
ETH Library

Analysing and exploiting Google's
FLoC advertising proposal

Master Thesis

Author(s):
Turati, Florian

Publication date:
2022-02

Permanent link:
https://doi.org/10.3929/ethz-b-000539945

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000539945
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Analysing and exploiting Google’s
FLoC advertising proposal

Master Thesis

Florian Turati

February 28, 2022

Advisors: Prof. Dr. David Basin, Dr. Carlos Cotrini, Karel Kubicek

Department of Computer Science, ETH Zürich

Abstract

Google proposed to use Federated Learning of Cohorts (FLoC) as a
replacement of third-party cookies allowing interest-based advertising
while preventing identification of individual users. It divides the users
into cohorts according to their browsing history patterns using a clus-
tering algorithm SimHash. However, the proposal received criticisms
for not meeting the claimed privacy protections.

Based on our analysis of FLoC, we implement two attacks breaking
FLoC’s anonymity properties. The first is a Sybil attack by finding
preimages of the non-cryptographic hash function SimHash, breaking
FLoC’s k-anonymity. The second and more serious attack also leverages
SimHash, but it can in general work for any clustering algorithm. This
attack extracts part of the browsing history of FLoC users just from the
generic distribution of browsing patterns and the SimHash. We do so
by generating a plausible browsing history for a target hash using a
Generative adversarial network (GAN) and the preimage attack. We
then evaluate the feasibility of the attack as well as the quality of the
generated histories with various metrics. The insights from this attack
should help improve the design of FLoC and future proposals.

i

Acknowledgements

I am very thankful to Prof. Dr. David Basin, as well as Dr. Carlos Cotrini
and Karel Kubicek, without whom this work would not have been possible. I
have benefited considerably from their knowledge with continuous guidance
and support throughout this thesis.

I would also like to thank Hung Hoang for his advice on some of the
algorithmic parts of this work.

I am grateful to my family and friends for their endless support and unwa-
vering encouragements.

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Report Structure . 3

2 FLoC Proposal 4
2.1 Goal . 4

2.1.1 Utility . 4
2.1.2 Privacy . 5

2.2 FLoC Implementation . 5
2.2.1 FLoC ID Computation 5
2.2.2 Origin Trial . 6

2.3 Threat Model . 8
2.4 Possible FLoC Improvements 9

3 Breaking k-anonymity 10
3.1 FLoC basic functionality re-implemented 10

3.1.1 CityHash . 10
3.1.2 SimHash . 11
3.1.3 Prefix LSH . 11

3.2 Preimage Attack on SimHash 12
3.2.1 Greedy Heuristic . 12
3.2.2 Resulting Algorithm . 13
3.2.3 Extensions . 13

3.3 Using GANs to Generate Plausible User Data 15
3.3.1 Choice of GAN . 16
3.3.2 Implementation . 17

3.4 Discriminator Applied to the Preimage Attack Output 21

iii

Contents

3.4.1 Benchmark . 23
3.5 Integer Programming on the Generated Data 25

3.5.1 Defining the Integer Program 25
3.5.2 Applying the Integer Program 26
3.5.3 Benchmark . 28

4 Evaluation 35
4.1 Movie History Generation . 35

4.1.1 Common Movies . 36
4.1.2 Minimum Hamming Distance 40
4.1.3 Wasserstein Distance . 40

4.2 k-anonymity . 42
4.2.1 FLoC Whitepaper Evaluation 42
4.2.2 Closer Look at Pairwise Cosine Similarity Matrices . . 44

5 Related Work 49
5.1 Criticism and Analysis of FLoC 49
5.2 Alternatives to FLoC . 51

5.2.1 Contextual Advertisement 51
5.2.2 Targeted Advertisement 51
5.2.3 Federated Advertisement 52

5.3 Attacks on Targeted Advertising 53
5.4 Usage of GANs for Hash Reversal 54

5.4.1 Perceptual Hash Reversal 54
5.4.2 Neural Hash Reversal 55

6 Conclusion and Discussion 56

Bibliography 58

A Materials 64

B Datasets 65
B.1 Tranco . 65
B.2 Movielens 25m . 66
B.3 COCO Captions . 66

C Example Outputs from GAN 67

D FLoC Whitepaper Anonymity Evaluation Details 71
D.1 Dataset . 71
D.2 Feature Extraction . 71
D.3 Cluster Assignment . 72

D.3.1 Random . 72
D.3.2 SimHash . 72

iv

Contents

D.3.3 Chromium SimHash . 72
D.3.4 GAN Pipeline Chromium SimHash 73
D.3.5 Sorting LSH and Affinity Centroid 73

D.4 Evaluation . 73
D.4.1 Further Remarks on the Procedure 73
D.4.2 Results without Centering 74

v

Chapter 1

Introduction

1.1 Motivation

Websites can count on advertising to offer content and gain revenue. To make
this source of income more profitable, the ads shown are usually chosen
to be of interest to the user. In order to display relevant ads to users, it is
standard to collect data about them, to infer any meaningful information
from what they browse online. Common tracking tools include third-party
cookies, device fingerprinting etc.

These tracking mechanisms allow third-parties to record user behaviors
online and profile them. This causes serious privacy threats. Consequently,
partial mitigations have already been put in place. For example, present-day
browsers allow blocking third-party cookies as a privacy setting, if not by
default [66].

Furthermore, governments address ubiquitous data collection by privacy
regulations. For example, country regulators in the European Union are
moving against Google Analytics and Facebook Connect [11], citing breach
of GDPR and other regulations that would make their usage illegal. It is
unlikely that websites are gonna suddenly stop relying on Google Analytics,
but more legal issues are arising and companies are fined. Recently, France
fined Google and Facebook over 200 million euros for making it too disori-
enting to refuse the use of cookies [6]. France, following an analysis with
other European countries, also made the use of Google Analytics illegal [15]
without further regulations.

Studies [9] have shown that removing cookies could cost websites a big
part of their revenue (between 50 to 70%). However, it is questionable what
part of this revenue growth returns to publishers [63]. Google knows that
third-party cookies are decaying and it wants to find a substitute that would
still generate considerable revenue while maintaining an acceptable level of

1

1.2. Contributions

privacy protection. To allow websites to continue offering content for “free”
to visitors, Google plans to keep personalized advertisement alive.

As a complement to Google’s planned deprecation of third-party cookies,
they propose a potentially more private form of tracking named Federated
Learning of Cohorts (FLoC). It makes use of an unsupervised clustering
algorithm, which divides users into groups (cohorts) of cardinality at least
k to achieve k-anonymity. Each user is then assigned an identifier shared
with the whole cohort, this identifier is given to websites that implement the
FLoC API to perform cohort tracking and targeted advertisement without the
need to track singular users. FLoC uses browsing history data to compute a
locality sensitive hash (SimHash) in the browser and this hash is then used
by Google’s trusted server for assignment of the cohort.

However, Google’s proposal raised a lot of concerns from competitors, privacy
and ad-revenue oriented media. Privacy enthusiasts were quick to point out
issues and possible attacks on FLoC [17, 52]. For example, browsing histories
tend to be stable over time and can be used as fingerprint to uniquely identify
users [46]. Consequently, competing browsers disabled FLoC [56, 59] and
some websites opted-out of FLoC (default opt-in) trial [1]. FLoC became
controversial both for users and advertisers. The latter questioned Google’s
claim that FLoC is 95% as effective as cookies [54].

1.2 Contributions

In this work, we propose and demonstrate two attacks on this new proposal.
The first is a preimage attack on the non-cryptographic SimHash. This allows
us to generate random histories that match a target SimHash, and therefore
we can break k-anonymity of a target cohort using the Sybil attack [21].

Another attack focuses on reverse-engineering the browsing history from
a user’s SimHash. Generative Adversarial Networks (GANs) are already
known to be capable of generating realistic faces that are indistinguishable
from real faces and judged more trustworthy [44]. We can thus make use of
GAN techniques to generate plausible browsing histories. Since browsing
histories are rather stable over time we can use an existing dataset to train it.
However, for privacy reasons we do not use a dataset of browsing histories,
but rather a dataset of users’ watched movie list that was also used by Google
to evaluate FLoC.

We then further narrowed the history generated by the GAN using the
preimage attack such that it matches the target SimHash. We propose metrics
to evaluate the GAN’s movie history generation. Those techniques can be
adapted to a GAN generating browsing history of other kinds of similar user
data. We take random history generation as a baseline. Such metrics include:

2

1.3. Report Structure

• Comparing the number of common movies between the generated and
real movie history.

• Computing the minimum Hamming distance between the generated
histories and every history in the test set.

• We can also use one-dimensional Wasserstein distance. It compares the
distribution of appearance counts for each movie, between the test data
and a similar number of generated histories.

• And finally, we reproduce the metric used by Google to evaluate their
FLoC proposal [50]. This metric measures the “utility of cohorts for
varying levels of anonymity”. It uses real users and compares the utility
of cohorts, meaning it tries to compare how similar users are in each
cohort. We also compute this metric with users generated by our GAN
and compare our generated users with real users in the same cohort.

For each metric, we show how successful our history reconstruction attack is.

1.3 Report Structure

The remainder of this work is arranged as follows: Chapter 2 explains the
FLoC proposal, its objectives, implementation, shortcomings and how we
model it. Chapter 3 describes the implementation of the components of our
attack and how it breaks k-anonymity. Chapter 4 presents the results of the
evaluation of the components of our attack. Chapter 5 reviews the related
work in the domain of privacy-preserving interest based advertisement and
similar attacks. Lastly, Chapter 6 concludes this work.

3

Chapter 2

FLoC Proposal

2.1 Goal

2.1.1 Utility

The README at FLoC’s GitHub repository [64] defines three categories of
advertisement:

1. First-party and contextual information (e.g., “put this ad on web pages
about motorcycles”).

2. General information about the interests of the person who is going to
see the ad (e.g., ”show this ad to Classical Music Lovers”).

3. Specific previous actions the person has taken (e.g., ”offer a discount
on shoes that the user left in a shopping cart”).

Federated Learning of Cohorts (FLoC) fits in the second category. It is
supposed to replace tracking third-party cookies (used for the second and
third advertising categories) while still allowing ads to be related to users’
interests.

A first-party cookie’s domain attribute matches the domain of the currently
browsed website. It is not the case for third-party cookies. They enable
tracking of a browser’s history to the benefits of advertisers to display
pertinent ads. Bashir et al. [5] showed that advertisers are able to see at least
91% of average user’s browsing history.

FLoC is a proposal to address the ads shown based on a user inferred overall
interest, partly replacing third-party cookies. Other proposals in the privacy
sandbox [38] help phase out third-party cookies completely.

4

2.2. FLoC Implementation

2.1.2 Privacy

The FLoC proposal aimed to achieve k-anonymity, despite the fact that
differential privacy is becoming the standard privacy notion in industry and
academia. Google researchers provided more information on this choice in
their whitepaper [50] as “[they] believe it fails to quantify the hardness of
tracking users across the web”.

In the context of FLoC, k-anonymity of cohorts means that the FLoC ID is
shared by at least k users. And that a user can hide among this set of at
least k− 1 other users to avoid being uniquely identified. It is known that
homogeneity attacks can break k-anonymity. If all users in a cohort share
some information (e.g., visiting some website about an unlikely medical
condition), then we also learn that information. As a countermeasure, Google
proposed to measure the sensitivity of cohorts with the privacy notion of
t-closeness [2].

The main goal of Google with its FLoC proposal is to find a replacement
for third-party cookies that will still allow advertisers to generate revenue
while being less privacy invasive. The parameters like the cohort size and
the t-closeness are part of the privacy-utility trade-off assessed by the Google
team.

2.2 FLoC Implementation

2.2.1 FLoC ID Computation

In this section we give an overview of the Chromium FLoC ID computation.
More details can be found in [49].

Encoding the browsing history For a given user, Chromium computes the
FLoC ID of the cohort by taking as input the user’s browsing history. Websites
in the browsing history for the past seven days are encoded by taking the
hash of the domain names. The only exception are websites that are marked
as sensitive and these are therefore filtered from the computation.

Computing the SimHash of the encoding SimHash is applied on the en-
coded domain name set. SimHash is an algorithm from the locality-sensitive
hashing (LSH) family [50]. SimHash maps similar vectors to the same hashes
with higher probability than dissimilar vectors. Therefore, related browsing
history are more likely to map to the same hash. The output SimHash length
was set to 50 bits of which only a prefix is used.

Ensuring k-anonymity The computation until now can be done in browser
without sharing the history. However, it is not possible to ensure k-anonymity

5

2.2. FLoC Implementation

without knowing how many users are in each cohort. A central server (owned
by Google in the current proposal) is needed to distribute the mapping of
SimHashes to FLoC cohort IDs. This server ensures each cohort has at least
the required minimum size and can remove sensitive cohorts based on the
t-closeness parameter. Depending on the minimum cohort size, all bits of the
SimHash might not be needed. Therefore, users with different SimHash with
a common prefix may be mapped to the same cohort.

From this overview it can be noted that despite its name, FLoC does not
include Federated Learning. More details on some of these steps will be
provided when needed.

2.2.2 Origin Trial

In 2021 from April to July, Google evaluated the initial version of FLoC in an
origin trial. In selected countries 0.5% random users of Chrome version 89 to
91 were selected for the preliminary study.

A website can access the FLoC ID via a browser API. It receives an integer,
which serves as a unique identifier for a cohort. A cohort contains users
sharing similar browsing histories and by extrapolation interests. FLoC does
not provide explicit information on a users’ history. However, different
websites can share the history they observed of users with the same FLoC ID.
This allows them to infer the union of histories from users in a cohort.

The origin trial for FLoC was conducted with the algorithm explained pre-
viously in Section 2.2.1. In [14], some of the parameters used are presented.
The cohort were calculated once every seven days and included seven days of
browsing history (at least seven different sites are required for computation).
The websites that were included in the FLoC computations either displayed
ads or called the FLoC API. The FLoC cohort identifiers were global across
websites. It was also possible to opt out but every one (websites and users)
qualifying for the origin trial was included by default.

Google reported limited insights from data collected during the origin
trial [49]: Before any filtering was applied the number of cohorts was 33 872.
Between 13 and 20 bits from SimHash were needed to define a cohort. The
minimum number of users in a cohort was 2 000. Among those users in a
cohort there are at least 735 different sets of visited domains. Each user has
one set of visited domains and sometimes several users have the same set.
The t-closeness test (t = 0.1) filtered 792 sensitive cohorts (approximately
2.3%).

Advertisers also took advantage of the origin trial to analyze the data they
collected and potentially give suggestions on how to improve FLoC. A few
reported some of their findings. CafeMedia [40] is an advertiser which works
with more than 3000 websites. Not enough data was available to perform

6

2.2. FLoC Implementation

Figure 2.1: CafeMedia keyword classification of cohorts

statistical analysis on every recorded FLoC ID (around 34 000). But using
the property of SimHash (similar vectors are more likely to map to the same
value), and the fact that ranges of SimHashes are mapped to cohort ids, FLoC
IDs can be grouped together. In their analysis they split contiguous cohort
ids into groups of 1 000. With that they were able to extract meaning from
those groups of cohorts. A result of their analysis is shown in Fig. 2.1. It
summarizes the content browsed by members of cohorts in 10 keywords. It
shows however that the extracted insights during FLoC trial are quite limited.

Criteo [53] is another advertiser which posted the insights it gained during
the origin trial. They accumulated data from more than 16 000 advertiser
websites and 2 000 publisher websites over one and a half month. They noted
that not a lot of data was available, only 0.02% (Google announced 0.5%) of
Chrome users participated in the origin trial since it runs on the Beta and
Dev versions. Only 10 countries were part of the origin trial (it might not be
compliant with some countries regulation, e.g., GDPR). This makes it difficult
to draw meaningful information from the analysis. They logged on average,
over a seven day period, 2.8 unique users per cohort. The composition of
cohorts changes a lot each seven days, only 12% of users were still in the
same cohort after a change. And the average variation of FLoC ID when users

7

2.3. Threat Model

change cohort is 9600, the range of cohort identifiers being [0, 34 000]. From
their perspective FLoC may not be seen as effective as advertised by Google.
However, with the lack of transparency from Google it is hard to verify their
claim. This may again be due to the small number of users participating in
the origin trial.

The origin trial of FLoC stopped after Chrome version 91. Google stated they
were working on improving FLoC based on the feedback received before
further testing.

2.3 Threat Model

By design FLoC leaks information about the users. FLoC’s primary goal
is to track users and it works in accordance with a privacy-utility trade-off.
Google advertises that the deprecation of third party cookies along with the
arrival of FLoC (and other privacy sandbox proposals [38]) will provide more
privacy to end users than the status quo. In Chapter 5, we will see if this
claim can be validated. From the various analyses of the FLoC proposal we
found, only one seemed to explicitly define a threat model [52].

When defining our threat model we should think of strong adversaries that
may arise. Given that Google is an advertiser, tracker, Chrome vendor,
and the company behind FLoC, it is reasonable to consider Google as the
strongest adversary with potential to access more data than any other party.
With FLoC, Chrome is developing the tool for targeted advertisements, but
Google also displays relevant ads on their own websites. There is a conflict
of interests and Google can be both the defender and the attacker. Chrome is
responsible for the assignment of SimHashes to cohort, therefore it can see
all the SimHashes which others (e.g., websites receiving a FLoC ID) would
not. Google also decides on the mapping from SimHash to cohort ID, for
example which cohorts to remove due to t-closeness. Other parties would
only receive a FLoC ID and not know the user’s SimHash. Since a minimum
size is required for the cohorts, multiple SimHashes can be mapped to the
same cohort. It is also important to remember Google’s dominant position.
Chrome is by far the most used browser [58]. They utilize this position by,
for example, acquiring user information via the Chrome User Experience
Report.

The second considered adversary has less information to work with. It would
be a malicious party, for example websites that use the FLoC API to receive
visitors’ FLoC IDs. They can only approximate the SimHash originating from
the FLoC ID they observe. However, that information is sufficient to target
groups or even individuals.

In summary, we have two adversaries:

8

2.4. Possible FLoC Improvements

• Strong Adversary: Google with a possibility to observe every SimHash
of users’ histories.

• Weak Adversary: It has a partial view and wants to approximate the
SimHashes.

2.4 Possible FLoC Improvements

Since the FLoC proposal, a lot of criticism (discussed in Chapter 5) has arisen
and some of it included suggestions for possible improvements. During a
talk at an IETF conference in July 2021, Josk Karlin [14] summarized some of
the improvements they planned for the next iteration of FLoC. We summarize
some of those improvements below.

