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Time-to-Green predictions: A framework to enhance SPaT messages
using machine learning

Alexander Genser1, Lukas Ambühl1, Kaidi Yang2, Monica Menendez3 and Anastasios Kouvelas1

Abstract— Recently, efforts were made to standardize Signal
Phase and Timing (SPaT) messages. Such messages contain the
current signal phase with a prediction for the corresponding
residual time for all approaches of a signalized intersec-
tion. Hence, the information can be utilized for the motion
planning of human-driven/autonomously operated individual
or public transport vehicles. Consequently, this leads to a
more homogeneous traffic flow and a smoother speed profile.
Unfortunately, adaptive signal control systems make it difficult
to predict the SPaT information accurately. In this paper, we
propose a novel machine learning approach to forecast the
time series of residual times. A prediction framework that
utilizes a Random Survival Forest (RSF) and a Long-Short-
Term-Memory (LSTM) neural network is implemented. The
machine learning models are compared to a Linear Regression
(LR) model. For a proof of concept, the models are applied
to a case study in the city of Zurich. Results show that the
machine learning models outperform the LR approach, and in
particular, the LSTM neural network is a promising tool for
the enhancement of SPaT messages.

I. INTRODUCTION

Digitalization has changed the transportation domain sig-
nificantly in the last decade. The availability of several
new data sources (i.e., sensor technology or vehicle tech-
nology) allows for data-driven methodologies that can be
incorporated into well-established traffic management sys-
tems on a macro- and micro-scopic level. Furthermore,
upcoming developments, such as Vehicle-to-Infrastructure
(V2I) communication, open the door for new approaches
that allow considering communication between vehicles and
infrastructure. Recent evolution in traffic signal control of
urban intersections (e.g., actuated signal control, self-control
algorithms, etc.) influence the signal phases and result in
variable green, red and cycle times. Hence, speed advisory
systems would benefit from the information about when the
next green phase starts so that vehicles do not have to stop
when crossing an intersection. Such information is provided
in Signal Phase and Timing (SPaT) messages. Unfortunately,
predictions for residual times of these quantities are not a
trivial reverse engineering and still provide a burden for
field applications of SPaT broadcasts. Hence, a sophisticated
modeling approach for accurate predictions is required and
still open to research.
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In this paper we propose a framework with two Machine
Learning (ML) approaches to predict the residual time of
each phase of an intersection. To capture the nonlinear
relationship between the signal information and the multiple
detectors of an intersection, we introduce the problem as
a time series forecast and apply a Random Survival For-
est (RSF) and a Long-Short-Term-Memory (LSTM) neural
network. The novel approaches are compared to a simple
ML approach, i.e., a Linear Regression (LR). To prove the
concept, historical Loop Detector (LD) and signal timing
data from an intersection in the city of Zurich is utilized.
The area under investigation includes signal priority for
public transportation (i.e., signal priorities change the control
behavior of the intersection irregularly).

The remainder of this paper is organized as follows: An
overview of recent research on the prediction of residual
times is provided in Section II. In Section III the time series
problem and the Time-to-Green (T2G) prediction framework
are introduced. Furthermore, the theory of the utilized models
and performance metrics are given in Section III-C to III-F.
Finally, the applicability of all models is shown in a case
study with a detailed presentation of prediction results in
Section IV. A conclusion and proposal of future work are
given in Section V.

II. BACKGROUND

Recently, efforts were made to standardize SPaT messages.
Such messages contain the current phase with a prediction
for the corresponding residual time for all approaches of a
signalized intersection. Hence, SPaT information allows a
more efficient and environmentally friendly motion planning
of human-driven and/or autonomously operated individual
or public transport vehicles. Especially in urban areas, this
would lead to more homogeneous traffic flow and a smoother
speed profile (i.e., the absence of speeding and heavy break-
ing between traffic lights). Most existing speed advisory
systems rely on SPaT information [1], [2], which includes
elements such as the start time of a signal phase, phase
duration, or the next time this signal phase starts. Although
it is widely accepted that broadcasting SPaT information
is potentially beneficial for traffic systems [3], SPaT in-
formation is rarely provided in reality. One challenge lies
in the accurate prediction of SPaT information. Modern
traffic control systems (e.g., in the city of Zurich) are typi-
cally adaptive to vehicle demand, resulting in non-repetitive
control sequences. Although adaptive control systems can
efficiently prioritize public transport and serve car demand,



it is difficult to predict SPaT information for such systems
accurately.

