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A B S T R A C T

Intelligent automated systems are increasingly deployed in critical areas. Therefore,
it is important that such systems operate reliably, consistently, and accountably.
While systems based on learning can achieve impressive results on natural data,
they are usually imperfect and often easy to fool into making wrong decisions by
a malicious adversary. Formal methods can be used to create systems with strong
correctness guarantees based on symbolic reasoning. However, the formalization of
many tasks that seem to be the natural realm of learning-based methods, such as
natural image classification, has proven rather elusive. Therefore, to achieve safe yet
useful outcomes, it seems likely that ultimately, we should deploy a combination of
statistical learning and symbolic methods.

In this thesis, we present multiple systems that combine statistical methods
with symbolic reasoning in two major domains of research: Neural networks and
probabilistic programming.

We present AI2, the first sound and scalable analyzer for deep neural networks.
Based on overapproximation, AI2 can automatically prove safety properties (e.g.,
robustness) of realistic neural networks (e.g., convolutional neural networks). The
key insight behind AI2 is to phrase reasoning about safety and robustness of neural
networks in terms of classic abstract interpretation, enabling us to leverage decades
of advances in that area. We present a complete implementation of AI2 together with
an extensive evaluation. Our results show that AI2is significantly faster than existing
analyzers based on symbolic analysis, which often take hours to verify simple
fully connected networks. AI2 can handle deep convolutional networks, which
are beyond the reach of prior methods. In particular, we show that the Zonotope
abstract domain is suitable for neural network analysis. Building on AI2 and the
Zonotope domain, we present DeepZ, a tool that additionally handles Tanh and
Sigmoid activation functions, while being significantly more scalable and precise.
These benefits are due to carefully designed abstract transformers tailored to neural
networks as well as the Zonotope domain. In contrast to many existing analyzers,
AI2 and DeepZ are sound with respect to floating-point arithmetic.

We further present PSI, a novel symbolic analysis system for exact inference
in probabilistic programs with both continuous and discrete random variables.
PSI computes succinct symbolic representations of the joint posterior distribution
represented by a given probabilistic program. PSI can compute answers to various
posterior distribution, expectation, and assertion queries using its own backend for
symbolic reasoning. Our evaluation shows that PSI is more effective than existing
exact inference approaches: (i) it successfully computes a precise result for more
programs, and (ii) simplifies expressions that existing computer algebra systems
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(e.g., Mathematica and Maple) fail to handle. Building on PSI, we present λPSI,
the first probabilistic programming language and system that supports higher-
order exact inference for probabilistic programs with first-class functions, nested
inference and discrete, continuous and mixed random variables. λPSI’s solver is
based on symbolic reasoning and computes the exact distribution represented by
a program. We show that λPSI is practically effective – it automatically computes
exact distributions for a number of interesting applications, from rational agents to
information theory, many of which could only be handled approximately before.
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Z U S A M M E N FA S S U N G

Intelligente automatisierte Systeme werden zunehmend in sensiblen Bereichen
eingesetzt. Daher ist es wichtig, dass solche Systeme zuverlässig, konsistent und
überprüfbar arbeiten.

Lernende Systeme können zwar auf natürlichen Daten beeindruckende Ergebnisse
erzielen, doch sie sind in der Regel unvollkommen und können von böswilligen
Widersachern oft leicht zu falschen Entscheidungen verleitet werden. Mit Hilfe
formaler Methoden lassen sich Systeme mit umfassenden Korrektheitsgarantien
auf der Grundlage symbolischer Verfahren entwickeln. Allerdings hat sich die
Formalisierung vieler Aufgaben, die die natürliche Domäne auf Lernen basierter
Methoden zu sein scheinen, wie z.B. die Klassifizierung natürlicher Bilder, als
recht unzugänglich erwiesen. Es scheint daher wahrscheinlich dass wir, um sichere
und dennoch nützliche Ergebnisse zu erzielen, letztendlich eine Kombination aus
statistischem Lernen und symbolischen Methoden einsetzen sollten.

In dieser Arbeit stellen wir mehrere Systeme vor, die statistische Methoden
mit symbolischen Verfahren kombinieren, in zwei wichtigen Forschungsbereichen:
Neuronale Netze und probabilistische Programmierung.

Wir stellen AI2 vor, den ersten korrekten und skalierenden Analysator für
mehrschichtige neuronale Netze. Basierend auf Überapproximation kann AI2 au-
tomatisch Sicherheitseigenschaften (z.B. Robustheit) von realistischen neuronalen
Netzen (z.B. faltende neuronale Netze) verifizieren. Die wichtigste Erkenntnis
hinter AI2 ist die Formulierung der Argumentation über Sicherheit und Robus-
theit neuronaler Netze in Form klassischer abstrakter Interpretation, was uns er-
möglicht, jahrzehntelange Fortschritte in diesem Bereich zu nutzen. Wir präsentieren
eine vollständige Implementierung von AI2 zusammen mit einer umfassenden
Evaluierung. Unsere Ergebnisse zeigen, dass AI2 deutlich schneller ist als beste-
hende Analysatoren, die auf symbolischen Verfahren basieren. Diese brauchen oft
Stunden, um einfache, vollständig verbundene Netze zu verifizieren. AI2 ist in der
Lage, tiefe faltige Netze zu verarbeiten, was frühere Methoden nicht geschafft haben.
Wir zeigen insbesondere, dass die abstrakte Zonotop-Domäne dazu geeignet ist,
neuronale Netze zu analysieren.

Aufbauend auf AI2 und der Zonotop-Domäne stellen wir DeepZ vor, ein Tool,
das zusätzlich Tanh- and Sigmoid-Aktivierungsfunktionen unterstützt und dabei
deutlich skalierbarer und präziser ist. Diese Vorteile sind auf sorgfältig entworfene
abstrakte Transformatoren zurückzuführen, die sowohl auf neuronale Netze als auch
auf die Zonotop-Domäne zugeschnitten sind. Im Gegensatz zu vielen existierenden
Analysatoren behandeln AI2 und DeepZ Gleitkomma-Arithmetik korrekt.
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Ausserdem stellen wir PSI vor, ein neuartiges symbolisches Analysesystem für ex-
akte Inferenz in probabilistischen Programmen mit kontinuierlichen und diskreten
Zufallsvariablen. PSI berechnet prägnante symbolische Darstellungen der gemein-
samen posterioren Verteilung, die durch ein gegebenes probabilistisches Programm
repräsentiert wird. PSI kann Antworten auf verschiedene Posteriorverteilungs-,
Erwartungswerts- und Behauptungsabfragen berechnen, unter Verwendung seines
eigenen Backends für symbolische Schlussfolgerungen. Unsere Evaluierung zeigt,
dass PSI effektiver ist als bestehende exakte Inferenzansätze: (i) es berechnet erfol-
greich ein präzises Ergebnis für mehr Programme, und (ii) vereinfacht Ausdrücke,
die bestehende Computeralgebra-Systeme (z.B.., Mathematica und Maple) nicht
verarbeiten können. Aufbauend auf PSI, stellen wir λPSI vor, die erste probabilistis-
che Programmiersprache und System welche exakte Inferenz höherer Ordnung für
probabilistische Programme mit Funktionen erster Klasse, verschachtelter Inferenz
und diskreten, kontinuierlichen und gemischten Zufallsvariablen unterstützen. Der
Problemlöser von λPSI basiert auf symbolischer Argumentation und berechnet die
exakte Verteilung, die durch ein Programm dargestellt wird. Wir zeigen, dass λPSI
praktisch effektiv ist – es berechnet automatisch exakte Verteilungen für eine Reihe
interessanter Anwendungen, von rationalen Agenten bis zur Informationstheorie,
von denen viele bisher nur näherungsweise behandelt werden konnten.
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1
I N T R O D U C T I O N

Intelligent systems are being widely deployed in areas that are critically important
to society, such as medical diagnosis and devices, vehicle control, police and justice
systems, military, financial services, credit rating, insurance policies, stock market
prediction, weather reports, climate models, and many more. It is hence crucial
to understand how those systems operate and to make their decision making
consistent, as well as easy to explain in a satisfying manner to those affected by the
decisions. In particular, automated decision making systems have to be robust to
changing circumstances, including explicit attacks by adversaries. We must therefore
strive for strong guarantees on formal correctness, safety and fairness of important
decisions made by automated systems, as they will ultimately shape the future of
humanity.

However, this appears to be significantly harder than achieving acceptable perfor-
mance on cultivated test sets in the standard machine learning setting, where we
assume independent samples from a data source with an unchanging (conditional)
distribution. This is in contrast to more traditional approaches based on symbolic
methods, which are explainable by construction. This apparent strength is also one
of the most important drawbacks of symbolic methods: the most impressive feats
of modern statistical machine learning are precisely on problems where we do not
actually understand how to manually explain to a machine the exact symbolic steps
required for a solution.

It is therefore plausible that in order to address the aforementioned challenges,
the automated systems of the future should incorporate a combination of aspects of
machine learning systems and symbolic methods. This leads us to the main research
question driving this dissertation:

What are ways to design more effective automated intelligent systems by incorpo-
rating symbolic methods in addition to statistical approaches?

main contributions We have selected two major directions of research in
intelligent systems and we contribute to both as part of this dissertation. To this
end, we have developed two distinct novel tools that combine statistical approaches
with symbolic methods and address problems that are out of reach for prior work.
Both systems draw from programming language research.

1
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Our contributions are therefore divided into two lines of work:

• Abstract Interpretation of Neural Networks: We instantiate abstract interpretation
to the setting of neural network robustness certification. Our system achieves
certification results that are out of reach of prior methods. This work is
discussed in Part i of this dissertation.

• Symbolic Reasoning for Probabilistic Programs: We develop exact techniques for
probabilistic inference based on automated manipulation of symbolic terms,
including the first exact inference technique that supports at the same time:
discrete and continuous distributions, higher-order functions, and first-class
inference. This work is discussed in Part ii of this dissertation.

We now briefly introduce both research directions, we define the more specific
problems we address within them, and we give a short overview of our methods.

1.1 abstract interpretation of neural networks

neural networks Artificial neural networks are a popular class of statistical
models [61]. For our purposes, a neural network is numerical program fθ : Rm →
Rn, parameterized by parameters θ, such that (we can pretend that) there is a
gradient ∇θfθ(x) for all x ∈ Rm, which we can efficiently compute using the chain
rule with the backpropagation algorithm [136]. In practice, neural networks are
often implemented approximately using floating-point arithmetic. In the most
standard setting of classification, we additionally have a differentiable loss function
L : Rn× [n]→ R (often, this is cross-entropy). Given a finite training set

T = {(x1,y1), (x2,y2), . . . , (xn,yn)} ⊆ Rm× [n]

drawn from some underlying, unknown distribution D, we heuristically optimize
the function E(x,y)∼U(T)[L(fθ(x),y)] with respect to θ using some variant of gradient
descent. We then hope that fθ together with the optimization procedure has a high
enough capacity to capture the underlying distribution D but is still not able to
memorize the training set T , resulting in generalization: we want to obtain a similar
expected loss E(x,y)∼D[L(fθ(x),y] on the underlying distribution D as on the finite
subsample T where we have explicitly optimized it to be small.

problem statement While this works surprisingly well, unfortunately, we
cannot expect the neural network to do well on distributions D ′ 6= D. This is
troubling in particular in case D is easy to turn into D ′ by an adversary or if D
and D ′ are even indistinguishable under manual inspection. Such D ′ have been
observed to typically exist for neural networks in many application domains. Fig. 1.1
demonstrates multiple types of such adversarial attacks on neural networks. Pei et al.
[131] (Fig. 1.1a) show, among other similar adversarial attacks, how a small number
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of black rectangles can be added to an image of a road to fool neural networks into
driving off the road. Sharif et al. [149] (Fig. 1.1b) show how to impersonate other
people by wearing colorful glasses. Goodfellow et al. [60] (Fig. 1.1c) attack neural
networks by adding small imperceivable perturbations to inputs, in order to fool
a neural network, for example, into classifying a panda as a gibbon. This kind of
attack is particularly subversive, as it is hard to detect. However, compared to other
types of attacks, the task of certifying its absence is a particularly good match for
static program analysis.

In this work, we will handle general safety properties. Our problem statement is:
Given a neural network fθ : Rm → Rn, a region X ⊆ Rm of possible inputs, and a
region C ⊆ Rn of safe outputs, automatically verify that for each possible input
x ∈ X, the corresponding output f(x) is safe, i.e., f(x) ∈ C.

A special case of safety is local robustness, where the goal is to defend against a
malicious adversary who is able to slightly perturb inputs to the neural network
after they have been sampled. The constraints on the capabilities of the adversary
are chosen to be a proxy for a human’s ability to detect that the input has been
tampered with. Given a single example (x,y), the adversary can select a perturbed
input x ′ ∈ X, where X 3 x is some region around x. We then let the safe set C
be some set of outputs of fθ such that the neural network correctly classifies the
perturbed inputs given that fθ[X] ⊆ C.

Note that we will address this problem in a best-effort but sound manner: our
approach may fail to verify true properties, but if it verifies a property, it indeed has
to hold. Under this constraint, the approach should be as precise as possible, i.e.,
we want to verify as many of the true properties as we can.

abstract interpretation Abstract interpretation [35] is a general theory of
this kind of sound overapproximations of program behaviors. An abstract domain
A contains abstract elements a ∈ A that describe sets of program states σ ∈ Σ in
a finite, symbolic way. The concretization function γ : A→ P(Σ) maps a symbolic
abstract element to the concrete set of program states it describes. For some function
f : Σ→ Σ, the concrete transformer Tf : P(Σ)→ P(Σ) maps a set X to its image f[X].
The abstract transformer does the same to symbolic descriptions, possibly losing
some precision in the process. Formally, an abstract transformer T#

f : A→ A has to
satisfy the soundness condition Tf(γ(a)) ⊆ γ(T#

f (a)) for all a ∈ A.
(Disclaimer: While this more abstract treatment of abstract interpretation is al-

ready sufficient for our purposes, we note that abstract interpretation usually also
assumes a partial order v on abstract elements. We then also have an abstraction
function α : P(Σ)→ A. The functions γ and α are then also assumed to be monotone
and we have α(γ(a)) v a for all a ∈ A as well as X ⊆ γ(α(X)) for all X ∈ P(Σ), such
that the entire structure forms a Galois connection, which is an example of adjoint
functors. In order to treat unbounded loops, a crucial ingredient of abstract inter-
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(a) Black rectangle defects in natural images. Each image fools one of three different classifiers [131].

(b) Physically realizable impersonation attack [149].

+.007× =

x sign (∇xJ(θ, x,y))
x+

ε · sign (∇xJ(θ, x,y))
“panda”

57.7% confidence
“nematode”

8.2% confidence
“gibbon”

99.3% confidence

(c) Fooling a neural network with a tiny, imperceivable global perturbation [60].

Figure 1.1: Adversarial attacks on neural networks.
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Figure 1.2: Abstract interpretation overview. Sets of concrete neuron activations, starting
with a norm ball of radius ε around input x, are enclosed by concretizations
(γ) of abstract elements that symbolically describe overapproximations of those
intermediate results after each layer, up to the image of the input set Bε(x) under
the neural network fθ. Robustness properties are verified by checking whether
a ′ describes a set γ(a ′) enclosed within a region C of safe outputs (not shown).

pretation is fixed-point iteration. As our application does not include unbounded
loops, we do not require fixed-point iteration nor any widening operators.)

Given the neural network fθ, the region X and abstract domains An for concrete
domains Rn, we can construct an abstract transformer T#

fθ
: Am → An for fθ. We

can then select an abstract element a with X ⊆ γ(a) to get a symbolic description
a ′ = T#

fθ
(a) of some superset of the image of X under fθ. From soundness of

the abstract transformer, we obtain fθ[X] ⊆ γ(a ′). It hence suffices to show that
γ(a ′) ⊆ C. Then, all outputs in fθ[X] will also be safe. Fig. 1.2 illustrates the
relationship of concrete and abstract transformers. Analysis with input set X = Bε(x)
proceeds compositionally through each neural network layer.

contribution In this thesis, we demonstrate how to do all of those steps. We
have developed AI2, a system for abstract interpretation of neural networks. This
poses some unique challenges: (i) the scale of those neural networks (hundreds
or thousands of live variables at one time) and (ii) the kind of operations that are
executed, in particular, our abstract interpretation has to be sound with respect to
floating-point roundoff error. We make the following contributions:
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• Abstract Interpretation Framework for Neural Networks We instantiate the
general theory of abstract interpretation for analysis of local robustness of
layered1 neural networks.

• Generic Abstract Transformers We provide abstract transformers for common
types of neural network layers that are based on operations typically supported
by implementations of abstract domains.

• Specialized Abstract Transformers for Zonotope Domain We design spe-
cialized abstract transformers that exploit useful properties of the Zonotope
domain to gain scalability and precision.

• Scalable Certifiers We present AI2 and DeepZ. Those are systems in which we
implemented the ideas mentioned above to obtain high-performance analysis
of comparatively large neural networks and input region specifications, all
while correctly handling floating-point roundoff error. Both of our systems
achieve certification results that are out of reach of prior methods.

impact Among many others, AI2 has inspired the following follow-up works:

• Training for Certifiability: DiffAI [114] performs abstract interpretation within
an automatic differentiation framework, such that neural networks can be
optimized directly for certifiable robustness on the training set.

• Abstract Interpretation with Backsubstitution: DeepPoly [155], explores an-
other trade-off between speed and precision. It is based on a linear relaxation
of the constraints that can be derived between neuron activations when symbol-
ically evaluating the neural network. Concrete bounds on neuron activations
are derived by backsubstituting constraints until reaching the input layer. (Like
AI2 and DeepZ, DeepPoly is sound with respect to floating-point roundoff
error.) In its evaluation, this work already explores certification of invari-
ance of neural network classifications against rotations of the input image
parameterized by a symbolic rotation angle restricted to some range.

• Joint Relaxation: kPoly [154] further improves on DeepPoly by grouping
multiple neurons for linear relaxation of ReLU activations instead of relaxing
all neurons independently. It is based on exact computation of convex hulls.
PRIMA [120] extends this approach to arbitrary activation functions and is
based on an efficient approximation of convex hulls to improve scalability.

• Combination with MILP: RefineZono [156] combines abstract interpretation
using DeepZ (presented in Chapter 3) with mixed integer linear programming
(MILP) to provide certification results that are more precise than DeepZ in

1 Our work is easily extended to more general patterns of data flow, but we focus on neural networks
organized in layers to keep the presentation simple.



1.2 symbolic reasoning for probabilistic programs 7

a more scalable way than previous approaches based on MILP. (Like other
MILP-based approaches, and in contrast to AI2 and DeepZ, RefineZono is not
sound with respect to floating-point roundoff error.)

• Geometric Robustness: DeepG [11], inspired by evaluation results of Deep-
Poly on rotation transformations, certifies invariance of neural network classi-
fications against compositions of multiple geometric image transformations
where each of them is parameterized by symbolic parameters. DeepG supports
commonly-used image interpolation algorithms for all transformations.

• ERAN Abstract Interpretation Framework: ERAN [2] is our latest neural
network analyzer based on abstract interpretation. It is the direct successor
to AI2 and provides implementations of DeepZ, DeepPoly, kPoly and DeepG,
among others.

• Probabilistic Abstract Interpretation: Generalizing the framework of AI2, Ap-
proxLine [115] performs probabilistic abstract interpretation of compositions
of neural networks, where the input sets are line segments and other curves.
Instead of sets of neuron activations, ApproxLine’s abstract domain represents
sets of distributions over neuron activations.

• Abstract Interpretation of Automatic Differentiation: In addition to the
forward pass, Jordan and Dimakis [85] also perform abstract interpretation
of the backward automatic differentiation pass of a neural network, deriving
bounds on the Jacobian matrix of the neural network within some input region.
The approach builds on DeepZ, with an additional (non-linear) multiplication
transformer for zonotopes. It also proposes a different way to derive Zonotope
transformers that results in more precise transformers for neural network
activation functions.

Overall, the line of work around AI2 presented in this thesis has sparked substantial
follow-up in the research community.

1.2 symbolic reasoning for probabilistic programs

An important limitation of many popular machine learning approaches, including
(standard) neural networks is that the results of training, and in turn, also the final
results of classification or regression, are hard to interpret and therefore errors are
typically unexplainable.

Probabilistic programming is an alternative modern approach to automated rea-
soning that is rooted in more traditional statistical methods. Probabilistic programs
represent a statistical model that can then be conditioned on concrete evidence in a
Bayesian fashion: Consider a weighted set of assignments of values to program vari-
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ables.2 Those values evolve under deterministic program statements independently,
and if the resulting assignments for multiple different original assignments coincide,
we combine their weight. Probabilistic programs then additionally have methods
to sample new random values. Those may cause assignments to split into multiple
other assignments, where each of the resulting assignments gets some portion of
the original weight before the results for each original assignment are combined. To
condition on concrete evidence, we simply ignore all assignments that are incon-
sistent with that evidence and eventually renormalize, such that the total weight
of all assignments is 1, while weights stay the same relative to each other. Note
that (already for just discrete random choices), the number of possible assignments
can increase exponentially in the number of executed program statements and the
resulting values can then be manipulated arbitrarily by a program from a (possibly)
Turing complete language.

The semantics of conditioning directly implements the definition of conditional
probability:

Pr[A | B] = Pr[A∩B]/Pr[B]

The weight of an assignment α is Pr[α]. A is a variable set of assignments of values
to program variables and B is the set of assignments that are consistent with the
observed evidence. Here, A∩B ignores all assignments in A that are inconsistent
with the observed evidence. Effectively, this sets the probability of each assignment
outside of the set B to 0. The probability of the remaining assignments then has to
add up to 1. Their total probability is precisely Pr[B], so we divide by this probability
to renormalize.

Consider the following probabilistic program:
def main(y){

X := sampleX();

Y := sampleY(X);

observe(Y = y);

return X;

}

This program samples a random value X and then, depending on X, it samples
another random value Y. This represents a joint density Pr[X = x, Y = y] of X and Y
programmatically, as a product

Pr[X = x, Y = y] = Pr[X = x] · Pr(Y = y | X = x),

where sampleX represents the density Pr[X = x] and sampleY represents the conditional
density Pr[Y = y | X = x]. In this model, X is unknown and we only observe
the value Y that was derived from it. This is a common pattern in probabilistic
programming. The program above computes a result distributed according to the

2 If continuous distributions are involved, the semantics becomes a bit more delicate than in the
discrete case, but intuitively we can think of having an infinite set of assignments where each has an
infinitesimal weight.
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conditional density Pr[X = x | Y = y]. Plugging in A = {X = x} and B = {Y = y} into
the definition of conditional probability above, we get

Pr[X = x | Y = y] = Pr[Y = y,X = x]/Pr[Y = y],

or, equivalently, using the factoring implemented by the program,

Pr[X = x | Y = y] = Pr[Y = y | X = x] · Pr[X = x]/Pr[Y = y].

This is Bayes’ theorem for density functions. In general, the probabilistic program
implements a generative model that assigns probabilities to different outcomes. Con-
ditioning partitions the assignment of values to program variables into observed
and latent (non-observed) random values. We can then infer facts about the latent
values based on the observed values. Probabilistic programs help automate this
kind of Bayesian reasoning.

Probabilistic programs have a fully interpretable formal semantics in terms of
probability theory. Hence, errors made by the model can in principle be explictly
traced back to some specific modeling inaccuracy or simplification. One benefit
of probabilistic programming is that we can run different inference algorithms on
the same model (which is expressed as a probabilistic program). However, a big
caveat is that the semantics of probablistic programs is intractable to compute in
general, even for models that have only discrete probabilistic choices. This is be-
cause probabilistic programs can model arbitrary counting problems. Even making
non-trivial approximation guarantees is NP-hard. This introduces another kind
of non-interpretability: any approximate inference algorithm will fail to produce
inference results accurately reflecting the underlying model on some probabilistic
programs. This introduces a disconnect between the model that is represented by
the probabilistic program and the inference results that are based on it: approximate
inference can be a source of errors that are hard to interpret. In particular, it may
not be clear if issues are caused by bad modeling or by bad inference.

problem statement Most prior work on inference for probabilistic programs
cites intractability of inference as a justification for why approximation is necessary.
However, note that this does not work around the intractability: approximate in-
ference approaches will only ever work very well for some subset of probabilistic
programs. In this work, we recognize that approximate and exact inference are
similar in this respect and that therefore, exact inference deserves just as much
consideration. We address the following problem statement:
Given a probabilistic program with both discrete and continuous random choices,
symbolically compute properties of the output distribution, such as probabilities or
expectations.

As computing practically useful results is intractable (even undecidable) in general,
we do this in a best-effort manner. However, note that in contrast to many popular
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Figure 1.3: Standard interface of PSI for users. Input: A probabilistic program. Output:
A symbolic description of the output distribution/properties. (Here, we have
numerically evaluated the symbolic expressions for illustration, resulting in a
plot of the output density, as well as truncated decimal values.)

approximate approaches, we aim to make it very easy to detect failure of inference.
As a significant simplification, input programs need to have bounded loops and our
inference backends do not support general recursion. Lifting those simplifications
is an exciting research direction for future work.

contribution We have created PSI, a new convenient probabilistic program-
ming language in which users can express their statistical models and which
supports powerful exact symbolic inference. Fig. 1.3 illustrates PSI’s user interface:
The user writes a probabilistic program and PSI symbolically computes properties
of the output distribution, such as density, probability of error, and expectation.
We have then extended PSI to λPSI, which adds features such as tuples, arrays,
higher-order functions, polymorphism and dependent typing, as well as nested
inference. Exact symbolic inference is useful in many ways:

• Precision: When PSI succeeds, the produced exact results are typically more
useful than approximations.

• Parameters: Symbolic inference can support symbolic parameters, such that
the inference procedure can solve a potentially infinite number of inference
queries at once. (I.e., we can solve all pertinent problems in infinitely many
universes at once.) Symbolic parameters can in turn be optimized so that the
resulting distribution has desirable properties.

• Speed: In some cases, symbolic inference is more efficient than alternative
approaches that are readily available. This can be particularly pronounced
with deeply nested inference problems.

• Baseline: PSI can be used as a baseline to motivate research on specialized or
approximate inference methods, it is often necessary to point out that exact
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inference is intractable in general. PSI provides an easy-to-use way to justify
such statements experimentally.

• Ground Truth: To validate specialized or approximate inference methods by
comparing to an exact ground truth. For example, if it is helpful to be able to
highlight some special property of the resulting distribution that is correctly
captured by some approximate inference method, it is helpful to validate that
the exact underlying distribution in fact does have that property.

• Mockup: PSI can be used as a generic drop-in during development, before
more specialized or approximate procedures are available. It can then auto-
matically serve as both baseline and ground truth to validate specialized or
approximate procedures.

• Teaching: To teach probabilistic program semantics, in particular to dispel
the common notion that probabilistic programs are inherently fuzzy and
approximate.

It can also be useful as a component of other approaches, for example:

• Verification of probabilistic programs.

• Compiler optimizations on probabilistic programs.

impact Indeed, PSI has already been used to support subsequent research in a
variety of contexts. For example,

• Differential Privacy: PSI has been used to verify counterexamples to differen-
tial privacy [17, 169]. The inputs and sets of outputs witnessing a violation of
differential privacy are first obtained using heuristic approaches, then PSI is
used to exactly determine the strength of the counterexample.

• Privacy under Bayesian Inference: Beyond differential privacy, SPIRE [97]
uses PSI as a language to define priors on database contents as well as
queries on those database contents. The exact inference backends are then
used to compute probabilities that serve as a basis for enforcement of powerful
Bayesian privacy constraints, including automated synthesis of new programs
that satisfy the privacy constraints while still providing some useful data
related to the query.

• Networks: Bayonet [52] uses PSI as a backend for verifying properties of
software-defined computer networks. This served as inspiration for Net-
Dice [159], a custom tool that can efficiently compute sound bounds on
probabilities of events in computer networks, specialized to common proto-
cols.
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• Discrete Exact Inference: Dice [78] is a probabilistic programming language
with specialized support for exact inference in discrete probabilistic programs
that comes with a formal proof of correctness. PSI is used as a baseline.

• Specialized Exact Inference: SPPL [137] presents specialized exact inference
algorithms and datastructures for a powerful class of probabilistic programs
representing sum-product networks. In contrast to PSI, SPPL provides guaran-
tees on completeness and efficiency by restricting the expressiveness of the
input language. PSI is used as a baseline.

• Incremental Exact Inference: ISymb [174] extends PSI to support fast incre-
mental updates of exact inference results under small changes of input data.
PSI is also used as a baseline to demonstrate that the incremental inference
approach is faster than recomputing the result from scratch after each change.

• Bias Analysis: FairSquare [7] is a tool that quantifies the extent to which
programs, most notably statistical models obtained using machine learning,
are biased against protected groups. The authors use PSI as a baseline that
demonstrates that it is hard to obtain a closed-form solution for some of
their benchmark examples. They then develop a custom approach to rigor-
ously bound probabilities using an SMT-based enumeration approach with
convergence guarantees.

• Sensitivity Analysis: PSense [81] uses PSI as a basis for analyzing the sensitiv-
ity of a probabilistic program’s output distribution to changes in distribution
parameters within the program.

• Probabilistic Error Analysis: Given a distribution on program inputs, Lohar
et al. [104] compute sound bounds on the probability that programs take the
wrong path through a program with discrete conditionals if computations
using exact real numbers are replaced by floating-point approximations. PSI
is used as a component of a baseline approach that also provides ground
truth to validate a more scalable overapproximate approach that the authors
specifically developed for this application.

• Differential Testing: ProbFuzz [43] is a system for automated testing of prob-
abilistic programming systems that employs a variety of testing approaches
and uses PSI to compute exact ground truth results for differential testing.

• Inference Compilation: Walia et al. [167] compile probabilistic programs
with arrays into fast code that can then perform inference on data (using
floating-point arithmetic). PSI is used as a baseline.

• Probabilistic Programming on the Edge: Statheros [100] is a probabilistic pro-
gramming language that creates machine code performing MCMC inference
on a given probabilistic program with fixed-point arithmetic. It is targeted
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towards microcontrollers. The authors use PSI to obtain ground truth values
for evaluation.

• Weighted Model Integration: PSI’s robust integration engine and Iverson
bracket simplifier has been used to extend knowledge compilation, previously
used for weighted model counting, to support continuous variables and
weighted model integration [42, 90].

• Quantum Programming: The language and type system of λPSI served as the
basis for Silq [18], a high-level quantum programming language.

The capabilities of PSI will only increase in the future, as we systematically
explore and support downstream applications that are in turn providing practically
important benchmark programs. At the same time, we can extend the input language
and write libraries, such that it becomes more easily applicable to a larger set of
problems. In this way, we will be able to combine ideas from different specialized
inference algorithms developed for different domains, to the benefit of all domain-
specific applications of PSI. Meanwhile, PSI becomes a stronger baseline in all its
application domains, fostering future research in exact inference.

1.3 chapter overview

We now give a short overview of the remaining contents of this dissertation. It
is organized into two parts, corresponding to the two main research directions
we pursued. Each part has two chapters. Finally, we conclude the dissertation in
Chapter 6 with a list of future work items.

1.3.1 Part i: Robustness of Neural Networks

In the first part of the thesis, we present our tools for certifying robustness of neural
networks to small input perturbations.

ai
2 : safety and robustness certification of neural networks with

abstract interpretation This is our initial system for abstract interpreta-
tion of neural networks. It is based on generic operations supported by existing
abstract domains. In particular, we introduce the Zonotope domain in the context of
neural network robustness certification and design generic abstract transformers
for neural networks with ReLU activations, based on operations already supported
by existing implementations of abstract domains. AI2 thereby leverages existing
implementations of abstract interpretation for neural network analysis.3 We present
AI2 in Chapter 2.

3 Although we had to fix some bugs in existing libraries, as they had never been validated at the scale
required by our system.
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Figure 1.4: One component of the generic abstract transformer for the ReLU activation
function, instantiated to the Zonotope domain.

fast and effective robustness certification AI2 already produces
better results than prior work, but it suffers from a few limitations due to its
generic nature. Fig. 1.4 shows some intermediate results computed by one of
AI2’s generic transformers. Note how it has to split the abstract element on the
condition x1 > 0. To this end, it uses the meet (u) and join (t) operations, which
are particularly expensive and imprecise for the Zonotope domain. Furthermore,
this computation has to be performed for all components of the layer in order and
cannot be easily parallelized. Our system DeepZ overcomes those limitations using
a custom implementation of the Zonotope domain with manual implementations
of specialized transformers for neural network layers exploiting specific properties
of the Zonotope domain. I.e., while AI2 addresses the generic question of how to
apply 40 years of existing research in abstract domains to neural networks, DeepZ
is specialized to today’s neural networks. An important feature of our specialized
Zonotope transformers for neural network activation functions in DeepZ is that they
do not use the expensive and imprecise meet and join operations. Furthermore, they
operate on all neurons of a given layer independently, allowing easy parallelization.
We demonstrate that, on a set of benchmark neural networks and robustness
specifications, the analysis we implemented in DeepZ is at the same time faster
and more precise than the analysis with the more generic transformers of AI2

instantiated with the Zonotope domain. We present DeepZ in Chapter 3.

1.3.2 Part ii: Symbolic Reasoning for Probabilistic Programs

Note that to train a neural network, we optimize a statistical loss function. However,
the final result of training is a deterministic function, whose behavior AI2 and
DeepZ analyze on sets of concrete inputs. In contrast, in the second part of the
thesis, we explore how we can use symbolic methods to reason about probability
distributions explicitly. Here, inputs and behaviour can both be random, but the
methods we use to analyze them are fully deterministic.
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⇓simplify

Figure 1.5: Internal operation of PSI: Simplify symbolic expressions derived from the pro-
gram (top) into a usable closed form (bottom). A small section of the unsimplified
expression has been magnified.

psi : exact symbolic inference for probabilistic programs As we
have mentioned above, PSI is our probabilistic programming language and system
that supports exact symbolic probabilistic inference for first-order probabilistic
programs with real variables, unrolled loops, and unrolled arrays. PSI operates
by translating the input program into a symbolic domain statement by statement.
The system then simplifies the symbolic terms using a number of custom rewrite
rules, striving to derive a closed-form expression in a best-effort fashion. Fig. 1.5
illustrates simplification of an expression based on an input-output example. PSI
also supports modular inference by analyzing one function at a time, deriving a
symbolic distribution transformer that can be instantiated at call sites before further
simplification. We evaluate PSI on a set of example applications of existing systems
for approximate probabilistic inference and demonstrate that it is surprisingly
effective on many practically interesting examples (while still struggling on others).
We present PSI in Chapter 4.