Considering the feedback the next version should not be opt-in by default
for websites with ads. During the origin trial the qualifying users that were
included did not specifically opt-in. They did however have to allow sharing
information prior with Google to be qualified.

Another issue was related to the meaning of cohorts. If a user or an advertiser
sees the FLoC ID 13729, a priori he would not have much understanding
about what that corresponds to. To make cohort identifiers more meaningful
they consider providing topics (extracted from visited domains) instead. Top-
ics can be selected, which can help with the server-side t-closeness analysis to
remove the one correlated with sensitive information. Users can then better
comprehend what FLoC is sharing about them and potentially opt out of
particular topics.

The FLoC ID during the origin trial provided approximately 16 bits of
entropy for browser fingerprinting. Using selected topics instead of cohorts
they could reduce it to around 8 bits, which is still a significant amount
of information. Therefore they thought about including some differential
privacy mechanisms. For example returning a random FLoC ID with small
probability or giving different IDs to different webpages.

The possible improvements the Chrome team was considering were based
on some of the feedback they received (e.g., Github issues [64], Mozilla
report [52]). Finally in early 2022 FLoC was replaced by the Topics API [30],
which factored in some of the improvements. As of now the proposal has
been presented and is open to feedback. However, there is still not much
detail on its implementation. Since Topics API was released just briefly before
finishing this thesis, we do not inspect it and focus only on FLoC.

9

Chapter 3

Breaking k-anonymity

This chapter’s sections follow the chronological order in which the different
approaches were tried. We first find preimages (e.g., domain names) for a
given target SimHash. This allows us to generate random histories matching
a target SimHash. It is then possible to mount a Sybil attack and isolate real
users in the cohort, breaking k-anonymity. In a second attack, we generate
plausible user histories for a target hash using a GAN and the preimage
attack. This attack also leverages SimHash, but can in general work for any
clustering algorithm.

3.1 FLoC basic functionality re-implemented

In Section 2.2.1 we gave an overview of the steps needed to compute a FLoC
ID. For the purpose of our attack and to gain more insight into the inner
working of Chromium’s version of FLoC, we reimplemented them in Python.
In this section we give more details to some parts that we will need later.

We use the Chromium source code as reference1 and also a FLoC simulator in
Go [45], which helped abstract away the components that were not necessary
for FLoC. We debugged Chromium browser in a version satisfying the origin
trial requirements to test the correctness of the computations.

3.1.1 CityHash

CityHash [48] is a hash function used for processing the input domain
names to pseudorandom numbers needed during the SimHash computation.
Note that CityHash has a known vulnerability [19]. We do not utilize this
vulnerability, but if we would, it could make our attack more powerful.

1https://github.com/chromium/chromium/tree/d7da0240cae77824d1eda25745c4022757499131/

components/federated_learning

10

https://github.com/chromium/chromium/tree/d7da0240cae77824d1eda25745c4022757499131/components/federated_learning
https://github.com/chromium/chromium/tree/d7da0240cae77824d1eda25745c4022757499131/components/federated_learning

3.1. FLoC basic functionality re-implemented

For this particular legacy hash function we took a Python implementation [55]
and corrected some minor errors. An interesting error happens when com-
puting CityHash for movie names with non-latin alphabet, where it returns
hashes longer than the expected 64 bit length. To solve this problem we just
truncated the hash to 64 bits.

3.1.2 SimHash

In Chromium, SimHash takes as input a set of strings (e.g., domain names)
and for each of them it computes a fingerprint vector of the desired output
length. This fingerprint vector for a domain in FLoC is 50 randomly sampled
values from a Gaussian distribution with the domain’s hash used as a seed
for the sampling. The number 50 is the output length parameter set by FLoC
authors. As the output it computes the sum of all these vectors and applies
the sign function (1 if input is positive, 0 otherwise) to get the resulting
binary vector.

Going more into the pseudo-random Gaussian generator, it uses the City-
Hash of the current domain and the bit position as seed. For our attack
in Section 3.2, we will use the Gaussian generator with a call to the func-
tion random gaussian(bit pos, domain hash). This function applies a Box-
Muller transform to sample from a Gaussian using two uniformly distributed
random numbers.

3.1.3 Prefix LSH

Prefix LSH [49, 23] is a variant of the proposed Sorting LSH in the FLoC
whitepaper [50]. Since the amount of users sharing the same SimHash may
be insufficient, multiple contiguous SimHashes can map to the same cohort,
in a cohort the SimHash bitstrings share the same prefix. Prefix LSH defines
the ranges of similar SimHashes that will be mapped to the same FLoC ID.
This operation is performed server-side as it needs to keep track of the cohort
size to ensure k-anonymity and filter out the blocked cohorts. The cohort
assignment is then periodically sent to the browser.

Taking the same analogy as [52], we can think of Prefix LSH as building
a binary tree. Starting with the most significant bit, we get two branches
and we grow the tree as long as each subtree contain the required minimum
number of users.

For our attack we decided to compute preimages directly on SimHash and
not the resulting FLoC ID as the latter seemed to be more prone to change
than the SimHash computation. Since a Chrome server distributes a file
to the browser that defines the mapping from SimHash to FLoC ID. At
the same time it abstracts away the Prefix LSH algorithm which is then
performed on the Chrome-operated central server. Although Google stated

11

3.2. Preimage Attack on SimHash

they will experiment with different clustering algorithms, none others were
tried publicly.

3.2 Preimage Attack on SimHash

3.2.1 Greedy Heuristic

First, we begin with a simple idea to break the non-cryptographic hash func-
tion used in Chromium’s source code for the FLoC computation. SimHash
(see Section 3.1.2) uses a pseudo-random Gaussian generator with a domain
hash as seed. This observation gives rise to the following heuristic: For each
output bit, draw a domain name from a set. Using the domain’s hash as a
seed for the Gaussian generator, repeatedly sample from a Gaussian until
an outlier is found. The sign of the outlier Gaussian sample depends on the
target SimHash bit (positive if the current target is 1, otherwise negative).
With a high probability, the large value will be enough to flip the sign of the
sum to the target value, since the mean of the normal distribution is 0, so
other random inputs preserve this large value.

Note that we use two different sampling processes. The first one draws
uniformly at random a domain name from a set and is not part of the
SimHash API. The other one uses the SimHash API to sample from a Gaussian
using the previously sampled domain as a seed.

We propose a greedy heuristic [16], since sampling an outlier from a Gaussian
for the bit under consideration is a greedy choice. Nonetheless, we do not
have guarantees that we can find an acceptable solution as a priori our
problem does not show an optimal substructure. In addition, we might have
to reconsider our choices, as it can happen that the large (absolute) value we
sampled gets overthrown by the other values and the final sum flips sign and
flips the desired output bit. To address that problem, having no guarantees
on the optimality of the choice we make, we restart the program after a fixed
number of attempts to sample a large Gaussian value.

The probability of finding a solution decreases with the increasing number
of bits of the hash. Conveniently, the preimage attack still performs well for
the bit range of SimHash used during the FLoC origin trial (13-20) [49] and
performs decently even for a greater bit count. Also, the SimHash output
bit length cannot exceed 64 bits with the current Chromium implementation.
There are 3.2 billion Chrome users according to [58] and FLoC announced
minimal cluster size of 2000 users during origin trial [49]). Therefore, the
SimHash length of more than 21 bits seems unnecessary as:

221 × 2000 = 4 194 304 000 (3.1)

Besides, with 21 bits we can easily accommodate all current Chrome users
and with 22 bits the current world population (roughly 8 billions people [67]).

12

3.2. Preimage Attack on SimHash

3.2.2 Resulting Algorithm

In more detail the algorithm works as follows (we also refer to the step in
the python pseudocode in Listing 1):

We have as input the target SimHash with the target prefix bit length we
want to match.

We keep track of the current Gaussian sums (one per bit under consideration)
and the domain hashes we chose (step 1).

For each bit, we first check if the current target bit matches the sign of the
current sum of Gaussian samples (step 2 with match target bit function). If
the bits match using the current domain list, we go to the next bit. Otherwise,
we have to add another domain hash that ensures a match of the target bit.
In the special case of the first iteration, the set of current hashes is empty, so
we consider a mismatch of the first bit and proceed to the step 3.

Since the prefix bits starting from the current one do not match the target
bits, we update the threshold for sampling an outlier Gaussian. To update
this threshold (step 3 with update thresh function), we use the following
formula assuming a defined minimum threshold parameter and access to the
current sum for the current bit position:

thresh = max {min threshold, |gaussian sums [bit pos]|}

After updating the threshold, we call the subroutine to find an outlier Gaus-
sian sample (step 4 with find outlier gaussian sample function). This will
be discussed further in Section 3.2.3.

Then we check that with the new sampled value the current sign of the
Gaussian sum matches the target bit for the current position (step 5). If it is
the case, we check that all the previous bits still match the intended target bit
with the updated Gaussian sums (step 6 with match previous target bits

function). If it is so, we update the Gaussian sums and domain hashes
accordingly (step 7 with update function), otherwise we repeat the sampling
(step 4).

The algorithm terminates when it obtained a list of domain hashes that match
the target SimHash. With this preimage attack we can generate random
histories matching a target SimHash to perform a Sybil attack, breaking
FLoC’s k-anonymity.

3.2.3 Extensions

There is potential for improvement to this simple attack. For example, we can
use more than one outlier with the correct sign for the current bit to increase
the probability that the sign is preserved despite all subsequent changes.

13

3.2. Preimage Attack on SimHash

Listing 1 Preimage attack on SimHash

1 def find_preimage(target_simhash, prefix_bitlen):

2 # step 1

3 gaussian_sums = [0] * prefix_bitlen

4 domain_hashes = []

5 for bit_pos in range(prefix_bitlen):

6 target_bit = target_simhash[bit_pos]

7 # step 2

8 prefix_bits_mismatch = match_target_bit(bit_pos, target_bit,

domain_hashes, gaussian_sums)↪→

9

10 while prefix_bits_mismatch:

11 # step 3

12 thresh = update_thresh(bit_pos, gaussian_sums)

13 # step 4

14 sample = find_outlier_gaussian_sample(bit_pos, target_bit, thresh)

15

16 if not match_target_bit(bit_pos, target_bit, domain_hashes,

gaussian_sums):↪→

17 # step 5

18 continue

19 # step 6

20 prefix_bits_mismatch = match_previous_target_bits(bit_pos,

target_bit, domain_hashes, gaussian_sums)↪→

21 if not prefix_bits_mismatch:

22 # step 7

23 update(gaussian_sums, domain_hashes)

24

25 return domain_hashes

Note that we do not try to satisfy some minimum requirement on the number
of domain names to be eligible for the FLoC ID computation (that minimum
was at seven during the origin trial [49]) but the algorithm could be modified
to ensure this by adding domains with low absolute values that likely do not
change the Gaussian sum sign.

We did not implement those changes as we later focus more on another
method to reverse SimHash. Indeed, we can also reformulate the SimHash
problem as an integer program and use a known solver, this will be discussed
further in Section 3.5.

14

3.3. Using GANs to Generate Plausible User Data

Sampling Gaussian Outliers

We now explain in detail the way we sample outliers from a Gaussian. As dis-
cussed in Section 3.1.2, we have access to a function random gaussian(bit pos,

domain hash) which deterministically returns a Gaussian sample using two
uniform random variables in the [0, 1] range derived from bit pos and
domain hash. We already know the target bit position and cannot change it,
so our degree of freedom resides in the chosen domain hash.

A straightforward implementation is to randomly sample values in the output
range of the 64-bit CityHash function used to map the domain name string to
the domain hash integer. While it works well, it would require us to be able
to reverse the CityHash. Indeed, if we want to output a preimage, simply
outputting CityHashes of unknown domain names is not that useful to us.

Although Google’s CityHash [48] has a well-known security vulnerability [19]
that could be exploited and can only make our attack stronger, we wanted a
simpler approach that does not rely on the property of the hash function.

So we decided to reduce the number of domains we can sample from, by
taking strings from an accessible dataset. We sampled domain names from
the Tranco top 1 million domain list (see Appendix B.1 for more detail on
the dataset). Then we precomputed the CityHash of domains in the list, to
draw hashes for finding outlier Gaussian samples. The attack still works
with this domain restriction, although it limits the possible samples in step 4
to 1 million.

Later, as we wanted to use GAN techniques to ensure the preimages to
SimHash resemble real user data, we relied on another dataset. For privacy
reasons, we did not find a suitable public dataset with user browsing histo-
ries. Therefore, we followed Google’s FLoC Whitepaper [50] and used the
MovieLens 25m dataset (see Appendix B.2) with a history of user watched
movies and ratings. While the MovieLens dataset contains enough movies
to process it the same way as URLs in Tranco list, the next section defines
other processing constraints. These constraints limit the number of movies in
MovieLens to 5000, which is not enough samples for the step 4 in Listing 1
Hence, we proposed another preimage attack based on integer programming,
which we define later.

3.3 Using GANs to Generate Plausible User Data

Generative Adversarial Networks (GANs) [25] are well known for being able
to generate new samples from the same distribution as the training data.
A GAN consists of two neural networks, a generative network G and a
discriminative network D, which compete against each other in a zero-sum
game. The generator G learns to produce realistic samples with the objective

15

3.3. Using GANs to Generate Plausible User Data

to deceive the discriminator D, which learns to differentiate between the fake
samples and the real data. GANs have been used quite extensively when
it comes to image data. They are able to generate photographs equivalent
to real ones to the human eye [10, 32]. Nevertheless, when it comes to
generating textual data, it becomes more challenging as we switch from
continuous data (images) to discrete data (text), while algorithms for training
GANs were designed for continuous data.

3.3.1 Choice of GAN

GANs for text generation can handle the non-differentiability of discrete
data in different manners that can be grouped into two kinds: those that
incorporate reinforcement learning (RL) techniques and those that transform
the discrete data into continous data.

The first GAN for text generation we used was LeakGAN [27] as it had the
best score on the COCO caption dataset (see Appendix B.3) out of other
competitors [69, 37]. LeakGAN belongs to the category of GANs using
RL techniques for the discrete generation. The use of a policy gradient
algorithm (e.g., REINFORCE [65]) enables backpropagation through discrete
data and training of the generator, but this induces high variance and mode
collapse issues. Mode collapse happens when the GAN lacks diversity in its
generated outputs. The generator cannot produce several modes of the input
data. For example, if we take the MNIST handwritten digit dataset [18]: A
GAN experiencing mode collapse would only be able to generate the digit 6.
Failing on every other mode (digit).

LeakGAN learns from usually binary feedback obtained from the discrimina-
tor. The discriminator can leak the features it extracted to the generator via a
manager module. LeakGAN also aims to improve the sparsity of the guiding
signal during training by using Hierarchical RL techniques. It allows for
information (e.g., reward signal) to be learnt without having to wait for the
generation of the whole sentence. This is especially useful for long sentence
generation.

Most of the text-generation GANs still use RNN architectures (e.g., incorpo-
rating an LSTM network for LeakGAN). Nevertheless, with the prevalence of
Transformer architecture for NLP tasks [61], it can make sense to also test
those building blocks in a GAN for text generation. Specifically, if it improves
our task of generating a set of movies. Vaswani et al. [61] showed that,
for translation tasks, Transformer outperforms convolutional or recurrent
networks while also being faster to train due to parallelization.

TILGAN [20] is the second model for text generation. It uses a Transformer-
based autoencoder and a GAN in the autoencoder’s latent space, hence
belonging to the latent feature matching class of text generation GANs. It

16

3.3. Using GANs to Generate Plausible User Data

reported better results than LeakGAN and other models published in the
meantime, referring to FM-GAN [12] as the previous state of the art. Unfortu-
nately, when running the provided code for TILGAN with our preprocessed
MovieLens dataset, we did not obtain good generation for the time it trained.
We also observed instability in TILGAN’s results when reading generated
output on the COCO Dataset. Sometimes it produces reasonable sentences,
but sometimes it outputs gibberish. For example, it generates sentences
with broken syntax and is stuck with repeating words. We observed more
stability when we trained with LeakGAN, even though the latter’s generated
sentences can be less diverse and of worse quality (as outlined in TILGAN
paper’s Table 2 experimental results). As our main goal is to have a working
realistic movie history generation, we prefer to go more in depth on one par-
ticular model than in breadth with different models. Therefore, we decided
to use LeakGAN for our attack.

Note that in our case, we do not need a model with as many restrictions
as needed for generic text generation. Sentences are ordered tuples, so
swapping words can change the meaning or break the syntax. However,
FLoC operates on unordered sets of browsing histories, so our generation
task is not sensitive to order of generated websites (or movies in the example
training data). Nevertheless, the additional conditions for the GAN to
generate sentences still yields realistic browsing histories for our purposes if
we remove duplicates.

As a result, the GAN model we use for our attack might not be the best
suited for the task at hand, nonetheless it can still serve as a concrete proof
of concept. In addition, with machine learning models getting better and
better over time our attack would only become stronger. As a prime example,
there are already better GAN models [20, 12] available than the LeakGAN
we selected.

3.3.2 Implementation

We used the GAN mostly as a black box without modifying its inner workings.
We aimed for a proof that the attack works first, keeping the improvement
of the GAN model as future work. Working with LeakGAN as a black box
was also caused by computational resources, since training requires time
and changing inner modules would involve parameter fine tuning. This
would consume more time and computational power for not necessarily
better results. Hence, we did not modify the default hyperparameters, except
for those necessary to accommodate the change of input dataset. Considering
the model we chose was also evaluated by its authors on different datasets,
those parameters are meant to be changed.

We use a Text GAN to generate browsing history. However, as discussed
in Section 3.2.3, we do not have access to browsing history data for privacy

17

3.3. Using GANs to Generate Plausible User Data

reasons. Therefore, we decided to use movie ratings data from MovieLens
(see Appendix B.2). As this kind of data is slightly different from text, we
have to perform some preprocessing to match the data used to train the text
GANs we found.

Preprocessing

Encoding movie histories as vectors The GAN requires numerical values
as input. The input text data thus needs to be transformed into numerical
values. LeakGAN is parametrized by the maximum sentence length and
the number of words the model knows (vocabulary size). Therefore, those
two parameters must be small as the model size depends on them. We fixed
these parameters, so we can give one number to each word in the vocabulary
and a sentence becomes a vector of numbers. The sentences that exceed the
maximum length are removed as well as those that contains word not in the
vocabulary. Another possibility is to reserve a special tag in the vocabulary
for missing words and another tag for padding a sentence to the maximum
length.

