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A B S T R A C T

This study presents MANGOret (Multi-stAge eNerGy Optimization — retrofitting), a novel optimization
framework and model for the long-term investment planning of existing building retrofits. MANGOret bridges
the methodological gaps between energy system modeling and real estate management to present a scalable
framework to optimize both energy and non-energy costs while considering building value. With a 2050
horizon, MANGOret is able to harness the strategic value of investment flexibility to optimally phase
investments across the multi-objective cost and CO2 emission decision space considering both operational
and embodied emissions.

From the energy perspective, the model generates long-term investment strategies for decentralized multi-
energy systems and envelope retrofits. The model considers the interdependent trade-offs between demand- and
supply-side measures for a number of technologies across time. Technology scheduling is informed by condition
degradation functions from utilizing the Schroeder method. From the real estate management perspective,
the framework digitalizes the multi-year investment planning process. The model is supported by series of
automated data retrieval and processing steps to consider each contextual building project. Importantly, we
develop an archetypal energy demand database to reference demands of various retrofitting packages. By
considering all retrofitting-relevant investments, the model incorporates the critical budgeting elements of
rental revenues to calculate building value.

We demonstrate the value of the MANGOret framework across various building types and sizes in different
Swiss real estate markets. Our results demonstrate relevance for energy engineers and building owners relating
to the long-term design, operation, and investment scheduling of existing buildings. We present multiple
optimal strategies considering the trade-offs between cost, value, and CO2 emissions.

Aligning with previous studies, our results show that higher investment costs are necessary to achieve
low-CO2 retrofits relative to minimum cost strategies. Higher costs are, to a large extent, influenced by
envelope retrofits and non-energy internal renovations while energy supply systems contribute to a smaller
share of the budget. To achieve low-CO2, retrofits utilize lower embodied emission technology choices and are
scheduled early on. Nevertheless, we show that these trade-offs do not necessarily have to be weighed at the
extremes of the Pareto front, instead presenting ‘minimal regret’ solutions which reduce CO2 at negligible cost
increases. Considering both embodied and operational CO2 emissions over the building life-cycle, our results
demonstrate that optimal emission reductions necessitate subsequent reductions in energy consumption. Low-
CO2 retrofitting strategies are typified by reducing energy demands as much as possible in order to self-consume
as much renewable energy as possible, typically by solar PV and heat pump coupled systems with grid reliance.
1. Introduction

Meeting ambitious climate goals such as 1.5◦C warming above pre-
industrial levels requires a drastic reduction of global energy demand
alongside low-carbon energy supply transformations [1] — especially
in scenarios not heavily relying on negative emission technologies [2].

∗ Corresponding author.
E-mail address: epetkov@ethz.ch (I. Petkov).

The building sector presents a critical portion as it accounts for 30%
of final energy use and 28% of energy-related CO2 emissions [3].
For the case of the European building stock, it is estimated that over
90% of existing buildings will remain standing in the required time
horizon to meet climate goals – 2050 – and therefore have to be
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retrofitted in the next decades [4]. Governments have demonstrated the
pertinence of increasing the retrofitting rate from the current <1% to
around 3%, albeit of sufficient depth [5,6]. Accelerating deep retrofits,
corresponding to energy savings of greater than 60% [7], encompasses
a combination of both Energy Efficiency (EE) measures, particularly
of the building envelope, along with Renewable Energy (RE) supply
systems.

In developing retrofitting investment strategies, building owners
must consider each building’s unique context to determine favorable
technical, economic, and organizational conditions [8]. A set of studies
examining the influence of retrofits on building sector energy demands
and emissions take a high-level perspective often employing various
scenarios of the rate at which retrofits are conducted [4]. However,
they are generally unable to capture the owners’ retrofitting investment
decision, considering the building stocks’ heterogeneous ownership
composition which predicates dissimilar retrofitting investment strate-
gies between owner types. For example, the differences in retrofitting
investment decisions between private homeowners and real estate own-
ers can vary in economic rationality based on elements such as budgets,
risks, logistics, timing, and market aspects [9,10].

An institutionalized set of real estate owners, termed Large-Scale
Investors (LSIs), account for a large share of annual building invest-
ments and stock ownership, presenting an interesting case to study the
diffusion of retrofits due to their leverage in managing investments
for large, mixed-use portfolios [9]. For the example of Switzerland,
the majority of investments in buildings can be attributed to LSIs
(total 72% of investments in 2016, split by 16% public and 56% com-
mercial [11]), albeit their smaller but significant building ownership
share (20% of residential and 10% of commercial property [11,12]).1
These professionalized owners are experiencing increasing regulatory
and market pressure to incorporate decarbonization into investment
strategies [13–16]. To do so, LSIs require adequate models to evaluate
investment strategies for each contextual building retrofitting project
over a long-term horizon in an automated and digitized manner [17].

Retrofitting investment decisions in real estate are primarily driven
by the Multi-Year Planning (MYP) process at the asset management
level to assure adequate financial performance, building quality, along
with Environmental, Social and corporate Governance (ESG) consid-
erations [15]. In this formalized process, budgeting is conducted for
all interventions, both retrofits and non-energy ‘renovations’, for each
individual asset (e.g. a single building or a group of buildings) with
a 5–10 year horizon. Generally, a long-term horizon aligned with
building component lifetimes (e.g. 30–50 years) is not considered. MYP
is conducted years before ‘bottom-up’ technical auditing and planning
is produced by architects or engineers typically 1–2 years before the
project [18], presenting an important early-stage budgeting decision for
the potential of energy efficient and renewable deep retrofits. Tradition-
ally, MYP is based on Discounted Cash Flow (DCF) models outputting
a single economic objective, for example yield, return on investment,
and building value, as the basis for the asset retrofitting strategy [19].

Owners typically rely on heuristic approaches when developing as-
set retrofitting strategies in MYP, limiting their ability to determine the
best, or optimal, investment plan depending on their objectives [20].
An additional complexity relates to including a CO2 objective or an-
other sustainability target into MYP, potentially changing the optimal
retrofit investment plan from the solely-economic focused strategies
of LSIs. In light of corporate-level emissions targets such as 80%
operational CO2 reduction by 2050, LSIs are presented with a new
challenge in aligning asset-level retrofit investment plans. To do so,
there is a need for suitable investment planning methodologies capable
of capturing the complexities of existing building retrofitting relevant
for real estate MYP.

1 Their low ownership share compared to investments is largely due to the
arge stock of single family homes. LSIs typically own large rental properties
n high-value markets.
2

1.1. Literature review

Existing approaches to evaluate the techno-economic potential of
retrofits vary on aspects such as the where — the spatial-scale of consid-
eration, how — their objectives or goals in conducting the retrofit, what
— the considered set of technologies, and when — scheduling of the
retrofits depending on the considered time-horizon. In the following,
we review the methodologies in literature which could be used to
evaluate the potential of both the demand- and supply-sides of retrofits
for existing building investment decisions.

Starting at the highest spatial-scale, a number of methodologies con-
sider techno-economic analyses of retrofits utilizing bottom-up national
building stock models (e.g. for the example of the EU [21], Switzer-
land [22], and Norway [23]) along with agent-based models [24].
Such studies provide valuable insights for urban planners and policy-
makers to determine how building stock transformations align with
long-term climate goals. While such methodologies provide a useful
high-level perspective, they lack the required granularity to evaluate
the investment decision for contextual existing building retrofitting
projects.

In the following, we focus our scope to studies in the energy domain
utilizing optimization approaches towards retrofitting evaluation. Next,
we review the stream of literature in the real estate management
domain relating to decision-making relevant for retrofit investments.

1.1.1. Optimization approaches
A technically-focused set of studies in the energy domain con-

siders the economic and/or environmental potential of retrofits for
the individual building asset scaled up to the portfolio-level, utilizing
mathematical programming approaches such as optimization as the
core methodology [25,26]. These retrofitting optimization studies can
be generally categorized as focusing on a single building with multiple
objectives [27–36], focusing on multiple buildings with a single objec-
tive [37–39], along with considering multi-building portfolios within
a multi-objective optimization framework [40–49]. Objectives (how)
are generally categorized as economic, environmental, cultural, and
social. These studies analyze a varied set of energy system and energy
efficiency technology options, such as: improving lighting, insulating
the building envelope, replacing heating distribution and generation
systems, along with utilizing RE paired with conversion technologies
such as heat pumps. However, few of the optimization model contribu-
tions listed here capture the benefits of integrating multiple conversion
and storage technologies in the energy system to satisfy the energy
demands from various retrofitting packages [32,43,50].

Decentralized multi-energy systems
Meeting such a requirement, Decentralized Multi-Energy Systems

(D-MES) integrate multiple technologies with the potential to secure
a low-carbon energy system in both existing and new buildings [51].
A D-MES design could be as simple as a natural gas boiler coupled
with a hot water storage tank, ranging to a complex design such as
an integrated energy hub including RE technologies along with battery
or hydrogen storage [52]. To fully consider D-MES optimization for
a building retrofit, it is vital to consider the entire technological and
temporal decision space relevant to the building.

Primarily, the optimization must consider demand-side measures
(most importantly — envelope retrofits) simultaneously with the design
and operation of the D-MES. The interdependent demand and supply
investment decisions present scheduling trade-offs over the building
life-cycle, for example, what is best to do – and when – about reducing
thermal demands through building envelope insulation, in parallel with
decisions regarding various options for energy supply and storage sys-
tems. For example, both Wu et al. [43] and Schütz et al. [32] presented
single-stage multi-objective Mixed Integer Linear Programming (MILP)
optimization models considering both energy systems and retrofitting

packages for residential buildings, focusing on Swiss and German
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cases respectively. While these approaches capture the interdependent
investment decision, the models are unable to answer the when question
ue to their limited temporal dimension through modeling a typical
epresentative year.

mportance of a long-term horizon
Recent contributions have shown the importance of considering the

ntire long-term time horizon of buildings’ life-cycles all at once in
he optimization [31,50,53]. Such dynamic (or multi-stage) investment
trategies involve investment decisions in multiple stages during the
uilding lifetime, allowing the owner to fully harness the value of in-
estment flexibility. Capturing the entire horizon allows for a complete
ccounting of demand and supply-side investment trade-offs, along
ith future cost reductions or technological improvements over time.
or example, dynamic building D-MES and envelope retrofit investment
trategies were recently explored in the novel MILP optimization formu-
ation of the MANGO model in Mavromatidis & Petkov [50]. However,
ANGO did not adequately represent the retrofitting investment de-

ision, instead utilizing various scenarios. In a recent work, Richarz
t al. [31] proposed a MILP optimization methodology for the schedul-
ng of building modernization measures considering a D-MES for a non-
esidential building. While considering the interdependence of demand-
nd supply-side investments, this study is limited in the consideration
f future technological improvements and embodied emissions over
he planning horizon which could impact scheduling trade-offs. Nev-
rtheless, the aforementioned methodologies for evaluating retrofits in
he energy domain have limited consideration for real estate owners’
ecision-making relevant for MYP.

.1.2. Real estate decision-making approaches
Real estate LSIs’ retrofit decision-making in MYP has a scope beyond

ust energy-relevant investments [8,19]. Aspects such as non-energy
echnologies (e.g. interior renovations), cultural heritage, management
ogistics (e.g. manpower), along with the possible rental revenues and
uilding values after the retrofit [54–57] are also prioritized for each
ndividual asset up to the portfolio-level [58]. As such, another stream
f literature has focused on decision-support models relevant for real
state investment planning of for existing buildings. These studies are
ategorized into six areas for the renovation process: setting sustainabil-
ty goals, weighting criteria, building diagnosis, generation of design
lternatives, estimation of performance, and the evaluation of design
lternatives [20,59–61].

Examples of retrofitting decision-support models, such as Gade
t al. [62], developed a tool for managers to assign weights to reno-
ated components, followed by a determination of the most profitable
enovations for portfolios. Serrano-Jiménez et al. [63] presented a
ulti-criteria decision support method towards selecting feasible and

ustainable housing renovation strategies for two case studies in Swe-
en. Hirsch et al. [64] developed a framework for decarbonization
isks for commercial real estate. Finally, Ayoub et al. [37] developed
cience Based Targets for decarbonized investment strategies for UK
upermarkets.

Notwithstanding, these decision-support models also present a lim-
ted consideration for MYP of existing real estate assets. Primarily, this
elates to the latter steps of generating, estimating the performance
f, and evaluating retrofit design alternatives on for multiple buildings
t once. Here, the merits of optimization approaches provide own-
rs the ability to evaluate and choose among various ‘ideal’ retrofit
hoices and schedules, considering the interactions of technologies, on
multi-objective basis over a long-term horizon [65–67].

.2. This paper

We present an opportunity to bridge the gap between the energy
ptimization and real estate management domains to provide a novel
ethodology for MYP relevant for investments in existing building
3

retrofits. Taking relevant aspects from both approaches would allow
for adequate techno-economic analysis of the retrofit’s – where, how,
hat, when – questions relevant for both energy engineers and building
wners. Such a model must consider:

• Optimal solutions for when to initiate a retrofit and what retrofit
to do. This is particularly relevant for mismatched component life-
cycles which naturally stagger retrofit interventions, presenting a
question for optimal retrofit scheduling of a particular component
or whether to conduct a deep retrofit.

• All relevant technologies and components – envelope retrofits,
energy system, and non-energy – while optimizing the building
retrofitting project on both sides of the energy balance (demand
and supply).

• A life-cycle costing and (embodied) emissions perspective for
associated technologies.

• A long-term time horizon in order to capture interdependencies
between technologies and the value of future options to defer,
expand, or extend the life of each technology.

• Real-estate relevant aspects as a basis of which to choose from
various multi-objective asset investment strategies (how). This
primarily relates to the impact on rental revenues upon investing
in value-added technologies in a building retrofit, with further
consideration of how the building value is affected by cost vs.
CO2 trade-offs.

• Aspects related to scalability for considering multiple contextual
asset retrofitting strategies (where).

With this paper, our objective is to address these methodological
nd knowledge gaps with the introduction of the novel MANGOret op-
imization framework. The framework applies the above considerations
o give real estate owners the ability to weigh the optimal cost vs.
O2 trade-offs over the entire long-term multi-objective decision-space

or early-stage budgeting before more contextual technical planning
s available. To reduce the planning time in creating asset retrofitting
trategies, the framework includes a series of automated data retrieval
nd processing steps.

