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Abstract. 
Model validation is a means of assessing model quality with respect to experimental 
data. In a robust control context this amounts to determining whether or not a per­
turbation model is consistent with observed data. This paper offers a survey of recent 
results on model validation for 11.00 compatible perturbation models. 
Several model paradigms and experiment frameworks are considered. The first is a 
frequency-domain setting for the data. More recent results deal with discrete-time 
models and time-domain experimental data. The most relevant framework , continuous­
time systems and models, with discrete-time sampled data, is dealt with last . Each of 
the model invalidation tests offered involve tractable convex optimization problems. 

1. INTRODUCTION 

Model validation is the assessment of the quality of 
a given model with respect to experimental data. 
In essence, the problem is to determine whether 
or not the model is consistent with the experi­
mental observation. As observed in [25], one can 
never "validate" models because of the impossib­
ility of testing all experimental conditions and in­
puts. A model is said to be "invalidated" if a par­
ticular input-output datum is not consistent with 
the model. 

Many modern multivariable control system design 
methods such as ?loo and £1 optimal control (see 
[6,9 ,35,5,3]) begin with perturbation models. These 
models consist of a nominal input-output model 
together with a description of the uncertain dy­
namics and the noises and/or disturbances affect­
ing the plant. 
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Traditional methods for model validation (see 
[18]) have involved whiteness and correlation tests 
of residuals. While these methods successfully 
deal with nominal models where any discrepancy 
between the true plant and the model is attrib­
uted entirely to stochastic noises and disturbances, 
they are not appropriate for perturbation mod­
els. There is a compelling need to develop tools 
to effectively marry classical identification meth­
ods with modern robust control techniques. It is 
this need that has driven much of the recent work 
on control-oriented system identification (see for 
example [8,23,12,10,19,1,27,11]) . 

In this paper we focus on model validation for ?loo 
compatible perturbation models which is only one 
component of control-oriented system identifica­
tion. While similar results are also available for 
£1 compatible perturbation models , we will not 
discuss these here. The remainder of this paper 
is organized as follows . After establishing nota­
tion in the next section, we discuss perturbation 
models in Section 3 and we formulate the general 
model validation problem in Section 4. Next, in 
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Section 5, we discuss several extension theorems 
that form the basis for model validation. Follow­
ing this, in Section 6, we offer model validation 
results in the context of frequency domain input­
output data. More recent work dealing with time­
domain data for discrete-time perturbation mod­
els is treated in Section 7. Section 8 presents the 
sampled data formulation of the model validation 
problem. This work has the most immediate con­
nection with practical problems. 

The discrete-time results offered in this paper are 
closely related to the recent work of Zhou and 
Kimura [38] where perturbation models are con­
structed from input-output data using similar ex­
tension theorems. There is also a close connec­
tion between model validation and robust para­
meter identification problems (see for example 
[14,15,36]), and failure detection problems (see for 
example [34]). There has also been some recent 
work on statistical methods for model validation 
of perturbation models (see [16]). We will not ex­
plore these connections in this paper. 

This paper is a summary of the results in 
[32,31,24,29,26]. All proofs are omitted and the in­
terested reader may consult the above references 
for details. 

2. PRELIMINARIES 

We will suppress the sizes of various matrices, vec­
tors, and spaces throughout for clarity. For a se­
quence of vectors v = {vo, VI, "' , vN-d, let U 
denote the associated lower block Toeplitz matrix 
defined as 

v= 
o 0 

Vo 0 

VN-2 VN-3 

(1) 

Let srn denote the set of one sided sequences with 
elements in R rn . Define the I-step truncation oper­
ator, 
1ft : srn --t srn, by 1ft(UO,Ul,· ·· ,Ut-l,Ut,·· ·) = 
(uo, Ul, ... , Ut-I, 0, 0, ... ). For continuous time sig­
nals, u(t) E £2[0,00), we define the truncation op­
erator nT analogously. 