Most existing works develop methods to obtain SPaT
information for pre-timed traffic signals based on aggregated
trajectory data. In such works, signal timings are unknown
(either fixed or change slowly with time) and estimated
using traffic models [4]–[7] or ML approaches [8], [9]. For
example, [4] and [5] employed a queue discharging model
to estimate the start of green signals based on aggregated
low-frequency bus and probe data. Such methods typically
rely on the underlying assumption that cycle length is fixed,
with only few exceptions (e.g., [5] and [9]) that are able to
identify the occasional changes in the traffic signal timing
plan. Moreover, these works are based on the aggregation
of historical vehicle trajectories, assuming that the historical
signal timings are unknown.

Some other studies in the literature propose probabilistic
methods to predict SPaT information such as [10]. The study
estimates the conditional distribution of each signal phase
given real-time measurements to predict the phase duration
as a conditional expectation and a confidence interval. Nev-
ertheless, this latter approach requires separate aggregations
for different cycle lengths.

All the mentioned works are based on (a) vehicle trajectory
data, or (b) historical signal data, and do not incorporate
vehicle detection into the modeling. However, in a complex
signalized intersection with multiple approaches and move-
ments, the signal timing can be determined jointly by many
LDs. Also, it is important to consider the temporal relation
between the traffic signals and the LDs because a delay
between the LD activation and the change of signal state
could be apparent. Therefore, the tuning of a model that can
identify the nonlinear relationship and incorporate both data
sources to estimate the residual time is promising and still
open to research.

III. METHODOLOGY
We approach the prediction of residual times as a time se-

ries problem and incorporate the definition into our proposed
T2G framework (Section III-A and III-B) where the baseline
model (LR) and the ML models (RSF and LSTM) are tested.
Section III-C and III-D provide the theory of the utilized
models. The performance assessment is modeled with the
metrics introduced in Section III-F.

A. Problem definition
The prediction of the residual time of a signal phase (i.e.,

the T2G) is based on signal and LD data. Let i be a signal
device where i ∈ S and j an LD device where j ∈ D. S and
D are the sets of signals and LDs, respectively. Consequently,
let si(t) be the state of a signal i at time t defined as follows:

si(t) =

{
0, if si is red
1, otherwise. (1)

Analogously, we define the state of an LD j at t with the
function dj(t).

dj(t) =

{
0, if dj is not occupied
1, otherwise. (2)

Considering (1) and (2) note that both inputs are defined
as categorical variables. We introduce T2G prediction as a
time-series forecast and construct the problem with historical
data of signal i. ci(t) denotes the current cycle signal i is
operating. ci ∈ C where C is the set of possible cycles for i.

Furthermore, we need to determine the total length of red
time of the signal cycle ci(t), denoted as ri(ci(t)) and the
current time step in a cycle c as qi(ci(t)). Finally, let yi(t)
be the T2G of a signal i formulated as follows:

yi(t) =

{
ri(ci(t))− qi(ci(t)), if si(t) = 0
0, otherwise. (3)

The proposed formulation can be utilized to determine the
T2G yi(t) for a signal i in every cycle ci when a traffic light
is red (i.e, si(t) = 0). During green (si(t) = 1), the T2G
remains 0. Consequently, a linear time series is constructed
as denoted in (3).

B. T2G framework

In the following, we introduce a T2G prediction frame-
work that allows a generic application to any intersection,
whose architecture is depicted in Figure 1. The denoted
blocks (1)–(3) follow the general working steps of a super-
vised ML procedure. The raw data (i.e., LD and signal data
from the traffic operator) functions as an input to the data pre-
processing (Block (1)). Within this step, the data cleaning,
data aggregation and transformation take place. The outputs
are the pre-defined quantities si(t), dj(t) and yi(t). Note that
ri(ci(t)) and qi(ci(t)) only represent internal variables for
determining yi(t). Therefore, these quantities are excluded
in the output of Block (1). The outputs are summarized in
the set H and serve as an input to Block (2), where the
feature engineering is performed. Here, the most relevant
input variables are determined by eliminating correlations
and – if it is a model requirement – variable transformations
are computed.