As a core part of the optimization framework, the MANGOret opti-
ization model builds upon the MANGO (Multi-stAge eNerGy Optimiza-

ion) model [50]. In its original MILP formulation, MANGO addressed
ethodological gaps for the case of multi-stage D-MES investment plan-
ing by incorporating a multi-year horizon, inherently demonstrating
he value of investment flexibility and dynamic multi-stage D-MES
esign. The model was applied to a case of multiple interconnected D-
ES district configurations. As typical for optimization studies at the

istrict-scale, the district’s energy demands were considered as nodes
hrough aggregation of many buildings’ demands [68]. However, the
ANGO model is not able to consider the techno-economic retrofitting

nvestment decision.
While our approaches in considering energy systems and envelope

etrofits can be compared to other MILP models, such as Refs. [31,43],
he main novelties of the MANGOret optimization framework are as
ollows:

• A scalable framework to optimize retrofitting investment strate-
gies of any existing real estate asset considering their contextual
nature, demonstrated for a case of several buildings in Switzer-
land from an LSI portfolio.

• From the energy perspective, the MANGOret model is able to gen-
erate optimal multi-stage design solutions and operating strate-
gies for building-level D-MES and envelope retrofits according
to economic and environmental objectives over the entire time
horizon to 2050, considering existing building components and
technologies.
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Fig. 1. MANGOret optimization framework considering three sections — Input data from the building owner (step 1), Automated data retrieval and processing (steps 2–4), which
supply the necessary time-series and parametric input data to the MANGOret optimization model.
• From the real estate management perspective, the MANGOret
model includes critical elements such as the possible rental in-
come after the retrofit (according to legal mandates) in order to
calculate the building value. The optimization is able to be scaled
up for many contextual assets at once to automate investment
planning.

This paper is structured as follows: Section 2 describes the main fea-
tures of the MANGOret optimization framework. Section 3 introduces
the illustrative case study that is used to demonstrate the value of the
model. Section 4 presents the results of the paper along with model
discussion. Finally, concluding remarks are given in Section 5.

2. MANGOret: A model framework for the optimal, long-term in-
vestment planning of building retrofits

Here we describe the key characteristics of the MANGOret opti-
mization framework, along with the mathematical formulation of the
MANGOret optimization model. Due to the significant amount of diverse
input data required for the MANGOret model, it was necessary to
create a framework which could adequately generate such data for
any building in a scalable manner. In this paper, we demonstrate the
MANGOret framework for the case of several buildings from an LSI
portfolio in Switzerland, but nonetheless the approach can be replicated
in other countries.

The MANGOret framework is depicted in the Fig. 1 workflow. The
preliminary steps 1–4 relate to retrieving and processing the neces-
sary building input data. In Step 1 (Input data from the building
owner), we gather a small set of relevant data which is necessary to
conduct both steps 2 and 3. In Step 2 (Existing component condition
degradation), we determine a range of years for when various compo-
nents must first be retrofitted (‘necessity intervals’) via the Schroeder
component condition degradation method (further described in Sec-
tion 2.2). In Step 3 (Address to archetype matching), we develop an
archetypal energy demand database (further described in Section 2.3)
4

to retrieve the relevant retrofitting packages’ energy demands and
statistical building data from government databases for any building
address. In this database, all buildings contained within the building
registry are assigned an archetype with simulated energy demand
profiles for different retrofitting packages and climate scenarios. Since
we take a multi-year perspective for the holistic building D-MES and
envelope retrofit investment strategy, we utilize typical days to re-
duce computational complexity. In Step 4 (Clustering time-series
parameters), we conduct a peak and typical days k-medoids clustering
of the time-series parameters (solar irradiation and energy demands).
Combined with the techno-economic database shown in Appendix B,
these automated data retrieval and processing steps form the necessary
input data for the MANGOret optimization model.

Represented in the right side of Fig. 1, the MANGOret model con-
ducts a multi-stage and multi-objective optimization (cost vs. CO2),
and further DCF valuation based on rental income, to output a long-
term asset retrofitting strategy. In the following, we first outline the
MANGOret optimization model formulation and subsequently discuss
the automated data retrieval and processing steps.

2.1. Optimization model formulation

The MANGOret model considers a portfolio of energy technologies
and retrofitting packages shown in the Fig. 2 superstructure representa-
tion. The presented technologies and retrofitting packages are chosen as
part of the illustrative case of the MANGOret optimization framework,
with other technologies and retrofitting possibilities able to be added.

MANGOret builds upon the MANGO model [50], utilizing the lat-
ter’s capabilities for the long-term, multi-stage design and operation of
D-MES. The MANGOret model adds a complete consideration of the
retrofitting investment decision, with the main additions categorized
as:

• Consideration of which thermal envelope retrofitting package,
and thus relevant demand profile, to choose among several com-

ponents options (Roof, Facade, Window) and their combinations,
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Fig. 2. Superstructure representation of both the building-level D-MES (top) and retrofitting (bottom) aspects of the MANGOret model. The top of the figure presents the candidate
energy conversion and storage technologies which supply energy demands for the building. The bottom of the figure presents the various considered retrofitting aspects – components,
depths, technologies – which combine to form a chosen retrofitting package with their simulated demands. The model simultaneously considers the energy systems and retrofitting
sections, with the colorful circle representing the balance of demand and supply (see Eq. (3)).
taken from an archetypal energy demand database (see Sec-
tion 2.3). Further, we consider various retrofitting depths (Mini-
mum vs. Target) along with technology options for each compo-
nent such as insulation and Window types.

• Mathematical formulation of real estate considerations regarding
a value-added rental price formula to output potential revenues
and building value. The legally-mandated rental price constraints
are the main drivers of real estate retrofitting budgets [15].

• Investments in non-energy miscellaneous technologies (kitchens,
bathrooms, pipes) which constitute a significant part of retrofit
budgets. These are not shown in Fig. 2 as they are not energy
considerations.

• Consideration of embodied emissions for all technologies and
components (energy and non-energy).

• Incorporation of a range of years for when it is first necessary to
initiate a retrofit for all components according to the Schroeder
probabilistic scheduling method (based on component condition).

• Incorporation of existing conversion and storage technology in-
stallations.
5

• Incorporation of model periods to represent a number of years
in order to reduce computational complexity for the operational
aspects of the computation.

Given the candidate technologies, energy carriers, retrofitting pack-
ages, and objective functions to be optimized, MANGOret simultane-
ously takes design decisions regarding what, where, and when actions for
the building D-MES and envelope retrofits. The complete model formu-
lation and detailed explanation of all parameters, variables, constraints
and objective functions provided in Appendix A.

The model is formulated as a MILP in Python using the Pyomo
open-source optimization modeling language [69,70], solved in this
paper with the state-of-the-art solver Gurobi [71] on high performance
computing clusters at ETH Zurich. We describe the model formulation
in the following.

2.1.1. Sets
Table 1 presents a summary and description of all model sets

used in MANGOret. From the MANGO formulation, we have added
relevant sets related to retrofitting along with (i) the addition of model
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Table 1
MANGOret model sets and indices. While energy system locations are maintained from the original
formulation in MANGO, they are not used as always one building site is considered at a time in developing
building-specific retrofitting strategies.
Set Index Description

 𝑝 Periods considered in the model horizon
 𝑑 Set of representative days considered for each period
 𝑡 Time steps considered for each day
𝑐𝑠 ⊆  𝑤𝑐𝑠 Investment stages for conversion and storage technologies
𝑓 ⊆  𝑤𝑓 Investment stages for retrofitting components

 𝑙 Energy system locations.

 𝑒𝑐 All energy carriers in the energy system
𝑖 ⊆  𝑒𝑐𝑖 Energy carriers that can be imported by the energy system
𝑒 ⊆  𝑒𝑐𝑒 Energy carriers that can be exported from the energy system
𝑑 ⊆  𝑒𝑐𝑑 Energy carriers for which demands are established

 𝑓 Retrofitting components
 𝑗 Retrofitting depths
 𝑔 Retrofitting technologies
 ℎ Retrofitting technology demand package
 𝑛 Miscellaneous technologies
 𝑐 Energy conversion technologies
𝑒𝑥𝑡 ⊆  𝑐𝑒𝑥𝑡 Existing energy conversion technologies
𝑠𝑜𝑙 ⊆  𝑐𝑠𝑜𝑙 Solar energy conversion technologies
𝑑 ⊆  𝑐𝑑 Dispatchable energy conversion technologies
𝑑ℎ ⊆ 𝑑 𝑐𝑑ℎ Dispatchable energy conversion technologies which mainly supply heating
𝑑𝑐 ⊆ 𝑑 𝑐𝑑𝑐 Dispatchable energy conversion technologies which mainly supply cooling
 𝑠 Energy storage technologies
𝑒𝑥𝑡 ⊆  𝑠𝑒𝑥𝑡 Existing energy storage technologies
i

a
c
t
s
i
w

2

s
A
d
t
t
s
f

periods as a further delineation of the temporal resolution, and (ii) the
separation of investment stages into the energy system (conversion and
storage) and retrofitting technologies.

We separate multiple sets for individual thermal envelope com-
ponents () – Roof, Facade, Window – and subsequently a set to
ncorporate a depth element ( ) — e.g. 𝑅𝑜𝑜𝑓𝑀𝑖𝑛, 𝑅𝑜𝑜𝑓𝑇 𝑎𝑟, 𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛,
𝑎𝑐𝑎𝑑𝑒𝑇 𝑎𝑟, 𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛, and 𝑊 𝑖𝑛𝑑𝑜𝑤𝑇 𝑎𝑟 for the case presented here.
hese two depths are modeled as the minimum intervention based
n the Building Energy Code (BEC) and the target intervention based
n a green building label, originally described in Murray et al. [48].
he retrofitting technologies () are represented as different options,
or the example of Facade and Roof insulation materials: oil-based
xtruded and expanded polystyrene (XPS and EPS, respectively) along
ith mineral stone wool, and for Windows: plastic and wood-aluminum

rames.
The retrofitting depths are linked with their combinations in () –

ermed retrofitting package demands – to reference the demand profiles
rom the archetypal energy demand database. For example, addition-
lly with individual technology profiles (e.g. 𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛, 𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛,
nd 𝑅𝑜𝑜𝑓𝑀𝑖𝑛), we add the combinations 𝑊 𝑖𝑛𝑑𝑜𝑤 − 𝐹𝑎𝑐𝑎𝑑𝑒 and the

𝐹𝑢𝑙𝑙 retrofit considering all three, with 𝑀𝑖𝑛 and 𝑇 𝑎𝑟 depths. To re-
uce complexity, we have only simulated the aforementioned relevant
ombinations in the archetypal demand database, although MANGOret
ould utilize any number of retrofitting components, depths, tech-
ologies, and package demands. The various retrofitting technology
ptions’ parameters (costs and embodied emissions) are linked to the
equired technology-specific insulation thicknesses (Roof and Facade)
r Window panes necessary to meet the simulated demands at the
espective depths.

Further, we include a sets of existing technologies to account for
omponents already installed in the building, with their respective
emaining lifetime. The years in which existing conversion technologies
etire (𝑐𝑙𝑐 + 1) are added to the set of investment stages for conversion
nd storage technologies (𝑐𝑠) in order to allow for further technology
nstallations in those stages. This is supplemented by miscellaneous
echnologies such as kitchens, bathrooms, and pipes,  , which do not

impact the energy or envelope retrofitting aspects of the building.
Multi-year model periods () are added in order reduce the model’s

emporal resolution. While in this paper, the horizon of the model is
lways 30 calendar years () representing 2021–2050, the addition
6

of periods allows for the bundling of years to reduce computational
complexity. For example, if optimizing for 10 periods over 30 years, the
real years (𝑦𝑝) 1–3 would be represented by period 1, while real years
4–6 would be represented by period 2, and so on. These relationships
between periods 𝑝, years 𝑦, days 𝑑, and hourly time steps 𝑡 are shown
n Fig. 3.

For parameter values which correspond to operational aspects over
n entire period, such as import/export prices and energy carrier
arbon factors, the average of all values corresponding to the period is
aken. For parameter values which correspond to an investment stage,
uch as technology costs, efficiencies, etc., values from the first year
n each period are taken (e.g. in the above example, costs for period 2
ould be taken from real year 4).

.1.2. Parameters
The MANGOret model requires various parameters to perform a

imultaneous optimization of building D-MES and envelope retrofits.
ll model parameters, their mathematical notation and definition are
iscussed in more detail in Appendix A.2 and are supplemented by
he techno-economic database in Appendix B. All parameters from
he MANGO model which are not listed pertaining to conversion and
torage technologies still apply. Taken from steps 1–4 of the MANGOret
ramework, the main parameter categories include:

• Real estate-relevant parameters connected to the building-specific
limitations or characteristics, such as floor area, window area,
facade area, roof area along with availability of roof area for
solar technology installations. These parameters come from two
sources — from building owners and government building statis-
tical databases.

• Energy demand profiles per retrofitting package (ℎ) that accu-
rately reflect short-term variability (hourly basis) and long-term
patterns for the entire 30-year model horizon. Profiles are taken
from the developed archetypal energy demand database (see
Section 2.3).

• Renewable energy availability profiles (e.g. solar irradiation)
that accurately reflect short-term variability and long-term pat-
terns. Solar irradiance data for each building location are taken
from the Renewables.ninja API which connects to the MERRA-2
database [72–74].
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Fig. 3. Temporal horizon representation in the MANGOret model using a sequence of periods, years, days, and time steps. Example shown with each period represented by 3 years.
• Economic parameters, such as the evolution of energy carrier
prices, technology costs, maintenance costs, along with base-
rents, etc.

• Technical parameters pertaining to the operation and the per-
formance of technologies, such as conversion efficiencies and
lifetimes, etc. depending on the technology.

• Emission factors for energy carriers and linearly scaled parame-
ters for embodied emissions of all considered technologies.

• Ranges of years for which retrofitting components along with
existing technologies must first be retrofitted. These are taken
from the output of the Schroeder method (see Section 2.2).

