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Abstract
Objectives We developed a natural polyphenol supplement that strongly chelates iron in vitro and assessed its effect on 
non-heme iron absorption in patients with hereditary hemochromatosis (HH).
Methods We performed in vitro iron digestion experiments to determine iron precipitation by 12 polyphenol-rich dietary 
sources, and formulated a polyphenol supplement (PPS) containing black tea powder, cocoa powder and grape juice extract. 
In a multi-center, single-blind, placebo-controlled cross-over study, we assessed the effect of the PPS on iron absorption 
from an extrinsically labelled test meal and test drink in patients (n = 14) with HH homozygous for the p.C282Y variant in 
the HFE gene. We measured fractional iron absorption (FIA) as stable iron isotope incorporation into erythrocytes.
Results Black tea powder, cocoa powder and grape juice extract most effectively precipitated iron in vitro. A PPS mixture of 
these three extracts precipitated ~ 80% of iron when 2 g was added to a 500 g iron solution containing 20 µg Fe/g. In the iron 
absorption study, the PPS reduced FIA by ~ 40%: FIA from the meal consumed with the PPS was lower (3.01% (1.60, 5.64)) 
than with placebo (5.21% (3.92, 6.92)) (p = 0.026)), and FIA from the test drink with the PPS was lower (10.3% (7.29 14.6)) 
than with placebo (16.9% (12.8 22.2)) (p = 0.002).
Conclusion Our results indicate that when taken with meals, this natural PPS can decrease dietary iron absorption, and might 
thereby reduce body iron accumulation and the frequency of phlebotomy in patients with HH.
Trial registry: clinicaltrials.gov (registration date: 9.6.2019, NCT03990181).
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Introduction

Hereditary hemochromatosis (HH) is characterized by 
increased iron accumulation in tissue and organs, poten-
tially leading to liver cirrhosis, hepatocellular carcinoma, 
diabetes, arthropathy, and heart disease [1]. It is one of the 
most common genetic diseases in Caucasian populations, 
mainly of Nordic or Celtic ancestry [2–6]. HFE-related 
HH accounts for 85–90% of all cases associated to the 
homozygous p.C282Y mutation [2]. Iron overload in HFE-
related HH is caused by relative hepcidin deficiency [7]. 
This is due to the conformation of HFE, which affects the 
signaling pathway that regulates hepcidin expression [8]. 
The reduction in hepcidin expression leads to inappropri-
ately high dietary iron absorption [7–10].

The standard of care for HH patients is phlebotomy to 
reduce accumulated body iron [11–13]. The morbidity and 
mortality of HH patients is significantly reduced when the 
treatment is started before the development of cirrhosis 
and/or diabetes [14, 15]. The frequency of the phleboto-
mies depends on iron status, determined by measuring 
transferrin saturation (TSat) and serum ferritin (SF)[5]. 
Frequent phlebotomies can be inconvenient and a burden 
for many patients [16].

Previous studies reported equivocal effects of dietary 
iron intake (heme and non-heme) on iron status in HH 
[17–20]. A systematic review of studies assessing the 
effect of diet in HH concluded that despite limited evi-
dence, dietary modification may be a beneficial adjunct 
strategy to limit iron accumulation [21]. Dietary modi-
fication would require limiting intake of heme and non-
heme iron, as well as reducing the intake of iron absorp-
tion enhancers (e.g., vitamin C) and increasing intake of 
iron absorption inhibitors, such as phytate and polyphenols 
(PP). PP are widely distributed among plants and inhibit 
non-heme iron absorption by forming insoluble Fe–PP 
complexes in the intestinal lumen [22]. Polyphenol-rich 
dietary sources have been shown to be inhibitory in vari-
ous iron absorption studies [22–28]. In patients with HH, 
the consumption of black tea with a meal led to a sig-
nificant reduction in iron absorption from a single meal. 
Furthermore, HH patients in the tea drinking group, who 
consumed black tea with all main meals over 1 year, had 
a smaller increase in SF than the control group who con-
sumed water with meals [29]. Therefore, patients with HH 
would most likely benefit from the regular intake of a PP-
rich supplement to reduce body iron accumulation and, 
therefore, frequency in required phlebotomies. However, 
the inhibitory effect of PP on iron absorption is strongly 
dependent on the PP structure [22]. A supplement con-
taining silybin, a flavonoid extracted from milk thistle 
(Silybum marianum), reduced serum iron response in HH 

patients in an oral iron tolerance test [30], whereas a sup-
plement containing proanthocyanidins did not [31].

