aggregate packings 

in pavement applications, compared to the hydraulic tortuosity 

according to Eq. (3.22). 

 

Figure 23: Tortuosity as a function of the packing porosity, 

comparing the results of the geometric tortuosity of aggregate 

packings computed via the method used in this work (see section 

3.4.3), which are represented by the correlation τ = 1-1.5ln(ε) and 

the hydraulic tortuosity computed via Eq. (3.22). The results by Duda 
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et al. [130] have been obtained for artificial two-dimensional 

structures. 

3.6.5 Permeability 
Figure 21 has shown that the packing porosity increases with 

decreasing particle sphericity (for Ψ < 0.92); similarly, also the 

packing tortuosity decreases with decreasing permeability 

(Figure 22), except for tetrahedra for ε < 0.35. Both findings 

suggest that the packing permeability increases with decreasing 

particle sphericity. To test this hypothesis and to test the 

validity of the Carman-Kozeny correlation for packings of 

complex-shaped aggregates, the permeability of packings was 

investigated numerically via LBM simulations and 

experimentally using the falling head method. Figure 24a plots 

numerically and experimentally determined permeabilities k as 

a function of the particle sphericity Ψ. 

The k-Ψ data plotted in Figure 24a show a similar trend as the 

ε-Ψ data given in Figure 21, i.e. also the permeability has a 

minimum at Ψ ≈ 0.9 and for Ψ < 0.9 the permeability increases 

monotonically with decreasing Ψ. Note that the k-Ψ data is 

plotted, as it is typically done, on a semilogarithmic scale. The 

strong similarity of the k-Ψ and ε-Ψ trends suggest a direct 

correlation between k and ε (see below). When comparing the 

numerically determined permeabilities with the predictions of 

the Carman-Kozeny correlation [Eq. (3.2)] a good agreement is 

obtained. Since the Carman-Kozeny correlation only depends 

on Ψ, ε and the (equivalent) aggregate diameter, this indicates 

that the tortuosity is not required to predict accurately the 

permeability of a packing. For tetrapods with Ψ = 0.87 and Ψ = 

0.53, the permeability was also determined experimentally 

using the falling head method (green and red crosses in Figure 

24a with the error bars providing the standard deviation based 
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on nine measurements). The experimental results deviate from 

the LBM results by a factor of 2.3 and 2.8 for Ψ = 0.87 and Ψ 

= 0.53, respectively. An explanation for this deviation lies 

presumably in the particularities of the experimental setup, e.g. 

the wire mesh that is required to keep the packing in position 

introduces an additional pressure drop. Nevertheless, also the 

experimental results follow the trend of the k-Ψ behaviour of 

tetrapods as predicted by the Carman-Kozeny correlation and 

the LBM results. The values of the permeability computed by 

LBM for a packing of tetrapods with Ψ = 0.53 using the packing 

structure determined either by X-ray CT or DEM differs only 

by 9%. This excellent agreement indicates that the differences 

in the permeability obtained from the falling head method and 

LBM simulations are due to the falling head method instead of 

differences between the experimental and numerically 

generated packing structures. Especially for tetrapods with Ψ = 

0.53 it could be observed during the experiments that the 

aggregates fall into the mesh with their “arms” sticking out, 

leading to a local alignment of the aggregates which could 

increase the packing fraction and therefore increase the 

pressure drop and in turn decrease the permeability. One way 

to reduce the differences between the LBM simulations and the 

permeability experiments could be to including the wire mesh 

in the numerical simulations to model the additional pressure 

drop of the mesh itself as well as the influence of the mesh on 

the packing structure. Modelling the mesh was omitted in this 

work as it would be associated with great complexity. 

Furthermore, Figure 24b plots k as a function of ε to investigate 

the correlation between k and ε as suggested by the similarity 

of the k-Ψ and ε-Ψ curves. We find that the k-ε data can be 

correlated well (R2 = 0.968) by the function: 
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𝑘 =  5.39 𝑒7.3𝜀 (3.24) 

Eq. (3.24) covers a wide range of porosities, shapes and 

sphericities and is believed to be useful to determine the 

permeability of packings of aggregates of a known porosity, for 

aggregates with equivalent diameters similar to the ones 

studied here. Importantly, Eq. (3.24) covers both concave and 

convex particle shapes. 
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Figure 24: (a) Permeability of aggregate packings as function of the 

aggregate sphericity. (b) Permeability as a function of the packing 

porosity. 
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3.6.6 Permeability for varying LBM simulation Reynolds 

number 
In the following we will investigate whether the numerically 

obtained results for the permeability k vary with the Reynolds 

number (Re). To this end, simulations were performed with the 

inlet velocity u varying from 5∙10-5 m/s to 5∙10-2 m/s, which 

corresponds to 5 ≤ Re ≤ 5000 when choosing the cylinder 

diameter of 0.1 m as the relevant length scale. In comparison, 

all simulations discussed in the previous section were 

performed with Re = 5, while in the falling head experiments 

using tetrapods of Ψ = 0.87 or Ψ = 0.53 the Reynolds number 

was in the range of, respectively 10’000 ≤ Re ≤ 28’000 and 

33’000 ≤ Re ≤ 80’000. An overview of the LBM simulations of 

varying Re is given in Table 5. To ensure numerical stability 

for Re > 50 the Smagorinsky model [142] was employed. The 

accuracy of the Smagorinsky model was validated by 

comparing its results for low Re flows with the predictions of 

the classic Bhatnagar-Gross-Krook (BGK) model (simulations 

#1 and #6 in Table 5). The pressure gradient obtained from 

these two simulations is identical, confirming that at low Re the 

simulation results are unaffected when changing between the 

two LBM models. However, even changing to the 

Smagorinsky model did not allow to perform simulations for 

Re ≥ 10’000 due to numerical instability and therefore the 

simulations listed in Table 5 are limited to Re ≤ 5’000. Due to 

their slow convergence and high computational cost, these 

higher Re simulations were only performed for packings of 

tetrapods with Ψ = 0.87. 
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Table 5: LBM simulations of varying Reynolds number for a packing 

of tetrapods with Ψ = 0.87. 

# Inlet 

velocity u 

[m/s] 

Reynolds 

number 

LBM model Resulting 

pressure 

gradient 

[Pa/m] 

1 5∙10-5 5 BGK 0.750 

2 5∙10-4 50 BGK 7.839 

3 5∙10-3 500 Smagorinsky 132.617 

4 4.9∙10-2 4900 Smagorinsky 6897.632 

5 5∙10-2 5000 Smagorinsky 7168.178 

6 5∙10-4 50 Smagorinsky 7.839 

 

To determine the permeability from the simulations listed in 

Table 5 the Darcy-Forchheimer equation [Eq. (3.25)] was used 

to account for pressure losses due to turbulence which is 

captured by the quadratic term (kin). 

−
𝑑𝑝

𝑑𝑥
=

𝜈𝑤𝜌𝑤

𝑘
𝑢 +

𝜌𝑤

𝑘in
𝑢2 (3.25) 

Here, 
𝜕𝑝

𝜕𝑥
 is the pressure drop across the packing sample, ρw is 

the density of water, νw is the kinematic viscosity of water. To 

determine the two unknowns k and kin in Eq. (3.25) a system of 

linear equations is constructed: 
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To test whether the permeability is independent of the 

Reynolds number, systems of equations [Eq. (3.26)] were 

constructed for all possible combinations (two or more) of 

simulations #1 to #5 listed in Table 5. This yielded 26 different 

linear equation systems. In case the systems were constructed 

from more than two equations, they were solved using the least 

squares method. The mean permeability calculated from these 

26 linear equation systems is included in Figure 25 (error bar 

gives one standard deviation). Overall, there is an excellent 

agreement between the results of the LBM simulation for Re = 

5 (discussed in section 3.6.5) and the result obtained for varying 

Re. Hence, the permeabilities k obtained numerically are 

independent of the Reynolds number, at least for the Re range 

investigated here. 

 

Figure 25: Permeability of packings of tetrapods of different 

sphericity. The orange cross gives the mean permeability of tetrapod 
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packings with Ψ = 0.87 for various Reynolds numbers; the error bars 

represent one standard deviation. 

 

3.7 Conclusions 
This work investigates packings of aggregates spanning a wide 

range of porosities, i.e. porosities 0.33 < ε < 0.78. Three types 

of aggregates structures that is tetrapods, dolosse and tetrahedra 

are investigated numerically and validated experimentally 

using two types of tetrapods. The porosity of the packings was 

determined experimentally and by DEM revealing excellent 

agreement and providing further evidence for the predictive 

capabilities of DEM simulations. Importantly, our results show 

that the packing porosity cannot be predicted directly from the 

sphericity of the aggregates only, but it also depends on the 

convexity of the aggregates. The convexity of an aggregate was 

found to decrease monotonically with decreasing aggregate 

sphericity for all of the aggregate shapes investigated here. 

However, the rate of this monotonic decrease depends on the 

specific aggregate shape. 

To investigate whether the aggregate shape affects the 

morphology of the pore structure, the tortuosity of the packing 

was determined. We observe that packings of aggregates of 

different shapes but similar sphericity do not form packings 

with a similar pore space morphology, as evidenced by a lack 

of a correlation between the aggregate sphericity and the 

tortuosity of the packings. Instead, for ε > 0.35 a linear 

correlation was found between the packing porosity and the 

tortuosity. For ε < 0.35 packings of tetrahedra were found to 

have very high tortuosity, when compared to tetrapods and 

dolosse. This was attributed to a face-to-face alignment of the 

closed tetrahedra aggregates. The linear correlation between 
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the tortuosity and the porosity, however, indicates that it is not 

required to introduce the tortuosity as an additional parameter 

to determine the permeability of a packing.  

Finally, the permeability of the packing was investigated using 

the LBM and via falling pressure head experiments. The 

permeability values obtained agree well with the predictions of 

the Carman-Kozeny correlation, confirming its validity for a 

wide range of porosities. Since the Carman-Kozeny correlation 

only depends on the aggregate sphericity Ψ, ε and the aggregate 

diameter, information of a packing’s tortuosity is not required 

to predict its permeability. Furthermore, we propose a 

correlation that relates the permeability of a packing directly to 

its porosity. This exponential correlation can be used to 

determine the permeability of packings of aggregates that are 

of similar equivalent diameter to the aggregates investigated 

here. It is hoped that the new insight into the packing of 

aggregates obtained through this work will pave the way for the 

development of noise absorbing facades, high permeability 

pavements for energy harvesting or the mitigation of local heat 

islands. Regarding the use of artificial aggregates for 

pavements, future work should consider also the compressive 

strength as well as the compactibility and workability of 

aggregate shapes. 
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4 Link between packing morphology 

and the distribution of contact forces 

and stresses in packings of highly 

nonconvex particles 
 

Adapted from: 

N.A. Conzelmann, A. Penn, M.N. Partl, F.J. Clemens, L.D. 

Poulikakos, C.R. Müller, Link between packing morphology 

and the distribution of contact forces and stresses in packings 

of highly nonconvex particles, Phys. Rev. E. 102 (2020) 

062902. doi:10.1103/PhysRevE.102.062902.  
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4.1 Abstract 
An external load on a particle packing is distributed internally 

through a heterogeneous network of particle contacts. This 

contact force distribution determines the stability of the particle 

packing and the resulting structure. Here, we investigate the 

homogeneity of the contact force distribution in packings of 

highly non-convex particles both in two-dimensional (2D) and 

three-dimensional (3D) packings. A newly developed discrete 

element method is used to model packings of non-convex 

particles of varying sphericity. Our results establish that in 3D 

packings the distribution of the contact forces in the normal 

direction becomes increasingly heterogeneous with decreasing 

particle sphericity. However, in 2D packings the contact force 

distribution is independent of particle sphericity, indicating that 

results obtained in 2D packings cannot be extrapolated readily 

to 3D packings. Radial distribution functions (RDFs) show that 

the crystallinity in 3D packings decreases with decreasing 

particle sphericity. We link the decreasing homogeneity of the 

contact force distributions to the decreasing crystallinity of 3D 

packings. These findings are complementary to the previously 

observed link between the heterogeneity of the contact force 

distribution and a decreasing packing crystallinity due to an 

increasing polydispersity of spherical particles. 

 

4.2 Introduction 
Densely packed granular materials are frequently encountered 

in every-day life, for example, in civil engineering applications 

such as railway track ballast or porous asphalt pavements 

[143,144]. Such packings often undergo compaction either by 

forced compression or due to the material's own weight 

[145,146]. It has been well established that internal forces in 



103 

packed granular materials are not distributed homogeneously 

[74,147], but instead, forces are transmitted within the material 

through a network of so-called force chains. This force chain 

network traverses through the whole particle packing, but 

transmits forces through only a subset of the packed particles 

that are subject to above-average loads [72,148]. When 

exceeding a critical stress value in a force chain, buckling 

and/or slipping events can occur which result in large scale 

rearrangements of the packing [149,150]. Hence, the topology 

of the force chain network affects critically the structural 

stability of the packing [151].  

Studies on force chains can be largely categorized into studies 

that consider (i) 2D packings [72,74], i.e. packings comprised 

of only one particle layer, or 3D packings [78,147] and (ii) 

packings that are compressed or sheared [72,74,78]. 

Compressed packings are obtained either by the uniaxial 

compression of particles in a rigid-walled container via a 

moving piston [62,78], or by its isotropic compression via two 

perpendicular walls [74,152]. To shear stress packings, various 

methods are used. For example placing particles in a 

rectangular confinement and compressing in one direction 

while expanding in another direction [74]. Numerically, 

packings may be sheared by compressing the packing 

vertically, while introducing a constant horizonal velocity to a 

frictional top wall and allowing a free horizontal movement of 

the particles [152,153]. 

In 2D packings, force chains were first qualitatively and later 

quantitatively probed by transmitting polarized light through a 

sheared packing of photoelastic discs, visualizing the stress in 

the discs in the form of fringes [72,73]. This method was 

extended by Liu et al. [147] to 3D packings by immersing 



104 

photoelastic beads in a liquid with a matching refractive index. 

It was found that the magnitude of the contact forces is 

distributed heterogeneously through the packing. To this date, 

there is no agreement on how to quantify force chains, but 

commonly the distribution of contact forces is quantified by the 

probability distributions of the contact forces [78,147,154]. For 

example, Liu et al. [147] placed carbon paper onto the inner 

surfaces of a container holding a particle packing. By 

calibrating the size of the imprints on the carbon paper against 

a known force they obtained the probability distribution (P(f) 

with f = Fn/<Fn>) of the normal contact forces (Fn) normalized 

by the mean normal contact force (<Fn>). It was found that the 

probability of finding large normalized forces (i.e. f > 1) decays 

exponentially with increasing force magnitude. To explain this 

experimental observation, a theoretical model was proposed 

that assumes that the dominant mechanism which gives rise to 

force chains is governed by the heterogeneity of the granular 

packing, causing in turn, an unequal force distribution on the 

individual particles. It was observed further that P(f) has a peak 

at f = 1 and that P(f) → 0 for f → 0. The shape of the observed 

probability distribution function of the contact forces resembles 

a characteristic shape commonly observed for disc- and sphere-

shaped particles [62,78,147,153,154]. This characteristic shape 

is shown schematically in Figure 26 and labelled as type A, 

while the characteristic distribution labelled type B is, for 

example, observed in sheared packings of non-spherical 

particles [152,153]. A shortcoming of the carbon paper method 

is the difficulty to distinguish between beads that do not 

transmit a force and voids. This aspect was studied further by 

Mueth et al. [78] determining the fraction of contacts in 

compressed 3D packings that transmit forces that are 

sufficiently low to not leave an imprint on the carbon paper. 