.1.3. Decision variables
The main MANGOret decision variables pertain to the design and

peration of building D-MES and envelope retrofits over the modeled
ime horizon. Here, we discuss the decision variables most important
or MANGOret with further detail provided in Appendix A.3 and Ta-
le A.6. All decision variables from the MANGO model which are not
isted pertaining to energy system operation and design still apply.

The model considers all at once all relevant existing building in-
estment decisions related to energy retrofits along with ‘renovations’
f miscellaneous non-energy components. The retrofitting function-
lity is primarily achieved through a series of binary decision vari-
bles (explained further in Appendix A.5). The utilization of these
inary variables – namely 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤, 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒, 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚, and 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟 –
resents a novel approach for envelope retrofit optimization. The main
etrofitting-relevant decision variables are:

• 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

: Binary variable denoting the installation of retrofitting
technology 𝑔, at location 𝑙, in investment stage 𝑤𝑓

• 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 : Binary variable denoting that retrofitting technology 𝑔,

at location 𝑙, is active in period 𝑝
• 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚

ℎ,𝑙,𝑝 : Binary variable representing the active retrofitting pack-
age demand ℎ which the model takes as demand input, at location
𝑙, in period 𝑝

• 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟
𝑙,𝑤𝑓

: Binary variable representing the occurrence of the
retrofitting package at location 𝑙, in investment stage 𝑤𝑓

• 𝑌
𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓
𝑙,𝑤𝑓

: Binary variable representing the occurrence of the
retrofitting package at location 𝑙, in investment stage 𝑤𝑓 relevant
for project costs such as scaffolding

• 𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

: Binary variable denoting the installation of new capacity

of miscellaneous technology 𝑛, at location 𝑙, in investment stage
𝑤𝑓

The main real estate-relevant decision variables are:
7

• 𝑟𝑒𝑛𝑡𝑙,𝑝 : Rent per period for location 𝑙, in period 𝑝
• 𝑉 𝐴𝐼𝑙,𝑝 : Value-added investment portion per period supplemented
to the rent for location 𝑙, in period 𝑝

• 𝑇 𝑣𝑎𝑙𝑢𝑒 : Total lifetime value of building (location 𝑙), defined as
the sum of discounted rental revenue over the horizon, minus dis-
counted total cost of energy systems and retrofits (𝑇 𝑐𝑜𝑠𝑡 objective,
see Section 2.1.4)

The main energy system-relevant decision variables are:

• 𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

: New capacity of conversion technology 𝑐, installed
at location 𝑙, in investment stage 𝑤𝑐𝑠

• 𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

: New capacity of storage technology 𝑠, installed at

location 𝑙, in investment stage 𝑤𝑐𝑠
• 𝑌 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤𝑐𝑠
: Binary variable denoting the installation of new capacity

of conversion technology 𝑐, at location 𝑙, in investment stage 𝑤𝑐𝑠
• 𝑌 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤𝑐𝑠
: Binary variable denoting the installation of new capacity

of storage technology 𝑠, at location 𝑙, in investment stage 𝑤𝑐𝑠

The variables in the model pertaining to D-MES operating aspects
are indexed per period 𝑝, day 𝑑, and hour 𝑡 in addition to their specific
indices:

• 𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

: Import of energy carrier 𝑒𝑐𝑖, at energy system location
𝑙

• 𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

: Input energy to conversion technology 𝑐, installed at
energy system location 𝑙, in investment stage 𝑤𝑐𝑠

2

• 𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡

: Exported energy of carrier 𝑒𝑐𝑒, at energy system loca-
tion 𝑙

2.1.4. Objective functions
We utilize the two most commonly considered objectives in op-

timization — minimization of the discounted total investment costs
(𝑇 𝑐𝑜𝑠𝑡) and/or CO2 emissions (𝑇 𝐶𝑂2 ) over the multi-year horizon. In the
following, we describe the updated retrofitting-relevant 𝑇 𝑐𝑜𝑠𝑡 and 𝑇 𝐶𝑂2

objective functions from their original formulations in MANGO [50].
Total cost 𝑇 𝑐𝑜𝑠𝑡 is defined in Eq. (1), composed of terms that repre-

sent the total investment expenditure, the total operating expenditure
and the salvage value of the building D-MES and envelope retrofit
at the end of the model horizon. Each of these terms encompasses

2 The definition domain for the variables 𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

includes the conditions:
𝑦𝑝 ≥ 𝑤𝑐𝑠 and 𝑦𝑝 ≤ 𝑤𝑐𝑠+𝑐𝑙𝑐−1, which defines the operating period of conversion
technology 𝑐, with 𝑐𝑙𝑐 being the lifetime of the technology in real years 𝑦𝑝. This
ensures that a technology cannot operate in the years before the investment
stage when the generation technology is installed and also that it cannot
operate beyond its lifetime 𝑐𝑙𝑐 . For instance, if a technology is installed in
stage 𝑤𝑐𝑠 = 1 and has a lifetime of 15 years, it will be operational between

𝑦𝑝 ≥ 1 and 𝑦𝑝 ≤ 15.
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conversion, storage, retrofitting, and miscellaneous technologies. The
exact mathematical definitions of the individual terms in Eq. (1) are
given in Appendix A.4.

min 𝑇 𝑐𝑜𝑠𝑡 =
∑

𝑙,𝑤𝑐𝑠

(

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤𝑐𝑠

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Energy system investment expenditure

+
∑

𝑙,𝑤𝑓

(

𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

+ 𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Retrofitting investment expenditure

+
∑

𝑙,𝑝

(

𝐶𝐼𝑀𝑃
𝑙,𝑝 + 𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑝 − 𝑅𝐸𝑋𝑃
𝑙,𝑝

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Operating expenditure

−
∑

𝑙
𝑅𝑆𝐿𝑉 𝐺
𝑙

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Salvage value

(1)

Investment expenditure is composed of the over all energy system
locations 𝑙 and investment stages 𝑤𝑐𝑠 (for energy systems) & and 𝑤𝑓
(for retrofits) of the individual expenditures for energy conversion and
storage technologies, 𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻

𝑙,𝑤𝑐𝑠
, retrofitting technologies, 𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇

𝑙,𝑤𝑓
,

and miscellaneous technologies, 𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

. The operating expendi-
ture is defined as the sum over all energy system locations 𝑙 and periods
𝑝 of the individual expenditure due to energy carrier imports, 𝐶𝐼𝑀𝑃

𝑙,𝑝 ,
technology maintenance, 𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑝 , and, the revenue due to energy
arrier exports, 𝑅𝐸𝑋𝑃

𝑙,𝑝 .
The salvage value is defined as the sum of the individual salvage

alue terms (𝑅𝑆𝐿𝑉 𝐺
𝑙 ), representing the remaining value that is retained

y technologies at location 𝑙 that have not reached the end of their
ifetime at the end of the model horizon. The salvage value is credited
ack to the total system cost to offset part of the investment costs in
echnologies that have been utilized only for a fraction of their lifetime
n the model. Hence, the use of these salvage values can mitigate the
istorting end-of-horizon effects [50]. The amount of salvage value
epends on the investment stage a technology was installed, its oper-
tional lifetime, and its initial investment cost (see exact definition in
q. (A.14)). Technologies reaching the end of their lifetime during the
odeled horizon are assumed to have no salvage value.

All terms of Eq. (1) are discounted to present values with the
uilding-specific discount rate 𝑟𝑙 as this can vary between real estate
arkets. All investment expenditures are assumed to occur at the

eginning of the year corresponding to each investment stage 𝑤𝑐𝑠 or
𝑓 , operating expenditures discounted according to the calendar year

n which they occur, while the salvage value is paid back after the end
f the model horizon.

The second objective function considered in the model relate to the
otal CO2 emissions of the building’s energy system and technology
mbodied emissions, is expressed as the sum over all energy system
ocations 𝑙 and periods 𝑝 of individual emission terms, 𝐸𝐶𝑂2

𝑙,𝑝 , as shown
n Eq. (2):

in 𝑇 𝐶𝑂2 =
∑

𝑙,𝑝
𝐸𝑜𝑝𝑒𝑟𝐶𝑂2
𝑙,𝑝

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Operational and indirect emissions

+
∑

𝑙,𝑤𝑐𝑠

𝐸𝑒𝑚𝑏𝐶𝑂2 ,𝑇𝐸𝐶𝐻
𝑙,𝑤𝑐𝑠

+
∑

𝑙,𝑤𝑓

(

𝐸𝑒𝑚𝑏𝐶𝑂2 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

+ 𝐸𝑒𝑚𝑏𝐶𝑂2 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Technology embodied emissions

(2)

The 𝐸𝑜𝑝𝑒𝑟𝐶𝑂2
𝑙,𝑝 term includes only operational CO2 emissions and,

more specifically, direct emissions due to local energy carrier utilization
(e.g. fossil fuel combustion) and indirect emissions due to energy
imports (e.g. grid electricity imports). The 𝐸𝑒𝑚𝑏𝐶𝑂2

𝑙,𝑝 term includes the
linear, capacity- or size-scaled embodied CO2eq emissions of conver-
sion, storage, retrofitting, and miscellaneous technologies. The exact
mathematical definitions for all components of 𝐸𝑜𝑝𝑒𝑟𝐶𝑂2

𝑙,𝑝 and 𝐸𝑒𝑚𝑏𝐶𝑂2
𝑙,𝑝
8

terms are given in Appendix A.4.
MANGOret can be utilized in both individual building along with
multi-building site configurations. In the above objective function for-
mulas, we present the cost and emissions aspects as the summation
over all building locations 𝑙. This demonstrates a strategy to consider
an optimal retrofitting investment strategy for a portfolio of buildings
without any linking constraints between buildings, such as budgets,
manpower, etc. However, in this paper we consider one building at
a time to provide building-specific retrofitting strategies. Considering
several buildings at once would increase computational effort largely
due to the large number of variables from all technology choices
which make it difficult to solve multiple buildings in one optimization
problem.

As in the original MANGO formulation, MANGOret can be used
in both single- and multi-objective optimization modes considering all
cost and CO2 objectives. We solve the multi-objective problem using the
augmented 𝜖-constraint method from Ref. [75], as it has been shown
to avoid the production of weakly Pareto optimal solutions.

2.1.5. Constraints
In order to create feasible asset retrofitting strategies in an opti-

mization model, it is imperative to formulate constraints that define
balances, limitations, bounds, or minimum requirements involving the
model’s decision variables. The addition of retrofitting and real-estate
aspects present a novelty for optimization models, constraining in a
way that would achieve a long-term investment strategy considering
the simultaneous design of building D-MES and envelope retrofits. All
energy-relevant constraints from the original MANGO formulation are
still utilized. The main constraints in the MANGOret model relate to:

• Energy balances for conversion and storage technologies consid-
ering the chosen retrofit package’s energy demands.

• Retrofitting-relevant technology installation and sizing
constraints assuring the consideration of their investment deci-
sions over the time horizon.

• Legally mandated rental constraints including the main rent for-
mula calculation considering component pass-on rates along with
linear parameters such as rent escalation and structural vacancy.

Retrofitting energy balance
The overall energy balance constraint is shown in Eq. (3). In broad

terms, it states that the end-user energy demands, 𝑑𝑒𝑚𝑒𝑐𝑑 ,ℎ,𝑙,𝑝,𝑑,𝑡, at
location 𝑙, for energy carrier 𝑒𝑐𝑑 , must be balanced by energy imports,
conversion, storage, and exports for every period 𝑝, day 𝑑 and time
step 𝑡 in the model horizon. Similar to Refs. [31,43], a binary variable
𝑌 𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝 is used to select the active retrofitting package which the model

takes as demand input.
∑

ℎ
𝑑𝑒𝑚𝑒𝑐𝑑 ,ℎ,𝑙,𝑝,𝑑,𝑡 ⋅ 𝑌

𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Retrofitting package demand

= 𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

⏟⏞⏟⏞⏟
Import

+
∑

𝑐,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

(

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

⋅ 𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤𝑐𝑠
⋅ 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤𝑐𝑠 ,𝑝

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conversion technologies

+
∑

𝑠,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑠𝑙𝑠−1

[

𝑠𝑡𝑐𝑠,𝑒𝑐 ⋅ (𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

−𝑄𝑐ℎ
𝑠,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Storage technologies

− 𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡

⏟⏞⏟⏞⏟
Export

∀ 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑝 ∈  , 𝑑 ∈ , 𝑡 ∈ 

(3)

Retrofitting-relevant constraints
There are a series of constraints related to the retrofitting-

functionality of the MANGOret model. These constraints rely on a num-

ber of binary variables. In the following, we present the most important
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constraints to explain each binary definition with one example for
continuity.

The purpose of Eqs. (4) to (11) is to constrain the model to properly
consider retrofitting through a series of binary variables — namely
𝑌 𝑟𝑒𝑡𝑛𝑒𝑤, 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒, 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚, and 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟. The model’s optimal retrofitting
decision begins with 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤, which denotes the installation of a new
capacity of a retrofitting technology (𝑔) with an associated depth (𝑗)
related to the retrofitting component (𝑓 ). For example, the model could
decide to retrofit (thus, 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤 = 1 in that period) the Facade and Win-
dow components in period 1 with retrofitting depths and technologies
𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛 and 𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛𝑋𝑃𝑆 , 𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛 and 𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛𝑊 𝑜𝑜𝑑𝐴𝑙, re-
spectively. This is followed by the Roof component in period 3 with
depth 𝑅𝑜𝑜𝑓𝑀𝑖𝑛 and technology 𝑅𝑜𝑜𝑓𝑀𝑖𝑛𝑋𝑃𝑆 .

Eq. (4) tracks the new installed retrofitting technology 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤 to
keep the correct retrofitting technology active with 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒. In the
previous example, both 𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛𝑋𝑃𝑆 , and 𝑊 𝑖𝑛𝑑𝑜𝑤𝑀𝑖𝑛𝑊 𝑜𝑜𝑑𝐴𝑙 would
have 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = 1 in all model periods while 𝑅𝑜𝑜𝑓𝑀𝑖𝑛𝑋𝑃𝑆 would have
𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = 1 from period 3 onwards.

𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 =

∑

𝑤𝑓
𝑤𝑓 ≤𝑝

𝑤𝑓 ≥𝑝−𝑔𝑙𝑔+1

𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

,

∀𝑔 ∈ , 𝑙 ∈ , 𝑝 ∈ 

(4)

Eq. (5) mandates that a retrofitting technology must be active ( = 1)
in any given year within the ‘necessity interval’ parameter range output
from the Schroeder method (see Section 2.2). We utilize binary matrices
to match retrofitting components (𝑓 ) to retrofitting depths (𝑗) with the
binary matrix 𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 , and further to retrofitting technologies (𝑔)
with the binary matrix 𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗 . A similar formulation is taken for
miscellaneous technologies.

∑

𝑗,𝑔,𝑝
𝑝≥𝑖𝑛𝑡𝑚𝑖𝑛𝑓 ,𝑝
𝑝≤𝑖𝑛𝑡𝑚𝑎𝑥𝑓 ,𝑝
𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 =1
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 ≥ 1,

∀ 𝑓 ∈  , 𝑙 ∈ 

(5)

Eq. (6) assures that the active retrofitting technology 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒 is
matched to the relevant retrofitting packages’ demands 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚 using
the binary matrix 𝑚𝑎𝑝𝑑𝑒𝑚𝑔,ℎ. In practical terms, this is relevant for
combining multiple individual retrofits to use the relevant combined
retrofitting package demand. In the above example, this would mean
the model utilizes the 𝑊 𝑖𝑛𝑑𝑜𝑤 − 𝐹𝑎𝑐𝑎𝑑𝑒𝑀𝑖𝑛 package from periods
1 through 3, and then upon the installation of a technology with
depth 𝑅𝑜𝑜𝑓𝑀𝑖𝑛 (in this case, 𝑅𝑜𝑜𝑓𝑀𝑖𝑛𝑋𝑃𝑆 ) in period 3, switching to the
𝐹𝑢𝑙𝑙𝑀𝑖𝑛 package with the associated technologies. More information on
retrofitting package demands is provided in Section 2.3.

∑

𝑔
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 =

∑

𝑔,ℎ
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1
𝑚𝑎𝑝𝑑𝑒𝑚𝑔,ℎ=1

𝑌 𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝 ,

∀ 𝑗 ∈  , 𝑙 ∈ , 𝑝 ∈ 

(6)

Eq. (7) forces the model’s consideration of one retrofitting packages’
demand profile 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚 per period. Further, Eq. (8) forces the model’s
consideration of a maximum of one 𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒 per retrofitting depth (𝑗)
per period.
∑

ℎ
𝑌 𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝 = 1,

∀ 𝑙 ∈ , 𝑝 ∈ 
(7)

∑

𝑔,
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 ≤ 1,

∀ 𝑗 ∈  , 𝑙 ∈ , 𝑝 ∈ 

(8)

The following two retrofits occurrence constraints Eqs. (9) and (10)
9

track generally when a new retrofit occurs. Simply put, whenever
there is any new retrofit activity (𝑌 𝑟𝑒𝑡𝑛𝑒𝑤 = 1), then 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟 = 1 in
order to trigger a switch in the retrofit package demand. Eq. (11)
expresses 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓 as a binary variable used to track when a certain
retrofit activity is triggered to apply a fixed retrofitting project cost for
scaffolding which is signified for Facade and Roof components. From
the above example, both 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟 and 𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓 would equal 1 in
periods 1 and 3.

𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟
𝑙,𝑤𝑓

≤
∑

𝑔
𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

,

∀ 𝑙 ∈ , 𝑤𝑓 ∈ 
(9)

𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟
𝑙,𝑤𝑓

≥ (1∕||) ⋅
∑

𝑔
𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

,

∀ 𝑙 ∈ , 𝑤𝑓 ∈ 
(10)

𝑌
𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓
𝑙,𝑤𝑓

≥ (1∕|𝑠𝑐𝑎𝑓𝑓 |) ⋅
∑

𝑔
𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

,

∀ 𝑙 ∈ , 𝑤𝑓 ∈ 
(11)

We further constrain both the number and/or capacity sizing of con-
version, storage, and miscellaneous technologies to prevent the model
from over-installing technologies. Appendix A.5 details the remaining
constraints.
Rent constraints

We capture the legally-mandated aspects of rent calculation in
Eqs. (12) and (13), allowing the model to determine the rent based
on the chosen optimal investment strategy including all technologies’
respective pass-on rates. The rent formula in Eq. (12) is based on pre-
vious research on real estate decision-making in Europe, signifying the
justified rent increases from value-added technology investments [15].
The formula is split based on consideration of period 1 and all periods
thereafter. For period 1, Eq. (12) states that the rent is equal to the
base rent of the building at location 𝑙 plus any value-added investments
made in that period, outputting the period 1 rent (𝑟𝑒𝑛𝑡𝑙,𝑝=1). In further
periods (𝑟𝑒𝑛𝑡𝑙,𝑝>1), the model is constrained that any rent increase must
be justified by further investments or otherwise through the linear
parameters. The Value-Added Investment (𝑉 𝐴𝐼𝑙,𝑝) portion is part of the
rental formulas formulated in Eq. (13).

We consider linear real estate market effects by introducing prospec-
tive rental escalation (𝑟𝑒𝑛𝑡𝑒𝑠𝑐𝑎𝑙𝑙,𝑝) and structural vacancy (𝑠𝑡𝑟𝑢𝑐𝑡𝑣𝑎𝑐𝑎𝑙,𝑝)
arameters depending on the market attractiveness of each individ-
al building at location 𝑙. Other than for these two parameters, we
o not capture rental increases from any other source such as from
acroeconomic factors. The total building value, presented in Eq. (15),

s calculated using a DCF methodology [9] commonly used in real
state. The value is calculated simply as the discounted sum of the total
ental revenue minus the discounted sum total investment costs, over
ll periods.

We constrain the rent to 90% of the market quantile in each ZIP
ode with the following constraint in Eq. (14).

𝑟𝑒𝑛𝑡𝑙,𝑝
⏟⏟⏟

ent in period 𝑝

= 𝑉 𝐴𝐼𝑙,𝑝 ⋅ (1 + 𝑟𝑒𝑛𝑡𝑒𝑠𝑐𝑎𝑙𝑙,𝑝)
|𝑌𝑝|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Rent escalation

⋅ (1 − 𝑠𝑡𝑟𝑢𝑐𝑡𝑣𝑎𝑐𝑎𝑙,𝑝)
|𝑌𝑝|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Structural vacancy

⋅
𝑦𝑝+|𝑌𝑝|−1

∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Real year discounting

+

⎧

⎪

⎪

⎨

⎪

⎪

(𝑏𝑎𝑠𝑒𝑟𝑒𝑛𝑡𝑙 ⋅ 𝑓𝑎𝑙,𝑝 ⋅ |𝑌𝑝|)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Base rent in period 1

if 𝑝 = 1

𝑟𝑒𝑛𝑡𝑙,𝑝−1
⏟⏞⏟⏞⏟

if 𝑝 ≥ 1,
∀ 𝑙 ∈ , 𝑝 ∈ 

(12)
⎩Rent in previous period
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𝑉 𝐴𝐼𝑙,𝑝
⏟⏟⏟

Value-added investment

=
∑

𝑐,𝑠,𝑤𝑐𝑠
𝑤𝑐𝑠=𝑝

(

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤𝑐𝑠

⋅ 𝑝𝑎𝑠𝑠𝑜𝑛𝑐,𝑠∕𝑐𝑙𝑐 OR 𝑠𝑙𝑠
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Energy system technology investment

∑

𝑔,𝑤𝑓
𝑤𝑓 =𝑝

(

𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

⋅ 𝑝𝑎𝑠𝑠𝑜𝑛𝑔∕𝑔𝑙𝑔
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Retrofitting technology investment

+
∑

𝑛,𝑤𝑓
𝑤𝑓 =𝑝

(

𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

⋅ 𝑝𝑎𝑠𝑠𝑜𝑛𝑛∕𝑛𝑙𝑛
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Miscellaneous technology investment

∀ 𝑙 ∈ , 𝑝 ∈ 

(13)

𝑒𝑛𝑡𝑙,𝑝 ≤ 𝑚𝑎𝑥𝑟𝑒𝑛𝑡𝑙,𝑝 (14)

𝑣𝑎𝑙𝑢𝑒 =
(

∑

𝑝
𝑟𝑒𝑛𝑡𝑙,𝑝

)

− 𝑇 𝑐𝑜𝑠𝑡
(15)

.2. Retrofit scheduling

When developing long-term building investment strategies, it is nec-
ssary to determine what retrofit is necessary, along with when it is nec-
ssary to intervene. Here, we discuss the approach to retrofit schedul-
ng in the MANGOret optimization framework considering component
ondition. Further detail and description is provided in Appendix A.6.

Methodologies to determine the most favorable retrofit schedule
or a specific existing component or a combination are generally cat-
gorized in literature into two classes — deterministic and proba-
ilistic. Both methods generally approach the question of ‘when’ by
stimating the remaining expected service life of components to deter-
ine intervention timing. Further, a large set of these retrofit analysis
ethods manifest the when and what decision as two separate, de-

oupled steps [76]. Models which do consider the interdependencies
f retrofitting technologies (what) and the importance of a long-term
orizon (when) at once, typically do not consider component conditions
nd thus take the expected remaining service life approach [31].

As a parametric input into the MANGOret optimization framework,
e utilize a hybrid approach of both deterministic and probabilis-

ic classes to determine the Life-Cycle Cost (LCC) of the individual
omponent retrofit considering their condition, with the possibility of
oupling interventions. As shown in step 2 of Fig. 1, based on the last
omponent renovation yeras from the building owner, we utilize the
chroeder method [77,78] to output the range of years (‘necessity inter-
als’) for which a component must be retrofitted based on its condition,
ermed as 𝑖𝑛𝑡𝑚𝑖𝑛𝑛,𝑓 ,𝑝 (minimum intervention period) and 𝑖𝑛𝑡𝑚𝑎𝑥𝑛,𝑓 ,𝑝
maximum intervention period) parameters in MANGOret. After the
irst intervention for each retrofitted component, the deterministic
nd-of-life approach is taken, formulated in Eq. (A.17).

An example of the two-phase Schroeder degradation method is
hown in Fig. 4, based on assumed component condition preferences
rom Ref. [77]. We specifically focus on Roof, Facade, and Window
omponents due to their large impact on energy demands as shown
n Ref. [48], along with existing heating systems and miscellaneous
echnologies due to their impact on retrofit budgets.

MANGOret chooses the optimal retrofitting schedule for each com-
onent based on the ‘necessity interval’ ranges, considering the techno-
conomic decision space to align various component retrofits. For ex-
mple, this would be done to reduce disturbance (by coupling retrofits)
r from an economic perspective by saving on projects costs such as
caffolding [76]. In MANGOret, we capture both examples with the
referred alignment of external retrofits. We do so by adding retrofit
roject cost constraints with scaffolding costs (see Appendix A.5) for
hen an external Roof and/or Facade retrofit is initiated. The outputs
10

f the Schroeder method for the case study are reported in Table A.7.
.3. Archetypal energy demand database

Obtaining the required energy demand input data is often a chal-
enging step in optimization models, particularly if high-resolution data
hourly or sub-hourly) is desired [80]. Considering the limited data
vailability relating to retrofitting packages’ energy demands at an
ourly resolution, we adopt a similar approach previously conducted
or European residential buildings [81] to develop a database with
arious retrofitting packages for archetypal buildings. The resulting
atabase would allow architects, energy engineers, and asset managers
o assess a long-term time series of energy demands for a considered
etrofitting package, for any particular building over many building
ypes, along with rich spatial and temporal resolution. As our illustra-
ive case study is based in Switzerland (see Section 3), we utilize the
vailable resources to generate energy demand profiles for a large set
f Swiss archetypal buildings, which could be matched to any Swiss
ddress with coordinates, adding to the scalability of the MANGOret
ramework.

First, we developed building archetypes by utilizing a clustering
ethodology applied across Swiss government building stock and open

ource data extracted from multiple databases — the Federal Register
f Buildings and Dwellings (GWR) [82], Company Structure Statistics
STATENT) [83], and OpenStreetMap [84]. Since important building-
pecific parameters such as component areas are typically not available
rom building owners, we take them from the GWR database [82].
ther information such as building constructions, ages, material prop-
rties, etc. are taken from various other sources.

In all, we developed 2124 Swiss building archetypes based on 16
uilding types, 7 Swiss geographic zones, and 9 age categories shown
artographically in Fig. 5. Our clustering resulted in 1–5 archetypes
er category which is a combination of building type, age, and loca-
ion. The archetypal buildings were then modeled and simulated in a
uilding energy simulation software from the methodology presented
n Ref. [48], utilizing the CESAR (Combined Energy Simulation And
etrofitting) tool [85] built on the standard building energy software
nergyPlus [86]. CESAR creates individual EnergyPlus models for each
pecific building and assigns construction types based on the initially
efined age categories. Next, weather files were modified for specific
limate change scenarios and years of analysis utilizing a similar set
f data generated from Ref. [87]. The resulting buildings were then
imulated with weather files for their specific location.

Overall, each archetype was simulated from 2020–2060 in 10-
ear time-steps with the 11 retrofitting packages (considering two
etrofitting depths) for heating, cooling, and electricity demands. We
urther simulated each archetype over 3 climate change scenarios based
n Representative Concentration Pathways (RCPs 2.6◦C, 4.5◦C, and

8.5◦C). For this paper, we utilize a time horizon to 2050 and RCP
2.6◦C. The 10-year time-step simulations correspond to a range of years
in the model, for example the 2030 profiles accounting for the range
of real years 2025–2034. The final output is a temporal, spatial, and
retrofit-specific Swiss building energy demand database with an hourly
resolution, with the ability to match any Swiss building address to an
archetype through the clustering parameters. As an estimation of the
particular buildings’ aggregate energy demands (keeping the integrity
of the profiles), the archetypal energy demands are scaled by the ratio
of floor areas between the building of interest and the archetype.