λpsi : exact inference for higher-order probabilistic programs The
input language of our original implementation of PSI is rather limited: all variables
store real numbers, and arrays are unrolled syntactically (in particular, PSI does not
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Figure 1.6: Rejection sampling (top) vs. symbolic inference in λPSI (bottom).

allow arrays of random length, nor random indices to index arrays). Many popular
probabilistic programming languages support other types of values, including
functions, tuples and arrays. In λPSI, we address all of those limitations of PSI.
Furthermore, many approximate inference approaches allow for nested inference
(often in an ad-hoc fashion): the model on which we want to perform probabilistic
inference may itself perform (nested) probabilistic inference queries. λPSI is a
statically typed probabilistic programming language supporting first-class functions,
distributions, arrays and tuples, as well as nested inference. λPSI supports nested
inference by making probabilistic inference a first-class language feature. The
language includes some support for dependent types, including for the length
of arrays. In comparison to PSI, we have also improved the symbolic simplification
backend. E.g., we have added additional features to the intermediate symbolic
language, representing first-class functions, tuples and arrays. We have also vastly
improved the symbolic summation engine by modeling it after symbolic integration
in PSI. Fig. 1.6 compares rejection sampling results with symbolic inference on three
nested inference queries. Note that here, λPSI is not only more precise, but also
significantly more performant: λPSI computed the results in a couple of seconds
each, while rejection sampling took above 10 minutes. We present λPSI in Chapter 5.



1.3 chapter overview 17

1.3.3 Conclusion and Future Work

In Chapter 6, we finish the thesis with concluding remarks and present many
promising items for future work.





Part I

A B S T R A C T I N T E R P R E TAT I O N O F N E U R A L
N E T W O R K S





2
A I 2 : S A F E T Y A N D R O B U S T N E S S C E RT I F I C AT I O N O F N E U R A L
N E T W O R K S W I T H A B S T R A C T I N T E R P R E TAT I O N

Neural networks have become an integral part of many safety-critical applications,
including vehicle control [19], medical diagnosis [8], malware detection [173], and
aircraft collision avoidance detection [88]. This is because these models have obtained
near-human accuracy in some domains [88, 96].

Despite all success, a fundamental challenge remains: to ensure that machine
learning systems, and deep neural networks in particular, behave as intended. This
challenge has become critical in light of recent research [162], showing that even
highly accurate neural networks are vulnerable to adversarial attacks, where the
network can be tricked into making wrong predictions by only slightly modifying
an input, such that the network misclassifies the perturbed input, even though
the original input is correctly classified by the network [9, 25, 47, 59, 98, 127,
129, 161]. Such a misclassified input is called an adversarial example. Various kinds
of perturbations have been shown to successfully generate adversarial examples
(e.g., [24, 60, 69, 70, 79, 80, 117, 123, 131, 147, 163]).

Fig. 2.1 illustrates two attacks, FGSM and brightening, against a digit classifier.
For each attack, Fig. 2.1 shows an input in the Original column, the perturbed input
in the Perturbed column, and the pixels that were changed in the Diff column.
Brightened pixels are marked in yellow and darkened pixels are marked in purple.
The FGSM [60] attack perturbs an image by adding to it a particular noise vector
multiplied by a small number ε (in Fig. 2.1, ε = 0.3). The brightening attack
(e.g., [131]) perturbs an image by changing all pixels above the threshold 1− δ to
the brightest possible value (in Fig. 2.1, δ = 0.085).

Adversarial examples can be especially problematic when safety-critical systems
rely on neural networks. For instance, it has been shown that attacks can be executed
physically (e.g., [46, 99]) and against neural networks accessible only as a black box
(e.g., [60, 162, 166]).

As a result, there is considerable interest in ensuring robustness of neural net-
works against such attacks, such as to mitigate these issues.

A line of research to ensure safety of neural networks focuses on adversarial
training where networks are trained against a model of adversarial attack. Gu and
Rigazio [71] add concrete noise to the training set and remove it statistically for
defending against adversarial examples. Many works have focused on designing

21
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Attack Original Perturbed Diff

FGSM [60], ε = 0.3

Brightening, δ = 0.085

Figure 2.1: Attacks applied to MNIST images [102].

defenses that increase robustness by using modified procedures for training the
network (e.g., [60, 70, 106, 128, 165]). Goodfellow et al. [59] generate adversarial
examples misclassified by neural networks and then design a defense against this
attack by explicit training against perturbations generated by the attack.

Madry et al. [107] show that training against an optimal attack also guards against
non-optimal attacks. While this technique was highly effective in experiments,
Carlini et al. [26] demonstrated an attack for the safety-critical problem of ground-
truthing, where this defense occasionally exacerbated the problem.

There has also been increased interest in formally verifying robustness of neural
networks, in particular local robustness. Local robustness (or robustness, for short)
requires that all samples in the neighborhood of a given input are classified with
the same label [128]. The work of Kolter and Wong [91] demonstrates a defense
against adversarial attacks, providing certificates which prove that no training
example could be adversarially permuted, as well as bounds on the capability
of an adversary to influence performance on a test set. This method is based on
linear duality and computes a convex overapproximation of the adversarial polytope,
capturing the set of possible neural network outputs given the region of possible
inputs. However, the approach incurs significant accuracy and scalability overheads.
Dvijotham et al. [44] (concurrent to our work) proposes an improved dual approach
to overapproximation, using a more accurate and more tractable formulation based
on weak duality. A weakness of duality-based approaches is that they rely non-
trivially on the commutativity and associativity of addition and may therefore not
be sound in the face of floating-point roundoff error.

Raghunatan et al. [135] and Katz et al. [87] verify the robustness of small neural
networks. Others have developed approaches that can show non-robustness by un-
derapproximating neural network behaviors [14] or methods that decide robustness
of small fully connected feed-forward neural networks [88]. However, no sound
analyzer developed in prior work handles convolutional networks, one of the most
popular architectures.

key challenge : scalability and precision The main challenge facing
sound analysis of neural networks is scaling to large classifiers while maintaining a
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precision that suffices to prove useful properties. The analyzer must consider all
possible outputs of the network over a prohibitively large set of inputs, processed
by a vast number of intermediate neurons. For instance, consider the image of the
digit 8 in Fig. 2.1 and suppose we would like to prove that no matter how much we
further brighten pixels with intensity above 1− 0.085, the network will still classify
the image as 8 (in this example we have 84 such pixels, shown in yellow). Assuming
64-bit floating point numbers are used to express pixel intensity, we obtain more
than 101154 possible perturbed images. Thus, proving the property by running a
network exhaustively on all possible input images and checking if all of them are
classified as 8 is infeasible. To avoid this state space explosion, current methods (e.g.,
[80, 88, 134]) symbolically encode the network as a logical formula and then check
robustness properties with a constraint solver. However, such solutions do not scale
to larger (e.g., convolutional) networks, which usually involve many intermediate
computations.

key concept : abstract interpretation for ai The key insight of our
work is to address the above challenge by leveraging the classic framework of ab-
stract interpretation (e.g., [33, 34]), a theory of sound, computable, and precise finite
approximations of potentially infinite sets of behaviors. Concretely, we leverage nu-
merical abstract domains – a particularly good match, as AI systems tend to heavily
manipulate numerical quantities. By showing how to apply abstract interpretation
to reason about AI safety, we enable users to leverage decades of research and any
future advancements in that area (e.g., in numerical domains [152]). With abstract
interpretation, a neural network computation is overapproximated using an abstract
domain. An abstract domain consists of logical formulas that capture certain shapes
(e.g., zonotopes, a restricted form of polyhedra). For example, in Fig. 2.2, the green
zonotope A1 overapproximates the set of blue points (each point represents an
image). Of course, sometimes, due to abstraction, a shape may also contain points
that will not occur in any concrete execution (e.g., the red points in A2).

the ai
2

analyzer Based on this insight, we developed a system called AI2

(Abstract Interpretation for Artificial Intelligence)1. AI2 is the first scalable analyzer that
handles common network layer types, including fully connected and convolutional
layers with rectified linear unit activations (ReLU) and max pooling layers.

To illustrate the operation of AI2, consider the example in Fig. 2.2, where we have
a neural network, an image of the digit 8 and a set of perturbations: brightening
with parameter 0.085. Our goal is to prove that the neural network classifies all
perturbed images as 8. AI2 takes the image of the digit 8 and the perturbation type
and creates an abstract element A1 that captures all perturbed images. In particular,
we can capture the entire set of brightening perturbations exactly with a single
zonotope. However, in general, this step may result in an abstract element that
contains additional inputs (that is, red points). In the second step, A1 is automatically

1 AI2 is available at: http://ai2.ethz.ch

http://ai2.ethz.ch


24 ai
2 : abstract interpretation for artificial intelligence

Br
ig

ht
en

(0
.0
8
5
,

)

A1

C
on

vo
lu

ti
on

al
#

A2

M
ax

Po
ol

in
g#

A3

Fu
lly

C
on

ne
ct

ed
#

A4

Figure 2.2: A high-level illustration of how AI2 checks that all perturbed inputs are classified
the same way. AI2 first creates an abstract element A1 capturing all perturbed
images. (Here, we use a 2-bounded set of zonotopes.) It then propagates A1
through the abstract transformer of each layer, obtaining new shapes. Finally, it
verifies that all points in A4 correspond to outputs with the same classification.

propagated through the layers of the network. Since layers work on concrete values
and not abstract elements, this propagation requires us to define abstract layers
(marked with #) that compute the effects of the layers on abstract elements. The
abstract layers are commonly called the abstract transformers of the layers. Defining
sound and precise, yet scalable abstract transformers is key to the success of an
analysis based on abstract interpretation. We define abstract transformers for all
three layer types shown in Fig. 2.2.

At the end of the analysis, the abstract output A4 is an overapproximation of
all possible concrete outputs. This enables AI2 to verify safety properties such as
robustness (e.g., are all images classified as 8?) directly on A4. In fact, with a single
abstract run, AI2 was able to prove that a convolutional neural network classifies all
of the considered perturbed images as 8.

We evaluated AI2 on important tasks such as verifying robustness and comparing
neural networks defenses. For example, for the perturbed image of the digit 0 in
Fig. 2.1, we showed that while a non-defended neural network classified the FGSM
perturbation with ε = 0.3 as 9, this attack is provably eliminated when using a neural
network trained with the defense of [106]. In fact, AI2 proved that the FGSM attack
is unable to generate adversarial examples from this image for any ε between 0 and
0.3.

main contributions Our main contributions are:

• A sound and scalable method for analysis of deep neural networks based on
abstract interpretation (§2.3).

• AI2, an end-to-end analyzer, extensively evaluated on feed-forward and convo-
lutional networks (computing with 53 000 neurons), far exceeding capabilities
of current systems (§4.4).
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• An application of AI2 to evaluate provable robustness of neural network defenses
(§2.6).

AI2 is generic, i.e., it can be used with any abstract domain that provides a given
number of standard operations. It therefore answers the question of how to apply 40
years of research in abstract interpreation to neural networks. The work presented
in this chapter has been published in Gehr et al. [51].

2.1 neural networks and conditional affine transformations

In this section, we provide background on feedforward and convolutional neural
networks and show how to transform them into a representation amenable to
abstract interpretation. This representation helps us simplify the construction and
description of our analyzer, which we discuss in later sections. We use the following
notation: for a vector x ∈ Rn, xi denotes its ith entry, and for a matrix W ∈ Rn×m,
Wi denotes its ith row and Wi,j denotes the entry in its ith row and jth column.

cat functions We express the neural network as a composition of conditional
affine transformations (CAT), which are affine transformations guarded by logical
constraints. The class of CAT functions, shown in Fig. 2.3, consists of functions
f : Rm → Rn for m,n ∈ N and is defined recursively. Any affine transformation
f(x) =W · x+ b is a CAT function, for a matrix W and a vector b. Given sequences
of conditions E1, . . . ,Ek and CAT functions f1, . . . , fk, we write

f(x) = case E1 : f1(x), . . . , case Ek : fk(x).

This is also a CAT function, which returns fi(x) for the first Ei satisfied by x. The
conditions are conjunctions of constraints of the form xi > xj, xi > 0 and xi < 0.
Finally, any composition of CAT functions is a CAT function. We often write f ′′ ◦ f ′
to denote the CAT function f(x) = f ′′(f ′(x)).

layers Neural networks are often organized as a sequence of layers, such that
the output of one layer is the input of the next layer. Layers consist of neurons,
performing the same function but with different parameters. The output of a layer
is formed by stacking the outputs of the neurons into a vector or three-dimensional
array. We will define the functionality in terms of entire layers instead of in terms of
individual neurons.

reshaping of inputs Layers often take three-dimensional inputs (e.g., colored
images). Such inputs are transformed into vectors by reshaping. A three-dimensional
array x ∈ Rm×n×r can be reshaped to xv ∈ Rm·n·r in a canonical way, first by depth,
then by column, finally by row. That is, given x, we have

xv = (x1,1,1 . . . x1,1,r x1,2,1 . . . x1,2,r . . . xm,n,1 . . . xm,n,r)
T .
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f (x) ::= W · x+ b

| case E1 : f1(x), . . . , case Ek : fk(x)

| f(f ′(x))

E ::= E ∧ E | xi > xj | xi > 0 | xi < 0

Figure 2.3: Definition of CAT functions.

2

3

1

1

1

0

-1
2

0

-1
0

3

0

x
W b y

ReLU

ReLU( 1 0 2 ·
2

3

1

+ -1 ) = 3

ReLU( 1 -1 0 ·
2

3

1

+ 0 ) = 0

(a) Fully connected layer FCW,b

0 4 2 1

-1 0 1 -2
3 1 2 0

0 1 4 1

1 0

-1 2

1

2 7 0

0 4 0

6 9 1

x

W
b

y

ReLU

ReLU( 1 0 -1 2 ·

0

4

-1
0

+ 1 ) = 2

ReLU( 1 0 -1 2 ·

2

0

4

1

+ 1 ) = 1

(b) Convolutional layer Conv(W,b) (one filter)

0 1 3 -2
2 -4 0 1

2 -3 0 1

-1 5 2 3

2 3

5 3

x
y

max( 0 1 2 -4 ) = 2

max( 3 -2 0 1 ) = 3

max( 2 -3 -1 5 ) = 5

max( 0 1 2 3 ) = 3

(c) Max pooling layer MaxPool2,2

Figure 2.4: One example computation for each of the three layer types supported by AI2.

activation function Typically, layers in a neural network perform a linear
transformation followed by a non-linear activation function. We focus on the com-
monly used rectified linear unit (ReLU) activation function, which for x ∈ R is de-
fined as ReLU(x) = max(0, x), and for a vector x ∈ Rn as ReLU(x)=(ReLU(x1), . . . , ReLU(xn)).

relu to cat We can express the ReLU activation function as ReLU = ReLUn ◦
. . . ◦ReLU1 where ReLUi processes the ith entry of the input x and is given by

ReLUi(x) = case (xi > 0) : x,
case (xi < 0) : Ii←0 · x.

Ii←0 is the identity matrix with the ith row replaced by zeros.

fully connected (fc) layer An FC layer takes a vector of size m (the m
outputs of the previous layer), and passes it to n neurons, each computing a function
based on the neuron’s weights and bias, one weight for each component of the input.
Formally, an FC layer with n neurons is a function FCW,b : Rm → Rn parameterized
by a weight matrix W ∈ Rn×m and a bias b ∈ Rn. For x ∈ Rm, we have

FCW,b(x) = ReLU(W · x+ b).

Fig. 2.4a shows an FC layer computation for x = (2, 3, 1).
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convolutional layer A convolutional layer is defined by a series of t filters
Fp,q = (Fp,q

1 , .., Fp,q
t ), parameterized by the same p and q, where p 6 m and q 6 n.

A filter Fp,q
i is a function parameterized by a three-dimensional array of weights

W ∈ Rp×q×r and a bias b ∈ R. A filter takes a three-dimensional array and returns
a two-dimensional array:

F
p,q
i : Rm×n×r → R(m−p+1)×(n−q+1).

The entries of the output y for a given input x are given by

yi,j = ReLU(
p∑
i ′=1

q∑
j ′=1

r∑
k ′=1

Wi ′,j ′,k ′ · x(i+i ′−1),(j+j ′−1),k ′ + b).

Intuitively, this matrix is computed by sliding the filter along the height and width
of the input three-dimensional array, each time reading a slice of size p× q× r,
computing its dot product with W (resulting in a real number), adding b, and
applying ReLU. The function ConvF, corresponding to a convolutional layer with t
filters, has the following type:

ConvF : Rm×n×r → R(m−p+1)×(n−q+1)×t.

As expected, the function ConvF returns a three-dimensional array of depth t, which
stacks the outputs produced by each filter. Fig. 2.4b illustrates a computation of a
convolutional layer with a single filter. For example:

y1,1,1 = ReLU((1 · 0+ 0 · 4+ (−1) · (−1) + 2 · 0) + 1) = 2.

Here, the input is a three-dimensional array in R4×4×1. As the input depth is 1, the
depth of the filter’s weights is also 1. The output depth is 1 because the layer has
one filter.

convolutional layer to cat For a convolutional layer ConvF, we define a
matrix WF whose entries are those of the weight matrices for each filter (replicated
to simulate sliding), and a bias bF consisting of copies of the filters’ biases. We then
treat the convolutional layer ConvF like the equivalent FC

WF,bF
.

We will provide formal definitions of WF and bF below. First, we provide an
intuitive illustration of the translation on the example in Fig. 2.4b. Consider the first
entry y1,1 = 2 of y in Fig. 2.4b:

y1,1=ReLU(W1,1 · x1,1 +W1,2 · x1,2 +W2,1 · x2,1 +W2,2 · x2,2 + b).

When x is reshaped to a vector xv, the four entries x1,1, x1,2, x2,1 and x2,2 will be
found in xv1, x

v
2, x

v
5 and xv6, respectively. Similarly, when y is reshaped to yv, the entry
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y1,1 will be found in yv1. Thus, to obtain yv1 = y1,1, we define the first row in WF such
that its 1st, 2nd, 5th, and 6th entries are W1,1, W1,2, W2,1 and W2,2. The other entries
are zeros. We also define the first entry of the bias to be b. For similar reasons, to
obtain yv2 = y1,2, we define the second row in WF such that its 2nd, 3rd, 6th, and 7th

entries are W1,1, W1,2, W2,1 and W2,2 (also b2 = b). By following this transformation,
we obtain the matrix WF ∈ R9×R16 and the bias bF ∈ R9:

WF = b
F
=

1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2



1
1
1
1
1
1
1
1
1


To aid understanding, we show the entries from W that appear in the resulting
matrix WF in bold.

convolutional layer details Formally, for filters Wk ∈ Rp×q×r, bk ∈ R for
1 6 k 6 t, we have

ConvF(x) : Rn×m×r → R(m−p+1)×(n−q+1)×t

ConvF(x)i,j,k = ReLU(
p∑
i ′=1

q∑
j ′=1

r∑
k ′=1

Wk
i ′,j ′,k ′ · x(i+i ′−1),(j+j ′−1),k ′ + b

k),

for 1 6 i 6 m− p+ 1, 1 6 j 6 n− q+ 1 and 1 6 k 6 t. Reshaping both the input
and the output vector such that they have only one index, we obtain

Conv ′F(x) : Rn·m·r → R(m−p+1)·(n−q+1)·t

Conv ′F(x)(n−q+1)·t·(i−1)+t·(j−1)+k

= ReLU(
p∑
i ′=1

q∑
j ′=1

r∑
k ′=1

Wk
i ′,j ′,k ′ · xn·r·(i+i ′−2)+r·(j+j ′−2)+k ′ + b

k),

for 1 6 i 6 m− p+ 1, 1 6 j 6 n− q+ 1 and 1 6 k 6 t. The function Conv ′F is ReLU
after an affine transformation, therefore there is a matrixWF ∈ R((m−p+1)·(n−q+1)·t)×(n·m·r)

and a vector bF ∈ R(m−p+1)·(n−q+1)·t such that

ConvF(x)v = Conv ′F(x
v) = ReLU(WF · xv + bF) = FC

WF,bF
(x).
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The entries of WF and bF are obtained by equating

FC(el)(n−q+1)·t·(i−1)+t·(j−1)+k

= ReLU(WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l + b

F
(n−q+1)·t·(i−1)+t·(j−1)+k) with

Conv ′F(el)(n−q+1)·t·(i−1)+t·(j−1)+k

= ReLU(
p∑
i ′=1

q∑
j ′=1

r∑
k ′=1

Wk
i ′,j ′,k ′ · [l = n · r · (i+ i

′ − 2) + r · (j+ j ′ − 2) + k ′] + bk),

for standard basis vectors el with (el)i = [l = i] for 1 6 l 6 n and 1 6 i 6 n ·m · r.
This way, we obtain

WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l

=

p∑
i ′=1

q∑
j ′=1

r∑
k ′=1

Wk
i ′,j ′,k ′ · [l = n · r · (i+ i

′ − 2) + r · (j+ j ′ − 2) + k ′] and

bF(n−q+1)·t·(i−1)+t·(j−1)+k = b
k,

for 1 6 i 6 m− p+ 1, 1 6 j 6 n− q+ 1 and 1 6 k 6 t. Note that here, [ϕ] is an
Iverson bracket, which is equal to 1 if ϕ holds and equal to 0 otherwise.

max pooling (mp) layer An MP layer takes a three-dimensional array x ∈
Rm×n×r and reduces the height m of x by a factor of p and the width n of x by a
factor of q (for p and q dividing m and n). Depth is kept as-is. Neurons take as
input disjoint subrectangles of x of size p× q and return the maximal value in their
subrectangle. Formally, the MP layer is a function MaxPoolp,q : Rm×n×r → R

m
p ×

n
q×r

that for an input x returns the three-dimensional array y given by:

yi,j,k = max({xi ′,j ′,k | p · (i− 1) < i ′ 6 p · i
q · (j− 1) < j ′ 6 q · j}).

Fig. 2.4c illustrates the max pooling computation for p = 2, q = 2 and r = 1. For
example, here we have:

y1,1,1 = max({x1,1,1, x1,2,1, x2,1,1, x2,2,1}) = 2.

max pooling to cat Let MaxPool ′p,q : Rm·n·r → R
m
p ·
n
q ·r be the function that

is obtained from MaxPoolp,q by reshaping its input and output: MaxPool ′p,q(x
v) =

MaxPoolp,q(x)
v. To represent max pooling as a CAT function, we define a series of

CAT functions whose composition is MaxPool ′p,q:

MaxPool ′p,q = fm
p ·
n
q ·r ◦ . . . ◦ f1 ◦ f

MP.
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Figure 2.5: The operation of the transformed max pooling layer.

The first function is fMP(xv) = WMP · xv, which reorders its input vector xv to a
vector xMP in which the values of each max pooling subrectangle of x are adjacent.
The remaining functions execute standard max pooling. Concretely, the function
fi ∈ {f1, . . . , fm

p ·
n
q ·r} executes max pooling on the ith subrectangle by selecting the

maximal value and removing the other values. We provide formal definitions of the
CAT functions fMP and fi further below.

Here, we illustrate them on the example from Fig. 2.4c, where r = 1. The CAT
computation for this example is shown in Fig. 2.5. The computation begins from the
input vector xv, which is the reshaping of x from Fig. 2.4c. The values of the first
2× 2 subrectangle in x (namely, 0, 1, 2 and −4) are separated in xv by values from
another subrectangle (3 and −2). To make them contiguous, we reorder xv using a
permutation matrix WMP, yielding xMP. In our example, WMP is given by

WMP=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


One entry in each row of WMP is 1, all other entries are zeros. If row i has entry j
set to 1, then the jth value of xv is moved to the ith entry of xMP. For example, we
placed a one in the fifth column of the third row of WMP to move the value xv5 to
entry 3 of the output vector.

Next, for each i ∈ {1, . . . , mp ·
n
q }, the function fi takes as input a vector whose

values at the indices between i and i+ p · q− 1 are those of the ith subrectangle of x̄
in Fig. 2.4c. It then replaces those p · q values by their maximum:

fi(x) = (x1, . . ., xi−1, xk, xi+p·q, . . . , xm·n−(p·q−1)·(i−1)),

where the index k ∈ {i, . . . , i+ p · q− 1} is such that xk is maximal. For k given, fi
can be written as a CAT function: fi(x) = W(i,k) · x, where the rows of the matrix
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W(i,k) ∈ R(m·n−(p·q−1)·i)×(m·n−(p·q−1)·(i−1)) are given by the following sequence of
standard basis vectors:

e1, . . . , ei−1, ek, ei+p·q, . . . , em·n−(p·q−1)·(i−1).

For example, in Fig. 2.5, f1(xMP) =W(1,3) · xMP deletes 0, 1 and −4. Then it moves
the value 2 to the first component, and the values at indices 5, . . . , 16 to components
2, . . . , 13. Overall, W(1,3) is given by:

W(1,3)=


0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


As, in general, k is not known in advance, we need to write fi as a CAT function

with a different case for each possible index k of the maximal value in x. For
example, in Fig. 2.5:

f1(x) =

case (x1 > x2)∧ (x1 > x3)∧ (x1 > x4) : W
(1,1) · x,

case (x2 > x1)∧ (x2 > x3)∧ (x2 > x4) : W
(1,2) · x,

case (x3 > x1)∧ (x3 > x2)∧ (x3 > x4) : W
(1,3) · x,

case (x4 > x1)∧ (x4 > x2)∧ (x4 > x3) : W
(1,4) · x.

In our example, the vector xMP in Fig. 2.5 satisfies the third condition, and therefore
f1(x

MP) =W(1,3) · xMP. Taking into account all four subrectangles, we obtain:

MaxPool ′2,2 = f4 ◦ f3 ◦ f2 ◦ f1 ◦ fMP.

In summary, each function fi replaces p · q components of their input by the
maximum value among them, suitably moving other values. For xv in Fig. 2.5:

MaxPool ′2,2(x
v) =W(4,7) ·W(3,6) ·W(2,2) ·W(1,3) ·WMP · xv.

max pooling layer details MaxPoolp,q : Rm×n×r → R
m
p ×

n
q×r partitions

the input vector into disjoint blocks of size p× q× 1 and replaces each block by
its maximum value. Furthermore, MaxPool ′p,q : Rm·n·r → R

m
p ·
n
q ·r is obtained from

MaxPoolp,q by reshaping both the input and output: MaxPool ′p,q(x
v) = MaxPoolp,q(x)

v.
We will represent MaxPool ′p,q as a composition of CAT functions,

MaxPool ′p,q = fm
p ·
n
q ·r ◦ . . . ◦ f1 ◦ f

MP.
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Here, fMP rearranges the input vector such that values from the same block are
adjacent. Values from different blocks are brought into the same order as the output
from each block appears in the output vector.

Note that ((i− 1) mod p) + 1, (j− 1) mod q) + 1, 1) are the indices of input value
xi,j,k within its respective block and

(⌊
i−1
p

⌋
+ 1,

⌊
j−1
q

⌋
+ 1,k

)
are the indices of the

unique value in the output vector whose value depends on xi,j,k. Recall that the
permutation matrix M representing a permutation π is given by Mπ(i) = ei.

The CAT function fMP is a linear transformation fMP(xv) = WMP · xv where the
permutation matrix WMP is given by

WMP
r·p·q·

(
n
q

⌊
i−1
p

⌋
+
⌊
j−1
q

⌋)
+p·q·(k−1)+q·((i−1) mod p)+((j−1) mod q)+1

= en·r·(i−1)+r·(j−1)+k,

for 1 6 i 6 m, 1 6 j 6 n and 1 6 k 6 r.
For each 1 6 i 6 m

p ·
n
p · r, the CAT function fi selects the maximum value from a

(p · q)-segment starting from the ith component of the input vector. The function
fi consists of a sequence of cases, one for each of the p · q possible indices of the
maximal value in the segment:

fi(x) = case (xi > xi+1)∧ . . .∧ (xi > xi+p·q−1) : W
(i,i) · x,

case (xi+1 > xi)∧ . . .∧ (xi+1 > xi+p·q−1) : W
(i,i+1) · x,

...

case (xi+p·q−1 > xi)∧ . . .∧ (xi+p·q−1 > xi+p·q−2) : W
(i,i+p·q−1) · x.

We use the matrix W(i,k) ∈ R(m·n·r−(p·q−1)·i)×(m·n·r−(p·q−1)·(i−1)) to replace the seg-
ment xi, . . . , xi+p·q−1 of the input vector x by the value xk. W(i,k) is given by

W
(i,k)
j =


ej, if 1 6 j 6 i− 1
ek, if j = i
ej+p·q−1, if i+ 1 6 j 6 m ·n · r− (p · q− 1) · i

.

network architectures Two popular architectures of neural networks are
fully connected feedforward (FNN) and convolutional (CNN). An FNN is a sequence
of fully connected layers, while a CNN [82] consists of all previously described layer
types: convolutional, max pooling, and fully connected.

2.2 background : abstract interpretation

We now provide a short introduction to Abstract Interpretation (AI). AI enables
one to prove program properties on a set of inputs without actually running the
program. Formally, given a function f : Rm → Rn, a set of inputs X ⊆ Rm, and
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Figure 2.6: (a) Abstracting four points with a polyhedron (gray), zonotope (green), and box
(blue). (b) The points and abstractions resulting from the affine transformer.

a property C ⊆ Rn, the goal is to determine whether the property holds, that is,
whether ∀x ∈ X. f(x) ∈ C.

Fig. 2.6 shows a CAT function f : R2 → R2 that is defined as f(x) =
(
2 −1
0 1

)
· x and

four input points for the function f, given as X = {(0, 1), (1, 1), (1, 3), (2, 2)}. Let the
property be C = {(y1,y2) ∈ R2 | y1 > −2}, which holds in this example. To reason
about all inputs simultaneously, we lift the definition of f to be over a set of inputs
X rather than a single input:

Tf : P(R
m)→ P(Rn), Tf(X) = {f(x) | x ∈ X}.

The function Tf is called the concrete transformer of f. With Tf, our goal is to determine
whether Tf(X) ⊆ C for a given input set X. Because the set X can be very large
(or infinite), we cannot enumerate all points in X to compute Tf(X). Instead, AI
overapproximates sets with abstract elements (drawn from some abstract domain
A) and then defines a function, called an abstract transformer of f, which takes an
abstract element and overapproximates the effect of Tf. Then, the property C can
be checked on the resulting abstract element returned by the abstract transformer.
Naturally, because AI employs overapproximation, it is sound, but may be imprecise
(i.e., may fail to prove the property when it holds). Next, we explain the ingredients
of AI in more detail.

abstract domains Abstract domains consist of shapes expressible as a set
of logical constraints. A few popular numerical abstract domains are: Box (i.e.,
Interval), Zonotope, and Polyhedra. These domains provide different precision
versus scalability trade-offs (e.g., Box’s abstract transformers are significantly faster
than Polyhedra’s abstract transformers, but polyhedra are significantly more precise
than boxes). The Box domain consists of boxes, captured by a set of constraints
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of the form a 6 xi 6 b, for a,b ∈ R ∪ {−∞,+∞} and a 6 b. A box B contains all
points which satisfy all constraints in B. In our example, X can be abstracted by the
following box:

B = {0 6 x1 6 2, 1 6 x2 6 3}.

Note that B is not very precise since it includes 9 integer points (along with other
points), whereas X has only 4 points.

The Zonotope domain [56] consists of zonotopes. A zonotope is a center-symmetric
convex closed polyhedron Z ⊆ Rn that can be represented as an affine function:

z : [a1,b1]× [a2,b2]× · · · × [am,bm]→ Rn.

In other words, z has the form z(ε) =M · ε+ b where ε is a vector of error terms
satisfying interval constraints εi ∈ [ai,bi] for 1 6 i 6 m. The bias vector b captures
the center of the zonotope, while the matrix M captures the boundaries of the
zonotope around b. A zonotope z represents all vectors in the image of z (i.e.,
z[[a1,b1]× · · · × [am,bm]]). In our example, X can be abstracted by the zonotope
z : [−1, 1]3 → R2:

z(ε1, ε2, ε3) = (1+ 0.5 · ε1 + 0.5 · ε2, 2+ 0.5 · ε1 + 0.5 · ε3).

Zonotope is a more precise domain than Box: for our example, z includes only 7
integer points.

The Polyhedra [36] domain consists of convex closed polyhedra, where a polyhe-
dron is captured by a set of linear constraints of the form A · x 6 b, for some matrix
A and a vector b. A polyhedron C contains all points which satisfy the constraints
in C. In our example, X can be abstracted by the following polyhedron:

C = {x2 6 2 · x1 + 1, x2 6 4− x1, x2 > 1, x2 > x1}.

Polyhedra is a more precise domain than Zonotope: for our example, C includes
only 5 integer points.

To conclude, abstract elements (from an abstract domain) represent large, poten-
tially infinite sets. There are various abstract domains, providing different levels of
precision and scalability.

abstract transformers To compute the effect of a function on an abstract
element, AI uses the concept of an abstract transformer. The concrete transformer
Tf : P(R

m) → P(Rn) of a function f : Rm → Rn maps each set X ∈ Rm to its
image f[X] ⊆ Rn. An abstract transformer of Tf is a function over abstract domains,
denoted by T#

f : A
m → An. The superscripts denote the number of components of

the represented vectors. For example, elements in Am represent sets of vectors of
dimension m. This also determines which variables can appear in the constraints



2.2 background : abstract interpretation 35

associated with an abstract element. For example, elements in Am constrain the
values of the variables x1, . . . , xm.

Abstract transformers have to be sound. To define soundness, we introduce two
functions: the abstraction function α and the concretization function γ. Such an
abstraction function αm : P(Rm)→ Am maps a set of vectors to an abstract element
in Am that overapproximates it. For example, in the Box domain:

α2({(0, 1), (1, 1), (1, 3), (2, 2)}) = {0 6 x1 6 2, 1 6 x2 6 3}.

A concretization function γm : Am → P(Rm) does the opposite: it maps an abstract
element to the set of concrete vectors that it represents. For example, for Box:

γ2({0 6 x1 6 2, 1 6 x2 6 3}) = {(0, 1), (0, 2), (0, 3),
(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), . . .}.