Let £2 and £2 denote the usual Hilbert spaces 
of vector-valued square-summable sequences and 
square-integrable functio~s respectively equipped 
with the usual norms, 11112. We shall deal exclus­
ively with causal, stable operators with discrete­
time and/or continuous-time inputs and outputs. 
For an operator H, we denote its induced 2-norm 
as IIHlli2. Also, He denotes the adjoint operator. 
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3. PERTURBATION MODELS 

Many modern multi variable control design meth­
ods including 1£00 and il optimal control begin 
with a perturbation model for the physical plant. 
This perturbation model consists of a nominal 
input-output model together with a description of 
the uncertain dynamics ~ and the noises and/or 
disturbances n. 

A general paradigm for perturbation models that 
has emerged over the last decade is the linear frac­
tional transformation (LFT) model 

y = Fu(P,~) [~], ~ E~, nE N, (2) 

where Fu(P,~) denotes the feedback connection 
of the systems P and ~ as shown in Fig. 1. In this 
model, the relation between observed signals U and 
y, is described by a known, nominal linear plant P, 
perturbed by a unknown system ~ to account for 
model errors. In addition to the uncertainty ~, the 
output may be further corrupted by an unknown 
disturbance d. 

Bounds on the system uncertainty and disturb­
ances are specified by the sets ~ and N, re­
spectively. In this paper, we will consider norm­
bounded, structured uncertainty sets of the form, 

~ := {~= diag(~I" '" ~K), 1I~lIi2 :5 I} (3) 

N:={n = (nl, ... ,nM), IIndl :SI}. (4) 

Other scaling factors and weights on the disturb­
ances and uncertainties can be incorporated into 
the plant model P . 

The LFT paradigm successfully encompasses a 
broad variety of modeling uncertainties includ­
ing uncertain actuator and sensor dynamics, dis­
turbances and measurement noise, real paramet­
ric errors etc. (see [22] for details) . Current model 
validation procedures, however, are unable to ad­
dress LFT models in their full generality. In the 
remainder of the paper, we will restrict our at­
tention to uncertainty models where all the un­
certainty components are LTI or all the compon­
ents are LTV. Mixed and real-parametric uncer­
tainty structures are considerably more difficult to 
handle, and will not be considered in this paper. 

Remark 1 Since we are restricting our attention 
to bounded, deterministic disturbances n, the ef­
fects of the noise can be incorporated into the sys­
tem uncertainty structure. As a consequence, we 
can, without loss of generality, ignore the disturb­
ance set N entirely. 
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u y 

Fig. 1. Linear fractional uncertainty model with 
disturbances 

The effect of the disturbances can be modeled as 
system uncertainty as follows. For each disturb­
ance component ni, one can construct an appro­
priate fictitious input Vi such that 

The disturbances ni can then be incorporated into 
the system uncertainty by augmenting the input u 
with the signals Vi, and the uncertainty structure 
~ with the components ':'\'i. In ignoring the dis­
turbances n, the perturbation model (2) reduces 
to 

y = Fu(P,.:.\.)u, .:.\. E ~. (5) 

4. PROBLEM FORMULATION 

The general model validation problem we treat in 
this paper is as follows. Consider the LFT per­
turbation model in Section 3, defined by a nom­
inal plant P, a structured uncertainty set ~ and a 
structured noise set D. Given observed data (u, y), 
the validation problem is: 

MV: Does there exist .:.\. and n such that 

y = Fu(P,.:.\.) [~] ,.:.\. E ~,n EN? 

That is, the model validation problem is to de­
termine if there the data (u, y) is consistent with 
the plant P, within the uncertainty bounds defined 
by the sets ~ and N. In the event such nand .:.\. 
exist we shall say that the perturbation model P is 
not invalidated. Otherwise, the perturbation model 
is said to be invalidated. 

Unfortunately, for general structured uncertain­
ties, the LFT model validation problem, MV, is 
computationally difficult. We will instead consider 
a related validation problem based on D-scaling. 
To state this problem, we will first ignore the dis­
turbances set N as discussed in Remark 1. Also, 
corresponding to the uncertainty structure in (3), 
we define the set of D-scales, 

D := {D = diag(dtI, ... , dK I)} , 

where the dimensions of the blocks correspond to 
the dimensions of the uncertainty blocks .:.\.i in (3). 
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The D-scaled validation problem is: given a nom­
inal plant P, uncertainty set ~ and observed data 
(u, y), 

MV-D: For all D E D, does there exist a.:.\. 
such that 

The justification for considering the problem MV­
D is as follows. First observe that, for any.:.\. E ~, 

IID.:.\.D- t ll ~ I, VD E D. 