Finally, the energy demand and solar irradiance time-series param-
eters are clustered using a k-medoids peak + typical day clustering
from the approach used in Ref. [88]. For this paper, peak days were
used for heating and cooling demands along with 5 typical ‘normal’
days, resulting in 7 total typical days. An example of the richness of
the archetypal demand database is shown in Fig. 6, with the left-side
demonstrating the average daily profiles of the retrofitting packages for
heating and cooling for example years 2020 and 2040. On the right-

side, the average annual heating demands per floor area are presented.
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Fig. 4. Example of Schroeder method component degradation curves for the considered set of components. The condition space considered for retrofit ‘necessity intervals’ is set to
30%–70%. Each component’s degradation is based on its last renovation year, expected lifetime, and degradation parameters according to the Schroeder method [79]. When the
minimum necessity interval lies before the beginning of the considered time horizon (2021), the interval is set to 2021, as shown for Facade and Windows. Heating technology
intervals only apply for existing technologies.
For example, between the extreme scenarios of ‘no retrofit’ and the
𝐹𝑢𝑙𝑙𝑇 𝑎𝑟 retrofit (e.g. a deep retrofit with a green building label), heating
demands are reduced by over 4 times and cooling demands increase by
almost 3 times. The general trend for this building shows that deeper
retrofits reduce heating demands while increasing cooling demands.
Further information on the database is presented in Appendix A.7.

3. Illustrative case study

3.1. Retrofitting considerations

The portfolio of energy technologies and retrofitting packages con-
sidered in MANGOret are shown in the superstructure representation in
Fig. 2. The technologies discussed as follows are chosen as part of the
illustrative example of the MANGOret optimization framework, with
others able to be added.

In terms of conversion technologies, the candidate heating tech-
nologies include electrically-driven Air-Source Heat Pumps (ASHP),
Ground-Source Heat Pumps (GSHP), fuel oil, natural gas, and biomass
boilers, and gas-fired Combined Heat and Power (CHP) engines. The
candidate cooling technologies are absorption and compression chillers.
In terms of RE technologies, only solar Photovoltaic (PV) panels are
considered due to urban constraints. Additionally, Hot Water Thermal
Storage Tanks (HWTS) and lithium-ion batteries are considered to
store thermal and electrical energy, respectively. D-MES can import
all energy carriers but can only export electricity as they are grid
connected.

The retrofitting technologies include insulation materials for the
Facade and Roof: oil-based XPS and EPS along with mineral stone
11
wool, and for Windows: plastic and wood-aluminum frames. These
retrofitting technologies also have a depth element — the minimum
BEC or target green building label. Further, the technologies comprise
the various considered retrofitting packages which can be combined
towards deeper retrofits (see Section 2.1).

Existing technologies for each building are also included in the
model, where applicable. Generally buildings owners lack data on
technical system sizes of heating systems, for example fuel oil or gas
boilers [15]. Thus, these existing components are modeled as tech-
nologies without a pre-determined size. Therefore, for the available set
of existing technologies, MANGOret sizes and installs them based on
the respective retrofit package demand profile in the beginning of the
horizon, without investment cost but with maintenance cost.

In this paper, we utilize 6 model periods with each period represent-
ing 5 years for the 30-year horizon. Retrofitting investment stages (𝑤𝑓 )
are set at each period, while energy system investment stages (𝑤𝑐𝑠) are
set at periods 1, 3, and 5, with additional stages able to be added in
the case of existing technology retirement (e.g. natural gas boiler).

3.2. Building case study composition

We apply MANGOret to four case study buildings taken from an
LSI portfolio to demonstrate the value of optimal multi-stage D-MES
and envelope investment planning with a long-term horizon of 30 years
(2021–2050). These four buildings, described in Table 2, were chosen
to demonstrate the variety of strategies relevant across building types,
sizes, ages, locations, and real estate markets.
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Fig. 5. Location of the Swiss archetype buildings which were simulated in the archetypal energy demand database considering residential (Single Family House (SFH) = 221,
Multi-Family House (MFH) = 179), mixed-use (824), and commercial (100 with 9 age categories = 900) building types. The total number of archetypes developed and simulated
for the database is 2,124.
Table 2
Building-specific parameters are assumed to be constant over the 30-year time horizon. Floor area corresponds to both gross internal rentable floor area and energy reference
area. Solar roof area is assumed to be 80% of roof area. Pipes correspond to number of traditional standing radiators serving an average floor area of 30 m2. Dynamic real estate
markets (e.g. Zurich) are exemplified with higher values for rental escalation than structural vacancy.

Characteristic Building 1 Building 2 Building 3 Building 4

Building type Mixed-use Residential Residential Commercial
Location Zurich Montreux Zurich St. Gallen
Construction year 1859 1964 1938 1967

Floor area (m2) 1,285 2,727 3,347 8,605
Number of floors (#) 8 6 8 9
Base rent (CHF/m2) 618 113 185 377
Rent escalation 2% 1% 2% 1%
Structural vacancy 1% 1% 1% 1%
Roof area (m2) 321 341 669 1448
Solar roof area (m2) 257 273 536 1,158
Facade area (m2) 1,178 1,282 3,169 5,443
Window area (m2) 190 329 465 1,397
Kitchen and bathrooms (#) 12 20 25 96
Pipes (#) 21 45 56 143
Existing heating (remaining life) Gas (9) Gas & Oil (12, 4) Gas (9) Oil (9)
Building 1 is a mixed-use building in the center of Zurich old-city
with retail stores on the lower floor, with private residences and small
offices above. Building 2 is a Multi-Family House (MFH) residence in a
residential neighborhood in Montreux. Building 3 is a MFH block-style
residential property in Zurich city. Building 4 is a large commercial
property with retail and office units in St. Gallen. At the beginning
of the horizon, all buildings have existing fossil-fueled heating systems
(natural gas and/or oil) and do not have any installed RE. All buildings
are assumed to have HWTS with a remaining lifetime of 5 years.
12
Following the steps of the Fig. 1 workflow, in step 1 we gathered
relevant contextual aspects about the buildings from the building owner
such as the address, construction year, last component renovation
years, and base-year rental prices. In step 2, the component renovation
years are utilized in the Schroeder retrofit scheduling method to output
the intervention necessity intervals for each retrofitting component
(see Section 2.2). Next, in step 3, we matched the specific buildings
to an archetypal building for which we have energy demand data
(see Section 2.3). For each archetypal building in the database, we
simulated energy demand profiles for several retrofitting packages and
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Fig. 6. Example of the simulated retrofitting packages’ heating and cooling energy demands per floor area (presented as daily averages for clarity) for a multi-family house
rchetype in Zurich, Switzerland in the RCP 2.6◦C scenario shown for the example years 2020 and 2040. Residential building electricity demands are not shown here as demands

from appliances and lighting do not present much variation over the year [85].
retrieved relevant data such as retrofit component areas taken and
scaled from Swiss government building statistics databases.

Building-specific parameters were used where possible. Due to lim-
ited data availability, for certain parameters constant values were
used for the case study such as the discount rate (5%) and inflation
rate (1%). Building-specific existing heating system types and their
remaining expected service life were acquired from owners, along
with market-specific rent escalation and structural vacancy parameters.
Further, the Swiss CO2 tax of 96 CHF/tonCO2 is used for fossil fuels
oil and natural gas) as the cost would be passed on to the build-
ng owner [89]. All relevant techno-economic and building-specific
arameters are reported in Appendix B.

. Results

In this section, we present the main results of applying the MAN-
Oret optimization framework to the four Swiss building case studies.
e highlight the main insights that long-term investment planning

f building D-MES and envelope retrofits can offer building sector
takeholders. First, the economic and environmental performance of
ptimal retrofitting investment strategies are presented in Section 4.1.
econd, the cost and emissions trade-offs of technology choices and
heir investment schedules are discussed in Section 4.2. Third, we
resent the impact of model periods on optimal results in Section 4.3.
inally, a model discussion is provided in Section 4.4.

.1. Economic and environmental performance of optimal building
etrofitting investments

Fig. 7 presents the four buildings’ Pareto fronts on an aggregate
left) and average annual per floor area (right) basis from the cost
13
vs. CO2 emissions multi-objective optimization. Each aggregate point
represents the total emissions and discounted costs of the 30-year
optimal strategies. As the selected buildings are assorted by floor area
from smallest (Building 1) to largest (Building 4), the aggregate values
of cost and emissions follow suit. Overall, as is typical for optimization
studies, costs and emissions are such that decreasing the former implies
increasing the latter. Further, generally steep increases in cost are
observed for the minimum emissions points. However, the same pattern
of buildings’ size to their aggregate cost and emissions values is not
necessarily observed with the average annual per floor area metrics,
with all buildings’ Pareto fronts lying in similar ranges. Comparing
between the two metrics reveals that there could be more attrac-
tive cost-effective emissions-reduction opportunities between different
buildings.

As a target for existing buildings in 2050, the Swiss Society of Engi-
neers and Architects (SIA) suggests 10 kgCO2/m2 split halfway between
both embodied and operational emissions [90]. In this case study, only
some buildings’ Pareto points are able to reach this threshold. In fact,
all optimal solutions for Building 4 would miss this target. Nevertheless,
Building 4 shows the largest potential aggregate reduction in emissions
of 510 tCO2 between minimum emissions and minimum cost Pareto
points for an overall 10% increase in cost, demonstrated by the ‘flat’
slope. While the average annual costs per floor area are consider-
ably high for Building 4, nevertheless in the context of the building’s
retrofitting investments which ‘have to be done anyway’, such a large
aggregate reduction in CO2 could potentially justify the proportional
increase in cost.

We provide further granularity on the optimal retrofitting invest-
ment strategies for two buildings in Fig. 8 — residential Building 3 (left)
and commercial Building 4 (right). These buildings were chosen as
they present the most interesting comparison between building types,
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Fig. 7. Pareto fronts illustrating the total building cost and CO2 emissions in aggregate (left) and average annual per floor area (right) values for the optimal retrofitting investment
strategies for the four building case studies. Note the aggregate (left) plot has broken axes on both the 𝑥 and 𝑦 due to the large values from the commercial Building 4 in comparison
to the other buildings.
Fig. 8. Pareto front with compositions of investment costs (CAPEX and OPEX) illustrating the total cost and CO2 emissions for the optimal retrofits for — the residential Building
and the commercial Building 4. The solid line signifies the value of the building (right axis) and the dotted line signifies the total cost Pareto front (left axis). The bottom of

he figure presents the split between embodied and operational CO2 emissions.
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izes, along with differentiation between aggregate and average annual
er floor area results. Here, the optimal cost Pareto front is shown
n the dotted line (left axis) for each Pareto points’ CO2 emission
alue. We detail the categorical compositions of both capital investment
xpenditures (CAPEX) and operating expenditures (OPEX) in various
olors along with the building values with the solid line (right axis).

The representation in Fig. 8 allows building sector decision-makers
o make the following observations for cost, CO2, and value: (i) the
ptimal trade-offs for multiple long-term investment strategies demon-
trate that achieving low-CO2 necessitates increased investment costs
hich subsequently decrease building value, (ii) decreasing CO2 emis-

ions is primarily driven by increased CAPEX investments into retrofits
nd miscellaneous technologies even with the subsequently smaller
nvestments in conversion technologies, (iii) decreasing building value
n low-CO2 points is due to the rate of increase of CAPEX investments
utweighing the potential value-added revenue increases from rents,
nd (iv) both embodied and operational emissions decrease in relatively
qual proportions over the 30-year horizon for all optimal strategies,
ith embodied emissions representing the majority.

The novelty presented here for the trade-offs between cost, CO2, and
alue are due to the legally-mandated rental formulas (see Eqs. (12)
14
nd (13)). These formulas present legal constraints on rental price
ncreases through value-added investments or otherwise with chang-
ng tenant contracts. Building value is calculated by the subtraction
f discounted rental income and investments (colors). Between the

extreme’ minimum cost and emissions Pareto points for the example
f Building 3, total costs increase by CHF 462k (27% increase in cost
etween the points) while the discounted rental income increases CHF
38k (1.1% increase in rental income), resulting in a reduced building
alue of CHF 324k (2.9% decrease in value). The total CO2 reduction
onsidering both operational and embodied emissions is 301 tCO2 (30%
ecrease in emissions) between the extreme Pareto points on both
nds of the Pareto front. Notwithstanding value-added investments, we
tilize market-based rent escalation and structural vacancy to allow for
inear effects relating to tenant turnover, for the example of Building 3
eing 2% and 1% respectively.

Achieving low-CO2 buildings necessitates increased CAPEX invest-
ents. While the CAPEX proportion of total investments generally

ncreases in minimum emissions points, nevertheless the proportions
ary only slightly. For Building 3’s Pareto points, CAPEX costs remain
round 70% (OPEX costs are 30%) with a range of ± 7%. Build-

ing 4 shows a similar pattern with CAPEX remaining around 64%
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with a range of ± 3%. With further granularity into CAPEX bud-
gets, retrofitting and miscellaneous technologies present a significant
portion, ranging from 53% for minimum cost points to 64% in the
minimum emissions point. While low-CO2 points demonstrate smaller
investments in conversion technologies due to deeper retrofits, they
do not necessarily attain lower OPEX costs. The trade-offs between
higher CAPEX costs and emissions to achieve low-CO2 retrofits could
potentially lead to split-incentive issues unless owners can recoup their
increased CAPEX investment from the decreased OPEX credited to
tenants.

The overall decrease in building value in low-CO2 points is due to
he rate of increase of CAPEX investments outweighing the potential
alue-added rental revenue increases. Nevertheless, for all buildings the
otal investment costs over the 30-year horizon present only a portion
f the discounted rental income from the first period. In buildings
ith a higher base rent, the proportion of rents to investments will
e much higher thus varying the value of the buildings. This aligns
ith research stating that retrofitting is profitable in more attractive

eal estate markets or otherwise with higher pass-on rates [15].
The bottom of Fig. 8 shows the split of embodied and operational

O2 emissions for each buildings’ Pareto points. Interestingly, the
ptimization decreases both embodied and operational CO2 emissions
n relatively equal proportions for each Pareto point. For Building 3,
mbodied emissions are around 60% and operational emissions are at
0% with a range of ± 3%, while for Building 4 these values vary
arginally. This points to the similar cost trade-offs of both embodied

nd operational emissions reductions in the optimization problem.
Often in multi-objective optimizations studies, the ‘extreme’ points

n the Pareto are compared to accentuate trade-offs between costs and
missions. Nevertheless, there are solutions in the Pareto front which
rovide for a more beneficial balance of objectives presenting ‘minimal
egret’ solutions near the minimum cost point. As an example, we run
simple Euclidean distance calculation for the normalized values of

he two objectives towards the ‘utopia’ point at the origin [91]. Such
n approach is one way to assure equal weights in the multi-objective
unction.