The objectives of this study were: (1) to develop a natural 
PP supplement with high efficiency in chelating iron in vitro, 
and (2) to determine its inhibitory effect on iron absorption 
when provided with a non-heme iron-rich test drink and test 
meal in HH patients. Using in vitro digestion and measuring 
iron solubility, we screened various PP-rich dietary sources 
to formulate a natural PP supplement (PPS) with maximum 
iron-chelating potential. The PPS was formulated in cap-
sules and administered to patients with HH. Fractional iron 
absorption (FIA) was measured using stable iron isotopes. 
The comparison of FIA from the drink to the meal further 
allowed assessing the effect of the meal matrix. We hypoth-
esized that iron absorption from an iron-fortified test drink 
and from a non-heme iron-rich test meal given with the PPS 
will be reduced significantly compared to when consumed 
with the placebo capsules.

Methods

Food analyses

Polyphenol-rich dietary sources were selected based on a 
high content of gallic acid equivalents (GAE) according to 
data extracted from Phenol-Explorer [32–34], a low content 
of ascorbic acid (based on literature), and their availability 
in dried powder form. These were: black tea powder, cin-
namon, chestnut flour, cloves, cocoa powder, coffee com-
mon sage, grape juice extract, marjoram, oregano, star anise, 
and turmeric. All foods were purchased from food or drug 
stores, if required, they were milled in-house to obtain a 
homogenous powder. Total PP concentrations of all dietary 
sources and the PPS mixture were measured with a modified 
Folin–Ciocalteau method [35]. Concentrations were meas-
ured as GAE. Total iron (Fe) concentrations were measured 
by graphite furnace atomic absorption spectrophotometry 
(GFAAS, AA240Z; Varian), after complete mineralization 
of the sample by microwave digestion (MLS TurboWave; 
MLS GmbH). Total phytic acid (PA) concentrations were 
measured by a modified method by Makower [36]. Vitamin 
C content of the test meal was analyzed via HPLC (Waters 
Acquity H-Class) after stabilization and extraction in met-
aphosphoric acid and reduction via ditiothreitol [37].

Analysis of iron precipitation by polyphenol‑rich 
dietary sources in vitro

The in vitro digestion method was used to determine the 
effect of the PP-rich dietary sources on solubility and bioac-
cessibility of iron. We mixed different doses of the dietary 
source rich in PP (60, 120, or 180 mg) into a 30 g solution 
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(nanopure water) containing 600 µg Fe (20 µg Fe/g) as 
 FeSO4. The tested doses of the PP-rich dietary sources 
were equivalent to 1 g, 2 g and 3 g powder in relation to 
a 500 g solution containing 10 mg Fe (matching the test 
condition in stable iron isotope study). In vitro digestion 
was performed in triplicate samples and each condition was 
tested twice. Using amylase (Takadiastase from Aspergillus 
oryzae, Sigma-Aldrich) samples (30 g sample with 200 mg 
amylase) underwent oral digestion for 10 min, followed by a 
pH reduction with 6 M HCl to pH 2. A pepsin (from porcine 
gastric mucosa, Sigma-Aldrich) solution (800 mg in 10 mL 
0.1 M HCl) was added to simulate gastric digestion in a 
37 °C shaking water bath. After 2 h, the pH was increased 
with 0.5 M KOH and a pancreatin (bile extract, from porcine 
and pancreatin from porcine pancreas, both from Sigma-
Aldrich) solution (80 mg pancreatin, 500 mg bile extract in 
20 ml 0.1 M  NaHCO3) was added. After 10 min of intestinal 
digestion, all samples were centrifuged at 2000 g for 15 min. 
The iron concentration of the supernatant was measured 
using GFAAS  (Fesoluble), whereas the total iron concentration 
 (Fetotal) was calculated based on measured concentrations 
of the dietary source. We assumed that PP–Fe are insoluble 
complexes and precipitate during the centrifugation; there-
fore, we calculated  Feinsoluble =  Fetotal−Fesoluble. The PPS was 
formulated based on the three dietary sources that exhibited 
the highest capacity to chelate iron in vitro (online resource 
Table S1). By mixing these three PP rich sources, the accu-
mulated daily intake of each PPS ingredient is lower, and a 
blend of three components might be more effective in recus-
ing iron absorption.

Stable iron isotope study participants and study 
sites

Study participants (n = 14) were patients with diagnosed HH, 
all homozygous in the p.C282Y variant in the HFE gene. 
Other inclusion criteria were: Between 18 and 65 years of 
age, weight of below 80 kg, body mass index (BMI) within 
18.5–25 kg/m2, the last phlebotomy being at least 4 weeks 
prior to first test meal/drink administration, and expected to 
comply with the study procedures. Exclusion criteria were: 
pregnancy and breastfeeding, acute illness or infection, met-
abolic or chronic diseases, use of long-term medication and 
consumption of mineral and vitamin supplements 2 weeks 
prior and during the study period, a scheduled phlebotomy 
during the study period, and participation in any other clini-
cal study within the last 30 days.