Consequently, the feasibility of MV-D is a neces­
sary condition for the feasibility of the validation 
problem MV. 

The feasibility of MV-D, however, does not imply 
the feasibility of the validation problem MV. Nev­
ertheless, in the context of validating models for 
robust control, there is little practical loss in con­
sidering the problem MV-D. The reason is that 
the standard procedure for robust control design 
is based, not on stabilizing against the set ~, but 
rather providing robust stability against a larger 
set 

(6) 

for some D E D. Given this, it is only necessary 
to determine, if for any choice of D-scales, D, the 
model is consistent with,:,\, of the form (6) . This is 
precisely the problem MV-D. 

5. EXTENSION THEOREMS 

Given a perturbation model, the input-output 
datum u, y places constraints on the inputs z and 
the outputs w of the uncertain dynamics .:.\. E ~. 
The validation problem therefore reduces to the 
problem of determining whether or not there ex­
ists an operator .:.\. E ~ that interpolates z to w 
subject to z and w being consistent with the equa­
tions for P and observed data (u, y). We refer to 
the problem of determining whether a there exists 
a .:.\. interpolating z to w as an extension problem. 
More precisely, 

Given a set of operators ~ and signals 
w, z, does there exist .:.\. E ~ such that 
w =.:.\.z ? 

We now present several extension theorems. In 
each case, these theorems reduce the issue of ex­
istence of the requisite operator.:.\. to the existence 
of signals which satisfy certain computable con­
straints. 
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Our first extension theorem is in the context of 
frequency-domain data. Frequency-domain data is 
gi ven in the form 

(W,Z) := 

{(W(ei"'-),Z(ei"'-)), n = O, . .. ,N -l} (7) 

at a finite set of frequencies W n . Frequency­
domain data is given in an analogous format for 
continuous-time signals. 

Theorem 2 Given frequency-domain sequences, 
(W, Z) as in (7), there exists an stable, causal LTI 
operator ~ with IILlIli2 ~ 1 such that 

W(ei"'-) = ~Z(ei"'-), "In, 

if and only if IW(ej"'-)1 ~ IZ(ej"'-)1 for all n . 

The following result offers a time-domain exten­
sion result for bounded LTI operators. Time­
domain data is given in the form of a finite data 
record, 

(w,Z):={(wm,Zn), n=O, . .. ,N-l}. (8) 

Theorem 5.1 Given sequences, (w, z) as in (8), 
there exists a stable, causal, LTI operator~ , with 
1I~lIi2 ~ 1 such that 1rNW = 1rN~Z if and only if 

W'W~Z'Z, (9) 

where Wand Z are the block Toeplitz matrices 
associated with Wn and Zn . 

For discrete-time LTV operators, we have the fol­
lowing extension result. 

Theorem 5.2 Given sequences, (w, z) as in (8), 
there exists a stable, causal, LTV operator~, with 
11~lIi2 ~ 1 such that 1rNW = 1rN~Z if and only if 
if and only if 

lI1rnWll2 ~ lI1rn z Il2' for all n = 1, . . . , N . 

The computational requirements imposed by this 
condition are significantly less than those imposed 
by the LTI perturbation condition (9). 

We shall also need an extension theorem for 
continuous-time operators with sample and hold 
input-output data. This theorem is somewhat more 
complicated than the earlier ones. We begin by in­
troducing some preliminary concepts. Define the 
sample operator ST and the hold operator HT as 

ST : £2 -+ l2 : y -+ (Yo , 1/1', Y2T ,·· ·) 

HT: l2 -+ £2 : (uo, UT, U2T,· · ·) -+ u , 

where u(t) = Ulc, for t E [kT, KT + T). Fix 
continuous-time operators Pt) and Pz , with Pt) 
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strictly causal, and consider the set of discrete­
time operators, 

Given a discrete-time, input-output datum, Plc, qlc, 
k = 0, .. . , N - 1 compute the sequences V, Z as 

v = (STPt)P: ST )-1/2 P 

A _ (H. p.p H )-1/2 z- T z z T q 

(10) 

(11) 

where • denotes the adjoint operator. We remark 
that the operator equations above are solvable and 
state-space formulae for conducting these compu­
tations are available in [30]. 