We find that for the example of Building 3, Pareto point 3 provides
he shortest distance. In comparison, between the minimum cost point
nd Pareto point 3, we observe an increase in total cost of CHF 15k
0.9% increase in cost between the points), an increased rental income
f just CHF 2.4k (0.02% increase in rental income) resulting in a
educed building value of CHF 12k (0.1% decrease in value), and a
otal CO2 reduction of 100 tCO2 (10% decrease in emissions). Using
areto point 3 versus the minimum cost point thus gives a decision-
aker a more ‘balanced’ multi-objective choice — they must invest
negligible extra amount to achieve a large decrease in emissions.

herefore, we henceforth use Pareto point 3 as a comparison with
he minimum emissions point. Relating to the issue of split-incentive
ssue between building owners’ (CAPEX) and tenants’ (OPEX) costs in
etrofits, the slightly increased costs in Pareto point 3 are largely due
ncreased OPEX which would put more burden on tenants.

.2. Technology choices and schedules of optimal building retrofitting in-
estments

Fig. 9 presents the building investment cost composition and nom-
nal rental income per floor area for each period for the minimum
missions (top-left) and Pareto point 3 (top-right) strategies for Build-
ng 3. This figure simultaneously depicts the answers for the when and
hat questions of optimal retrofitting investment strategies relating to
arious investment categories, along with the revenue side, over the
ong-term horizon.

In the context of low-CO2 buildings, we show that to achieve
inimum emissions, deep retrofits of all components are conducted
15

s early as possible (in period 1) to reduce energy demands and in l
urn emissions. In Pareto point 3, along with the minimal cost so-
ution, the optimal solution is to wait ‘as long as possible’ until the
omponents must be retrofitted due to the condition-based necessity
onstraints. This is equivalent of the ‘real-world’ minimum cost ap-
roach of retrofitting at component end-of-life which is demonstrated
n both minimum cost and Pareto point 3. For the example of Building
, the component condition degradation methodology (see Section 2.2)
ictates that Windows must be retrofitted in period 1 while Facade and
oof must be retrofitted latest in period 3.

On the bottom of the figure we present the difference between
he per period cost components of the minimum emissions and Pareto
oint 3 (bottom-left) along with the total difference over the 30-
ear horizon (bottom-right). Here, we present clearly that the deeper,
arlier retrofits required to achieve minimum emissions subsequently
enefit from reduced costs for conversion technologies and energy
arrier imports, albeit with the former outweighing the latter greatly.
his demonstrates the importance of considering the interdependencies
f the demand- and supply-sides of the energy balance in buildings’
etrofitting schedules over the long-term horizon. It must be noted
hat all values presented here are discounted — while the discounted
ifference between the compared Pareto points’ budgets is large due to
iffering retrofit schedules, the nominal difference is much less.

Regarding rental revenues, Building 3 demonstrates a linear in-
rease of rents due to the market parameters in a dynamic real estate
arket. The influence of value-added investments (see Eq. (13)) can

e seen in the difference graph with positive differences denoting
he higher value-added investments of the minimum emissions point,
articularly when the deep retrofit is conducted period 1. The total
ominal rent is slightly higher in the minimum emissions point but
evertheless the increased investment costs outweigh the discounted
ents, and thus the building value decreases.

Similarly to Fig. 9 for the minimum emissions and Pareto point 3
f Building 3, Fig. 10 depicts the answers for the when and what ques-
ions of optimal retrofitting investment strategies relating to specific
echnologies. The figure is broken into the sections: (top) investment
ost evolution for all technologies per period, (middle) contributions
f technology embodied emissions per period, and (bottom) operational
missions per period.

Importantly, the optimal technology choices differ between the
inimum emission and Pareto point 3 strategies. The higher retrofitting

nvestment costs in the minimum emissions point are due to choosing
igher cost, lower embodied emission technologies such as Stonewool
nd EPS insulation for the Facade and Roof, respectively, along with
ood-Aluminum frame Windows. On the other hand, cost optimal

olutions including Pareto point 3 choose the cheapest available options
n XPS insulation for Facade and Roof along with plastic frame Win-
ows. Embodied emissions from conversion and storage technologies
s dominated by solar PV and less so with the ASHP and compression
hiller. Nevertheless, the largest portion of embodied emissions is due
o retrofitting and miscellaneous technologies, with all conversion and
torage technologies, except for solar PV, contributing minimally to
he total. Due to later retrofits, the cost optimal points generally have
igher salvage values.

Here we show the importance of capturing embodied emissions for
etrofits as they account for a slightly larger proportion than opera-
ional emissions across all Pareto points, aligning with the findings
f Shadram et al. [92]. It is worth noting that in this paper, we
nly account for the embodied emissions of non-structural retrofitting
omponents such as Facade and Roof insulation, Windows, kitchens &
athrooms, pipes, conversion, and storage technologies. Nevertheless,
he vast majority of embodied emissions are due to the structural com-
onents such as concrete, brick, and steel [93] but are not considered in
his retrofitting-focused study as the building structure is ‘irreversible’.

To achieve minimum emissions, the model minimizes PV instal-

ations and associated conversion technologies to smaller capacities
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Fig. 9. Compositions of investment cost categories per period represented as negative values, with revenues from salvage as positive, for the minimum emissions (top-left) and
Pareto point 3 (top-right) for Building 3. On the right axis, we present the nominal rent per floor area in each period as the positive revenue stream. The bottom of the figure
presents the period-by-period difference in investment cost compositions (bottom-left) between Pareto point 3 and the minimum emissions point, along with the total difference
over the 30-year horizon (bottom-right).
relative to the cost optimal points due to their high embodied emis-
sions. In the low-CO2 strategy, the building is primarily heated with an
ASHP and solar PV system along with a small biomass boiler for peak
demands. All of these technologies are installed in period 1 when the
deep retrofit is conducted, with the heating system reinstalled in period
5. Similarly, Pareto point 3 relies on a larger solar PV and ASHP system,
further choosing to install and operate the (free) existing gas boiler. In
contrast to the minimum emissions point, Pareto point 3 installs solar
PV in period 2 and relies on a small fuel oil boiler in period 5 to meet
peak demands, albeit it is rarely used. Both strategies show a reliance
on compression chillers to meet cooling demands. Batteries are utilized
in the CO2 optimal points, with HWTS being present in both albeit of
smaller size in the minimum emissions point.

This presents an interesting new narrative for decarbonizing the
building stock, as the optimization model conducts a deep & ‘green’
retrofit right away to reduce demands and energy system capacities,
even of RE technologies (solar PV). The building still relies on the grid
due to the constrained roof area for solar PV, with cost optimal points
importing a larger amount of electricity. While the hydro and nuclear-
dominated Swiss grid has a relatively low life-cycle CO2 emission
factor (see Table B.8) for Europe, potentially with a ‘dirtier’ grid the
optimal operation strategy would decide to reduce reliance on the grid
even further. Overall, due to increased sector-coupling and thermal
electrification, the decarbonization of the electricity grid is critical for
the building sector. While the relative contributions of the above points
are specific to Building 3, nevertheless we observe the similar patterns
for all buildings.

The technology choices on both the demand- and supply-sides of
the energy balance dictate the energy and emissions distributions for
the Pareto points. Fig. 11 presents the Pareto points’ average annual
energy and emissions types per floor area. Similarly to Wu et al. [43],
operational emissions are more ‘flexible’ in their reduction compared
16
to embodied emissions which innately have discrete choices. This is
demonstrated in the ‘steps’ of the total emissions points due to the
contribution of embodied emissions, versus the smoother increase in
the operational emissions points. Logically, this is explained by the
direct correlation between operational emissions and energy consump-
tion, versus that of embodied emissions which have several choices of
retrofitting technologies available per depth.

Our results show that to reduce emissions from existing buildings,
both operational and embodied, necessitates reductions in energy con-
sumption by investing in deeper & ‘greener’ envelope retrofits. This is
due to the correlation of emissions reductions with energy consump-
tion, demonstrating the importance of considering both the demand-
and supply-sides of the building retrofitting investment decision. For
the example of comparing Building 3’s extreme Pareto points, emissions
are reduced 30% (from 10 to 7 kgCO2/m2) while energy consumption
is reduced 32% (from 69 to 47 kWh/m2). Further, the increased energy
consumption of all buildings relative to their energy demands (from the
archetypal energy demand database) are largely due to thermal electri-
fication from heat pumps which dominate heating technology solutions.
In the following, we discuss the impact on results of considering various
approximations of the long-term temporal resolution through model
periods granularity.

4.3. Considerations of periods in the long-term horizon

In this paper, we implement model periods which represent a num-
ber of years in order to make the model smaller and faster through
drastically reducing variables and binaries. Nonetheless, clustering the
temporal resolution into periods presents an approximation of the op-
timal result versus a ‘full’ 30 period and year horizon due the inability
to track year-to-year variations. Here, we compare technology invest-
ments and schedules, along with computational effort, for Building 3’s
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Fig. 10. Compositions of investment costs by technology (top) for the minimum emissions (left) and Pareto point 3 (right) for Building 3. Compositions of embodied missions by
echnology (middle) are presented in a similar color scheme to the top of the figure. While both strategies share the set of technology choices, there are differences. As such, the
egend for Pareto point 3 (right) is updated with the different technology choices which are different from the minimum emissions legend (left). Operational emissions presented
n the bottom of the figure.
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inimum cost optimization considering 30, 15, and 10 periods along
ith the base-case of 6 periods presented earlier in the results.

Due to the variations in parameters over the long-term horizon,
esults in Table 3 show that the chosen number periods significantly
nfluence the design, operation, and scheduling of retrofits and thus
he overall objective results. In comparison to the 30 period case, with
ower numbers of periods the model results consistently over-estimate
osts and building value, and under-estimate CO2 emissions, likely due

to improved accuracy in optimizing for operation-relevant variables (𝑝,
𝑑, 𝑡) on a year-to-year basis in the minimum cost objective. This is
exemplified by the fact that when moving towards higher temporal
17

i

granularity (from 6 to 30 periods), the aggregate values and share
of operational emissions increases above that of embodied emissions.
Importantly, model run time increases exponentially with the 6 period
minimum cost optimization taking just over 6 minutes while the 30
periods takes over 60 hours.

Fig. 12 presents the technology design (what) and scheduling (when)
cross the four period cases. The cost optimization presents little differ-
nces with regards to technology choices between the cases. The only
ifferences are in the 30 period case, in which a small oil boiler is
nstalled in real year 15 and a small battery in real year 26.
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Fig. 11. Average annual energy consumption compared to carbon emissions per floor area for all buildings’ Pareto fronts. Total emissions shown in black while operational
missions shown in blue. The composition of operational and embodied emissions are highlighted in gray tones.
Table 3
Comparison of the objective results for the minimum cost optimization for Building 3 over the four period cases. Here, we compare the period scenarios by using 3 system
investment stages (𝑤𝑐𝑠) for 6 periods, 6 𝑤𝑐𝑠 for 10 and 30 periods, and, 7 𝑤𝑐𝑠 for 30 periods. Results show that higher temporal granularity (more periods) improves accuracy on
bjective function results but exponentially increases solving time.

6 periods 10 periods 15 periods 30 periods Diff. 30 vs. 6 Diff. 30 vs. 10

Cost (kCHF) 1,565 1,532 1,473 1,469 −6.14% −4.11%
Value (kCHF) 11,173 11,033 10,983 10,890 −2.54% −1.30%
CO2 (tonCO2) 1,012 1,008 1,060 1,217 +20.3% +20.8%
Emb. CO2 share (%) 59.7% 57.2% 57.3% 50.4% +1.46% +5.96%
Oper. CO2 share (%) 40.3% 42.8% 42.7% 49.6% +32.5% +28.7%
Run time (h) 0.11 1.20 4.31 62.5
t
i
t
g
r
r

The most pronounced difference between the period cases relates to
he increased accuracy in scheduling technology installations on a real
ear basis (𝑦𝑝). This is likely due to a better accuracy for technological
evelopments along with ability to plan for technology retirements at
nd of life with higher granularity. For example, the 30 period case
nstalls solar PV in real year 8 (2028) while in the 10 period case, it
s installed between real years 1 to 3, in the 15 periods case between
eal years 7 to 8, and for the 6 period case between real years 6 to
0. Variations are also seen in the installation of the first and second
SHP, along with the Facade, Roof, and kitchen & bathroom internal
enovation which is subject to the necessity interval constraints. Here,
ccuracy continually decreases with the 30 periods case conducting this
roject in real year 16 while for the 6 periods case it is conducted
etween real years 11 and 15.

.4. Model discussion

In this section, we provide our perspective on the added value which
he MANGOret optimization framework can bring to energy engineers
nd building owners. Finally, we discuss limitations of the framework.

As discussed in the Introduction, optimal retrofit investment plan-
ing must take into account a long-term horizon considering all techno-
ogical, economic, and contextual developments relevant to the build-
ng. MANGOret incorporates the entire retrofitting decision-space to
18

F

give building owners the value of investment flexibility for the energy
and non-energy aspects relevant for budgeting. Owners are able to in-
vestigate the trade-offs between multiple objectives (how to prioritize)
for several buildings at once (where). Here, MANGOret can develop
multiple strategies for any contextual building in a scalable matter by
utilizing automated data retrieval and processing steps, a key interest
for LSIs who must develop significant numbers of asset-level retrofitting
strategies in MYP processes. Both energy engineers and owners are
able to answer questions regarding when and what to do for optimal
retrofits considering the interdependencies of scheduling technology
investments between the demand- and supply-sides of the building.

The overall goal of presenting the MANGOret framework and model
is to provide a methodological contribution to the domains of energy
optimization and real estate management. We bridge the gap between
predominant methodologies utilized in both domains with a novel
methodology for optimal MYP relevant for existing buildings. A key
novelty relates to demonstrating the cost, value, and CO2 emissions
rade-offs of optimal investment decisions. This provides important
nformation for owners on both the cost and revenue sides, allowing
hem to choose an investment strategy based on desired CAPEX bud-
ets, rental revenues, values, and/or CO2 constraints. Energy-focused
etrofitting investment methodologies which do not consider the rental
evenue-side of investments could potentially miss strategic trade-offs.
urther, we argue that the MANGOret framework and model presents
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Fig. 12. Compositions of investment costs by technology for the minimum cost optimization for Building 3 over the four period cases. We present the cases of 30 periods (top-left)
ith each period representing one year, 15 periods (top-right) with each period representing 2 years, 10 periods (bottom-left) with each period representing 3 years, and 6 periods
bottom-right) with each period representing 5 years.
n added-value to meet the needs of reducing existing building energy
emands along with both embodied and operational emissions.