Defining vocabulary and maximum length For our purposes we define the
movies to be words and the sentences to be histories (e.g., list of watched
movies). So the vocabulary size is the number of movies from the whole
database that we keep. To choose the movies to keep we can take the most
frequent ones in the dataset or use other metrics.

The LeakGAN paper [27] reports for the COCO Image Captions dataset (see
Appendix B.3) that they “removed the words with frequency lower than 10 as
well as the sentences containing them” to reach a vocabulary of 4 980 words.
Then, they build a training set of 80 000 sentences and a test set of 5 000. Our
first approach tried to match the train-test split. The maximum sequence
length was chosen accordingly by taking only the shortest movie lists in the
dataset. Doing so allowed us to take full movie history and not sample a
subset. With this approach the maximum sentence length we reached was 77
to get the target 85 000 histories.

This restriction left us with a vocabulary size of around 20 000. To reduce
the vocabulary size we removed the movies with less than 20 occurrences
to reach a vocabulary size of 5 846. That value is close to the 5 742 that
LeakGAN used for Long Text Generation with another dataset. The average
sentence length of the other dataset is around 28 while with our approach
the average history length is around 41. Hence we can expect to train on
longer sequences.

Attempt at giving meaning to encoding Finally, we also tried to give some
meaning to the encoded movie numbers instead of ordering them randomly.

18

3.3. Using GANs to Generate Plausible User Data

The idea being that the model could learn this ordering and maybe it could
improve its generation. One idea is to sort the movies according to genres.
The genres are encoded as a bit vector represented by an int, the bit 1 means
the genre is present and 0 its absence. If the genres are equal, then the release
date is used for sorting, when the release year is not available a default high
value is used. Similar processing would be possible with browsing histories,
where the websites can be assigned to genres (topics).

Avoiding learning order In the MovieLens dataset, the movies are ordered
by increasing movie id. With the approach we mentioned above, LeakGAN
learnt this ordering through its CNN feature extractor, even though the
movie id were encoded with different numbers, not in increasing order, in
the training data. We did not want this artifact of the initial dataset to be
learnt by our model. To change this behavior we then randomly shuffled the
movie histories, before adding movies in the training data.

We also changed the vocabulary size and maximum sequence length. Seeing
that the GAN did not take advantage of the encoded movie number sorted
by genre, we discarded that step. This time, we built the vocabulary by
fixing its size in advance, and we kept only the movies appearing more
frequently in the complete dataset. Later we randomly sampled histories of a
fixed maximal length and the movie filtering is not specific to this sampling.
The previous approach was also slow to train, so we decided to reduce
the maximum sequence length to 32 (as in LeakGAN given code) and the
vocabulary size to 5 000 words. We added the two previously mentioned
special tags: one for movies not in the vocabulary and one for padding.
When one tag for out of the vocabulary movies is present in an history, it is
followed by padding tags. It means that the original history was longer but
the remaining movies were not in the vocabulary and could not be added.

Training

LeakGAN’s training procedure first pre-trains the discriminator and the
generator, and then it iterates the adversarial training. To mitigate the mode
collapse issue, they use “interleaved training”, i.e., training one epoch of
supervised training for the generator every 15 epochs of adversarial training.

The first time we trained LeakGAN with the MovieLens dataset, we used a
vocabulary size of 5847 and a maximum sequence length of 77 as discussed
earlier in Section 3.3.2. The model was trained for 44 hours in total using
Nvidia GeForce RTX 2070 Super. It performed more than 20 hours of pre-
training and then took 36 minutes per epoch. It was stopped after 40 epochs
(approx. 24 hours).

The models were mostly run locally, training was performed during the night.
Therefore, the training procedure was generally stopped after roughly 12

19

3.3. Using GANs to Generate Plausible User Data

hours. Training can be resume by restoring the model from saved weights.
With this in mind, an optimal training time would be around 12 hours. There-
fore, with the second approach, the parameters are changed to a vocabulary
size of 5002 and a maximum sequence length of 32. An example run that
lasted 12 hours can be breakdown in around 5 hours of pre-training and 7
hours to train 60 epochs. It thus takes 7 minute per epoch. Compared to the
36 min per epoch with the previous parameters we have a 5 times speedup.

The parameters were modified for computational reasons. Different GAN
architectures will allow different vocabulary size or maximum sequence
length for the same training time. LeakGAN is slow to train partly due
to the complexity of its architecture, which allows for less parallelization,
since it uses LSTM. There are newer Text GANs which are faster and report
better generation capabilities. They also allow to increase the parameter
size. In addition, an adversary with more computational power and time can
already use bigger parameters with LeakGAN. Recalling our threat model
(see Section 2.3), the assumed strong adversary in FLoC is Google (no one
else has access to the SimHashes). Google is known for having enormous
computational resources. Above that, they also have many talented engineers.
Some can build a customized GAN that is faster for sets (we waste a lot of
resources training to form the order in sentences). Finally, they have more
training data since they operate Chrome and opted-in users provide data in
the Chrome User Experience Report. Therefore, there are many reasons for
them to have much better results than we have.

The model could have been trained longer as saved weights can be restored.
Nevertheless, when we tried to measure the improvements made between
the saved models at different epoch, it did not seem necessary to train more
for our attack to be successful (discussed in Chapter 4).

Outputs

After training, we manually inspect some produced outputs. When we tried
the GAN on the COCO caption dataset, it was rather easy to check the
output and see how well it could generate meaningful sentences. With movie
histories though, it is harder to check if it seems like a plausible user history
or not.

As noticed when trained on COCO Captions, LeakGAN has a tendency to
start an history with the same word (e.g., ’A’) or movie in our case (’Toy
Story’). In addition, the model learnt the movie IDs increasing order from the
training data, even when it was not apparent from the encoded movie in the
training. It still happened that the order was not respected along the whole
sequence, especially for long ones. Some movies appeared multiple times
in the output. SimHash takes a set as input, so we removed duplicates in
post-processing to fix this issue for our purposes. We also noticed interesting

20

3.4. Discriminator Applied to the Preimage Attack Output

D T/FA x

Target
SimHash

Preimage
Attack

Discriminator

H

Figure 3.1: Pipeline: discriminator applied to the preimage attack outputs

properties which seem natural in some generated histories. Movies part of a
franchise would usually be seen in order. Our trained model seems to have
learnt that to an extent, we see movies from the same franchise appearing
multiple time, though for the order it still does not master it completely. The
order in increasing movie IDs is respected but some movies in the film series
can be omitted.

In Table 3.1, we colored the titles of multiple movies belonging to the same
franchise. We can see that the complete Harry Potter movie franchise has
been generated along with The Lord of the Rings. The first two movies of the
X-Men original trilogy and the first movie of the The Chronicles of Narnia film
series are also present. However the Star Wars franchise has only 3 movies
not all in order.

In Appendix C, we provide more example outputs from the GAN generation:

• One more example with the same GAN parameters, namely a vocabu-
lary size of 5847 and a maximum sequence length of 77.

• An example with smaller GAN parameters (vocabulary size of 5002
and maximum sequence length of 32).

The evaluation of LeakGAN’s outputs will be discussed in more detail in
Section 4.1.

3.4 Discriminator Applied to the Preimage Attack Out-
put

Our objective is to use the GAN we just trained with our preimage attack
to keep only plausible user histories matching a target SimHash. One way
to proceed is to use the discriminator of the GAN. It differentiates histories
from the preimage attack (described in Section 3.2.2) according to their
plausibility. The discriminator outputs a probability, how confident it is
about the classification as real or generated. Fig. 3.1 illustrates the pipeline.

21

3.4. Discriminator Applied to the Preimage Attack Output

Table 3.1: Example output from LeakGAN

TokenID MovieID Title Genres
4216 110 Braveheart (1995) Action, Drama, War

684 260
Star Wars: Episode IV - A New
Hope (1977)

Action, Adventure, Sci-Fi

687 1196
Star Wars: Episode V - The Empire
Strikes Back (1980)

Action, Adventure, Sci-Fi

703 3793 X-Men (2000) Action, Adventure, Sci-Fi
5691 4246 Bridget Jones’s Diary (2001) Comedy, Drama, Romance

189 4896
Harry Potter and the Sorcerer’s
Stone (2001)

Adventure, Children, Fantasy

164 4993
The Lord of the Rings: The Fellow-
ship of the Ring (2001)

Adventure, Fantasy

165 5816
Harry Potter and the Chamber of
Secrets (2002)

Adventure, Fantasy

166 5952
The Lord of the Rings: The Two
Towers (2002)

Adventure, Fantasy

1372 6333 X2: X-Men United (2003) Action, Adventure, Sci-Fi, Thriller

2256 6377 Finding Nemo (2003)
Adventure, Animation, Children,
Comedy

5709 6942 Love Actually (2003) Comedy, Drama, Romance

4284 7153
The Lord of the Rings: The Return
of the King (2003)

Action, Adventure, Drama, Fantasy

171 8368
Harry Potter and the Prisoner of
Azkaban (2004)

Adventure, Fantasy, IMAX

988 40815
Harry Potter and the Goblet of Fire
(2005)

Adventure, Fantasy, Thriller, IMAX

190 41566
The Chronicles of Narnia: The Lion,
the Witch and the Wardrobe (2005)

Adventure, Children, Fantasy

3783 50872 Ratatouille (2007) Animation, Children, Drama

4009 54001
Harry Potter and the Order of the
Phoenix (2007)

Adventure, Drama, Fantasy, IMAX

1414 56174 I Am Legend (2007)
Action, Horror, Sci-Fi, Thriller,
IMAX

5745 56367 Juno (2007) Comedy, Drama, Romance
4702 63082 Slumdog Millionaire (2008) Crime, Drama, Romance
743 68358 Star Trek (2009) Action, Adventure, Sci-Fi, IMAX

3994 68954 Up (2009)
Adventure, Animation, Children,
Drama

878 69844
Harry Potter and the Half-Blood
Prince (2009)

Adventure, Fantasy, Mystery, Ro-
mance, IMAX

745 72998 Avatar (2009) Action, Adventure, Sci-Fi, IMAX
4862 74458 Shutter Island (2010) Drama, Mystery, Thriller

5202 79132 Inception (2010)
Action, Crime, Drama, Mystery, Sci-
Fi, Thriller, IMAX

4806 81591 Black Swan (2010) Drama, Thriller

669 81834
Harry Potter and the Deathly Hal-
lows: Part 1 (2010)

Action, Adventure, Fantasy, IMAX

4291 88125
Harry Potter and the Deathly Hal-
lows: Part 2 (2011)

Action, Adventure, Drama, Fantasy,
Mystery, IMAX

5476 92259 Intouchables (2011) Comedy, Drama

4560 96821
The Perks of Being a Wallflower
(2012)

Drama, Romance

1178 102903 Now You See Me (2013) Crime, Mystery, Thriller
4834 116797 The Imitation Game (2014) Drama, Thriller, War

777 122886
Star Wars: Episode VII - The Force
Awakens (2015)

Action, Adventure, Fantasy, Sci-Fi,
IMAX

4022 134130 The Martian (2015) Adventure, Drama, Sci-Fi

5556 134853 Inside Out (2015)
Adventure, Animation, Children,
Comedy, Drama, Fantasy

22

3.4. Discriminator Applied to the Preimage Attack Output

3.4.1 Benchmark

Settings

We measure the performance of this attack by varying the SimHash prefix
length. We then measure the time it takes for the preimage attack (Listing 1)
to find a history with the target SimHash and the discriminator to classify
this history. For each bit length we will run the preimage attack a 100 times.
Those 100 runs will be evenly split on 4 seeds used to generate a target
SimHash from a real user history in the test data. Since the preimage attack
might not terminate, we set a timeout (chosen as 6 seconds after some trials)
to stop the process and restart it. The elapsed time divided by the timeout is
then the number of restarts.

Note that the attack is implemented in standard Python while the discrimi-
nator uses TensorFlow GPU-accelerated library. We also only measure the
runtime of the attack itself and the discriminator classification. The prepro-
cessing necessary to have the right input format is not accounted for.

Results

From the results we present, the main takeaway is the mediocre performance
of the discriminator to distinguish random data from real data.

We only show the runtime for SimHash prefix of 5, 10, 15, and 20 bits, since
we showed that more than 21 bits are unnecessary with the proposed FLoC
implementation (Eq. (3.1)). In addition, the preimage attack is already quite
slow when it needs to match 20 bits.

In Table 3.2, the confidence shows the average and standard deviation of
the discriminator’s output probability for the positive label (classified as
real data) when it was the one returned (probability greater than 0.5). Note
that the discriminator only classified something as generated (negative label)
twice, once for the 15 and 20 bit length (with 77 and 82% confidence).
Therefore, it seems that we cannot trust the discriminator to distinguish
between generated and real histories when we randomly sample movies to
form a history.

We also report the total time for all 100 iterations, and in parenthesis the
average time and standard deviation. The runtime of the discriminator is
negligible, since one iteration typically takes only 5 ms.

We see that the attack time increases exponentially with the bit length.
Namely, we interpolated those four points in Fig. 3.2, and found a func-
tion f (x) = e

x−5
3 + 4, where x is the bitlength. Despite this being just an

approximation, the exponential nature of the increase in runtime was also
expected.

23

3.4. Discriminator Applied to the Preimage Attack Output

Table 3.2: Benchmark of Discriminator – Preimage Attack

Bit Length Attack Time Discriminator Confidence
5 497.1 s (5.0± 0.6 s) 99.5± 3.1%
10 747.1 s (7.5± 4.8 s) 99.9± 0.7%
15 2 258.7 s (22.6± 20.4 s) 99.1± 4.7%
20 19 125.5 s (191.3± 276.7 s) 99.6± 3.5%

-4-4 -2-2 22 44 66 88 1010 1212 1414 1616 1818 2020 2222 2424 2626 2828

2020

4040

6060

8080

100100

120120

140140

160160

180180

200200

220220

240240

260260

280280

300300

320320

340340

00ff

AA BB

CC

DD

Figure 3.2: Average Preimage Attack Time is Exponential

The preimage attack works, but it is inefficient for higher bitlengths, even
after reducing the domain from which we randomly sample movies by the
vocabulary of the trained GAN.

However, the speed is not the main limitation that we observed about our
proposed history generation. We observed a high level of confidence in
accepting the generated histories by the discriminator as real. In fact, we
observed only two histories that were ever rejected as generated. We tested
if this is influenced by the generated histories’ length, but we were rarely
able to detect the discriminator rejecting any history. This unfortunately
means the idea of filtering generated data from the preimage attack by their
plausibility is not working as intended. This is most likely a problem related
to LeakGAN or its training. Some other GAN’s discriminator should be able
to perform better with adequate training.

24

3.5. Integer Programming on the Generated Data

However, we saw earlier (Section 3.3.2) that the generator still produced
decent movie histories. It could be partly explained by the features from the
discriminator being leaked to the generator as additional feedback, which
is more informative than the resulting classification. The observation that
the generator produces reasonable data and that it is much faster than the
preimage attack leads to an alternative approach that we describe in the next
section.

3.5 Integer Programming on the Generated Data

Our trained discriminator network was unable to distinguish between real
and fake history. In this section, we describe how to postprocess a history
from the generator network such that it matches a target SimHash. We used
integer programming to do this and it significantly outperforms the preimage
attack proposed in Section 3.2.

We can solve the SimHash constraints for a target value using the GAN
generator’s output. We want to find the largest subset of the generated
history that would collide with the target SimHash.

3.5.1 Defining the Integer Program

We give below the canonical form of an integer linear program

maximize cTx
subject to Ax ≤ b,

x ≥ 0,
and x ∈ Zn,

The vector x is the vector we are looking for. For SimHash we only need
a binary integer program, meaning the elements of x are either 0 or 1. A
0 coordinate in x means that the movie at this position is not part of the
subset matching the target SimHash. We want to maximize the size of the
subset. The sum of the entries in x gives us the size of the subset and we
want to maximize this objective. We therefore set c to be the vector with only
1s. A bit in a SimHash is 1 if the sum of Gaussian samples is greater than
0, otherwise the bit is 0. Hence b is the zero vector and the inequality that
defines the k-th bit value of the output SimHash can be written as

n−1

∑
i=0

ak,i · xi ≤ 0

where ak,i is an element of A and xi of x. A is an m by n matrix where m is
the SimHash bit length and n is the length of our input history. The matrix

25

3.5. Integer Programming on the Generated Data

A will contain the Gaussian coordinates from the SimHash computation.
The Gaussian coordinates can be computed as they depend on the SimHash
output bit position and the current hash. We define

f (bit, hash) = random gaussian(bit, hash) · sign(bit),

where sign(bit) is 1 if bit is 1 and -1 if bit is 0. Now we can write

A =

f (0, hash0) f (0, hash1) · · · f (0, hashn−1)
f (1, hash0) f (1, hash1) · · · f (1, hashn−1)

...
...

. . .
...

f (m− 1, hash0) f (m− 1, hash1) · · · f (m− 1, hashn−1)

We can rewrite our integer linear program as follow:

maximize
n−1

∑
i=0

xi

subject to Ax ≤ 0,
x ≥ 0,

and x ∈ {0, 1}n.

0 is always a trivial solution to the integer program. It is another reason for
the use of a maximum in the objective. So a valid solution for our purpose is
one where the solution of the integer program is greater than 0.

3.5.2 Applying the Integer Program

The integer program can be translated into Python code straightforwardly
with the use of a library. We first tried the library cvxpy as it was easier to
start with than the more powerful gurobi solver. Nevertheless, both of those
solvers do not allow for strict inequalities. Therefore, we cannot reproduce
exactly the SimHash constraints. In Chromium’s SimHash implementation
the bit is 1 if the sum of Gaussian samples is greater than 0 and consequently
the bit is 0 if that sum is less or equal to 0. Thus, in the case where we have
equality with 0 we might infer the wrong bit with our integer program.

It is hard for a linear program solver to optimize strict inequality constraints.
cvxpy documentation even says that “Strict inequalities don’t make sense
in a real world setting”2. From a theoretical point of view, with strict
inequality, the space of feasible solutions becomes an open set. Finding
extrema on an open set is not desirable as one can get closer and closer to the
boundary but not reach it. In practice, with finite floating-point arithmetic, a

2https://www.cvxpy.org/tutorial/intro/index.html#constraints

26

https://www.cvxpy.org/tutorial/intro/index.html#constraints

3.5. Integer Programming on the Generated Data

computer cannot differentiate excessively close numbers. Therefore, solvers
use a feasibility tolerance and the difference between strict and non-strict
inequality is not substantial.