In Block (3) the input is split into training and test data set
(70% and 30% of the data, respectively). Consequently, a set
of models M is considered, which is specified by the user.
After training and testing all elements of M the best model
is selected and predictions for the set of traffic signals are
generated. Note that the process of tuning a proper prediction
model requires a number of iterations between Block (2) and
(3). In this paper, we define an LR, an RSF and an LSTM
model as the members of M. First, the baseline model (i.e.,
LR) is introduced. Afterwards, we introduce the RSF and
LSTM model.

C. Baseline model

We introduce the LR which can be defined as follows:

ŷi,o = βi,0 + βi,1xo,1 + βi,2xo,2 + ...

+βi,pxo,p + Ei,o, ∀o = 1, .., T,
(4)

where ŷi,o is the T2G (response variable) for signal i and
observation o, βi,0 represents the intercept term and βi,1
to βi,p are the regression coefficients for the p predictors
xo,1 to xo,p (i.e., the members of the final LD and signal
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Fig. 1: T2G framework. The input data is represented by LD and signal data from the traffic operator, respectively.

Algorithm 1 RSF pseudo code

1: procedure DORSF
2: B ← Bootstrap samples from the original

training data set
3: T ← Grow a survival tree ∀s ∈ B,

where s is a sample from B
4: O ← Exclude out-of-bag data from all s ∈ B
5: Grow tree to full size with the constraint that a leaf

node l ∈ L has no less than d0 > 0 unique
deaths; L is a set of leaf nodes

6: C ← Calculate the Cumulative Hazard Function
(CHF) ∀t ∈ T , where t is a survival tree
for one bootstrap sample

7: P ← Calculate prediction error using the set O

feature set F described above), respectively. The error term
is denoted by Ei,o and follows a Gaussian distribution (i.e.,
Ei,o ∼ N (0, σEi,o)); T denotes the prediction horizon. The
solution for ŷi,o is found by applying the Ordinary Least
Square (OLS) method. The fitted model can be used to
determine a prediction of the T2G for all given traffic signals
by obtaining the conditional expected value of the response.
To obtain the LR model, the build-in R-package was utilized.
Research that similarly introduces LR models within this
context can be found in e.g., [11].

D. Machine learning models

To assess the performance of ML models for T2G pre-
dictions, two models are introduced. As a first model (and
second member ofM), an RSF is utilized. The RSF method
is based on the concept of survival analysis, i.e., the analysis
of time duration until a certain event occurs. Our constructed
time series can be analyzed in such a way as it is expected
that after the T2G the traffic light switches to green, meaning
the time series is 0 for a certain time horizon. Therefore, we
utilize the R-package randomForestSRC, which implements
the pseudo-code presented in Algorithm 1, proposed by [12].
For the detailed mathematical background of RSF, the inter-
ested reader is referred to [13].

The second ML model incorporated into the T2G frame-
work is a LSTM network which is a special type of Recurrent
Neural Networks (RNN). To address the drawbacks of stan-
dard memory-less RNNs (vanishing gradient or exploding),
extensions regarding the network architecture with a mem-
ory block was proposed. Along with other neural network
designs, an LSTM is constructed with an input, hidden and

output layer. The hidden layer is designed with a so called
memory block, containing memory cells. The state of these
cells is influenced by memorizing the temporal state and
gating units that control the information flow in one memory
cell. In addition, input and output gates are implemented to
control the input and output activation’s, respectively. When
the information state of a memory cell is outdated, a forget
gate allows an automatic reset to forget information that
loses importance while evolving in time [14]. The model
formulation is denoted with an input x = (xi,1, xi,2, ..., xi,T )
and the output ŷ = (ŷi,1, ŷi,2, ...ŷi,T ). The vector X holds all
the input features from F . Again, ŷ is the predicted response
and T is the prediction horizon. To predict the T2G in the
next time step, the following equations are introduced (for
simplicity, note that the index for signal i is omitted):

at = sig
(
Waxxt +Wammt−1 +Wacct−1 + ba

)
, (5)

ft = sig
(
Wfxxt +Wfmmt−1 +Wfcct−1 + bf

)
, (6)

ct = ft • ct−1 + at • g
(
Wcxxt +Wcmmt−1 + bc

)
, (7)

ot = sig
(
Woxxt +Wommt−1 +Wocct + bo

)
, (8)

mt = ot • h(ct), (9)

ŷt =Wŷmmt + bŷ, (10)

where at, ft, ct, ot and mt are the states of the input
gate, forget gate, cell state, output gate and memory gate,
respectively. The variables W and b denote the weight
matrices and bias vectors, respectively and are utilized to
connect input, hidden and output layer. Note that sig(·)
defines the logistic function (i.e., sigmoid function); g(·) and
h(·) are logistic functions with intervals [−2, 2] and [−1, 1],
respectively [14]. The work in [15] introduces similar mathe-
matical descriptions of LSTM networks. The implementation
in our framework is performed with TensorFlow and Keras.