This only shows the 9 vectors with integer components. We can now define sound-
ness. An abstract transformer T#

f is sound if for all a ∈ Am, we have Tf(γm(a)) ⊆
γn(T#

f (a)), where Tf is the concrete transformer. That is, an abstract transformer has
to overapproximate the effect of a concrete transformer. For example, the transform-
ers illustrated in Fig. 2.6 are sound. For instance, if we apply the Box transformer on
the box in Fig. 2.6a, it will produce the box in Fig. 2.6b. The box in Fig. 2.6b includes
all points that f could compute in principle when given any point included in the
concretization of the box in Fig. 2.6a. Analogous properties hold for the Zonotope
and Polyhedra transformers. It is also important that abstract transformers are
precise. That is, the abstract output should include as few points as possible. For
example, as we can see in Fig. 2.6b, the output produced by the Box transformer
is less precise (it is larger) than the output produced by the Zonotope transformer,
which in turn is less precise than the output produced by the Polyhedra transformer.

property verification After obtaining the (abstract) output, we can check
various properties of interest on the result. In general, an abstract output a =

T#
f (α

m(X)) proves a property Tf(X) ⊆ C if γn(a) ⊆ C. If the abstract output proves a
property, we know that the property holds for all possible concrete values. However,
the property may hold even if it cannot be proven with a given abstract domain. For
example, in Fig. 2.6b, for all concrete points, the property C = {(y1,y2) ∈ R2 | y1 >
−2} holds. However, with the Box domain, the abstract output violates C, which
means that the Box domain is not precise enough to prove the property. In contrast,
the Zonotope and Polyhedra domains are precise enough to prove the property.

In summary, to apply AI successfully, we need to: (a) find a suitable abstract
domain, and (b) define abstract transformers that are sound and as precise as
possible. In the next section, we introduce abstract transformers for neural networks
that are parameterized by the numerical abstract domain. This means that we can
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Figure 2.7: Illustration of how AI2 overapproximates neural network states. Blue circles
show the concrete values, while green zonotopes show the abstract elements. The
gray box shows the steps in one application of the ReLU transformer (ReLU1).

explore the precision-scalability trade-off by plugging in different abstract domains.

2.3 ai
2 : ai for neural networks

In this section we present AI2, an abstract interpretation framework for sound
analysis of neural networks. We begin by defining abstract transformers for the
different kinds of neural network layers. Using these transformers, we then show
how to prove robustness properties of neural networks.

2.3.1 Abstract Interpretation for CAT Functions

In this section, we show how to overapproximate CAT functions with AI. We
illustrate the method on the example in Fig. 2.7, which shows a simple network
that manipulates two-dimensional vectors using a single fully connected layer of
the form

f(x) = ReLU2
(
ReLU1

((
2 −1
0 1

)
· x
))

.

Recall that
ReLUi(x) = case (xi > 0) : x,

case (xi < 0) : Ii←0 · x,

where Ii←0 is the identity matrix with the ith row replaced by the zero vector.
We overapproximate the network behavior on an abstract input. The input can be

obtained directly (see §2.3.2) or by abstracting a set of concrete inputs to an abstract
element (using the abstraction function α). For our example, we use the concrete
inputs (the blue points) from Fig. 2.6. Those concrete inputs are abstracted to the
green enclosing zonotope z0 : [−1, 1]3 → R2, given by

z0(ε1, ε2, ε3) = (1+ 0.5 · ε1 + 0.5 · ε2, 2+ 0.5 · ε1 + 0.5 · ε3).

Due to abstraction, more (spurious) points may be added. In this example, other
than the blue points, the entire area of the zonotope is spurious. We then apply
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abstract transformers to the abstract input. Note that, if a function f can be written
as f = f ′′ ◦ f ′, the concrete transformer for f is Tf = Tf ′′ ◦ Tf ′ . Similarly, given abstract
transformers T#

f ′ and T#
f ′′, an abstract transformer for f is T#

f ′′ ◦ T
#
f ′ . When a neural

network N = f ′` ◦ · · · ◦ f
′
1 is a composition of multiple CAT functions f ′i of the shape

either f ′i(x) =W · x+ b or fi(x) = case E1 : f1(x), . . . , case Ek : fk(x), we only have to
define abstract transformers for these two kinds of functions. We then obtain the
abstract transformer T#

N = T#
f ′`
◦ · · · ◦ T#

f ′1
.

abstracting affine functions To abstract functions of the form

f(x) =W · x+ b,

we assume that the underlying abstract domain supports an operator Aff that
overapproximates such functions. We note that for Zonotope and Polyhedra, this
operation is supported and exact. Fig. 2.7 demonstrates Aff as the first step taken
for overapproximating the effect of the fully connected layer. Here, the resulting
zonotope z1 : [−1, 1]3 → R2 is

z1(ε1, ε2, ε3) = (2 · (1+ 0.5 · ε1 + 0.5 · ε2) − (2+ 0.5 · ε1 + 0.5 · ε3), 2+ 0.5 · ε1 + 0.5 · ε3)
= (0.5 · ε1 + ε2 − 0.5 · ε3, 2+ 0.5 · ε1 + 0.5 · ε3).

abstracting case functions To abstract functions of the form

f(x) = case E1 : f1(x), . . . , case Ek : fk(x),

we first split the abstract element a into the different cases (each defined by one of
the expressions Ei), resulting in k abstract elements a1, . . . ,ak. We then compute the
result of T#

fi
(ai) for each ai. Finally, we unify the results to a single abstract element.

To split and unify, we assume two standard operators for abstract domains: (1) meet
with a conjunction of linear constraints and (2) join. The meet (u) operator is an
abstract transformer for set intersection: for an inequality expression E from Fig. 2.3,
we have

γn(a)∩ {x ∈ Rn | x |= E} ⊆ γn(au E).

The join (t) operator is an abstract transformer for set union:

γn(a1)∪ γn(a2) ⊆ γn(a1 t a2).

We further assume that the abstract domain contains an element ⊥, which satisfies

γn(⊥) = {},

⊥u E = ⊥ and at⊥ = a for all a ∈ A.
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For f(x) =W · x+ b, T#
f (a) = Aff(a,W,b).

For f(x) = case E1 : f1(x), . . . , case Ek : fk(y),

T#
f (a) =

⊔
16i6k

T#
fi
(au Ei).

For f(x) = f2(f1(x)), T#
f (a) = T

#
f2
(T#
f1
(a)).

Figure 2.8: Abstract transformers for CAT functions.

For our example in Fig. 2.7, abstract interpretation continues on z1 using the meet
and join operators. To compute the effect of ReLU1, we first split z1 into two new
zonotopes z2 = z1 u (x1 > 0) and z3 = z1 u (x1 < 0). One way to compute a meet
between a zonotope and a linear constraint is to modify the intervals of the error
terms (see [57]). In our example, the resulting zonotopes are z2 : [−1, 1]× [0, 1]×
[−1, 1] → R2 such that z2(ε) = z1(ε) and z3 : [−1, 1]× [−1, 0]× [−1, 1] → R2 such
that z3(ε) = z1(ε) for ε̄ common to their respective domains. Note that both z2 and
z3 contain small spurious areas, because the intersections of the respective linear
constraints with z1 are not zonotopes. Therefore, they cannot be captured exactly by
the domain. Here, the meet operator u overapproximates set intersection ∩ to get a
sound, but not perfectly precise, result.

Then, the two cases of ReLU1 are processed separately. We apply the abstract
transformer of f1(x) = x to z2 and we apply the abstract transformer of f2(x) =

I0←0 · x to z3. The resulting zonotopes are z4 = z2 and z5 : [−1, 1]2 → R2 such
that z5(ε1, ε3) = (0, 2+ 0.5 · ε1 + 0.5 · ε3). These are then joined to obtain a single
zonotope z6. Since z5 is contained in z4, we get z6 = z4 (of course, this need not
always be the case). Then, z6 is passed to ReLU2. Because z6 u (x1 < 0) = ⊥, this
results in z7 = z6. Finally, γ2(z7) is our overapproximation of the network outputs
for our initial set of points. The abstract element z7 is a finite representation of this
infinite set.

In summary, we define abstract transformers for every kind of CAT function
(summarized in Fig. 2.8). These definitions are general and are compatible with
any abstract domain A which has a minimum element ⊥ and supports (1) a meet
operator between an abstract element and a conjunction of linear constraints, (2)
a join operator between two abstract elements, and (3) an affine transformer. We
assume that the operations are sound. We note that these operations are standard
or definable with standard operations. By definition of the abstract transformers,
we get soundness:

Theorem 1. For any CAT function f with transformer Tf : P(Rm) → P(Rn) and any
abstract input a ∈ Am,

Tf(γ
m(a)) ⊆ γn(T#

f (a)).

Theorem 1 is the key to sound neural network analysis with our abstract trans-
formers, as we explain in the next section.
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2.3.2 Neural Network Analysis with AI

In this section, we explain how to leverage AI with our abstract transformers to
prove properties of neural networks. Below, we will focus on robustness properties.
However, the framework can be applied to reason about any safety property.

For robustness, we aim to determine if for a (possibly unbounded) set of inputs,
the outputs of a neural network satisfy a given condition. A robustness property
for a neural network N : Rm → Rn is a pair (X,C) ∈ P(Rm)×P(Rn) consisting of a
robustness region X and a robustness condition C. We say that the neural network
N satisfies a robustness property (X,C) if N(x) ∈ C for all x ∈ X.

local robustness This is a property (X,CL) where X is a robustness region
and CL contains the outputs that describe the same label L:

CL =

{
y ∈ Rn

∣∣∣∣∣ arg max
i∈{1,...,n}

(yi) = L

}
.

For example, Fig. 2.7 shows a neural network and a robustness property (X,C2) for

X = {(0, 1), (1, 1), (1, 3), (2, 2)}

and
C2 = {y | arg max(y1,y2) = 2}.

In this example, (X,C2) holds. Typically, we will want to check that there is some
label L for which (X,CL) holds.

We now explain how our abstract transformers can be used to prove a given
robustness property (X,C).

robustness proofs using ai Assume we are given a neural networkN : Rm →
Rn, a robustness property (X,C) and an abstract domain A (supporting t, u with a
conjunction of linear constraints, Aff, and ⊥) with an abstraction function α and
a concretization function γ. Further assume that N can be written as a CAT func-
tion. Denote by T#

N the abstract transformer of N, as defined in Fig. 2.8. Then, the
following condition is sufficient to prove that N satisfies (X,C):

γn(T#
N(α

m(X))) ⊆ C.

This follows from Theorem 1 and the properties of α and γ. Note that there may
be abstract domains A that are not precise enough to prove that N satisfies (X,C),
even if N in fact satisfies (X,C). On the other hand, if we are able to show that some
abstract domain A proves that N satisfies (X,C), we know that it holds.
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proving containment To prove the property (X,C) given the result a =

T#
N(α

m(X)) of abstract interpretation, we need to be able to show γn(a) ⊆ C. There
is a general method if C is given by a CNF formula

∧
i

∨
j li,j where all literals li,j

are linear constraints: we show that the negated formula
∨
i

∧
j¬li,j is inconsistent

with the abstract element a by checking that au
(∧

j¬li,j

)
= ⊥ for all i.

For our example in Fig. 2.7, the goal is to check that all inputs are classified
as 2. We can represent C using the formula y2 > y1. Its negation is y2 < y1,
and it suffices to show that no point in the concretization of the abstract output
satisfies this negated constraint. As indeed z7 u (y2 < y1) = ⊥, the property is
successfully verified. However, note that we would not be able to prove some other
true properties, such as y1 > 0. This property holds for all concrete outputs, but
some points in the concretization of the output z7 do not satisfy it.

2.4 implementation of ai
2

The AI2 framework is implemented in the D programming language and supports
any neural network composed of fully connected, convolutional, and max pooling
layers.

properties AI2 supports properties (X,C) where X is specified by a zonotope
and C by a conjunction of linear constraints over the output vector’s components. In
our experiments, we illustrate the specification of local robustness properties where
the region X is defined by a box or a line, both of which are precisely captured by a
zonotope.

abstract domains The AI2 system uses Apron, a popular library for numerical
abstract domains. Therefore, our AI2 implementation supports all abstract domains
provided by Apron, such as Box [34], Zonotope [56], and Polyhedra [36].

bounded powerset We also implemented bounded powerset domains (alter-
natively called disjunctive abstractions [133, 140]), which can be instantiated with
any of the above abstract domains. An abstract element in the powerset domain
P(A) of an underlying abstract domain A is a set of abstract elements from A,
concretizing to the union of the concretizations of the individual elements (i.e.,
γ(A) =

⋃
a∈A γ(a) for A ∈ P(A)).

The powerset domain can implement a precise join operator using standard
set union (potentially pruning redundant elements). However, since the increased
precision can become prohibitively costly if many join operations are performed,
the bounded powerset domain limits the number of abstract elements in a set to N
(for some constant N).

We implemented bounded powerset domains on top of standard powerset do-
mains using a greedy heuristic that repeatedly replaces two abstract elements in
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a set by their join, until the number of abstract elements in the set is below the
bound N. For joining, AI2 heuristically selects two abstract elements that minimize
the distance between the centers of their bounding boxes. In our experiments, we
denote by ZonotopeN or ZN the bounded powerset domain with bound N > 2 and
underlying abstract domain Zonotope.

2.5 evaluation of ai
2

In this section, we present our empirical evaluation of AI2. Before discussing the
results in detail, we summarize our three most important findings:

• AI2 can prove useful robustness properties for convolutional networks with
53 000 neurons and large fully connected feedforward networks with 1 800
neurons.

• AI2 benefits from more precise abstract domains: Zonotope enables AI2 to
prove substantially more properties over Box. Further, ZonotopeN, with N > 2,
can prove stronger robustness properties than Zonotope alone.

• AI2 scales better than the SMT-based Reluplex [88]: AI2 is able to verify
robustness properties on large networks with > 1200 neurons within few
minutes, while Reluplex takes hours to verify the same properties.

In the following, we first describe our experimental setup. Then, we present and
discuss our results.

2.5.1 Experimental Setup

We describe the datasets, neural networks, and robustness properties used in our
experiments.

datasets We used two popular datasets: MNIST [102] and CIFAR-10 [94] (re-
ferred to as CIFAR from now on). MNIST consists of 60 000 grayscale images of
handwritten digits, whose resolution is 28× 28 pixels. The images show white digits
on a black background.

CIFAR consists of 60 000 colored photographs with 3 color channels, whose
resolution is 32× 32 pixels. The images are partitioned into 10 different classes (e.g.,
airplane or bird). Each photograph has a different background (unlike MNIST).

neural networks We trained convolutional and fully connected feedforward
networks on both datasets. All networks were trained using accelerated gradient
descent with at least 50 epochs of batch size 128. The training completed when each
network had a test set accuracy of at least 0.9.
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Figure 2.9: Verified properties by AI2 on the MNIST and CIFAR convolutional networks for
each bound δ ∈ ∆ (x-axis).

For the convolutional networks, we used the LeNet architecture [101], which
consists of the following sequence of layers: 2 convolutional, 1 max pooling, 2
convolutional, 1 max pooling, and 3 fully connected layers. We write np×q to
denote a convolutional layer with n filters of size p × q, and m to denote a
fully connected layer with m neurons. The hidden layers of the MNIST net-
work are 83×3, 83×3, 143×3, 143×3, 50, 50, 10, and those of the CIFAR network are
243×3, 243×3, 323×3, 323×3, 100, 100, 10. The max pooling layers of both networks have
a size of 2× 2. We trained our networks using an open-source implementation [144].

We used 7 different architectures of fully connected feedforward networks (FNNs).
We write l×n to denote the FNN architecture with l layers, each consisting of n
neurons. Note that this determines the network’s size; e.g., a 4× 50 network has 200
neurons. For each dataset, MNIST and CIFAR, we trained FNNs with the following
architectures: 3× 20, 6× 20, 3× 50, 3× 100, 6× 100, 6× 200, and 9× 200.

robustness properties In our experiments, we consider local robustness
properties (X,CL) where the region X captures changes to lighting conditions. This
type of property is inspired by the work of [131], where adversarial examples were
found by brightening the pixels of an image.

Formally, we consider robustness regions Sx,δ that are parameterized by an
input x ∈ Rm and a robustness bound δ ∈ [0, 1]. The robustness region is defined as:

Sx,δ = {x ′ ∈ Rm | ∀i ∈ [1,m]. 1− δ 6 xi 6 x ′i 6 1∨ x
′
i = xi}.

For example, the robustness region for x = (0.6, 0.85, 0.9) and bound δ = 0.2 is given
by the set:

{(0.6, x, x ′) ∈ R3 | x ∈ [0.85, 1], x ′ ∈ [0.9, 1]}.
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Note that increasing the bound δ increases the region’s size.
In our experiments, we used AI2 to check whether all inputs in a given region Sx,δ

are classified to the label assigned to x. We consider 6 different robustness bounds
δ, which are drawn from the set ∆ = {0.001, 0.005, 0.025, 0.045, 0.065, 0.085}.

We remark that our robustness properties are stronger than those considered
in [131]. This is because, in a given robustness region Sx,δ, each pixel of the image x
can be brightened independently of the perturbations of other pixels. We remark
that this is useful to capture scenarios where only part of the image is brightened
(e.g., due to shadowing).

other perturbations Note that AI2 is not limited to certifying robustness
against such brightening perturbations. In general, AI2 can be used whenever the
set of perturbed inputs can be overapproximated with a set of zonotopes in a precise
way (i.e., without adding too many inputs that do not capture actual perturbations
to the robustness region). For example, the inputs perturbed by an `∞ attack [24]
are captured exactly by a single zonotope. Further, rotations and translations have
low-dimensional parameter spaces, and therefore can be overapproximated by a set
of zonotopes in a precise way.

benchmarks We selected 10 images from each dataset. Then, we specified a
robustness property for each image and each robustness bound in ∆, resulting
in 60 properties per dataset. We ran AI2 to check whether each neural network
satisfies the robustness properties for the respective dataset. We compared the
results using different abstract domains, including Box, Zonotope, and ZonotopeN
with N ranging between 2 and 128.

We ran all experiments on an Ubuntu 16.04.3 LTS server with two Intel Xeon
E5-2690 processors and 512GB of memory. To compare AI2 to existing solutions, we
also ran the FNN benchmarks with Reluplex [88]. We have not run benchmarks on
convolutional neural networks with Reluplex, as it currently does not support them.

2.5.2 Discussion of Results

In the following, we first present our results for convolutional networks. Then, we
present experiments with different abstract domains and discuss how the domain’s
precision affects AI2’s ability to verify robustness. We also plot AI2’s running times
for different abstract domains to investigate the trade-off between precision and
scalability. Finally, we compare AI2 to Reluplex.

proving robustness of convolutional networks We start with our re-
sults for convolutional networks. AI2 terminated within 1.5 minutes when verifying
properties on the MNIST network and within 1 hour when verifying the CIFAR
network.
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Figure 2.10: Verified properties as a function of the abstract domain used by AI2 for the
9× 200 network. Each point represents the fraction of robustness properties for
a given bound (as specified in the legend) verified by a given abstract domain
(x-axis).
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Figure 2.11: Average running time of AI2 when proving robustness properties on MNIST
networks as a function of the abstract domain used by AI2 (x-axis). Axes are
scaled logarithmically.

In Fig. 2.9, we show the fraction of robustness properties verified by AI2 for each
robustness bound. We plot separate bars for Box and Zonotope to illustrate the
effect of the domain’s precision on AI2’s ability to verify robustness.

For both networks, AI2 verified all robustness properties for the smallest bound
0.001 and it verified at least one property for the largest bound 0.085. This demon-
strates that AI2 can verify properties of convolutional networks with rather wide
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Figure 2.12: Comparing the performance of AI2 to Reluplex. Each point is an average of the
results for all 60 robustness properties for the MNIST networks. Each point in
(a) represents the average time to completion, regardless of the result of the
computation. While not shown, the result of the computation could be a failure
to verify, timeout, crash, or discovery of a counterexample. Each point in (b)
represents the fraction of the 60 robustness properties that were verified.

robustness regions. Further, the number of verified properties converges to zero as
the robustness bound increases. This is expected, as larger robustness regions are
more likely to contain adversarial examples.

In Fig. 2.9a, we observe that Zonotope proves significantly more properties than
Box. For example, Box fails to prove any robustness properties with bounds at least
0.025, while Zonotope proves 80% of the properties with bounds 0.025 and 0.045.
This indicates that Box is often imprecise and fails to prove properties that the
network satisfies.

Similarly, Fig. 2.9b shows that Zonotope proves more robustness properties than
Box also for the CIFAR convolutional network. The difference between these two
domains is, however, less significant than that observed for the MNIST network. For
example, both Box and Zonotope prove the same properties for bounds 0.065 and
0.085.

precision of different abstract domains Next, we demonstrate that
more precise abstract domains enable AI2 to prove stronger robustness properties.
In this experiment, we consider our 9× 200 MNIST and CIFAR networks, which are
our largest fully connected feedforward networks. We evaluate the Box, Zonotope,
and the ZonotopeN domains for exponentially increasing bounds of N between 2
and 64. We do not report results for the Polyhedra domain, which takes several
days to terminate for our smallest networks.
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In Fig. 2.10, we show the fraction of verified robustness properties as a function of
the abstract domain used by AI2. We plot a separate line for each robustness bound.
All runs of AI2 in this experiment completed within 1 hour.

The graphs show that Zonotope proves more robustness properties than Box. For
the MNIST network, Box proves 11 out of all 60 robustness properties (across all
6 bounds), failing to prove any robustness properties with bounds above 0.005. In
contrast, Zonotope proves 43 out of the 60 properties and proves at least 50% of the
properties across the 6 robustness bounds. For the CIFAR network, Box proves 25
out of the 60 properties while Zonotope proves 35.

The data also demonstrates that bounded sets of zonotopes further improve AI2’s
ability to prove robustness properties. For the MNIST network, Zonotope64 proves
more robustness properties than Zonotope for all 4 bounds for which Zonotope fails
to prove at least one property (i.e., for bounds δ > 0.025). For the CIFAR network,
Zonotope64 proves more properties than Zonotope for 4 out of the 5 the bounds.
The only exception is the bound 0.085, where Zonotope64 and Zonotope prove the
same set of properties.

trade-off between precision and scalability In Fig. 2.11, we plot the
running time of AI2 as a function of the abstract domain. Each point in the graph
represents the average running time of AI2 when proving a robustness property for
a given MNIST network (as indicated in the legend). We use a log-log plot to better
visualize the trade-off in time.

The data shows that AI2 can efficiently verify robustness of large networks. AI2

terminates within a few minutes for all MNIST FNNs and all considered domains.
Further, we observe that AI2 takes less than 10 seconds on average to verify a
property with the Zonotope domain.

As expected, the graph demonstrates that more precise domains increase AI2’s
running time. More importantly, AI2’s running time is polynomial in the bound N
of ZonotopeN, which allows one to adjust AI2’s precision by increasing N.

comparison to reluplex The current state-of-the-art system for verifying
properties of neural networks is Reluplex [88]. Reluplex supports FNNs with
ReLU activation functions, and its analysis is sound and complete. Reluplex would
eventually either verify a given property or return a counterexample.

To compare the performance of Reluplex and AI2, we ran both systems on all
MNIST FNN benchmarks. We ran AI2 using Zonotope and Zonotope64. For both
Reluplex and AI2, we set a 1 hour timeout for verifying a single property.

Fig. 2.12 presents our results: Fig. 2.12a plots the average running time of Reluplex
and AI2 and Fig. 2.12b shows the fraction of robustness properties verified by the
systems. The data shows that Reluplex can analyze FNNs with at most 600 neurons
efficiently, typically within a few minutes. Overall, both system verified roughly the
same set of properties. However, Reluplex crashed during verification of some of
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the properties. This explains why AI2 was able to prove slightly more properties
than Reluplex on the smaller FNNs.

For large networks with more than 600 neurons, the running time of Reluplex
increases significantly and its analysis often times out. In contrast, AI2 analyzes the
large networks within a few minutes and verifies substantially more robustness
properties than Reluplex. For example, Zonotope64 proves 57 out of the 60 proper-
ties on the 6× 200 network, while Reluplex proves 3. Further, Zonotope64 proves 45
out of the 60 properties on the largest 9× 200 network, while Reluplex proves none.
We remark that while Reluplex did not verify any property on the largest 9× 200
network, it did disprove some of the properties and returned counterexamples.

We also ran Reluplex without a predefined timeout to investigate how long it
would take to verify properties on the large networks. To this end, we ran Reluplex
on properties that AI2 successfully verified. We observed that Reluplex often took
more than 24 hours to terminate. Overall, our results indicate that Reluplex does
not scale to larger FNNs whereas AI2 succeeds on these networks.

2.6 comparing defenses with ai
2

In this section, we illustrate a practical application of AI2: evaluating and comparing
neural network defenses. A defense is an algorithm whose goal is to reduce the
effectiveness of a certain attack against a specific network, for example, by retrain-
ing the network with an altered loss function. Since the discovery of adversarial
examples, many works have suggested different kinds of defenses to mitigate this
phenomenon (e.g., [60, 106, 165]). A natural metric to compare defenses is the
average “size” of the robustness region on some test set. Intuitively, the greater this
size is, the more robust the defense.

We compared three state-of-the-art defenses:
• GSS [60] extends the loss with a regularization term encoding the fast gradient

sign method (FGSM) attack.
• Ensemble [165] is similar to GSS, but includes regularization terms from

attacks on other models.
• MMSTV [106] adds, during training, a perturbation layer before the input

layer which applies the FGSMk attack. FGSMk is a multi-step variant of FGSM,
also known as projected gradient descent.

All these defenses attempt to reduce the effectiveness of the FGSM attack [60]. This
attack consists of taking a network N and an input x and computing a vector ρN,x
in the input space along which an adversarial example is likely to be found. An
adversarial input a is then generated by taking a step ε along this vector: a =

x+ ε · ρN,x.
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We define a new kind of robustness region, called line, that captures resilience
with respect to the FGSM attack. The line robustness region captures all points from
x to x+ δ · ρN,x for some robustness bound δ:

LN,x,δ = {x+ ε · ρN,x | ε ∈ [0, δ]}.

This robustness region is a zonotope and can thus be precisely captured by AI2.
We compared the three state-of-the-art defenses on the MNIST convolutional

network described in §4.4; we call this the Original network. We trained the Original
network with each of the defenses, which resulted in 3 additional networks: GSS,
Ensemble, and MMSTV. We used 40 epochs for GSS, 12 epochs for Ensemble, and
10 000 training steps for MMSTV using their published frameworks.

We conducted 20 experiments. In each experiment, we randomly selected an
image x and computed ρN,x. Then, for each network, our goal was to find the
largest bound δ for which AI2 proves the region LN,x,δ robust. To approximate the
largest robustness bound, we ran binary search to depth 6 and ran AI2 with the
Zonotope domain for each candidate bound δ. We refer to the largest robustness
bound verified by AI2 as the verified bound.

The average verified bounds for the Original, GSS, Ensemble, and MMSTV
networks are 0.026, 0.031, 0.042, and 0.209, respectively. Fig. 2.13 shows a box-and-
whisker plot which demonstrates the distribution of the verified bounds for the four
networks. The bottom and top of each whisker show the minimum and maximum
verified bounds discovered during the 20 experiments. The bottom and top of each
whisker’s box show the first and third quartiles of the verified bounds.

Our results indicate that MMSTV provides a significant increase in provable
robustness against the FGSM attack. In all 20 experiments, the verified bound
for the MMSTV network was larger than those found for the Original, GSS, and
Ensemble networks. We observe that GSS and Ensemble defend the network in a
way that makes it only slightly more provably robust, consistent with observations
that these styles of defense are insufficient [73, 106].

2.7 related work

In this section, we survey the works closely related to ours.

adversarial examples Szegedy et al. [162] showed that neural networks are
vulnerable to small perturbations on inputs. Since then, many works have focused
on constructing adversarial examples. For example, Nguyen et al. [123] showed
how to find adversarial examples without starting from a test point, Tabacof and
Valle [163] generated adversarial examples using random perturbations, Sabour
et al. [138] demonstrated that even intermediate layers are not robust, and Grosse
et al. [69] generated adversarial examples for malware classification. Other works
presented ways to construct adversarial examples during the training phase, thereby
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Figure 2.13: Box-and-whisker plot of the verified bounds for the Original, GSS, Ensemble,
and MMSTV networks. The boxes represent the δ for the middle 50% of the
images, whereas the whiskers represent the minimum and maximum δ. The
inner-lines are the averages.

increasing the network robustness (see [24, 60, 70, 79, 117, 147]). Bastani et al. [14]
formalized the notion of robustness in neural networks and defined metrics to
evaluate the robustness of a neural network. Pei et al. [131] illustrated how to
systematically generate adversarial examples that cover all neurons in the network.

neural network analysis Many works have studied the robustness of
networks. Pulina and Tacchella [134] presented an abstraction-refinement approach
for FNNs. However, this was shown successful for a network with only 6 neurons.
Scheibler et al. [144] introduced a bounded model checking technique to verify
safety of a neural network for the Cart Pole system. Huang et al. [80] showed a
verification framework, based on an SMT solver, which verified the robustness with
respect to a certain set of functions that can manipulate the input and are minimal
(a notion which they define). However, it is unclear how one can obtain such a set.
Katz et al. [88] extended the simplex algorithm to verify properties of FNNs with
ReLU.

robustness analysis of programs Many works deal with robustness anal-
ysis of programs (e.g., [28, 29, 67, 108]). Majumdar and Saha [108] considered a
definition of robustness that is similar to the one in our work, and Chaudhuri et al.
[29] used a combination of abstract interpretation and SMT-based methods to prove
robustness of programs. The programs that have been considered in this literature
tend to be small but have complex constructs such as loops and array operations. In
contrast, neural networks (which are our focus) are closer to circuits, in that they
lack high-level language features but are potentially massive in size.
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2.8 discussion

In this chapter, we presented AI2, the first system able to certify convolutional and
large fully connected networks. The key insight behind AI2 is to phrase the problem
of analyzing neural networks in the classic framework of abstract interpretation. To
achieve this, we defined abstract transformers that capture the behavior of common
neural network layers and presented a bounded powerset domain that enables a
trade-off between precision and scalability. Our experimental results showed that
AI2 can effectively handle neural networks that are beyond the reach of existing
methods.

AI2 has triggered substantial follow-up research, including support for other
common perturbations such as rotations, smoothing, and erosion, certified training
schemes, as well as more specialized domains and solvers. We will present one of
those specialized domains in the next chapter.
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In Chapter 2, we have shown how to use the classic framework of abstract interpre-
tation [35] to soundly approximate the behavior of neural networks. AI2 successfully
applies generic abstract domains to the neural network setting, leveraging 40 years
of existing research. However, while the presented system scales to larger networks
than those that prior approaches can handle, it still suffers from significant slow-
downs and imprecision. The fundamental cause behind these issues is that we have
only provided a fairly generic abstract transformer for the ReLU activation function
and also have not shown how to approximate other important activation functions
(e.g., Sigmoid, Tanh). Indeed, defining sound, scalable and precise abstract trans-
formers is the most difficult aspect of analysis based on abstract interpretation. And
while generic transformers tend to be easier to reason about and ensure soundness
of, they often lack the scalability and precision of transformers that find creative
ways to exploit the underlying properties of the abstract domain (e.g. Zonotope) and
the function being approximated (e.g., ReLU). Furthermore, the evaluation of AI2

was limited to brightening attacks [130] and did not consider L∞-norm balls [25].

our contributions In this chapter, we address these limitations: Our new
system DeepZ implements an abstract-interpretation-based analysis that is explicitly
specialized to today’s neural networks. We make the following contributions:

• We introduce new, point-wise Zonotope abstract transformers specifically
designed for the ReLU, Sigmoid, and Tanh activations often used by neural
networks. Our transformers minimize the area of the projection of the zonotope
to the 2-D input-output plane. Further, our transformers are sound with respect
to floating point arithmetic.

• We implemented both sequential and parallel versions of our transformers in
DeepZ, an end-to-end automated verification system.

• We evaluated DeepZ on the task of verifying local robustness against L∞-norm-
based attacks on large MNIST and CIFAR10 feed forward and convolutional
networks. In our evaluation, we considered undefended as well as defended
versions of the same network (defended against L∞ attacks using state-of-the-
art defenses).

51
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• Our experimental results demonstrate that DeepZ is more precise and faster
than prior work. DeepZ precisely verifies large networks with >50 000 hidden
units under L∞-norm based perturbations within a few minutes.

To the best of our knowledge, DeepZ is more scalable than any prior system for
certifying local robustness of neural networks, while guaranteeing soundness with
respect to floating point operations. The work presented in this chapter has been
published in Singh et al. [153].

3.1 abstract interpretation for verifying robustness of neural

networks

As discussed in Chapter 2, abstract Interpretation [35] is a classic method for
sound and precise overapproximation of potentially unbounded or infinite sets
of program behaviors. The key idea behind this framework is to define so-called
abstract transformers for statements used by the program (e.g., affine arithmetic,
ReLU functions, etc).

A key challenge when defining abstract transformers is striking a balance between
scalability (how fast the transformer computes the approximation) and precision
(how much precision it loses). Once transformers are defined, the analysis with
abstract interpretation proceeds by executing them on the particular program (e.g.,
a neural network) and computing a final approximation (a fixed point). The relevant
property can then be checked on this final approximation: if the property can be
proved, then it holds for any concrete input to the program, otherwise, it may either
hold but the abstraction was too coarse and unable to prove it (i.e., a false positive)
or it may indeed not hold.

Verifying robustness properties of neural networks exactly is computationally ex-
pensive as it usually requires evaluating the network exhaustively on a prohibitively
large set of inputs. Abstract interpretation can be leveraged for this problem by de-
signing abstract transformers specifically for the computations used in the network,
e.g., affine arithmetic and activation functions. The network can then be analyzed
using these abstract transformers. For example, we can abstract a concrete input
x and relevant perturbations to x (resulting in many different inputs) into one
abstract element αR and then analyze the network starting from αR, producing an
abstract output αoR. We can then verify the robustness property of interest over αoR:
if successful, it means we verified it over all concrete outputs corresponding to all
perturbations of the concrete input.

Here, we consider local robustness properties (Rx,ε,CL) where Rx,ε represents the
set of perturbed inputs around the original input x ∈ Rm based on a small constant
ε > 0. CL is a robustness condition which defines the set of outputs that all have the
same label L:

CL =
{
y ∈ Rn | arg max

i∈{1,...,n}
(yi) = L

}
.
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A robustness property (Rx,ε,CL) holds iff the set of outputs OR corresponding
to all inputs in Rx,ε is included in CL. (Rx,ε,CL) can be verified using abstract
interpretation by checking if the abstract output αoR resulting from analyzing the
network with an abstraction of Rx,ε is included in CL.

zonotope abstraction. In this chapter, we build on the classic Zonotope
numerical abstract domain, which we discuss below. This domain was already
shown to be a suitable basis for analyzing neural networks in Chapter 2. In the next
section, we introduce our new abstract transformers which leverage properties of
the domain and are the novel contribution of the work presented in this chapter.