One might say that the equality with 0 case in SimHash constraints should
not appear often. However, when we later try to find all the solutions to the
same SimHash problem with gurobi, it will most likely also find solutions
that do not match the target SimHash. Some bits are flipped due to the
equality with 0.

To remediate this issue, we compute the SimHash of the resulting preimage
and ensure it matches the target SimHash.

Finding Multiple Solutions from the Same History

By default an integer program solver would return only one solution satisfy-
ing the problem. It could also return the suboptimal solution it found on the
way. However, we might want to find more than one solution from the same
problem. The objective of our integer program is to return one of the maxi-
mum subset of the history that matches the target SimHash, so suboptimal
solutions that still satisfy the SimHash constraints but have shorter length
histories are skipped. These shorter solutions can more precisely match the
history and reduce noise of unnecessary movies.

A first attempt with the cvxpy library would rerun the solver with an added
new constraint to bound the maximum to a smaller value. Presupposing
that the solver returned a valid solution, namely a value greater than 0. This
approach is limited by the fact that cvxpy only returns one solution per
maximal history subset length.

There exists algorithms to find multiple solutions to an Integer Program.
Gurobi abstracts those away and can return multiple solutions with their
MIP Solver. The solver gives us some degree of freedom to choose how it
returns multiple solutions, namely up to 2 billions best solutions3. This can
cause issue with non-zero optimality tolerance, i.e., those solutions might
not be the best possible. However we did not take care of this. We verify the
optimality of each solution due to the potential bit flip when the constraint
equals 0. Furthermore, we are not concerned with finding the best solutions,
we want as many solutions as possible in a limited computation time. We
can set a fix number of solutions to find or set it to the maximum and add a
time limit on the solver. The solver will try to look for the specified number
of best solutions or prove that there are not that many.

This procedure can take time, more time than switching to another prob-
lem with a different input history, resulting in an exploration-exploitation

3https://www.gurobi.com/documentation/9.5/refman/poolsolutions.html

27

https://www.gurobi.com/documentation/9.5/refman/poolsolutions.html

3.5. Integer Programming on the Generated Data

D T/F

Noise
Source

Generator
Integer

Program

z G

H

IP

Target
SimHash

x y

Discriminator

Figure 3.3: Pipeline: integer programming on the generator outputs

dilemma. Should the solver continue to find solutions from the same problem
or switch to the next problem. The solution count and time limit parameters
can be used to promote more exploration or exploitation. We also have to
think about the trade-off between quickly generating many histories and the
diversity of those generated history. When we find multiple thousands his-
tory matching a target SimHash from the same 32 movie set, those histories
will lack diversity. However, optimally the generated history matching a
target SimHash is similar to real users’ history matching the same SimHash.
The more diverse the generated histories are, the more insight we can have
about the real users histories.

3.5.3 Benchmark

Setting

We have a pipeline of the form:

History Generation→ Integer Program [→ Discriminator] (3.2)

where we can include or not the discriminator post-processing step.

We illustrate the updated pipeline in Fig. 3.3. We can optionally (red frame)
apply the discriminator on the integer program’s output.

Each of the steps in Eq. (3.2) allows configuring fixed or specified parameters.
Some of them will vary when we compare different pipelines.

Let us start with the History Generation parameters. We can either use
the LeakGAN generator or a Random History generator which randomly
samples a matrix of the same size as LeakGAN (batch size× sequence length)
with tokens from the vocabulary. The batch size (64), vocabulary size (5000)
and maximum sequence length (32) are parameters of the GAN that also
apply to the Random generator. For the GAN we also have the possibility
to load a saved checkpoints to restore the model weights. We explore this
functionality in Chapter 4.

28

3.5. Integer Programming on the Generated Data

The Integer Program parameters depend on the solver (cvxpy or gurobi).
However, once we had gurobi working, we only kept this one, since it is a
more powerful solver. With the gurobi solver, we can set a time limit and
whether the solver should search for multiple solutions. By default, only
the solutions found on the way to the optimal one are returned. We can
then specify how many solution to look for, a fixed number smaller than the
maximum possible.

Now we have to define some stopping criteria according to the target
SimHash parameters.

• How many target SimHashes do we want to match.

• How many unique histories we want to match a target SimHash.

• Whether those histories also have to be validated by the discriminator
after matching the target hash.

• The sampling domain for the target SimHash (e.g., training data, test
data, complete MovieLens dataset).

• The bit range of the target SimHash.

We are measuring the runtime to estimate the speed of our attack. Note
that the Python code is not always optimized for speed and logging is likely
slowing it even more. We measure it only at the line executing the code of
interest to improve precision. For example, we measure the call to optimize
the integer program and omit the construction of the integer program. It
is in a sense similar to what we have done for our earlier benchmark in
Section 3.4.1.

Integer Program on Generator Output

To allow for comparison with the runtimes results from Table 3.2, we try to
reproduce similar settings (Section 3.4.1). We thus make the SimHash bit
length vary from 5 to 25 (with 5 increments). We also generate 4 different
target SimHashes from the history of real users in the test set. The SimHash
obviously are different due to the increasing prefix bit length. For each
target SimHash, we set the target collisions count to 25. Due to the history
generation in batch of 64, we will most likely end up with more than 25
collisions. The discriminator is not used in this pipeline, but we have already
seen that the discriminator runtime is negligible.

In Table 3.3, we report, in the ‘History Generation‘ column, the number of
histories generated by the GAN, followed by the number of those histories
that only admit zero as solution to the integer program. We also report, in the
‘Integer Programming Time‘ column, the total runtime, and in parenthesis
the average time and standard deviation. We did not modify the GAN

29

3.5. Integer Programming on the Generated Data

Table 3.3: Benchmark of GAN – Integer Program

Bit Length History Generation Integer Programming Time
5 256, 0 0.52 s (2± 1 ms)
10 256, 14 2.01 s (8± 10 ms)
15 256, 92 5.03 s (20± 19 ms)
20 256, 170 5.89 s (23± 23 ms)
25 704, 626 12.83 s (18± 22 ms)

parameters while varying the bit length and its runtime is negligible, the
generation of a batch of 64 histories typically takes less than 0.5 s. We need to
remember that the generator runs in batch of 64 histories, while the integer
program is run for each history. This means that the generator is called
4 times while the integer program is called 256 times. Except for the last
row (bit length of 25), where 11 calls to the generator and 704 calls to the
integer program solver were needed to reach the target collisions count. This
explains the increase in runtime for the last row. From the results in Table 3.3,
it is clear that incrementing the bit length increases the complexity of the
integer program. A higher hash length means more SimHash constraints to
satisfy. And with the fixed history length as input, the integer program fails
more often to find non-empty history for which a subset can match the target
SimHash.

The average solve time is similar for the bit length range 15 to 25. However,
the standard deviation indicates that we have a lot of fluctuations between
individual integer programs. Every integer program admits 0 as a solution.
It generally requires more time to solve the integer program when 0 is not
the only solution. Nevertheless, 0 is often the only solution. Undoubtedly,
the lower the hash length the easier it is to find non zero solution. The
integer programming problems with only trivial solutions bring the average
down, while the others increase the standard deviation. Let us take the 25 bit
length as an example. We have to remember that by default gurobi returns
more than one solution, if it found more while searching for the optimal
one. Hence, for the 25 bits case, 626 histories did not satisfy the SimHash
constraints with a nonzero solution. From the 78 histories that could, the
solver returned 144 collisions. Therefore, we can see that with higher bit
lengths it is harder to find non-zero solutions.

This is also illustrated with the average length of generated histories. While
the average length of an history generated by the GAN is stable around
27± 4. The average length of an history after the integer program is around
15± 5. Obviously for the integer program output, the longer the bit length is,
the lower the average and standard deviation are. For a bit length of 25 the
average history length is 13.8± 3.7 when for 15 it is 15.3± 4.5.

30

3.5. Integer Programming on the Generated Data

If in future work we wanted to accomodate longer SimHash bit lengths, we
could simply increase the maximum history length and train a GAN with
the updated maximum sequence length. A bigger vocabulary size can also
help. However, as we already argued (Eq. (3.1)), for our purposes a bit length
of more than 22 is disproportionate.

Comparing the results with Table 3.2, we see tremendous improvements to the
speed for higher bit lengths. The runtimes went from thousands of seconds
to tens of seconds. We have to keep in mind that integer programming is
NP-complete [31]. Therefore for higher hash and history lengths the runtime
should increase exponentially. However, the integer program does not need
to randomly restart when it is in non optimal territory. It needs new histories
(possibly of higher length), but not an increase of the domain hash (5000
movies). This makes it more reliable than the the previous preimage attack.

With this experiment, we can be confident that our attack can accommodate
the various SimHash prefix lengths used in the FLoC computation.

Integer Program Explicit Search for more Solutions

We have already seen that gurobi can return a various amount of solutions
if it found them before the optimal solution. However, we want to know how
much we can generate and how fast, if we were to let the solver explicitly
look for more solutions.

Given the specified size of cohorts (2000) during FLoC origin trial (discussed
in Section 2.2.2). It seems excessive to ask the solver to look for more
solutions, when one good solution can already give us thousands to hundred
thousands histories matching a target SimHash. The latter being tested when
the full history already matches the target SimHash. For example, with a 20
bit SimHash and a time limit of 100 s, the solver found 168 745 solutions and
more could still be found.

For this experiment we set the SimHash bit length to 20. We set the number
of solutions to search to the maximum possible value. Either the cardinality
of the power set of the history or the maximum value allowed by gurobi

(2 billions). We only vary the time limit, as it can take a lot of time for the
solver to prove that there are no more solutions even for problem with a
small number of solutions. If we were not interested in generating many
histories in a short time, we could set a lower maximum number of solutions
to search. We aim to generate 2000 histories matching a target SimHash. As
mentioned earlier, it was the minimum cohort sizes during FLoC’s origin
trial. We only match one target SimHash. We do not apply the discriminator
on the outputs.

We report in Table 3.4 the total runtime of the integer program, and in paren-
thesis the average time and standard deviation (‘I.P. Time‘ column). We omit

31

3.5. Integer Programming on the Generated Data

Table 3.4: Benchmark of Generation→ Integer Program Pipelines

Pipeline I.P. Time Solutions
Counts
(G,IP)

GAN 100.20s (0.02± 0.02s) 2037 4992, 1090
GAN Multisol 10 2.84s (0.04± 0.06s) 6242 64, 19
GAN Multisol 20 3.23s (0.05± 0.07s) 2615 64, 15
GAN Multisol 30 3.60s (0.06± 0.11s) 6608 64, 14

the one for the generator as it does not change with the current parameters’
variation. We also report the number of solutions found (‘Solutions‘ column).
The ‘Counts‘ column shows how many histories had to be generated to reach
the target solution count, followed by the number of histories that admitted
a non-empty subset matching the target SimHash. The pipelines include a
GAN which is not set to search for other solutions than the one that leads to
the optimal solution. GAN Multisol 10 is set to search for multiple solutions,
possibly all of them with a time limit of 10.

From Table 3.4 we can see that for our purposes searching for more solutions
is excessive, if we want to flood a cohort with only 2 000 users. We would
get more diversity if we generate more histories. On the other hand, GAN
Multisol is quite fast. Compared to the 100 seconds and 5 000 generated
histories needed to reach the target solution counts. The GAN Multisol can
generate thousands of solutions with less than 20 histories.

Unfortunately, this particular run or experiment does not showcase the use
of increased time limits, since the solver finds all solutions in no time. The
variation in the GAN history generation makes it hard for the integer program
to find a lot of solutions. Improvements could be made on the generation
part in future work.

We can mention that some solutions are discarded after checking if they
match the target SimHash. Due to the equality with 0 constraints being not
respected. It is the case for 16 solutions of GAN Multisol 10.

Larger cohort sizes would have been used if FLoC was tested outside a trial
with a very small percentage of Chrome users. But this is not a problem as
our attack is again successful, even for cohort much larger than 2 000. We also
note that if we sacrifice diversity in the generated histories, we can drastically
increase the speed of the attack.

Discriminator applied to Output of Integer Program

We experimented with the following pipeline:

History Generator→ Integer Program→ Discriminator

32

3.5. Integer Programming on the Generated Data

Table 3.5: Discriminator Confidence depending on Generation Method

Generator
Real Confidence

(samples)
Gen. Confidence

(samples)
Counts

(Gen, IP)

RAND
99.6± 2.1%

(2481)
72.7± 15.5%

(8)
1284, 1127

GAN
94.9± 10.3%

(1900)
88.4± 14.4%

(624)
1728, 1236

The random generation and discriminator runtimes are very fast, much faster
than the LeakGAN generation. We can note that with random data the
integer program has an easier time finding preimages. It is most likely due
to the random data having more diversity in the included movies. However,
as we will confirm below with Table 3.5, the discriminator seems to not be
trustworthy when applied to random data. We already saw (Table 3.2) it
is overconfident on unseen data being real data. Meaning that if we care
about our preimages to resemble real user data, we might not want to use
this pipeline.

For Table 3.5, we ran the experiment with 10 different target SimHashes.
Those 15 bits SimHashes are generated from real users history in the test
data. For each target SimHash, at least 150 collisions have to be generated.
Those collisions have to be classified as real by the discriminator. We only
vary the generator to be either LeakGAN or random.

In Table 3.5, we report the confidence probability for the label (real or
generated) given by the discriminator. As a reminder, the confidence shows
the average and standard deviation of the discriminator’s output probability
for a label when it is the one returned (probability greater than 0.5). We
also give the number of samples that were classified as real or generated.
The counts refer to the number of generated histories (multiple of the batch
size i.e. 64) followed by the subset that admitted a non-trivial solution to
the integer program (‘Counts‘ column). The number of samples that the
discriminator classified is more than double the number of histories that
admit a solution to the integer program (e.g. 2489 > 2× 1127). This is
because the integer program also returns suboptimal solutions found on the
path to the optimal solution. Therefore, it can return more than 1 solutions
for one problem.

The solutions from the integer program contained a comparable average
history length (env. 16) between the GAN and Random generation. Yet
the discriminator classified the random histories subsets matching a target
SimHash almost entirely as real (2481 out of 2489). On the other hand, the
discriminator seemed to be able to classify around one fourth of the GAN’s
generator history subsets as generated (624 out of 2524). So it seems that

33

3.5. Integer Programming on the Generated Data

the discriminator labels data from unseen distribution (random generation)
as real by default. Whereas, on the data it trained with, it still manages
to classify some of them as generated. This confirms our assumption that
random histories do not resemble the training data and the discriminator
somehow classifies those samples as positive. Therefore this also makes the
pipeline with the discriminator applied to random data less useful for our
purposes. As this data would not resemble user data as much as the one
generated by the GAN. This is unfortunate as the random generation is very
fast.

With this experiment, we notice that we can use the GAN to generate plausible
histories. The generated histories are still classified as real with high proba-
bility by the discriminator, even after being piped into the integer program
to find a subset matching a target SimHash. Therefore, our attack pipeline
(GAN with integer program) succeeds in breaking FLoC’s k-anonymity prop-
erty. Since our attack allows reverse-engineering the browsing history from
users’ SimHash, the privacy of FLoC is compromised.

34

Chapter 4

Evaluation

Metrics that are representing the performance of our attack well can also
be used to evaluate the GAN during training, namely as an early stopping
criteria.

4.1 Movie History Generation

In LeakGAN’s paper [27], they reported BLEU scores for realistic text gener-
ation benchmarks. BLEU (bilingual evaluation understudy) [47] evaluates
the quality of text that has been translated from one language to another
without human assistance. However, that is a metric used in NLP, which
is not suitable for our attack since it is sensitive to the word order. Indeed
the BLEU metric reported in LeakGAN’s evaluation uses n-grams (for n in
{2, 3, 4, 5}). An n-gram is a contiguous sequence of n words from a sentence.
The generated sentences are compared (using set of n-grams) to reference
sentences in the test set. For each generated sentence a BLEU score is com-
puted. It can take values between 0 and 1 and it shows how similar the
generated sentence is to the reference sentences, higher scores suggest more
similar sentences. The scores are then averaged to estimate the overall quality.
This metrics when applied to our movie history generation gives very poor
results (close to 0) for longer n-grams as we tried to train our GAN so as to
avoid learning an ordering.

We wanted to report different results than the BLEU scores to evaluate the
outputs of the GAN. We opted for metrics that are not order-sensitive and
can evaluate how similar generated histories are to the underlying dataset
based on real user histories.

Such metrics can serve model evaluation (e.g., early stopping of training),
but also evaluation of the complete process or its components (e.g., data
generated by the preimage attack).

35

4.1. Movie History Generation

4.1.1 Common Movies

We considered several metrics for evaluating different set of watched movies
(that we call histories). For example, for movie franchises, one can check
if different movies of the same franchise appear and follow some sort of
chronological order (by release date or chronological event in the story). We
did observe that some histories generated by the GAN exhibit such properties,
while others do not (see Section 3.3.2). However, it is preferable if the metric
is more generic, as not every history contains a movie franchise, and finding
an equivalent information for websites would be complicated. We settled for
a metric that counts the number of common movies.

In the context of FLoC the common movies become common domains. And if
the generated histories share a lot of domains with unseen real user’s brows-
ing histories, then we succeeded in leaking potentially sensitive information
about the target user.

Settings

To compare the performance of the GAN during training, our metric needs to
be fast and must not require excessive usage of data. Runtimes measurements
have already been done in the previous chapter. We refer to Section 3.5.3
for more details on the pipeline possible parameters. As we use the same
program to evaluate our pipelines here.

As the input of the metric we use real and generated histories. Namely, 5
invariant real user’s histories from the test set serve as goal. To these, we
match 200 histories generated by an integer program searching for 15 bits
prefix collision. We can then apply this metric on various GAN models in
the intermediate stage: after the generator, the integer program, and the
discriminator. As reference, we can use a random generator instead of the
GAN’s generator.

Results

We compute the number of common movies between the generated histories
and five unseen real user histories used to compute the target SimHash. We
want our attack to generate histories that will have common websites (here
movies) with some target users in the same cohort. Therefore, computing
the number of shared movies between real and generated history is an
appropriate validation method for that purpose.

In Table 4.1, the results are aggregated over the generation for the five target
SimHashes. For each target, we computed the average of the common movie
counts weighted by the number of history with those counts. We report the
mean and standard deviation of the list of averages under the ‘Common

36

4.1. Movie History Generation

Table 4.1: Distribution of Common Movie Counts

Generator Common Movies Counts
Generator Int. Prog. Gen. I.P.