The study was conducted at the Santo Antonio Hospital—
Porto University Hospital Center (CHUP), in Porto, Portugal 
and at the Laboratory of Human Nutrition at ETH in Zurich, 
Switzerland. The study arm in Portugal was conducted 
between August 2019 and October 2019 and the study arm 
in Switzerland between December 2019 and August 2020. 

The study was performed according to the Declaration of 
Helsinki, and ethical approval for the study was provided 
by the ethical review committees of ETH Zürich and the 
Canton of Zürich (BASEC 2019-01776) in Switzerland, and 
of the Porto University Hospital Center (CHUP), Portugal 
(2019.127(107-DEFI/111-CE)). The study was registered at 
clinicaltrials.gov (NCT03990181). Informed signed consent 
was obtained from all the participants.

Study design and procedures

This was a multi-center, partially randomized, single-blind, 
placebo-controlled cross-over study (Fig. 1). The study 
included four experimental conditions: (1) extrinsically 
labelled test meal (containing 8 mg native Fe and 2 mg 57Fe 
as ferrous sulfate  [FeSO4]) consumed with 2 g of the PPS 
(Meal-PPS); (2) extrinsically labelled test meal (containing 
8 mg native Fe and 2 mg 58Fe as  FeSO4) consumed with 
2 g of maltodextrin (placebo) (Meal-Placebo); (3) extrinsi-
cally labelled test drink (water fortified with 8 mg Fe of 
natural isotopic composition as  FeSO4 and 2 mg 57Fe as 

Recruited
OPO: n = 11
ZRH: n = 29

Enrolled
OPO: n = 9
ZRH: n = 5

Excluded
OPO:
n = 1, overweight
n = 1, medication
ZRH:
n = 5, overweight
n = 1, medication
n = 4, lost interest
n = 12, study too burdensome
n = 2, not yet in maintenance phase

Study D1 & D3
Venipuncture (D1) 
Test meal/drink
n = 14

Study D22 & D24
Venipuncture (D22)
Test meal/drink
n = 14

Study D45
Venipuncture
n = 14

Data Analysis

Excluded from Analysis
n = 2 (CRP>5 mg/L on D22 & D24)

Fig. 1  Study participant flow
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 FeSO4) consumed with 2 g of the PPS (Drink-PPS); and (4) 
extrinsically labelled test drink (water fortified with 8 mg 
Fe of natural isotopic composition as  FeSO4 and 2 mg 57Fe 
as  FeSO4) consumed with the placebo supplement (Drink-
Placebo). We decided to provide a PPS dose of 2 g to a 500 g 
meal/drink based on the results from the in vitro digestion 
experiments (online resource Table S1).

Study participants were recruited at their regular phle-
botomy visit at the Santo Antonio Hospital—Porto Univer-
sity Hospital Center (CHUP) in Porto, Portugal, the Depart-
ment of Internal Medicine of the University Hospital Zurich, 
and the Blood Transfusion Service Zurich in Switzerland. 
In Porto, if a patient was interested, informed consent was 
obtained and a questionnaire administered to assess in- 
and exclusion criteria approximately 1–2 months before 
study day 1. In Zurich, if a patient was interested, informed 
consent was obtained and in- and exclusion criteria were 
checked in a screening on study day 1. On the study days, 
all participants were fasting, meaning no food intake after 
8 pm and no drinks after midnight on the evening before. 
In the morning of study days 1, 3, 22 and 24, participants 
came to the study center for administration of the experi-
mental conditions Meal-PPS, Meal-Placebo, Drink-PPS, or 
Drink-Placebo. The order of the experimental condition was 
partially randomized, meaning the same stable iron isotope 
was not consumed within the same study week.

Venous blood samples were collected by venipuncture 
on study days 1, 22, and 43 for analysis of hemoglobin (Hb) 
concentration, and indices of iron status and inflammation. 
On study days 1 and 22, we further measured serum hepci-
din, and on study days 22 and 43 we determined stable iron 
isotope incorporation into erythrocytes.