Let X be the set of n variables. The Zonotope abstraction [55] builds on affine
arithmetic by associating an affine expression x̂ for each variable x ∈ X:

x̂ := α0 +

p∑
i=1

αi · εi, where α0,αi ∈ R, εi ∈ [ai,bi] ⊆ [−1, 1] (3.1)

This expression consists of a center coefficient α0, a set of noise symbols εi, and
coefficients αi representing partial deviations around the center. Crucially, the
noise symbols εi can be shared between affine forms for different variables which
creates implicit dependencies and constraints between the affine forms. This makes
the Zonotope abstraction more powerful than an Interval abstraction which only
maintains ranges of a variable x. A range [lx,ux] can be simply derived from the
affine form by computing the minimal and maximal value possible.

A zonotope Z ⊆ Rn is represented by a collection of affine forms for all variables
x ∈ X, and is the set of all possible (joint) values of the affine forms for an arbitrary
instantiation of the noise symbols εi. As in practice, it is impossible to compute
with arbitrary real numbers, we instead use a slightly modified definition:

x̂ := [α0,β0] +
p∑
i=1

[αi,βi] · εi, where α0,β0,αi,βi ∈ R, εi ∈ [ai,bi] ⊆ [−1, 1] (3.2)

In this interval affine form, we have replaced all coefficients by intervals. All compu-
tations on intervals are performed using standard interval arithmetic. To ensure
soundness with respect to different rounding modes and to account for the lack
algebraic properties such as associativity and distributivity in the floating point
world, the lower bounds and the upper bounds are rounded towards −∞ and +∞
respectively and suitable error values are added as explained in [112].

Since affine arithmetic is fast and exact for affine transformations, it is an attractive
candidate for the verification of neural networks. However, the Zonotope abstraction
is inherently not exact for non-linear activation functions such as ReLU, Sigmoid,
and Tanh. Thus, approximation is needed, which creates a tradeoff between the cost
of computation and precision. As mentioned earlier, a generic approximation of the
ReLU function was proposed in Chapter 2. However, this approximation is both
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ŷ

(a) 0 6 λ 6 ux
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ŷ

(b) ux
ux−lx
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ŷ = λ · (x̂− lx)

Figure 3.1: Two zonotope approximations for the ReLU function parameterized by the slope
λ.

imprecise and costly as it relies on the expensive Zonotope join operator. Overall,
this results in suboptimal precision and performance of the analysis.

3.2 fast zonotope abstract transformers

We now introduce our fast and precise pointwise Zonotope abstract transformers
for the ReLU, Sigmoid, and Tanh activations (Sigmoid and Tanh are not supported
by the implementation in Chapter 2) and show their optimality in terms of area
in the input-output plane. Our evaluation in Section 5.6 shows that our proposed
approximations strike a good balance between precision and performance.

3.2.1 ReLU

The effect of applying the ReLU function on an input zonotope Z can be represented
with the assignment y := max(0, x) where x,y ∈ X. If x can only have positive
(lx > 0) or non-positive values (ux 6 0) in Z, then ŷ = x̂ or ŷ = [0, 0] respectively. The
affine forms for the remaining variables are not affected and the resulting zonotope
is exact. When x can have both positive and negative values, then the output
cannot be exactly captured by the zonotope abstraction and thus approximations
are required. We define such an approximation for this case. The approximation can
also be applied pointwise per layer, namely, only altering the affine form ŷ while
keeping all other affine forms in Z unaltered.

Fig. 3.1 shows the projections into the xy-plane of two sets of sound zonotope
approximations. The projections have the shape of a parallelogram with two vertical
lines and two parallel lines of slope λ, which is a parameter. To ensure soundness for
all approximations in Fig. 3.1 (a), we require 0 6 λ 6 ux

ux−lx
. Similarly, ux

ux−lx
6 λ 6 1

for Fig. 3.1 (b). Notice that the two sets have one element in common at λ = ux
ux−lx

.
Among the different candidate approximations in Fig. 3.1, we choose the one
minimizing the area of the parallelogram in the xy-plane. The area A1(λ) of the
parallelogram in Fig. 3.1 (a) is:

A1(λ) = (1− λ) · ux · (ux − lx). (3.3)
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A1(λ) is a decreasing function of λ. Thus A1 is minimized at λ = ux
ux−lx

. Similarly,
the area A2(λ) of the parallelogram in Fig. 3.1 (b) is:

A2(λ) = λ · (−lx) · (ux − lx). (3.4)

A2(λ) is an increasing function of λ and also minimized at λ = ux
ux−lx

. In summary,
we obtain the following theorem:

Theorem 2. Let Z be the input to a ReLU function y = ReLU(x). Consider the set of
pointwise Zonotope approximations O of the output that only alter the affine form ŷ of the
variable y. The new affine form ŷ for the output with the minimal area in the xy-plane is
given by:

ŷ =


x̂, if lx > 0,
[0, 0], if ux 6 0,
[λl, λu] · x̂+ [µl,µu] + [µl,µu] · εnew, otherwise.

(3.5)

Here λl, λu are floating point representations of λopt = ux
ux−lx

using rounding
towards −∞ and +∞ respectively. Similarly, µl,µu are floating point representations
of µ = − ux·lx

2·(ux−lx) using rounding towards −∞ and +∞ respectively, and εnew ∈
[−1, 1] is a new noise symbol.

The running time of the optimal transformer in Theorem 2 is linear in the
number p of noise symbols. One can also define an optimal Zonotope transformer
minimizing the volume of the output zonotope, however this is too expensive and
the resulting transformer cannot be applied pointwise.

3.2.2 Sigmoid

The effect of applying the Sigmoid function on an input zonotope Z can be rep-
resented with the assignment y := σ(x) where x,y ∈ X and σ(x) = ex

1+ex . For the

assigned variable y, we have [ly,uy] ⊆ [0, 1]. When lx = ux, then ŷ :=
[
eux

1+eux , eux

1+eux

]
and the resulting zonotope is exact, otherwise the output cannot be exactly repre-
sented by a zonotope and thus approximations are required. We define pointwise
approximations for the Sigmoid function such that ly = σ(lx),uy = σ(ux) and then
choose the one minimizing the area of its projection in the xy-plane.

Fig. 3.2 shows the projections into the xy-plane of a set of sound zonotope
approximations for the output of the Sigmoid function which have ly = σ(lx),uy =
σ(ux). As for ReLU, the projections have the shape of a parallelogram with two
vertical lines and two parallel lines of slope λ which parameterizes the set. To ensure
soundness, we have 0 6 λ 6 min(σ ′(lx),σ ′(ux)) where σ ′x =

ex

(1+ex)2
.

The area A(λ) of the parallelogram with slope λ in Fig. 3.2 is:

A(λ) = (σ(ux) − σ(lx) − λ · (ux − lx)) · (ux − lx) (3.6)
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x̂

ŷ

ŷ = f(lx) + λ · (x̂− lx)

ŷ = f(ux) + λ · (x̂− ux)

lx ux

Figure 3.2: Zonotope approximation for the sigmoid function parameterized by slope λ,
where 0 6 λ 6 min(f ′(lx), f ′(ux)).

A(λ) is a decreasing function of λ and thusA(λ) is minimized at λopt = min(σ ′(lx),σ ′(ux)).
This yields the following theorem:

Theorem 3. Let Z be the input to a smooth S-shaped1 function y = f(x) (such as the
Sigmoid function y = σ(x) = ex

1+ex ). Consider the set of pointwise Zonotope approximations
O of the output that only alter the affine form ŷ of the variable y and where the box
concretization of ŷ satisfies ly = σ(lx),uy = σ(ux). The new affine form ŷ for the output
with the minimum area in the xy-plane is given by:

ŷ =

{
[f(ux)l, f(ux)u], if lx = ux,
[λl, λu] · x̂+ [µ1l ,µ

1
u] + [µ2l ,µ

2
u] · εnew, otherwise,

(3.7)

Here, f(ux)l, f(ux)u are floating point representations of f(ux) rounded towards
−∞ and +∞ respectively and λl, λu are floating point representations of λopt =

min(f ′(lx), f ′(ux)) using rounding towards −∞ and +∞ respectively. Similarly
µ1l ,µ

1
u and µ2l ,µ

2
u are floating point representations of µ1 = 1

2(f(ux) + f(lx) − λopt ·
(ux + lx)) and µ2 = 1

2f(ux) − f(lx) − λopt · (ux − lx) computed using rounding to-
wards −∞ and +∞ and adding the error due to the non-associativity of floating
point addition, and εnew ∈ [−1, 1] is a new noise symbol. As with ReLU, the optimal
Sigmoid transformer in Theorem 3 has linear running time in the number of noise
symbols and can be applied pointwise.

3.2.3 Tanh

The Tanh function is also S-shaped, like the Sigmoid function. A fast, optimal, and
pointwise Tanh transformer can be defined using Theorem 3 by setting f(x) =

tanh(x) and f ′(x) = 1− tanh2(x).

1 A smooth function f : R→ R is said to be S-shaped if f ′(x) > 0 and there exists a value x ′ such that
for all x ∈ R, we have f ′′(x) 6 0⇔ x 6 x ′.
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3.3 experiments

We now evaluate the effectiveness of our new Zonotope transformers for verifying
local robustness of neural networks. Our implementation is available as an end-
to-end automated verifier, called DeepZ. The verifier is implemented in Python,
however, the underlying abstract transformers are implemented in C (for perfor-
mance) in both the sequential and the parallel version, and are made available as
part of the public ELINA [1, 151] library.

3.3.1 Experimental setup

evaluation datasets We used the popular MNIST [103] and CIFAR10 [95]
datasets for our experiments. MNIST contains 60 000 grayscale images of size 28× 28
pixels and CIFAR10 consists of 60 000 RGB images of size 32× 32 pixels.

neural networks Table 3.1 shows the fully connected feedforward networks
(FFNNs) as well as convolutional networks (CNNs) for the MNIST and CIFAR10

datasets used in our experiments. We used both undefended and defended training
procedures for training our networks. For adversarial training, we used DiffAI [114]
and projected gradient descent (PGD) [41] parameterized with ε. In our evaluation,
we refer to the undefended nets as Point, and to the defended networks with the
name of the training procedure (either DiffAI or PGD). More details on our neural
networks and the training procedures can be found in Sections 3.3.3 and 3.3.4.

robustness property We consider the standard L∞-norm-based perturbation
regions Rx,ε [25], where Rx,ε contains all perturbed inputs x ′ where each pixel x ′i
has a distance of at most ε from the corresponding pixel xi in the original input x.
Rx,ε can be exactly represented by a single zonotope.

benchmarks We selected the first 100 images from the test set of each data set.
Then, we specified a robustness property for each image using a set of robustness
bounds ε.

3.3.2 Experimental results

All experiments for the FFNNs were carried out on a 3.3 GHz 10 core Intel i9-7900X
Skylake CPU with 64 GB main memory; the CNNs were evaluated on a 2.6 GHz 14

core Intel Xeon CPU E5-2690 with 512 GB main memory. We used a time limit of 10

minutes per run for all our experiments.

comparison with prior work We compare the precision and performance
of the sequential version of DeepZ against two state-of-the-art certifiers Fast-Lin
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Table 3.1: Neural network architectures used in our experiments.

Dataset Model Type #Hidden units

MNIST FFNNSmall fully connected 610

FFNNBig fully connected 3 010

ConvSmall convolutional 3 604

ConvMed convolutional 4 804

ConvBig convolutional 34 688

ConvSuper convolutional 88 500

CIFAR10 FFNNBig fully connected 3 010

ConvSmall convolutional 4 852

ConvBig convolutional 62 464
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Figure 3.3: Comparing the performance and precision of DeepZ with the state of the art.

[170] and AI2 on the FFNNSmall MNIST network with ReLU activation. We note
that both of these certifiers support only a subset of the network architectures
that DeepZ can support. Specifically, Fast-Lin only supports FFNNs with ReLU
activations whereas AI2 supports FFNNs and CNNs with ReLu activations. We also
note that Fast-Lin is not sound under floating point semantics.

Fig. 3.3 shows the percentage of verified robustness and the average analysis time
of all three certifiers. The values of ε are shown on the x-axis. DeepZ has the same
precision as Fast-Lin but is up to 2.5x times faster. We note that the runtime of
DeepZ increases with increasing value of ε; this is because the complexity of our
analysis is determined by the maximum number of noise symbols in the affine form.
Our ReLU transformer creates one noise symbol for any variable that can take both
positive and negative values. The number of such cases rises with the increasing
value of ε. On the other hand, AI2 is significantly less precise and slower compared
to both Fast-Lin and DeepZ. We also compared DeepZ against the duality-based
certifier from [44], however it always timed out in our experiments.
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Figure 3.4: Verified robustness by DeepZ on the MNIST networks with ReLU activations.

detailed experiments Next, we evaluate DeepZ on the remaining networks
using the parallelized version of our Zonotope transformers. Fig. 3.4 shows the
percentage of verified robustness and the average analysis time of DeepZ for the
MNIST networks with ReLU activations. DeepZ analyzes all FFNNBig networks
with average runtime 6 22 seconds and proves 95% of the robustness properties for
ε = 0.04 for the defended PGDε=0.3 network. DeepZ is able to analyze all ConvSmall
networks with average runtime 6 2 seconds. It proves 95% of the robustness
properties for ε = 0.1 on the ConvSmall network defended with DiffAI. Table 3.2
shows the precision and the performance of DeepZ on ConvBig and ConvSuper
networks trained with DiffAI. DeepZ proves 97% of robustness properties for the
ConvSuper network containing > 88 000 hidden units in 133 seconds on average.

Fig. 3.5 shows the precision and the performance of DeepZ on the MNIST
FFNNBig and ConvMed networks with Sigmoid and Tanh activations. It can be
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Table 3.2: Verified robustness by DeepZ on the ConvBig and ConvSuper networks trained
with DiffAI.

Dataset Model ε % verified robustness average runtime(s)

MNIST ConvBig 0.1 97 5

ConvBig 0.2 79 7

ConvBig 0.3 37 17

ConvSuper 0.1 97 133

CIFAR10 ConvBig 0.006 50 39
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Figure 3.5: Verified robustness by DeepZ on the MNIST networks with Sigmoid and Tanh
activations.

seen that DeepZ verifies 74% of the robustness properties on the FFNNBig Sig-
moid and Tanh networks trained with PGDε=0.3 for ε = 0.03. DeepZ verifies 82%
of the robustness properties on the ConvMed Sigmoid network for ε = 0.1. The
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Figure 3.6: Verified robustness by DeepZ on the CIFAR10 networks with ReLU activations.

corresponding number for the Tanh network is 33%. We note that unlike the ReLU
transformer, both Sigmoid and Tanh transformers always create a new noise symbol
whenever lx 6= ux. Thus, the runtime does not increase significantly with ε and
is not plotted. DeepZ has an average runtime of 6 35 and 6 22 seconds on all
FFNNBig and ConvMed networks, respectively.

Fig. 3.6 shows that DeepZ has an average runtime of 6 50 seconds for the
CIFAR10 FFNNBig ReLU networks. It can be seen that the defended FFNNBig
CIFAR10 ReLU networks are not significantly more provable than the undefended
network. However, DeepZ verifies more properties on the defended ConvSmall
networks than the undefended one and proves 75% of robustness properties on
the DiffAI defended network for ε = 0.01. DeepZ has an average runtime of 6 3
seconds on all ConvSmall networks. DeepZ is able to verify 50% of robustness
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Figure 3.7: Verified robustness by DeepZ on the CIFAR10 networks with Sigmoid and Tanh
activations.

properties for ConvBig network defended with DiffAI with an average runtime of
39 seconds as shown in Table 3.2.

DeepZ verifies 82% of robustness properties on the Sigmoid network defended
with PGDε=0.0078 for ε = 0.012 in Fig. 3.7. It verifies 46% of the robustness properties
on the FFNNBig network with Tanh activation trained using PGDε=0.0313 for the
same ε. The average runtime of DeepZ on all networks is 6 90 seconds.

3.3.3 Dataset Normalization

For each dataset we include a normalization layer (which gets applied after the
ε-sized box has been calculated) using an approximated mean µ and standard
deviation σ per channel as X−µ

σ .

mnist : µ = 0.1307, σ = 0.3081.

cifar10 : µ = [0.4914, 0.4822, 0.4465], σ = [0.2023, 0.1994, 0.2010].

3.3.4 Neural Networks Evaluated

We test with six networks: one feed forward, four convolutional (without maxpool),
and one with a residual connection. These are trained in various ways. In the
following descriptions, we use ConvsC×W ×H to mean a convolutional layer that
outputs C channels, with a kernel width of W pixels and height of H, with a stride
of s which then applies ReLU to every output. FC n is a fully connected layer which
outputs n neurons without automatically applying ReLU.
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For each architecture we test three versions: (i) an undefended network; (ii) a
network defended with MI-FGSM (a PGD variant which we refer to as PGD in
the graphs) [41] with µ = 1, 22 iterations and two restarts, where the step size is
ε = 5.5−1 for the ε used for training; (iii) a network defended with a system based
on DiffAI [114].

ffnn. A 6 layer feed forward net with 500 nodes in each and an activation (ReLU,
Sigmoid, Tanh) after each layer except the last.

convsmall . Our smallest convolutional network with no convolutional padding.

x→ Conv216× 4× 4→ ReLU→ Conv232× 4× 4→ ReLU→ FC 100→ z.

convmed. Similar to ConvSmall, but with a convolutional padding of 1. Here
we test with the three activations Act = ReLU, Sigmoid, and Tanh.

x→ Conv216× 4× 4→ Act→ Conv232× 4× 4→ Act→ FC 1000→ z.

convbig . A significantly larger convolutional network with a convolutional
padding of 1.

x → Conv132× 3× 3→ ReLU→ Conv232× 4× 4→ ReLU
→ Conv164× 3× 3→ ReLU→ Conv264× 4× 4→ ReLU
→ FC 512→ ReLU→ FC 512→ z.

convsuper Our largest convolutional network with no padding.

x → Conv132× 3× 3→ Conv132× 4× 4
→ Conv164× 3× 3→ Conv164× 4× 4
→ FC 512→ ReLU→ FC 512→ z.

3.4 discussion

In this chapter, we introduced fast and precise Zonotope abstract transformers
for key non-linear activations used in modern neural networks. We used these
transformers to build DeepZ, an automated verifier for neural networks. We evalu-
ated the effectiveness of DeepZ on verifying robustness of large feedforward and
convolutional networks against challenging L∞-norm attacks. Our results show that
DeepZ is more precise and faster than prior work, while ensuring soundness w.r.t
floating point operations.
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Both AI2 and DeepZ have triggered substantial follow-up work. However, they
do not address a key aspect of intelligent systems: reasoning about probability
distributions. We will consider this problem next, in Part ii of this thesis.
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P S I : E X A C T S Y M B O L I C I N F E R E N C E F O R P R O B A B I L I S T I C
P R O G R A M S

Many statistical learning applications make decisions under uncertainty. Probabilis-
tic languages provide a natural way to model uncertainty by representing complex
probability distributions as programs. Such programs are formed using standard
language primitives from deterministic languages, as well as constructs for drawing
random values and constructs for conditioning. Probabilistic programming systems
(PPS) [20, 30, 54, 58, 62, 74, 110, 124, 171] provide inference algorithms that operate
on expressive models specified as probabilistic programs. The key benefit of PPS is
that they typically decouple the task of specifying the (generative) model from the
task of constructing inference algorithms.

Exact probabilistic inference for programs with only discrete random variables is
already a #P-hard computational problem [31] (although efficient algorithms exist
for many interesting special cases, see e.g., Pfeffer [132]). Programs which have both
discrete and continuous variables reveal additional challenges, such as representing
discrete and continuous components of the joint distribution, computing integrals,
and managing a large number of terms in the joint distribution. Because exact
probabilistic inference is generally intractable and does not scale to complex models
and large datasets, most existing PPS implement inference algorithms that calculate
numerical approximations. The general approaches include sampling-based Monte
Carlo methods [54, 58, 62, 110, 124, 171] and projections to convenient probability
distributions, such as variational inference [20, 113] or discretization [30, 93]. While
these methods scale well, they typically come with no accuracy guarantees, since
providing such guarantees is NP-hard [39].

At the same time, there has been a renewed research interest in symbolic inference
methods. Exact inference is important for several reasons. First, it can often outper-
form approximate inference for smaller models, ones that otherwise have substantial
structure, or on queries with low-probability evidence. Second, it naturally supports
symbolic parameters, meaning it solves a possibly infinite number of inference
problems at once. Third, exact inference guarantees that no precision is lost. Finally,
better support for exact inference in existing PPS will enable more fruitful combina-
tions with approximate methods, for example preserving precision in cases where
it is cheap while resorting to approximation in cases where precision is expensive
or automatically providing statistical precision guarantees on approximate results.

67
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Existing symbolic inference works fall into different categories:

• Approximate symbolic inference: Several analyses of graphical models approxi-
mate continuous distribution functions with a mixture of base functions, such
as truncated exponentials or polynomials, which can be integrated more eas-
ily [27, 118, 142, 146, 150]. For instance, SVE [142] approximates distributions
as piecewise low-rank polynomials.

• Interactive symbolic inference: A user can write down the inference steps within
modern computer algebra systems, such as Mathematica [5] and Maple [3].
These tools can help the user by automating parts of the integration and/or
simplification of distribution expressions.

• Exact symbolic inference: Bhat et al. [16] presents a type-based analysis trans-
lating programs with mixed discrete/continuous variables into symbolic dis-
tribution expressions, but does not simplify integral terms symbolically and
instead computes them using a numerical integration library. Most recently,
Hakaru [23, 122] optimizes probabilistic programs by translating a program
into a distribution expression in a DSL within Maple’s expression language,
and simplifying this expression utilizing Maple’s engine, before running (if
necessary) the optimized program within a MCMC simulation.

While these works are promising steps, the practical effectiveness of exact sym-
bolic inference in hybrid probabilistic models (with both discrete and continuous
distributions) remains unknown, dictating the need for further investigation.

this chapter We present the PSI (Probabilistic Symbolic Inference) system, a
comprehensive approach for automating exact probabilistic inference via program
analysis. PSI’s analysis performs an end-to-end symbolic inference for probabilistic
programs with discrete and/or continuous random variables. PSI analyzes a proba-
bilistic program using a symbolic domain which captures the program’s probability
distribution in a precise manner. PSI comes with its own symbolic optimization
engine which generates compact expressions that represent joint probability density
functions using various optimizations, including algebraic simplification and sym-
bolic integration. The symbolic domain and optimizations are designed to strike a
balance between the expressiveness of the probability density expressions and the
efficiency of automatically computing integrals and generating compact densities.

Our symbolic analysis (§4.2) generalizes existing analyzers for exact inference
on discrete programs (e.g., those that operate at the level of concrete states [30]).
Our optimization engine (§4.3) can also automatically simplify many integrals
in density expressions and thus directly improve the performance of works that
generate unoptimized expressions, such as Bhat et al. [16], without requiring the
full complexity of a general computer algebra system, as in Carette and Shan
[23], Narayanan et al. [122]. As a result, PSI is able to compute precise and compact
inference results even when previous approaches fail (§4.4).
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contributions Our main contributions are:

• Symbolic inference for programs with continuous/discrete variables: A novel ap-
proach for fully symbolic probabilistic inference. The algorithm represents the
posterior distribution within a symbolic domain.

• Probabilistic inference system: PSI, an implementation of our algorithm together
with optimizations that simplify the symbolic representation of the posterior
distribution. PSI is available at http://www.psisolver.org.

• Evaluation: We show an experimental evaluation of PSI against state-of-the-art
symbolic inference techniques – Hakaru, Maple, Mathematica, and SVE – on a
corpus of 21 benchmarks selected from the literature. PSI produced correct and
compact distribution expressions for more benchmarks than the alternatives.
In addition, we compare PSI to state-of-the-art approximate inference engines,
Infer.NET [113] and R2 [124], and show the benefits of exact inference.

Based on our results, we believe that PSI is the most effective exact symbolic
inference engine to date and is useful for understanding the potential of exact
symbolic inference for probabilistic programs. The work presented in this chapter
has been published in Gehr et al. [50].

4.1 overview

Fig. 4.1 presents the ClickGraph probabilistic program, adapted from a Fun language
program from [113]. It describes an information retrieval model that calculates the
posterior distribution of the similarity of two files, conditioned on the users’ access
patterns to these files.

The program first specifies the prior distribution on the document similarity
(Line 2) and the recorded accesses to A and B for each user (Lines 4-5). It then
specifies a trial in which the variable sim is the similarity of the documents for an
issued query (Line 7). If the documents are similar, the probabilities of accessing
them (p1 and p2) are the same, otherwise p1 and p2 are independent (Lines 9-14).
Finally, the variables clickA and clickB represent outcomes of the users accessing
the documents (Lines 16-17), and each trial produces a specific observation using
the observe statements (Lines 18-19). The return statement specifies that PSI should
compute the posterior distribution of simAll.

4.1.1 Analysis

To compute the posterior distribution, PSIanalyzes the probabilistic program via a
symbolic domain that captures probability distributions, and applies optimizations
to simplify the resulting expression after each analysis step.

http://www.psisolver.org
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i

1 def ClickGraph(){
2 simAll := Uniform(0,1);
3

4 clicksA := [1, 1, 1, 0, 0];
5 clicksB := [1, 1, 1, 0, 0];
6 for i in [0..5) {
7 sim := Bernoulli(simAll);
8

9 p1:=0; p2:=0;
10 if sim {
11 p1 = Uniform(0,1); p2 = p1;
12 } else {
13 p1 = Uniform(0,1); p2 = Uniform(0,1);
14 }
15

16 clickA := Bernoulli(p1);
17 clickB := Bernoulli(p2);
18 observe(clickA==clicksA[i]);
19 observe(clickB==clicksB[i]);
20 }
21 return simAll;
22 }

Figure 4.1: ClickGraph Example

symbolic analysis For each statement, the analysis computes a symbolic
expression that captures the program’s probability distribution at that point. The
analysis operates forward, starting form the beginning of the function. As a pre-
processing step, the analysis unrolls all loops and lowers the array elements into a
sequence of scalars or inlined constants. The state of the analysis at each program
point captures (1) the correct execution of the program as a map that relates live
program variables x1, . . . , xn to a symbolic expression e representing a probability
density of the computation at this point in the program, and (2) erroneous executions
(e.g., due to an assertion violation) represented by an aggregate error probability
expression ē.

The analysis of the first statement (Line 2) identifies that the state consists of
the variable simAll, which has the Uniform(0, 1) distribution. In general, for x :=

Uniform(a,b), the analysis generates the expression [a 6 x] · [x 6 b]/(b− a), which
denotes the density of this distribution. The factors [a 6 x] and [x 6 b] are Iverson
brackets, guard functions that equal 1 if their conditions are true, or equal 0 otherwise.
Therefore, this density has a non-zero value only if x ∈ [a,b]. In particular, for simAll,
the analysis generates eL.2 = [0 6 simAll] · [simAll 6 1].

Since the constant arrays are inlined, the analysis next processes the statement on
Line 7 (in the first loop iteration). The analysis adds the variable sim to the state,
and multiplies the expression eL.2 with the density function for the distribution
Bernoulli(simAll):

eL.7 = [0 6 simAll] · [simAll 6 1] · (simAll · δ(1− sim) + (1− simAll) · δ(sim))
ēL.7 = 0
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The expression eL.7 represents a generalized joint probability density over simAll

and sim. To encode discrete distributions like Bernoulli, the analysis uses Dirac deltas,
δ(e), which specify a distribution with point masses at the zeros of e.

optimizations After analyzing each statement, the analysis simplifies the gen-
erated distribution expression by applying equivalence-preserving optimizations:

• basic algebraic manipulations (e.g., in the previous expression, an optimization
can distribute multiplication over addition);

• removal of factors with trivial or unsatisfiable guards (e.g., in this example the
analysis checks whether a product [0 6 simAll] · [simAll 6 1] is always equal
to zero, and since it is not, leaves the expression unchanged);

• symbolic integration of the distribution expressions; for instance, at the end of
the each loop iteration, the analysis expression eL.19 contains several loop-local
variables: sim, p1, p2, clickA, and clickB. The analysis integrates out these local
variables because they will not be referenced by the subsequent computation.
It first removes the discrete variables sim, clickA, and clickB by exploiting the
properties of Dirac deltas. For the continuous variables p1 and p2, it computes
the antiderivative (indefinite integral) using PSI’s integration engine, finds the
integration bounds, and evaluates the antiderivative on these bounds. After
the analysis of the first loop iteration, this optimization reduces the size of the
distribution expression from 22 to 6 summands.

result of the analysis After analyzing the entire program, the analysis
produces the final posterior probability density expression for the variable simAll:

eL.21 = [0 6 simAll] · [simAll 6 1] · 6(simAll+ 3)
5
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The analysis also computes that the final error probability ēL.21 is 0. This is the exact
posterior distribution for this program. We present this posterior density function
graphically in Fig. 4.8.

4.1.2 Applications of PSI

PSI’s source language (with conditional and bounded loop statements) has the
expressive power to represent arbitrary Bayesian networks, which encode many
probabilistic models relevant in practice [66]. PSI’s analysis is analogous to the
variable elimination algorithm for inference in graphical models. We anticipate that
PSI can be successfully deployed in several contexts:

probabilistic inference PSI allows a developer to specify several classes of
queries. For joint posterior distribution, a user may return multiple variables in the
return statement. The special operators FromMarginal(e) and Expectation(e) return
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n ∈ Z

r ∈ R

x ∈ Var
a ∈ ArrVar

bop ∈ {+,−, ∗, /, ˆ} lop ∈ {&&, | |} cop ∈ {==, 6=,<,>,6,>}
Dist ∈ {Bernoulli, Gauss,. . . } SOp ∈ {Expectation, FromMarginal, SampleFrom}

p ∈ Prog → Func+

f ∈ Func → def Id(Var∗) {Stmt; return Var∗}

se ∈ SEx → n | r | x | a[SEx] | SEx bop SEx | SEx cop SEx | SEx lop SEx |

Dist(SEx+) | SOp(SEx) | f(SEx∗)

s ∈ Stmt → x := SEx | a := array(SEx) | x = SEx | a[SEx] = SEx |

observe SEx | assert SEx | skip | Stmt; Stmt |

if SEx {Stmt} else {Stmt} | for x in [SEx..SEx) {Stmt}

Figure 4.2: PSI’s Source Language Syntax

the marginal distribution and the expectation of an expression e, respectively. A
developer can also specify assertions using the assert(e) statement.

testing and debugging The exact inference results produced by PSI can be
used as reference versions for debugging and testing approximate inference engines.
It can also be used to test existing computer algebra systems – using PSI, we found
errors in Maple’s simplifier (see §4.4).

teaching Exact inference results can be used to illustrate the underlying mean-
ing of probabilistic programs, counteracting the wrong notion that concepts from
probability and statistics are inherently approximate.

sampling from optimized probabilistic programs Optimized distribu-
tion expressions generated by PSI’s symbolic optimizer can be used, in principle, for
computing proposal distributions in MCMC simulations, as done by [16] and [122].

uncertainty propagation analysis PSI’s analysis can serve as a basis for
static analyses that propagate uncertainty through computations and determine
error bars for the result. This provides a powerful alternative to existing analyses that
are primarily sampling-based [21, 139], with at most limited support for simplifying
algebraic identities that involve random variables [139].

4.2 symbolic inference

In this section we describe our core analysis: the procedure analyzes each statement
in the program and produces a corresponding expression in our symbolic domain
which captures probability distributions.
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e ∈ E ::= x |n | r | log(e) |ϕ(e1, . . . , en) | − e | e1 + . . .+ en | e1 · . . . · en | e
e2
1 |

δ(e) | [e1 = e2] | [e1 6 e2] | [e1 6= e2] | [e1 < e2] |∑
x∈Z

eJxK |
∫

R

dx eJxK | (d/dx)−1[e−x
2
](e)

Figure 4.3: Symbolic domain for probability distributions

4.2.1 Source Language

Fig. 5.3 presents the syntax of PSI’s source language. This is a simple impera-
tive language that operates on real-valued scalar and array data. The language
defines probabilistic assignments, which can assign a random value drawn from
a distribution Dist, and observe statements, which allow constraining the values
of probabilistic expressions. The language also supports the standard sequence,
conditional statement, and bounded loop statement.

4.2.2 Symbolic Domain for Probability Distributions

Fig. 5.5 presents the syntax of our symbolic domain. The domain can succinctly
describe joint probability distributions with discrete and continuous components:

• Basic terms include variables, numerical constants (such as e and π), loga-
rithms and uninterpreted functions. These terms can form sums, products, or
exponents. Division is handled using the rewrite a/b→ a · b−1.

• Dirac deltas represent distributions that have weight in low-dimensional sets
(such as single points). In our analysis, they encode variable definitions
and assignments, and linear combinations of Dirac deltas specify discrete
distributions.

• Iverson brackets represent functions that are 1 if the condition within the
brackets is satisfied and 0 otherwise. In our analysis, they encode comparison
operators and certain primitive probability distributions (e.g., Uniform).

• Integrals and infinite sums are used during the analysis to represent marginal-
ization of variables and UniformInt distributions respectively.

• Gaussian antiderivative – (d/dx)−1[e−x
2
](e) – used to denote the function

e∫
−∞dx e−x

2
, which cannot be decomposed into simpler elementary functions.

We use the notation eJx1, . . . , xnK to denote that a symbolic distribution expression
e may contain free variables x1, . . . , xn that are bound by an outer operator (such as
a sum or integral).