The extension theorem is now stated in terms of 
the 12 sequences, V and i, and bears some similar­
ity to discrete-time extension theorem above. 

Theorem 5.3 Given sequences, Plc and qlc, k = 
0, .. . ,N-l, constructv/c, z/c, as in (10) and (11). 
If ~"V ~ Z' Z, then there exists a stable, LTI, 
operator {l E 0, such that, 1rN-1V = 1rN_1{lz = 
1rN-dSTPt)~PzHT) z . 

This result becomes necessary and sufficient in the 
limit as T -+ 0. 

6. FREQUENCY DOMAIN METHODS 

In the frequency-domain problem, we assume the 
nominal plant P and uncertainty ~ are LTI, The 
data for the problem consists of N vector-valued 
frequency-domain input-output samples, 

(U, Y) := 

{(U(ei"'-),Y(ei"'-)) : n=0, ... ,N-l}(12) 

at frequencies of frequencies W n . As stated in 
Remark 1, we will ignore the disturbances, and 
assumed they are embedded in the uncertainty 
model . 

In order that the frequency-domain data from the 
closed-loop system of P and ~ is well-defined, we 
make the following assumption . 

Assumption 6.1 Consider the LFT uncertainty 
model (5) defined by an LTI nominal plant P and 
uncertainty structure 4 in (9). For all causal, LTI 
~ E 4, the feedback connection of P and ~ is 
well-posed and stable. 

In absence of this robust stability assumption, 
signals may not be bounded and the frequency­
domain data may not exist. For validation of un­
stable plants, it is necessary to collect the data 
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strictly causal, and consider the set of discrete­
time operators, 

Given a discrete-time, input-output datum, Plc, qlc, 
k = 0, .. . , N - 1 compute the sequences V, Z as 

v = (STPt)P: ST )-1/2 P 

A _ (H. p.p H )-1/2 z- T z z T q 

(10) 

(11) 

where • denotes the adjoint operator. We remark 
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6. FREQUENCY DOMAIN METHODS 
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(U, Y) := 

{(U(ei"'-),Y(ei"'-)) : n=0, ... ,N-l}(12) 

at frequencies of frequencies W n . As stated in 
Remark 1, we will ignore the disturbances, and 
assumed they are embedded in the uncertainty 
model . 

In order that the frequency-domain data from the 
closed-loop system of P and ~ is well-defined, we 
make the following assumption . 

Assumption 6.1 Consider the LFT uncertainty 
model (5) defined by an LTI nominal plant P and 
uncertainty structure 4 in (9). For all causal, LTI 
~ E 4, the feedback connection of P and ~ is 
well-posed and stable. 

In absence of this robust stability assumption, 
signals may not be bounded and the frequency­
domain data may not exist. For validation of un­
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in closed-loop with a stabilizing compensator, and 
incorporate the compensator into the plant model 
Po . Of course, this implicitly assumes that that the 
compensator is LTI. 

To state the solution to the frequency-domain val­
idation problem, we first partition the transfer 
function P , 

[ z] = P(z) [w] = [P11 P12] (z) [w] . 
Y U P21 P22 U 

Also, let D LT I be the set of frequency-dependent 
D-scales, 

where 

DLTI := {D . D is. causal, stable LTI , } 
. D(elW

) E D , 'iw 

where each di is a complex scalar and the dimen­
sions of the blocks correspond to the dimensions 
of the uncertainty blocks ~i in (3) . 

For D E DLTI, define the frequency-dependent 
matrix, 

where 

0 11 := E' E - ZbD'DZo 

0 21 := -P~IE - D'DZo 

0 22 := D'D - P{I D'DP11 + P~IP21 

and E = Y - P22U and Zo = P21U. We are now 
prepared to state our main result , which shows 
that the the D-scaled frequency-domain validation 
problem can be formulated as a linear matrix in­
equality (LMI) . 