Composition of test meals and drinks

The test meals (Meal-PPS and Meal-Placebo) consisted 
of four slices of whole grain toast bread (Olivers Toast, 
Vollkorn, Migros) (115 g), 48 g cashew paste (Cashewmus, 
Alnatura), two bean tarts (80 g), and 44 g apricot-pumpkin-
seed fruit leather. The toast, cashew paste, and all ingredi-
ents for the bean tarts and fruit leather were purchased in 
bulk and frozen until use. The bean tarts and the fruit leather 
were prepared in one batch and frozen until use. Each bean 
tart contained a prebaked wheat flour pastry case (Törtchen-
bödeli, Midor, Migros), blended canned white beans (Sois-
son Bohnen, MClasic, Migros), egg yolks (53 g + , free-
range, Migros), ground peeled almonds (Mandeln gemahlen 
geschält, MClassic Migros), and refined sugar (Feinkristall-
zucker, Migros) (at a ratio of 15:32:32:24:13). The fruit 
leather contained apricots and pumpkinseeds in a ratio of 
10:3, which were homogenized with water, and thin layers 
of the purée were dried for 6 h at 80 °C. The test meals were 
provided to the participants together with deionized water. 

Each test meal portion contained 8.02 ± 0.005 mg native 
Fe, 1.06 ± 0.06 g phytic acid, 26.9 ± 0.1 mg vitamin C, and 
300.8 ± 17.4 mg total polyphenols (gallic acid equivalents). 
The test drinks (Drink-PPS and Drink-Placebo) consisted 
of 470 g deionized water mixed with 30 g  FeSO4 solution 
containing 8 mg Fe of natural isotopic composition and 2 mg 
labelled Fe. Total weight of the test meal (including drink-
ing water and water for rinsing the isotopes) and of the test 
drink was 500 g. Thus, the ratio of PPS dose to meal/drink 
amount corresponded to the ratio in the in vitro experiments.

Preparation and administration of stable iron 
isotopes, test meals, drinks and PPS

We labelled  FeSO4 with 57Fe-enriched and 58Fe-enriched 
elemental iron (with 95.56% and 99.89% isotopic enrich-
ment, respectively, all Chemgas, Boulogne-Billancourt, 
France) as previously described [38]. The  FeSO4 solutions 
were pre-weighted in individual doses into Teflon vials and 
stored at 4 °C until use. The PPS mixture was prepared in 
one batch by mixing milled black tea powder, cocoa pow-
der and grape juice extract in equal parts. Black, 000 sized 
gelatin capsules were manually filled with 1 g (± 5 mg) of 
the PPS mixture, or maltodextrin for the placebo supple-
ments (Maltodextrin 6, Nutricia GmbH). The meals were 
thawed the night before administration, and the toast slices 
were heated before consumption and spread with the cashew 
paste. The isotopically labelled  FeSO4 solution (providing 
2 mg iron) was poured directly onto the bread of the test 
meals, or provided diluted in water in a small glass with 
the test drinks. The vial was rinsed twice with 1 ml water, 
which was also poured onto the bread, or into the glass. 
Participants were asked to start by taking two capsules of 
the PPS or placebo supplement and then to consume the test 
meal or drink. The isotope solution was consumed at once 
halfway through the drink. The glass containing the isotope 
solution was rinsed twice with 10 g of water and consumed 
by the participant.

Blood analyses

Venous blood samples were collected and immediately 
processed after withdrawal. EDTA whole blood was used 
for the analysis of Hb on the sampling day using an auto-
mated hematology analyzer (Sysmex XE-5000 analyzer, 
Sysmex Corporation, both study sites). Heparinized whole 
blood was aliquoted for analysis of isotopic composition. 
Blood collected in serum tubes was centrifuged, and serum 
samples aliquoted for SF analysis (Porto: Elecsys Ferritin 
assay; Roche Cobas analyzer; Zurich: Immulite; Siemens 
Healthcare Diagnostics), and for determination of C-reactive 
protein (CRP), alpha-1-acid glycoprotein (AGP) and soluble 
transferrin receptor (sTfR) using a multiplex ELISA method 
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[39]. Serum iron (SFe) and total iron binding capacity 
(TIBC) were measured using colorimetry, and sHep using 
a commercial ELISA Kit (DRG Hepcidin 25, DRG Instru-
ments GmbH). All aliquoted samples collected in Portugal 
were stored at − 20 °C until shipment on dry ice to ETH 
Zurich and further stored at − 20 °C until analysis. TSat 
was calculated using the formula SFe/TIBC*100. Acute 
inflammation was defined as CRP concentrations > 5 mg/L 
or alpha-1-acid glycoprotein (AGP) > 1 g/L.

We determined FIA and calculated the amounts of 57Fe 
and 58Fe isotopic labels in blood on study days 22 and 43 
based on the shift in iron isotope ratios in erythrocytes and 
on the estimated amount of iron circulating in the body [40]. 
We performed the analyses by multicollector-inductively 
coupled plasma mass spectrometry (MC–ICP–MS, Neptune; 
Thermo Finnigan) as previously described [41]. We calcu-
lated circulating iron in the body based on Hb and blood 
volume, derived from the participant’s height and weight 
[42], and assuming an 80% incorporation of absorbed iron 
into erythrocytes [40].