Our design of the symbolic domain aims to strike a balance between expressive-
ness – the kinds of distributions it can represent – and efficiency – the ability of the
analysis to automatically integrate functions and find simple equivalent expressions.
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Name (Params) PDF (x, Params) Conditions (x, Params)

Bernoulli (ep) ep · δ(1−x)+ (1− ep) · δ(x) [0 6 ep] · [ep 6 1]

Poisson (eλ) e−eλ ·
∑
x′∈Z[0 6 x ′] · δ(x−x ′) · ex′

λ /Γ(x
′+ 1) [0 < eλ]

UniformInt (ea,eb)
∑
x′∈Z δ(x−x

′)[ea6x′]·[x′6eb]∑
x′∈Z[ea6x′]·[x′6eb]

[
∑
x′∈Z[ea 6 x ′]·

[x ′ 6 eb] 6= 0 ]

Uniform (ea,eb)
[ea = eb] · δ(x− ea) [ea 6 eb]
+ [ea 6= eb] · 1

(eb−ea)
· [ea 6 x] · [x 6 eb]

Gauss (eµ,eν) [eν = 0] · δ(x− eµ)+ [eν 6= 0] ·
exp(−(x−eµ)

2/(2eν))√
2πeν

[0 6 eν]

Pareto (ea,eb) ea · eeab ·x
−(ea+1) [0 6 ea] · [0 6 eb]

Beta (eα,eβ) 1/B(eα,eβ) ·xα−1 · (1−x)β−1 · [0 6 x] · [x 6 1] [0 < eα] · [0 < eβ]

Gamma (eα,eβ)
βα

Γ(α) ·x
α−1 · e−β·x · [0 6 x] [0 < α] · [0 < β]

where Γ(t) :=
∫∞
0 dxxt−1e−x.

Table 4.1: PDF and Correctness Conditions for Several Primitive Distributions.

In particular, our symbolic domain enables us to define most discrete and contin-
uous distributions from the exponential family and other well-known primitive
distributions, such as Student-t and Laplace.

primitive distributions For each primitive distribution Dist, we define two
mappings, PDFDist, and ConditionsDist to respectively specify the probability den-
sity function, and valid parameter and input ranges. For instance, the Bernoulli
distribution with a parameter ep has PDFBern(x, ep) = ep · δ(1− x) + (1− ep) · δ(x)
and ConditionsBern = [0 6 ep] · [ep 6 1].

Table 4.1 presents several primitive distributions encoded in PSI’s intermediate
language. For a distribution Dist, the function PDFDist returns the probability
density function and the function ConditionsDist returns the conditions that the
parameters should satisfy. Both inputs and the parameters can be random quantities.
The translation to this intermediate language from the mathematical definition of
the functions is typically straightforward.

Currently, PSI supports the following distributions: Gauss, Uniform, Exponential,
Gamma, Beta, StudentT, Weibull, Laplace, Pareto, Rayleigh, Bernoulli, UniformInt, and
Categorical. Adding a new primitive distribution only requires a few lines of code.

Additionally, PSI allows the developer to specify an arbitrary PDF of the resulting
distribution in PSI’s intermediate language from Fig. 5.5 using the SampleFrom(pdf_expression,...)

primitive.
Additionally, PSI allows the developer to specify an arbitrary density function of

the resulting distribution using the SampleFrom (sym_expr,...) primitive, which
takes as inputs a distribution expression and a set of its parameters.

program state A symbolic program state σ denotes a probability distribution
over the program variables with an additional error state:
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Ae : Expr→(Σ→ Σ× E)
Ae(x) :=λσ. (σ, x)

Ae(se1 bop se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)
in (σ2, e1 SymbolicOp(bop) e2), bop ∈ {+, -, *}

Ae(se1/se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (Assert([e2 6= 0])(σ2), e1 · e2−1)
Ae(se1 cop se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1) in

(σ2, TranslateCop(cop, e1, e2))
where
cop ∈ {==, 6=,<,>,6,>},
TranslateCop(==, e1, e2) := [e1 = e2], TranslateCop( 6=, e1, e2) := [e1 6= e2],
TranslateCop(<, e1, e2) := [e1 < e2], TranslateCop(>, e1, e2) := [e2 < e1],
TranslateCop(6, e1, e2) := [e1 6 e2], TranslateCop(>, e1, e2) := [e2 6 e1].

Ae(!se) :=λσ. let (σ1, e) = Ae(se) in (σ1, [e = 0])
Ae(se1&&se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (σ2, [e1 6= 0] · [e2 6= 0])
Ae(se1 | | se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (σ2, [ [e1 6= 0] + [e2 6= 0] 6= 0 ])
Ae(Dist(se1, . . . , sen)) :=λσ. let (σ1, [e1, ..., en]) = A∗e([se1, ..., sen])(σ) and FreshVar(τ)

and (P,C) = (PDFDist(τ, e1, ..., en), ConditionsDist(e1, ..., en))
in let σ2 = (Distribute(τ,P) ◦Assert(C))(σ1) in (σ2, τ),

Assert(eJx1, . . . , xnK)(λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, . . . , xn)⇒ (e1 · [e 6= 0])Jx1, . . . , xnK ,
⊥ ⇒ e2 + MarginalizeAll([e = 0] · e1)

Distribute(x, eJx1, ..., xn, xK)(λM. case M of (x1, ..., xn)⇒ e1Jx1, ..., xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, ..., xn, x)⇒ e1Jx1, ..., xnK · eJx1, ..., xn, xK , ⊥ ⇒ e2

Figure 4.4: Symbolic Analysis of Expressions

σ ∈ Σ ::=λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK , ⊥ ⇒ e2 (4.1)

In a regular execution, the state is represented with the variables x1, . . . , xn and
the posterior distribution expression e1. We represent the error state as a symbol ⊥
and the expression for the probability of error e2. Conceptually, the map σ associates
a probability density with each concrete program state M, which is either a tuple of
values of program variables or the error state.
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4.2.3 Analysis of Expressions

Fig. 4.4 presents the analysis of expressions. The function Ae converts each ex-
pression of the source language to a transformer t ∈ Σ → Σ× E on the symbolic
representation. The transformer returns both a new state (σ ∈ Σ) and a result of
expression evaluation (e ∈ E), thus capturing side effects (e.g., sampling values from
probability distributions or exhibiting errors such as division by zero).

operations The first five rules transform source language variables to distribu-
tion expression variables (including operators via the helper function SymbolicOp).
The rules are standard, with boolean constants true and false encoded as numbers 1

and 0, respectively. The rules compose the side effects of the operands. The division
rule additionally uses the Assert helper function to add the guard [e2 6= 0] to the
distribution expression and aggregate the probability of e2 = 0 to the overall error
probability.

distribution sampling The expression Dist(se1, . . . , sen) accepts distribution
parameters se1, . . . , sen, which can be arbitrary expressions. For a primitive dis-
tribution Dist, the analysis obtains expressions from the mappings PDFDist and
ConditionsDist (§5.3).

The rule first analyzes all of the distribution’s parameters (which can represent
random quantities). To iterate over the parameters, the rule uses the helper function
A∗e, defined inductively as

A∗e([]) := λσ . (σ, [])
A∗e(se : t) := λσ . let (σ1, e) = Ae(se)(σ) and (σ2, t ′) = A∗e(t)(σ1) in (σ2, e : t ′).

To ensure that distribution parameters have the correct values, the rule invokes a
helper function Assert, which adds guards from the ConditionsDist. Finally, the rule
declares a fresh temporary variable τ (specified by a predicate FreshVar), which is
then distributed according to the density function PDFDist, using the helper function
Distribute. In the definitions of Assert and Distribute, we specified the states in
their expanded forms (Eq. (4.1)).

Distribute(x, e[x1, . . . , xn, x]) introduces the new variable x and distributes it ac-
cording to eJx1, . . . , xn, xK, by adding it as an additional factor to the existing joint
distribution. Note that the free variables (x1 . . . xn, x) in e are bound by the case
statement within the distribution expression.
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As : Stmt → (Σ→ Σ)

As(skip) := λσ.σ
As(x := se) := λσ. let (σ ′, e) = Ae(se)(σ) in Distribute(x, δ(x− e))(σ ′)
As(x = se) := As(x := seJτ/xK) ◦Rename(x, τ), with FreshVar(τ)
As(s1; s2) := As(s2) ◦As(s1)

As(assert(se)) := λσ. let (σ ′, e) = Ae(se)(σ) in Assert([e 6= 0])(σ ′)
As(observe(se)) := λσ. let (σ ′, e) = Ae(se)(σ) in Observe([e 6= 0])(σ ′)

As(if se {s1} else {s2}) := λσ. let (σ0, e) = Ae(se)(σ)
and σ1 = (As(s1) ◦Observe([e 6= 0]))(σ0)
and σ2 = (As(s2) ◦Observe([e = 0]))(σ0)
in Join(σ,σ1,σ2)

As(return (x1, . . . , xn)) := KeepOnly(x1, . . . , xn)

Figure 4.5: Symbolic Analysis of Statements

marginalization Marginalization aggregates the probability by summing
up over the variables in an expression (e.g., local variables at the end of scope or
variables in an error expression). To marginalize all variables, we define the function

MarginalizeAll(eJx1, . . . , xnK) :=
∫

R

dx1 · · ·
∫

R

dxneJx1, . . . , xnK .

The function KeepOnly performs selective marginalization. It takes as input the
variables x ′1 . . . , x

′
m to keep and the input state σ, and marginalizes out the remaining

variables in σ’s distribution expressions:

KeepOnly(x ′1, ..., x ′m)(λM. case M of (x1, ..., xn)⇒ e1Jx1, ..., xnK ,⊥ ⇒ e2) =

let {x ′′1 , ..., x ′′l } = {x1, ..., xn} \ {x ′1, ..., x ′m}

in λM. case M of (x ′1, ..., x ′m)⇒
∫

R

dx ′′1 · · ·
∫

R

dx ′′l e1Jx1, ..., xnK ,⊥ ⇒ e2

4.2.4 Analysis of Statements

Fig. 4.5 presents the definition of function As: it analyzes each statement and pro-
duces a transformer of states: Σ → Σ. The initial analysis state σ0 is defined as
follows: σ0 = (λM. case M of #»x ⇒ ϕ( #»x ),⊥ ⇒ 0). Here, the function F under analy-
sis has parameters #»x = (x1, ...xn) where ϕ is an uninterpreted function representing
the joint probability density of #»x . If F has no parameters, we replace ϕ() with 1.
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Rename(x, x ′)(λM. case M of (x1, ..., x, ..., xn)⇒ e1Jx1, ..., x, ..., xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, ..., x ′, ..., xn)⇒ e1
q
x1, ..., x ′, ..., xn

y
,⊥ ⇒ e2

Observe(eJ #»x K)(λM. case M of ( #»x )⇒ e1J #»x K ,⊥ ⇒ e2) :=

λM. case M of ( #»x )⇒ e1J #»x K · eJ #»x K ,⊥ ⇒ e2

Join((λM. case M of ( #»x )⇒ e1J #»x K ,⊥ ⇒ e2),σthen,σelse) :=

let (λM. case M of ( #»x )⇒ e ′1J
#»x K ,⊥ ⇒ e ′2) = KeepOnly( #»x )(σthen)

and (λM. case M of ( #»x )⇒ e ′′1 J
#»x K ,⊥ ⇒ e ′′2 ) = KeepOnly( #»x )(σelse)

in λM. case M of ( #»x )⇒ e ′1J
#»x K+ e ′′1 J

#»x K ,⊥ ⇒ e ′2J
#»x K+ e ′′2 J

#»x K− e2J #»x K

Figure 4.6: Analysis of Statements - Helper Functions

definitions The statement x := se declares a new variable x and distributes it
as a point mass centered at e (the symbolic expression corresponding to se), i.e. the
analysis binds x by multiplying the joint probability density by δ(x− e).

assignments Analysis of assignments to existing variables (x = se) consistently
renames these variable and introduces a new variable with the previous name. The
substitution seJτ/xK renames x to τ in the source expression se, since the variable
being assigned may itself occur in se. The function Rename(x, τ) alpha-renames all
occurrences of the variable x to τ in an existing state (σ) to avoid capture (Fig. 4.6). It
is necessary to rename x in se separately, because se is a source program expression,
while Rename renames variables in the analysis state.

observations Observations are handled by a call to the helper function Observe
(Fig. 4.6), which conditions the probability distribution on the given expression being
true. We do not renormalize the distribution after an observation, but only once,
before reporting the final result (§4.2.5). Therefore, observations do not immediately
change the error part of the distribution.

conditionals The analysis of conditionals first analyzes the condition, and
then creates two copies of the resulting state σ0. In one of the copies, the condition
is then observed to be true, and in the other copy, the condition is observed to be
false. Analysis of the ’then’ and ’else’ statements s1 and s2 in the corresponding
states yields σ1 and σ2. Finally, σ1 and σ2 are joined together by marginalizing all
locally scoped variables, including temporaries created during the analysis of the
condition, and then adding the distribution and the error terms (Join; Fig. 4.6). We
subtract the error probability in the original state to avoid counting it twice.
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4.2.5 Final Result and Renormalization

We obtain the final result by applying the state transformer obtained from anal-
ysis of the function body to the initial state and renormalizing it. We define the
renormalization function as

Renormalize(λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK ,⊥ ⇒ e2) :=

let eZ = MarginalizeAll(e1) + e2
in λM. case M of (x1, . . . , xn)⇒ [eZ 6= 0] · e1Jx1, . . . , xnK · e−1Z ,

⊥ ⇒ [eZ 6= 0] · e2 · e−1Z + [eZ = 0]

The function obtains a normalization expression eZ, such that the renormalized
distribution expression of the resulting state integrates to 1. This way, PSI computes
a normalized joint probability distribution for the function results that depends
symbolically on the initial joint distribution of the function’s arguments.

4.2.6 Discussion

loop analysis PSI analyzes loops like for i in [0..N){...} (as mentioned in
§4.1.1) by unrolling the loop body a constant N number of times. This approach also
extends to loops where the number of iterations N is a random program variable. If
N can be bounded from above by a constant Nmax, a developer can encode the loop
as

assert (N <= Nmax);

for i in [0..Nmax) {

if (i < N) { /* loop body */ }

}

To handle for-loops with unbounded random variables and general while-loops, a
developer can select Nmax such that the probability of error (i.e., probability that
the loop runs for more than Nmax iterations) is small enough. We anticipate that
this approach can be readily automated. Related techniques such as [141] and [48]
employ similar approximation techniques.

function call analysis PSI can analyze multiple functions, generating for
each function f(x1, ..., xn) the density expression of its m outputs, parameterized by
the unknown distribution of the function’s n inputs. The distribution of the function
inputs is represented by an uninterpreted function ϕ(x1, ..., xn) which appears as a
subterm in the output density expression.

We describe the distribution expression transformer corresponding to some
source language function f with n arguments and m return values by expressions
ef
q
x ′1, . . . , x

′
m

y
and e ′f each containing ϕ, which is an uninterpreted function with
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n arguments. The expressions describe the distribution of the results and the
probability of error respectively. Such expressions can be obtained by running our
analysis on the function body in the initial state

σ0 =(λM. case M of
(x1, . . . , xn)⇒ ϕ(x1, . . . , xn)
⊥ ⇒ 0.

and extracting the two distribution expressions from the final state.
The rule for the analysis of function calls first creates temporary variables

a1, . . . ,an for each argument of f, and variables r1, . . . , rm for each result returned
by f. The variables a1, . . . ,an are then initialized by the actual parameters e1, . . . , en
by multiplying the density of the caller by

∏
i δ(ai − ei). The result variables in f’s

density expression are renamed to match r1, . . . , rn, and the uninterpreted func-
tion ϕ within f’s density expression is replaced with the new density of the caller
(avoiding variable capture). but shouldn’t be.

Formally, the rule for translating a function call is given by

Ae(f(se1, ..., sen)) :=λσ. let FreshVars(a1, . . . ,an) and FreshVars(r1, . . . , rm)
and e ′′f Jr1, . . . , rmK := ef

q
r1/x

′
1

y
· · ·

q
rm/x

′
m

y

and σ ′ := (As(an := sen) ◦ · · · ◦As(a1 := se1))(σ)
and σ ′′ := λM. case M of
(x1, . . . , xk, r1, . . . , rm)⇒

e ′′f J(λ(a1, . . . ,an). ecJx1, . . . , xk,a1, . . . ,anK)/ϕK ,

⊥ ⇒ e ′c +

∫
Rk

dx1...dxke ′fJ(λ(a1, ...,an). ecJx1, ..., xk,a1, ...,anK)/ϕK

in (σ ′′, (r1, . . . , rm))
where ecJx1, . . . , xk,a1, . . . ,anK and e ′c are expressions with
σ ′ = λM. case M of (x1, . . . , xk,a1, . . . ,an)⇒

ecJx1, ..., xk,a1, ...,anK
⊥ ⇒ e ′c

formal argument A standard approach to prove that the translation from the
source language to the target domain (in our case, the symbolic domain) is correct
is to show that the transformation preserves semantics, as in [45]. This requires a
specification of semantics for both the source language and the symbolic domain
language. Below, we outline how one might approach such a formal proof using
denotational semantics that map programs and distribution expressions to measure
transformers.
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Denotational semantics for the source language is easy to define by extending [92],
but defining the measure semantics for distribution expressions is more challenging.
Defining measure semantics for most expression terms in the symbolic domain
is simple (e.g., the measure corresponding to a sum of terms is the sum of the
measures of the terms). However, the semantics of expressions containing Dirac
deltas is less immediate, since there is no general pointwise product when Dirac
delta factors have overlapping sets of free variables.

To assign semantics to a product expression with Dirac delta factors, we therefore
(purely formally) integrate the expression against the indicator function of the
measured set and simplify it using Dirac delta identities until no Dirac deltas are
left. The resulting term can then be easily interpreted as a measure. A formal
proof will also need to show that this is a well-formed definition, i.e., that all
ways of eliminating Dirac deltas lead to the same measure. Once the semantics
for distribution expressions has been defined, the correctness proof proceeds as a
straightforward induction over the source language production rules. We consider a
complete formalized proof to be an interesting future work item.

4.3 symbolic optimizations

After each step of the analysis from §4.2, PSI’s symbolic engine simplifies the joint
posterior distribution expressions. The algorithm of this optimization engine is
a fixed point computation, which applies various symbolic transformations. We
selected these transformations by their ability to optimize expressions that typically
arise when analyzing probabilistic programs and that have demonstrated their
efficiency for practical programs (as we discuss in §4.4). We next describe three
main groups of the transformations.

4.3.1 Algebraic Optimizations

These optimizations implement basic algebraic identities. Some examples include
removing zero-valued terms in addition expressions, removing one-valued terms
in multiplication expressions, distributing exponents over products, or condensing
equivalent summands and factors.

4.3.2 Guard Simplifications

For each term in an expression with multiple Iverson brackets and/or Dirac deltas,
these optimizations analyze the constraints in the bracket factors and delta factors
using sound but incomplete heuristics. PSI can then (1) remove the whole term if
the constraints are inconsistent and therefore the term is always zero, (2) remove a
factor if it is always satisfied, e.g., if both sides of an inequality are constants, or (3)
remove a bracket factor if it is implied by other factors.
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guard normalization Internally, all brackets are represented using only the
forms [e = 0], [e 6= 0] and [e 6 0]. If Iverson brackets occur nested within Dirac
deltas or other Iverson brackets, these enclosing deltas or brackets are replaced
by an exhaustive case distinction on all possible combinations of Iverson bracket
conditions, pruning unsatisfiable conditions if possible. For example, the expression
[[x = 0] · [y 6 0] = 0] is transformed into [x = 0] · [y 6 0] · [1 · 1 = 0] + [x 6= 0] · [y 6 0] ·
[0 · 1 = 0]+ [x = 0] · [−y 6 0] · [y 6= 0] · [1 · 0 = 0]+ [x 6= 0] · [−y 6 0] · [y 6= 0] · [0 · 0 = 0]
which is in turn simplified to [x 6= 0] · [y 6 0] + [x = 0] · [−y 6 0] · [y 6= 0] + [x 6=
0] · [−y 6 0] · [y 6= 0].

guard linearization Guard linearization analyzes complex Iverson brack-
ets and Dirac deltas with the goal to rewrite expressions in such a way that all
included constraints (expressions in Iverson brackets and Dirac deltas) depend on
a specified variable x in a linear way. It handles constraints that are easily recog-
nizable as compositions of quadratic polynomials, multiplications with only one
factor depending on x and integer and fractional powers (including in particular
multiplicative inverses).

One aspect that requires special care is that the integral of a Dirac delta along x
depends on the partial derivative of its argument in the direction of x. For example,
we have δ(2x) = 1

2δ(x), and in general we have δ(f(x)) =
∑
i
δ(x−xi)
|f ′(xi)|

for f(xi) = 0,
whenever f ′(xi) 6= 0. We ensure the last constraint by performing a case split on
f ′(x) = 0, and substituting the solutions for x into the delta expression in the
“equals” case. For example, δ(y− x2) is linearized to

[−y 6 0] · ([x = 0] · δ(y) + [x 6= 0] · 1

2
√
y
(δ(x−

√
y) + δ(x+

√
y))).

We now present the details of the guard linearization algorithm.
To transform an expression into an equivalent expression that only contains

guards depending linearly on a given variable x, all subexpressions that are Iverson
brackets or Dirac deltas are rewritten. In fact, our algorithm will isolate the vari-
able x from all other variables in case it succeeds (i.e., the variable is an isolated
summand in the constraints it occurs in). Guard linearization is a sound but in-
complete heuristic that works for many practically relevant constraints; it does not
solve arbitrary non-linear constraints (this is an undecidable problem). We handle
constraints that are easily recognizable as compositions of quadratic polynomials,
multiplications with only one factor depending on x and integer and fractional
powers (including in particular multiplicative inverses).

For the following, we assume that Dirac delta constraint expressions have only
countably many zeros. Due to guard normalization, we can assume that all such
expressions are differentiable at all points where they are defined.
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Note that this discussion is not entirely formal; expressions are sometimes used
interchangeably with their meaning. Furthermore, we treat additional assumptions
that hold for the duration of a recursive call implicitly.

For a given Iverson bracket or Dirac delta, first, the constraint expression (i.e.
e in δ(e) or [e 6 0], [e = 0], [e 6= 0]) is normalized by distributing products over
sums containing the variable x. We then use a recursive algorithm to linearize the
constraint. The recursion state contains four variables p, l and r; each of those
contains an expression from our distribution expression language. The recursive
algorithm maintains different invariants for the different kinds of guards:

• Iverson brackets of the form [e 6 0]:
[e 6 0] is equivalent to [0 6 p] · [l 6 r] + [p < 0] · [r 6 l].

• Iverson brackets of the form [e = 0]:
[e = 0] is equivalent to [l = r].

• Dirac deltas δ(e):
δ(e) is equivalent to

∑
x ′∈R:lJx ′/xK=r,( ∂∂xe)Jx

′/xK 6=0
δ(x−x ′)

( ∂∂xe)Jx
′/xK

+ [ ∂∂xe = 0] · δ(e).

Furthermore, throughout the execution of the recursive algorithm, x does not
occur free in r. p is ignored for guards that are not of the shape [e 6 0].

The invariants, together with the information which type of Iverson bracket/Dirac
delta is being handled allow computation of a guard which is equivalent to the
original guard at any point in the recursive algorithm (except for Dirac deltas, where
we additionally need to be able to solve the equation l = r). Intuitively, the recursive
algorithm recurses, maintaining the invariant, until the original guard can be either
easily written in a linear shape given the invariant, or it can be determined that
linearization is not supported.

We start the recursion with p = 1, l = e and r = 0 such that the invariants are
satisfied.

One invocation of the recursive algorithm performs the following case distinction
on the shape of l:

• Case l = l1 + · · ·+ ln:
The summands are partitioned according to whether x occurs free in them.
In case only one summand li has this property, the algorithm recurses with
p ′ = p, l ′ = li and r ′ = r− li. Otherwise, if l− r can be written as a quadratic
polynomial a · x2 + b · x+ c, the algorithm performs a symbolic case split on
a = 0: It recurses with l ′ = b · x+ c, r ′ = r and multiplies the result by [a = 0].
Additionally, it creates symbolic expressions for the discriminant d = b2 −

4ac and the two roots z1 = (−b−
√
d)/(2 · a), z2 = (−b+

√
d)/(2 · a). From

those expressions, an appropriate expression handling the nondegenerate
quadratic can be built using moderately complex expressions with Iverson
brackets/Dirac deltas depending at most linearly on x. (The related case
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of an arbitrary even power is discussed below in more detail. This should
clarify how this expression is built.) This expression is computed (for [e 6= 0],
[e = 0] and δ(e), this involves additional recursive calls with l ′ = x, r ′ = z1,2),
multiplied by [a = 0] and added to the expression handling the degenerate
case.

• Case l = l1 · · · ln:
The summands are partitioned according to whether x occurs free in them.
In case only one summand li has this property, the algorithm performs a
symbolic case split on 0 = L := l1 · · · li−1 · li+1 · · · ln (by encoding both branches
symbolically and multiplying them with the appropriate Iverson brackets
[L = 0] and [L 6= 0] respectively, both not depending on x): For L = 0, the
condition reduces to an Iverson bracket/Dirac delta of the original kind
with an expression of −r. As −r does not depend on x, such guards have
no non-linear dependencies on x. For L 6= 0, the algorithm recurses with
p ′ = p · L, l ′ = li and r ′ = r/L. Linearization is not performed for (non-
polynomial) constraints with more than one x-dependent factor.

• Case l = ll21 , 0 > l2 constant :
The algorithm computes the expression i = l

−l2
1 and performs a symbolic

case split on r = 0. For r 6= 0, the algorithm recurses with p ′ = −p · r · i,
l ′ = i, r ′ = r−1. For r = 0, the result depends on the kind of guard under
consideration. For [e 6 0], guard linearization is applied recursively to the
expression [p · i 6 0]. For [e 6= 0], the result is given by 1 and for [e = 0] it is 0.
(This exploits the fact that the inverse of a real number is never zero.)

• Case l = ln1 ,n even integer :
The algorithm first computes symbolic expressions for the two roots z2 =

r1/n, z1 = −z2. The result depends on the kind of guard under consideration.

– For [e 6 0]: Constraint linearization is performed recursively on [0 6 p].
The algorithm performs a symbolic case split on the result. For 0 6 p,
the algorithm recurses with p ′ = −1, l ′ = l1, r ′ = z1 and p ′′ = 1, l ′′ =
l1, r ′ = z2, multiplies the results (in order to get an appropriate expression
describing the constraint that l1 is between the two roots) and multiplies
with a factor [r > 0] (in order to ensure that the subexpressions z1 and
z2 are well-formed). For p < 0, the algorithm recurses with p ′ = 1, l ′ =
l1, r ′ = z1 and p ′′ = −1, l ′′ = l1, r ′′ = z2 adds the results (in order to get
an appropriate expression describing the constraint that l1 is not strictly
inbetween the two roots), after multiplying the second summand with
[z2 6= 0] (in order to avoid double-counting a root at 0) and multiplies
with a factor [0 < r] (in order to ensure that the subexpressions z1 and z2
are well-formed) finally, the expression [r 6 0] is added as a summand
(as all even powers are at least 0).
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– For [e 6= 0] and [e = 0], the algorithm recurses with l ′ = l1, r ′ = z1 and
l ′′ = l1, r ′′ = z2, multiplies/adds (avoiding double-counting) the results
respectively, and multiplies with a factor [0 6 r]. For [e 6= 0], the algorithm
finally adds a summand [r < 0]

• Case l = ln1 ,n odd integer:
The algorithm performs a symbolic case split on 0 6 r. For 0 6 r, the algorithm
recurses with p ′ = p, l ′ = l1 and r ′ = r1/n. For r < 0, the algorithm recurses
with p ′ = p, l ′ = l1 and r ′ = −(−r)1/n (this is necessary because the simplifier
never considers power expressions with negative base and fractional exponent
well-formed).

• Case l = lm/n1 ,m,n integers:
The algorithm recurses on p ′ = p, l ′ = l1, r ′ = rn/m and multiplies the result
with [0 6 r] (in order to make sure rn/m is well-formed). For [e 6 0], the
algorithm additionally adds a summand p ′ · [r < 0] where p ′ is the result
of running constraint linearization recusively on [p < 0]. For [e < 0], the
algorithm additionally adds a summand [r < 0].

• Case l = x:
For Iverson brackets, the algorithm can simply return the precise expressions
which are known to be equivalent to the original guards due to the invariants,
as those already have the required shape.

For Dirac deltas, the sum simplifies, as the only possible value for x ′ is r,
which does not depend on x, and hence the remaining Dirac delta has a
constraint expression of the right shape. The only term in the invariant which
is potentially problematic is [ ∂∂xe = 0] · δ(e). Intuitively, our approach will
be to solve the equation ∂

∂xe = 0 for x. Then we can substitute x for its
solution within δ(e), which makes the Delta completely independent of x. The
algorithm simply calls constraint linearization recursively on [ ∂∂xe = 0] and
distributes products over sums and simplifies the result. Then the algorithm
iterates over all summands of the resulting expression. For each summand
s, the algorithm iterates over all factors and tries to find an Iverson bracket
of the shape [x − e ′ = 0]. The algorithm then computes s · δ(e

q
e ′/x

y
). All

of these expressions are then added together to form the expression e ′′. In
case the algorithm is not able to determine a suitable e ′ for some summand,
guard linearization fails. The result is given by linearize([ ∂∂xe = 0]) ·

δ(x−r)
∂
∂xe

+ e ′′.

(Where “linearize” performs guard linearization recursively.)

• Otherwise: If l is not given in any of the discussed shapes, guard linearization
fails.
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4.3.3 Symbolic Integration

These optimizations replace the integration terms with equivalent terms that do not
contain integration symbols. If the integrated term is a sum, the symbolic engine
integrates each summand separately and pulls all successfully integrated summands
out of the integral. If the integrated term is a product, the symbolic engine pulls
out all factors that do not contain the integration variable before performing the
integration.

integration of terms with deltas The integration engine first attempts to
eliminate the integration variable with a factor that is a Dirac delta, by applying the
rule f(e) =

∫
R dxf(x) · δ(x− e). The engine can often transform deltas that depend

on the integration variable x in more complicated ways into equivalent expressions
only containing x-dependent deltas of the above form, using guard linearization.
This transformation is applied when evaluating the integral.

integration of continuous terms The symbolic engine integrates continu-
ous terms (without Dirac deltas) in several steps. First, it multiplies out all terms
that contain the integration variable and groups together all Iverson bracket terms
in a single term. Second, it computes the lower and upper bounds of integration
by analyzing the Iverson bracket term. If necessary, it first rewrites the term into
an equivalent term within which all Iverson brackets specify the constraints on the
integration variable in a direct fashion, using guard linearization. This is necessary
as in general, a single condition inside a bracket might not be equivalent to a single
lower or upper bound for the integration variable. The integration bounds are then
computed as the minimum of all upper bounds and the maximum of all lower
bounds. (Using the encoding min(a,b) = [a 6 b] · a+ [b < a] · b.) Note that the
bounds of integration can also be −∞ and∞ respectively. bounds, where minimum
and maximum are again encoded using Iverson brackets.

Once integration bounds have been determined, it suffices to compute an an-
tiderivative for the remaining factors of the integrand, by the fundamental theorem
of calculus. The symbolic engine applies a number of standard rules for symbolic
integration in order to compute antiderivatives:

• Powers of the integration variable without free integration variable in the
exponent (including the special cases x = x1 and 1 = x0) are handled by the
standard rule∫

dx xy = [y+ 1 6= 0] · x
y+1

y+ 1
+ [y+ 1 = 0] · log |x|+C
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• Powers that only contain the integration variable in the exponent are handled
by rewriting them from xy to ey·log|x|. If the exponent z(x) := y · log |x| is a
linear function in x, PSI applies the standard rule∫

dxez(x) =
ez(x)

z ′(x)
+C.

• The natural logarithm is integrated as∫
dx log(a · x+ b) = a−1 · (a · x+ b) · log(a · x+ b) − x+C.

• For a > 0,
∫

dx e−a·x
2+b·x+c =e

b2

4a+c 1√
a
· (d/dx)−1 [e−x

2
]
(√
a · x− b

2·
√
a

)
+C

• The antiderivative of log(x)y/x is given by

[y+ 1 = 0] · log(|log(|x|)|) + [y+ 1 6= 0] · log(|x|)y+1

y+ 1
+C.

• For Γ(a, z) =
∫

R dt[z 6 t] · ta−1 · e−t and n a positive integer constant, we have∫
dx log(a · x+ b)n =

(−1)n

a
· Γ(1+n,− log(a · x+ b)) +C.

• For a > 0,
∫

dx (d/dx)−1 [e−x
2
](a · x+ b) =

1
a (d/dx)−1 [e−x

2
](a · x+ b) · (a · x+ b) − e−(a·x+b)2 +C

• The antiderivative of a Gaussian times its own antiderivative is evaluated via
partial integration.

• If the integrand has the form xn · f(x) for some positive integer n, and the
symbolic evaluation engine is able to find an antiderivative F(x) for f(x) as
well as for n · xn−1 · F(x), the antiderivative for the integrand is computed via
partial integration as∫

dx xn · f(x) = xn · F(x) +
∫

dxn · xn−1F(x).

All expressions encountered in this fashion are tracked, and if a linear relation
is discovered for an antiderivative, it is computed by solving the corresponding
linear equation.

The antiderivatives are then evaluated at the computed bounds. This possibly
necessitates evaluating a limit in case one or more of the bounds is infinite. We
implemented a number of standard rules to evaluate limits and remove them from
the final distribution expression.
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evaluating limits We implemented a number of simple rules to evaluate
limits. For example, for a sum, some summands will have a finite limit, some
summands will go to∞ and some summands will go to −∞. If there are only finite
limits of summands or all limits of summands have the same sign, the resulting
limit is the sum of the respective limits. To compute a limit, more case splits may
become necessary. For example limx→∞ e−a·x2 where a does not depend on x is 1
if a is zero, ∞ if a is negative and 0 if a is positive. The necessary case splits are
performed using Iverson brackets.

In case the engine is able to evaluate all necessary limits and they are finite in
all cases, the final result of integration is then the product of an Iverson bracket
checking that the lower bound is at most the upper bound times the difference of
the antiderivative evaluated at the upper and lower bound respectively.

4.4 evaluation

This section presents an experimental evaluation of PSI and its effectiveness com-
pared to the state-of-the-art symbolic and approximate inference techniques.

implementation We implemented PSI using the D programming language.
Our representation of distribution expressions relies on hash-consing, such that each
unique expression has at most one dynamic representation at a time and expressions
can be compared using reference equality checks. PSI can produce resulting query
expressions in several formats including Matlab, Maple, and Mathematica. Our
system and additional documentation, is available at http://www.psisolver.org.