E. Moving window procedure

To improve the prediction quality we apply a moving
window procedure to the input of the LR and RSF model.
Let w be a moving time window in seconds and the matrix
I our input matrix which represents all elements of F .
The dimension of I is denoted by dim(mI , nI). To apply
our moving window procedure we introduce a transformed
matrix J with dim(mI − w, nI − w). Thereby, the first
dimension mI −w results from the end of the time series as



we only consider complete windows. We fill the values of J
row by row, each row corresponding the concatenated feature
vectors of the corresponding w time steps from I . This
procedure improves the results significantly as the training
process provides inputs at time step t for multiple time
instances. Note that according to the model definitions of
LSTM a moving window procedure is not applicable.

F. Performance metrics

After training the model, the testing is performed with the
test data set. For the error value computation, the Mean-
Absolute-Error (MAE) and the Root Mean Square Error
(RMSE) are utilized. The performance metrics are introduced
by (11) and (12):

MAE =
1

T

T∑
k=1

∣∣∣ŷi,k − yi,k∣∣∣, (11)

RMSE =

√√√√ 1

T

T∑
k=1

∣∣∣ŷi,k − yi,k∣∣∣2. (12)

ŷi,k again represents the estimated T2G of signal i and yi,k
is the T2G from the test data set. k is here utilized to sum
the errors over T . As the prediction is only applied when
the T2G is decreasing (i.e., when the signal is red), only
those parts of the signals ŷi,k and yi,k are considered for
computation of MAE and RMSE. We obtain these parts
automatically by considering the derivative of yi,k(t).

In the following section, we show the application of the
T2G framework to a test intersection in the city of Zurich.

IV. CASE STUDY

The analysis is based on a data set from an intersection in
the city center of Zurich. From north to south and vice versa,
there are tram lines that are prioritized by the signal control.
Figure 2 depicts the intersection with the 10 associated LDs
(indicated as rectangles at the intersection approaches) and
12 traffic signals (indicated by the circled numbers). The
tram lines are indicated by the red dashed lines. Note that
traffic signal 3 is for bicycles which are allowed to go straight
ahead. No separate detector data is available for this signal.
Hence, its phase corresponds to the one of signal 2. Signal
11 is installed for the tram to indicate potentially leaving the
stop, but Signal 6 remains crucial at this approach. 15 days
of high-resolution data from January 2019 are available. The
intersection is operated with an actuated control with no fixed
cycle times. Therefore, it is evident that (a) a prediction of the
T2G is not a trivial reverse engineering, and (b) the variances
give an indication that simple prediction approaches might
fail to make a prediction that satisfies accuracy requirements.

A. Descriptive and correlation analysis

We prove our concept by obtaining a subset of the 15
days’ peak hours out of the complete data set.

As the potential correlation between variables degrades
the model quality, we investigate all LDs and signal devices
(Figure 3). The data shows almost no correlation between LD
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Fig. 2: Test intersection in the city center of Zurich, CH.