Theorem 6.2 Consider the LFT uncertainty 
model (5) defined by an LTI plant P and uncer­
tainty set a satisfying Assumption 6.1 . Let (U, Y) 
be frequency domain data as in {12}. Then the fol­
lowing are equivalent, 

a} For all DE DLTI , there exists a causal, LTI, 
stable ~ with IID~D-ll1 ~ 1, and 

Y(eJ W
) = Fu(P, ~)U(eJw-) , 'in . 

b} For all n , there does not exist a D E D , such 
that O(eiw-) > O. 

The consequence of Theorem 6.2 is that the D­
scaled frequency domain validation problem can 
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be solved as an LMI. At each frequency Wn, The­
orem 6.2 requires that we check if there exists 
a D (dependent on wn ) such that O(eiw -) > O. 
The matrix G(eiW

) depends linearly on the mat­
rix D'D, and therefore the feasibility problem may 
be evaluated as an LMI with D'D as the decision 
variables. If, for any, frequency the LMI problem 
is feasible , the model is invalidated. Otherwise, the 
model is not invalidated . 

The size of the LMI validation problem at each 
frequency-domain point is small. At each fre­
quency, there are K decision variables, d~, .. . ,dk 
where K is the number of uncertainty blocks. The 
constraint matrix G(eiw ) is 1 + nz x 1 + nz where 
nz is the dimension of the signal z. Observe that 
the LMI does not increase in size with higher state 
dimension, or the dimensions of the signals u and 
y. 

Although the frequency-domain validation is co m­
putationally attractive, the main disadvantage is 
that the frequency-domain data must be obtained 
from time-domain experiments. This requires the 
use of large data sets and/or periodic excitation 
signals. 

7. TIME DOMAIN METHODS 

Consider again the LFT uncertainty model (5) , 
where, in this case, the nominal plant P is LTV 
and given in state-space form , 

Zlo+l = AkZk + B 1k W k + B2k U k 

Zk = ClkZk + D12kUk 

Yk = C2k Z k + D 21k W k 

(13) 

and initial condition z(O) = Zo . The initial condi­
tion is assumed to be bounded by some prescribed 
ellipsoid, 
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{ 
D = (Do,D I .. . ), } 

DLTV := D: Die E D, DJ.t1 ::; Die ' 

where, similar to the frequency-domain case, 

D := {D = diag(dII, ... , dK I)} , 

and each di ~ 0 is a real scalar and the dimensions 
of the blocks correspond to the dimensions of the 
uncertainty blocks Ai in (3) . Any element D E 
D LTV can be regarded as a time-varying operator 
by point wise multiplication, 

(Dz)1e := Dlezle . 

The motivation for introducing the time-varying 
D-scales is the following Lemma. 

Lemma 1.1 Suppose A is any LTV opemtor. 
Then A is causal, stable and A E 4 if and only if 

IIDAD- I II ::; 1, VD E DLTV. 

To state the solution to the time-domain validation 
problem, we introduce the following optimization 
problem. For all D E D LTV, 

F(D) :=max II1rNDzIl2 -1I1rNDwW 
UJ,Z'o 

-z~YO-Izo + 1 

s.t. (z, y) = P(w, u, zo) (15) 

This optimization problem is a standard 1£00 fil­
tering problem. To evaluate F(D), one must first 
solve a certain time-varying filter RicaUi equation. 
If the Ricatti equation does not admit a solution, 
the value F( D) is infinite. In the case that the solu­
tion exists, the value of F(D) can be computed 
from a simple time-varying linear filtering opera­
tion. This operation also yields the optimal wand 
Zo · 

We are now prepared to state our main result. 

Theorem 1.2 Consider the LFT uncertainty 
model (5) with the LTV plant P in (13), and un­
certainty structure 4 in (3). Given time-domain 
data (u, y) as in (1 .. ), 

a) The function F(D) is convex in D2, and 
b) For all D E D LTV, there exists a causal, 

stable A with IIDAD- I II ::; 1, and initial con­
dition :1:0 E Xo such that 

y = Fu(P, A, zo)u 

if and only if F(D) ~ 0 for all DE DLTV. 