Incorporating this additional information, Mueth et al. [78] 
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found that P(f) has a saddle point at f = 1 and P(f) increases for 

f → 0 instead of approaching zero as proposed by Liu et al. 

[147]. Hence, for f > 0.5 the P(f) as observed by Mueth et al. 

[78] has a concave shape that is characteristic of a distribution 

of type A, but combined with an increasing probability for f → 

0, that is characteristic for a type B distribution (Figure 26). The 

previous observation of Liu et al. [147] that P(f) decays 

exponentially for f > 1 was confirmed by Mueth et al. [78]. 

Currently, there is no agreement on the mathematical function 

that describes P(f) best. While some authors have argued that 

in a packing of spheres (type A shown in Figure 26) P(f) can be 

fitted best by a Gaussian distribution [62,155], Mueth et al. [78] 

proposed Eq. (4.1) since a saddle point rather than a peak (at f 

≈ 1) was observed.  

𝑃(𝑓) = 𝑎(1 − 𝑏𝑒−𝑓2

)𝑒−𝛽𝑓 (4.1) 

In this equation a, b and β are fitting parameters. However, as 

shown in Figure 26, neither a Gaussian function nor Eq. (4.1) 

describe force distributions that have a type B shape. 

Nonetheless, it is generally agreed that for f > 1, P(f) decays 

exponentially, independent of the domain dimensionality and 

particle sphericity. This observation motivated Azéma and 

Radjai [153] to propose the following fit to the tail (f > 1) of 

P(f): 

𝑃(𝑓) = 𝑒−𝑘𝑓, 𝑓 > 1 (4.2) 

Here, the exponent k is a fitting parameter that will be used to 

quantify the length of the exponential tail of P(f). 

Majmudar and Behringer [74] further improved the 

quantification of the magnitude of contact forces by using 

photoelastic discs and acquiring high-resolution photographs 
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of 2D packings, allowing them to distinguish the individual 

interference fringes in the discs. Solving an inverse problem, 

which relates the number of fringes observed in a disk to the 

magnitude of the contact forces, the normal and tangential 

contact forces at each contact point were determined. Using this 

improved experimental technique, it was observed that in 

sheared packings fewer particles transmit large forces 

compared to compressed packings leading to more distinct 

force chains. Furthermore, it was shown that P(f) in sheared 

and compressed packings of discs resembles a type A 

distribution with a peak at f ≈ 1. However, the coefficient k of 

the exponential decay is smaller for sheared packings when 

compared to compressed packings. 

Despite the continuous development and improvement of 

experimental techniques to visualize and quantify contact 

forces, it remains challenging to extract quantitative 

information of contact forces, in particular in 3D packings that 

are of high practical relevance. To address these challenges, the 

discrete element method (DEM) has established itself as an 

alternative to experimental approaches [156], providing 

detailed information on force networks in granular systems 

[80]. For example, Luding [154] used the DEM to investigate 

how the spatial stress distribution changes if polydispersity is 

introduced into packings of discs organized in a perfectly 

hexagonal lattice. For exactly monodisperse particle packings, 

particle stresses are distributed uniformly, in agreement with 

the hypothesis of Liu et al. [147]. However, as soon as 

polydispersity is introduced by varying the diameter (as little 

as ±0.33% of the mean diameter) a heterogeneous stress 

distribution, i.e. the occurrence of force chains, was observed 

[154]. Both experimental and numerical works [147,154] have 

established a link between the packing morphology and the 
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contact force distribution in packings of spherical particles. 

However, thus far, this link has not been investigated for non-

spherical particles.  

Among the non-spherical particle packings studied, those 

composed of highly non-convex particles are particularly 

interesting as non-convex particles can interlock, forming 

packings that may sustain compressive and tensile forces 

despite containing purely non-cohesive particles [62,120,157]. 

Owing to these particular characteristics, packings of highly 

non-convex, interlocking particles may find practical 

relevance, for example in architecture by enabling novel 

construction concepts such as aleatory construction 

[113,114,157,158]. However, despite their intriguing 

characteristics, so far, only a few studies have investigated the 

distribution of contact forces, P(f), in packings composed of 

non-spherical particles. For example, Gan et al. [79] performed 

3D DEM simulations of packings of oblate ellipsoids with their 

sphericity (Ψ) varying between 1 to 0.7. Interestingly, the P(f) 

for ellipsoids was similar to the distribution of spheres, i.e. P(f) 

peaks close to f = 1 and for f > 1 P(f) decays exponentially (type 

A distribution). The exponential decay was fitted by Eq. (4.2) 

with k ranging between 1.2 and 1.4 depending on particle 

sphericity. However, there did not seem to be a clear correlation 

between the sphericity of the particles and the exponent k 

characterizing the decay. Similar results were reported by 

Saint-Cyr et al. [152] who simulated compressed packings of 

particle clusters composed of three discs glued together in a 

triangular arrangement (trimers). The sphericity of the trimer 

particles was varied between 1 and 0.76 by varying the overlap 

of the trimer particles. A key finding of their work was that in 

compressed packings of trimers, P(f) resembles the distribution 

of spheres (type A) with an exponential decay (for f > 1) with 
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k = 1.7, independent of the particle sphericity, hence 

confirming the results of Gan et al. [79]. When the compressed 

trimer particles were also sheared (instead of only compressed), 

k decreased with decreasing sphericity (Ψ), i.e. k reduces from 

1.7 to 1 for Ψ decreasing from 1 to 0.76. The behaviour of the 

reference case (discs with Ψ = 1) was different in that P(f) was 

not affected by the addition of shear. Furthermore, Saint-Cyr et 

al. [152] showed that in sheared packings of spheres, the shape 

of P(f) is concave and resembles a type A distribution. 

However, for non-spherical particles with Ψ < 0.96, P(f) 

increases for f → 0, leading to a type B distribution without a 

peak. Further, it was found that lim
𝑓→0

𝑃(𝑓) increased with 

decreasing sphericity. The decreasing value of k for decreasing 

particle sphericity and the absence of a peak at f ≈ 1 leads to the 

key conclusion that in sheared packings P(f) becomes 

increasingly heterogeneous for decreasing sphericity. The 

results of Saint-Cyr et al. were confirmed by Azéma and Radjai 

[153] in 2D simulations of sheared, half-disc-capped 

rectangular particles which resemble 2D spherocylinders. 

Azéma and Radjai [153] varied the sphericity of the particles 

from 1 to 0.82 and found the exponent k in P(f) = e-kf to 

decreases from 1.8 to 0.85, respectively. Moreover, they could 

also confirm that for particles with Ψ < 0.99 P(f) resembles a 

type B distribution where lim
𝑓→0

𝑃(𝑓) increased for decreasing Ψ. 

Highly non-convex particles of very low sphericity (Ψ = 0.45) 

(and spheres as a reference case) were studied by Murphy et al. 

[62]. The objective of their work was to find particle shapes 

that can form free-standing, externally unconfined, packings 

that can support load (i.e. searching for packings of 

interlocking particles that can sustain compressive and tensile 

stresses). Particles of low sphericity were modeled by gluing 

together multiple spheres to yield Z-shaped particles. For the 
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reference case, a 3D compressed packing of spheres, the well-

established type A contact force distribution was observed, 

with a decay exponent of k = 1.4. However, compressed 3D 

packings of Z-shaped particles have a force distribution of type 

B, similar to the distributions observed by Saint-Cyr et al. [152] 

and Azéma and Radjai [153] in 2D sheared packings of non-

spherical particles (0.96 > Ψ > 0.76). Additionally, the contact 

force distribution of Z-shaped particles (Ψ = 0.45) had a very 

long exponential tail with an exponent k ranging between 0.56 

and 0.76 depending on the specific Z-shape. 

From the above, one can conclude that in sheared 2D packings 

the exponential tail of the contact force distribution, P(f), 

becomes longer with increasing particle non-sphericity, i.e. k 

decreases with decreasing Ψ. In addition the shape of P(f) 

transitions from type A shape to a type B upon shearing 

[152,153]. However, in compressed 2D packings a decrease of 

k, as well as a change from a type A to type B distribution, with 

increasing particle non-sphericity does not occur for particles 

with Ψ > 0.76. Conversely, in compressed 3D packings of 

particles with Ψ = 0.45 a type B force distribution with k ≤ 0.76 

was observed. Hence, it remains still unclear whether (i) 

contact force distributions of type A prevail in compressed 2D 

packings of particles of low sphericity (Ψ < 0.76) and (ii) the 

contact force distribution of low sphericity particles (Ψ < 0.76) 

changes from a type A to type B distribution when transitioning 

from 2D to 3D packings.  

In this work we address these two questions to establish a 

general correlation between particle sphericity and the shape of 

the contact force distribution in compressed 2D and 3D 

packings of non-spherical particles. While 2D packings do not 

occur in nature they are frequently studied, in particular 
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experimentally. To allow a comparison between the results of 

this work and previous experimental 2D and numerical 3D 

studies, packings of various dimensionality are studied here. In 

addition, we probe whether the conclusion drawn by Liu et al. 

[147] and Luding [154] for spherical particles, viz. that a more 

heterogeneous packing morphology leads to a longer 

exponential tail in the distribution function of the contact force, 

can be extended to non-spherical particle packings. 

 

Figure 26: Probability distributions of f, i.e. the normal contact force 

(Fn) normalized by the mean normal contact force (<Fn>). 

Distributions of type A and B represent characteristic shapes that 

have been observed in various particle packings. The type A and type 

B distributions were obtained for 3D packings studied in this work. 

Specifically, a type A distribution was obtained for spheres and a type 

B distribution for star-shaped particles with a sphericity (Ψ) equal to 

0.419. 
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4.3 Methods 
The DEM algorithm used in this study is a modification of the 

original concept proposed by Cundall and Strack which was 

developed for disc-shaped particles [80]. The present work 

considers particles that are created by combining multiple 

spherocylinders (cylinders with hemispherically capped ends), 

analogous to the commonly applied glued-sphere approach 

[81]. A spherocylinder is a computationally benevolent particle 

shape since all points on its surface have the same distance 

from the central axis (see Figure 27). The general concept used 

in the DEM to track particles and particle contacts has been 

well documented in the literature [80,81,86,121,123,159,160]. 

Hence, the following will only describe the contact model and 

the contact detection algorithm between spherocylinders. 

 

4.3.1 Particle contacts 
Since all points on the surface of a spherocylinder have the 

same distance from the central axis (red dashed line in Figure 

27), the contact detection for spherocylinders can be reduced to 

the task of finding the closest points between two line 

segments. We solve this task using the algorithm proposed by 

Lumelsky [87]. The point at which the contact forces act is 

called the contact point and corresponds to the center point 

(green point in Figure 27) of the line that connects the two 

closest points on each of the central axes (blue line in Figure 

27). The normal contact force (Fn in Figure 27) acts 

perpendicular to the surface of the particle, while the tangential 

force (Ft), resulting from friction, acts parallel to the surface. 

The direction in which the tangential force acts depends on the 
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relative velocity of the particles at the contact point and the 

accumulated displacement between the particles. 

If the angle between the central axes of the two contacting 

spherocylinders is less than two degrees, the contact is treated 

as a parallel contact (Figure 27b). The value of 2° is chosen as 

a feasible and efficient cut-off value based on additional 

numerical experiments. These experiments demonstrated that 

varying the cut-off angle between 0.01° and 5° does not affect 

the packing density nor the particle orientations. For a parallel 

contact, the middle of the parallel sections that align is chosen 

as the contact point (Figure 27b). 

 

Figure 27: Schematic of two contacting spherocylinders. The red 

dashed lines denote the central axis of each spherocylinder. The 

spherocylinder radius is labelled rp. The blue line depicts the shortest 

distance between the central axis of the two spherocylinders. Fn and 

Ft depict the normal and tangential forces acting at the contact point 

(green): a) contact between a cylindrical section and a hemispherical 

end cap, b) parallel contact between spherocylinders. 

 

The contact between two particles is modeled by a linear 

spring-dashpot. The linear spring-dashpot model leads to a 

constant coefficient of restitution, independent of the collision 

velocity [161]. A linear model instead of a more realistic non-

linear Hertzian model is justified as previous works have 

shown that packings of spherocylinders, when using either 
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linear or Hertzian contact models, did not differ in the 

probability distribution of the contact forces [88]. It has also 

been argued that the material stiffness should increase with 

increasing contact area, e.g. in the case of a parallel contact 

between two spherocylinders (Figure 27b) [89–91]. However, 

a recent study has shown that varying the contact stiffness in 

the case of parallel contacts has little influence on the force 

distribution and structure in packings of spherocylinders [88]. 

Consequently, in this work, the normal and tangential stiffness 

are assumed to be constant, regardless of the geometry of the 

contact. 

The contact force in the normal direction, Fn, between two 

contacting particles i and j is: 

𝐹𝑛 = max(0,
𝑘𝑛

2
𝛿𝑛 − 𝜂𝑛√2𝑚𝑖𝑗𝑘𝑛𝑣𝑛) (4.3) 

Here kn is the normal stiffness of the particles, δn is the overlap 

between the contacting particles, ηn is the damping factor in the 

normal direction and vn is the normal component of the relative 

velocity between the particles at the point of contact. The 

effective inertial mass mij is calculated by: 

𝑚𝑖𝑗 =
𝑚𝑖 ∗ 𝑚𝑗

𝑚𝑖 + 𝑚𝑗

(4.4) 

In the tangential direction (subscript t), the maximal contact 

force is limited by Coulomb’s law of friction and is calculated 

by: 

𝐹𝑡 = min(𝜇
𝑘𝑛

2
𝛿𝑛,

𝑘𝑡

2
𝛿𝑡 − 𝜂𝑡√2𝑚𝑖𝑗kt𝑣𝑡) (4.5) 
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where μ is the coefficient of friction, ηt is the tangential 

damping factor, kt is the tangential stiffness and vt is the 

tangential component of the relative velocity between the 

particles at the point of contact. The accumulated tangential 

displacement at the contact is calculated as 𝛿𝑡 = ∫ 𝑣𝑡  𝑑𝑡. 

 

4.3.2 Simulation parameters 
The density of the particles is fixed to ρ = 1000 kg/m3 which is 

close to the density of many plastics, e.g. polyethylene (PE) or 

acrylonitrile butadiene styrene (ABS). Such plastics are 

commonly used in manufacturing techniques such as injection 

molding or fused deposition modelling, which can be employed 

to manufacture non-spherical particles. To choose a value for 

the normal particle stiffness kn two competing factors have to 

be considered: One factor is that a decreasing kn leads to a 

larger time step dt which decreases the computational time. As 

a rule of thumb dt should be at least 20 times smaller than the 

duration of a collision tcol which can be approximated by a 

damped harmonic oscillator [125]: 

𝑡𝑐𝑜𝑙 =
𝜋

√
𝑘𝑛
𝑚𝑖𝑗

(1 − 𝜂𝑛
2)

(4.6)

 

Furthermore, particles in a packing experience the weight of 

the particles above them which can lead to a vertical gradient 

of the magnitude of the contact forces. The influence of this 

gradient on the contact force probability distribution needs to 

be considered. Some researchers have eliminated the influence 

of this gradient by normalizing the contact forces by the weight 

of the particles above a given depth in the packing [147]. In our 
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work a different approach is used to eliminate the effect of the 

vertical gradient in the magnitude of the contact forces that is 

by exerting an additional vertical load onto the packing through 

a forced compression at the top. If the contact forces due to the 

external compression are sufficiently high, the influence of the 

vertical gradient can be neglected. However, increasing the 

contact force between particles, without changing the stiffness, 

increases the overlap δn between the particles which can lead to 

computational stability problems. Hence, a sufficiently high kn 

is desired to be able to neglect the vertical gradient in the 

magnitude of the contact forces. For the given particle density 

of ρ = 1000 kg/m3 an external compression force of 500 N was 

found, through simulations, to be sufficient to eliminate the 

influence of the vertical gradient in the magnitude of the 

contact forces. For an external compression force of 500 N a 

normal particle stiffness kn of 100'000 N/m is required to limit 

the particle overlaps to δn < 0.05 × dp, where dp is the 

spherocylinder diameter. Additional simulation results show 

that increasing kn by an order of magnitude does not influence 

the contact force distributions; decreasing kn by an order of 

magnitude while keeping the compression force constant leads 

to unstable simulations. In conclusion, any set of values for the 

parameters ρ, kn, dt and the compression force can be chosen, 

without affecting the results, as long as the set satisfies the 

conditions outlined above. 