Sample size calculation and statistical analysis

A priori we calculated a sample size of 18 to be adequate to 
detect a 50% reduction in fractional iron absorption from the 
iron-rich meal/drink when consumed with the PPS, taking 
into account a standard deviation of 0.4, and a probabil-
ity of an α error of 0.05 to reach a power β of 0.8. These 
assumptions were based on data from iron absorption studies 
performed in HH and healthy individuals [24, 29]. A 50% 
reduction in iron absorption was estimated to be a relevant 
reduction. To account for dropouts, we anticipated a sample 
size of 20. After 14 participants had completed the study, 
we ran an interim analysis. The data of these participants 
reached a power of 0.799 and 0.862 to explain our hypoth-
esized differences in FIA from the iron-enriched meals and 
drinks, respectively, when consumed with the PPS compared 
to placebo.

We used IBM SPSS statistics (Version 24) for statistical 
analysis. To test for differences in the percentage of pre-
cipitated Fe after in vitro digestion between the PP doses 
(1, 2 and 3 g), a one-way ANOVA with post hoc Bonfer-
roni correction was run for each PP source, and the PPS. 
A repeated-measures ANOVA was performed with per-
centage of precipitated Fe as the dependent variable, the 
dose as the repeated measure and the PP source as between-
subject factor. Post hoc Bonferroni corrected comparisons 
were made to test for significant differences between the 
PP sources. We assessed the correlation of precipitated iron 
with total PP concentration using Spearman’s rho test. We 
tested data of the human absorption study for normality 
by Shapiro–Wilk tests. Normally distributed data are pre-
sented as means ± standard deviation (SD), log transformed 

normal data as geometric mean with 95% confidence interval 
(95%CI), and non-normal data as median and interquartile 
range (IQR). We tested between-group differences in FIA 
using log-transformed data with dependent samples T tests. 
Predictors of iron absorption were estimated using linear 
regression with log FIA as dependent variable, and sex (1: 
female, 2: male), meal matrix (1: meal, 2: drink), intake of 
PPS (1: PPS, 2: placebo), log SF, log sHep, and log CRP 
as independent variables, reported are standardized β. The 
α-level of significance was set at 0.05.

Results

In vitro precipitation of iron by different dietary 
sources of PP and doses

We found differences in percentage of precipitated iron 
in  vitro between different PP sources (p < 0.001) and 
between PP doses (p < 0.001), as well as a significant PP 
source x dose interaction (p < 0.001) indicating that the 
dose–effect was dependent on the PP source. Results of 
the post hoc comparisons are shown in the online resource 
Table S1. Grape juice extract, black tea powder and cocoa 
powder showed the strongest ability to complex iron, with no 
significant differences between them. When 2 g of their pow-
ders was digested in a 500 g solution containing 20 µg/g Fe, 
77–86% of the total iron was precipitated (online resource 
Table S1, and Fig. 2). All other PP-rich dietary sources had 
a significantly lower ability to complex iron (all at 2 g): 
Cloves and cinnamon precipitated around 62–64%, chestnut 
flour, anise and marjoram around 44–48%, oregano, com-
mon sage, and coffee powder around 25–32%, and turmeric 
around 15% (online resource Table S1, and Fig. 2). For black 
tea powder, grape juice extract, and cocoa there was a sig-
nificant increase in precipitated Fe from 1 to 2 g of the PP 
source, but not when the doses were increased from 2 to 
3 g (online resource Table S1). The PPS containing grape 
juice extract, black tea powder and cocoa powder led to a 
78.7 ± 2.9% reduction in soluble iron when 2 g of the PPS 
underwent in vitro digestion in 500 g solution containing 
20 µg/g Fe (Fig. 2, and online resource Table S1). The PPS 
mixture showed a significant increase in precipitated Fe from 
dose 1–2 g, and from 2 to 3 g (online resource Table S1, and 
Fig. 2). There was a moderately strong positive relationship 
of total PP concentrations (as GAE) of the dietary PP source 
(online resource Table S2) with their ability to precipitate 
iron (rs = 0.629, p < 0.001) (Fig. 3).

Characteristics of the PP‑rich supplement

The PP concentration of the PPS was 129 ± 3.41 mg GAE/g, 
and in cocoa powder, grape juice extract, and black tea powder 
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the measured concentrations were 41.4 ± 1.20 mg GAE/g, 
178.7 ± 8.97  mg  GAE/g, and 135.9 ± 3.82  mg  GAE/g, 
respectively. The measured iron concentration of the 
PPS was 183.6 ± 15.3 µg/g Fe, and PA concentration was 
1.13 ± 0.091  mg/g. Therefore, 2  g of the PPS contained 
259.15 ± 6.82 mg total PP (as GAE), 367.22 ± 30.64 µg Fe, 
and 2.26 ± 0.18 mg PA.