The operands of finite sums and products are represented as sets to avoid redun-
dancy modulo the commutativity and associativity laws of addition and multiplica-
tion. We use de Bruin-indices to keep binding expressions unique.

execution environment We performed experiments on an 8-core 3.4 GHz
Intel I7-6700 CPU with 16 GB RAM.

benchmarks We selected two sets of benchmarks distributed with existing
inference engines. Specifically, we used examples from R2 [124] and Fun programs
from Infer.NET 2.5 [113]. We use the data sets and queries provided with the original
computations. Out of 21 benchmarks, 10 have bounded loops. The loop sizes are
usually equal to the sizes of the data sets (up to 784 data points in DigitRecognition).
Since several benchmarks have data sets that are too large for any of the symbolic
tools to successfully analyze, we report the results with truncated data sets. We now
briefly describe these benchmarks. R2 benchmarks include:

• BurglarAlarm: Finds the probability of burglary, given that the alarm sounded.
• ClinicalTrial1: Find if a new medical treatment is effective given the observa-

tions of its outcome on the experimental and control groups.

http://www.psisolver.org
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• CoinBias: Finds the bias of a biased coin given the toss observations.
• DigitalRecognition: Recognizes numerical digits from handwritten notes.
• Grass: Finds the probability of raining, given that the grass is wet.
• HIV: Estimates the parameters of a linear HIV dynamical model from data.
• LinearRegression1: Computes a best fit line given data observations.
• NoisyOR: Finds the posterior distribution of a node’s value (computed as

the noisy-or function of the values of the node’s parents) in a directed acyclic
graph.

• SurveyUnbias: Computes a gender bias for a survey report, models population
with a Gaussian distribution.

• TrueSkill: Computes the skills of players in a series of games, given the
outcomes of these games.

• TwoCoins: Finds the marginal distributions, two fair coins, given that not both
tosses resulted in heads.

Infer.NET Fun language benchmarks include:

• AddFun/Max: Computes a maximum of Gaussian variables.
• AddFun/Sum: Computes a sum of Gaussian variables, with a filter.
• BayesPointMachine: Training a Bayes point machine.
• ClickGraph: Finds the relevance of a web page from the sequence of a user’s

clicks.
• ClinicalTrial2: Find if a new medical treatment is effective given the observa-

tions of its outcome on the experimental and control groups. Differs from the
R2 version in the parameters and the query.

• Coins: Two coins example. The query is the full joint posterior distribution.
• Evidence/Model1: Tossing a single coin, with a prior evidence that influences

whether the coin is tossed.
• Evidence/Model2: Tossing two coins, with a a prior evidence that determines

whether two or one coins are tossed.
• LearningGaussian: Learning mean and variance of a Gaussian distribution

from a set of data points.
• MurderMystery: Finds the probability that a person is the murderer given the

weapon.

We elided the benchmarks LDA and MixtureOfGaussians, which use Dirichlet
distributions, which we and Hakaru do not currently support.

4.4.1 Comparison with Exact Symbolic Inference Engines

experimental setup For comparison with Mathematica 2015 and Maple
2015, we instruct PSI to skip symbolic integration and automatically generate
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Table 4.2: Comparison of Exact and Interactive Symbolic Inference Approaches.

Benchmark Type Dataset PSI Mathem. Maple Hakaru

BurglarAlarm D –     
ClinicalTrial1 DC 100/1000  – – ××
CoinBias DC 5/5  t/o t/o  n

DigitRecognition D 784/784  – – ×
Grass D –   ××  
HIV C0 10/369 G#n – – –
LinearRegression1 C0 100/1000 G#

∫
– – –

NoisyOr D –     
SurveyUnbias DC 5/5  n t/o ×  n

TrueSkill C 3/3 G#
∫

t/o t/o G#n

TwoCoins D –    –
AddFun/max C –  # × #
AddFun/sum C –    G#n

BayesPointMachine C 6/6  n t/o t/o G#n

ClickGraph DC 5/5  t/o t/o  n

ClinicalTrial2 DC 5/5  t/o t/o  n

Coins D –   ××  
Evidence/model1 D –  # ××  
Evidence/model2 D –   ××  
LearningGaussian C0 100/100 G#n – – –
MurderMystery D –     

Legend: Type: Discrete (D), Continuous (C), Zero-probability observations (0).
Dataset: Full (a/a), no input (–), or the first a out of b inputs (a/b).
Tools: Fully simplified ( ) Partially simplified (G#), Not simplified (#),

Not normalized ( n, G#n), Remaining integrals (G#
∫
),

Incorrect (××), Crash (×), Timeout (t/o).

distribution expressions in the formats of the two tools. We run Mathematica’s
Simplify() and Maple’s simplify() commands. For Hakaru [23, 122] (commit
e61cc72009b5cae1dee33bee26daa53c0599f0bc), we implemented the benchmarks as
Hakaru terms in Maple, using the API exposed by the NewSLO.mpl simplifier (as
recommended by the Hakaru developers). For each benchmark, we set a timeout of
10 minutes and manually compared the results of the tools.

results Table 4.2 presents the results of symbolic inference. For each bench-
mark, we present the types of variables it has and whether it has zero-probability
observations. We also report the size of the data set provided by the benchmark (if
applicable) and the size of the subset we used. For each tool we report the observed
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inference result. We mark a result as fully simplified ( ) if it does not have any
integrals remaining and has a small number of remaining terms. We mark results
that have some integral terms remaining (G#

∫
), and partially simplified results (G#).

We mark a result as not normalized ( n, G#n) if a tool does not fully simplify the
normalization constant. We marked specifically if execution of a tool experienced
a crash (×) a timeout (t/o) or a tool produced an incorrect result (××). For five
benchmarks, the automatic conversion of PSI’s expressions could not produce Math-
ematica and Maple expressions, because of the complexity of the benchmarks. We
marked those entries as ’–’. Hakaru’s simplifier does not handle zero-probability
observations and expectation queries, and therefore we have not encoded these
benchmarks (also marked as ’–’).

psi PSI was able to fully symbolically evaluate many of the benchmark programs
and generate compact symbolic distributions. Running PSI took less than a second
for most benchmarks. The most time consuming benchmark was DigitRecognition,
which PSI analyzed in 37 seconds. For two benchmarks, PSI was not able to remove
all integral terms, although it simplified and removed many intermediate integrals.

mathematica and maple For several benchmarks, both Mathematica and
Maple did not produce a result before the timeout, or returned a non-simplified
expression as the result. This indicates that the distribution expressions of these
benchmarks are too complex, causing general computer algebra systems to navigate
a huge search space. However, we note that these results are obtained for a mech-
anized translation of programs with the specific encoding we described above. It
is possible that a human-driven interactive inference with an alternative encoding
may result in more simplified distribution expressions.

Maple crashed for addFun/max and addFun/sum. We identified that the crashes were
caused by an infinite recursion and subsequent stack overflow during simplification.
Four benchmarks – Coins, Evidence/model1, Evidence/model2, and Grass produce
results that are different from those produced by the other tools. For instance, Maple
simplifies the density function of Coins to 0 (which is incorrect). We attribute this
incorrectness to the way Maple integrates Dirac deltas and how it defines Heaviside
functions (by default, they are undefined at input 0, but a user can provide a
different setting [4]). In our evaluation, none of the alternative settings could yield
the correct results. We reported these bugs to the Maple developers. These examples
indicate that users should be cautious when using general computer algebra systems
to analyze probabilistic programs.

hakaru For the ClinicalTrial1 benchmark, Hakaru produced a result differing
from PSI’s. To get a reference result, we ran R2’s simulation to compute an ap-
proximate result and found that this result is substantially closer to PSI’s. For the
DigitRecognition benchmark, Hakaru overflowed Maple’s stack limit. Hakaru does
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Table 4.3: Performance (in s) of Exact and Interactive Symbolic Inference Approaches.

Benchmark PSI Mathematica Maple Hakaru

BurglarAlarm 0.07 4.57 4.06 0.02

ClinicalTrial1 17.15 – – ××0.54
CoinBias 0.10 t/o t/o 0.02

DigitRecognition 36.97 – – ×6.24
Grass 0.68 7.89 2.00 0.02

HIV 1.14 – – –
LinearRegression1 2.93 – – –
NoisyOr 0.53 118.89 57.72 0.04

SurveyUnbias 1.22 t/o ×585.09 0.23

TrueSkill 0.38 t/o t/o 5.36

TwoCoins 0.04 9.77 0.57 0.01

AddFun/max 0.05 31.66
×2.02 0.126

AddFun/sum 0.03 9.77 3.89 0.213

BayesPointMachine 1.24 t/o t/o 41.95

ClickGraph 3.56 t/o t/o 2.01

ClinicalTrial2 0.87 t/o t/o 0.72

Coins 0.01 0.58
××0.46 0.01

Evidence/model1 0.01 0.55
××0.44 0.01

Evidence/model2 0.01 6.40
××0.42 0.01

LearningGaussian 15.01 – – –
MurderMystery 0.02 0.93 0.51 0.01

not simplify the AddFun/max benchmark, but unlike Maple (which it uses), it does
not crash.

performance Summed over all examples where Hakaru produced correct but
possibly unsimplified results except BayesPointMachine, PSI and Hakaru ran for
about the same time (8.7s and 8.8s, respectively). BayesPointMachine is an outlier, for
which Hakaru requires 41.9s, while PSI finds a solution in 1.24s. Mathematica and
Maple are 10-300 times slower than PSI.

Table 4.3 presents the detailed timing results for each benchmark and the tool.
Columns 2-5 present time in seconds required to compute the output distribution
of each benchmark. We specifically marked if a benchmark caused a tool to timeout
(t/o), crash (×) or produce a wrong result (××). We ran the timing experiment on
an Intel(R) i7 CPU at 3.40GHz, with 16 GB of RAM, running Linux OS.
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Figure 4.7: Tracking.query2:
PSI (solid; exact)
and
SVE (dashed).

Figure 4.8: ClickGraph:
PSI (solid; exact)
and
Infer.NET
(dashed).

Figure 4.9: AddFun/max:
PSI (solid; exact)
and
Infer.NET
(dashed).

4.4.2 Comparison with Approximate Symbolic Inference Engine

experimental setup We compared PSI with SVE [142] by running posterior
distribution queries on the models from the SVE distribution (from the commit
f4cea111f7d489933b36a43c753710bd14ef9f7f). We included models tracking (with 7
provided posterior distribution queries) and radar (with 5 posterior distribution
queries). We excluded the competition model because SVE crashes on it. We did
not evaluate SVE on R2 and Infer.NET benchmarks as SVE does not encode some
distributions (e.g., Beta or Gamma) and lacks support for Dirac deltas, significantly
limiting its ability to represent assignment statements.

results PSI fully optimized the posterior distributions for all seven queries of
the tracking model. PSI fully optimized one query from the radar benchmark and
experienced timeout for the remaining queries. Fig. 4.7 presents the posterior density
functions (PDFs) for one of the tracking queries. SVE’s polynomial approximation
yields a less precise shape of the distribution compared to PSI.

4.4.3 Comparison with Approximate Numeric Inference Engines

experimental setup We also compared the precision and performance of PSI’s
exact inference with the approximate inference engines Infer.NET [113] and R2 [124]
for a subset of their benchmarks. Specifically, we compared PSI to Infer.NET on
ClickGraph, ClinicalTrial, AddFun/max, AddFun/sum, and MurderMystery and compared
PSI to R2 on BurglarAlarm, CoinBias, Grass, NoisyOR, and TwoCoins. We executed both
approximate engines with their default parameters.

results Infer.NET produces less precise approximate distributions for ClickGraph
and AddFun/max (Figures 4.8 and 4.9), Infer.NET’s approximate inference is impre-
cise in representing the tails of the distributions, although the means of the two
distributions are similar (e.g., differing by 0.7% for both benchmarks). PSI and
Infer.NET produced identical distributions for the remaining benchmarks. Because
of its efficient variational inference algorithms, Infer.NET computed results 5-200
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times faster than PSI. The precision loss of R2 on Burglar alarm is 20% (R2’s output
burglary probability is 0.0036 compared to the exact probability 0.00299). For the
other benchmarks, the difference between the results of PSI and R2 is less than 3%.
The run times of PSI and R2 were similar, e.g., PSI was two times faster on TwoCoins,
and R2 was two times faster on NoisyOR.

Tables 4.4 and 4.5 present detailed comparison of PSI with R2 and Infer.NET
approximate inference engines for a subset of the benchmarks. For each comparison
we present columns that represent the name of the benchmark, the results (in the
symbolical domain form) that PSI computed for the probabilistic query, the result
of the alternative approach (R2 and Infer.NET), and the the inference times of PSI
and alternative approaches. We collected inference times of these approaches from
tool diagnostics (and removed the time to set up their analysis).

Table 4.4: R2 Benchmark Precision and Analysis Time

Benchmark Expectation PSI Expectation R2 Time PSI Time R2

BurglarAlarm 2969983/992160802 ≈ 0.002993 . . . 0.0036 70 ms 173 ms
CoinBias 5/12 = 0.416̄ 0.417 100 ms 356 ms
Grass 509/719 ≈ 0.7079 . . . 0.715 680 ms 336 ms
NoisyOR 130307/160000 ≈ 0.8144 . . . 0.814 530 ms 250 ms
TwoCoins (1/3,1/3) (0.324, 0.336) 40 ms 108 ms

precision of expectation queries For all benchmarks in Table 4.4, PSI
produces precise expected values (and does not need to apply approximations).
The precision loss of R2 on Burglar alarm is 20%. For the other benchmarks, this
difference is smaller than 3%. For TwoCoins, R2 is not able to find equal expectations
even though the two outputs have the same marginal distribution. With an exception
of NoisyOr, both tools have similar inference times.

precision of posterior distribution queries For all benchmarks in Ta-
ble 4.5, PSI produces precise results PSI was able to compute precise closed-form
expressions for all output distributions. For three examples (BurglarAlarm, Gauss-
Sum, and MurderMystery) Infer.NET computes the almost the same distributions
(with numerical error of distribution parameters less than 0.01%). For Clinical-
Trial, Infer.NET produces the distributions of two independent variables. Table 4.5
contains the joint distribution from which these marginals can be immediately
derived. Infer.NET produces less precise approximate distributions for ClickGraph
and AddFun/max.
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Table 4.5: Infer.NET Benchmark Precision and Analysis Time.

Benchmark Distribution PSI Distribution Infer.NET

BurglarAlarm (2969983 · δ(1−b)+ 989190819 · δ(b))/992160802 Bernoulli(0.002995)

ClickGraph 6(s+3)5

3367 · [0 6 s] · [s 6 1] Beta(1.625, 1)

ClinicalTrial
900/102 · c · (1− c)4 · t4 · (1− t)· (Beta(5, 2), Beta(2, 5))

(77 · δ(1− e)+ 25 · δ(e)) Bernoulli(0.755))
AddFun/max

√
2/π · (d/dx)−1[e−x2 ](r/

√
2) · e−r2/2 Gauss(0.56, 0.68)

AddFun/sum (2 ·
√
π)−1 · e−r2/4 Gauss(0, 2)

MurderMystery (9 · δ(1−p)+ 560 · δ(p))/569 Bernoulli(0.0158)

Benchmark Time PSI Time Infer.NET

BurglarAlarm 70 ms 14 ms

ClickGraph 3.56 s 20 ms

ClinicalTrial 870 ms 21 ms

AddFun/max 50 ms 4 ms

AddFun/sum 30 ms 4 ms

MurderMystery 20 ms 1 ms

The examples in Figures 4.7, 4.8, and 4.9 illustrate that the choice of inference
method depends on the context in which the inference results are used. While
inferences about expectations in machine learning applications may often tolerate
imprecision in return for faster or more scalable computation, many uses of proba-
bilistic inference in domains such as security, privacy, and reliability engineering
need to reason about a richer set of queries, while requiring correct and precise
inference. We believe that the PSI system is particularly suited for such settings and
is an important step forward in making automated exact inference feasible.

4.5 related work

This section discusses related work in symbolic inference and probabilistic program
analysis.

4.5.1 Symbolic Inference

graphical models Early research in the machine learning community focused
on symbolic inference in Bayesian networks with discrete distributions [146] and
combinations of discrete and linearly-dependent Gaussian distributions [27]. For
more complex hybrid models, researchers proposed projecting distributions to
mixtures of base functions, which can be easily integrated, such as truncated expo-
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nentials [118] and piecewise polynomials [142, 150]. In contrast to these approximate
approaches, PSI’s algorithm performs exact symbolic integration.

probabilistic programs Claret et al. [30] present a data flow analysis for
symbolically computing exact posterior distributions for programs with discrete
variables. This analysis operates on the program’s concrete state, while efficiently
storing the states using algebraic decision diagrams (ADDs).

Bhat et al. [15] present a type system for programs with continuous probability
distributions. This approach is extended in [16] to programs with discrete and
continuous variables (but only discrete observations). Like PSI, the density compiler
from [16] computes posterior distribution expressions, but instead of symbolically
simplifying and removing integrals, it generates a C program that performs numeri-
cal integration (which may, in general, be expensive to run).

We note that for numerical integration, a user needs to provide all concrete values
of the parameters ahead of time. Moreover, multivariate numerical integration
(which is typically based on MC sampling) can be often be prohibitively expensive
and produce non-deterministic results.

In contrast, our approach computes all, potentially multivariate, integrals symboli-
cally and provides a symbolic posterior distribution, which contains only elementary
functions.

The Hakaru probabilistic language [23, 122] runs inference tasks by combining
symbolic and sampling-based methods. To optimize MCMC sampling for probabilis-
tic programs, Hakaru’s symbolic optimizer (1) translates the programs to probability
density expressions in Maple’s language, (2) calls an extended version of Maple’s
simplifier, (3) uses these results to generate an optimized Hakaru program, and, if
necessary, (4) calls a MCMC sampler with the optimized program.

4.5.2 Probabilistic Program Analysis

verification Researchers presented various static analyses that verify prob-
abilistic properties of programs, including safety, liveness, and/or expectation
queries. These verification techniques have been based on abstract interpreta-
tion [37, 40, 111, 116], axiomatic reasoning [12, 86, 119], model checking [77], and
symbolic execution [48, 141]. Many of the existing approaches compute exact prob-
abilities of failure only for discrete distributions or make approximations when
analyzing computations with both discrete and continuous distributions.

Researchers have also formalized fragments of probability theory inside general-
purpose theorem provers, including reasoning about discrete [10, 84] and continu-
ous distributions [45, 72]. The focus of these works is on human-guided interactive
verification of (possibly recursive) programs. In contrast, PSI performs fully auto-
mated inference of hybrid discrete and continuous distributions for programs with
bounded loops.
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transformation R2 [124] transforms probabilistic programs by moving ob-
serve statements next to the sampling statement of the corresponding variable
to improve performance of MCMC samplers. Gretz et al. [68] generalize this
transformation to move observations arbitrarily through a program. Probabilis-
tic program slicing [83] removes statements that are not necessary for computing
a user-provided query. These transformations simplify program structure, while
preserving semantics. In comparison, PSI directly transforms and simplifies the
probability distribution that underlies a probabilistic program.

4.6 discussion

In this chapter, we presented PSI, an approach for end-to-end exact symbolic
analysis of probabilistic programs with discrete and continuous variables. PSI’s
symbolic nature provides the necessary flexibility to answer various queries for
non-trivial probabilistic programs. More precise and reliable probabilistic inference
has the potential to improve the quality of the results in various application domains
and help developers when testing and debugging their probabilistic models and
inference algorithms. With its rich symbolic domain and optimization engine, we
believe that PSI is a useful tool for studying the design of precise and scalable
probabilistic inference based on symbolic reasoning.





5
λP S I : E X A C T I N F E R E N C E F O R H I G H E R - O R D E R
P R O B A B I L I S T I C P R O G R A M S

Recent PPS that support exact symbolic reasoning in the presence of continuous
distributions (Hakaru [122] and PSI from Chapter 4) lack some useful language
features. For example, PSI does not support first-class functions. While Hakaru’s
implementation supports first-class functions (including distributions over func-
tions), its exact inference operators, namely normalization and disintegration (with
respect to the Lebesgue measure) are external programs that manipulate Hakaru
terms and are not available as first-class operators within these terms. In contrast,
there are higher-order PPS which do support first-class inference (e.g., Church [160],
WebPPL [63] and Anglican [32]), however, their exact inference algorithms only
handle discrete distributions. A key challenge then is to provide support for both
first-class inference and the ability to compute the exact posterior over discrete,
continuous and mixed variables.

this chapter We present λPSI, the first PPS which addresses the above chal-
lenge.

First, we introduce the statically typed higher-order probabilistic programming
language (PPL) λPSI, which is based on the PSI PPL [49] but with additional support
for tuples, arrays, higher-order functions, and nested inference. As demonstrated in
PPLs such as Church [65], WebPPL [63], Anglican [172] and Venture [109], higher-
order constructs are useful for specifying models where inference queries are nested
within other inference queries. This enables, for instance, an inference to be made
about agents that themselves make use of models and (incomplete) data so to infer
knowledge about the state of the world. Unlike other higher-order PPLs (see above),
which are dynamically typed, static typing enables easier debugging, better error
messages, and avoids expensive dynamic checks during inference.

Second, we introduce an exact inference solver to handle these language features
while supporting mixed, discrete, and continuous variables. λPSI’s engine further
explicitly computes the probability of error, while existing PPS crash stochastically
at run time (e.g., randomly indexing an array may or may not cause an out-of-range
error during sampling-based inference). We believe λPSI is the first to support exact
inference for higher-order probabilistic programs with this level of expressiveness.

99



100 λpsi : exact inference for higher-order probabilistic programs

Pr[cookie|button a]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|b
utto

n b
]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|button a]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|b
utto

n b
]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 5.1: Inference on “Epistemic States”: approximate inference in Webchurch (top) vs.
exact inference in λPSI (bottom).

Finally, we show λPSI is powerful enough to specify a number of interesting
problems ranging from information theory to rational agents, and that its solver
can compute, for the first time, the exact posterior for many applications that so far
could only be handled approximately.

main contributions Our key contributions are:

• The λPSI statically typed higher-order PPL which supports higher-order functions
and nested inference (§5.2).

• The λPSI solver which performs exact symbolic inference and computes the
posterior distribution over discrete, continuous, and mixed random variables (§5.3–
§5.5).

• An extensive evaluation of higher-order exact inference with λPSI across various
applications (§5.6).

The work presented in this chapter has been published in Gehr et al. [53].

5.1 motivation and overview

We now provide a motivating example for nested inference, followed by an overview
of λPSI.
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nested inference example To reason about rational agent behavior, we can
build probabilistic models where multiple rational agents interact and each has
a model about how the other agents model the interaction. Such models can be
easily built in languages where probabilistic inference is a first-class expression
which is allowed to occur inside another probabilistic inference query. For instance,
Goodman and Tenenbaum [64] describe a number of (Church/WebPPL) models of
this kind in Chapter 15 (“Social cognition”). In order to evaluate our exact inference
approach, we have specified all of those models in λPSI (see also §5.6).

To illustrate the results of exact inference, let’s consider some examples of section
“Epistemic States” of that chapter. These examples model an observer of a rational
agent operating a vending machine that probabilistically yields either a cookie
or a bagel, depending on which one of two buttons a or b is pressed. In the first
model (Fig. 5.1, left), the agent is observed to press button b. The observer assumes
a uniform prior over the agent’s actions and knows that the agent’s goal is to
obtain a cookie. The result is the posterior on the probability that the machine
yields a cookie when pressing a given button. In the second and third model
(Fig. 5.1, middle and right), the vending machine has only one button a, which
may be pressed multiple times. The prior belief over the agent’s actions is biased
towards pressing the button fewer times, and the agent is observed to press button a
twice. While the observer knows that the agent’s goal is to obtain a cookie in the
second model, the goal is unknown in the third model. Such models are interesting
because they involve a mixture of continuous and discrete distributions as well as
nested inference queries. We show the results comparing approximate vs. exact joint
posteriors for these examples in Fig. 5.1. The plots in the top row are normalized
histograms of 106 samples each with a resolution of 100× 100, computed by the
Church implementation “Webchurch”. The bottom row shows plots of the exact
posteriors computed by λPSI. We note that our engine evaluates all posteriors
within a few seconds, while random sampling takes up to 10 minutes. To the best
of our knowledge, this is the first time that those posterior distributions have been
evaluated to this precision. We discuss other interesting applications in §5.6.

λpsi language and inference The λPSI program in Fig. 5.2 illustrates some
of λPSI’s core language features. Fig. 5.2 also visualizes the exact inference result
computed by λPSI.

First, the program creates a tuple a of two random real numbers. One of them is
drawn from a continuous uniform distribution, whereas the other is drawn from a
discrete uniform distribution. In addition to tuples, λPSI supports arrays of both
fixed and random length.

Next, variable x is initialized to a random entry of the tuple. The subsequent
assignment stores the result of a nested inference query in the variable p of type
Distribution[R]. The infer expression accepts an (anonymous) function representing
the query, which uses a uniform prior for the variable y. This variable is conditioned
on the observed evidence y <= x to produce the nested posterior. Note that the
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function we pass to infer is itself random, as it depends on the external random
variable x. infer itself is a deterministic function without side effects (in particular,
the nested inference query does not influence our knowledge of x), but because the
input is random, the returned distribution p is also random.

Finally, we return the expectation of p and a value drawn from p, instructing λPSI
to compute a joint probability distribution for those two values. As p is random,
so is its expectation. Therefore, the program produces a joint distribution of two
dependent real random variables.

The system computes this distribution by combining symbolic expressions for
subprograms and then simplifying them. For example, the joint distribution of
variables a and x is represented by the following symbolic expression in λPSI:

∫
dv
∫

dz

(a)︷ ︸︸ ︷
1
2 [0 6 v] · [v 6 2] · λJvK ·

(b)︷ ︸︸ ︷(
1
3

∑3
k=1 δ(k/3)JzK

)
· δ(v, z)JaK︸ ︷︷ ︸

(c)

· 12 (δ(a0)JxK+ δ(a1)JxK)︸ ︷︷ ︸
(d)

.

The expression uses integrals to marginalize the temporary values v and z of the
first, resp. second entry of a. Part (a) represents the uniform distribution on the
interval [0, 2]. Here, λJvK represents the Lebesgue measure, which is a continuous
measure with density 1 at each real number. Part (b) uses Dirac deltas of the form
δ(e)JzK, which can be interpreted as point-mass distributions on e for z, to represent
the discrete uniform distribution on {13 , 23 , 1}. Part (c) assigns the tuple (v, z) to a,
and part (d) assigns the first or second entry of a to x, each with probability 1

2 . At
this point, it is sufficient for the reader to understand the basic ideas. In §5.3, we
provide all details required to understand this expression in depth.

The above is an example of an intermediate result computed during the symbolic
analysis λPSI performs. A plot of the cumulative distribution function of the final
result computed by λPSI is shown in Fig. 5.2. The full symbolic expression for this
final result computed by λPSI (ignoring errors) is given by

�x,y. [0 6 y] · [y 6 1] · λJyK ·
(
1
2 · [y 6

1
3 ] · δ

(
1
6

)
JxK

+ 1
4 · [0 6 x] · [x <

1
2 ] · [y 6 2x] ·

1
x · λJxK

+ 1
4 · [y 6

2
3 ] · δ

(
1
3

)
JxK+ 5

12 · δ
(
1
2

)
JxK
)
.

5.2 the λpsi PPL

We next describe the higher-order probabilistic programming language λPSI, which
extends the PSI language by (i) higher-order functions, (ii) a first-class probabilistic
inference operator, (iii) conditioning on probability-zero events, and (iv) a dependent
static type system. Fig. 5.3 presents a simplified core syntax of λPSI, which is
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1 def main(){

2 a := (uniform(0,2),

3 uniformInt(1,3)/3);

4 x := a[flip(1/2)];

5 p := infer((){

6 y := uniform(0,1);

7 observe(y <= x);

8 return y;

9 });

10 return (expectation(p),

11 sample(p));

12 }
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Figure 5.2: A λPSI program (left) and its exact joint probability distribution (right) computed
by λPSI.

Func ::= def x (x: Type, . . . ,x: Type) Body
Body ::= { Stmt∗ } | ⇒ Ex;
Ex ::= n | x | BuiltIn | uop Ex | Ex bop Ex | (Ex, . . . ,Ex) | Ex[Ex] |

(x: Type, . . . ,x: Type) Body | Ex(Ex)
Stmt ::= x := Ex; | Ex = Ex; | return Ex; |

observe(Ex); | cobserve(Ex,Ex); |

if Ex { Stmt∗ } else { Stmt∗ } | for x in [n..n){ Stmt∗ }
Type ::= Type× · · · × Type | Type→ Type | Distribution[Type] |

N | Z | R | · · ·

BuiltIn ∈ {Flip, Gauss, Uniform, UniformInt, Categorical, Exponential, . . .}
∪ {infer, sample, expectation}
∪ {exp, log, . . .}

Figure 5.3: Core syntax of λPSI (n, x, uop, and bop denote constants, variables, unary, and
binary operations, respectively).

sufficiently expressive to highlight the key insights of the work presented in this
chapter.

For reference, we present the syntax of the full language in Fig. 5.4.

types Our language features a static type system. In addition to standard nu-
meral, tuple, and function types, λPSI supports dedicated distribution types. For
example, Distribution[R] describes distributions over a real variable.



104 λpsi : exact inference for higher-order probabilistic programs

Prog ::= Decl∗

Decl ::= Func | VarDecl
Func ::= def x ParamList∗(:Ex)? Body
ParamList ::= (Param∗(,)?) | [Param∗(,)?]

Param ::= x: Ex
Body ::= { Stmt∗ } | ⇒ Ex;
Type ::= x | * | B | N | Z | Q | R | 1 | ExEx |

(Ex× · · · × Ex) | Ex[] | (Ex→ Ex) |

(
∏
x:Ex Ex[x])

VarDecl ::= x := Ex;
Lambda ::= ParamList∗ LambdaBody
LambdaBody ::= { Stmt∗ } | ⇒ Ex
Ex ::= n | x | BuiltIn | (Ex) | (Ex:Ex) |

(uop Ex) | (Ex bop Ex) |

() | (Ex,) | (Ex,Ex(,Ex)∗(,)?) |

[] | [Ex(,Ex)∗(,)?] | Ex.length |

Ex[Ex] | Ex(Ex) | Lambda | Type
AssgnLhs ::= x | AssgnLhs[Ex] | (AssgnLhs:Ex)

(AssgnLhs, . . . ,AssgnLhs(,)?)

Stmt ::= AssgnLhs = Ex; | Decl | return Ex; |

observe(Ex); | cobserve(Ex,Ex); |

if Ex { Stmt∗ } (else { Stmt∗ })? |

for x in [n..n){ Stmt∗ } | assert(Ex);

n ∈ {0, 1, 2, 3, . . .}
x ∈ Vars

bop ∈ {+ ,- , * , %, /, ^, ~, &&, ||, ==, !=, < , >, <= , >=}
uop ∈ {+ ,- , !}

BuiltIn ∈ {Distribution, infer, sample, expectation, array, π, exp, log, floor, ceil, . . .}
∪ {Flip, Gauss, Uniform, UniformInt, Categorical, Exponential, Dirac, . . .}

Figure 5.4: Full syntax of the higher-order probabilistic programming language λPSI (exten-
sion of Fig. 5.3).

We support dependent types ExEx for fixed-length arrays, which are compatible
to tuple types (e.g., Z2 is equivalent to Z×Z). Subtype relations are standard
(e.g., N ⊆ Q and R → N ⊆ Z → Q). We do not distinguish types and other
expressions in our grammar. Types are compared modulo partial evaluation of
numerical expressions.

programs and functions A λPSI program consists of a sequence of function
declarations, whose bodies can be single expressions, such as in the function



5.2 the λpsi PPL 105

def succ(x:R)⇒x+1;

Alternatively, function bodies can be sequences of imperative statements, such as in
the function

def succ(x:R){

y:=x;

y=y+1;

return y;

}

The main function, which may take parameters, forms the entry-point of a λPSI
program.

Any function in λPSI can have multiple parameter lists, which defines a curried
function. E.g., def const(x:R)(_:R)⇒ x is shorthand for def const(x:R)⇒ (_:R)⇒ x.
It is possible to optionally specify a return type: def id(x:R):R⇒ x.

Parameter lists can also be declared with square brackets, usually used for depen-
dent types and polymorphic functions: The function def foo[n:N](x:R^n):R^(2 · n)⇒
x~x; concatenates a fixed-length array x with itself to yield an array of double length.
Further, consider the following identity function: def id[a:*](x:a)⇒ x;. The type of
this function is

∏
x:*

(x→ x), which can be read as “for any type x, this provides a
function from x to x”. Square-bracket parameters can be provided explicitly at the
call site, as for example in id[R[]]([1,2,3]), or inferred automatically from a regular
function call, which will happen twice when type-checking the example expression
id(id)([1,2,3]).

expressions Our language supports standard unary and binary operations on
boolean and numeric types. Also, it supports tuples with the usual syntax. For
example, the expression (3,4) is a two-element tuple, whose first entry 3 can be
accessed by (3,4)[0].

In addition to tuples, λPSI supports arrays. The expression () (resp. []) is the
empty tuple (resp. array) and (Ex,) is a single-element tuple. Subexpressions may
be annotated with their types, e.g., ((1:N)+(2:N):N,[-1,2]):N×Z[].
λPSI supports multiple built-in expressions. These include constructors for built-

in distributions, such as Flip and Gauss, whose lower-case variants (i.e., flip and
gauss) draw a sample from the respective distribution. For example, Flip(1/2) is
the uniform distribution on {0, 1} (whereas flip(1/2) is a sample), and Gauss(0,1)

is the standard normal distribution parameterized by mean and variance. We can
sample from an expression d representing a distribution via the expression sample(d).
For example, the expression flip(1/2) is equivalent to sample(Flip(1/2)). Similarly,
expectation(d) computes the expected value of a random variable drawn from d.

Finally, λPSI supports lambda expressions denoting anonymous functions, for
example (x:R){ y:=x; y=y+1; return y; }. The syntax for function application is stan-
dard (e.g., succ(1)).
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e ::= x |q | e |π | − e | e1 + . . .+ en | e1 · . . . · en | ee21 | log(e) | bec | dee |

[e1 = e2] | [e1 6 e2] | [e1 6= e2] | [e1 < e2] |
∑
x∈Z e[x] |

∫
dx e[x] | (d/dx)−1[e−x

2
] |

(e1, . . . , ek) | [x 7→ e[x]](e) | e1e2 | e1e2 7→e3 | {f1 7→ e1, . . . , fk 7→ ek} | e.f | e1{f 7→ e2} |

λx. e[x] | e1(e2) |�x.e[x] | eJxK | δ(e)JxK | λJxK | e1�e2 |⊥ | e1?(e2)

Figure 5.5: Symbolic domain for expressing probability distributions. We write e[x] to denote
that x is a free variable in e. The highlighted elements are fundamental to λPSI
and new compared to PSI.

statements Our language distinguishes variable declarations (e.g., x:=3) and
assignments (e.g., x=3). The observe statement conditions the random program state
on (positive-probability) observed evidence: all program states that do not satisfy
the condition are discarded. The result of inference on the final program is given
by renormalizing the resulting subprobability distribution at program exit. For
example, the statement observe(x>=2); conditions the distribution on program states
on the observed fact that x is at least 2.