RAND 0.17± 0.04 0.11± 0.04 16.20± 2.14 11.80± 2.9
GAN-11 2.34± 0.97 1.58± 0.81 25.80± 2.64 23.2± 3.19
GAN-21 2.10± 0.84 1.46± 0.76 24.00± 3.95 22.00± 3.58
GAN-31 1.90± 0.68 1.30± 0.61 27.60± 2.58 26.00± 2.76
GAN-41 2.42± 1.04 1.67± 0.93 25.00± 2.53 22.60± 2.73
GAN-51 2.01± 0.76 1.39± 0.64 26.40± 2.58 23.6± 3.56
GAN-61 1.94± 0.68 1.29± 0.61 26.40± 3.01 23.40± 3.01

Movies‘ columns. We also report, under the ‘Counts‘ columns, the number of
movies from the real user history (max. 32) that also appeared in any of the
generated histories. For the GAN’s generators the average history length is
around 27 and around 15 after the integer program. For the random generator
the numbers are 32 and 17. This sets the upper bound on the number of
common movies, since the histories filtered by the integer program are only
about half of the maximal length.

We omit the results after the discriminator’s classifications, as those are very
close to the results evaluated after the integer program. They are almost
identical for the random generation (‘RAND‘ row in table) and usually get
slightly worse within a 5− 10% margin for the GAN’s generation.

From Table 4.1 we see that GAN-41 has the best average number of common
movies with real users. But it is GAN-31 which, across all histories, generated
the most movies present in the target histories. Note the high standard
deviation, so our results might not be robust.

In Table 4.2, we report more statistics about the run that generated the results
in Table 4.1. We present the number of histories produced by the generator
(column ‘Generated‘), the one that admit a nontrivial solution to the integer
program (column ‘Int. Prog. Success‘) and the number of solution returned
(column ‘Solutions‘). We also report the total number of movie present in the
vocabulary that were generated (column ‘Unique Movies‘).

We see that the random generator is the one that needs the least samples to
match the target collision counts. It also has no problem generating diverse
movie outputs as it randomly samples in the movie vocabulary. The GAN
models vary based on training checkpoints. The model GAN-31 generated
the most unique movies, but it could be explained by the fact it also generated
a lot more histories. This could also explain why it had the best numbers in
Table 4.1’s ‘Counts‘ columns. It may also be that GAN-31 had to generate
more histories because its discriminator rejected more of them.

37

4.1. Movie History Generation

Table 4.2: Statistics on the History Generation

Generator Generated Int. Prog. Success Solutions Unique Movies
RAND 640 548 (85.6%) 1208 4909

GAN-11 1472 993 (67.5%) 1929 2291
GAN-21 1024 738 (72.1%) 1444 2224
GAN-31 1600 1149 (71.8%) 2311 2778
GAN-41 1216 864 (71.1%) 1731 2140
GAN-51 1280 895 (69.9%) 1803 2463
GAN-61 1024 757 (73.9%) 1525 2438

Table 4.3: Confidence of the discriminator

Generator
Confidence

Real
Confidence
Generated

Counts
(Real, Generated)

RAND 99.57± 2.53% 71.84± 12.62% 1203, 5
GAN-11 90.42± 13.23% 85.52± 15.07% 1209, 720
GAN-21 93.42± 11.50% 83.57± 15.90% 1191, 253
GAN-31 89.57± 13.72% 90.31± 13.44% 1111, 1200
GAN-41 92.08± 11.97% 85.54± 14.97% 1196, 535
GAN-51 93.66± 11.16% 89.07± 14.34% 1156, 647
GAN-61 94.88± 10.58% 88.94± 13.88% 1127, 398

For the GAN models, the ratio between the number in the ‘Unique Movies‘
and ‘Generated‘ columns is the highest for GAN-61 at around 2.4 while the
second highest is GAN-21 at approximately 2.2. However, those variation
may be due to the high variance induced by the training algorithm.

We also compare the confidence of the discriminator. We saw earlier (Sec-
tion 3.5.3) that it did not help to distinguish random data from real. But it is
better in distinguishing GAN’s generator data from training data. In Table 4.3
we report the confidence of the decisions made along with the label counts.
As a reminder, the confidence shows the average and standard deviation
of the discriminator’s output probability for the positive label (classified as
real data) when it was the one returned (probability greater than 0.5). Note
that when the ‘Generator‘ column varies, so does the discriminator since the
GAN contains both network. For the random generator (‘RAND‘ row), we
used the discriminator of GAN-61.

The confidence of the GAN’s discriminator, with weights restored from dif-
ferent checkpoints, seems rather stable. However the different label counts
can vary quite a bit, questioning the stability of the discriminator during
training. Indeed, GAN-31 generated the most histories (see Table 4.2) be-
cause its discriminator rejected more histories than it accepted and it is the
only generator for which it happened. Its number of histories classified as

38

4.1. Movie History Generation

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

Common Movies

C
ou

nt
s

RAND
GAN-41
GAN-61

Figure 4.1: Distribution of common movie counts

generated (rejected) by the discriminator is close to double the other model
with the highest rejection (GAN-11).

In Fig. 4.1, we show the distribution of the common movie counts between
data generated by the GAN’s generator and the target SimHashes, aggregated
over 5 different target SimHashes. We used only the generator, no integer
programming. We also computed the histogram after the integer program
and discriminator, and each time the number of common movies decreased
slightly, the weights shifted towards the lower numbers.

From the histogram we clearly see that the random generation has very little
common movies with the target history. However, our GAN model evaluated
at two different checkpoints has a lot more histories with higher number of
common movies. This is promising but only the tail of the distribution is
on the higher counts, with a maximum of 10 for 4 histories of GAN-41. For
GAN-61 the maximum is 9 for 1 history while GAN-41 has 5 histories with 9
common movies with the target history. On average the number of common
movies with a target history is around 2 (see Table 4.1).

39

4.1. Movie History Generation

Table 4.4: Distribution of minimum Hamming distances

Generator Minimum Hamming Dist.
RAND 17.94± 0.10

GAN-11 15.67± 0.06
GAN-21 15.85± 0.10
GAN-31 16.24± 0.06
GAN-41 15.26± 0.14
GAN-51 15.97± 0.09
GAN-61 16.36± 0.13

4.1.2 Minimum Hamming Distance

Despite FLoC using only the leading 20 bits of SimHash, the Google server
responsible for the cohort assignment has access to the full 64 bit SimHash.
We measure the Hamming distance of the full SimHash as a metric of
dissimilarity of histories. The Hamming distance checks for each bit position
if they match and returns the mismatch count between the two hashes.

We compute the minimum Hamming distance among each SimHashes in the
test set (5000) and the SimHash of a history just generated by the GAN. In
Table 4.4, we present the results. We report the mean and standard deviation
after the generation in the same way as in Table 4.1 for the common movies.

Lower Hamming distance is better, since the SimHashes are more similar
and similarity of SimHashes should also represent similarity of their inputs,
the histories. Histories from the GAN-41 are having the lowest Hamming
distance from the target, this model is performing the best and it was also
the case with the common movie count (see Table 4.1). We note a certain
correlation between the common movies and minimum Hamming distance
metrics. We also observed that generally a close Hamming distance between
SimHashes corresponds to more common movies. GAN-61 is the worse after
RAND, but just a bit higher than what is in the variance of similar Generator.
What is more surprising is that GAN-41 is considerably lower than every
other Generator, making it a clear winner with respect to this metric.

In Fig. 4.2, we plot the distributions for the same three generation processes.

4.1.3 Wasserstein Distance

The Wasserstein distance (or earth mover’s distance) between two distribu-
tions g and r represents intuitively the minimum quantity one has to move
to convert g into r. If we see the distributions as piles of dirt, we compute
the previous quantity by multiplying the chunks of dirt to move with the
distance they shifted.

40

4.1. Movie History Generation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

350

400

Minimum Hamming Distance

C
ou

nt
s

RAND
GAN-41
GAN-61

Figure 4.2: Distribution of minimum Hamming distances

Settings

We use the 5000 histories from the test set as reference distribution. We
generate around 5000 histories with the GAN generator as the distribution for
evaluation. We use a function that compute the Wasserstein distance for one
dimensional distributions. To transform the histories into one dimensional
distributions, we associate with each possible movie ID (and special padding
tags) its number of occurrences in the history list.

Results

In Table 4.5, we report the results varying the model checkpoints and adding
the random generation as a baseline.

For this metric, GAN-41 run performed worse than GAN-61, despite some
previous metrics showing the opposite. The random generation performs
badly as it puts the same weights for every movie in the vocabulary. However,
in real users histories not every movie is equally likely to be present.

41

4.2. k-anonymity

Table 4.5: Wasserstein distance between generated and real histories.

Generator Wasserstein distance
RAND 921

GAN-11 473
GAN-21 318
GAN-31 282
GAN-41 367
GAN-51 354
GAN-61 262

4.2 k-anonymity

4.2.1 FLoC Whitepaper Evaluation

This metric is taken directly from the FLoC whitepaper [50, Fig. 4]. Their
work evaluates the “utility of cohorts for varying levels of anonymity” using
cosine similarity of vectors representing the history. We start by reproducing
Fig. 4b shown in Fig. 4.3.

When replicating the method with histories generated by our GAN, we
evaluate the similarity of the generated histories that belong to the same
cohort. We also compare generated and real histories in the same cohort.
This allow us to further validate the output from our GAN.

Method description

More details about the feature extraction and cluster assignment used for
this method can be found in Appendix D.

In the FLoC whitepaper, authors measure the “utility of cohorts for varying
levels of anonymity” by computing the average cosine similarity (normalized
dot product) between every history in the cluster and the centroid of that
cluster. In our case a cluster is a cohort.

FLoC whitepaper does not specify, which norm was used for the cosine simi-
larity computation. We took the L2 norm for vectors. While experimenting
with other norms (vector and matrix) we could get similar or quite different
results.

They then computed, as we interpret it, a weighted 2-percentile over the
distribution of average cosine similarities for each choice of target cluster
size. This distribution is weighted by the respective size of each cluster. For
example, say we want 10 cluster of size 500, with a SimHash clustering (see
Appendix D.3) we might have clusters with bigger or smaller size than the
expected target of 500.

42

4.2. k-anonymity

Figure 4.3: Fig 4b. in FLoC whitepaper

This is a way to evaluate privacy, more precisely the k-anonymity level of
protection that 98% of the user would benefit from. The results from FLoC
whitepaper are in Fig. 4.3. With this metric, a result closer to 1 is better.

Results

We tried to reproduce the whitepaper evaluation. We had to make more
decisions on how to reproduce the evaluation results from FLoC whitepaper.
We discuss these in Appendix D.4.1 and provide alternative results based on
different decisions in Appendix D.4.2.

LeakGAN generated enough user for a cluster in around 30 minutes, depend-
ing on the cluster size parameters. We generated 9 clusters that we use for
all the different results.

The plot in Fig. 4.4 shows our reproduction of the whitepaper evaluation. We
tried to reproduce the procedure, inferring the missing parts as was detailed
earlier and in Appendix D. We stored several models from different iteration
of the training loop, but displaying a plot for each one would not be very

43

4.2. k-anonymity

meaningful due to high variation. We hence report the last model – GAN-61
(Figs. 4.4b and 4.4d) and the model with one of the best curve – GAN-41
(Figs. 4.4a and 4.4c). Among the other models, we noticed better and worse
curve fluctuating with longer training. There was no clear improvement the
longer we trained.

The first row (Figs. 4.4a and 4.4b) is on the full dataset. It makes use of the
ratings in the feature extraction for the cosine similarity computations. As
mentioned before, GAN does not have access to this information. The second
row (Figs. 4.4c and 4.4d) shows the results on the training data subset and
without ratings.

On the same row only the GAN curves change. In contrast, the GAN curves
are the same in each column since the GAN does not make use of the full
input data. However, on the training data the other SimHash algorithms
perform worse as their curves go down. There are less users in the training
data (120 000 vs 162 541) and their histories are shorter (max 32 vs average
153). Only 5000 movies are retained in the training (more than 60 000 are in
the dataset). In addition, no ratings are available for the training data. This
can explain the change in the data point positions for the SimHash based
clustering using the training data. For more details on the construction of
the training dataset, refer to Section 3.3.2.

The random cluster assignment serves as a baseline. Our GAN performs
better than random and worse than StrSimHash. StrSimHash is the SimHash
used in Chromium, it takes strings (e.g., movie titles) as input, while the
other SimHash uses the feature extraction (see Appendix D.2).

4.2.2 Closer Look at Pairwise Cosine Similarity Matrices

We keep the cluster assignments from the previous section. Let us take a
closer look at the pairwise cosine similarity matrices between users in the
same cluster (same SimHash bit length and value). The Chromium SimHash
is used for each cluster we compare. However, some users are real users,
while the others are generated by LeakGAN.

Settings

We take the pairwise cosine similarity matrix between the real and generated
movie histories. To make the comparison more fair with the GAN generated
cluster we use the training data for the Chromium SimHash clusters.

The pairwise cosine similarity matrices can be quite large (up to around
5000x5000) and plentiful (≈ 210 matrices depending on the hash length). We
therefore compare the minimum and maximum entries according to selected
statistics.

44

4.2. k-anonymity

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (full)
StrSimHash
SimHash

Random
GANStrSimHash

(a) GAN-41 on dataset with genres.

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (full)
StrSimHash
SimHash

Random
GANStrSimHash

(b) GAN-61 on dataset with genres.

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (train)
StrSimHash
SimHash

Random
GANStrSimHash

(c) GAN-41T

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (train)
StrSimHash
SimHash

Random
GANStrSimHash

(d) GAN-61T

Figure 4.4: FLoC whitepaper evaluation with centering.

45

4.2. k-anonymity

Table 4.6: Pairwise Cosine Similarity Matrix (GAN VS REAL)

Checkpoint Common Movies Common Genres
Max Entry Min Entry Max Entry Min Entry

GAN-11 4.723± 4.637 0.004± 0.062 13.426± 2.223 1.145± 1.386
GAN-21 4.898± 4.487 0± 0 13.461± 1.843 1.016± 1.259
GAN-31 4.355± 4.883 0± 0 13.520± 1.796 0.875± 1.111
GAN-41 4.984± 4.538 0± 0 13.453± 2.005 1.145± 1.473
GAN-51 4.277± 5.477 0.004± 0.062 13.238± 1.980 1.121± 1.405
GAN-61 4.051± 4.466 0± 0 13.605± 1.834 0.855± 1.030

Having one such matrix for each cluster for the SimHash bit range going
from 5 to 10, it seems reasonable to limit ourselves to those values. We will
also fix a SimHash prefix length.

We expect metric being interdependent. For example, take the number of
common movies. We expect two vectors with high cosine similarity to be
very similar and hence have a higher number of common movies than two
vectors with low cosine similarity.

However, if we center the features before computing the cosine similarity,
then the features would not be nonnegative anymore. We can now have
negative cosine similarities. And the interpretation we make of it changes,
as already mentioned in Appendix D.4.1. Namely, centering can alter the
direction and angle of the vectors, which the cosine similarity rely on.

Without centering, the lowest cosine similarity would be equal or close to
zero. And it would likely be two feature vectors that do not share any genres
together. Nonetheless, when applying centering, neither the lowest cosine
similarity nor the closest to 0 would have zero genres in common. Also the
opposite could happen, movie histories are deemed very similar when not
sharing common movies, and the genres distribution is somewhat different.

Results

In Table 4.6, we compare the pairwise cosine similarity matrices’ extrema
entries. To obtain the averages and standard deviations we fixed the SimHash
length to 8 bits and accumulated the entries for each SimHash values (256
in total). In order to ease the interpretation of the results, we do not apply
centering.

We added the common genre metric as in the FLoC whitepaper evaluation
method from Section 4.2.1 with genres used for features extraction. Hence
the cosine similarities are computed on the representation of those genres.

For the max entries we expect to see more common movies/genres, but for
min entries we expect fewer of them in common. Since we are dealing with

46

4.2. k-anonymity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

10

20

30

40

50

60

Common Movies

C
ou

nt
s

GAN-41
GAN-61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

50

60

Common Genres

C
ou

nt
s

GAN-41
GAN-61

Figure 4.5: Histogram of the Distribution of Common Movie/Genre Counts

the pairwise cosine similarities of users (real and generated) in the same
cluster, we would also want the min entries to be as high as possible. Hence
for the max and min entry columns we define higher as better.

In Table 4.6 we see that GAN-41 has the highest average number of common
movies for the max entries. However, GAN-61 has a higher average number
of common genres. As already said earlier in Appendix D.4.1, our metrics
try to summarize complex situations into a number. Hence there is not a
single best metric. One has to find the best trade off between the metrics of
interests. Unfortunately the common movies metric is not very robust since
it has very high variance.

In Fig. 4.5, we report the distributions of the common movies and genres
metrics for LeakGAN at two different checkpoints. The ones that performed
well in Table 4.6.

For the metrics we report, it is important to recall that the movie histories
generated by LeakGAN will contain less movies than the training data. Since
the integer program takes a subset of the history that matches the target
SimHash.

It can happen that the GAN generates the same movie history as in the
training data. GAN-61 is able to generate histories that, apart from the
order, exactly match the training data. We observed across different runs
that GAN-61 generated histories with above 25 common movies. However, it
still remains that GAN-41 is more consistent at generating higher average
common movie counts. For the common genre the distance between the two
distribution is not significant.

We observed that GAN-41 was generally the best performing across most
of the metrics. However, due to the high variance of certain metric (e.g.,
common movies) the improvements are not noticeably significant. Whereas

47

4.2. k-anonymity

for other metric, like the minimum hamming distance, GAN-41 was a clear
winner. With this metrics, we were able to evaluate the quality of the GAN’s
history generation for different model from the same training loop. These
metrics can thus be used during training either individually or together.
When evaluating more than one metric the aim is to find a trade-off between
them. This evaluation demonstrated that our attack is able to generate
plausible histories similar to that of real users mapped to the same cohort.

48

Chapter 5

Related Work

5.1 Criticism and Analysis of FLoC

Google’s Federated Learning of Cohort is a tool part of their Privacy Sand-
box project aimed at “building a more private [and] open web” [38]. After
Google’s announcement of those plans a lot of criticism emerged. We summa-
rize the criticisms brought by NGOs (e.g., EFF [17]), issues posted on FLoC
Github [64], browser competitors (Mozilla [52], Brave [56], and Vivaldi [59]).