Characteristics of the test meal

Human study participants

Among the approached HH patients in Porto, 11 interested 
participants were recruited, and nine of these fulfilled all 
inclusion criteria. Among the HH patients in Zurich, 29 

Fig. 2  Percentage of precipi-
tated iron after in vitro digestion 
in a 20 µg Fe/g solution with the 
PPS and other food powders at 
different doses of 1 g, 2 g and 
3 g. Shown are means ± SD. 
Significant differences between 
doses within a PP  source are 
indicated with * (one-way 
ANOVA with Bonferroni cor-
rections, p < 0.05)
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participants were recruited, and five of these fulfilled all 
inclusion criteria. We were able to enroll and complete the 
study with 14 participants. On study day 22, an increased 
CRP (CRP > 5 mg/L) was measured in two participants; 
therefore, their FIA data of days 22 and 24 were not 
included in the analysis (Fig. 1). Of these 14 study sub-
jects, seven were female and seven male. Participant char-
acteristics, baseline anthropometric measurements, indices 
of inflammation, iron status and hepcidin concentrations 
are shown in Table 1.

Iron absorption

The geometric mean and 95% CI of the total iron absorp-
tion from the meal with and without the PPS (Meal-PPS 
vs. Meal-Placebo) was 0.313  (0.167, 0.586) mg Fe and 
0.522  (0.393,  0.693)  mg Fe, respectively (p = 0.035). 
FIA from the meal with and without the PPS (Meal-
PPS vs. Meal-Placebo) was 3.01%  (1.60,  5.64) and 
5.21% (3.92, 6.92), respectively (p = 0.026) (Fig. 4A). With-
out the meal matrix, the total iron absorption from the drink 
with and without the PPS (Drink-PPS vs. Drink-Placebo) 

Table 1  Study participant 
characteristics, baseline 
anthropometric measurements 
and iron status based on 
samples from study days 1 and 
22

BMI, body mass index; Hb, hemoglobin; SF, serum ferritin; CRP, C-reactive protein; AGP, α1-acid glyco-
protein; sHep, serum hepcidin; sTfR, soluble transferrin receptor; SFe, serum iron; TIBC, total iron bind-
ing capacity; TSat, transferrin saturation
a Values are mean ± standard deviation, all such values
b Values are geometric means and 95% confidence interval, all such values
c Values are median and interquartile range, all such values

All Female Male

n 14 7 7
Age (years)a 44.8 ± 9.86 43.0 ± 9.9 46.6 ± 10.2
Weight (kg) 68.1 ± 10.6 60.7 ± 8.1 75.5 ± 7.0
Height (cm) 172.6 ± 12.7 161.7 ± 4.9 183.6 ± 6.7
BMI (kg/m2) 22.8 ± 2.4 23.2 ± 2.8 22.4 ± 2.2
CRP (mg/L)b 0.75 (0.32, 1.74) 0.88 (0.17, 4.51) 0.63 (0.21, 1.93)
AGP (g/L) 0.57 ± 0.19 0.57 ± 0.15 0.56 ± 0.25
Hb (g/dL) 15.4 ± 1.57 14.2 ± 0.80 16.6 ± 1.18
SF (ng/mL)c 69.8 (54.4–114.6) 59.0 (43.5–74.6) 86.0 (65.0–223.5)
sTfR (mg/L) 3.99 (3.61–4.37) 3.96 (3.70–4.19) 4.00 (3.33–5.37)
SFe (µg/dL) 164.5 ± 36.7 164.4 ± 32.5 164.5 ± 43.2
TIBC (µg/dL) 308.0 (282.7–335.6) 307.9 (281.7–400.2) 308.0 (283.0–314.6)
TSat (%) 50.41 (44.11, 57.61) 49.2 (40.0, 60.6) 51.6 (40.9, 65.2)
sHep (ng/mL) 3.49 (2.26, 5.37) 2.95 (1.53, 5.69) 4.13 (1.97, 8.67)