The cobserve (“continuous observation”) statement is used to condition on a
possible, but probability-zero event. In particular, cobserve(x,y); conditions on the
probability-zero event that x is equal to y. We note that conditioning on such events
is a delicate matter and hence requires its own statement in the language. See Shan
and Ramsey [148] for an in-depth discussion of the involved issues.

Finally, λPSI supports standard if statements, and for loops with statically-known
bounds.

first-class inference The built-in infer function enables us to perform
nested inference. It reifies a function f with return type a to a Distribution[a], for
any type a. If f does not execute observe statements, infer can be thought of as the
inverse of sample. This is because infer(() ⇒ sample(d)) returns the distribution d

and () ⇒ sample(infer(f)) yields the function f. Otherwise, infer is more interesting
(see Fig. 5.2): it forms a context within which the observations evaluated by f (see
Line 7) take effect and returns the normalized posterior of f given that evidence and
all state outside the context. The computation of infer has no side effects, meaning
that the observations do not affect the knowledge outside the query (e.g., about x).

5.3 a symbolic domain for distributions

We now introduce a symbolic domain for probability distributions. When perform-
ing exact inference, λPSI simplifies representations of distributions in this domain.
In §5.4, we will see how any λPSI program is translated to this domain.
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5.3.1 Representation

λPSI’s symbolic domain for probability distributions is shown in Fig. 5.5. This
grammar extends the symbolic domain used in PSI by representations of data
structures (highlighted in second line of Fig. 5.5) as well as higher-order functions
and distributions (highlighted in third line).

basic arithmetic expressions Basic expressions (first line in Fig. 5.5) are
inherited from PSI, including variables (x), rational constants (q), the irrational
constants e and π, as well as standard arithmetic expressions including the floor
(bec) and ceiling (dee) operators. The Iverson bracket [P] is an indicator for the
proposition P with the usual convention [89]. Like in PSI, we write divisions a/b as
a · b−1.

data structures Our symbolic domain can directly represent data structures
of λPSI’s programming language (second line in Fig. 5.5). In particular, it supports
tuples, arrays, and records (the latter are used for program states, see §5.4). For
example, (1, 2) is a tuple and {f 7→ 1} is a record with one field f, which has value 1.
We represent arrays as mappings from indices to values together with their lengths.
For example, the identity permutation of length 5 is represented as [x 7→ x](5). The
i-th value in an array or tuple a is denoted by ai. The expression a.f is the value of
field f in record a. The expression ai 7→b (resp. a{f 7→ b}) represents a modification
of a tuple or array (resp. record) a where the i-th value (resp. the value of field f) is
replaced by b.

distributions and higher-order functions The third line in Fig. 5.5
shows the most interesting expressions, which are particular to representing prob-
ability distributions and first class functions. The domain contains sums over Z

(we write e[x] to denote that x is a free variable in e) as well as integrals, which
will be discussed in detail in §5.3.2. The domain of an integral is implicitly defined
by the variable x being integrated over. The expression (d/dx)−1[e−x

2
] denotes the

antiderivative of the function e−x
2
, which does not have a closed-form solution but

is useful to for example express the cumulative distribution function of a normal
distribution.

To support higher-order functions and nested inference, our domain contains
lambdas in two flavours: functions (λx.e[x]) and distributions (�x.e[x]). For example,
λx.f(x) is the same as the function f, while �x.pJxK is the same as the distribution
p. Note that unlike for function application e1(e2), the argument x for distribution
application eJxK must be a variable. We discuss distributions in more detail in §5.3.2.

As we will exemplify in §5.3.3, all distributions in λPSI are built from two
primitive distributions. The Dirac delta δ(e)JxK expresses that variable x is distributed
according to the point-mass distribution on e, where x cannot occur freely in e. For
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example, δ(0)JxK is the point-mass distribution on 0. Dirac deltas are used to express
discrete distributions. The Lebesgue measure λJxK is used to construct a continuous
distribution from a probability density function (discussed in §5.3.3). The operator
�denotes disintegration, which we will discuss in more detail in §5.5.5. It can be
loosely thought of as a special kind of division allowing us to eliminate Lebesgue
measures by the equivalence λJxK�λJxK = 1.

errors The expression ⊥ denotes a special error value, and δ(⊥)JxK is used
to capture the probability of an error. We use e1?(e2) to propagate errors upon
composition, i.e.e1?(e2) is equal to e1(e2) for e2 6= ⊥, while e1?(⊥) reduces to δ(⊥).

5.3.2 Interpretation

Before continuing our discussion, we provide an interpretation of the more advanced
symbolic expressions.

distributions A key concept of λPSI are distributions, which can be loosely
thought of as unnormalized probability densities. Formally, a distribution f over a
λPSI type τ (e.g., R) is a bounded measure on τ (it is not necessarily normalized) and
we write D[τ] to denote the set of all distributions over τ. We write �x. fJxK to clarify
that f is a distribution for the variable x. Consider the expression λa. �b. f(a)JbK,
which takes a as input and returns a probability distribution for b. Here, f can be
thought of as taking a as input and returning a probabilistic value for b.

integrals A distribution �x.fJxK over τ can be formally interpreted as a random
variable: for any S ⊆ τ, it is

Pr[f ∈ S] ∝ f(S) =
∫
τ 1S df

where the integral is the Lebesgue integral (recall that f is a measure). The probability
is proportional due to the missing normalization.
λPSI’s symbolic domain (see Fig. 5.5) uses a convenient (non-standard) notation

for integrals: for any types τ, τ ′, distribution f ∈ D[τ], and function g ∈ τ→ τ ′, it is∫
dx g(x)fJxK defined as

∫
τ g df.

The domain of the integral is determined by the type τ of x. Note how the Riemann-
style notation (dx) makes dependencies explicit: The “output” of f is used as an
input to g. Notwithstanding the above definition, it often suffices to think about
integrals in the common Riemann sense.



5.3 a symbolic domain for distributions 109

integrating higher-order distributions Our notation allows conve-
niently expressing integrals involving higher-order distributions. For f ∈ D[D[τ]]

being a distribution over distributions over some type τ, we can e.g. write

�r. hJrK = �r.
∫

dx xJrK · fJxK .

Here, the integration variable x and the result h are first-order distributions. The
interpretation is that for any S ⊆ τ: Pr[h ∈ S] ∝

∫
dx x(S) · fJxK.

dirac delta For any value v, the Dirac delta δ(v) is a measure capturing the
point mass on v. Formally, for any type τ, δ : τ→ D[τ] is defined as

∀v ∈ τ, S ⊆ τ. δ(v)(S) = [v ∈ S].

The expression �x. δ(v)JxK denotes that x is distributed according to a point mass
on v. We can loosely think of δ(v)JxK being 0 for all x 6= v and ∞ for x = v. The
Dirac delta is normalized:

∫
dx δ(v)JxK = 1.

5.3.3 Examples

The Dirac delta is used to represent discrete probability distributions. For example,
the Bernoulli distribution with success probability 1

3 (i.e., flip(1/3)) can be written
as

�x. Bernoulli(13)JxK := �x. 2
3δ(0)JxK + 1

3δ(1)JxK .

Note that as expected, the probability of value 1 is∫
dx [x = 1] · Bernoulli(13)JxK =

1
3 .

Discrete distributions with infinite support can be represented using expressions
of the form

∑
x∈Z e[x]. For instance, geometric(1/4), the geometric distribution with

success probability 1
4 , can be written as

�x.
∑
i∈Z [i > 0] ·

(
3
4

)i · 14 · δ(i)JxK . (5.1)

Intuitively, the Lebesgue measure λJxK assigns uniform weight to all values. It can
be used to define continuous distributions: the expression �x. p(x) · λJxK denotes
the distribution of a continuous random variable with probability density function
p. For example, the exponential distribution with rate 2 (i.e., exponential(2)) can be
written as

�x. [0 6 x] · 2e−2x · λJxK .
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Variable read x = λσ. �r. δ(σ.x)JrK (5.5)

Binary operation a + b = λσ. �x.
∫

dy
∫

dz a (σ)JyK · b (σ)JzK · δ(y+ z)JxK (5.6)
Assignment x = e; = λσ. �σ ′.

∫
dx ′ e (σ)Jx ′K · δ(σ{x 7→ x ′})Jσ ′K (5.7)

Seq. composition A; B; = λσ. �σ ′′.
∫

dσ ′ A (σ)Jσ ′K · B (σ ′)Jσ ′′K (5.8)

Observation observe(e); = λσ. �σ ′. δ(σ)
q
σ ′
y
· p(σ) where p(σ) :=

∫
dx e (σ)JxK · [x 6= 0] (5.9)

Continuous obs. A; cobserve(b,c); = λσ. �σ ′.
∫

dy
((

A (σ)Jσ ′K · b (σ ′)JyK
)
�λJyK

)
· c (σ ′)JyK (5.10)

Control flow if e {A} else {B} = λσ. �σ ′.
∫

dx e (σ)JxK ·
(
[x 6= 0] · {A} (σ)Jσ ′K + [x = 0] · {B} (σ)Jσ ′K

)
(5.11)

Scoping {A} = λσ. �σ ′.
∫

dσ ′′ A (σ ′)Jσ ′′K · δ(σ ′′ \ {x : variable x introduced in A})Jσ ′K (5.12)

Inference infer(f) = λσ. �x. δ
(

�y. f ()JyK ·Z−1
)
JxK where Z :=

∫
dz f ()JzK (5.13)

Sample sample(d) = λσ. �z.
∫

dx d (σ)JxK · xJzK (5.14)

Expectation expectation(d) = λσ. �z.
∫

dx d (σ)JxK · δ
(∫

dy xJyK · y
)
JzK (5.15)

Function (){ A; return e; } = λσ. �z.
∫

dσ ′ A (σ)Jσ ′K · e (σ ′)JzK (5.16)

Figure 5.6: Key translation rules, ignoring error states. The rules are recursive and we write
a to denote the translation of a.

A key property of λPSI’s symbolic domain is the fact that it can represent distri-
butions which are only partially continuous. For example, the uniform distribution
over an interval [a,b] (i.e., uniform(a,b)) is represented by

λa,b. �x. [a < b] · 1
b−a · [a 6 x] · [x 6 b] · λJxK (5.2)

+ [a = b] · δ(a)JxK (5.3)
+ [b < a] · δ(⊥)JxK . (5.4)

This distribution is parametric in a and b, and it consists of three parts. For a < b, the
part (5.2) defines a continuous uniform distribution between a and b. In part (5.3),
the interval only includes a single point and we hence place a point mass on a. The
case b < a is treated as an error and we put all the probability mass on the error
value ⊥ in part (5.4).

5.3.4 Comparison to PSI

As a core difference to PSI from Chapter 4, λPSI’s symbolic domain closely follows
the measure-theoretic interpretation of its terms (see §5.3.2). In particular, it intro-
duces explicit Lebesgue measures (λJxK) for continuous distributions and explicitly
specifies the random output variable of a Dirac delta. While the expression δ(x) in
PSI is equivalent to δ(0)JxK in λPSI, the formal interpretation of the PSI expression
δ(x− y) is unclear. In λPSI, this is equivalent to either δ(x)JyK or δ(y)JxK.

Note that in λPSI, the error state (⊥) is integrated in the symbolic domain instead
of being treated separately in the program state. Also, data structures (tuples, arrays,
and records) are directly modeled by λPSI’s representation.
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5.4 from programs to symbolic representations

We now show how λPSI translates programs to the symbolic domain of §5.3. This is
the first step of performing exact inference for higher-order probabilistic programs.

5.4.1 Translating Programs to the Symbolic Domain

A λPSI program is translated recursively. For each statement Stmt we represent
the posterior distribution over values of all program variables given their previous
values and any observations made within Stmt. More specifically, a statement Stmt
is translated to an expression of the form λσ. �σ ′. f(σ)

q
σ ′
y
, which takes as input

a state σ before executing Stmt, and returns the distribution over the state σ ′ after
executing Stmt in σ. A state is a record containing values for all accessible variables.
Similarly, an expression Ex is translated to a distribution of the form λσ. �x. f(σ)JxK.
This symbolic expression takes as input a state σ and returns the distribution over
the value of Ex in the state σ.

Fig. 5.6 shows selected key rules of the translation, which is defined recursively.
To reduce clutter, the presented rules ignore error handling and polymorphic types.
We will discuss incorporating error states in §5.4.2.

basic expressions Variables are translated to the point mass distribution on
the value of the variable according to the state (analogously for constants), see
rule (5.5).

The rule for binary operations (5.6) is instantiated for addition, but works anal-
ogously for other deterministic expressions. The probability that a+b evaluates to
a value x is computed by integrating over all possible values y and z for a and b,
respectively, such that their sum y+ z equals x. In rule (5.6), this is expressed by
recursively translating a and b, and introducing a Dirac delta. Note that because
λPSI expressions do not have side-effects, the probabilities for the values of a and b

are independent given the current state σ.

distributions Sampling from built-in distributions (using, for example, the
functions flip or exponential) is directly translated to a symbolic representation, as
exemplified in §5.3.3.

basic statements For assignments x = e, we translate e to obtain the distribu-
tion over all possible right-hand sides x ′ in state σ. The new state σ ′ is equal to σ
except that the value of variable x may be any such x ′ with the according probability.
This is expressed using an integral over x ′ in (5.7).

The rule for sequential composition (5.8) is based on the standard chain rule for
probabilities. In particular, the rule integrates over all possible intermediate states
σ ′.
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1 infer(() {
2 x := 2 + uniform(0,3);
3 observe(x >= 3);
4 return x;
5 })

Figure 5.7: Nested inference example.

observations An observation observe(e) restricts the possible output states
according to the boolean expression e. Intuitively, this amounts to setting the proba-
bilities of all states violating e to zero and re-normalizing the resulting distribution.
Rule (5.9) first computes the probability p(σ) of e evaluating to a non-zero number
(meaning, true) in the current state σ. If e is deterministic, p(σ) is either 0 or 1. How-
ever, note that e may involve random choices such as in observe(uniform(0,2) < 1),
where p(σ) is 1

2 . Next, the rule rescales the probability of the current state σ using
δ(σ)

q
σ ′
y
· p(σ). The resulting distribution over σ ′ may not be normalized any more,

but will be re-normalized later.
The effect of observe can be better understood under sequential composition.

Consider the code in Fig. 5.7. After Line 2, x is uniformly distributed between 2 and
5. For Line 3, the probability p(x) that x >= 3 evaluates to true is [x > 3]. According
to the rule for sequential composition (5.8), the distribution over x after Line 3 is
obtained by integrating over all intermediate values of x after Line 2. The factor
p(x) “cuts off” the distribution below 3 and we obtain the (unnormalized) uniform
distribution between 3 and 5, as expected. In §5.5, we will see how λPSI formally
derives this in a sequence of translation and simplification steps.

continuous observations Rule (5.10) translates continuous observations
of the shape cobserve(b,c). For this, it incorporates all statements A preceding the
observation in the current statement block (if there are none, A can be treated as an
empty statement). This rule takes precedence over rule (5.8).

First, we recursively translate A and b to obtain a distribution for σ ′ and the value
y of b. For cobserve to be defined, it must be possible to rewrite this distribution such
that it involves a Lebesgue measure factor λJyK. Next, we eliminate this Lebesgue
measure using disintegration (�) and replace it by the distribution of c. This will
become more clear once we discuss rules for disintegration in §5.5.5.

control flow and scoping For if-then-else statements, we first translate
both branches. A branch may introduce local variables in its scope, which must
not occur in the output distribution. Hence, we use rule (5.12) to marginalize all
variables introduced in a branch and obtain a distribution over all variables in
the outer scope. Next, rule (5.11) translates the condition e and integrates over all
possible values of e, always selecting the appropriate branch. Loops in λPSI are
bounded and are unrolled during translation.
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nested inference A key insight of λPSI is that the process of inference itself
is directly expressible in λPSI’s symbolic domain. The result is a distribution over
the inferred distribution. In order to translate infer(f), rule (5.13) first recursively
translates the zero-argument function f and computes the normalization constant Z.
Next, the rule normalizes the distribution represented by f and returns the Dirac
delta at that position. Note that inference is deterministic and hence translated to a
point mass.

Given a distribution d, the expression sample(d) draws a sample from d. Assume d

is computed as follows (note that Flip is a distribution, while flip is a sample):
d := Flip(1/2);

if flip(1/4) { d = Flip(1/3); }

To compute the probability of a sample z from d we need to sum (i) the probability
that flip(1/4) is false and z is generated by Flip(1/2), and (ii) the probability that
flip(1/4) is true and z is generated by Flip(1/3). In general, we need to integrate
over all possible distributions x represented by d and compute the probability of z
according to x, see rule (5.14).

To translate the expression expectation(d), we also integrate over all possible
distributions x. For each such distribution, we compute the expectation by the
standard definition (i.e.,

∫
dy xJyK · y) and construct the point mass on that value.

The result is a distribution over the expected value of d.

functions For simplicity, consider a function containing only one return state-
ment at the end, i.e.the body has the form A; return e; (the general case is similar).
In rule (5.16), we first translate A to obtain a distribution over the state σ ′, which
comprises all variables in the function’s scope. Then, we translate e to obtain a dis-
tribution over the return value in the state σ ′. Finally, we integrate over all possible
states σ ′. Note that in general, the resulting distribution may be parameterized by
the function’s arguments (not shown).

renormalization The entry point for a λPSI program is its main function,
which may accept parameters. This function is translated just as any other function
according to rule (5.16), but λPSI renormalizes the distribution before returning the
result (similarly as in rule (5.13) for infer). Note that the normalization constant
may depend on the parameters of main.

5.4.2 Accounting for Error States

Statements and expressions in λPSI may lead to errors under some states. Examples
include divisions by zero and passing non-conforming parameters to distributions
such as a > b in uniform(a,b). λPSI incorporates the probability of an error in the
computed posterior distributions: the representation λσ. �σ ′. f(σ)

q
σ ′
y

of a statement
assigns to each non-error starting state σ the distribution over the output state σ ′,
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2 + uniform(0,3)
§5.4
= λσ. �x.

∫
dy
∫

dz 2 (σ)JyK · uniform(0,3) (σ)JzK · δ(y+ z)JxK (5.17)
?
= λσ. �x.

∫
dy
∫

dz δ(2)JyK · 13 · [0 6 z] · [z 6 3] · λJzK · δ
(
y + z

)
JxK (5.18)

§5.5.1
= λσ. �x.

∫
dz 13 · [0 6 z] · [z 6 3] · λJzK · δ(2+ z)JxK (5.19)

§5.5.2
= λσ. �x.

∫
dz 1

3 · [0 6 z ] · [ z 6 3] · λJxK · δ(x− 2)JzK (5.20)
§5.5.1
= λσ. �x. 13 · [2 6 x] · [x 6 5] · λJxK (5.21)

x := 2 + uniform(0,3);

observe(x >= 3);

§5.4
= λσ. �σ ′′.

∫
dσ ′ x := 2 + uniform(0,3) (σ)Jσ ′K · observe(x >= 3) (σ ′)Jσ ′′K (5.22)

?
= λσ. �σ ′′.

∫
dσ ′

∫
dx ′ 13 · [2 6 x

′] · [x ′ 6 5] · λJx ′K · δ(σ{x 7→ x ′})Jσ ′K · δ
(
σ ′
)
Jσ ′′K · [ σ ′ .x > 3]

(5.23)
§5.5.1
= λσ. �σ ′′.

∫
dx ′ 13 · [2 6 x

′] · [x ′ > 3] · [x ′ 6 5] · λJx ′K · δ(σ{x 7→ x ′})Jσ ′′K (5.24)
§5.5.3
= λσ. �σ ′′.

∫
dx ′ 13 · [3 6 x

′] · [x ′ 6 5] · λJx ′K · δ(σ{x 7→ x ′})Jσ ′′K (5.25)

Fig. 5.7 §5.4
= λσ. �x. δ

(
�y. Lines 2–4 in Fig. 5.7 ()JyK ·

(∫
dz Lines 2–4 in Fig. 5.7 ()JzK

)−1)
JxK (5.26)

?
= λσ. �x. δ

(
�y. 13 · [3 6 y] · [y 6 5] · λJyK ·

( ∫
dz 13 · [3 6 z] · [z 6 5] · λJzK

)−1)
JxK (5.27)

§5.5.4
= λσ. �x. δ

(
�y. 12 · [3 6 y] · [y 6 5] · λJyK

)
JxK (5.28)

Figure 5.8: Selected steps of deriving a simplified representation of the code in
Fig. 5.7. The terms affected by substitution (§5.5.1), linearization (§5.5.2),
guard simplification (§5.5.3), and symbolic integration (§5.5.4) are highlighted.

Equalities annotated with ? denote recursive translation and simplification.

which may be the error state ⊥ (similarly for expressions). Symbolic distributions
make use of Dirac deltas δ(⊥)JxK to capture the probability of an error (see for
example Eq. (5.4)).

The presence of errors slightly complicates the translation rules of Fig. 5.6. In
particular, for all integrals of the form

∫
dσ fJσK, the integration domain also includes

⊥ (as f may cause an error) and we hence must analyze the case σ = ⊥ separately.
For instance, the rule for sequential composition needs to propagate errors caused
in A through B using an expression of the form e1?(e2):

λσ. �σ ′′.
∫

dσ ′ A (σ)
q
σ ′
y
· B ?(σ

′)
q
σ ′′

y
.

We do not further discuss error states.

5.5 inference by symbolic simplification

We now present how the symbolic representation of a translated program is simpli-
fied to a compact representation. This constitutes the second step of λPSI’s inference
procedure.

As we discuss in §5.5.6, the presented simplifications are an extension of the
symbolic optimizations used by PSI. In particular, we (i) generalize PSI’s rules to
λPSI’s more powerful symbolic domain, and (ii) improve the former’s efficiency
using various (low-level) optimizations.
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Substitution ∫
dx f(x) · δ(v)JxK = f(v) (5.29)

Linearization

δ(f(x))JyK · λJxK = [f ′(x) = 0] · δ(f(x))JyK · λJxK (5.30)

+ [f ′(x) 6= 0] ·

part 2︷ ︸︸ ︷∑
z:f(z)=y δ(z)JxK /|f

′(z)| · λJyK︸ ︷︷ ︸
part 1

Disintegration
(e · λJxK)�λJxK = e (5.31)

Figure 5.9: Simplifying Dirac deltas and Lebesgue measures. Here, f ′ is the derivative of f.

basic algebraic simplifications λPSI applies various basic algebraic rules,
such as removing multiplications by 1 and additions with 0, and simplifying terms
multiplied by 0 to 0. It further leverages commutative, associative, and distributive
laws where applicable. In general, integrals over sums are simplified to sums of
integrals, and constant factors within integrals are moved out of the integrals.

running example We next describe the most important simplification rules
on a running example. Concretely, we translate and simplify the λPSI expression
in Fig. 5.7, while discussing a selection of interesting simplification steps (Fig. 5.8).

We start by translating and simplifying the expression 2 + uniform(0,3) (Line 2 in
Fig. 5.7). We apply the rule for binary operations (5.6) to obtain (5.17), see Fig. 5.8.
Next, the constant 2 is translated to a point mass, and uniform(0,3) is translated
according to (5.2).

5.5.1 Dirac Delta Substitution

Expression (5.18) contains an integral over y, which occurs as an “output” of a Dirac
delta (see highlighted)—a common structure. Intuitively, we know that δ(2)JyK is
zero for all y 6= 2. Hence, we can simplify the expression by removing the integral
and Dirac delta, and substituting all occurrences of y by 2 to obtain (5.19). In general,
integrals over the output variable of a Dirac delta result in substituting the variable.
This key rule is shown in (5.29) of Fig. 5.9.

5.5.2 Dirac Delta Linearization

The structure of (5.19) is similar as before, but this time the integration variable z
occurs in the first argument to δ. In general, λPSI often encounters expressions of
the form

∫
dx gJxK · δ(f(x))JyK, which can be interpreted as y depending determin-

istically on x by y = f(x). If g is a Dirac delta, we can apply (5.29) to substitute x in
f(x). Otherwise, we would like to express δ(f(x))JyK in terms of δ(h(y))JxK for some
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h such that we can later apply substitution (5.29). This is achieved by linearization,
which rewrites the original Dirac delta over y as a linear combination of Dirac deltas
over x.

linearization in a simple example Let us have a look at our running
example (5.19), where gJzK = 1

3 · [0 6 z] · [z 6 3] is the uniform distribution on [0, 3].
Instead of first selecting z uniformly between 0 and 3 (by g) and then setting x to
2+ z (by the Dirac delta), we can just as well directly select x uniformly between 2
and 5.

Intuitively, δ(2+ z)JxK is only non-zero at locations where x = 2+ z, or equiva-
lently z = x− 2. Hence, we can linearize this Dirac delta (see highlighted in (5.19))
by expressing z in terms of x and moving z to the second argument of δ, see (5.20).
Note how thereby, λJzK changes to λJxK. Then, we can apply substitution (5.29) to
obtain the desired result in (5.21).

the general case Rewriting δ(f(x))JyK for general f requires more care. We
now explain the general rule as presented in Fig. 5.9, Eq. (5.30).

To highlight a first issue with our previous attempt, inspect the following normal-
ized distribution over y:

�y.
∫

dx [0 6 x] · [x 6 1] · λJxK δ(2x)JyK .

Incorrectly linearizing λJxK δ(2x)JyK to λJyK δ(y/2)JxK gives

∫
dx [0 6 x] · [x 6 1] · λJyK δ(y/2)JxK (5.29)

= [0 6 y] · [y 6 2] · λJyK

which is not normalized anymore. In fact, we would need to introduce a factor 1
2 .

As can be shown by the substitution rule of Lebesgue integration, in general one
needs to divide by the absolute value of the derivative f ′ of f (part 1 in Fig. 5.9).

Second, there may be more than one value x for which f(x) = y (i.e., f may not
be invertible). For example, for y > 0 the Dirac delta δ

(
x2
)
JyK is non-zero for both

x =
√
y and x = −

√
y, so the linearized expression is a sum of two Dirac deltas at

these positions (see part 2 in Fig. 5.9).
Because part 2 is not defined for locations where the derivative of f is zero, we

need to treat such locations separately. For this reason, (5.30) distinguishes f ′(x) = 0
and f ′(x) 6= 0.

For the first case, we can often find all solutions x of f ′(x) = 0 and substitute these
in f(x). For example, consider the function f given in Fig. 5.10 whose derivative is
zero at x = 0, everywhere below −1, and everywhere above 1. We can hence rewrite
[f ′(x) = 0] to [x 6 −1] + [x > 1] + [x = 0] and distribute δ(f(x))JyK over these three
summands. Because we know that f(0) = 2, we can rewrite [x = 0] · δ(f(x))JyK =
[x = 0] · δ(2)JyK. Further, because the derivative is zero, we know that f(x) must have
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Figure 5.10: The function f(x) = 1 + [−1 6 x] · [x 6 1] · (1− x2).
the same value (namely, 1) for all x 6 −1. Hence, we can rewrite [x 6 −1] · δ(f(x))JyK
to [x 6 −1] · δ(1)JyK (similarly for x > 1).

5.5.3 Guard Simplifications

We continue our running example by translating and simplifying Line 2 and Line 3

of Fig. 5.7. These lines are translated to (5.22) using the rule for sequential composi-
tion (5.8), and instantiating the simplified expressions (steps not shown in Fig. 5.8)
gives (5.23). Because the integration variable σ ′ is the output of a Dirac delta (see
highlighted), we can again apply substitution (5.29). Note how the access of field x

in σ ′.x is simplified to x ′, because σ ′ is substituted by σ{x 7→ x ′}.
In the resulting expression (5.24), there are multiple Iverson bracket factors

imposing constraints on x ′ (called guards). In particular, x ′ is bounded from below
by both 2 and 3 due to the highlighted factors. As the constraint 2 6 x ′ is implied
by x ′ > 3, we simplify the two factors to [3 6 x ′] in (5.25).

In addition to eliminating redundant guards, λPSI supports many more guard
simplifications (mostly inherited from PSI). For example, it simplifies whole terms to
0 if the therein contained guards are unsatisfiable (e.g., as in [x = 0] · [x 6= 0]). Also,
λPSI analyzes complex guard constraints (such as quadratic polynomials) to rewrite
them as a combination of simpler, linear guard constraints (e.g., we rewrite [x2 > 4]
as [x > 2] + [x 6 −2]). Guard simplifications are also used to simplify [f ′(x) = 0]

during linearization (5.30), see our previous example in §5.5.2.

5.5.4 Symbolic Integration

We continue translating and simplifying Fig. 5.7, which performs nested inference at
the top level. Recall that nested inference can be directly represented in λPSI’s sym-
bolic domain: using rule (5.13), we translate infer to (5.26). Recursively translating
and simplifying Lines 2–4 gives (5.27).

The normalization constant (highlighted) is an integral to be simplified. This time,
the integrand does not contain any Dirac deltas, so the simplification rules of §5.5.1
and §5.5.2 do not apply. However, the integrand is simply a constant function
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between 3 and 5, hence we can simplify the integral to 5−3
3 = 2

3 . The resulting
expression (5.28) is fully simplified and represents the posterior distribution over
the value of the expression from Fig. 5.7.

simplifying integrals λPSI extends PSI’s powerful engine for symbolic in-
tegration of a wide class of functions not involving Dirac deltas. To simplify such
integrals, λPSI first applies guard simplifications (§5.5.3) in order to determine the
integration bounds. Note that a single guard constraint may be simplified to a
sum of guards, hence this step may split an integral into a sum of integrals. Next,
λPSI leverages antiderivatives of known function classes (e.g., polynomials and
logarithms) and standard integration rules (e.g., integration by parts) to find the
integrand’s antiderivative. If this succeeds, the latter is evaluated at the bounds to
give the final result.

simplifying sums λPSI applies similar techniques to simplify absolutely con-
vergent series, which may for example occur when computing expectations of
discrete distributions. For example, while simplifying expectation(Geometric(14)) λPSI
encounters the following expression (cp. (5.1)):∫

dx
∑
i∈Z [i > 0] · (34)

i · 14 · δ(i)JxK · x.
(5.29)
= 1

4 ·
∑
i∈Z [i > 0] · (34)

i · i. (5.32)

λPSI identifies several convergent series with known values and heavily makes
use of Abel’s lemma (summation by parts) [6] to simplify such expressions. Using
this, it can for instance simplify (5.32) to the value 3.

5.5.5 Symbolic Disintegration

Consider the following code snippet:
x := gauss(µ,ν); cobserve(2·x, y);

The cobserve statement conditions on the possible but probability zero event that 2 · x
equals an observed value y. Intuitively, this has two effects: (i) the current program
path is reweighted by 1

2f(y/2;µ,ν), where f is the Gaussian density, and (ii) the
value of 2 · x is fixed to the observed value y. We now derive these effects from our
translation and simplification rules. After translation and some simplification steps
(σ and σ ′ omitted for brevity), the distribution of x is∫

dz ((f(x;µ,ν) · λJxK · δ(2 · x)JzK)�λJzK) · δ(y)JzK
(5.30)
=
∫

dz
((
1
2f(x;µ,ν) · δ(z/2)JxK · λJzK

)
� λJzK

)
· δ(y)JzK .
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We purposefully used Dirac delta linearization to write the joint prior distribution of
x and z = 2 · x with an explicit factor λJzK. Now, we use the disintegration rule (5.31)
to eliminate the highlighted λJzK, obtaining the desired weighted Dirac delta:∫

dz 12f(x;µ,ν) · δ
(
z
2

)
JxK · δ(y)JzK = 1

2f
(y
2 ;µ,ν

)
· δ
(y
2

)
JxK

In general, rule (5.31) transforms the density of the first argument of cobserve to a
weight for the remaining distribution. Note that due to its powerful Dirac delta
linearizer, λPSI can symbolically disintegrate some programs that are not handled
by Shan and Ramsey [148].

5.5.6 Comparison to PSI

The main differences to PSI from chapter 4 are related to adding support for the
new terms of the symbolic domain (see Fig. 5.5) and are hence purely additive. Still,
λPSI introduces major design and implementation improvements. We list the most
important differences to PSI’s symbolic optimizations below.

While basic arithmetic simplifications and guard simplifications (§5.5.3) are mostly
inherited from PSI, some low-level improvements were added (e.g., PSI can not
simplify guards involving reciprocals of polynomials). Unlike in PSI, the Dirac delta
of λPSI has an explicit “output” argument, but the rules for Dirac delta substitution
(§5.5.1) are analogous. Linearization (§5.5.2) closely follows the rules already present
in PSI. However, the rewrites allowed in λPSI are more restricted because Lebesgue
measures are no longer implicit and must be present. While simplification rules for
integrals (§5.5.4) are mainly inherited from PSI, λPSI introduces many non-trivial
simplifications of sums (e.g., to simplify expectations). Disintegration (§5.5.5) is new,
as PSI does not support cobserve.

5.5.7 Limitations

λPSI’s simplifications are only best-effort, i.e., sound but not complete. Like virtually
all existing exact inference and incomplete computer algebra systems, its limitations
(what can and can not be simplified) are hard to characterize. Generally speaking, the
limitations of λPSI are related to inference being intractable in general. In particular,
not all programs have closed-form representations in the symbolic domain of
Fig. 5.5, and no algorithm (efficient or not) will always be able to decide if such
representations exist.

However, in §5.6 we show that λPSI’s simplification rules work well for a set of
benchmark programs. We also show an example which can not be simplified by
λPSI.
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Table 5.1: Probabilistic programs used in evaluation (31 in total). For each program, we
indicate if it involves higher-order functions (→), nested inference ( ), first-class
expectations (E), continuous distributions ( ), continuous observations ( ), or
symbolic parameters ( a ). SocialCognition and TotalVarDist have multiple variants.
Some programs are not expressible in Hakaru (−), while others lead to errors (×),
unsimplified (�) or incorrect (××) results. aNot directly expressible; rewritten as
first-order programs without function calls, multiple manual steps. bFor concrete
instantiation of symbolic parameters.