The damping factor in the normal direction ηn is assumed to be 

constant and is related to the coefficient of restitution e via: 

𝑒 = 𝑒𝑥𝑝 (
−𝜋𝜂𝑛

√1 − 𝜂𝑛
2
) (4.7) 
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In this work, e = 0.53 (ηn = 0.2) is chosen as previous studies 

have shown that varying e in the range 0.2 – 0.9 has little 

influence on the behaviour of dynamic granular systems such 

as rotating drums and flows down an inclined plane [82,162]. 

We expect the influence of e on the results of a static granular 

packing to be even less significant than for dynamic systems. 

For the tangential stiffness kt = 0.5 × kn is chosen in accordance 

with previous works [121,160,163], while for the friction 

coefficient a value of μ = 0.5 is chosen. A discussion about the 

influence of particle friction on the contact force probability 

distribution can be found in chapter 4.4.3. 

Friction at the domain walls is neglected by setting the 

coefficient of friction between particles and the domain walls 

to μw = 0, as some authors [164] have argued that friction 

between particles and the domain wall leads to a more 

heterogeneous particle packing. The influence of a frictional 

wall on a packing is most pronounced close to the wall. In the 

work reported here, the dimensionality of the domain is varied. 

Hence, to isolate the effect of dimensionality on a particle 

packing, the effect of wall friction has to be eliminated. 

Furthermore, other numerical works on non-spherical particles 

[62,152] have also chosen to neglect wall friction. For these 

reasons wall friction is also neglected in this work. Of course, 

frictionless walls are typically not observed in experiments. To 

aid comparison with experimental work the influence of the 

wall friction on the particle packing is discussed in chapter 

4.4.4. 

Table 6 summarizes the values of the parameters used in the 

simulations. The value of the parameters of the confining walls 

are identical to those of the particles, except for the friction 

coefficient. 
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Table 6: Material parameters used in the simulations 

Parameter Symbol Value 

Density ρ 1000 kg/m3 

Normal stiffness kn 100'000 N/m 

Tangential stiffness kt 50'000 N/m 

Coefficient of restitution e 0.53 

Normal damping factor ηn 0.2 

Tangential damping factor ηt 0.2 

Coefficient of friction μ 0.5 

Wall friction coefficient μw 0 

Spherocylinder diameter dp 0.005 m 

Time step dt 2∙10-6 1/s 

 

4.3.3 Cluster particles 
The combination of several spherocylinders to spherocylinder-

cluster particles, analogous to the glued sphere approach 

[81,90], does not require additional contact detection routines 

[81]. The contact between two cluster particles can be treated 

as a contact between individual spherocylinders. The contact 

forces acting on the different spherocylinders belonging to a 

cluster are summed up and act on the center of gravity of the 

cluster. 

In this study, two different types of cluster particles are 

investigated. In 2D packings, cross-shaped particles are used 

(Figure 28a-e). Cross-shaped particles are formed by 

intersecting two perpendicular spherocylinders of equal length 

in their centers. In simulations of pseudo-2D and 3D packings, 

star-shaped particles (also referred to as jacks or hexapods) are 

used. Such particles are formed by intersecting a cross-shaped 

particle with a third spherocylinder (of the same length) 

perpendicular to both spherocylinders that form the cross 
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(Figure 28f). These particle shapes are chosen as they model 

non-convex geometries with a high order of symmetry and are 

easy to construct. 

The non-convexity of cross- and star-shaped particles increases 

with decreasing sphericity (Ψ). Various definitions for 

sphericity have been proposed [60,65,127], whereby the most 

common definition is the ratio of the surface area of a sphere to 

the surface area of a non-spherical particle with the same 

volume as the sphere [60,165,166]. The present work uses this 

definition and thus for a sphere Ψ = 1 and for non-convex 

particles Ψ < 1. The sphericity of the particle shapes modeled 

in this work ranges from Ψ = 0.99 to 0.42, hence covering a 

broad range of shapes from almost sphere-like to very slender 

highly non-convex shapes (Figure 28e). 

Some authors [45,135] have argued that several parameters, 

such as sphericity, blockiness and convexity, have to be 

specified to distinguish between different non-spherical 

particle shapes. We agree with the general rationale behind this 

proposal, however, this work investigates only two different 

shapes of particles, i.e. cross-shaped and star-shaped particles. 

For these two particle shapes any non-sphericity-describing 

parameter, e.g. blockiness or convexity, scales monotonically 

with (non-)sphericity. We believe that due to this monotonic 

scaling, the introduction of a second non-sphericity parameter 

would be redundant, provided that particles of one shape are 

compared only to particles of the same shape (as is the case of 

this study). An exception is made for the particle aspect ratio 

(defined as the ratio of the overall length of a particle L to the 

diameter of the protruding arms dp (Figure 28)) which was used 

by other works [120,157] to describe star-shaped particles. To 

aid the comparison between our work and works [120,157] the 
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relationship between the particle aspect ratio and the particle 

sphericity is given in Table 7. 

 

 

Figure 28: Selection of cross- and star-shaped particle geometries 

with varying sphericities (Ψ): a) Cross-shaped particle with Ψ=0.99, 

b) cross-shaped particle with Ψ=0.96, c) cross-shaped particle with 

Ψ=0.75, d) cross-shaped particle with Ψ=0.59, e) cross-shaped 

particle with Ψ=0.47 and f) star-shaped particle with Ψ=0.53. 

 

Table 7: Relationship between the particle aspect ratio and the 

particle sphericity. The particle aspect ratio is defined as the overall 

length of a particle (L) and the diameter of the protruding arms (dp). 

Particle 

aspect ratio 

(L/dp) 

Sphericity 

cross-

shape (2D) 

Sphericity 

star-shape 

(3D) 

1.1 0.995 0.995 

1.7 0.933 0.933 
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2.25 0.842 0.809 

3 0.754 0.702 

4 0.677 0.619 

6 0.585 0.526 

8.5 0.518 0.462 

11 0.473 0.419 

 

4.3.4 Simulation domains 
Four different domain configurations (defined by the confining 

walls) are assessed in this work: (i) 2D simulations in which 

cross-shaped particles cannot move in the z-direction 

(coordinate system shown in Figure 29). In these 2D 

simulations the domain width Wdom (x-direction) is equal to 30 

times the particle length L. Therefore, Wdom changes with 

particle shape Ψ; (ii) Pseudo-2D simulations in a cuboidal 

domain with a transverse thickness T (z-direction) equal to L. 

As in the 2D simulations, Wdom = 30 × L; (iii) Pseudo-2D 

simulations in a cuboidal domain with T = 2 × L and Wdom = 30 

× L and (iv) 3D simulations in a cylindrical domain of diameter 

Dd = 10 × L. A visualization of the pseudo-2D simulation with 

T = 2 × L is given in Figure 29a. 

For 3D domains two diameters Dd are investigated, i.e. Dd = 6 

× L and Dd = 10 × L; for these two domain sizes very similar 

results are obtained for the contact force distributions. To have 

a larger data set for the contact force distributions, the results 

of the larger 3D domain (Dd = 10 × L) are presented in the 

following. For the pseudo-2D domain, a transverse thickness of 

T = L is chosen; this thickness is as close as possible to a 2D 

domain while still allowing rotations around any given axis of 

the star-shaped particles. To investigate how a change in the 

transverse thickness affects the structure of the packing and 
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transmission of contact forces, pseudo-2D domains with T = 2 

× L are simulated. As the results of the pseudo-2D domains 

with T = 2 × L are similar to the 3D results, T is not increased 

further. 

To initialize a simulation, the domain is filled by placing all of 

the particles on a regular lattice with a space of 1.5 × dp between 

each particle. The height of the simulation domain (y-direction) 

is chosen just large enough to accommodate all of the particles 

in the initialization lattice. The particles are initialized with a 

random rotational orientation and a random velocity v (-

0.25 m/s < v < 0.25 m/s) in the y- and z-directions (2D and T = 

L cases) or a random velocity in all three directions (3D and T 

= 2 × L cases). The particles are allowed to settle for a time 

𝑡𝑠𝑒𝑡𝑡𝑙𝑒 = 3 ∗ √2ℎ
𝑔⁄ , where g is the acceleration due to gravity 

and h is the domain height. After time tsettle, the particles have 

come to rest as the average displacement of the particles per 

time-step approaches numeric precision. Once the particles 

have settled, the domain is compressed by moving a planar wall 

from the top downwards with a speed of 0.25 m/s until the 

packing exerts the external compression force of 500 N onto 

the top wall. This procedure simulates the uniaxial compression 

of a granular material in a container with rigid walls.  

The number of particles in each simulation N is such that the 

height of the packing (after compression) is at least twice as 

high as Wdom (or in the case of a cylindrical domain the diameter 

of the cylinder). In the different configurations N ranges from 

1800 to 34500. 

To avoid crystallization at low values of Ψ, a particle size 

distribution, is introduced. In 2D simulations, the 

polydispersity factor (by which the particle size is scaled) is 
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± 0.3 for Ψ > 0.88, and ± 0.15 for 0.88 ≥ Ψ > 0.75. For pseudo-

2D and 3D simulations, the polydispersity factor is ± 0.2 for 

Ψ > 0.86. As reference cases, packings of spherical particles 

(diameter dp = 0.005 m, polydispersity factor ± 0.2) in a 2D 

domain with Wdom = 30 × dp and in a cylindrical domain with a 

cylinder diameter of 10 × dp are simulated. 

 

4.3.5 Data analysis: Contact forces, stress analysis and 

packing structure 
Previous studies using spherical particles typically focused on 

the normal component of the contact force [62,78,152]. Thus, 

we likewise report here the distribution of the normal contact 

forces. For the computation of the probability distribution of 

the contact forces, P(f), the normalized forces f are sorted into 

50 bins of size 0.2 (range 0-10).  

Particle stresses are obtained by calculating first the stress 

tensor of the individual particles according to [167]: 

�̿� =
1

𝑉
[

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] =
1

𝑉
∑ �̅�𝑛+𝑡

𝑐 �̅�𝑐
𝑐  (4.8)  

where V is the particle volume, c is the number of all particle 

contacts, �̅�𝑛+𝑡 is the sum of the normal contact force and the 

tangential contact force and �̅� is the vector pointing from the 

center of the particle to its contact point. The particle stress 

tensor is diagonalized to obtain the principal stresses. 

Additionally, this work reports the sum of the elements of the 

diagonalized stress matrix (trace) of each particle, i.e. the first 

stress invariant of the tensor for each particle (I1,i). Similar to 
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the presentation of the contact forces I1,i is normalized by its 

mean (< 𝐼1 > =
1

𝑁
∑ 𝐼1,𝑖

𝑁
𝑖 ) yielding i = I1,i/<I1>. 

The packing morphology is analyzed by calculating the radial 

distribution function (RDF) which is given by Eq. (4.9). The 

RDF can be interpreted as the number of particles that are 

located in a differential volume shell (thickness Δr) with a 

distance r from the particle center, divided by the expected 

number of particles based on the particle number density of the 

whole packing. Here the center of mass of a cross- or star-

shaped particle is considered as the particle center. The RDF 

plots show G(r) over r/L, where r has been normalized by the 

respective particle length L. 

 

𝐺(𝑟) =
𝑁𝑅𝐷𝐹(𝑟)

4𝑟2∆𝑟𝑁𝜌𝑁
(4.9)  

In Eq. (4.9) ρN is the average number density of the particles 

(number of particles in the simulation domain divided its 

volume) and NRDF is the number of particles in the differential 

volume shell given by: 

𝑁𝑅𝐷𝐹 = ∑ ∑𝛿(𝑟 − 𝑟𝑖𝑗)

𝑁

𝑗≠𝑖

𝑁10𝐿

𝑖

 (4.10) 

where δ is the Dirac delta function, rij is the distance between 

the center of particle i to the center of particle j and N10L is the 

number of particles which have a distance of at least 10 × L 

from each side wall as well as the top and bottom of the 2D 

domain. This area is sketched in Figure 29b. In the 3D case, 

N10L corresponds to the number of particles that have at least a 

distance of 10 × L from the top and bottom wall and a distance 
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of 3 × L from the cylinder wall. We exclude particles close to 

the wall because these particles have no close neighbors outside 

of the walls. 

 

Figure 29: a) Visualization of a pseudo-2D packing of star-shaped 

particles (Ψ = 0.619) with Wdom = 30 × L and T = L (L = particle 

length). b) Visualization of the normalized, first stress invariant (i = 

I1,i/<I1>) of the packing shown in (a). The dashed area depicts the 

area which is used to calculate the radial distribution function (RDF). 

The results of the RDF are shown in Figure 36. 

 

4.4 Results and discussion 

4.4.1 Solid fraction 
Particles of low sphericity form packings with a low solid 

fraction. Figure 30 plots the solid fraction of a packing as a 

function of Ψ and domain geometry. For 2D packings, we show 

the area fraction occupied by particles as well as the volume 
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fraction, assuming that the domain has a transverse thickness 

that is equal to the particle diameter (T = dp). 

For a packing of non-spherical particles (Ψ > 0.9), one observes 

an increase in solid fraction with decreasing sphericity, with a 

peak at Ψ = 0.9 - 0.95. At this sphericity value, the particle 

shapes are the closest to a cuboidal shape. Cuboids can be 

stacked without any gaps. Reducing the sphericity further (Ψ ≤ 

0.9), the particles become increasingly concave with an 

increased tendency to interlock, which leads to a decreasing 

solid fraction of the packing. The shape of the solid fraction 

versus sphericity curves is similar to the trends that have been 

observed previously simple spherocylinders and ellipsoids 

[41,168,169]. 

 

 

Figure 30: The solid fraction of packings as a function of sphericity 

and domain geometry. 
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4.4.2 Contact force distributions 
As a first approach, we assess whether our simulations support 

a previously reported trend that the exponential tail of P(f) 

becomes longer for increasingly non-spherical particles 

[62,79,152,153]. Currently, it is unclear whether such a trend 

is limited to a given domain dimensionality (2D vs 3D) and 

whether compressed packings show the same behavior as 

sheared systems. Figure 31 plots the probability distributions 

of the normal contact forces normalized by their mean, P(f), for 

different particle sphericities and domain configurations. 

For 2D domains, the P(f) of cross-shaped particles with the 

highest investigated sphericity (Ψ = 0.995) and spheres are very 

similar (Figure 31a). In 2D packings, changes in the P(f) when 

transitioning from packings of spherical particles to slightly 

non-spherical particles seem to occur gradually. Figure 31a 

also plots Eq. (4.1), the numerical expression for P(f) proposed 

by Mueth et al. [78]. Somewhat surprisingly, the empirical Eq. 

(4.1), although extracted originally from a packing of spheres 

agrees well with the data for low sphericity cross-shaped 

particles in 2D, but not with the simulation results of spheres. 

A possible reason for this deviation might be the fact that 

Mueth et al. [78] studied 3D packings and only recorded 

contact forces at the wall. Indeed, the numerical results of a 

packing of spheres in a 3D domain, Figure 31d, agree very well 

with Eq. (4.1).  