Fingerprinting Browser fingerprinting consists in collecting persistent in-
formation from users that uniquely identifies their browser [22]. Examples
of the collected information are user agent, font rendering capabilities, or
individual choices as Do-Not-Track. Chrome is behind competing browsers
like Safari or Firefox in the fight against fingerprinting. In addition, FLoC
increases the fingerprinting surface, since the tracker only has to identify a
user among a group of thousands of users while before it was among millions
of users. Google promised to address fingerprinting with its “Privacy Budget”
proposal [35] currently planned for 2023 [38]. However, rival browsers like
Brave and Mozilla are doubtful about the success of such “budget” tech-
niques [51, 57]. They conclude that FLoC constitutes a new fingerprinting
source, in a context where Google is not able to deal properly with existing
ones, and therefore it seems counter productive to deploy FLoC in the current
situation.

Use of external information FLoC IDs seem to be able to do the job that
trackers did with third-party cookies, except FLoC is doing it for them. The
trackers could also add their own information. Now they only have to
differentiate among people in the cohort instead of the whole population.
In addition, sequence of cohort ID could be tracked and used to uniquely
identify users, as mentioned in issue #100 [64] . FLoC advertises with its

49

5.1. Criticism and Analysis of FLoC

ID a summary of one user’s current history to every websites. This can
have negative effects, websites could learn information they should not. For
example, if one visits an insurance website, they could refuse coverage if
they found out (e.g., with the help of the FLoC ID) about some underlying
condition that would diminish their profits. Furthermore, it might be possible
for tracker to reverse the FLoC ID and get a good idea of what websites a user
has in its history. Resulting in potentially sensitive information about some
specific demographic leaking to trackers. Chrome used the same sensitive
categories for FLoC as the one used for Google targeted ads. However,
sensitive information can still leak in forms that are less apparent. A well-
known example1 is an angered father finding Target is sending baby clothes
advertisement to his teenage girl. Target knew about his daughter pregnancy
before him through targeted advertisement.

Unfairness potential The EFF says “The power to target is the power to
discriminate”. Such advertising techniques enable one to target specific
groups while discarding others. This can be discriminatory when used to
restrict access to loan or job listings. Google solution seems to mostly rely on
filtering out sensitive cohorts. Nevertheless this is generally not sufficient.
This filtering also raises concerns about censorship or discrimination. In
addition, malicious advertisers would benefit from plausible deniability.
Indeed, they do not target explicitly people in sensitive categories. Some also
reported the use of this sensitive information (e.g., religion), that could be
inferred by dictatorship on the visit of national websites, to discriminate a
part of its population. In addition, FLoC is more favorable to big companies
(like Google or trackers company). Those companies would be able to infer a
lot more information from the cohort ID, due to the huge amount of traffic
they can observe on the different websites they use. Therefore, it will be
harder for smaller companies with less observations to extract meaning form
statistical analysis. Another harmful example reported by Brave is audience
stealing. A website selling niche products might loose customers if FLoC
advertise to other parties their customers’ interests. Rival browsers reported
that FLoC implementation might hinder their own existing mitigations to
protect users. Therefore, there does not seem to be enough countermeasures
to prevent FLoC being used for exploitation, discrimination or harm.

Lack of transparency There has been a lot of criticism on the lack of trans-
parency and auditing in FLoC development. Some targeted the black-box
nature of certain operation. For example the server-side cohort ID assign-
ment, since data is being sent to Chrome servers to ensure k-anonymity
and remove sensitive cohort. That server needs to be trusted and auditable.

1https://www.businessinsider.com/the%2Dincredible%2Dstory%2Dof%2Dhow%

2Dtarget%2Dexposed%2Da%2Dteen%2Dgirls%2Dpregnancy%2D2012%2D2

50

https://www.businessinsider.com/the%2Dincredible%2Dstory%2Dof%2Dhow%2Dtarget%2Dexposed%2Da%2Dteen%2Dgirls%2Dpregnancy%2D2012%2D2
https://www.businessinsider.com/the%2Dincredible%2Dstory%2Dof%2Dhow%2Dtarget%2Dexposed%2Da%2Dteen%2Dgirls%2Dpregnancy%2D2012%2D2

5.2. Alternatives to FLoC

For now, Google only published some detail explaining the procedure and
needs to be trusted without external validation. Others advocated for more
meaningful cohort names. They wanted a meaning to already be given to the
cohort ID, as opposed to the current numbers used to define cohort where
the meaning has to be extracted from tracking.

Debatable privacy improvements Some posted issues and browser vendors
denounced the false or misleading claims about FLoC advertised privacy
properties. For example, k-anonymity protections prevents from distinguish-
ing a user in a group. However, one can still learn private and valuable
information that one might not want to be shared without explicit approval.
Furthermore, some criticize Google statements. In particular Google says
FLoC is an improvement over third-party cookies, which is a terrible baseline
to take. They also say FLoC improves privacy, while mostly comparing it to
Chrome’s default and not the other more privacy-preserving browser. Brave
also adds that filtering sensitive cohort generally necessitate the gathering of
sensitive information. Moreover, what is sensitive might be up to everyone
individually and not to Google’s definition. In summary, EFF and competing
vendors do not see real privacy improvements with this Google proposal and
judge the countermeasures to the above problems insufficient.

5.2 Alternatives to FLoC

5.2.1 Contextual Advertisement

Contextual information can be obtained without having to target a specific
user based on personal information. It can look for specific keywords on a
website and show ads based on them. This is less privacy-infringing, was
the standard in the past, and does not require developing multiple new
tracking protocol allegedly more respectful of your privacy. This is what
EFF [17] advocates, along with the conclusion of [7]. Approaches premised
on tracking users would need to prove that they indeed protect user privacy.
Berke et al. [7] showed that FLoC failed in that regard.

5.2.2 Targeted Advertisement

If contextual advertising is not sufficient, then others proposed targeted
advertising while being more respectful of users’ privacy.

A blog post2 from Mozilla already lists a few existing proposals for more
privacy-preserving advertising. It mention what other browser manufacturers
developed like Google’s privacy sandbox [38]. Microsoft PARAKEET [41]
proposes to modify ad requests such that the browser anonymizes personal

2https://blog.mozilla.org/en/mozilla/the-future-of-ads-and-privacy/

51

https://blog.mozilla.org/en/mozilla/the-future-of-ads-and-privacy/

5.2. Alternatives to FLoC

identifiable information, but the rest of the ecosystem does not change once
it has the anonymized information. Adnostics [60] proposal lets the user’s
browser choose the targeted advert. It makes billing more challenging as the
ad-network does not know which ads was shown. Therefore, they also change
the billing system using homomorphic encryption. “The ad network remains
agnostic to the user’s interests”3. One can try Adnostic using a Firefox
extension. There is also a variant of Adnostic called AdScale that improve
scalability and can support billions of daily ad impressions [26]. There also
exists other browser extensions like Crumbs4 which offer to protect your
privacy by anonymizing your personal information. It then shares interests,
based on your personal data but that should not allow identification. This is
in a sense what FLoC successor’s the Topics API would do. Nevertheless, it
is important to remember that anonymized data can still allow identification
of users when not done properly [43].

We have only discussed some of the existing proposals for privacy-preserving
targeted advertisements. We also found some related works on building
privacy-preserving recommender systems [62]. It is in a sense related to
targeted advertisements. For example one could see movie recommendations
as a recommendation for items to buy on a websites.

There are multiple proposals for a more privacy-preserving advertisement.
Nevertheless, there is still no consensus on the best method to achieve it.
And some of the proposed methods can be hard to analyze.

5.2.3 Federated Advertisement

FLoC initially planned to incorporate Federated Learning in its protocol.
[34] saw the idea of using federating learning as promising: “[it] offer[s] all
the benefits of machine learning without the drawbacks of centralized data
collections”. Noting that Google already uses it. For example Gboard (a
keyboard app) uses it to provide customized word predictions. However, the
division of users in cohort seemed unnecessary.

There does not seem to be a lot of applications of federated learning for
targeted advertisements. However, there is research [42], which Brave plans
to use to recommend news to users without collecting profiles on them. If
federated learning can be used successfully to recommend news to users, it
should also be able to recommend ads to show.

3https://crypto.stanford.edu/adnostic/
4https://crumbs.org/

52

https://crypto.stanford.edu/adnostic/
https://crumbs.org/

5.3. Attacks on Targeted Advertising

5.3 Attacks on Targeted Advertising

For most of the points in 5.1, critics provided potential attacks. Sometimes
the Google team also proposed ideas to mitigate the issues.

Considering that FLoC only ran in an origin trial with a small percentage
of users, the majority of the attacks remained theoretical rather than real
implementations. An exception is [7], which implemented and analyzed
their attacks. They used proprietary (paid) demographic and browsing
history data instead of movie dataset like we did. Then they emulated the
cohorts FLoC would produce for their analysis. One attack idea is to track
sequence of FLoC IDs. This attack was first proposed in issue #100 of FLoC
repository [64], but without practical implementation. However, in [7] the
attack was realized. By only tracking the sequence of FLoC IDs over time,
they were able to uniquely identify 95% of user’s devices after 4 weeks. This
attack would be even more efficient using standard fingerprinting techniques.
Therefore, the stated goal of FLoC preventing individualized user tracking
is not achieved. In addition, with the observed data, they could connect
user racial backgrounds to their browsing histories, but they found no direct
connection between race and cohorts.

Other issues suggested methods to recover the browsing history. For example
in issue #40, they suggest to use the popularity of websites (e.g., trending
articles in a given time frame) and known website that are recurrently used
(e.g., news site, social media, bank account). As user’s browsing history
are not random, an attacker could precompute possible FLoC IDs and gain
valuable insights on the sites a user could have visited.

This is in the spirit of our own attack, except that we do not use a priori
information about our end users with our GAN. But we may incorporate to
some extent the popularity of websites in our training data. On the other
hand, we use more advanced techniques than only SimHash matching to
perform the attack, and we also implemented a proof of concept.

Furthermore, as a minimum cohort size is required for k-anonymity protec-
tion, one can mount a Sybil attack. This was already reported by Mozilla [52].
Our attack provides a practical implementation using the SimHash preimage
attack or integer programming. With this attack one can generate enough
users so that a particular cohort is saturated. This would force Chrome
server-side pipeline to use a greater prefix length for the SimHashes mapped
to the target cohort. With a longer prefix the cohort should contain users
sharing more similar browsing patterns. And as we populated this cohort
with generated users they should be fewer real users in the cohort, which
then may be easier to identify.

Other issues went even beyond the previous attack, to consider what harm
it could enable in society. Issue #36 takes as a real world example the use

53

5.4. Usage of GANs for Hash Reversal

of dating apps to target and abuse LGBT people5. It raised concerns on
FLoC allowing malicious individuals to target members of a cohort sharing
a specific trait. Since it should be easy to emulate the browsing history of
members of this group who share known common interests. And even in
the case where Chrome removal of sensitive groups would work. It could
discriminate markets with genuine activities who wish to target such groups.

Additionally, issue #38 describes that malicious websites could force users
into arbitrary cohort, by embedding code to open websites in the background.
A proposed mitigation was to only include history created due to user input.
This seems to highlight a Google’s deploy-first mitigate-later politic.

5.4 Usage of GANs for Hash Reversal

5.4.1 Perceptual Hash Reversal

A perceptual hash is a class of locality-sensitive hash (LSH). As we saw in
Section 2.2.1, SimHash is also part of the LSH family.

GANs have been used to reverse perceptual hashes, for example by Locas-
cio [39]. It trains Pix2Pix [29] on a dataset. Pix2Pix learns a mapping from the
input images to the output images. To transform the perceptual image hash
into something Pix2Pix understands it is arranged into a two dimensional
array (interpreted as an image). The image hash is used as input for Pix2Pix
which then generates a new image similar to the one used to compute the
input image hash. However, the output image may not have exactly the same
hash as the original. To increase the probability of generating a hash colli-
sion, one can modify the GAN’s objective to improve reversibility. Adding
a term to the Pix2Pix loss, measuring the distance between the generated
and original hash, can help guide the training. From his experiments, this
modification improved the generated image’s hash collision rate from approx.
30% to 80%.

For our attack, the GAN objective was to generate text and not learn a
mapping from text to text. Therefore, we did not follow the same approach.
In the case where we had a similar GAN for text, it is also not obvious how
to pipe the SimHash as input text to our GAN. Generally for text, if we
use a vocabulary it is not obvious how to transform the SimHash into the
vocabulary.

This example suggests not using perceptual hashing, at least without sup-
plementary countermeasures, for application where protecting privacy must
prevent leakage of the preimage.

5https://www.pinknews.co.uk/2015/02/18/gay%2Ddating%2Dapps%2Dused%2Dby%

2Dattackers%2Dto%2Dtrap%2Dvictims%2Din%2Direland/

54

https://www.pinknews.co.uk/2015/02/18/gay%2Ddating%2Dapps%2Dused%2Dby%2Dattackers%2Dto%2Dtrap%2Dvictims%2Din%2Direland/
https://www.pinknews.co.uk/2015/02/18/gay%2Ddating%2Dapps%2Dused%2Dby%2Dattackers%2Dto%2Dtrap%2Dvictims%2Din%2Direland/

5.4. Usage of GANs for Hash Reversal

5.4.2 Neural Hash Reversal

The Apple Child Sexual Abuse Material (CSAM) Detection [3] intends to
store hashes of illegal images. However, these hashes should be somewhat
robust to various image transformations (e.g., crop, rotation etc.). Therefore,
Apple trained a CNN to detect slightly transformed image so that they can
be matched to the same hash.

Nevertheless, such neural networks are vulnerable to adversarial attacks [24],
adding specially crafted noise (perturbations) to an image changes its classi-
fication. These attacks can be made more efficient using GANs to generate
adversarial samples [68].

Another attacks managed to extract Apple’s NeuralHash model6. These
models then lead to further successful attacks [33, 4].

In our case, FLoC did not make use of a neural hash. Namely, there was no
neural network used in the FLoC computation. It is therefore not possible to
extract the network model and then generate adversarial examples for it.

6https://www.reddit.com/r/MachineLearning/comments/p6hsoh/p_

appleneuralhash2onnx_reverseengineered_apple/

55

https://www.reddit.com/r/MachineLearning/comments/p6hsoh/p_appleneuralhash2onnx_reverseengineered_apple/
https://www.reddit.com/r/MachineLearning/comments/p6hsoh/p_appleneuralhash2onnx_reverseengineered_apple/

Chapter 6

Conclusion and Discussion

In this work, we provide an attack on the FLoC implementation’s claimed
k-anonymity protection. We first demonstrated that it is relatively simple
to find preimages for a Locality Sensitive Hashing algorithm like SimHash.
We then proceed to use this preimage attack with a GAN that generates
seemingly realistic user’s histories. We can now generate artificial user
history profiles whose SimHashes are chosen to target a specific group of
users. As we generate more profiles, the cohort they are assigned to gets
more specific until it includes only a few real users, which compromises its
k-anonymity protection. It follows that FLoC allows to distinguish and track
users inside the same cohort, which is against its objectives. Therefore, the
Google FLoC proposal is not meeting its promises of replacing third-party
cookies while preserving privacy of users.

We evaluated the quality of our user history generation. We quantified the
improvements made by the GAN’s history generation compared to a random
history generation (to the best of our knowledge there is no other baseline).
Our metrics report substantial improvement over the baseline. However, it
is still possible to make further enhancements, since the field of GANs for
discrete data is still an active area of research and more suitable models can
be developed with their own metrics. Note that such advancements together
with simply using orders of magnitude more computational power are
realistic, since the attacker model includes Google or another large advertiser
to run the attack.

We suggest two countermeasures to our attack. Making the server that
assigns SimHashes to cohort ID trusted and unable to read sensitive data
would make our attack far more complicated, but not impossible since we can
approximate user SimHash by the Sybil attack. The proposal can also leverage
differential privacy methods (e.g., to not always return the same cohort and
make it vary per website), which would also reduce fingerprintability and
provide plausible deniability to users.

56

After receiving detailed feedback on their FLoC proposal, Google proposed
partial mitigations on the possible exploits and changed their view on the
privacy guarantees. But since that still did not address all issues, in early 2022
Google announced they would replace FLoC with the Topics API. Similarly
to FLoC, the new Topics API still leverages a user’s browsing history to
compute aggregated information directly in browser that is then shared with
advertisers. However, it does not return a cohort ID but a set of topics and
the returned topics may differ across sites and time so as to limit the amount
of information leakage. This directly prevents the Sybil attack. According
to the differential privacy, Topics API outputs a random topic with a 5%
probability. The browser will determine the topics from the history of visited
websites using a classifier model that is still to be specified. Our attack greatly
utilized the rich information in SimHash, while the Topics API will send
from the browser only three topics that hold significantly less information.
We therefore assume our attack is no longer valid on the Topics API, but
since the implementation details have yet to be provided, it is possible that
some part of our attack may still apply. This new proposal by Google is an
improvement from the previous iteration. However, it remains still to be
proven that it achieves its privacy goals as Google still prioritizes utility over
privacy.

57

Bibliography

[1] Adalytics, ed. Who is sharing data with Google’s FLoC ad algorithm? 2021.
url: https://adalytics.io/blog/google-chrome-floc (visited on
02/22/2022).

[2] Josh Karlin Andrés Muñoz Medina Michael Kleber and Marshall Vale.
Measuring Sensitivity of Cohorts Generated by the FLoC API. 2021. url:
https://docs.google.com/a/chromium.org/viewer?a=v&pid=

sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDo1Mzg4MjYzOWI2MzU2NDgw

(visited on 02/14/2022).

[3] Apple. CSAM Detection Technical Summary. 2021. url: https://www.
apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.

pdf (visited on 02/17/2022).

[4] Anish Athalye. NeuralHash Collider. 2021. url: https://github.com/
anishathalye/neural-hash-collider (visited on 02/17/2022).

[5] Muhammad Ahmad Bashir and Christo Wilson. “Diffusion of user
tracking data in the online advertising ecosystem”. In: Proceedings on
Privacy Enhancing Technologies 2018.4 (2018), pp. 85–103.

[6] BBC, ed. France fines Google and Facebook over cookies. 2022. url: https:
//www.bbc.com/news/technology-59909647 (visited on 02/22/2022).

[7] Alex Berke and Dan Calacci. Privacy Limitations Of Interest-based Adver-
tising On The Web: A Post-mortem Empirical Analysis Of Google’s FLoC.
2022. arXiv: 2201.13402 [cs.CY].

[8] Thierry Bertin-Mahieux et al. “The Million Song Dataset”. In: Proceed-
ings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011). 2011.

[9] Alexander Bleier. “On the Viability of Contextual Advertising as a
Privacy-Preserving Alternative to Behavioral Advertising on the Web”.
In: Available at SSRN 3980001 (2021).