The consequence of this theorem is that the D­
scaled time-domain validation problem with time­
varying uncertainty blocks is equivalent to a con­
vex programming problem. To determine if the 
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model is invalidated by the data (u, y), one must 
simply minimize the convex function F(D) over 
the time-varying D-scale DLTV. The model is in­
validated if and only if the minimum is less than 
zero. 

However, although the optimization problem is 
convex, the number of decision variables is large. If 
there are K uncertainty blocks and N data points, 
there are K N decision variables. In addition each 
function and gradient evaluation involves a linear 
time-varying filter operation. An exact solution of 
this problem, therefore, will likely be limited to 
modest size problems. Larger validation problems 
will require that the data is partitioned or the D­
scale dependence on time is parameterized . Much 
further study will be required to fully assess the 
numerical aspects of this problem. 

In certain special cases, such as additive uncer­
tainty models, it can be shown that is only ne­
cessary to consider time-invariant D-scales which 
considerably reduces the problem size. 

Certain classes of LTI uncertainty models can also 
be considered via convex programming, using the 
LTI extension theorem, Theorem 5.1. However, 
our experience has shown that evaluating the con­
dition (9) is computationally prohibitive, unless 
the problems are extremely small. 

8. SAMPLED DATA METHODS 

We now consider model validation for continuous­
time perturbation models with time domain input­
output data. The input u is generated by the 
hold function, HT, and we observe sampled val­
ues of the output y. This situation corresponds 
to that most commonly encountered in practice. 
Direct robust control system design for sampled­
data perturbation models has been considered in 
[13,2,4,33] . 

For simplicity, in this section, we will only consider 
additive uncertainty models of the form 

y = ST (Po + PwAPz ) HTu + STPnn, 

IIAII ::; 1, nE N, (16) 

where ST and HT are samples and holds as de­
scribed in 5. Now define the residuals, 

where Yle = STY. The data (u, y) is consistent with 
the model (16) if and only if there exists v and n 
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w = tl.P,HT'IJ . (18) 

The constraint (17) is linear in w and n . 

Using the techniques described in Section 5, we 
can rewrite the above constraints in discrete-time 
as, 

r = (STPw P;'ST)1/2 W + (BTPnP~ST)1/2 il(19) 

Z = (HTP; P.HT)-1/2 'IJ (20) 

Here w is constrained to lie in the convex set N 
which is the image of N, under a linear isometry. 
We can now immediately apply Theorem 5.3 to 
establish the sampled-data model validation result . 

Theorem 8.1 Consider the perturbation model 
(16) together with the sampled input-output datum 
(Yk,'lJk), k = 0, ... , N -1. If there exists sequences 
Wk, ilk satisfying (19) and (20) , and such that 
W'W ~ Z' Z, then the datum does not invalidate 
the perturbation model. 

A similar result can be obtained for time-domain 
validation of time-varying uncertainty models. 

9. CONCLUSIONS 

We have treated model validation problems with 
frequency-domain and with time-domain data for 
a broad class of perturbation models. We have also 
considered model validation for sample-data per­
turbation problems. 

A number of important issues need to be ad­
dressed. The time-domain validation tests for LTI 
perturbation models are computation ally unat­
tractive. In this situation, until better algorithms 
are developed, the frequency-domain tests remain 
the method of choice. For LTV uncertainties, the 
time-domain validation is computationally feasible 
for problems with modest data records. Further 
work will be required to address larger size prob­
lems. The important problems of model validation 
for perturbation models with real parametric un­
certainty remain open. 

Model validation should be regarded as only one 
ingredient of the entire process of obtaining ro­
bust control oriented system models . Model val­
idation is preceded by system analysis and under­
standing, physical modeling, and identification. If 
the uncertainty model is invalidated by the input­
output data record then it becomes necessary to 
revisit the identification step and it may also be 
necessary to obtain additional data. In this event a 
revised perturbation model must be obtained, and 
this must be done bearing in mind the performance 

objective of cl06ed-Ioop regulation. Systematic, ef­
fective methods for doing this must be developed 
and recent work on iterative cl06ed-Ioop identific­
ation methods (see [28,37,17]) will doubtless play 
an important role here. 
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