When comparing the contact force distribution, P(f), of cross-

shaped particles (2D domain) as a function of their sphericity 

(Figure 31a), one can observe that the length of the exponential 

tail of P(f) increases with decreasing Ψ. However, the increase 

in the length of the exponential tail is limited. Even in packings 
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of cross-shaped particles with a sphericity of Ψ = 0.473 (lowest 

sphericity modeled) only four individual contact forces (out of 

105) have a value of f > 8. The general type A shape of the 

distributions, i.e. a peak at f ≈ 1 and an exponential tail is 

independent of particle sphericity when the packing is 

restricted to 2D. Hence, our results confirm the observations by 

Saint-Cyr et al. [152] who modeled trimers (1 ≥ Ψ ≥ 0.76) and 

observed that the shape of P(f) and the location of its peak is 

independent of particle sphericity in compressed 2D packings. 

Turning now to pseudo-2D packings of star-shaped particles 

(Figure 31b and Figure 31c for, respectively, T = L and T = 2 

× L), one observes a change in the shape of P(f) from type A to 

type B with decreasing particle sphericity. Generally, the peak 

at f ≈ 1 becomes less pronounced and the length of the 

exponential tail increases with decreasing sphericity. Only for 

particles with the highest sphericity (Ψ = 0.995) the shape of 

P(f) in pseudo-2D packings coincides with the shape that is 

observed in 2D simulations. 

When increasing the transverse thickness of the pseudo-2D 

simulations (T = 2 × L, Figure 31c) and ultimately reaching full 

3D simulations, Figure 31d, the shape of P(f) changes further, 

i.e. the peak of P(f) remains at f ≈ 1 for high-sphericity particles 

but is no longer visible for low-sphericity particles (Ψ = 0.461 

and Ψ = 0.419). Furthermore, the length of the exponential tail 

increases significantly for Ψ < 0.7 when increasing the 

transverse thickess of the domain to T = 2 × L and 3D. It has 

been suggested that type A distributions are essentially 

Gaussian-like (centered around f ≈ 1, albeit truncated at f = 0) 

which would indicate that the forces are distributed 

homogeneously [62,155]. The similarity between a type A 

distribution and a Gaussian-shaped distribution is shown in 
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Figure 26. One can see that a Gaussian is a good fit for type A 

distributions for f < 3, but the type A distribution has a longer 

tail. On the other hand, the lack of a peak at f ≈ 1 and the long 

exponential tails of type B distributions represent a 

heterogeneous force distribution with a large number of below-

average contact forces but also some contact forces that are ten 

times above average.  

To summarize, our results show that in pseudo-2D and 3D 

packings the shape of P(f) changes from type A to a type B 

when the particle sphericity decreases below the critical value 

Ψcrit = 0.7 (but not in 2D packings). The shape change comes 

with an increasing length of the exponential tail of P(f) and a 

decreasing prominence of the peak at f ≈ 1 with decreasing 

particle sphericity. Our results connect for the first time the 

observations of several previous studies: Saint-Cyr et al. [152] 

and Azéma and Radjai [153] who observed exclusively type A 

distributions in compressed 2D packings of non-spherical 

particles. On the other hand, Gan et al. [79] who simulated 

ellipsoids with Ψ ≥ 0.7 in 3D packings observed type A 

distributions and Murphy et al. [62] who simulated Z-shaped 

particles with Ψ = 0.45 in 3D packings observed type B 

distributions. 

Combing the results of our simulations with previously 

reported observations allows us to draw the following general 

conclusion for the shape of P(f) in 2D and 3D packings of 

compressed non-spherical particles with different shapes and 

sphericities: 

• With decreasing particle sphericity, the contact force 

distribution of compressed 3D packings becomes more 

heterogeneous. This is evidenced by the increasing length 

of the exponential tail of the contact force distribution with 



129 

decreasing particle sphericity for Ψ < Ψcrit = 0.7, 

independent of the specific particle shape. 

• In compressed 2D packings the length of the exponential 

tail of the contact force distributions does not depend on 

particle sphericity. 
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Figure 31: Probability distribution functions, P(f), of the normal 

contact force (Fn) normalized by the mean normal contact force 

(<(Fn)>) for all four packing domains simulated. In the 2D domain 

(a) the flat, cross-shaped particles can only translate in the x- and y-

directions. In the pseudo-2D domains (b) three-dimensional particles 

can translate in all three directions, with the transversal domain 

width T in the z-direction being as large as the particles (T = L). In 

the second pseudo-2D domain (c) the z-direction is twice as large as 

the particles (T = 2 × L). The 3D domain (d) is cylindrical with 

diameter Dd = 10 × L. For each packing configuration the full range 

of particle sphericities simulated is shown. For reference a 2D 

simulation of spheres is included in (a) and a 3D simulation of 

spheres is included in (d). Each panel also plots the probability 

distribution function predicted by the empirical equation (Eq. (4.1)) 

of Mueth et al. [78], which was derived from compressed 3D packings 

of glass spheres. 

 

4.4.3 Influence of particle friction 
The following section discusses the influence of the 

interparticle friction coefficient μ on the probability 
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distribution of the contact force P(f). Throughout all other parts 

of chapter 4 of this work μ = 0.5 was used.  

Figure 32a plots P(f) for cross-shaped particles with the highest 

(Ψ = 0.995) and lowest (Ψ = 0.518) sphericity in a 2D domain 

for varying μ. For both Ψ = 0.995 and Ψ = 0.518, P(f) is not 

affected appreciably by the friction coefficient. 

Figure 32b plots P(f) for star-shaped particles in a 3D domain 

(cylinder with a diameter Dd = 6 × L). For the highest sphericity 

(Ψ = 0.995), P(f) is independent of μ. For the lowest sphericity 

(Ψ = 0.461), the P(f) for μ = 0.5 and μ = 0.9 coincide (μ = 0.5 

was used in the throughout chapter 4 of this work). However, 

for particles with Ψ = 0.461 and μ = 0.1, P(f) has a shorter tail 

compared to P(f) for higher values of μ, indicating that there is 

a minor influence of μ on P(f). A reason for this observation 

may be that it is less likely for low friction particles to obtain 

configurations in rotationally jammed configurations. Instead, 

such low-friction particles are more likely to arrange 

themselves into the closest crystalline configuration which 

would be represented by a shorter exponential tail. 
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Figure 32: Probability distribution functions, P(f), of the normal 

contact force (Fn) normalized by the mean normal contact force 

(<(Fn)>) for varying inter-particle friction coefficients μ. The 2D 

data (a) uses flat cross-shaped particles, the pseudo-2D and 3D data 

(b) uses star-shaped particles. 
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Figure 33 probes further the influence of a low friction 

coefficient (μ = 0.1) on P(f). For star-shaped particles with Ψ = 

0.461 in a 3D domain, the exponential tail of P(f) is longer than 

for particles with Ψ = 0.995 in a 3D domain or any P(f) in a 2D 

domain. Hence, the general trends observed throughout chapter 

4 of this work are not affected by a varying μ, i.e. in 3D 

packings the length of the exponential tail increases with 

decreasing particle sphericity independent of μ. 

 

Figure 33: Probability distribution functions, P(f), of the normal 

contact force (Fn) normalized by the mean normal contact force 

(<(Fn)>) for an inter-particle friction coefficient μ = 0.1. The particle 

sphericities plotted are the highest and lowest sphericities that have 

been considered in this work. 
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4.4.4 Influence of wall friction 
Friction between the particles and the domain walls is 

disregarded in this work to aid comparisons with previously 

reported numerical works of non-spherical particles [62,152]. 

In addition, other authors [164] have argued that introducing 

wall friction leads to more heterogeneous particle packings. In 

the following the influence of the wall friction coefficient μw 

on the probability distribution function of the normal contact 

force P(f) is assessed. An understanding of how μw influences 

P(f) will aid the comparison between experimental works and 

our numerical study. 

Figure 34 plots P(f) for varying μw for particles with the highest 

sphericity parameter simulated in this work (Ψ = 0.995). For 2D 

simulations, Wdom (x-direction) is equal to 30 times the particle 

length L; while pseudo-2D and 3D simulations ar executed in 

smaller domains than the main body of the work to reduce 

computational time. Figure 34 b plots the results obtained in a 

cuboidal domain with a transverse thickness T (z-direction) 

equal to L and Wdom = 16 × L (in the all other parts of chapter 4 

Wdom = 30 × L). Figure 34c plots the results obtained in pseudo-

2D domains with T = 2 × L and Wdom = 16 × L (Wdom = 30 × L 

in the main body of this work). Figure 34d plots the results 

obtained in a 3D cylindrical domain with Dd = 6 × L (Dd = 10 

× L in the main body of this work). 

The results given in Figure 34a show that in a 2D domain P(f) 

does not vary appreciably with μw. This is not unexpected as in 

a 2D domain particles have only contact with the side walls in 

the x-direction (comparatively large dimension of the domain 

in the x-direction with Wdom = 30 × L). Hence, the domain width 

is sufficiently large to ensure frictional walls do not influence 

the packing. For pseudo-2D domains the shape of P(f) changes; 
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i.e. a longer exponential tail is observed when wall friction is 

introduced. In a pseudo-2D packing, particles have (frictional) 

contacts with the side walls in the x-direction (Wdom = 16 × L) 

and in the z-direction; however, the domain size in the z-

direction is very small with T = L (Figure 34b) and T = 2 × L 

(Figure 34c). Therefore, in pseudo-2D domains with T = L 

every particle has a contact with at least one frictional wall and 

for T = 2 × L the majority of particles has at least one contact 

with a frictional wall. Due to the additional tangential contact 

forces between particles and frictional walls, it is more likely 

that particles become jammed during compression. These 

jammed particles cannot rearrange to distribute the contact 

forces more homogeneously. Interestingly, the exponential 

tails seem to be longer for T = L than for T = 2 × L. This can be 

explained by the fact that particles can barely move in the z-

direction for T = L, while in a T = 2 × L domain two particles 

fit side-by-side in the z-direction and depending on their 

orientation a small gap can exist between the two particles into 

which a particle can wedge from above. Such a configuration 

would increase the normal forces between particles and the 

walls and consequently also the (limiting) tangential force that 

is given by Coulombs law. In a 3D domain (Figure 34d) the 

influence of frictional walls on P(f) is noticeable that is a longer 

exponential tail when introducing frictional walls. However, 

the influence of frictional walls in 3D domains is less 

pronounced than in pseudo-2D domains, since the diameter of 

the cylindrical domain is Dd = 6 × L and therefore less particles 

are in contact with the frictional wall when compared to the 

pseudo-2D domains. One can expect that if the diameter of the 

3D domain is increased further the influence of the frictional 

walls on P(f) will decrease further. Additionally, the magnitude 

of µw does not seem to affect P(f) as long as µw > 0. 
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Figure 34: Probability distribution functions of the normal contact 

force, P(f) normalized by the mean normal contact force (<(Fn)>) 

as a function of the wall friction coefficient μw: (a) 2D domain, (b) 

pseudo-2D domain (T = L), (c) pseudo 2D domain (T = 2 × L) and 

(d) 3D domain. 
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4.4.5 Quantification of the length of the exponential tail 
Next, a quantitative description of the length of the exponential 

tail is explored. In the following, we will focus on the region f 

> 1 of P(f), due to the importance of the large forces which can 

potentially lead to the fracture of particles and endanger a stable 

packing. 

Figure 35a plots the exponent k as a function of particle 

sphericity. The exponent k is obtained by fitting the exponential 

tail (f > 1) of the different P(f) (Figure 31) with Eq. (4.2). Error 

bars are omitted in Figure 35a for clarity (the 95% confidence 

bounds for k are typically within ±0.025). Qualitatively the 

homogeneity of P(f) decreases as the length of the tail increases 

(i.e. a lower value of k). 

For particles of high sphericity (Ψ = 0.995), the values obtained 

for k are in the range 1.28 ≥ k ≥ 1.47. These values are in 

between the values obtained by Mueth et al. [78] (packings of 

glass spheres in 3D with k = 1.5) and Gan et al. [79] (3D 

packing of spheres with k = 1.24). 

Turning now to less spherical particles: In 2D packings, k 

decreases slightly with decreasing Ψ, i.e. k = 1.42 for Ψ = 0.995 

and k = 1.32 for Ψ = 0.47. In 2D packing the decrease of k with 

decreasing Ψ can be fitted well by a linear function (dashed 

black line in Figure 35a). The comparatively high value of k = 

1.32 for the lowest sphericity values studied (Ψ = 0.47) shows 

that there are relatively few cases of high contact forces in 2D 

packing of low sphericity particles. Good agreement is also 

seen when including data for k obtained by other works that 

have assessed compressed 2D packings (e.g. the data of Saint-

Cyr et al. [152] is for trimer particles).  
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In pseudo-2D and 3D packings k = 1.38±0.14 for Ψ > Ψcrit = 

0.7. For Ψ < Ψcrit k decreases exponentially with decreasing Ψ 

and reaches a value of k = 0.87±0.13 for the lowest sphericity 

investigated, i.e. Ψ = 0.42. An exponential fit of k in pseudo-

2D (T = 2 × L) packings is shown by a solid line in Figure 35a. 

Hence, for Ψ < Ψcrit the probability of finding large contact 

forces (f > 8) increases exponentially and the contact force 

distributions become increasingly heterogeneous. The critical 

sphericity value, i.e. Ψcrit = 0.75 for cross-shaped particles (2D) 

and Ψcrit = 0.7 for star-shaped particles (3D) is the lowest 

sphericity for which a contact between two particles always 

involves the hemispherically-capped ends of the particles. This 

can be explained by the fact that, at this critical sphericity the 

arms protruding from a particle are exactly twice as long as the 

particle radius (Figure 35c). For Ψ > Ψcrit, contacts will always 

involve the end-caps of a particle (Figure 35b), while for Ψ < 

Ψcrit, contacts can also involve the flat/cylindrical section of the 

protruding arms (Figure 35c). Particles that only contact each 

other with the hemispherical end-caps, i.e. star-shaped particles 

with Ψ ≥ 0.7, are more likely to slip relative to each other when 

a load is applied. Conversely, particles with contacts that 

involve the flat/cylindrical sections of the arms, i.e. star-shaped 

particles with Ψ < 0.7, are less likely to slip relative to each 

other which means that they are more likely to jam. When a 

particle jams during compression, the contact forces acting on 

such a particle can increase substantially (and without the 

particle unjamming the contact forces cannot relax). These high 

contact forces give rise to the long exponential tail of P(f) for 

low sphericity particles, in particular for star-shaped particles 

with Ψ < 0.7. Whereas this rationale explains the transition at 

Ψcrit = 0.7 for pseudo-2D and 3D packings, it is unclear why 

such a pronounced transition is absent for 2D packings. We 

speculate that the reason might lie in the particular spatial 
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distribution (morphology) of the particles which will be 

investigated in the following.  

 

Figure 35: (a) Exponent k (Eq. (4.2)) obtained by fitting the 

exponential tail (f > 1) of the contact force distributions. Results of 

the present work are shown by black markers, while red markers 
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denote results from previously published studies. The dashed line is a 

linear fit (k(Ψ) = 0.18(1-Ψ)+1.43) to the values of k obtained in 2D 

packings (+), while the solid line is an exponential fit (k(Ψ) = -2.03(1-

Ψ)2.43+1.29) to the values of k obtained in pseudo-2D (T = 2 × L) 

packings (*). b)-d) Sketches of cross-shaped particles showing how 

the length of the protruding arms change with sphericity. 