58

https://adalytics.io/blog/google-chrome-floc
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDo1Mzg4MjYzOWI2MzU2NDgw
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDo1Mzg4MjYzOWI2MzU2NDgw
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://github.com/anishathalye/neural-hash-collider
https://github.com/anishathalye/neural-hash-collider
https://www.bbc.com/news/technology-59909647
https://www.bbc.com/news/technology-59909647
https://arxiv.org/abs/2201.13402

Bibliography

[10] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. 2019. arXiv: 1809.
11096 [cs.LG].

[11] Matt Burgess. Europe’s Move Against Google Analytics Is Just the Be-
ginning. Ed. by Wired. 2022. url: https://www.wired.com/story/
google-analytics-europe-austria-privacy-shield/ (visited on
02/22/2022).

[12] Liqun Chen et al. Adversarial Text Generation via Feature-Mover’s Distance.
2020. arXiv: 1809.06297 [cs.CL].

[13] Xinlei Chen et al. Microsoft COCO Captions: Data Collection and Evaluation
Server. 2015. arXiv: 1504.00325 [cs.CV].

[14] Josh Karlin @ Google Chrome. Let’s Talk About FLoC at PEARG - IETF
111. 2021. url: https : / / datatracker . ietf . org / meeting / 111 /

materials/slides-111-pearg-lets-talk-about-floc-00 (visited
on 01/17/2022).

[15] CNIL, ed. Use of Google Analytics and data transfers to the United States:
the CNIL orders a website manager/operator to comply. 2022. url: https:
//www.cnil.fr/en/use-google-analytics-and-data-transfers-

united- states- cnil- orders- website- manageroperator- comply

(visited on 02/22/2022).

[16] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.
Chap. 16.

[17] Bennett Cyphers. Google’s FLoC Is a Terrible Idea. Ed. by Electronic
Frontier Foundation. 2021. url: https://www.eff.org/deeplinks/
2021/03/googles-floc-terrible-idea (visited on 02/15/2022).

[18] Li Deng. “The mnist database of handwritten digit images for machine
learning research [best of the web]”. In: IEEE signal processing magazine
29.6 (2012), pp. 141–142.

[19] CVE Details. Google Cityhash Security Vulnerabilities. 2012. url: https:
//www.cvedetails.com/vulnerability- list/vendor_id- 1224/

product_id-23646/Google-Cityhash.html (visited on 01/26/2022).

[20] Shizhe Diao et al. “TILGAN: Transformer-based Implicit Latent GAN
for Diverse and Coherent Text Generation”. In: Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021. Online: Association for
Computational Linguistics, Aug. 2021, pp. 4844–4858. doi: 10.18653/
v1/2021.findings-acl.428. url: https://aclanthology.org/2021.
findings-acl.428.

[21] John R Douceur. “The sybil attack”. In: International workshop on peer-to-
peer systems. Springer. 2002, pp. 251–260.

59

https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://www.wired.com/story/google-analytics-europe-austria-privacy-shield/
https://www.wired.com/story/google-analytics-europe-austria-privacy-shield/
https://arxiv.org/abs/1809.06297
https://arxiv.org/abs/1504.00325
https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-lets-talk-about-floc-00
https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-lets-talk-about-floc-00
https://www.cnil.fr/en/use-google-analytics-and-data-transfers-united-states-cnil-orders-website-manageroperator-comply
https://www.cnil.fr/en/use-google-analytics-and-data-transfers-united-states-cnil-orders-website-manageroperator-comply
https://www.cnil.fr/en/use-google-analytics-and-data-transfers-united-states-cnil-orders-website-manageroperator-comply
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-23646/Google-Cityhash.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-23646/Google-Cityhash.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-23646/Google-Cityhash.html
https://doi.org/10.18653/v1/2021.findings-acl.428
https://doi.org/10.18653/v1/2021.findings-acl.428
https://aclanthology.org/2021.findings-acl.428
https://aclanthology.org/2021.findings-acl.428

Bibliography

[22] Peter Eckersley. “How unique is your web browser?” In: International
Symposium on Privacy Enhancing Technologies Symposium. Springer. 2010,
pp. 1–18.

[23] Alessandro Epasto et al. “Clustering for Private Interest-based Adver-
tising”. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2021, pp. 2802–2810.

[24] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. 2015. arXiv: 1412.6572 [stat.ML].

[25] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[26] Matthew Green, Watson Ladd, and Ian Miers. “A protocol for pri-
vately reporting ad impressions at scale”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 2016,
pp. 1591–1601.

[27] Jiaxian Guo et al. Long Text Generation via Adversarial Training with Leaked
Information. 2017. arXiv: 1709.08624 [cs.CL].

[28] F Maxwell Harper and Joseph A Konstan. “The MovieLens Datasets:
History and Context”. In: ACM Transactions on Interactive Intelligent
Systems 5.4 (Dec. 2015), 19:1–19:19. issn: 2160-6455. doi: 10.1145/
2827872. url: http://doi.acm.org/10.1145/2827872.

[29] Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial
Networks. 2018. arXiv: 1611.07004 [cs.CV].

[30] Josh Karlin. Topics API GitHub. 2022. url: https://github.com/
jkarlin/topics (visited on 02/19/2022).

[31] Richard M Karp. “Reducibility among combinatorial problems”. In:
Complexity of computer computations. Springer, 1972, pp. 85–103.

[32] Tero Karras et al. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. 2018. arXiv: 1710.10196 [cs.NE].

[33] Lim Swee Kiat. Apple NeuralHash Attack. 2021. url: https://github.
com/greentfrapp/apple-neuralhash-attack (visited on 02/17/2022).

[34] Marc Langheinrich. “To FLoC or Not?” In: IEEE Pervasive Computing
20.2 (2021), pp. 4–6. doi: 10.1109/MPRV.2021.3076812.

[35] Brad Lassey. Privacy Budget GitHub. 2021. url: https://github.com/
bslassey/privacy-budget (visited on 02/16/2022).

[36] Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation”. In: Proceedings of the 26th Annual
Network and Distributed System Security Symposium. NDSS 2019. Feb.
2019. doi: 10.14722/ndss.2019.23386.

60

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1709.08624
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
https://arxiv.org/abs/1611.07004
https://github.com/jkarlin/topics
https://github.com/jkarlin/topics
https://arxiv.org/abs/1710.10196
https://github.com/greentfrapp/apple-neuralhash-attack
https://github.com/greentfrapp/apple-neuralhash-attack
https://doi.org/10.1109/MPRV.2021.3076812
https://github.com/bslassey/privacy-budget
https://github.com/bslassey/privacy-budget
https://doi.org/10.14722/ndss.2019.23386

Bibliography

[37] Kevin Lin et al. Adversarial Ranking for Language Generation. 2018. arXiv:
1705.11001 [cs.CL].

[38] Google LLC. Privacy Sandbox. 2019. url: https://privacysandbox.
com/ (visited on 01/17/2022).

[39] Nick Locascio. Black-Box Attacks on Perceptual Image Hashes with GANs.
Ed. by Towards Data Science. 2018. url: https://towardsdatascience.
com/black- box- attacks- on- perceptual- image- hashes- with-

gans-cc1be11f277 (visited on 02/17/2022).

[40] Don Marti. Early Status of the FLoC Origin Trials. Ed. by CafeMedia. 2021.
url: https://cafemedia.com/early-status-of-the-floc-origin-
trials/ (visited on 02/18/2022).

[41] Microsoft. PARAKEET GitHub. 2021. url: https : / / github . com /

microsoft/PARAKEET (visited on 02/17/2022).

[42] Lorenzo Minto et al. Stronger Privacy for Federated Collaborative Filtering
with Implicit Feedback. 2021. arXiv: 2105.03941 [cs.LG].

[43] Arvind Narayanan and Vitaly Shmatikov. How To Break Anonymity of
the Netflix Prize Dataset. 2007. arXiv: cs/0610105 [cs.CR].

[44] Sophie J. Nightingale and Hany Farid. “AI-synthesized faces are in-
distinguishable from real faces and more trustworthy”. In: Proceed-
ings of the National Academy of Sciences 119.8 (2022). issn: 0027-8424.
doi: 10.1073/pnas.2120481119. eprint: https://www.pnas.org/
content/119/8/e2120481119.full.pdf. url: https://www.pnas.
org/content/119/8/e2120481119.

[45] Shigeki Ohtsu. FLoC Simulator in Go. 2021. url: https://github.com/
shigeki/floc_simulator (visited on 02/09/2022).

[46] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. “Why johnny can’t
browse in peace: On the uniqueness of web browsing history patterns”.
In: 5th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2012). 2012.

[47] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation
of Machine Translation”. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. Philadelphia, Pennsylvania,
USA: Association for Computational Linguistics, July 2002, pp. 311–318.
doi: 10.3115/1073083.1073135. url: https://aclanthology.org/
P02-1040.

[48] Geoff Pike and Google Software Engineering Team Jyrki Alakuijala.
Introducing CityHash. 2011. url: https://opensource.googleblog.
com/2011/04/introducing-cityhash.html (visited on 01/26/2022).

61

https://arxiv.org/abs/1705.11001
https://privacysandbox.com/
https://privacysandbox.com/
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://towardsdatascience.com/black-box-attacks-on-perceptual-image-hashes-with-gans-cc1be11f277
https://cafemedia.com/early-status-of-the-floc-origin-trials/
https://cafemedia.com/early-status-of-the-floc-origin-trials/
https://github.com/microsoft/PARAKEET
https://github.com/microsoft/PARAKEET
https://arxiv.org/abs/2105.03941
https://arxiv.org/abs/cs/0610105
https://doi.org/10.1073/pnas.2120481119
https://www.pnas.org/content/119/8/e2120481119.full.pdf
https://www.pnas.org/content/119/8/e2120481119.full.pdf
https://www.pnas.org/content/119/8/e2120481119
https://www.pnas.org/content/119/8/e2120481119
https://github.com/shigeki/floc_simulator
https://github.com/shigeki/floc_simulator
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html

Bibliography

[49] The Chromium Projects. FLoC Origin Trial & Clustering. 2021. url:
https://www.chromium.org/Home/chromium- privacy/privacy-

sandbox/floc (visited on 01/17/2022).

[50] Deepak Ravichandran and Sergei Vassilvitskii. Evaluation of Cohort
Algorithms for the FLoC API. 2020. url: https://github.com/google/
ads- privacy/blob/master/proposals/FLoC/FLOC- Whitepaper-

Google.pdf (visited on 02/09/2022).

[51] Eric Rescorla. “Technical Comments on Privacy Budget”. In: (2021).
url: https://mozilla.github.io/ppa-docs/privacy-budget.pdf
(visited on 02/24/2022).

[52] Eric Rescorla and Martin Thomson. Technical Comments on FLoC Privacy.
2021. url: https://mozilla.github.io/ppa-docs/floc_report.pdf
(visited on 02/15/2022).

[53] Antoine Rouzaud. FLoC Origin Trial Observations. Ed. by Criteo. 2021.
url: https://medium.com/@antoine.rouzaud (visited on 02/21/2022).

[54] Allison Schiff. The Industry Reacts To Google’s Bold Claim That FLoCs Are
95% As Effective As Cookies. Ed. by AdExchanger. 2021. url: https://
www.adexchanger.com/online-advertising/the-industry-reacts-

to-googles-bold-claim-that-flocs-are-95-as-effective-as-

cookies/ (visited on 02/22/2022).

[55] Prashant Sinha. Google CityHash in Python. 2014. url: https://github.
com/prashnts/Hashes (visited on 02/26/2022).

[56] Peter Snyder and Brendan Eich. Why Brave Disables FLoC. Ed. by Brave.
2021. url: https://brave.com/why-brave-disables-floc/ (visited
on 02/15/2022).

[57] Peter Snyder and Dr. Ben Livshits. Brave, Fingerprinting, and Privacy
Budgets. Ed. by Brave. 2019. url: https://brave.com/web-standards-
at-brave/2-privacy-budgets/ (visited on 02/24/2022).

[58] Statista. User population of selected internet browsers worldwide from 2014 to
2021 (in millions). 2022. url: https://www.statista.com/statistics/
543218/worldwide-internet-users-by-browser/ (visited on 01/26/2022).

[59] Jon von Tetzchner. No, Google! Vivaldi users will not get FLoC’ed. Ed. by
Vivaldi. 2021. url: https://vivaldi.com/blog/no-google-vivaldi-
users-will-not-get-floced/ (visited on 02/15/2022).

[60] Vincent Toubiana et al. “Adnostic: Privacy preserving targeted ad-
vertising”. In: Proceedings Network and Distributed System Symposium.
2010.

[61] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762
[cs.CL].

62

https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://mozilla.github.io/ppa-docs/privacy-budget.pdf
https://mozilla.github.io/ppa-docs/floc_report.pdf
https://medium.com/@antoine.rouzaud
https://www.adexchanger.com/online-advertising/the-industry-reacts-to-googles-bold-claim-that-flocs-are-95-as-effective-as-cookies/
https://www.adexchanger.com/online-advertising/the-industry-reacts-to-googles-bold-claim-that-flocs-are-95-as-effective-as-cookies/
https://www.adexchanger.com/online-advertising/the-industry-reacts-to-googles-bold-claim-that-flocs-are-95-as-effective-as-cookies/
https://www.adexchanger.com/online-advertising/the-industry-reacts-to-googles-bold-claim-that-flocs-are-95-as-effective-as-cookies/
https://github.com/prashnts/Hashes
https://github.com/prashnts/Hashes
https://brave.com/why-brave-disables-floc/
https://brave.com/web-standards-at-brave/2-privacy-budgets/
https://brave.com/web-standards-at-brave/2-privacy-budgets/
https://www.statista.com/statistics/543218/worldwide-internet-users-by-browser/
https://www.statista.com/statistics/543218/worldwide-internet-users-by-browser/
https://vivaldi.com/blog/no-google-vivaldi-users-will-not-get-floced/
https://vivaldi.com/blog/no-google-vivaldi-users-will-not-get-floced/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Bibliography

[62] Cong Wang et al. “Toward privacy-preserving personalized recommen-
dation services”. In: Engineering 4.1 (2018), pp. 21–28.

[63] Mark Weiss. Digiday Research: Most publishers don’t benefit from behav-
ioral ad targeting. Ed. by Digiday. 2022. url: https://digiday.com/
media/digiday-research-most-publishers-dont-benefit-from-

behavioral-ad-targeting/ (visited on 02/22/2022).

[64] WICG. FLoC GitHub. 2021. url: https://github.com/WICG/floc
(visited on 01/17/2022).

[65] Ronald J Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine learning 8.3 (1992),
pp. 229–256.

[66] Michal Wlosik. How Different Browsers Handle First-Party and Third-Party
Cookies. Ed. by Clearcode. 2019. url: https://clearcode.cc/blog/
browsers-first-third-party-cookies/ (visited on 02/25/2022).

[67] Worldometers, ed. World Population. 2022. url: https://www.worldometers.
info/world-population/ (visited on 02/26/2022).

[68] Chaowei Xiao et al. Generating Adversarial Examples with Adversarial
Networks. 2019. arXiv: 1801.02610 [cs.CR].

[69] Lantao Yu et al. SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient. 2017. arXiv: 1609.05473 [cs.LG].

63

https://digiday.com/media/digiday-research-most-publishers-dont-benefit-from-behavioral-ad-targeting/
https://digiday.com/media/digiday-research-most-publishers-dont-benefit-from-behavioral-ad-targeting/
https://digiday.com/media/digiday-research-most-publishers-dont-benefit-from-behavioral-ad-targeting/
https://github.com/WICG/floc
https://clearcode.cc/blog/browsers-first-third-party-cookies/
https://clearcode.cc/blog/browsers-first-third-party-cookies/
https://www.worldometers.info/world-population/
https://www.worldometers.info/world-population/
https://arxiv.org/abs/1801.02610
https://arxiv.org/abs/1609.05473

Appendix A

Materials

The code for the attack components and evaluation will be available on the
following GitHub repository:

• https://github.com/fturati/attack-on-floc

64

https://github.com/fturati/attack-on-floc

Appendix B

Datasets

FLoC computation uses domain names from a user browsing history. We use
Tranco list, which is a research-oriented dataset of the most popular domains.
Nevertheless, for privacy reasons, we did not find a suitable public dataset
linking browsing history of users and domain names. We can however find
other form of user history, for example a user list of watched movies or
played songs. Those user histories can then be used to train a GAN.

B.1 Tranco

Tranco [36] contains a ranking of the most popular websites, suitable for re-
search, since it provides better reproduceability than other existing rankings.

For our project we used the Tranco list1 of the Top 1 million domain names
generated on 03 October 2021, nevertheless another list could be used without
any issue.

As an example for this dataset we display the top 5 from the previously
mentioned list:

1. google.com

2. youtube.com

3. facebook.com

4. netflix.com

5. microsoft.com

We cannot use this dataset for training a GAN to generate plausible user
history. Since it contains only the most popular websites and not user brows-
ing histories. Therefore, we only used this dataset with our first preimage

1Available at https://tranco-list.eu/list/NLKW/1000000

65

https://tranco-list.eu/list/NLKW/1000000

B.2. Movielens 25m

attack (see Section 3.2), since this attack returns preimages regardless of their
plausibility.

B.2 Movielens 25m

The MovieLens 25M dataset [28] is a movie ratings dataset. It contains a bit
more than 25 millions ratings (from 0 to 5 with 0.5 increment) from 162 541
users across 62 423 movies. For each movie a list of genres is also provided
from 20 possible distinct categories. The average length of a user movie list
is around 153 while the median is 70.

More details on the dataset can be found in the aforementioned article [28]
or in the dataset README2.

This dataset is also used in the Google FLoC whitepaper [50] to evaluate their
proposal.

B.3 COCO Captions

The COCO Image Captions dataset [13] contains captions describing images.
Five captions written by different people are provided for training and
validation images. LeakGAN [27] reports 20 734 words and 417 126 sentences
for the version of the dataset they used. The captions are generally short,
most sentences are about 10 words.

We did not directly work with this dataset for our attack but we did run
LeakGAN and TILGAN [20] on it. It served as a realistic benchmark to
evaluate the quality of the generated sentences.

We include some example captions from the dataset:

A person is taking a photo of a cat in a car.

A stuffed animal is laying on the bed by a window.

The top of a kitchen cabinet covered with brass pots and pans

A phone lies on the counter in a modern kitchen.

A man riding a bicycle on a road carrying a surf board.