Features Runtime
Program(s) Description →  E a Hakaru [148] λPSI

SocialCognition (12) [64] Multiple rational agent models (see §5.1)  × / ×× <5.5s
CondProb (Fig. 5.13) Compute conditional probability using expectation operator      ×ab

3s
Overview (Fig. 5.2) Example involving multiple language features   × 0.3s
ChannelCap Mutual information between input and output of noisy channel     - 2s
Entropy Entropy of randomly generated sequence    - 3s
GenCap [22] Generalization capacity of sorting algorithms (see Fig. 5.14)    - 16s
AIDE [38] KL-divergence between particle filter and exact inference on HMM    - 42s
BivariateIndep Verify that bivariate distribution has independent components    - 0.1s
SecretSanta Five people guess secret santa in turn, based on uniform prior   × 0.5s
TotalVarDist (2) [13] Total variation distance for random walk and Dynkin process (20 steps)   × < 5s
MontyHall Monty hall problem variants modeled using nested inference   × 0.1s
Variance Compute variance of given distribution    - 0.5s
CDF Compute CDF of Gaussian distribution at a point drawn from it    × 0.1s
GANLoss GAN loss for simple probabilistic model against optimal discriminator      - 0.7s
FairSVM [164] Infer weights for fair SVM classifier     × �

BayesLinReg [75] Bayesian linear regression from 5 data points with Gaussian noise     2sab
0.2s

BayesPiecewiseLR [76] Bayesian piecewise linear regression from 7 data points    × 33s
DisintegrateLinear [148] Motivating example from [148], disintegrate linear function two ways     4sa

0.2s
DisintegrateQuadratic Disintegrate quadratic function (involves cobserve((x-1)^2,y))     �a

0.1s

5.5.8 Correctness

We do not provide an explicit embedding of λPSI’s symbolic representation into
a system widely accepted to be consistent, such as set theory. However, we note
that the correctness of λPSI is nonetheless falsifiable. For example, we can write
a program that computes a known real number or real function. The expression
produced by λPSI will often be interpretable as a standard mathematical expression,
which can be compared to the known result. There are also less explicit ways
to falsify the correctness of λPSI: For example, if it were to compute a negative
probability or probability density, we would know that it was incorrect.

5.6 evaluation

We implemented λPSI by extending the publicly available PSI PPL (https://
psisolver.org) with the features from §5.2 and the exact inference capabilities
from §5.3–§5.5.

We assembled a collection of 31 programs with higher-order constructs such
as distributions over functions and nested inference, summarized in Table 5.1.
The collection comprises examples from the literature (including the applications
discussed in §5.1 and §5.6.2) and custom programs.

https://psisolver.org
https://psisolver.org
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All our experiments were performed on a commodity laptop with 32 GB of RAM
and 4 CPU cores at 2.60 GHz.

expressiveness and performance of λpsi We can express all programs
succinctly in λPSI, as all required language features are supported as first-class
citizens. For the FairSVM [164] example, there is no closed-form representation of
the posterior in λPSI’s symbolic domain as it depends non-trivially on properties of
products of Gaussians (this is inherited from PSI). The following simple example
can not be simplified by λPSI for the same reason:

def main() ⇒ gauss(0, 1)*gauss(0, 1) < 1;

For the remaining 30 examples, λPSI successfully infers a closed-form exact result
(no integrals left) within at most 42 seconds. We conclude that λPSI is powerful
enough to express interesting applications and that its simplification engine is
effective.

5.6.1 Comparison to Previous Work

We compare λPSI to Hakaru [122], the only other system we are aware of that can
perform exact inference for probabilistic programs with continuous distributions.
Our goal is to validate that λPSI is the first tool that can perform exact symbolic
inference on higher-order probabilistic programs with continuous distributions. As
Hakaru terms support first-class functions, this is not immediately obvious.

Hakaru provides external transformations “normalize” (for inference with positive-
probability evidence), “disintegrate” (for inference with continuous evidence), and
“simplify” (to transform terms produced by the other transformations into closed-
form representations). In λPSI, infer (normalize) and cobserve (disintegrate) are
first-class operators and can therefore be used for higher-order inference.

without continuous observations Hakaru’s normalize transformation
can in principle be expressed as a Hakaru term using the “expect” operator to
compute the total weight of a measure. We use this strategy to encode most of our
examples without continuous observations in Hakaru (see Table 5.1). Unfortunately,
this leads to an error relating to the “expect” operator in Hakaru’s simplification
engine. Hakaru’s “expect” operator can only be used on functions bounded between
0 and 1, hence examples including Entropy and Variance are not encodable in
Hakaru. Furthermore, as Hakaru can not simplify function terms, some programs
can not be directly expressed in Hakaru, particularly those involving symbolic
parameters. However, we manually rewrite some programs for which inlining
functions is possible. For a fully inlined version of CondProb with concretized
symbolic parameters and where we use an unnormalized observation instead of
Bayes’ rule, simplification leads to a stack overflow in Maple (used by Hakaru). For
some examples without nested evidence (SocialCognition), simplify returns the zero
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def sampleFunction(){
(s,b):=(gauss(0,3^2), gauss(0,3^2));
return (x) ⇒ s*x+b;

}

def main(X){
f := sampleFunction();

observations := [(1,2.5), (2,3.8), (3,4.5), (4,6.2), (5,8.0)];
for i in [0..5){

(x,y) := observations[i];
cobserve(f(x)+gauss(0,(1/2)^2),y);

}
}

Figure 5.11: Bayesian linear regression.

measure instead of the correct answer and disintegrate terminates with an error
unless we inline all function definitions.

with continuous observations While Hakaru does not support first-class
disintegration, this can sometimes be simulated by chained calls to Hakaru’s disin-
tegration, normalization and simplification engines. In cases where manual inlining
of higher-order functions is easy (such as for BayesLinReg, see Table 5.1), we can use
Hakaru to compute a result. Otherwise, Hakaru cannot easily be used to perform
inference. For example, we cannot express BayesPiecewiseLR as an inlined Hakaru
term without significant manual effort. The DisintegrateQuadratic example can be
disintegrated by λPSI, but not Hakaru.

We suspect that one could automate our manual steps by directly using Hakaru’s
Monad within a Haskell program. Unfortunately, this mode of using Hakaru is not
documented and does not seem to be encouraged. It is also important to note that
this does not allow Hakaru to perform (non-trivial) nested inference, as it cannot
simplify function terms.

5.6.2 Case Studies

We now elaborate on a number of applications presented in Table 5.1.

bayesian regression Heunen et al. [75] motivate higher-order probabilistic
programming by expressing linear regression as a prior over first-class functions f
together with observed I/O examples. We use λPSI to compute the posterior density
p(y) of y = f(x) in terms of x. Fig. 5.11 shows how to encode this inference problem
in λPSI. We show a plot of the posterior after conditioning on 5 samples in Fig. 5.12.

We also encoded an example with a piecewise linear function prior [76], deriving
the posterior for y at a specific x.
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Figure 5.12: Bayesian linear regression: posterior of y = f(x) after 5 samples.

conditional with symbolic parameters Given a probability distribution
Pr, an event A and observed evidence B, we want to compute Pr[A | B] (shown
in Fig. 5.13). We use Bayes’ rule directly (instead of observe). λPSI evaluates the
resulting probability for all valid values for parameters X and Y simultaneously; the
result is shown in Fig. 5.13, right.

entropy We can also naturally express information theoretical concepts such as
entropy, KL-divergence and mutual information, shown in Fig. 5.14 (left).

For instance, the function S quantifies surprise caused by particular outcomes
of a random experiment, and entropy H is the expected surprise with respect
to the true distribution p. Cross-entropy is the expected surprise with respect
to a wrong model q of the data. KL-divergence is the difference between the
two. Given a joint distribution, mutual information measures the dependency
of the two projections. The mutual information is zero if and only if the two
random variables are independent. Note that there exists no (purely sampling-
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def PrAgB(d: Distribution[R×R], A: R×R→ B, B: R×R→ B){
prAB := expectation(infer((){

x := sample(d);
return A(x) && B(x);

}));
prB := expectation(infer((){

x := sample(d);
return B(x);

}));
return prAB / prB;

}
def main(X,Y){

joint := infer((){
x := uniform(0,1);
y := x^2 + uniform(0,1);
return (x,y);

});
A := (x,y) ⇒ x<X;
B := (x,y) ⇒ y>Y;
return PrAgB(joint,A,B);

} X
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Figure 5.13: Conditional probability Pr[x < X | y > Y] depending on X and Y.

based) unbiased estimator for entropy or mutual information [126]. Busse et al. [22]
introduce generalization capacity, quantifying how much algorithms depend on noise
in noisy input data. Fig. 5.14 (right) shows a λPSI encoding of this task.

The genCap function accepts an algorithm f, an input distribution p, and a proba-
bilistic noise model. It computes the mutual information between the outputs of the
algorithm on two different realizations of noise on the input. Intuitively, algorithms
that are more vulnerable to noisy input data will get lower values. We compare
the generalization capacity of three sorting algorithms on sequences of length 3.
AIDE [38] infers an approximate upper bound on the expected (symmetrized) KL-
divergence between the results of two inference approaches. Our AIDE benchmark
exactly computes the expected KL-divergence between the results of a particle
filter and exact inference, and shows that the particle filter gains precision as more
particles are added.

As input, the algorithms obtain a matrix of pairwise element comparisons. The
output is a permutation. The element comparisons are corrupted by randomly
flipping each bit with probability 0.1. We also show how we use the genCap function.
The three sorting algorithms are: (i) “optimal” sorting: it loops over all permutations
of the input array and returns one that minimizes the number of inconsistencies
with the comparison matrix (a matrix of uniform random permutation), (ii) bubble
sort, and (iii) insertion sort. λPSI successfully determined that the optimal sorting
algorithm has the highest generalization capacity and that bubble sort has a higher
generalization capacity than insertion sort.

Reasoning exactly about information theoretic concepts also enables other appli-
cations, such as quantitative information flow.
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def log2(x) ⇒ log(x)/log(2); // unit: bits

// surprise
def S[a](x: a, q: Distribution[a]) ⇒

-log2(expectation(infer(() ⇒ x == sample(q))));

// entropy and cross-entropy:
def H[a](p: Distribution[a]) ⇒

expectation(infer(()⇒S(sample(p), p)));
def Hcross[a](p: Distribution[a], q: Distribution[a]) ⇒

expectation(infer(()⇒S(sample(p), q)));

// projections to marginals:
def π1[a,b](p: Distribution[a×b])⇒infer(() ⇒ sample(d)[0]);
def π2[a,b](p: Distribution[a×b])⇒infer(() ⇒ sample(d)[1]);

// KL-divergence and mutual information:
def KL[a](p: Distribution[a], q: Distribution[a]) ⇒ Hcross(p,q) - H(p);
def I[a,b](p: Distribution[a×b]) ⇒ H(π1(p)) + H(π2(p)) - H(p);

// generalization capacity:
def genCap[a,b](f: a→b, p: Distribution[a], noise: a→a) ⇒

I(infer((){
x := sample(p);
return (f(noise(x)), f(noise(x)));

}));

// generalization capacity of sorting algorithms:
def sortCap[n:N](sort: B^(n×n)→N^n){

input := RandomComparisonMatrix(n);
error := noise(0.1);
def evalSort(sort: R[][]→ R[]){

return genCap(sort, input, error);
}
return (evalSort(optimalSort),

evalSort(bubbleSort),
evalSort(selectionSort));

}

Figure 5.14: Information-theoretic quantities associated with discrete distributions and an
application: generalization capacity (of sorting algorithms).
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5.7 related work

The semantics of higher-order probabilistic programs has been studied extensively
[157, 158], resulting in the definition of the category of quasi-Borel spaces [75].
Ścibior et al. [145] formulate a framework for denotational verification of inference
transformations, supporting higher-order probabilistic programs with continuous
as well as discrete distributions. Based on this, Sato et al. [143] present a program
logic.

While Hakaru [122, 148] does not currently provide exact inference support
for higher-order constructs, the system has made other important advances, such
as disintegrating programs with symbolic arrays [121], as well as exact reasoning
about symbolic arrays to automatically and efficiently derive closed-form conditional
distributions [168].

Tavares et al. [164] propose a new kind of higher-order inference operator that
allows certain models with nested inference to be specified more concisely.

5.8 discussion

In this chapter, we presented λPSI, the first higher-order statically typed probabilistic
programming language equipped with a solver that computes exact (symbolic)
probability distributions of programs. We showed how to express several interesting
applications (e.g., information theory, rational agents) in λPSI and demonstrated
that our solver was able to compute their exact distributions.

This is the first time one is able to exactly analyze probabilistic programs at this
level of expressiveness. In the future, we plan to investigate ways to further scale
the exact inference algorithm as well as explore combinations with approximate
inference techniques.
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C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we have presented two state-of-the-art systems for symbolic analysis
of statistical models for two important domains: neural networks and probabilistic
programming. Our key contribution in both domains is a demonstration of how
symbolic methods can be effectively deployed to solve problems related to statistical
methods, while enjoying strong guarantees. We have practically implemented our
ideas, showing that they can be automated effectively.

systems We have developed multiple software systems that are based directly
on the contributions presented in this thesis.

AI2, presented in chapter Chapter 2 is an analyzer for neural networks that is
based on abstract interpretation. We used it to verify local robustness of neural
networks against small input perturbations around specific inputs in a more scalable
manner than prior work, using generic transformers implemented on top of box,
zonotope and powerset domains. DeepZ, presented in chapter Chapter 3, is a set
of specialized transformers for the zonotope domain that are more general, more
precise, as well as faster than their generic counterparts from AI2. Together, those
systems have been a strong foundation for a large number of follow-up works.

PSI, presented in chapter Chapter 4 is an analyzer for probabilistic programs
that is based on a form of symbolic execution with a custom symbolic domain that
can be used to represent probability distributions. All reasoning performed by PSI
is exact and relies on its powerful simplifier of symbolic expressions. With λPSI,
presented in chapter Chapter 5, we extended PSI to a richer input language, while
also improving the simplification engine. PSI has already been deployed in a variety
of different settings, including computer networks, cybersecurity and (differential)
privacy, bias and precision analysis for deterministic programs.

This thesis only scratches the surface of a research direction that is likely to
grow significantly more important in the near future, as automation of societally
important tasks marches on.

Next, we discuss several interesting future directions in our two specific domains.

127
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6.1 neural network robustness

Note that here, neural networks can be seen as a proxy for a more general class of
intelligent systems that are prone to errors. As we have shown in the introduction,
AI2 has already inspired a large amount of follow-up work. In addition to further
refinements of methods based on abstract interpretation, we see the following broad
directions for future research:

6.1.1 Certification

beyond local robustness Local robustness was introduced in the context
of adversarial attacks [162]. On its face, it is a rather weak property, therefore
it is in some sense more interesting if we find that it fails than if we can verify
that it holds. Of course, for small enough input regions around specific images,
we should be able to at least certify that local robustness holds, but future work
will have to evolve to handle more sophisticated correctness guarantees. Note
that a main challenge is formulating types of correctness guarantees that actually
make sense. In particular, it is often hard to characterize the set of “valid” inputs
for a neural network, in particular if they are sampled from a distribution that
produces points on some sub-manifold satisfying additional constraints, as is the
case for e.g., natural images. As we usually do not have a formal description
of such constraints, specifications of correctness themselves are highly prone to
errors (which explains the popularity of local robustness as a heuristic yet rather
conservative underapproximation of desirable correctness guarantees). However,
it still makes sense to check neural networks and specifications for consistency. If
some concrete inconsistency is found, we can then determine whether it is a fault of
the neural network or of the specification. Certification can be used to determine
when this process should end. By using a variety of (possibly quite elaborate)
specifications obtained using different approaches, we can improve our confidence
in the correctness of decisions made by the neural network.

robustness by construction In some cases, it is possible to encode critical
safety constraints in the neural network architecture or the enclosing framework
itself, such that the neural network is not able to produce outputs that cause a
violation of those constraints.

formal systems with neural guides In particular, sometimes, certificates
of correctness are easy to verify but hard to generate. In such cases, neural networks
can be deployed to generate certificates that are then verified with other approaches.
The generation of certificates can happen in an interactive fashion, where neural
network decisions drive the internal state of the certifier.
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feature-complete verifier While already powerful, AI2 (as well as its suc-
cessor ERAN) only supports some subset of neural network architectures. It would
be interesting to support abstract interpretation (or alternative approaches) for the
full set of programs expressible using e.g., TensorFlow or PyTorch, or some even
more general differentiable programming language. This would enable e.g., analysis
of cyber-physical systems that rely on a combination of neural network components
and more traditional algorithms.

6.1.2 Defenses

robustness through additional domain knowledge In some cases,
neural network inputs are easy to interpret, for instance, natural images. Neural
networks however do not seem to understand in detail how natural images are
generated. If we force them to provide a full explanation of the input in addition
to a classification, it seems likely that classification results will be more robust, or
adversarial inputs can at least be detected more easily. It should be possible to verify
the explanation, for instance, it could enable a new rendering of the input image
that can then be compared to the original.

ethical , legal and procedural framework In some cases, neural net-
work decisions involve risk for multiple parties, but may not be extremely time-
critical. In such cases, especially when risks are asymmetric, it is crucial that the
processes that lead to decisions are fully transparent and involved neural network
components have a natural language description against which automated decisions
can be independently verified. Furthermore, systems making decisions that involve
risks (e.g., denial of service) should be made available in such a way that they
can be criticized by third parties. Risks that arise from wrong decisions should be
mitigated by setting in place proper procedures for appeals. To the extent that such
procedures are automated, they should be set up in a way that actively affirms that
(i) decisions made by neural networks can be completely wrong and (ii) inputs
made to the system by any actor can be incorrect and even be made in bad faith.
It is especially important that such systems represent the interests of individuals
against powerful parties and incentivize fair outcomes. As large organizations often
develop automated systems that interact with human individuals on behalf of the
organization, it may make sense to introduce regulations ensuring they satisfy the
necessary constraints.

6.2 symbolic probabilistic inference

The feature set and capabilities of PSI are fairly open-ended. In addition to exploring
downstream applications and making sure PSI supports them well, we can add
additional language features in order to support even more use cases, and we can
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optimize performance and completeness with respect to our own benchmarks. Fur-
thermore, we can work on correctness validation of PSI’s procedures beyond testing
it on benchmarks. Another exciting avenue for future research is the combination
of PSI’s exact reasoning with approximation approaches, ideally obtaining results
combining the best from both worlds.

6.2.1 Additional Features

general recursion (unbounded loops) Right now, PSI is restricted to
programs with bounded loops. Some backends even only support loops with a
predetermined number of iterations. This could be improved upon by making least
fixed points a native feature of the domain of symbolic expressions. For example,
the term

µf. λn. [0 6 n] · [bnc = n] · ([n = 1] + [2 6 n] · (f(n− 1) + f(n− 2)))

represents the Fibonacci sequence as a symbolic expression, while

µd. �x. p · δ(0)JxK+ (1− p) ·
∫

dx ′ d
q
x ′
y
· δ
(
x ′ + 1

)
JxK

represents a Geometric(p) distribution. Such terms can arise from PSI programs with
recursive functions or while loops. With suitable translation and symbolic simplifi-
cation rules, PSI could eliminate the fixed point in the first expression, transforming
it to the closed form λn. [0 6 n] · [bnc = n] · ((((1+

√
5)/2)n − ((1−

√
5)/2)n)/

√
5)

using simple and general simplification rules for recurrences. Similarly, the second
term could be simplified to �x. p ·

∑
i∈Z[0 6 i] · (1− p)i · δ(i)JxK. Using a number

of rules supporting reasoning steps like those, PSI can then handle programs with
recursive functions and unbounded loops.

variadic integrals and product expressions Currently, the symbolic
expression language suffers from a fundamental limitation: only a constant number
of random variables can be assigned. Therefore, even though lengths of arrays can
be symbolic values and even random, we can only ever populate some constant-size
subset of array entries with random values. It is relatively easy to remedy this
limitation using variadic integrals that can bind a symbolic number of variables and
product expressions to express densities on them. For instance, we could have an
expression

λn. �a.
∫

dx0 · · ·
∫

dxn−1 δ(x)JaK ·
∏
i∈Z
06i<n

(
1√
2π
· e−

1
2 (xi−[i 6=0]·xi−1)2 · λJxiK

)
,
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which describes a vector a of length n, whose entries are the first n steps of a
normal random walk. The exact details of how the symbolic language would be
extended still have to be determined, e.g., something along the lines of

λn. �a. δ(n)
q
a.length

y
·
∏
i∈Z
06i<n

∫
dx

1√
2π
· e−

1
2 (x−ai−1)

2
· λJxK · δ(x)JaiK

might express the same distribution. Similar ideas have already been successfully
applied by Walia et al. [167] and Obermeyer et al. [125]. Such expressions can serve
as an intermediate step in simplification of fixed points.

memoized random functions Currently, PSI supports random functions
that are formed by closing over some random values. A natural generalization1 of
random tuples/arrays as above are random functions that are memoized. Intuitively,
they operate like a function that samples some random values, but for the same
argument, the first result that was sampled is memoized, such that they always
return the same value for further calls. For example:

def main(){

f := (x: R)⇒gauss(0,1);

// independent samples, probability 0 for coincidence:

assert(gaussians(0) 6= gaussians(0));

gaussians := memo(f); // create/sample memoized function

// calling with the same argument alway gives the same result:

assert(gaussians(0) = gaussians(0));

// calling with different arguments, independent samples:

assert(gaussians(0) 6= gaussians(1));

}

Another way to think about this is that memo (lazily) samples a single deterministic
function.

recursive memoized random functions Memoized functions should
support recursive dependencies of function values. This requires PSI to reason about
a combination of memoization and fixed points. This allows defining stochastic
processes, like the following random walk:

def main(t0: N, t1: N){

step := (step: N→ R, t: N)⇒0 if t=0 else step(t-1)+gauss(0,1);

walk := memofix(step); // (or some more convenient built-in syntax)

return walk(t1) - walk(t0); // (always zero if t0=t1)

}

Here, memofix creates a memoized fixed point of its argument, such that the entire
function walk forms a single consistent random walk.

1 The function argument is a more general form of a tuple/array index.
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(continuous) stochastic processes Recursive memoized random func-
tions are still somewhat limited in their expressiveness. We should therefore add
built-in support for more general classes of stochastic processes with possibly
continuous index sets, such as Gaussian processes.

native support for collections It is natural to have native support for
collection types other than tuples and arrays, such as maps, sets, and multisets,
both in the source language and within the symbolic expression language. It may
also make sense to natively support specific combinatorical structures, such as
permutations.

producer/consumer simplifications and working backwards Given
some function that generates a collection of random values and another function
that computes some summary of that data, it is often possible to compute the final
result without ever obtaining a closed-form expression for the joint distribution
of collection elements. PSI could natively support this, such that, for instance, it
can efficiently handle a program that generates a huge random string and then
uses a string matching algorithm such as Knuth-Morris-Pratt to check whether the
random array contains some specified shorter substring, returning whether or not
the substring occurred in the random array. In order to be able to do this, it seems
like PSI should be able to simplify expressions based on how the values whose
distribution they describe will be used later in the program, by working backwards
with respect to the program execution.

nondeterminism and synthesis Right now, PSI only supports probabilistic
choices, but it may make sense to additionally add nondeterministic choices. Note
that this poses some challenges for language design, implementation, baking pizza,
and semantics, because random and nondeterministic choices can alternate an arbi-
trary number of times, where intuitively, nondeterministic choices cannot anticipate
random choices that happen later in the program execution, and it is a priori not
fully clear how precisely nondeterminism should interact with nested inference.

For example, consider the expression
variance(infer((){

x := flip(1/2);

y := choose({0,1}); // nondeterministic choice from set {0,1}, made by adversary

return x-y;

});

Here, it is possible to reach variance 0 for an adversary who is tasked with min-
imizing it, by picking the value of x for y. However, if we instead consider the
expression

variance(infer((){

y := choose({0,1}); // nondeterministic choice from set {0,1}, made by adversary

x := flip(1/2);
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return x-y;

});

then this is no longer possible for an adversary to do, because the choice of x cannot
be anticipated. The variance will always be (at least) 14 . Now consider the case where
the adversary attempts to maximize the variance. In the first case, the adversary can
pick y as 1− x, reaching variance 1, which is optimal. In the second case, it would
seem that it does not matter if the adversary picks 0 or 1, variance will always be
1/4. However, actually, an adversary can choose to pick either 0 or 1 with probability
1/2 each, and in this case we get variance 1/2, which is higher.

Pushing this kind of reasoning further and adding full support for nondetermin-
ism to PSI is an exciting future research direction.

quantifiers We can extend the symbolic domain with existential and universal
quantifiers and corresponding simplification rules (e.g., quantifier elimination). This
can help simplify fixed points and we can also support quantification as a feature
in the source language.

automatic differentiation We can extend PSI with features to automati-
cally compute derivatives. This is a powerful capability that can help express useful
programs and inference methods (such as variational inference).

optimization PSI is sometimes used in conjunction with an external optimiza-
tion tool to find good values for symbolic parameters. We can build this capability
directly into the language with support in the symbolic domain. This is probably
necessary to have useful support for nondeterminism.

6.2.2 Performance and Completeness

data structures and algorithms Currently, simplification rules operate
directly on abstract syntax trees, where subexpressions are sometimes stored in lists
or hash sets if the expression has suitable algebraic properties to make this viable.
However, many simplification steps operate in a brute-force manner, where, for
instance, they have to consider all combinations of two subexpressions. Using more
clever data structures and algorithms, as well as some low-level optimizations, it
seems likely that the running time of simplification could be significantly improved
in many practically relevant scenarios.

discrete distributions In PSI, simplification of discrete distributions often
quickly degenerates into explicit enumeration. We can counteract this by imple-
menting some sort of combinatorial engine that turns questions about distributions
into questions about cardinalities of sets, and then solves those counting problems
in a more clever fashion.
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inference compilation Often, inference is performed on a probabilistic
program that is conditioned on some input data set. It would therefore make sense
to automatically compile PSI programs, such that exact inference results for the
same program can be obtained more quickly on different data sets. In particular,
this would be interesting for Bayesian filters, where we have a data structure with
some internal state that is updated using observations and evolved using additional
domain knowledge. The compiler then has to jointly find an efficient way to store the
internal state and procedures to update the internal state under different operations.
It may also make sense to support approximation using floating-point or fixed-point
values.

integration and summation by substitution Currently, PSI does not
use integration by substitution (except for some simple cases where the integration
variable is transformed using a linear function). We can make the symbolic inte-
gration engine more complete by adding support for integration by substitution.
Similar improvements can be made to the symbolic summation engine.

backtracking simplification steps It is easy for simplification heuristics
to take a wrong turn, ending up with an expression that is hard to simplify further,
or blows up in size rapidly. It may therefore make sense to pursue multiple simplifi-
cation strategies in parallel in a tree structure and to give priority to branches that
seem most promising.

simplification using neural policy We can phrase simplification as an
interactive game where the next applicable simplification step to take is chosen by a
policy. The policy can, for instance, be given by a neural network that analyzes the
current expression and is trained to approximate results that would be obtained by
full backtracking, similar to AIs for Chess and Go.

commutativity analysis It may make sense to specifically analyze whether
two probabilistic programs/expressions in the symbolic domain commute, i.e.,
whether we can apply them in any order without affecting the results and to use
this analysis for downstream applications.

6.2.3 Correctness

semantics PSI’s symbolic domain stands on its own, which can make it some-
what challenging to motivate to outsiders that it provides a consistent description of
probabilistic behavior. It may make sense to embed the symbolic domain into some
more popular formal system like set theory, with a translation based on measure
theory. This also makes it necessary to precisely describe the set of expressions that
actually have a meaning.
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type system for symbolic domain It is very easy to write an expression
in the symbolic domain that does not have a clear meaning, such as 0−1,

∫
dx 1,

or �x. δ(0)JxK · δ(1)JxK. Therefore, it is natural to pursue a typed version of the
symbolic domain that guarantees all expressions that can be assigned a valid type
have a meaning.

correctness proofs Given semantics for the probabilistic input language and
the symbolic domain, it becomes possible to write (mechanized) formal correctness
proofs for the involved steps of translation and simplification.

6.2.4 Approximate Methods

numeric integration with sound bounds Sometimes, there is no descrip-
tion of an integration result within the symbolic domain that is more useful than the
integration expression itself. In such cases, it may make sense to numerically evalu-
ate the integral, in a way that provides lower and upper bounds on the integration
result that are guaranteed to hold. This can be extended to arbitrary expressions
in the symbolic domain, to support e.g., the evaluation of comparison constraints
during simplification.

probabilistic abstract interpretation More generally, we could replace
the symbolic execution of the probabilistic program by an abstract interpretation
that overapproximates the resulting distribution in a succinct way and still may be
used to certify properties even if full exact inference is not feasible.

approximate inference with guarantees An inference compiler could
transform a probabilistic program into some sort of sampling-based inference
procedure and attempt to provide sound probabilistic guarantees on the result.
For example, it could say something of the form: “After n steps of inference, the
result is guaranteed to be within distance at most ε from the exact result with
probability at least δ”. (Today, many approximate inference approaches do not come
with guarantees as strong as this, and their implementations often do not check
essential preconditions for the weaker guarantees they might otherwise provide.)

sampling from intermediate language terms Given some distribution
expressed in the symbolic domain, it is not always obvious how to obtain samples
from that distribution. It may therefore be interesting to automatically synthesize a
sampler from such an expression. Note that we would need to demonstrate some
end-to-end benefit of this approach over alternative ways to ensure sampling is
possible (e.g., Hakaru’s simplifications directly operate on probabilistic programs
on whose description we can perform rejection sampling).
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improving approximate inference using symbolic reasoning As
we have demonstrated, some inference problems can be easily solved using exact
inference, while for others, approximate inference approaches may perform better.
The trade-off between exact and approximate inference deserves some investigation,
so that we may combine the best from both worlds. Note that this exciting direction
is already being explored by a number of systems, such as Hakaru [122, 148, 167]
or Birch [105] that can be used as baselines.

automated debiasing of nested probabilistic inference queries

Naively using sampling-based inference procedures in a nested fashion can cause
bias in estimates, even if all involved inference procedures are unbiased. It may
sometimes be possible to automatically and efficiently synthesize, from the orig-
inal source code, unbiased estimators for nested inference problems with useful
convergence properties.

adversarial examples for approximate probabilistic inference Prob-
abilistic programming can be used for machine learning applications, similar to
neural networks. It is plausible that some approximate inference procedures operat-
ing on those programs can be fooled by malicious perturbations to input data. We
think it could make sense to investigate whether this is possible.
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The semantic structure of quasi-borel spaces. In PPS’18, January 2018. 120,
122

[77] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker.
Prism: A tool for automatic verification of probabilistic systems. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 441–444. Springer,
2006. 96

[78] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact
inference for discrete probabilistic programs. Proc. ACM Program. Lang., 4

(OOPSLA), November 2020. doi: 10.1145/3428208. URL https://doi.org/

10.1145/3428208. 12

[79] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning
with a strong adversary. CoRR, abs/1511.03034, 2015. 21, 49

[80] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verifica-
tion of deep neural networks. In Computer Aided Verification, 29th International
Conference (CAV), pages 3–29, 2017. 21, 23, 49

[81] Zixin Huang, Zhenbang Wang, and Sasa Misailovic. Psense: Automatic
sensitivity analysis for probabilistic programs. In Shuvendu K. Lahiri and
Chao Wang, editors, Automated Technology for Verification and Analysis - 16th
International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings, volume 11138 of Lecture Notes in Computer Science, pages 387–403.
Springer, 2018. doi: 10.1007/978-3-030-01090-4\_23. URL https://doi.org/

10.1007/978-3-030-01090-4_23. 12

[82] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106–154, 1962. 32

[83] Chung-Kil Hur, Aditya V Nori, Sriram K Rajamani, and Selva Samuel. Slicing
probabilistic programs. In ACM SIGPLAN Notices, volume 49, pages 133–144.
ACM, 2014. 97

[84] Joe Hurd. Formal verification of probabilistic algorithms. PhD thesis, University
of Cambridge, 2001. 96

http://dl.acm.org/citation.cfm?id=3329995.3330072
https://doi.org/10.1145/3428208
https://doi.org/10.1145/3428208
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-030-01090-4_23


bibliography 145

[85] Matt Jordan and Alex Dimakis. Provable lipschitz certification for generative
models. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 5118–5126.
PMLR, 2021. URL http://proceedings.mlr.press/v139/jordan21a.html. 7

[86] Joost-Pieter Katoen, Annabelle K McIver, Larissa A Meinicke, and Carroll C
Morgan. Linear-invariant generation for probabilistic programs. In Static
Analysis, pages 390–406. Springer, 2010. 96

[87] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-
derfer. Reluplex: An efficient SMT solver for verifying deep neural networks.
In Proc. Computer Aided Verification (CAV), pages 97–117, 2017. 22

[88] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-
derfer. Reluplex: An efficient SMT solver for verifying deep neural networks.
In Computer Aided Verification, 29th International Conference (CAV), pages 97–117,
2017. 21, 22, 23, 41, 43, 46, 49

[89] Donald E. Knuth. Two notes on notation. Technical report, 1992. URL
http://arxiv.org/abs/math/9205211. 107

[90] Samuel Kolb, Pedro Zuidberg Dos Martires, and Luc De Raedt. How to
exploit structure while solving weighted model integration problems. In
Ryan P. Adams and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning
Research, pages 744–754. PMLR, 22–25 Jul 2020. URL http://proceedings.

mlr.press/v115/kolb20a.html. 13

[91] J Zico Kolter and Eric Wong. Provable defenses against adversarial examples
via the convex outer adversarial polytope. In Proc. International Conference on
Machine Learning (ICML), 2018. 22

[92] Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22(3):328–350, 1981. 81

[93] Alexander V Kozlov and Daphne Koller. Nonuniform dynamic discretization
in hybrid networks. In Proceedings of the Thirteenth conference on Uncertainty in
artificial intelligence, pages 314–325. Morgan Kaufmann Publishers Inc., 1997.
67

[94] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, 2009. 41

[95] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. 57

http://proceedings.mlr.press/v139/jordan21a.html
http://arxiv.org/abs/math/9205211
http://proceedings.mlr.press/v115/kolb20a.html
http://proceedings.mlr.press/v115/kolb20a.html


146 bibliography

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems (NIPS), pages
1097–1105, 2012. 21
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