 

4.4.6 Packing morphology 
By analyzing the probability distribution of the contact forces, 

P(f), we found that in compressed pseudo-2D and 3D particle 

packings the length of the exponential tail of P(f) increases with 

decreasing particle sphericity. In contrast, in 2D packings, the 

length of the exponential tail of P(f) does not depend strongly 

on the particle sphericity. Hence, the question why the behavior 

of 3D packings differs distinctively from 2D packings remains 

unanswered. Instead of assessing the structure of a packing by 

an averaged, global parameter, such as the solid fraction, the 

morphology of the packings is assessed by calculating their 

radial distribution functions, RDF (G(r), Figure 36).  

Comparing the RDFs in 2D packings as a function of sphericity 

(Figure 36a), one observes that for cross-shaped particles of 

low sphericity (Ψ = 0.75) the first (r/L = 0.76) and second (r/L 

= 1.5) peak, are more prominent compared to the first (r/L = 1) 

and second (r/L = 1.91) peak of more spherical particles (Ψ = 

0.995). These peaks correspond to particle configurations of 

local crystallinity which are also the closest possible 

arrangements of interlocking particles. Sketches of such 

crystalline particle configurations are shown in Figure 36 (and 

enhanced in Figure 37). More pronounced peaks imply a more 

frequent occurrence of the respective particle configurations. 

The distances D1, D2, D3 between the centers of two 
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interlocking particles, as defined in Figure 36, can be calculated 

by:  

𝐷1 = √𝑑𝑝
2 + [(𝐿 + 𝑑𝑝)/2]

2
 

𝐷2 = 2𝐷1, 𝐷3 = 3𝐷1 (4.11)
 

For cross-shaped particles with Ψ = 0.75 the values of the first 

(r/L = 0.76) and second (r/L = 1.5) peak of the RDF are close 

to the geometrically determined values of the D1 and D2 

configurations (D1/L = 0.75 and D2/L = 1.49). This indicates 

that the peaks in the RDF indeed correspond to the proposed 

closest crystalline configurations. In the RDF of 2D packings 

of particles with Ψ = 0.75 the peak positions are shifted to lower 

values of r/L compared to the RDF of 2D packings of more 

spherical particles (Ψ = 0.995). The position of the peaks (D1/L) 

shifts to lower values for decreasing Ψ because L increases with 

decreasing Ψ and 
𝐷1

𝐿
∝

(𝐿+√𝐿)

2𝐿
< 1. For 2D packings of cross-

shaped particles with Ψ = 0.75 a small third peak can be seen 

at r/L = 2.23, which corresponds to a similar packing 

configuration as the one described above (four-particle 

configuration) with an analytical value of D3/L = 2.24. These 

first three peaks can also be seen in the RDFs of 2D packings 

of particles with lower sphericity. The positions of the peaks as 

well as the analytically obtained positions are shown in Table 

8. Since these three peaks are observed even in 2D packings of 

highly non-spherical particles one can conclude that structures 

of local crystallinity can be observed in all of these packings. 
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Table 8: Peak positions observed in the RDFs of 2D packings of 

cross-shaped particles and peak positions calculated according to 

Eq. (4.11). 

Ψ 1ST 
PEAK 

D1/L 2ND 
PEAK 

D2/L 3RD 
PEAK 

D3/L 

0.473 0.55 0.55 1.12 1.11 1.66 1.66 

0.518 0.58 0.57 1.14 1.14 1.73 1.71 

0.585 0.62 0.61 1.25 1.21 1.82 1.82 

0.754 0.76 0.75 1.50 1.49 2.23 2.24 

0.995 1.00 0.98 1.91 1.95 none 2.93 

 

Figure 36b plots the RDFs of star-shaped particles in 3D 

packings. The RDF of particles with Ψ = 0.995 shows a first 

peak at r/L = 1 and a second peak at r/L = 1.9. These peaks are 

at the same positions as in the RDF of 2D packings of cross-

shaped particles with Ψ = 0.995 because both particle shapes 

are almost spherical and cannot interlock. In 3D packings of 

star-shaped particles with Ψ = 0.702 the first peak is located at 

r/L = 0.7 and the second peak at r/L = 1.37. Compared to 2D 

packings of cross-shaped particles with similar sphericity, the 

peaks are shifted to lower r/L values. This observation can be 

explained by the fact that star-shaped particles in 3D packings 

have additional degrees of freedom compared to cross-shaped 

particles in 2D packings allowing closer packing 

configurations in 3D packings. A sketch of the closest packing 

of star-shaped particles in 3D is shown in Figure 36b. The 

closest distance (J1) between the centers of two star-shaped 

particles in the packing configuration shown in Figure 36b is: 

 𝐽
1

= √3𝑑𝑝 (4.12) 
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Hence, in 3D packings of star-shaped particles with Ψ = 0.702, 

the first peak J1 is expected at r/L = 0.58 and the second peak 

at r/L = 1.15. However, the first and second peak are found at 

r/L = 0.7 and r/L = 1.37, respectively. This result indicates that 

the most likely packing configuration of star-shaped particles 

in a compressed 3D packing is considerably looser than the 

closest possible crystalline packing configuration. Hence, 3D 

packings have a different morphology to 2D packings, as the 

peak location in the RDF of 2D packings of cross-shaped 

particles agrees very well with the closest possible crystalline 

packing configuration which, however, is not the case for 3D 

packings.  

Additionally, when comparing the RDF of 2D and 3D 

packings, one finds that the height of the peaks in the RDF of 

3D packings is lower than in 2D packings, a further sign of a 

reduced crystallinity when introducing an additional 

dimension. The reduced peak height is particularly noticeable 

when comparing the RDF of cross-shaped particles with Ψ = 

0.754 (2D packing, Figure 36a) with the RDF of star-shaped 

particles with Ψ = 0.702 (3D packings, Figure 36b). Even a 

third peak is visible in the RDF of the 2D packing (Ψ = 0.754), 

whereas a third peak is absent in the RDF of a 3D packing (Ψ 

= 0.754). The reduction in crystallinity in 3D packings is more 

pronounced for particles of lower sphericity, i.e. Ψ < 0.702 (Ψ 

< Ψcrit); in such packings even the first peak in the RDF 

disappears completely, indicating an amorphous packing 

structure. A reduced peak height in the RDF of packings of rod-

like particles with decreasing particle sphericity has also been 

observed in previous works [51,134,170]. 

To summarize, the crystallinity of 3D packings of star-shaped 

particles decreases with decreasing particle sphericity. In 2D 
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packings of cross-shaped particles, however, such a decrease in 

crystallinity with decreasing sphericity could not be observed. 

The data in Figure 36 shows that interlocked, crystalline, 

configurations are found in 2D packings of cross-shaped 

particles with Ψ < 0.7, whereas such configurations do not seem 

to be present to a large extend in 3D packings of star-shaped 

particles with Ψ < 0.7. This can be explained by considering 

that 3D star-shaped particles have three additional degrees of 

freedom (one translational degree and two rotational), 

compared to 2D cross-shaped particles. It is therefore less 

likely that star-shaped particles, when dropped into a 3D 
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container followed by compression will configure themselves 

into a highly crystalline packing. 

 

Figure 36: Radial distribution function (RDF), G(r), for (a) 2D and 

(b) 3D packings of particles of different sphericity. For better 

readability, the curves are shifted vertically with an offset of 5. In 2D 

packings, the distance between the particle centers corresponding to 

the first, second and third peak are labeled D1, D2 and D3. The 

distances D1-3 can be determined analytically according to Eq. (4.11), 

and J1 according to Eq. (4.12). 
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Figure 37: Visualization of particle configurations with the shortest 

possible distance (D1, D3, J1) between particle centers (black dots): 

(a) cross-shaped particles used in 2D simulations, (b) star-shaped 

particles used in pseudo-2D and 3D simulations and (c) 

configuration of four cross-shaped particles. D1 and D3 can be 

calculated according to equation Eq. (4.11), and J1 according to Eq. 

(4.12). 

 

4.4.7 Linking force distributions to packing morphology 
We described above that in 3D packings, below a critical value 

of Ψ < Ψcrit = 0.7, the length of the exponential tail of the contact 

force distribution increases with decreasing particle sphericity. 

The increasing length of the exponential tail in 3D packings 

(and not in 2D packings) for sphericities Ψ < 0.702 seems to 

coincide with the disappearance of peaks in the RDF. To 

understand this observation, we revisit the work by Luding 

[154], who used the DEM to investigate particle stresses of 
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monodisperse and polydisperse packings of discs in a perfectly 

hexagonal 2D lattice. For perfectly monodisperse particles, a 

uniform particle stress distribution was observed. However, as 

soon as some polydispersity was introduced, by varying the 

disc diameter by a small amount (±0.33%), localized force 

chains were observed in the particle packing. Luding [154] also 

observed that the probability of large particle stresses to occur 

increases with increasing polydispersity, i.e. the length of the 

exponential tail of the particle stress distribution increases with 

increasing polydispersity. One can interpret the findings of the 

present work as complement to Luding’s [154] results for non-

spherical particles, i.e. a decreasing crystallinity of the packing 

(induced by either polydispersity or non-sphericity) leads to 

wider, less homogeneous, contact force and particle stress 

distributions, provided that the following two assumptions 

hold: (1) The introduction of polydispersity does lead to a 

reduction in crystallinity and (2) the behavior of the particle 

stress distribution, P(i), depending on particle sphericity is very 

similar to that of the contact force distributions, P(f). 

Concerning the first assumption, there is indeed evidence of 

reduced peak heights in the RDF of a hexagonal packing with 

5% polydispersity, when compared to the RDF of a 

monodisperse packing [171]. The reduced peak height hints 

towards a reduced crystallinity in polydisperse packings, 

however, further research is required to confirm the 

assumption. 

To confirm the second assumption, that the exponential decay 

of the particle stress distribution is similar to the decay of the 

contact force distribution, one can compare P(f) and P(i), i.e. 

the probability distribution of the normalized first stress 

invariant i = I1,i/<I1> shown in Figure 38. Generally, the shape 
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of P(i) is similar to the shape of P(f), i.e. for 2D packings 

distributions of type A and for 3D packings of low sphericity 

particles distributions of type B are obtained. For high 

sphericity (Ψ > 0.7) cross-shaped particles in 2D packings 

(Figure 38a), the distributions exhibit a pronounced peak at i = 

1, which disappears for Ψ < Ψcrit = 0.7 as lim
𝑖→0

𝑃(𝑖) increases 

with decreasing Ψ. Specifically, in 3D packings of star-shaped 

particles, P(i) has a type A-like distribution for Ψ ≥ 0.7 (peak 

at i = 1 and an exponential tail of similar length as in 2D 

packings), and no particle experiences a stress invariant with a 

magnitude of more than 6 times the mean. However, for 3D-

packings of star-shaped particles with Ψ < Ψcrit, the shape of 

P(i) changes to a type B distribution and the length of the 

exponential tail of P(i) increases with decreasing particle 

sphericity. The steep increase of lim
𝑖→0

𝑃(𝑖) implies that there is 

an increasing number of particles that experience only a very 

small fraction of the load that is put on the packing by uniaxial 

compression. At the same time, owing to the increasing length 

of the exponential tail, some particles experience stresses that 

are significantly higher than the mean. These trends match the 

behavior of P(f), as described further above. 

The transition of P(i) to a type B distribution in 3D packings of 

star-shaped particles for decreasing sphericity, is attributed to 

an increasing frequency of contacts between the flat parts of the 

arms protruding from the particles (Figure 35c). Such contacts 

are only possible for star-shaped particles with Ψ < Ψcrit, 

whereas for Ψ ≥ Ψcrit all contacts between star-shaped particles 

involve the hemispherical end-caps of the spherocylinders. 

Particles forming contacts between the flat parts of the 

spherocylinders are less likely to rearrange during uniaxial 

compression. This effect can also be interpreted as an increased 
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apparent friction coefficient between particles. Such particles 

are more likely to jam during uniaxial compression, instead of 

rearranging into a configuration which would reduce the stress 

acting on the particle. As a consequence, high stresses can build 

up which results in an increased length of the tail of P(i). The 

build-up of stresses in some particles leaves other particles to 

contribute little to the stress transmission in the packing leading 

in turn to an increase of lim
𝑖→0

𝑃(𝑖) with increasing apparent 

friction [172]. 

To summarize, the dependence of the length of the exponential 

tail of P(i) on particle sphericity is very similar to the respective 

behavior of P(f). Hence, our results can indeed be considered 

as complementary to Luding’s [154] observation on the effect 

of polydispersity on the stress distribution in particle packings, 

i.e. a decreasing crystallinity (due to increasing non-sphericity 

or polydispersity) leads to a extended tail of the contact force 

and particle stress distributions.  
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Figure 38: Probability distributions of the normalized first stress 

invariants P(i) as a function of particle sphericity in (a) 2D and (b) 

3D packings. The normalized first stress invariants i are obtained by 

normalizing the first stress invariants I1,i by <I1>. 
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4.5 Conclusions 
This work investigated compressed 2D and 3D packings of 

non-spherical, non-convex, cross- and star-shaped particles 

using a newly developed DEM. Such non-convex particles can 

interlock forming packings that may sustain compressive and 

tensile forces despite containing purely non-cohesive particles. 

The particle sphericity (Ψ) was varied in the range Ψ = 0.42 - 

1. The morphology of the packings was investigated by 

calculating the radial distribution function (RDF). Through the 

RDF we have established a link between the packing 

morphologies and the contact force probability distributions as 

expressed by the decay exponent k. 

In 2D packings of cross-shaped particles a linear decrease of k 

was observed, from k = 1.42 for Ψ = 0.995 to k = 1.32 for Ψ = 

0.47. For pseudo-2D and 3D packings of star-shaped particles 

k is independent of the sphericity (k = 1.38±0.14) for Ψ ≥ 0.7; 

however, for smaller sphericities (i.e. Ψ < 0.7) the magnitude 

of k decreases exponentially with decreasing Ψ. These findings 

connect for the first time the results of previous works 

[62,79,152] on compressed packings of non-spherical particles. 

This allows us to establish the following general correlations 

between Ψ and the heterogeneity of the distribution of the 

contact forces expressed by the magnitude of k:   

• In compressed 3D packings, the distribution of contact 

forces in the normal direction becomes increasingly 

heterogeneous, i.e. the length of the exponential tail 

increases exponentially with decreasing particle 

sphericity, independent of the specific particle shape. 

• In 2D packings the influence of particle sphericity on 

the distribution of the contact force distribution in the 

normal direction is small. In contrast to the 
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exponentially decreasing k with decreasing Ψ in 3D 

packings, the decrease of k with decreasing Ψ in 2D 

packings is linear. 

The heterogeneity of the contact force distribution needs to be 

considered when designing particles for specific applications 

such as aleatory construction for which non-convex particles 

with low sphericity (e.g. Ψ = 0.45 [62]) are desired. Such 

particles need to be able to withstand the highest contact forces, 

that can reach values that are an order of magnitude higher than 

the mean contact force. 

We further establish a link between the increasing 

heterogeneity of the distribution of the contact forces and the 

packing morphology in packings of non-spherical particles. We 

have demonstrated that the increasing heterogeneity in the 

contact force distributions with decreasing sphericity correlates 

with a decreasing crystallinity of the packings. The link 

between a decreasing packing crystallinity and more 

heterogeneous contact force distributions has been postulated 

previously by Luding [154] for spherical particles, when 

assessing the effect of polydispersity on the homogeneity of the 

particle stress distributions. Hence, our results can be 

interpreted as complementary to this previous observation 

providing further evidence that a reduced packing crystallinity, 

through either an increase of domain dimensionality, particle 

non-sphericity or polydispersity, leads to a more heterogeneous 

stress distribution. 
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Al2O3 ceramic structures using consumer-grade fused 

deposition modelling printers, Rapid Prototyp. J. 26 (2020) 
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5.1 Abstract 
Purpose 

The aim of this work was to fabricate complex ceramic 

tetrahedron structures, which are challenging to produce by 

more conventional methods such as injection molding. To 

achieve this aim, thermoplastic-ceramic composite filaments 

were developed and printed with unmodified, consumer-grade, 

fused deposition modelling (FDM) printers instead. 