Fig. 4  A FIA from test meals 
and B test drinks consumed 
either with the PPS (Meal-PPS 
& Drink-PPS) or with the pla-
cebo supplement (Meal-Placebo 
& Drink-Placebo). Shown are 
individual datapoints and the 
geometric mean with the 95% 
CI, p = 0.026, and 0.002, respec-
tively, paired samples T test
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was 1.07 (0.756, 1.52) mg Fe and 1.69 (1.28, 2.22) mg 
Fe, respectively (p = 0.003). FIA from the drink with 
and without the PPS (Drink-PPS vs. Drink-Placebo) was 
10.3%  (7.29  14.6) and 16.9% (12.8 22.2), respectively 
(p = 0.002) (Fig. 4B). The intake of the PPS led to a 42 and 
39% reduction in FIA in both, meals (p = 0.026) and drinks 
(p = 0.002), respectively. We identified a meal matrix effect 
(Drink-Placebo vs. Meal-Placebo) which was independent 
from the effect of the polyphenol supplement, and led to 
a 69% reduction in FIA (p < 0.001). The pooled FIA geo-
metric mean of both meals (3.96% (2.82, 5.56)) and both 
drinks (13.2% (10.5, 16.6)) also differed (p < 0.001) (70% 
reduction).

FIA in this study was independently predicted by meal 
matrix (β = 0.711, p < 0.001), hepcidin concentration 
(β = − 0.294, p = 0.008), sex (β = 0.278, p = 0.007, male had 
higher FIA), and PPS (β = 0.271, p = 0.002). These param-
eters explained 65% of the variability in FIA (R2 = 0.694, 
R2

adjusted = 0.653). In contrast, FIA was not associated 
with CRP (β = 0.081, p = 0.347) or ferritin (β = − 0.077, 
p = 0.530) (data not shown).

Discussion

The main findings of this study are: (1) the natural polyphe-
nol-rich dietary sources of the PPS complexed iron in vitro 
and reduced its solubility by ~ 80%; and (2) in the iron 
absorption study, the PPS reduced FIA from an iron-rich 
meal and drink by ~ 40% in adults with HH.

We tested the capability of various PP-rich dietary 
sources to precipitate iron in vitro. The selection of these 
sources was based on their measured total PP content as 
GAE. Coffee has a high concentration of total PP [43] and 
has shown to reduce iron absorption from a meal by 61% 
[22]. Nevertheless, in our in vitro experiments, coffee pow-
der precipitated iron by 25–30%. This low precipitation was 
most likely due to the decreased solubility of the PPs in 
cold (room temperature and body temperature) water com-
pared to coffee brewed in hot water. Cloves and cinnamon 
also showed strong capabilities to precipitate iron; however, 
these were not further investigated due to their high con-
tents of eugenol [44] and coumarin [45]. Turmeric had the 
lowest capability to precipitate iron, which is in line with a 
human absorption study showing that iron absorption was 
not impaired by the addition of turmeric to a test meal [25]. 
Overall, the capability to precipitate iron in vitro correlated 
well with the total PP content of the dietary PP source. This 
is in agreement with the results from an iron absorption 
study showing that the reduction in FIA correlates with total 
PP content [24].

The effect size of the PPS in our study (40%) is smaller 
compared to a previously reported 70% reduction in FIA 

from a meal consumed with black tea in HH patients [29] 
and compared to the 60–90% reduction in iron absorption 
from a meal consumed with either black tea, coffee, cocoa, 
or peppermint tea in healthy subjects [24]. This difference 
might be attributed to the following mechanisms: First, the 
administration method of the PPS in gelatin capsules might 
have led to a delay in their release and, therefore, an incom-
plete mixture of the PPS with the test meal (compared to 
administration of PP-rich beverages). To solve this issue, 
other galenic forms, such as a pressed tablet, might over-
come the delay in release due to encapsulation. Furthermore, 
taking the supplement 15 min before each meal (rather than 
at the start of the meal) might improve food/PPS mixing in 
the gastrointestinal tract. Second, in prepared tea and bever-
ages, the polyphenols are already dissolved from their matrix 
and are available to form PP–Fe complexes. The polyphe-
nols from our PPS required to be first dissolved in the stom-
ach before being able to form PP–Fe complexes. Third, we 
administered a 2 g mixture of powdered Ceylon tea, cocoa 
and a grape juice extract, which contains a broad range of 
different polyphenolic structures.