−0.78

−0.61

−0.44

−0.27

−0.1

0.07

0.24

0.4

0.57

0.74

0.91d2 d3 d4 d5 d6 d1
1

d1
2

d1
3

d1
4

sg
1

sg
2

sg
3

sg
4

sg
5

sg
6

sg
7

sg
8

sg
9

sg
10

sg
11

sg
12

d1

d2

d3

d4

d5

d6

d11

d12

d13

d14

sg1

sg2

sg3

sg4

sg5

sg6

sg7

sg8

sg9

sg10

sg11

0.5 0.5

0.8

0.4

0.6

0.6

0.1

0.2

0.2

0.2

0.2

0.4

0.3

0.3

0.2

0.2

0.3

0.3

0.3

0.1

0.2

0

0

0

0

0

0

0.1

0

0

0

0

0

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.1

0.1

0.2

0.1

0.1

0

0

0

0

0

−0.1

0

0

0.1

0

0

0

0

0

0

0.1

0

0

−0.1

0

−0.3

0

0

0

0

0.1

0.1

0

0

−0.1

0

−0.3

0.8

0

0

0

0

0

−0.1

0

0

0.2

0.1

0.7

−0.3

−0.3

0

0

0

0

0

−0.1

0

0

0.1

0

0.9

−0.2

−0.3

0.6

0

0

0

0

0

0.1

0

0

−0.1

0

−0.3

0.9

0.7

−0.2

−0.2

0

0

0

0

0

0.1

0

0

−0.1

0

−0.5

0.6

0.7

−0.4

−0.4

0.5

0

0

0

0

−0.1

−0.1

0

0

0

0

0.5

−0.4

−0.5

0.2

0.5

−0.3

−0.6

0

0

0

0

0

0.1

0

0

−0.1

0

−0.5

0.5

0.6

−0.5

−0.5

0.5

0.8

−0.6

0

0

−0.1

0

0

−0.1

0

0

0.1

0

0.6

−0.4

−0.5

0.5

0.5

−0.4

−0.8

0.8

−0.7

0.1

0.2

0.2

0.1

0.2

0.5

0.1

0

0

0.1

−0.1

0.1

0.1

−0.1

−0.1

0.1

0.2

−0.2

0.2

−0.2

0.2

0.5

0.5

0.2

0.1

0.2

0.2

0.1

0

0.1

−0.1

−0.1

−0.1

−0.1

−0.1

−0.1

0

−0.2

0.1

−0.2

0.2

Fig. 3: Correlations of all LD (d) and signal devices (sg).

devices (except LD 2 and LD3) and between specific LD
and signal devices. A more detailed analysis of the signal
devices depict some significant positive correlations (e.g.,
signals 1 and 5 or signals 2 and 6). Nevertheless, this is
expected as these signals control compatible traffic streams
(see Figure 2). The same argument holds for the signals
regulating pedestrian streams (signal pairs (7,9) and (8, 10)).

The correlation between signals 2 and 3 might occur
because the two streams get green at the same time, but the
green time for bicycles is smaller as a longer clearing time is
required. Consequently, we remove one of the variables that
are members of correlated pairs. Note that for this analysis
we decide to keep all variables with a correlation coefficient
smaller than 0.8. The final signal members of the feature set
F are i = {3, 4, 5, 6, 7, 8, 11, 12}. For the LDs the devices
j = {1, 3, 4, 5, 6, 11, 12, 13, 14} are utilized. Consequently,
17 features are used as input LR, RSF, and LSTM models.

B. Results

In this section, we apply our set of models M to the
training and testing procedure. We asses the model quality
by utilizing a subset of the data (7:00am to 10:00am of



one day) and split the data to 70% train and 30% test
data, respectively. We present the model outputs for signal
i = 1. First, the LR model is applied with standard settings
and no variable transformations. Nevertheless, the general
assumptions required to justify the application of OLS are
considered in the analysis. A window size of w = 10 is
chosen. The model shows that 92 out of 170 parameters are
statistically significant on the 95% level and the adjusted R2

is determined to 0.89.
The RSF is applied with a number of trees n = 100; n is

chosen considering the trade-off between gain in improve-
ment versus the increase in computational time. Furthermore,
the data is centered and scaled to obtain better model
performance. Again, the window size is chosen with w = 10.
Analyzing the model output shows that the RSF model
explains 95.62% of the training data’s variance with an
average number of terminal nodes of 11951.28. The LSTM
model was trained with 50 epochs and a batch size of 2000.
The architecture is specified with 50 hidden layers and the
first layer is designed according to the shape of the input data.
To ensure a valid model quality, the loss function (MAE)
was analyzed to prevent the model from overfitting the
training data. To allow a performance comparison between
the models, we test all members of M on the test data
set and show the MAE for all calculated errors and the
corresponding standard deviation σMAE in Table I.

The results show that the LR model provides MAE values
between 2.13 and 2.66 sec for traffic lights that regulate
vehicle traffic streams (signals 1 to 10). For public transport
signals, the prediction accuracy shows a high error. This is
because the model is not able to capture the signal peaks
that occur when there is no demand on these streams. An
example of this behavior is depicted in Figure 4 (signal peak
at 11:00am). Besides, the linear model suffers from negative
values during the period that T2G is zero and is also likely
to miss such signal patterns, which result in a constant T2G
greater than zero (Figure 5 11:02am).