Design/methodology/approach 

Al2O3 ceramic powder was mixed with ethylene vinyl acetate 

(EVA) polymer as a binder (50 vol.-%) to form a filament with 

a constant diameter of 1.75 mm. After the printing and thermal 

treatment stages, the shrinkage and mechanical properties of 

cuboid and tetrahedron structures were investigated. 

Findings 

The shrinkage of the parts was found to be anisotropic, 

depending on the orientation of the printing pattern, with an 

increase of 2.4% in the (vertical) printing direction compared 

to the (horizontal) printing layer direction. The alignment of the 

ceramic particle orientations introduced by FDM printing was 

identified as a potential cause of the anisotropy. This study 

further demonstrates that employing a powder bed during the 

thermal debinding process yields sintered structures that can 

withstand twice the compressive force. 

Originality/value 

Ceramic FDM had previously been used primarily for simple 

scaffold structures. In this study, the applicability of ceramic 

FDM was extended from simple scaffolds to more complex 
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geometries such as hollow tetrahedra. The structures produced 

in this study contain dense parts printed from multiple 

contiguous layers, as compared to the open structures usually 

found in scaffolds. The mechanical properties of the complex 

ceramic parts made by employing this FDM technique were 

also subjected to investigation. 

 

5.2 Introduction 
Fused deposition modelling (FDM) is a widely used, additive 

manufacturing technique for commercial as well as for 

consumer-grade applications, where it is colloquially known as 

3D printing [173]. Other labels for FDM can be found in the 

literature such as fused deposition of ceramics (FDC), 

extrusion freeform fabrication (EFF) and fused filament 

fabrication (FFF) [174–176]. The technique uses a 

thermoplastic feedstock which is extruded through a heated 

nozzle that follows a pre-programmed path. Complex 

geometries can be built by depositing multiple layers of 

material that overlay each other [177]. After the extruded 

thermoplastic material leaves the nozzle, it fuses with the 

previously deposited material layer, before cooling and 

solidifying within seconds [178]. This technique has been 

adapted for the production of ceramic parts by mixing the 

thermoplastic binder material with a ceramic powder [179]. 

Depending on the properties of the ceramic powder and the 

thermoplastic binder material, a powder content of 45 to 

60 vol.-% is necessary in order for the printed parts to retain 

their shape during the subsequent debinding and sintering 

process [180,181].  

While the FDM method for ceramics offers advantages with 

regard to the storability and flexibility of the filament, certain 
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disadvantages have also been identified [175]. The difficulties 

in using FDM for ceramics arise from the necessity of 

removing the polymeric binder component from the printed 

part before sintering. Binder removal can lead to cracks and 

blisters in the final, sintered, ceramic parts, problems which are 

well known from other thermoplastic shaping processes for 

ceramics such as injection molding, thermoplastic extrusion 

and pressing [182,183]. Partial debinding with a solvent or 

super critical fluid can be used to avoid structural defects in the 

ceramic parts [184]. Alternatively, debinding in a powder bed 

can be used, where the capillary forces in action extract the 

liquid binder components and any decomposition products with 

a low viscosity from the part [185–188], a process also referred 

to as wicking. 

Previous work using the ceramic FDM technique was done by 

Bach et al. who printed piezoelectric scaffold structures from 

lead zirconate titanate and barium titanate [189]. Further 

scaffold structures, some with functional materials, were 

manufactured by other researchers [190–192]. The effect of 

stearic acid on the stability of the 3D printed scaffold structures 

during thermal treatment was investigated by Gorjan et al. 

[193]. They used different grades of ethylene vinyl acetate 

(EVA), together with tricalcium phosphate (TCP) and stearic 

acid, in order to manufacture bio-ceramic scaffold structures. 

Another functional material was used by Rangarajan et al. who 

investigated the homogeneity of simple structures created by 

using the FDC method [194]. One of the observed results was 

anisotropic shrinkage, which occurred during the thermal 

treatment. 

In this study we extend the applicability of ceramic FDM from 

simple scaffolds to more complex geometries such as hollow 
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tetrahedra (see Figure 41A), which are difficult to produce by 

other methods such as injection molding. Such structures are 

interesting for use as granular packing material with a high, 

connected porosity, for example in catalytic applications like 

refractories, fixed bed reactors in the chemical industry, or 

porous asphalt [195,196]. The structures manufactured in the 

course of this study contain dense parts printed from multiple 

contiguous layers, as compared to the open structures usually 

found in scaffolds. The industrial size of these applications 

demands keeping the processing stages as simple as possible. 

In the case of conventional polymer FDM it has already been 

previously shown that the printing direction can greatly 

influence the mechanical performance of the individual parts. 

For example, Ahn et al. found that specimens manufactured 

from ABS P400 polymer and compressed perpendicular to the 

printing layers had a 15% lower compressive strength when 

compared to specimens compressed parallel to the printing 

layers [197]. However, to the best of our knowledge, no 

investigation of the possible anisotropic mechanical properties 

of ceramic parts made by employing the FDM technique has 

been done up to date. In this work we study the anisotropic 

properties of ceramic FDM structures with complex 

geometries. The shrinkage of structures during thermal 

treatment is investigated in respect of the printing direction and 

their mechanical properties are investigated by means of 

compression tests. 

 

5.3 Methods 
An outline illustrating the development steps and investigations 

performed during this study is shown in Figure 39. The 

feedstock composition was developed and evaluated with 
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regard to its suitability for FDM. Cuboid samples were 

simultaneously manufactured using the FDM technique in 

order to perform a preliminary investigation of the influence of 

printing parameters such as the amount of infill on the 

properties of the samples during thermal treatment as well as 

the compression strength. The experience gained from these 

preliminary investigations was finally employed to 

manufacture complex tetrahedron structures, which were 

subsequently evaluated in respect of their performance during 

thermal treatment and mechanical testing. 

 

Figure 39: Schematic depicting the development steps and 

investigations performed during this study 

 

The feedstock was developed on the basis of the experience 

obtained in previous studies [193]. An alumina powder loading 

of 50 vol.-% was chosen. A filament with a low powder content 

has a lower viscosity, which can cause buckling at the printing 

head during 3D printing. A high powder content increases the 

viscosity of the feedstock, thus increasing the risk of clogging 

the 3D printer nozzle. The alumina powder used was Al2O3 

(CT 3000 LS SG, Almatis GmbH) with a mass median 

diameter (D50) of 0.5 μm. CT 3000 LS SG is an oxide material 
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widely used in ceramic research [198–205]. The binder 

consisted of ethylene vinyl acetate co-polymer (EVA) (Elvax 

420TM, DuPont International SARL) with a melting point of 

73 °C and a melt flow rate of 150 g/10 min. In addition, stearic 

acid (Sigma Aldrich) was added as a surfactant. The exact 

formulation of the feedstock is shown in Table 9.  

Table 9: Feedstock formulation used in this study. 

Component Volume [%] Density [g/cm3] Mass [%] 

EVA 40.9 0.93 15.6 

Stearic acid 9.1 0.85 3.2 

Alumina 50.0 3.97 81.3 

 

The thermoplastic EVA-Al2O3 compound was mixed in a two-

step procedure, using a high shear mixer (Rheomix 600, 

HAAKE Polylab OS, Thermo Electron Corporation Inc.) with 

roller rotors. In the first step, pre-mixing was performed at a 

temperature of 80 °C and a speed of 10 rpm for 20 minutes. 

After pre-mixing, the high shear mixer was emptied and 

cleaned to eliminate any unmixed zones from the chamber. In 

the second step, the material was mixed at 80 °C and a speed 

of 10 rpm for 20 minutes and then the speed was increased to 

40 rpm for another 20 minutes. The feedstock was extruded 

with a piston extruder (RH7 Flowmaster, Malvern Instruments 

Ltd) using a circular die (diameter 1.75 mm) and at a 

temperature of 70 °C to create a filament for 3D printing with 

a consumer-grade FDM printer (K8200 3D printer, Velleman 

NV). The printing process was performed using a brass nozzle 

with a diameter of 0.6 mm and at a constant temperature of 

170 °C. The extrusion multiplier, which defines the volumetric 

fraction of the feedstock being fed into the nozzle and extruded, 
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was set to 0.9. This value is <1 since the feedstock slightly 

expands after leaving the nozzle. The layer height, i.e. the 

distance from the nozzle to the previously deposited layer of 

material, was set to 0.5 mm. The printing speed, which defines 

the maximal velocity with which the nozzle traverses 

horizontally while material is being extruded, was set to 

800 mm/min. 

The geometric information was imported as stereolithography 

STL files into the Simplify3D software, which is used to slice 

the geometry into layers and determine the tooling path for each 

layer. A visualization of the tooling path for the square cuboid 

samples can be found in Figure 40A and Figure 40B. Figure 40 

further shows two different cuboid orientations (upright Figure 

40C and recumbent Figure 40D) used during printing. The 

printing direction (PD) denotes the direction in which the layers 

are stacked whereas the layer direction (LD) denotes the 

horizontal plane in which the printing tool moves during the 

creation of an individual layer. The printed cuboids have a 

length (l) of 15 mm and a width (w) of 3.54 mm independent 

of the printing orientation. Regardless of the geometry, the tool 

path first follows the contour of the object to be printed in order 

to create the surface. When a hollow sample is printed, the print 

head moves upwards and prints the next layer, which is in turn 

generated from the contour of the geometry (Figure 40A). 

When printing a sample with infill, the contour is printed first, 

as with the hollow sample. Before the next layer is deposited 

on top, the inside of the layer is filled with a predefined 

structure. This structure, for example a rectilinear grid of 

variable density, can be defined by the operator (Figure 40B).  

After printing, the cuboid samples in this study were thermally 

treated according to the program shown in Figure 42, without 
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the use of a powder bed, in order to keep the thermal treatment 

as simple as possible. 

 

Figure 40: A/B) Visualization of tooling paths for the 3D printing of 

the cuboids, created using Simplify3D software. A) Hollow cuboid 

printed upright. B) Completely filled (100% infill) cuboid printed 

upright. C) Sketch of a cuboid sample printed in upright position. D) 

Sketch of a cuboid printed in recumbent position. PD denotes the 

vertical printing direction in which the layers are stacked, whereas 

LD denotes the horizontal layer direction in which individual layers 

are created. The length and width of the cuboid are denoted by l and 

w, respectively. 

 

Using the knowledge gained in making these cuboids, the 

fabrication of more complex shapes, in this case tetrahedra, was 

undertaken next. The tetrahedron shape consisted of six 
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connected cylinders with a diameter of 3 mm and a length (c) 

of 20 mm with rounded ends, which were oriented along the 

edges of the tetrahedron, resulting in a height (h) of 16.33 mm. 

An image of this shape can be seen in Figure 41A. Due to the 

symmetry of a tetrahedron we can observe four different 

heights with equal length on a printed tetrahedron. One of these 

heights corresponds to the PD while the other three correspond 

to the other directions (OD). The tetrahedra were manufactured 

with three horizontal cylinders positioned flat on the printing 

platform while the remaining three cylinders were built upright 

on top of the lower three. After investigation of the printed 

cuboid structures, an infill comprised of a rectilinear grid with 

a porosity of 50% was selected for the manufacture of the 

tetrahedron. The tooling path for the three horizontal cylinders 

which form the base of the tetrahedron is shown in Figure 41B. 

The tooling path for the three upright cylinders is shown in 

Figure 41C (the blue hollow cylinders). Each of the 

tetrahedron’s cylinders has a diameter of 3 mm, but the nozzle 

for printing the samples has a diameter of 0.6 mm. This leads 

to a thickness of contour of the shape of at least 0.6 mm. A 

single pass of the nozzle through the interior would already fill 

the remaining space by more than 50% (see Figure 41C). 

Therefore, the interior remains empty and the vertical cylinders 

of the tetrahedron remain hollow. This design problem does not 

occur in the horizontal cylinders forming the lower triangle of 

the tetrahedron shape. These layers have a shape resembling 

two concentric triangles, which leaves enough room to print a 

rectilinear grid with a 50% infill (Figure 41B). For debinding 

and sintering, the tetrahedra were placed in two different 

orientations: upright, which is the printing orientation (Figure 

41D), and upended so that the PD was at an angle of 19.47° to 

the horizontal plane (Figure 41E). This was done to investigate 
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shrinkage independently of any deformation due to the 

tetrahedron’s own weight. 

 

Figure 41: A) Image of the tetrahedron geometry to be printed. B) 

Horizontally printed cylinder parts of the tetrahedron, printed with a 

50% infill of rectilinear grid structure. C) Vertically printed cylinder 

parts of the tetrahedron, printed without infill. The color indicates the 

printing speed (green is faster than blue). For debinding and 

sintering, the tetrahedra were placed in different positions in a 

furnace. D) Sketch of the layer orientation of a printed tetrahedron 

sample (the printing direction (PD) is vertical, this orientation is 

"upright" throughout the manuscript). The direction of the individual 

layers is denoted LD. E) Sketch of a tetrahedron sample upended so 

that the PD is at an angle of 19.47° to the horizontal plane. The height 

of a tetrahedron which does not correspond to the PD is labelled 

“other direction” (OD). 

 

Thermal treatment of the printed samples was done in three 

stages. The first two stages, partial debinding and pre-sintering, 

were done in a PC12 furnace (Pyrotek GmbH) with a TC 
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405/30 controller (bentrup Industriesteuerungen). The third 

thermal treatment stage (sintering) was performed at 1600 °C 

in an air atmosphere for one hour using an LT 40/12 furnace 

(Nabertherm GmbH). After each stage, the samples were 

cooled down to room temperature by shutting off the oven in 

order to permit further analysis. Partial debinding was done at 

230 °C for 8 hours unless otherwise stated, whilst full 

debinding and pre-sintering was done at 1000 °C for two hours. 

The pre-sintered samples were sufficiently robust to allow 

transfer to the high temperature oven for sintering. The 

complete temperature profile for all stages of the thermal 

treatment is shown in Figure 42. The cuboid samples were 

thermally treated in a recumbent position and placed on a solid 

surface. Upright printed cuboid samples were brought into a 

recumbent position for their thermal treatment. Overall, six 

different tetrahedra were investigated: three were thermally 

treated without a powder bed and three were partially debound 

and pre-sintered in a powder bed, thus facilitating the extraction 

of the binder using capillary forces [206]. Two of the tetrahedra 

were thermally treated in an upended position so that the 

printing direction was at a 19.47° angle to the horizontal plane 

(Figure 41E); one with and one without a powder bed. The 

powder bed consisted of Al2O3 (Nabalox NO 201, Nabaltec, 

Germany) with a mass median diameter (D50) of 80 μm. 
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Figure 42: Temperature profile of the full thermal treatment for each 

of the 3D printed parts. The dotted vertical lines indicate the stages 

at which samples were inspected for further analysis. 

For the thermogravimetric analysis (TGA) of the 

decomposition of the EVA binder in air, a STA 449 F3 Jupiter 

(Netzsch GmbH) thermal analyzer was used, together with 

pieces of the 1.75 mm thick filament. Thermo-mechanical 

analysis (TMA) of the cuboid samples was performed by using 

a TMA 402 F3 Hyperian (Netzsch GmbH) and heating them to 

1550 °C in air. During the TMA measurements the samples 

were in an upright position and a static force of 0.1 N was 

applied in the vertical direction. Mechanical testing of the 

sintered parts was done using a universal testing machine 

(UPM 1478, ZwickRoell GmbH & Co. KG). The force was 

applied uniaxially in the vertical direction by means of placing 

rigid, flat plates placed on both sides. The surface of the 

sintered samples manufactured using FDM is uneven. 