While we present the quality of results the model can generate,
evertheless we leave important analyses regarding model sensitivities
o parameters for further work. One aspect relevant for rental rev-
nues relates to the legally mandated component pass-on rates which
efine the extent to which value-added investments can be passed
n to the tenant [94].3 Building owners’ preferred choice of the op-
imal asset retrofitting strategy (output from MANGOret) will likely
epend on whether they can achieve a certain expected building value
ost-retrofit. Therefore, such a legal constraint considerably affects
he retrofit decision-making of an economic-driven building owner.
enerally for all retrofitting components, Swiss legislation allows for
ass-on rates of 50%–70% for value-added retrofits, while rates of
eating systems range from 100% for RE-based systems to 0% for fossil-
ased systems (see Appendix B) [96]. Different values for these legal
arameters could therefore significantly change the model results with
espect to rental revenues and building values. Here, the issue of rental
ffordability comes into the frame [15].

While MANGOret presents a novel consideration of the long-term
erspective required to adequately plan investments into existing build-
ngs, nonetheless the model outputs a wealth of information relevant

3 In Switzerland, value-enhancing investments and pass-on rates are
egulated in Switzerland in Art. 14 VMWG (Additional Services of the Land-
ord) [94]. According to this article, the building owner has to prove the value
ncreasing share of investments in order to increase net rents. There exist legal
ncertainties for whether the owner can increase rents after a tenant leaves,
19

ith certain market increases being justifiable [95].
for D-MES such as storage considerations, sector coupling, and RE-
integration. As the value of most of these aspects was discussed in
MANGO [50], we chose to present the real estate budgeting and
planning perspective relevant for building owners and MYP processes.
Nevertheless, the MANGOret framework is also relevant for energy
engineers in developing early-stage optimal retrofitting design and
operation strategies.

Limitations

In this paper, we formulate the long-term retrofitting investment
problem in an aggregate manner by combining the cost considerations
of owners and tenants into one (the ‘building’). Taking such a per-
spective can be likened to an ‘all-in’ rental contract where the owner
internalizes the OPEX of tenants’ energy and water usage (utilities) into
the gross rent. However, the utility costs are generally paid separately
by tenants and thus not considered in owners’ MYP, as they can only
pass on investments to the net rent, leading to issues such as the
split-incentive [97]. Changing the objective functions to only consider
owner-relevant CAPEX costs could potentially change optimal solu-
tions. Nevertheless the question of accounting for costs and emissions
between owners and tenants is not considered.

While the MANGOret optimization framework is currently formu-
lated as a deterministic problem with assumed perfect foresight, we
imagine it would nevertheless be valuable for real-world retrofit in-
vestment planning. In a recent work by Bohlayer et al. the impact of
various multi-period optimization under uncertainty approaches were
compared [91]. Given the uncertainty present in the model’s long-term
horizon, MANGOret could be run every few years for each build-
ing, aligning with owners’ current 5–10 year horizons in their MYP
processes [15].
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Further, since existing buildings are extremely contextual depending
on construction style, the potential of various retrofitting packages’ on
energy demands and envelope retrofits could vary. We demonstrate
MANGOret for the case study of four buildings in Switzerland, generally
typified by a solid concrete construction. Nevertheless, the MANGOret
framework can be applied to other countries with a different set of in-
put data primarily relating to: the archetypal energy demand database,
the government building statistics databases, and the techno-economic
database.

5. Conclusions

Situated between the domains of energy optimization and real estate
management, this paper presented MANGOret — a novel optimization
framework and model for the long-term investment planning of existing
building D-MES and envelope retrofits. The three main contributions
relate to MANGOret’s: (i) scalable, data-driven framework to optimize
investments – both energy and non-energy – for any existing building,
(ii) long-term retrofitting design solutions, operating strategies, and
investment schedules which simultaneously consider the demand- and
supply-sides of the retrofit along with both embodied and operational
emissions, and (iii) inclusion of important budgeting elements relevant
for building owners’ multi-year retrofit investment planning such as
rental revenues and building value.

First, the contextual nature of existing buildings make retrofit in-
vestment planning arduous and time-consuming. To aid in the planning
process especially for large numbers of buildings, the model relies on
a framework encompassing a series of automated data retrieval and
processing steps. Importantly, the framework consists of an archety-
pal energy demand database connected to various building statistics
databases to reference the retrofitting packages’ energy demands and
buildings’ contextual information.

Second, from the energy perspective, the model generates long-term
investment strategies considering energy and non-energy technology
design, operation, and scheduling. The model is able to consider the
interdependent investment and scheduling trade-offs between demand-
and supply-side measures for a number of technologies. Further, em-
bodied emissions of all technologies relevant for building sector decar-
bonization are considered. By considering a 30-year horizon 0 to 2050
for all aspects within the framework, MANGOret is able to harness the
strategic value of investment flexibility to optimally phase investments
across the multi-objective cost and CO2 decision space. Third, from
the real estate management perspective, the model includes a key
novelty relevant for building owners’ MYP processes relating to the
possible building rental income post-retrofit, formulated from value-
added investment regulations. This provides important insights to the
additional trade-offs of building value with the traditional cost vs. CO2

ulti-objective optimization. Overall, we show the value of optimal
YP by considering all relevant technologies’ cost and emissions con-

ributions over a long-term horizon for a case study of four buildings
n Switzerland.

Aligning with previous studies, our results show that higher in-
estment costs are necessary to achieve low-CO2 retrofits relative to
inimum cost strategies. Nevertheless, we show that these trade-offs
o not necessarily have to be weighed at the extremes of the Pareto,
nstead presenting ‘minimal regret’ solutions in the Pareto front which
educe CO2 at negligible cost increases. We provide relevant insights
or real estate owners by demonstrating the trade-off of decreasing
uilding value with low-CO2 retrofits largely due to high investment
osts outweighing rental revenue increases. While all presented cost
nd value results in this paper are discounted, the nominal difference
etween earlier (minimum CO2) and later retrofits (minimum cost) is
maller than that of the discounted difference. As suggested in previous
esearch, this puts the prominence of the risk-adjusted discount rate
20

nto the frame [98]. c
The increased investment costs in low-CO2 retrofitting strategies is
rimarily due to larger CAPEX investments towards deeper & ‘greener’
nvelope retrofits, driven by lower embodied emission technology
hoices. Non-energy miscellaneous technologies also present an im-
ortant part of retrofitting budgets. Relating to scheduling, achieving
ow-CO2 retrofits is largely due to conducting deeper retrofits at earlier
nvestment stages, subsequently reducing the required investments in
onversion technologies due to lower energy demands. Our results
emonstrate that optimal emission reductions in buildings necessitate
ubsequent reductions in energy consumption due to their direct cor-
elation. These results directly contradict studies which argue that
ecarbonizing supply-side solutions should be prioritized to the expense
f EE solutions due to their high costs [99].

This presents a strategic change for owners to retrofit building
nvelopes before their end-of-life. Here, we highlight the importance of
ncorporating embodied emissions in D-MES and envelope optimization
tudies as they encompass the majority of total emissions. This is par-
icularly important for RE technologies such as solar PV which present

large fraction of embodied emissions in our results. Nevertheless,
ur results reaffirm the present-day attractiveness of grid-connected
uildings powered by solar PV and heat pumps, corresponding to a
ignificant portion of solutions.

Future studies should seek to relate multiple asset-level optimal
etrofitting strategies together at a portfolio-level relevant for MYP,
r otherwise at the district-level if many adjacent buildings rele-
ant for energy planning. Considering portfolios, owners would poten-
ially choose different optimal strategies (Pareto points) between the
ecision-space of various assets (Pareto front) subject to desired CAPEX
udgets, value targets, and/or CO2 constraints. Further, the influence

of various techno-economic and contextual uncertainties, along with
policy scenarios, over the long-term horizon could strongly influ-
ence results. Efforts to include policy aspects within an optimization
modeling framework could give further insights to practitioners and
policymakers, with major hurdles being the consideration of building
contextuality versus model scalability [100–102]. While this would po-
tentially be computationally expensive to run in such a complex model,
it would nevertheless present interesting results for building sector
decarbonization. Related to advancing embodied emissions consider-
ations, future studies could integrate material- and technology-level
life-cycle analysis data into the considered set of technologies.
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Fig. A.13. Relationship between retrofitting components, depths, and technologies.
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Appendix A. Complete MANGOret model formulation

In this Appendix, the complete formulation of the MANGOret
(Multi-scAle eNerGy Optimization — retrofitting) model is presented.
As we build on the MANGO model formulation which considers solely
D-MES design and operation [50], we have chosen to present only the
additional retrofitting aspects unless otherwise necessary.

A.1. Sets

The sets consider the spatial and temporal dimensions of the model
as well as the considered energy technologies, retrofitting aspects, and
energy carriers. The parameters, variables, and constraints are indexed
over the sets described in Table 1. The relationship between the sets
of retrofitting components (𝑓 ), depths (𝑗), and technologies (𝑔) are
visually depicted in Fig. A.13.

A.2. Parameters

The model considers a series of technical, economic, environmental
and other parameters, which are presented in Tables A.4 and A.5,
respectively. The values for the key model parameters used for this
paper’s case study are given in Appendix B.

The three ‘mapping’ binary matrices shown in Fig. A.14 allow
to create relationships between sets of retrofitting components (𝑓 ),
depths (𝑗), technologies (𝑔), and demand packages (ℎ). The matrices
are: (1) 𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 — the ‘raw’ retrofitting components (𝑓 ) which
need to retrofitted with a certain retrofitting depth (𝑗) in the first
necessity interval, (2) 𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗 — with the retrofitting depth (𝑗) to
the selected retrofitting technology (𝑔), and (3) 𝑚𝑎𝑝𝑑𝑒𝑚𝑔,ℎ — with the
retrofitting technology (𝑔) and the relevant demand profile (ℎ) taking
into account possible combinations leading up to ‘full’ retrofits.

A.2.1. Parameter definitions
Eqs. (A.1) to (A.4) show the definition of model parameters related

to the salvage value of conversion, storage, retrofitting, and miscella-
neous technologies salvage value at the end of their lifetime. These are
taken from the methodology applied in the TIMES model [103].

𝑐𝑠𝑙𝑣𝑔𝑐,𝑤𝑐𝑠
=
1 − (1 + 𝑟𝑙)

max
𝑝∈

(𝑝)⋅|𝑌𝑝|+1−𝑤𝑐𝑠−𝑐𝑙𝑐

1 − (1 + 𝑟𝑙)−𝑐𝑙𝑐
,

∀ 𝑐 ∈ , 𝑤𝑐𝑠 ∈  | {𝑤𝑐𝑠 ≥ max(𝑝) + 1 − 𝑐𝑙𝑐}
(A.1)
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𝑝∈
𝑠𝑠𝑙𝑣𝑔𝑠,𝑤𝑐𝑠
=

1 − (1 + 𝑟𝑙)
max
𝑝∈

(𝑝)⋅|𝑌𝑝|+1−𝑤𝑐𝑠−𝑠𝑙𝑠

1 − (1 + 𝑟𝑙)−𝑠𝑙𝑠
,

∀ 𝑠 ∈  , 𝑤𝑐𝑠 ∈  | {𝑤𝑐𝑠 ≥ max
𝑝∈

(𝑝) + 1 − 𝑠𝑙𝑠}
(A.2)

𝑟𝑠𝑙𝑣𝑔𝑔,𝑤𝑓
=
1 − (1 + 𝑟𝑙)

max
𝑝∈

(𝑝)⋅|𝑌𝑝|+1−𝑤𝑓−𝑔𝑙𝑔

1 − (1 + 𝑟𝑙)
−𝑔𝑙𝑔

,

∀ 𝑔 ∈ , 𝑤𝑓 ∈  | {𝑤𝑓 ≥ max
𝑝∈

(𝑝) + 1 − 𝑔𝑙𝑔}
(A.3)

𝑚𝑠𝑙𝑣𝑔𝑛,𝑤𝑓
=
1 − (1 + 𝑟𝑙)

max
𝑝∈

(𝑝)⋅|𝑌𝑝|+1−𝑤𝑓−𝑛𝑙𝑛

1 − (1 + 𝑟𝑙)−𝑛𝑙𝑛
,

∀ 𝑛 ∈  , 𝑤𝑓 ∈  | {𝑤𝑓 ≥ max
𝑝∈

(𝑝) + 1 − 𝑛𝑙𝑛}
(A.4)

A.3. Decision variables

The model’s decision variables are presented in Table A.6. Any
time a decision variable ins multiplied by a binary, for the example
of 𝑃 𝑖𝑚𝑝

𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡
and 𝑃 𝑒𝑥𝑝

𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡
with 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚

ℎ,𝑙,𝑝 , we linearize them according to

the strategy described on page 84 of Ref. [104].

A.4. Objective functions

In this paper, we utilize two objective functions — the minimization
of the lifetime, discounted energy system costs (𝑇 𝑐𝑜𝑠𝑡) and/or CO2
emissions (𝑇 𝐶𝑂2 ), presented in the following. Retrofit and miscella-
neous technologies are added to the initial (𝑇 𝑐𝑜𝑠𝑡) function presented
in MANGO which considers conversion and storage technologies. Fur-
ther, we add embodied emissions aspects of all conversion, storage,
retrofitting, and miscellaneous technologies to the (𝑇 𝐶𝑂2 ) function. The
mathematical definitions of the two objective functions are given in
Eqs. (A.5) and (A.6) respectively.