The RSF model demonstrates the second best performance
with MAE ranging from 0.64 to 1.37 sec for signals 1–10,
with a corresponding low variance σMAE. For signal 11 and
signal 12, the model also fails to capture high signal peaks
accurately. Nevertheless, the RSF prediction never misses a
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Fig. 4: Prediction sample from the test data set of the T2G
for a 10 minutes time frame with the LR model.

green phase (when T2G is zero). A sample prediction is
shown in Figure 5 with the described behavior. Our best
candidate is the LSTM neural network where the condition
MAE < 1 holds for all signals. The highest error value can
be depicted for signal 11 with an MAE of 0.42 and σMAE

of 0.03. This corresponds to an RMSE of 0.43 with σMAE

of 0.02. Figure 6 shows the test and prediction data with an
accurate fit of the time series. Therefore, an LSTM should
be utilized as a generic and flexible tool for predicting the
T2G series of a traffic signal. Compared to the RSF the error
values decrease significantly and the model is able to capture
more irregular patterns for traffic lights of public transport.
In addition, the LSTM meets the accuracy requirement for
T2G predictions.

Finally, we utilize our best candidate (LSTM) and test the
trained model in a peak-hour scenario of another weekday.
We determine 10 minutes of historical data and test the
prediction performance on the following 10 minutes. Figure 7
depicts the prediction with the RSF model. The test of the
LSTM model on the 10 minute time frame shows an accurate
forecast and no miss of a signal peak is detected; the T2G
prediction are within the accuracy requirements and can be
applied to real-world applications.

V. CONCLUSION

This paper proposes a framework for T2G predictions at an
urban intersection to enhance the quality of SPaT messages.
The problem was constructed as a time series forecast. The
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Fig. 5: Prediction sample from the test data set of the T2G
for a 10 minutes time frame with the RSF model.
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for a 10 minutes time frame with the LSTM model.



TABLE I: Model performance comparison for LR, RSF and LSTM on the test data with MAE, RMSE and σMAE, σRMSE.

LR RSF LSTM

i MAE σMAE RMSE σRMSE MAE σMAE RMSE σRMSE MAE
σMAE

RMSE σRMSE

1 2.53 0.73 4.37 1.45 1.24 0.51 3.01 1.29 0.39 0.06 0.41 0.05
2 2.32 0.60 3.63 0.93 1.15 0.41 2.44 0.89 0.37 0.02 0.40 0.02
3 2.30 0.78 3.62 1.31 1.12 0.63 2.44 1.35 0.34 0.03 0.38 0.03
4 2.65 0.78 4.45 1.54 1.15 0.54 2.76 1.48 0.34 0.02 0.39 0.02
5 2.32 0.74 4.05 1.69 1.31 0.59 3.05 1.70 0.33 0.02 0.38 0.02
6 2.54 0.65 4.03 1.00 1.13 0.35 2.41 0.82 0.38 0.02 0.41 0.02
7 2.13 0.60 3.49 0.96 0.64 0.29 1.53 0.89 0.28 0.02 0.35 0.02
8 2.60 0.73 4.45 1.52 1.37 0.57 3.40 1.46 0.25 0.02 0.33 0.01
9 2.17 0.25 3.97 0.39 1.17 0.28 3.50 0.51 0.26 0.03 0.34 0.02

10 2.66 1.09 4.81 1.93 1.24 0.65 3.46 1.68 0.22 0.03 0.31 0.02
11 74.51 11.95 92.96 16.83 69.02 12.05 92.82 16.06 0.42 0.03 0.43 0.02
12 91.11 30.44 111.16 40.28 82.06 30.40 108.10 37.97 0.39 0.06 0.41 0.05
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Fig. 7: Prediction of 10 minutes T2G in the peak-hour of
another weekday with the LSTM model.

framework implementation is generic and can be applied to
any intersection that provides LD and signal data. In the
case study, the work was tested on an intersection in the city
of Zurich with actuated signal control and public transport
priority. Results show that an RSF and LSTM are promising
tools for the prediction of residual phase times and they both
outperform the baseline model (i.e., LR). Nevertheless, the
RSF performance for predictions of public transport traffic
lights needs to be further investigated. The LSTM model
overcomes this limitation and provides an accurate fit of the
time series within the accuracy requirements. Hence, results
show that an LSTM should be utilized for T2G predictions in
real world applications. Future work will extend the present
research with the possibility of predicting the T2G for all
signals simultaneously and tests on multiple intersections.
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