Therefore, the steel plates on both ends were padded with 

cardboard and rubber to ensure that the applied force was 
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distributed evenly. During the experiments the samples were 

compressed uniaxially at a constant speed of 4 mm/min until 

the failure of a sample which led to a sudden drop in the 

compressive force. At that point compression was stopped. The 

tetrahedron samples were mechanically tested in the same 

position as that in which they had been thermally treated 

(upright or upended). Scanning electron microscope (SEM) 

images were acquired with a VEGA3 (Tescan a.s.). 

 

5.4 Results and discussion 

5.4.1 Development of printable filaments and thermal 

treatment 
Once the samples are 3D printed, the thermoplastic binder must 

be removed (debinding stage). Figure 43 shows the TGA-DSC 

analysis of the filament samples. For the analysis, 2 mm-long 

pieces of the extruded filament with a diameter of 1.75 mm 

were used. Then two different heating programs were 

implemented, one with and one without the optimized 

debinding process stage. Figure 43A shows the heat treatment 

at a constant heating rate of 5 °C/min up to 600 °C. In Figure 

43B the debinding program has been optimized for this study. 

The optimized program was used for all samples throughout 

this study. The binder starts to decompose at temperatures 

above 170 °C, as indicated by the mass loss seen in the TGA 

analysis of both samples. For the sample shown in Figure 43A, 

a sudden decrease of mass can be observed at a temperature of 

322 °C and again at 433 °C. This sudden decrease of mass 

coincides with a strong exothermic peak in the DSC graph. The 

sudden loss of mass also leads to the formation of defects in the 

ceramic part [207]. When the optimized debinding program is 

used, the exothermic peak can be reduced significantly and a 
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more continuous loss of mass can be observed during the 

debinding stage, as shown in Figure 43B. The optimized 

debinding program is characterized by slower heating rates and 

additional dwell times for a gentler binder removal which 

mitigates the aforementioned formation of defects [187]. The 

final mass loss of the samples was 19.0% (Figure 43A) and 

18.8% (Figure 43b). These values are close to the total content 

of the organic binder, (18.8%) based on the feedstock 

composition used (see Table 9). 
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Figure 43: Results of the thermogravimetric analysis of the debinding 

process stage used to remove thermoplastic binder and organic 

surfactant from a filament sample. The temperature profile is shown 

in red while the change in mass is shown in blue. The differential 

scanning calorimetry (DSC) is shown in green. A) Sample heated at 

a constant heating rate of 5 °C/min. B) Sample heated with an 

optimized debinding program.  
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5.4.2 3D printed cuboid structures: thermal treatment 

and mechanical properties 
Figure 44 shows images of the 3D printed and sintered cuboids 

for each of the four configurations (recumbent 100% infill, 

recumbent 0% infill, upright 100% infill and upright 0% infill). 

Four samples were used to investigate shrinkage and mass loss 

after the different thermal treatment stages (Figure 42). After 

sintering, the cuboids with 100% infill exhibited slightly 

convex surfaces. This can be attributed to gas transport from 

the center to the surface of the sample during the decomposition 

of the thermoplastic binder. If this gas transport is limited, 

pressure inside the sample will result in the expansion of the 

sample [207]. Such an expansion is shown in Figure 44A and 

Figure 44C, where the swelling is indicated with black arrows.  

 

Figure 44: Images of 3D printed cuboids after sintering. A) Printed 

with 100% infill in recumbent position. The direction of expansion 

(swelling) observable in samples with 100% infill is denoted by black 

arrows. B) Printed hollow (0% infill) and in recumbent position. C) 

Printed upright with 100% infill. D) Printed with 0% infill in upright 

position. The scale bar is valid for all subfigures. 
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Figure 45A shows a cracked sample printed with 100% infill 

after sintering. The sample has irregular, internal void 

structures, which are a result of the decomposition of the 

thermoplastic binder. This observation corroborates the 

assumption that the decomposition of the binder leads to an 

increase in gas pressure, which forms bubbles inside the 

samples. Hrdina et al. proposed that the decomposition of EVA 

leads to the formation of acetic acid, which bloats the specimen 

[208]. This bloating in turn explains the swelling of the samples 

printed with 100% infill, as shown in Figure 44A and Figure 

44C. Such an expansion could be avoided in samples with a 0% 

infill print parameter (Figure 45B). 

 

Figure 45: Microscopy images showing the inside of fragments of 

cuboid samples which cracked along their length. A) Sample printed 

with 100% infill. B) Sample printed with 0% infill. 

 

Thermal mechanical analysis was used to investigate the 

shrinkage of the cuboids during the sintering process. Due to 

the softening of the polymeric binder (EVA and stearic acid), 

the shrinkage up to and including the pre-sintering stage cannot 

be analyzed using a dilatometer or TMA. Typically, a small 

load is applied between the sample and the TMA probe to 

ensure continuous contact. Therefore, deformation would 
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occur due to the softening of the thermoplastic EVA binder 

during TMA while debinding. It should be noted that the 

temperature range of the TMA used is limited to a maximum 

of 1550 °C and therefore full densification is not to be 

expected. The results of the TMA are shown in Figure 46. From 

this data (up to 1000° C) the coefficient of thermal expansion 

(CTE) for Al2O3 can be determined as being 8.7∙10-6 1/K. The 

sintering of the CT3000 started at a temperature of 1086 °C and 

a heating rate of 3 °C/min. Vogt et al. performed dilatometry 

measurements using a heating rate of 5 °C/min and observed 

that the sintering of CT 3000 started at 981 °C [209]. The 

temperature at which the sintering process started shifted in the 

present study in comparison to the findings of Vogt et al. 

because a pre-sintering stage was employed. During sintering 

the sample measured in the LD direction has a slightly lower 

shrinkage value in comparison to the sample in the PD 

direction. This indicates that the printing direction has a 

significant effect on the total shrinkage of the sample and 

anisotropic shrinkage can be expected in structures printed by 

FDM. During the cooling process both samples shrank by an 

additional 1.34%, which corresponds to a CTE of 8.7∙10-6 1/K. 

Munro previously reported a similar CTE of 8.1∙10-6 1/K for 

polycrystalline Al2O3 at 1000 °C [210]. 
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Figure 46: Thermomechanical analysis showing the shrinkage of 

cuboid samples printed with 100% infill in recumbent (measured 

along the LD) and upright position (measured in the PD). 

 

In addition to the TGA and TMA analysis, mass loss and 

shrinkage of the cuboids were analyzed using an analytical 

scale and calipers after each thermal treatment stage. Figure 

47A shows the shrinkage and the results of the mass loss 

analysis for the four configurations of cuboids (upright, 

measured in the PD, with 0% infill, recumbent, measured in the 

LD, with 0% infill, upright (PD) 100% infill and recumbent 

(LD) 100% infill). The data was averaged over all four samples 

of a respective configuration. In order to analyze the shrinkage, 

the length (l) of each cuboid was measured, which can 

correspond to either the PD or the LD, depending on whether 

the sample was printed upright or recumbent. The labels on the 

graphs indicate whether the PD or the LD was measured. 
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During the partial debinding stage, the samples with a 100% 

infill lost 3.4±0.2% (± one standard deviation) of their total 

mass (LD and PD) while the samples with 0% infill lost 

4.5±0.2% and 4.9±0.3% of their total mass for the LD and PD 

orientation respectively. The reason for the higher mass loss of 

samples with 0% infill compared to samples with 100% infill 

is that the samples are less massive. In hollow samples the 

distance which the evaporating polymer needs to diffuse before 

escaping is shorter [185]. Furthermore, in the case of debinding 

in air, reactions with oxygen occur and the binder is 

transformed into a hard brown resin on the surface [211]. This 

leads to the formation of a dense skin on the surface, which 

hinders the transport of gaseous species and consequently leads 

to a pressure build-up which can cause cracking and bloating 

[193,198]. The formation of such a dense skin depends on the 

diffusion of oxygen into the samples. 

In the TGA analysis (Figure 43B) a loss of 4.0% of the total 

mass has been observed after partial debinding (at the end of 

the 8h dwell time at 230 °C). Since the length and diameter of 

the TGA samples are smaller than the dimensions of the cuboid 

samples, the diffusion processes of the decomposition products 

have less significance and therefore a higher mass loss is to be 

expected. The influence of the diffusion process on the mass 

loss during partial debinding can be confirmed by cuboid 

samples with 0% and 100% infill. The mass loss of the TGA 

sample of 4.0% during partial debinding is closer to the mass 

loss of the cuboid samples with 0% infill (4.5±0.2% LD and 

4.9±0.3% PD) than to that of the samples with 100% infill 

(3.4±0.2%). Similar results have been reported by Trunec et al. 

who reported that the binder mass loss at 230 °C increases with 

increasing surface to volume ratio [185]. 
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After the pre-sintering stage at 1000 °C, all organics had 

decomposed, resulting in an overall mass loss of 19.0±0.9% 

averaged over all four sample configurations. This value 

corresponds to the average overall mass loss of the two TGA 

samples (19.0% and 18.8%) and the theoretical content of the 

organic material in the feedstock at 18.8% (see Table 9 and 

Figure 43). No further mass loss should occur during the 

sintering stage, which is confirmed by the constant average 

mass of the samples between the pre-sintering and sintering 

stage shown in Figure 47A.  

The shrinkage data of the samples (Figure 47) shows that the 

most significant changes occur during sintering. During partial 

debinding and pre-sintering the samples shrank between 

1.2±0.6% (0% infill PD) and 1.6±0.5% (100% infill LD). The 

shrinkages reported here are generally higher than the net 

shrinkage of 0.5% observed by Hrdina et al. during binder 

removal [212]. In their study, an EVA based binder blended 

with 51 vol.-% of ceramic powder was used and shrinkage was 

studied at 500 °C. Due to the fragility of the samples, the 

cuboids had to be heat-treated at 1000 °C, which resulted in 

higher shrinkage values compared to Hrdina et al. due to the 

effects of pre-sintering. 

One exception is the 100% infill PD sample which was printed 

in an upright position, where an increase in length by 0.1±0.6% 

and 1.0±1.1% could be observed after the partial debinding and 

pre-sintering processes respectively. A possible explanation for 

this expansion in the PD is that the gas arising from the 

decomposing binder pushes the elongated ceramic particles 

apart while escaping the sample. Such particles can be seen in 

in Figure 48A. This SEM image shows that the CT 3000 LS SG 

powder used in this study contains a mixture of submicron 
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particles and 2 μm large platelet particles. During extrusion in 

the 3D printer, these elongated platelet particles become 

aligned due to shear in the nozzle [213–215]. Consequently, the 

elongated particles are aligned in LD, which is also illustrated 

in Figure 48B. Figure 48B further shows a gap d between the 

particles, which is filled with binder. When evaporating binder 

escapes the sample, these gaps expand. Assuming the gaps 

expand by equal amounts, one can envision from Figure 48B 

that the relative expansion in the LD is larger than in the PD. 

After binder decomposition the particles become locked into 

their positions. This prevents a full reversal of the expansion. 

The measured expansions are in well in line with the observed 

expansion of 100% infill samples after sintering (Figure 

44A/C). Interestingly, such an expansion could not be observed 

for the 100% infill samples in the LD. This corroborates the 

theory proposed in Figure 48B. 

The shrinkage of the cuboids during sintering was normalized 

by the length after the pre-sintering stage and is shown 

separately in Figure 47B. Samples with 100% infill printed in 

a recumbent position (measured in the LD) shrank by 

14.6±0.2% and the samples printed upright (measured in the 

PD) shrank by 14.7±0.8%. At 16.1±0.6% for the samples 

measured in the LD and at 18.5±0.8% for those in the PD, the 

normalized shrinkage of the hollow samples is considerably 

higher. From this observation it can be deduced that the 

normalized shrinkage is generally higher for samples with 0% 

infill as compared to 100% infill samples. As already discussed 

for the TMA analysis (Figure 46), the shrinkage is anisotropic. 

For the 0% infill cases studied, the PD direction shrinks by an 

additional 2.4% compared to the LD direction. This cannot be 

observed in the 100% infill samples since these samples are 
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affected by the internal voids formed during the binder 

decomposition. 

 

Figure 47: A) In blue: Average shrinkage of the cuboid samples 

during the different thermal treatment stages for the four different 

printing configurations (upright 0% infill (PD), recumbent 0% infill 

(LD), upright 100% infill (PD) and recumbent 100% infill (LD)) 

measured along the length of the samples. In orange: The average 

change of the samples during the different thermal treatment stages. 
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B) The amount of shrinkage occurring during the final sintering stage 

relative to the pre-sintering length. 

 

Figure 48: A) SEM image of CT 3000 LS SG powder used in this 

study showing some large platelet particles (dashed white circles). B) 
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Schematic explaining how the platelet particles contribute to the 

anisotropic expansion of samples during debinding. 

 

As mentioned above, anisotropic expansion during debinding 

as well as anisotropic shrinkage during sintering was observed. 

According to the morphology of the CT 3000 LS SG alumina, 

which consist of slightly elongated submicron and platelet-like 

micro particles, the ceramic particles become aligned during 

the extrusion of the filament and the 3D printing. The 

orientation of the particles causes the expansion and shrinkage 

to be anisotropic.  

The maximal compressive load of the different cuboid 

structures was evaluated by compression tests. The results of 

the three samples tested for each configuration are shown in 

Figure 49, together with the averages. One can see that the 

samples compressed along the LD show slightly higher values 

when compared with samples with the same infill percentage 

tested in the PD. A similar observation was made by Ahn et al. 

for 3D printed acrylonitrile butadiene styrene (ABS) polymer 

samples [197]. Figure 45 shows that, due to the formation of 

voids from the decomposing binder, the load-bearing cross-

section is not considerably higher for the sample printed with 

100% infill after sintering. Therefore, the average load at 

failure is only slightly lower for samples with 0% infill 

compared to samples with 100% infill with the same 

configuration. 
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Figure 49: Compression force for the four different configurations of 

cuboid structures. The black bars depict the average value of the 

three samples analyzed. 

 

5.4.3 3D printed tetrahedron structures: thermal 

treatment and mechanical properties 
The knowledge gained from manufacturing the simple 

geometry of the cuboid samples was used directly in the 

production of the tetrahedron structures created using the 

FDM/FFF 3D printing method. Figure 50 shows tetrahedron 

structures and their transformation during the fabrication 

process after printing (Figure 50A), partial debinding (Figure 

50B), pre-sintering (Figure 50C) and finally after sintering 

(Figure 50D). It was observed that the shape and surface quality 

do not change significantly until the pre-sintered stage (Figure 

50C). The sintered samples decrease in size and the surface is 



182 

considerably smoother, with less roughness (Figure 50D). The 

brown discoloration during the partial debinding stage (Figure 

50B) is due to the oxidation and decomposition of the 

thermoplastic binder [185,198,211]. This discoloration is 

related to the previously mentioned hard skin. It is suggested in 

the literature that this brown skin consists of products arising 

from the oxidation and thermal decomposition of the organic 

binder.  

 

Figure 50: Tetrahedron-shaped part at different stages of the thermal 

treatment. A) As printed, B) after partial debinding, C) pre-sintered 

and D) fully sintered. 

 

In order to assure shape stability, an infill of 50% had to be used 

in the printing of the tetrahedron samples. Some samples were 

placed in a powder bed to avoid expansion of the 50% infill 

parts in the tetrahedron due to gas pressure during the partial 

debinding stage. With the aid of capillary forces, the 

decomposed binder could be actively removed from the sample 

surface. Gorjan et al. have shown that, due to capillary forces, 

parts of a thermoplastic binder can be efficiently removed by 

use of a wicking process at 230 °C [186]. Figure 51 shows the 

shrinkage data (blue graph) of all horizontally oriented 

cylinders after the individual thermal treatment stages. During 

partial debinding some samples were treated with and some 

without a powder bed. In addition, upended samples (see 

Figure 41C) were partially debound under both conditions. 
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Furthermore, the mass loss for all experiments is shown in by 

the orange graph in Figure 51.  