2https://files.grouplens.org/datasets/movielens/ml-25m-README.html

66

https://files.grouplens.org/datasets/movielens/ml-25m-README.html

Appendix C

Example Outputs from GAN

In Table 3.1, we presented an output of the attack that is a well matching
history. For the sake of fairness, in Table C.1, we provide one “bad” example.
The GAN parameters were the same as in Table 3.1, namely a vocabulary
size of 5847 and a maximum sequence length of 77.

Toy Story is the first movie in the majority of the histories. We noticed a
similar pattern when training the GAN with the COCO Captions dataset,
namely that most sentences would start with the letter ‘A’. This may be an
effect of mode collapse where the GAN would lack in diversity of outputs.
It may also be worsen by the training data which has user movie history in
increasing number of movie ID. We note that the order of the movie ID is
learnt, except for one Harry Potter movie (ID 40815). We also note from the
release date of the Harry Potter movie that it is not in accordance with the
time span of the release of other movies. We also highlight in blue some
movies part of a saga which were not the first release. In another color we
show movies that are part of a franchise and were the first of a serie of
movies. We observe that this particular history does not contain multiple
movies from the same franchise despite having numerous movies part of a
franchise.

In Table C.2, we have another randomly choosen example for smaller GAN
parameters (vocabulary size of 5002 and maximum sequence length of 32).

For the previous examples the GAN learnt to produce histories with increas-
ing movie IDs, since it was also the case in the training data. We note that
changing the preprocessing step by randomly shuffling the movie IDs in
the histories (see Section 3.3.2) had an effect on the GAN’s diversity in the
first generated movie. Indeed, we did not observe anymore the same first
generated movie (i.e., Toy Story) in the majority of synthetic histories. We
also observe that this change, along with the reduction of the maximum
history length to 32, makes it harder for the GAN to generate histories with

67

Table C.1: “Bad” example output from LeakGAN

TokenID MovieID Title Genres

2298 1 Toy Story (1995)
Adventure, Animation, Children,
Comedy, Fantasy

187 2 Jumanji (1995) Adventure, Children, Fantasy
2713 3 Grumpier Old Men (1995) Comedy, Romance
1327 10 GoldenEye (1995) Action, Adventure, Thriller
1267 66 Lawnmower Man 2: Beyond Cyberspace (1996) Action, Sci-Fi, Thriller
1328 95 Broken Arrow (1996) Action, Adventure, Thriller
1714 104 Happy Gilmore (1996) Comedy
988 40815 Harry Potter and the Goblet of Fire (2005) Adventure, Fantasy, Thriller, IMAX
4216 110 Braveheart (1995) Action, Drama, War
4418 140 Up Close and Personal (1996) Drama, Romance
3975 150 Apollo 13 (1995) Adventure, Drama, IMAX
4713 151 Rob Roy (1995) Action, Drama, Romance, War
780 160 Congo (1995) Action, Adventure, Mystery, Sci-Fi
4826 161 Crimson Tide (1995) Drama, Thriller, War
1431 165 Die Hard: With a Vengeance (1995) Action, Crime, Thriller
4707 168 First Knight (1995) Action, Drama, Romance
1432 185 The Net (1995) Action, Crime, Thriller
536 204 Under Siege 2: Dark Territory (1995) Action
698 208 Waterworld (1995) Action, Adventure, Sci-Fi
2978 236 French Kiss (1995) Action, Comedy, Romance
3315 261 Little Women (1994) Drama

4634 265
Like Water for Chocolate (Como agua para
chocolate) (1992)

Drama, Fantasy, Romance

4628 266 Legends of the Fall (1994) Drama, Romance, War, Western
5645 281 Nobody’s Fool (1994) Comedy, Drama, Romance
1428 288 Natural Born Killers (1994) Action, Crime, Thriller
5118 292 Outbreak (1995) Action, Drama, Sci-Fi, Thriller
5823 296 Pulp Fiction (1994) Comedy, Crime, Drama, Thriller
5087 315 The Specialist (1994) Action, Drama, Thriller
697 316 Stargate (1994) Action, Adventure, Sci-Fi
5529 317 The Santa Clause (1994) Comedy, Drama, Fantasy
4020 329 Star Trek: Generations (1994) Adventure, Drama, Sci-Fi
3287 337 What’s Eating Gilbert Grape (1993) Drama
2722 339 While You Were Sleeping (1995) Comedy, Romance
1666 344 Ace Ventura: Pet Detective (1994) Comedy
5163 349 Clear and Present Danger (1994) Action, Crime, Drama, Thriller
5789 356 Forrest Gump (1994) Comedy, Drama, Romance, War
2708 357 Four Weddings and a Funeral (1994) Comedy, Romance
2634 367 The Mask (1994) Action, Comedy, Crime, Fantasy
1510 377 Speed (1994) Action, Romance, Thriller

3077 380 True Lies (1994)
Action, Adventure, Comedy, Ro-
mance, Thriller

2147 410 Addams Family Values (1993) Children, Comedy, Fantasy
3057 420 Beverly Hills Cop III (1994) Action, Comedy, Crime, Thriller

2228 432
City Slickers II: The Legend of Curly’s Gold
(1994)

Adventure, Comedy, Western

1326 434 Cliffhanger (1993) Action, Adventure, Thriller
2699 440 Dave (1993) Comedy, Romance
696 442 Demolition Man (1993) Action, Adventure, Sci-Fi
4738 454 The Firm (1993) Drama, Thriller
904 457 The Fugitive (1993) Thriller
1363 480 Jurassic Park (1993) Action, Adventure, Sci-Fi, Thriller
5308 500 Mrs. Doubtfire (1993) Comedy, Drama
4383 509 The Piano (1993) Drama, Romance
3825 527 Schindler’s List (1993) Drama, War
4201 553 Tombstone (1993) Action, Drama, Western
1142 555 True Romance (1993) Crime, Thriller
576 589 Terminator 2: Judgment Day (1991) Action, Sci-Fi
3979 590 Dances with Wolves (1990) Adventure, Drama, Western
1424 592 Batman (1989) Action, Crime, Thriller
1187 593 The Silence of the Lambs (1991) Crime, Horror, Thriller

866 595 Beauty and the Beast (1991)
Animation, Children, Fantasy, Mu-
sical, Romance, IMAX

1330 733 The Rock (1996) Action, Adventure, Thriller
1364 780 Independence Day (a.k.a. ID4) (1996) Action, Adventure, Sci-Fi, Thriller

68

Table C.2: Example output from LeakGAN with different parameters

TokenID MovieID Title Genres
399 527 Schindler’s List (1993) Drama, War
2919 5989 Catch Me If You Can (2002) Crime, Drama
3939 59369 Taken (2008) Action, Crime, Drama, Thriller
3560 36529 Lord of War (2005) Action, Crime, Drama, Thriller, War
3842 54997 3:10 to Yuma (2007) Action, Crime, Drama, Western
3999 63082 Slumdog Millionaire (2008) Crime, Drama, Romance

3803 53121 Shrek the Third (2007)
Adventure, Animation, Children,
Comedy, Fantasy

3602 40815 Harry Potter and the Goblet of Fire (2005) Adventure, Fantasy, Thriller, IMAX
4147 72998 Avatar (2009) Action, Adventure, Sci-Fi, IMAX

3796 52722 Spider-Man 3 (2007)
Action, Adventure, Sci-Fi, Thriller,
IMAX

3460 30707 Million Dollar Baby (2004) Drama
240 318 The Shawshank Redemption (1994) Crime, Drama
4059 68157 Inglourious Basterds (2009) Action, Drama, War

3743 49530 Blood Diamond (2006)
Action, Adventure, Drama, Crime,
Thriller, War

3543 34405 Serenity (2005) Action, Adventure, Sci-Fi

4091 69844 Harry Potter and the Half-Blood Prince (2009)
Adventure, Fantasy, Mystery, Ro-
mance, IMAX

1839 3000 Princess Mononoke (Mononoke-hime) (1997)
Action, Adventure, Animation,
Drama, Fantasy

793 1240 The Terminator (1984) Action, Sci-Fi, Thriller
697 1089 Reservoir Dogs (1992) Crime, Mystery, Thriller
3738 49272 Casino Royale (2006) Action, Adventure, Thriller
2332 4011 Snatch (2000) Comedy’, Crime, Thriller
2910 5952 The Lord of the Rings: The Two Towers (2002) Adventure, Fantasy
4654 112552 Whiplash (2014) Drama
2887 5816 Harry Potter and the Chamber of Secrets (2002) Adventure, Fantasy

2641 4896
Harry Potter and the Sorcerer’s Stone (a.k.a.
Harry Potter and the Philosopher’s Stone)
(2001)

Adventure, Children, Fantasy

224 296 Pulp Fiction (1994) Comedy, Crime, Drama, Thriller
4835 148626 The Big Short (2015) Drama

4306 85414 Source Code (2011)
Action, Drama, Mystery, Sci-Fi,
Thriller

3937 59315 Iron Man (2008) Action, Adventure, Sci-Fi
4772 134130 The Martian (2015) Adventure, Drama, Sci-Fi

2803 5459
Men in Black II (a.k.a. MIIB) (a.k.a. MIB 2)
(2002)

Action, Comedy, Sci-Fi

412 541 Blade Runner (1982) Action, Sci-Fi, Thriller,

69

multiple movies from the same franchise. Since the histories are truncated
and randomly subsample movies from the real histories. The presented
history contained four Harry Potter movies among the first six that were
released. It is the only franchise that has several movies in the generated
history. We also highlight in blue some movies part of a saga which were not
the first release. In purple we show some movies that are part of a franchise
and were the first of a serie of film.

70

Appendix D

FLoC Whitepaper Anonymity
Evaluation Details

In Section 4.2.1, we presented a method used by Google researchers to
evaluate the anonymity of their FLOC proposal. The whitepaper [50] did not
contain a thorough explanation of the steps they made to obtain their results
but in the following we will detail ours.

D.1 Dataset

We used the MovieLens dataset [28], more detail about this dataset can be
found in Appendix B.2. The FLoC whitepaper also made a comparison with
the Million Song Dataset [8], which showed similar results. Therefore we
omit this dataset.

D.2 Feature Extraction

It is easier to work with numerical values than text. For downstream compu-
tation, we need the user data mapped into a vector space as follow:

• For each movie in a user rating list we create a vector with 20 com-
ponents (one for each possible genre/category). Each element of this
vector, let us call them category weight,1 is taken to be 1 or 0 if the
movie is of this genre or not respectively. This category weight is then
multiplied by the user rating (from 0 to 5 with 0.5 increment). When
this rating is not present (e.g., for the movie list generated by our GAN
model) we set it to one for every movie. As 1 is the multiplicative
identity, the rating as no effects.

1The values this weight could take were not defined in the whitepaper so we came up
with what seemed to make the most sense

71

D.3. Cluster Assignment

• After this step, to aggregate those vectors we take the average of all the
movie features to obtain one feature vector for each user.

• Finally, the features are centered to have mean zero, which means each
of the 20 features column has its mean subtracted.

D.3 Cluster Assignment

D.3.1 Random

This is just a random assignment of users to clusters. We fix the size of
clusters, and every cluster is of the same size, except one if the number of
users was not a multiple of the size.

D.3.2 SimHash

This SimHash is different from the one used in Chromium. The main
difference is that the input is the feature vector computed according to
Appendix D.2. We refer to FLoC whitepaper for the precise definition.

It did not seem obvious how they used it to perform the cluster assignment.
It was not specified how they chose the random unit vector. Therefore, we
decided to use a fixed set of random unit-norm vectors for all feature.

This is slightly different from Chromium’s SimHash where those random
vectors are determined by the SimHash output bit and the input domain
hash.

The whitepaper also did not specify how they made the cluster size vary. It
makes sense to vary the SimHash bit length. Taking into account the total
number of user in the dataset, to obtain different cluster sizes we can change
the bit length among values in the 5 to 10 range. However it is not possible
to guarantee a minimum number of users per cluster.

D.3.3 Chromium SimHash

Section 3.1.2 details the implementation of SimHash in the Chrome browser.
The important part is that this cluster assignment is not using the genre
feature extraction discussed previously. It uses the movie titles from the user
histories.

To make the cluster sizes change, we made the SimHash bit length vary
between 5 and 10 bits. Nonetheless, it was not stated if the whitepaper
followed the same approach.

72

D.4. Evaluation

D.3.4 GAN Pipeline Chromium SimHash

In Section 3.5.3, we generated synthetic movie histories. Then we use the
integer program to find a subset that matches a target SimHash. Note that for
this part we did not apply the discriminator on the history subset returned
by the integer program. With this approach, we can easily choose the target
SimHash and the number of user we want in each cluster. Since we can
generate as many as we see fit, we can ensure a minimum cluster size.

For the cluster assignment we also made the bit length vary between 5 and
10 bits. The corresponding cluster sizes are 5000, 2000, 1000, 500, 200, 100.
As the GAN generates histories in batch we might have more users in the
clusters than the cluster sizes specify.

D.3.5 Sorting LSH and Affinity Centroid

We do not reproduce the affinity centroid clustering described in [50], since
it is centralized and requires sending raw data (and not SimHash of the raw
data) to the central server.

Prefix LSH (see Section 3.1.3) is a variant of Sorting LSH. They both serve the
same purpose of ensuring cohorts have the required minimum size. Their
implementation also requires a central server. Therefore, they were not
reproduced either. Note that to compute the Sorting LSH clusters from the
SimHash cohorts, one applies the mapping distributed to the browser by the
Chrome-operated central server.

D.4 Evaluation

D.4.1 Further Remarks on the Procedure

In FLoC whitepaper [50, Fig. 4], it was not specified if the complete Movie-
Lens dataset was used. Specifically, since we see the curves for SimHash
and Affinity centroid not having the same data point as for Sorting LSH and
Random clustering (see Fig. 4.3). We may wonder if they use some subset of
the dataset. For our purposes, to make comparison with the GAN more fair,
we also run the experiment on the training data. As it is the only dataset the
GAN has seen during training.

However, this leads to some changes in the feature extraction procedure.
The whitepaper’s feature extraction relied on user’s movie ratings (see Ap-
pendix D.2). For a browsing history, we can find the topics of a website with
a model or by API such as Google’s API2, WebShrinker3 or SimilarWeb4.

2https://cloud.google.com/natural-language/docs/categories
3https://www.webshrinker.com/
4https://www.similarweb.com/category/

73

https://cloud.google.com/natural-language/docs/categories
https://www.webshrinker.com/
https://www.similarweb.com/category/

D.4. Evaluation

For a movie the genres are suitable to perform feature extraction. However,
the rating a user gave to a particular movie is more privacy infringing and
such a counterpart would not be available for websites. In FLoC there was
no mention of the the use of any ratings. Consequently, our GAN does
not generate user ratings. In addition, we did not store the user IDs when
generating our training data. It is thus not possible to recover the ratings
associated to the movie histories. Therefore, the only place ratings can be
used is with the full MovieLens dataset. As a reminder from Appendix D.2,
when the ratings are missing they are replaced by 1.

In machine learning it is sometimes preferable to have input data with 0
mean. Centering conserves the euclidean distances. However, in the case
of FLoC whitepaper’s evaluation, centering the data can alter the angles or
directions of our vectors. For example, all features are nonnegative, so if we
apply centering the small features in the same direction as bigger valued
feature vector would get opposite direction after centering. Those vector’s
properties changed by centering are later used by the cosine similarity.

A reason for using centering, apart from the fact that the FLoC whitepaper
does so, is to make use of the full cosine similarity range ([−1, 1]). As our
input data features otherwise would all be nonnegative and in the [0, 5] range
([0, 1] without ratings). However, as it can be seen in Section 4.2.2, this had
effects when we want to extract meaningful results using cosine similarity
from the movies dataset. It is hard to reason about a negative cosine similarity
when all our feature vector were nonnegative before centering. Centering
does alter the interpretation we make of the cosine similarity. In addition,
the cosine similarity does not have a notion of distance. It knows the angle
between users in the same clusters, but not the distance that separates them.

Our metrics are trying to simplify relation of high-dimensional vectors into a
single number. This is not simple, and every metric has its own drawbacks.
Nonetheless, we can still extract some value from the whitepaper’s metric
with centered data.

D.4.2 Results without Centering

As we pointed out in Appendix D.4.1, the whitepaper evaluation method
uses centering. However, it alters the interpretation we can make about
the cosine similarity. We also reproduced the plots without the centering,
see Fig. D.1. The setting is the same as for Fig. 4.4 except for the omitted
centering.

As a reminder, the first row (Figs. D.1a and D.1b) is on the full dataset, using
ratings except for the GAN. The second row (Figs. D.1c and D.1d) shows the
results on the training data subset without ratings.

74

D.4. Evaluation

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (full)
StrSimHash
SimHash

Random
GANStrSimHash

(a) GAN-41 on dataset with genres

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (full)
StrSimHash
SimHash

Random
GANStrSimHash

(b) GAN-61 on dataset with genres

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (train)
StrSimHash
SimHash

Random
GANStrSimHash

(c) GAN-41T

0 1000 2000 3000 4000 5000
98-percentile anonymity

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Clustering method (train)
StrSimHash
SimHash

Random
GANStrSimHash

(d) GAN-61T

Figure D.1: FLoC whitepaper evaluation without centering.

75

D.4. Evaluation

Without the centering step our GAN seems to perform worse than random
clustering on the full dataset and comparably on the training subset. This
is because the other method performs worse on the training dataset. As
we already mentioned earlier, this could be due to some particularity of
the training dataset. It has shorter histories and does not use ratings (not
available for the GAN in all plots). The training data also contains histories
that the GAN has seen so it can generate them. The full dataset contains more
than 60 000 movies while our GAN can only generate 5 000. In any case, the
fact that our GAN performs better on the training dataset is promising. As
they are the closest to what the GAN learned. And a better, more powerful,
GAN could improve on those results.

GAN-41 performs better than GAN-61. It would need to be consistent
across more runs with other metrics (e.g., common movies in Section 4.1.1,
minimum hamming distance in Section 4.1.2, etc.) so that we can attribute it
to the model performance rather than random fluctuation. From the several
runs we made with this metrics, the plot fluctuated and the improvements of
GAN-41 were not that significant.

Now we might wonder why every method is performing so well when
we only changed the centering step. Without centering all the features
are nonnegative ([0, 1] range or [0, 5] with ratings). Each feature vector
has 20 dimensions. In high dimension we have to beware of the curse of
dimensionality. The space is so vast that the available data is scarce and
scattered. In addition, the feature vector that we have are sparsed, some
genres are far less represented than others, meaning some values are close
or equal to 0. These reasons can explain the great performance of every
clustering method.

The centering step should help regrouping sparse data points together. This
could help for later computations. As these same features are used to
compute the average cosine similarities reported in the plots.

76