The iron absorption measured in our study in homozygous 
p.C282Y patients with HH was overall lower than reported 
by Kaltwasser et al. [29] who measured iron absorption in a 
similar patient group from a meal which was consumed with 
either tea or water. The meal consisted of beef, rice, spin-
ach and potatoes, and was consumed with 1.5 g Ceylon tea, 
extracted for 5 min in 250 mL water. The FIA from this meal 
with tea was 6.9% compared to 22.1% when consumed with 
water, which would result in a ~ 70% reduction in FIA [29]. 
These measured FIA values are higher compared to the FIA 
values from our test meal consumed with the PPS (3.0%) and 
placebo (5.2%). The overall lower FIA from the test meal in 
our study might be attributed to the high content in PA and 
PP. The meal matrix per se had a highly inhibitory effect on 
FIA. It induced a significant reduction in FIA of ~ 60%, and 
was a main determinant of FIA in the logistic regression. 
The molar ratio of PA:Fe in the meal was 9.3:1, which is 
classified as highly inhibitory [46]. The major contributor 
of PA to the meal was the cashew paste, followed by toast 
bread > fruit leather > bean tarts. Besides the study by Kalt-
wasser et al., only few studies have measured iron absorption 
in HH patients using stable or radio iron isotopes, but all 
have reported higher iron absorption values. Iron absorption 
from ferric citrate in a chicken soup meal was reported to be 
30% [47]; iron absorption from a composite meal containing 
wheat bread, hamburger, gravy, lettuce and tomato juice was 
reported to be 36.4% [48], and non-heme iron absorption 
from a meal containing beef, wheat bread, french fries and a 
vanilla milkshake was 41.3% [49]. An iron absorption study 
without a meal matrix reported 74% iron absorption from 
a ferric ascorbate reference dose [50]. In comparison, we 
measured 16.9% iron absorption without a meal matrix, and 
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10.3% iron absorption without a meal matrix but with the 
PPS. However, it has to be noted that these studies included 
patients diagnosed with HH before HFE was discovered, 
which may differ from our specified patient group being 
homozygous for the p.C282Y variant in HFE. Furthermore, 
our meal was highly inhibitory due to the high PA and native 
PP content, and during the preparation of the test drink con-
taining  FeSO4 iron hydroxide formation may have occurred.

According to Phenol-Explorer, flavanols make up for 
72% of the total PP in black tea and 16% are accounted to 
hydroxybenzoic acids. In cocoa powder, flavanols are also 
the largest represented class and make up for 93% of the total 
PP in cocoa powder. The widest represented PP in grapes 
(Vitis vinivera) belong to the classes of anthocyanins (82%) 
and flavanols (16%) [32–34]. Therefore, the main repre-
sented components in our PPS can be accounted to flavanols. 
Flavanols contain catechol or galloyl groups, which are good 
proton donors and binding sites for ferric iron creating octa-
hedral insoluble PP–Fe complexes [22, 24, 51].

The extent of iron accumulation in HH patients varies 
considerably (1.2–241 µg SF/L), and on average serum ferri-
tin rises by 99 µg/L in a year [52]. Considering the following 
assumptions: our study test meal is consumed with the PPS 
three times per day; a mean Hb concentration of 15.4 g/dL; 
an average concentration of 3.47 mg Fe/g Hb; and 1 µg/L 
SF represents 8 mg of stored body iron [53, 54], the PPS 
could potentially lead to a yearly decrease of ~ 230 mg in 
absorbed iron, which would correspond to one unit of phle-
botomized blood (450 mL). Or in other words, this is equiva-
lent to ~ 29 µg SF and is 1/3rd of the average yearly increase 
in SF in HH patients [52]. However, the estimated mitigation 
in yearly SF increase is lower compared to the longitudi-
nal study performed by Kaltwasser et al. [29], showing that 
regular tea drinking with all three main meals for 1 year led 
to a larger decrease in SF in the tea drinking group compared 
to the control group (77 µg SF difference) [29]. Neverthe-
less, the regular intake of our PPS with all main meals may 
be less cumbersome than brewing and regular tea drinking 
for some individuals.

A strength of our study is that, with the two experimental 
conditions of test drink and test meal, we have demonstrated 
that the PPS is able to reduce iron absorption by ~ 40% in 
both conditions, independently of the food matrix and other 
iron absorption inhibitors. The high PA content of our test 
meal may have weakened the effect of the PPS on FIA from 
a meal. A test meal with a lower PA content (but, therefore, 
also a lower non-hem iron concentration) would require 
measuring iron absorption from multiple meals, as stable 
iron isotopes need amounts in milligrams to be detectable 
and should not contribute more than 20% to the total iron 
content of the meal [55].

To summarize, our PPS has shown to reduce iron solubility 
in vitro by ~ 80%, and iron absorption in HH patients by ~ 40%, 

which could potentially correspond to the reduction of one 
phlebotomy session per year. However, to assess its efficacy, a 
placebo controlled longitudinal study would be required. There 
is increasing evidence suggesting that dietary PP may have 
a protective role against chronic diseases [56–58]. Thus, the 
additional daily intake of 6 g of the PPS (containing black tea 
powder, cocoa powder and grape juice extract) may provide 
additional health benefits for patients with HH. In conclusion, 
the intake of our PPS shows promise in reducing dietary iron 
absorption in patients with HH, and may also be of advantage 
in other iron overload diseases caused by excess dietary iron 
absorption.
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