In addition, Figure 51 shows that samples treated in a powder 

bed initially lost a larger fraction of their total mass during the 

partial debinding stage compared to the samples treated without 

a powder bed (5.3±0.1% versus 4.0±0.02%). These values 

show that capillary forces indeed enhanced binder removal. 

The total mass loss of 4.0±0.02% in tetrahedra debound 

without a powder bed lies between the mass loss of cuboid 

structures with 100% infill (3.4±0.2%) and cuboid structures 

with 0% infill (4.5±0.2% LD and 4.9±0.3% PD). This result is 

consistent with tetrahedra having an infill percentage of 50% in 

the horizontal cylinders and 0% in the vertical cylinders. At the 

fully sintered stage, the samples treated in a powder bed and 

the samples treated without a powder bed had a total mass loss 

of 18.8±0.02% and 19.2±0.1% respectively, which is in the 

range of values obtained for cuboids and the theoretical mass 

loss of the feedstock composition. 

The shrinkage of tetrahedra during debinding with and without 

a powder bed was investigated by measuring the length of each 

of the horizontal cylinders (corresponding to the LD) in the four 

samples with a caliper. The data shown as the blue line in 

Figure 51 suggests a slightly increased shrinkage for samples 

debound in a powder bed compared to samples debound 

without a powder bed. During debinding without a powder bed, 

the cylinders of the tetrahedra shrank by 1.8±0.7%. This value 

is comparable to the shrinkage of the cuboid structures in the 

LD (0% infill 1.2±0.6%; 100% infill 1.6±0.5%) which were 

likewise debound without a powder bed. The cylinders of 

tetrahedra debound in a powder bed shrank by 2.2±0.6%. After 

sintering, the final shrinkage in samples debound in a powder 
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bed was 17.8±1.6% as opposed to 18.3±2.0% in samples 

debound without a powder bed. These results are well in line 

with the shrinkage of cuboids with 0% infill when measured in 

the LD direction (17.2±0.5%). 

Figure 52 compares the heights of the different tetrahedron 

configurations during the thermal treatment stages. In 

accordance with Figure 41, the heights of the tetrahedra were 

analyzed in the printing direction (PD) and in other directions 

(OD). Samples were partially debound with and without a 

powder bed. As already mentioned, the total shrinkage of 

tetrahedra partially debound in an upright position is not 

affected by the use of a powder bed. During partial debinding, 

upright and upended samples shrank by 2.5±1.3% and 

2.4±0.3% respectively in the PD. For the OD, shrinkage of 

1.6±0.5% (upright) and 1.8±0.5% (upended) was analyzed. The 

total shrinkage of the PD in upright and upended orientation is 

20.9±0.4% and 17.2±0.4%, respectively. Since the PD and OD 

shrinkage values are equal regardless of the orientation of the 

tetrahedra during thermal treatment, deformation of the 

tetrahedra due to their own weight can be disregarded. 

Furthermore, the total shrinkage in the OD is in good 

agreement with the total shrinkage of the cuboids with 0% infill 

measured in LD (17.2±0.5%). As expected of the cuboids with 

0% filling (total shrinkage of 19.5±0.5%), a larger shrinkage is 

to be observed in the PD. The anisotropy shown in these results 

can be explained with the non-random orientation of ceramic 

particles. 
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Figure 51: Shrinkage and mass loss of tetrahedra after different 

thermal treatment stages. Blue graph: Length c of the printed 

tetrahedra samples during thermal treatment with powder bed (PB) 

and without powder bed (no PB). The powder bed was employed only 

during partial debinding and pre-sintering. Orange graph: mass loss 

of the tetrahedra during thermal treatment stages. 
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Figure 52: Shrinkage of tetrahedra that have been thermal treated in 

different positions. Heights (h) of tetrahedra, which correspond either 

to the print direction (PD) or the other directions (OD). The 

tetrahedra were either thermally treated in the upright direction in 

which they were printed (see Figure 41D) or upended so the PD was 

no longer vertical (see Figure 41E). 

 

Figure 53 shows the force-displacement curves of the 

compression tests for the tetrahedra in different configurations 

and with different treatments. The samples were compressed 

from the top in the same orientation (upright/upended) that was 

used during the thermal treatment of each sample (see Figure 

41C/D). The tetrahedra which were partially debound in a 

powder bed had a force at failure that was two times higher in 

comparison to those partially debound without a powder bed. 

This suggests that debinding without a powder bed introduced 

defects that negatively affected the mechanical strength of the 
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structures. Additional investigations on filament samples 

which were debound using the same thermal treatment as with 

the tetrahedra confirmed this. Several major as well as minor 

cracks could be observed inside filament samples debound 

without a powder bed. In filament samples debound with the 

use of a powder bed we observed that the magnitude and 

number of such cracks was greatly reduced. Images of the 

cross-sections of such filament samples can be found in the 

Figure 54 and Figure 55. Unexpectedly, the orientation of the 

samples (e.g. upright or upended) did not affect the force at 

failure. 
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Figure 53: A) Force-displacement curve of tetrahedra during 

uniaxial compression tests. The samples were compressed vertically 

in the same orientation with regard to the layer structure as 

previously employed (see Figure 41D/E and Figure 52). B) The 

maximal force at failure of the tetrahedra samples. 
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Figure 54: Image of the cross-section of a filament debound without 

a powder bed using the same thermal treatment as the other samples 

throughout this study. The blue arrows indicate a major crack 

through the whole diameter of the filament sample. The red arrows 

indicate minor cracks. 
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Figure 55: Image of the cross-section of a filament debound through 

the use of a powder bed while employing the same thermal treatment 

as with the other samples throughout this study. The blue arrow 

indicates a crack in the sample. 

 

5.5 Conclusions 
The thermoplastic alumina feedstock prepared as part of this 

study was successfully used to produce tetrahedron structures 

by means of a consumer grade FDM printer. This extends the 

applicability of ceramic FDM from simple scaffold structures 

to complex structures with multiple contiguous layers. An 

optimized thermal debinding program for an EVA-based 

binder system was developed. Slower heating rates and dwell 
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times were introduced to the debinding program to reduce 

exothermic events which could lead to defects in the parts. It 

was found that the shrinkage of parts during thermal treatment 

is anisotropic. Cuboids with 0% infill show increased shrinkage 

of 2.4% in the (vertical) printing direction compared to the 

(horizontal) layer direction. This result could be confirmed by 

analyzing the shrinkage of tetrahedra, where the printing 

direction shrank 3.7% more in comparison to the layer 

direction. From these results, we can deduce that ceramic 

structures manufactured using an FDM method show 

anisotropic shrinkage, which needs to be taken into account 

during the design of such structures. According to the 

morphology of the CT 3000 LS SG ceramic powder, the 

ceramic particles can be expected to obtain a preferential 

alignment during extrusion. Such an alignment of particles 

during the manufacturing of ceramic structures will result in 

anisotropic shrinkage. Further investigations with other 

ceramic powders will have to be done to confirm the relevance 

of process-related anisotropic shrinkage for other ceramic 

materials. Compression tests show that cuboid samples with 

100% infill fail at roughly the same force as cuboids with 0% 

infill. This can be attributed to a reduction of the load-bearing 

cross-section of structures with 100% infill due to the 

formation of internal voids during debinding. The influence of 

the printing orientation on the mechanical properties was found 

to be minor. However, tetrahedra partially debound in a powder 

bed could withstand twice the compressive force compared to 

tetrahedra which were partially debound without a powder bed. 
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6 Conclusions and outlook 

6.1 Conclusions 
This dissertation has explored the benefits and challenges 

associated with the use of artificial aggregates of non-convex 

shapes for asphalt pavements. The work covered three areas: 1) 

An investigation of the beneficial properties of packings of 

non-convex aggregates, 2) a study of the influence of the 

aggregate shape on the stress distributions in their packings and 

3) the manufacturing of complex aggregate shapes. 

The investigation of the packings of non-convex aggregates 

shows that the packing density decreases with decreasing 

aggregate sphericity, confirming the findings of previous 

studies. Hence, using non-convex particles allows for packings 

with very low packing densities (φ < 0.25), which is much 

lower than the packing densities found for packings of common 

crushed rock aggregates (0.75 < φ < 0.85). A further finding is 

that the tortuosity of the pore space decreases linearly with 

decreasing packing density. A high porosity combined with a 

low tortuosity yields a high water permeability of packings of 

non-convex artificial aggregates of low sphericity. It was also 

found that the permeability increases exponentially with 

decreasing packing density and that the permeability of 

artificial aggregate packings can be two orders of magnitude 

higher compared to the permeability of crushed rock packings 

typically used for pavements. Moreover, the results of the 

permeability of the packings agree well with the prediction 

based on the Carman-Kozeny equation. Consequently, the 

elaborate measurement of the permeability for such artificial 

aggregate packings can be avoided in the future and instead the 

permeability can be predicted based on the packing porosity 

and the aggregate shape. 
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The beneficial properties of packings of artificial aggregates of 

low sphericity however do not come without drawbacks. The 

probability distributions of the inter-aggregate contact forces 

and the intra-aggregate stresses become more heterogeneous 

with decreasing aggregate sphericity. This increasing 

heterogeneity of the contact force distributions and stress 

distributions with decreasing aggregate sphericity was linked 

to a decrease in the packing crystallinity as the aggregates 

become less spherical. For low sphericity aggregates, long 

exponential tails are observed in both types of probability 

distributions, indicative of few aggregates that must withstand 

stresses exceeding ten times the average stress. A failure of 

such an aggregate due to breakage could lead to a 

rearrangement of the packing and therefore failure of the entire 

packing structure. Consequently, when designing the aggregate 

shape for a packing under load, some constraints on the 

aggregate sphericity might be required considering the material 

used for the manufacturing of the aggregates and the maximal 

load that can be supported by the packing.  

As a material that offers high compressive strength, alumina 

(Al2O3) ceramic was investigated for the manufacturing of 

artificial aggregates. The alumina was compounded with an 

EVA polymer binder and formed into a filament that can be 

used in consumer-grade 3D printers to manufacture complex 

aggregate shapes. After 3D printing, heat treatment was used to 

evaporate the binder and sinter the alumina, yielding durable 

ceramic parts. This is an advancement compared to previous 

works, where similar ceramic-polymer filaments and heat 

treatment programs were employed, but only simple 

scaffolding structures were manufactured. It was further found 

that the parts shrink anisotropically during the heat treatment. 

Depending on the aggregate shape, the shrinkage is 2.4 to 3.7 
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percentage points higher in the direction in which the parts are 

layered, i.e. the direction that was vertical during 3D printing. 

It was proposed that the anisotropy of the shrinkage originates 

from a preferential orientation of the elongated alumina grains. 

This preferential orientation was introduced to the ceramic-

polymer compound due to shear when the compound was 

formed into the filament and subsequently extruded through the 

3D printer nozzle. Mechanical testing of the ceramic 

aggregates revealed that the anisotropy has no effect on the 

compression strength of sintered aggregates, which is identical 

for different orientations of the parts. The compression strength 

of the sintered aggregates however was found to increase when 

the 3D printed aggregate was submerged in a powder bed 

during binder evaporation. The reason for this is that the 

powder bed helps to draw out the binder from the 3D printed 

aggregate by wicking, which prevents the formation of defects 

such as cracks and blisters. 

 

6.2 Outlook 
The research presented in this dissertation lays the groundwork 

for the development of non-convex artificial aggregates for use 

in pavements. However, further work remains to be done in 

each of the three explored areas. 

In chapter 3 it was shown that artificial aggregates of low 

sphericity form highly porous packings, which in turn is useful 

for applications such as permeable packings or energy 

harvesting from pavements. Consequently, such applications 

should be investigated further, for example by developing a 

pavement that incorporates highly porous channels formed by 

explicitly designed artificial aggregates. During hot days, water 

could be pumped through these porous channels with low 
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pressure loss to capture the heat energy while also cooling the 

pavement. This captured heat energy could also be used 

beneficially. Varying the aggregate shape can not only be used 

to maximize the porosity, but also to adjust the porosity to a 

specific value and to adjust the geometry of the pore space, 

such as the size of the necks between larger pores. By adjusting 

the pore space geometry an aggregate packing can for example 

be optimized for noise absorption, which is another desired 

property of asphalt pavements and should therefore be explored 

further. Yet another exciting property of non-convex 

aggregates is their interlocking. This has already been 

investigated for the construction of freestanding columns 

[62,113,114], however, in all of these studies the interlocking 

aggregate shapes were found by trial and error approaches. A 

systematic optimization of the aggregate shape for interlocking 

is missing thus far. Such an optimization study is rather 

complicated because there are infinite options to change the 

aggregate shape. One way to systematically explore the infinite 

optimization landscape of aggregate shapes would be to use a 

metaheuristic optimization technique, such as evolutionary 

computing or particle swarm optimization. In the end one could 

even imagine road pavements made from artificial aggregates 

that do not require any bituminous binder. Furthermore, the 

permeability and noise reduction properties can be useful for 

other construction materials such as facades of buildings. 

Further work also remains to be done to investigate the stress 

distribution in aggregate packings. Previous studies on the 

contact force and stress distribution in aggregate packings have 

either reported probability distributions, or the force chain 

network topology. Curiously, a correlation between the 

topology of the force network and the probability distribution 

of the contact forces has not been proposed thus far. One reason 
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for the absence of such a correlation was the unclear origin of 

the different shapes observed for the probability distribution of 

the contact forces. This origin was unraveled in the present 

dissertation by establishing a link between the shape of these 

distributions and the packing morphology, which in turn is 

influenced by the aggregate shape. Consequently, in a future 

work the shape of the probability distribution of the contact 

forces can be varied via the aggregate shape, which should be 

used to explore the correlation between the topology of the 

force chain network and the probability distribution of the 

contact forces. Such a correlation would allow to build a bridge 

between the two viewpoints of an aggregate packing, i.e. the 

spatial viewpoint (network topology) and the probabilistic 

viewpoint, which are disconnected thus far. 

This dissertation has shown that artificial ceramic aggregates 

of complex shapes can be manufactured via 3D printing. 

However, some disadvantages persist with this method, such as 

the large power consumption of the sintering process, which 

should be addressed with regards to its sustainability. The 

sustainability of artificial aggregates is also negatively affected 

by the use of virgin materials for both the ceramic and polymer. 

With further research these virgin materials could be replaced 

by recycled waste materials. To this end the alumina powder 

could, for example, be replaced by concrete waste from 

building demolition or ash from municipal waste incinerators, 

while the EVA polymer could potentially be replaced by other 

thermoplastics, for example from plastic bottles. The biggest 

hurdle for the advancement of the technology readiness level 

(TRL) and the adoption of complex shaped artificial aggregates 

for road pavements is certainly the scale-up of the 

manufacturing process. Currently it takes around 20 minutes to 

manufacture one aggregate with a size of approximately 20 mm 
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using a 3D printer. The possibly simplest approach that comes 

to mind might be to mount a 3D printer with several nozzle 

heads that all move in the same path to manufacture the same 

part multiple times simultaneously. This would leave the 

complexity of the three-axis mechanism of the 3D printer 

unchanged and would only require a scale-up of its size. This 

approach might scale-up the manufacturing speed of artificial 

aggregates by an order of magnitude. However, even faster 

might be the use of a ceramic-polymer feedstock for injection 

molding, where the time to manufacture a part is in the order of 

seconds [216], instead of minutes for 3D printing.  
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