While developing the model, we experimented with a third real
estate-relevant objective of maximizing the total lifetime building value
(𝑇 𝑣𝑎𝑙𝑢𝑒 — inversely, minimizing the negative of value). The total build-
ing value is calculated using a DCF of the total rent income summed
over all periods minus the discounted costs of energy system and
retrofitting technologies in the respective years. We have chosen not
to utilize it in the MANGOret case study due to the difficulties in
adequately constraining the model towards real-world parameters. For
the example of the value maximization objective, the model chooses to
install the largest possible energy system in the balance of decreasing
costs and increasing rental revenues with all of the constraints already
set forth in the model. Nonetheless, this results in ‘unrealistic’ energy
systems designs which are often too-large for real-world buildings.

min 𝑇 𝑐𝑜𝑠𝑡 =
∑

𝑙,𝑤𝑐𝑠

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤𝑐𝑠

+
∑

𝑙,𝑤𝑓

(

𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

+ 𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

)

+
∑

𝑙,𝑝

(

𝐶𝐼𝑀𝑃
𝑙,𝑝 + 𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑝 −
∑

𝑙,𝑝
𝑅𝐸𝑋𝑃
𝑙,𝑝

)

−
∑

𝑙
𝑅𝑆𝐿𝑉 𝐺
𝑙

(A.5)

min 𝑇 𝐶𝑂2 =
∑

𝑒𝑐𝑖 ,ℎ,𝑝,𝑑,𝑡

(

𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

⋅ 𝑐𝑒𝑐𝑖 ,𝑝 ⋅ 𝑛𝑑𝑝,𝑑
)

+
[

∑

𝑐,𝑤𝑐𝑠
𝑤𝑐𝑠=𝑝

(

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

⋅ 𝑐𝑐,𝑤𝑐𝑠

)

+
∑

𝑠,𝑤𝑐𝑠
𝑤𝑐𝑠=𝑝

(

𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

⋅ 𝑐𝑠,𝑤𝑐𝑠

)

+
∑

𝑛,𝑤𝑓
𝑤𝑓 =𝑝

(

𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

⋅ 𝑚𝑖𝑠𝑐𝑎𝑛,𝑙,𝑝 ⋅ 𝑐𝑛,𝑤𝑓

)

+
∑

𝑗,𝑔,𝑓 ,𝑤𝑓
𝑤𝑓 =𝑝

𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 =1
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

(

𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

⋅ 𝑐𝑜𝑚𝑝𝑎𝑓,𝑙,𝑝 ⋅ 𝑐𝑔,𝑤𝑓

) ]

(A.6)

max 𝑇 𝑣𝑎𝑙𝑢𝑒 =
∑

(

∑

𝑟𝑒𝑛𝑡𝑙,𝑝
)

− 𝑇 𝑐𝑜𝑠𝑡 (A.7)

𝑙 𝑝
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Table A.4
Technical, environmental, and other MANGOret model parameters.

Parameter Unit Description

Technical parameters

𝑑𝑒𝑚𝑒𝑐𝑑 ,ℎ,𝑙,𝑝,𝑑,𝑡 [kWh] Energy demand for energy carrier 𝑒𝑐𝑑 , for retrofitting package ℎ, at location 𝑙, in period 𝑝, day 𝑑 and time step 𝑡
𝑓𝑎𝑙,𝑝 [m2] Total floor area of building location 𝑙 in period 𝑝
𝑐𝑜𝑚𝑝𝑎𝑓,𝑙 [m2] Total area available of retrofitting component 𝑓 (e.g. Facade, Window, Roof) at location 𝑙
𝑟𝑠𝑎𝑙,𝑝 [m2] Total roof area available for solar technologies at location 𝑙, in period 𝑝
𝑓𝑠𝑎 [–] Factor for the total floor area available for storage technologies
𝑠𝑎𝑓𝑠 [kWh/m2] Factor for storage capacity per unit floor area for storage technology 𝑠
𝑚𝑖𝑠𝑐𝑎𝑛,𝑙 [–] Total number of miscellaneous technologies (e.g. number of kitchens, number of radiators) at location 𝑙
𝑚𝑎𝑥𝑐𝑑ℎ [–] Parameter for the maximum possible number of dispatchable conversion technologies which mainly supply heating
𝑚𝑎𝑥𝑐𝑑𝑐 [–] Parameter for the maximum possible number of dispatchable conversion technologies which mainly supply cooling

Technology lifetime parameters

𝑐𝑙𝑐 [periods] Lifetime of conversion technology 𝑐
𝑠𝑙𝑠 [periods] Lifetime of storage technology 𝑠
𝑔𝑙𝑔 [periods] Lifetime of retrofitting technology 𝑔
𝑛𝑙𝑛 [periods] Lifetime of miscellaneous technology 𝑛

Environmental parameters

𝑐𝑒𝑐𝑖 ,𝑝 [kgCO2/kWh] Carbon emission factor for imported energy carrier 𝑒𝑐𝑖 in period 𝑝
𝑐𝑐,𝑤𝑐𝑠

[kgCO2/kW] Linear, capacity-dependent embodied carbon emission factor for conversion technology 𝑐, in investment stage 𝑤𝑐𝑠
𝑐𝑠,𝑤𝑐𝑠

[kgCO2/kWh] Linear, capacity-dependent embodied carbon emission factor for storage technology 𝑠, in investment stage 𝑤𝑐𝑠
𝑐𝑔,𝑤𝑓

[kgCO2/m2] Linear, size-dependent embodied carbon emission factor for retrofitting technology 𝑔, in investment stage 𝑤𝑓

𝑐𝑛,𝑤𝑓
[kgCO2/unit] Linear, unit-dependent embodied carbon emission factor for miscellaneous technology 𝑛, in investment stage 𝑤𝑓

Other parameters

𝑦𝑝 [years] Real representative years of each period
𝑌𝑝 [years] Number of years representing each period
𝑛𝑑𝑝,𝑑 [days] Number of calendar days represented by each representative day 𝑑, in period 𝑝
𝑏𝑖𝑔𝑀 [–] ‘‘Big M’’ — Sufficiently large value
Table A.5
Economic MANGOret model parameters. Fixed, linear, and maintenance costs of conversion and storage technologies are kept the same as in the original MANGO model
formulation.

Parameter Unit Description

𝑖𝑒𝑐𝑖 ,𝑝 [CHF/kWh] Price for importing energy carrier 𝑒𝑐𝑖, in period 𝑝
𝑒𝑒𝑐𝑒 ,𝑝 [CHF/kWh] Compensation for exporting energy carrier 𝑒𝑐𝑒, in period 𝑝

𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 [CHF] Fixed cost for the installation of conversion technology 𝑐, in investment stage 𝑤𝑐𝑠

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤 [CHF/kW] Linear, capacity-dependent cost for the installation of conversion technology 𝑐, in investment stage 𝑤𝑐𝑠

𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 [CHF] Fixed cost for the installation of storage technology 𝑠, in investment stage 𝑤𝑐𝑠

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤 [CHF/kWh] Linear, capacity-dependent cost for the installation of storage technology 𝑠, in investment stage 𝑤𝑐𝑠

𝑓𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
[CHF] Fixed cost for the installation of retrofitting technology 𝑔, in investment stage 𝑤𝑓

𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
[CHF/m2] Linear, size-dependent cost for the installation of retrofitting technology 𝑔, in investment stage 𝑤𝑓

𝑝𝑟𝑜𝑗𝑟𝑒𝑡𝑔,𝑤𝑓
[CHF] Retrofitting project fixed cost (e.g. scaffolding) for the installation of retrofitting technology 𝑔 which are relevant for scaffolding

(e.g. facade and Roof), in investment stage 𝑤𝑓
𝑓𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓

[CHF] Fixed cost for the installation of miscellaneous technology 𝑛, in investment stage 𝑤𝑓

𝑙𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓
[CHF/m2] Linear, size-dependent cost for the installation of miscellaneous technology 𝑛, in investment stage 𝑤𝑓

𝑜𝑚𝑐𝑜𝑛𝑣
𝑐 [–] Parameter used to calculate the annual maintenance cost for conversion technology 𝑐 as a fraction of its total investment cost

𝑜𝑚𝑠𝑡𝑜𝑟
𝑠 [–] Parameter used to calculate the annual maintenance cost for storage technology 𝑠 as a fraction of its total investment cost

𝑜𝑚𝑟𝑒𝑡
𝑔 [–] Parameter used to calculate the annual maintenance cost for retrofitting technology 𝑔 as a fraction of its total investment cost

𝑜𝑚𝑚𝑖𝑠𝑐
𝑛 [–] Parameter used to calculate the annual maintenance cost for miscellaneous technology 𝑛 as a fraction of its total investment cost

𝑐𝑠𝑙𝑣𝑔𝑐,𝑤𝑐𝑠
[–] Salvage percentage of initial investment cost for conversion technology 𝑐 that was installed in stage 𝑤𝑐𝑠 and has not reached the

end of its lifetime at the end of the model horizon (Defined for: {𝑤𝑐𝑠 ≥ max
𝑝∈

(𝑝) + 1 − 𝑐𝑙𝑐})

𝑠𝑠𝑙𝑣𝑔𝑠,𝑤𝑐𝑠
[–] Salvage percentage of initial investment cost for storage technology 𝑠 — same formula applies as for 𝑐𝑠𝑙𝑣𝑔𝑐,𝑤𝑐𝑠

𝑟𝑠𝑙𝑣𝑔𝑔,𝑤𝑓
[–] Salvage percentage of initial investment cost for retrofitting technology 𝑔 that was installed in stage 𝑤𝑓 and has not reached the

end of its lifetime at the end of the model horizon (Defined for: {𝑤𝑓 ≥ max
𝑝∈

(𝑝) + 1 − 𝑔𝑙𝑔})

𝑚𝑠𝑙𝑣𝑔𝑛,𝑤𝑓
[–] Salvage percentage of initial investment cost for miscellaneous technology 𝑛 — same formula applies as for 𝑟𝑠𝑙𝑣𝑔𝑔,𝑤𝑓

𝑏𝑎𝑠𝑒𝑟𝑒𝑛𝑡𝑙 [CHF/m2] Base rent for location 𝑙 at the beginning of the horizon
𝑚𝑎𝑥𝑟𝑒𝑛𝑡𝑙,𝑝 [CHF/m2] Maximum market rent feasible to be charged (taken as the 90% quantile at the beginning of the horizon in the relevant ZIP code)

for location 𝑙, in period 𝑝
𝑟𝑒𝑛𝑡𝑒𝑠𝑐𝑎𝑙𝑙,𝑝 [–] Rent escalation parameter depending on market attractiveness for location 𝑙, in period 𝑝
𝑠𝑡𝑟𝑢𝑐𝑡𝑣𝑎𝑐𝑎𝑙,𝑝 [–] Structural vacancy parameter depending on market attractiveness for location 𝑙, in period 𝑝
𝑝𝑎𝑠𝑠𝑜𝑛𝑐,𝑠,𝑔,𝑛 [–] Pass-on cost for conversion (𝑐), storage (𝑠), retrofitting (𝑔), and miscellaneous (𝑛) technologies as a fraction of their total

investment cost
𝑖𝑛𝑡𝑚𝑖𝑛𝑛,𝑓 ,𝑝 [–] Minimum necessity interval period (lower bound) for miscellaneous technologies (𝑛) and retrofitting components (𝑓 ) for location 𝑙
𝑖𝑛𝑡𝑚𝑎𝑥𝑛,𝑓 ,𝑝 [–] Maximum necessity interval period (upper bound) for miscellaneous technologies (𝑛) and retrofitting components (𝑓 ) for location 𝑙
𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 [–] Binary matrix of retrofitting depths (𝑗) to retrofitting components (𝑓 )
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗 [–] Binary matrix of retrofitting technologies (𝑔) to retrofitting depths (𝑗)
𝑚𝑎𝑝𝑑𝑒𝑚𝑔,ℎ [–] Binary matrix of retrofitting technologies (𝑔) to retrofitting technology demands (ℎ)
𝑟𝑙 [–] Building-specific discount rate
22
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Fig. A.14. The three binary mapping matrices 𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 , 𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗 , 𝑚𝑎𝑝𝑑𝑒𝑚𝑔,ℎ conceptually depicted in one matrix with black boxes representing 1’s and white boxes representing
’s.
Table A.6
MANGOret model decision variables.

Parameter Unit Description

Energy system operation

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤,𝑝,𝑑,𝑡 [kWh] Input energy to conversion technology 𝑐, installed at energy system location 𝑙, in investment stage 𝑤, and operating in period 𝑝, day 𝑑,

and time step 𝑡 (Defined for: {𝑦 ≥ 𝑤 and 𝑝 ≤ 𝑤 + 𝑐𝑙𝑐 − 1})
𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

[kWh] Import of energy carrier 𝑒𝑐𝑖, at energy system location 𝑙, in period 𝑝, day 𝑑, and time step 𝑡

𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡

[kWh] Exported energy of energy carrier 𝑒𝑐𝑒, at energy system location 𝑙, in period 𝑝, day 𝑑, and time step 𝑡

Energy system design

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

[kW, m2] New capacity of conversion technology 𝑐, installed at location 𝑙, in investment stage 𝑤𝑐𝑠

𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

[kWh] New capacity of storage technology 𝑠, installed at location 𝑙, in investment stage 𝑤𝑐𝑠

𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

[–] Binary variable denoting the installation of new capacity of conversion technology 𝑐, at location 𝑙, in investment stage 𝑤𝑐𝑠

𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

[–] Binary variable denoting the installation of new capacity of storage technology 𝑠, at location 𝑙, in investment stage 𝑤𝑐𝑠

Retrofitting aspects

𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

[–] Binary variable denoting the installation of new capacity of a retrofitting technology 𝑔, at location 𝑙, in investment stage 𝑤𝑓

𝑌 𝑟𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒
𝑔,𝑙,𝑝 [–] Binary variable denoting the active retrofitting technology 𝑔, at location 𝑙, in period 𝑝

𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟
𝑙,𝑤𝑓

[–] Binary variable representing the change of the retrofitting package at location 𝑙, in investment stage 𝑤𝑓

𝑌 𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓
𝑙,𝑤𝑓

[–] Binary variable representing the change of the retrofitting package at location 𝑙, in investment stage 𝑤𝑓 relevant for project costs such
as scaffolding

𝑌 𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝 [–] Binary variable representing the change of the retrofitting package ℎ, at location 𝑙, in period 𝑝

𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

[–] Binary variable denoting the installation of new capacity of miscellaneous technology 𝑛, at location 𝑙, in investment stage 𝑤𝑓

Cost and emission performance

𝑇 𝑐𝑜𝑠𝑡 [CHF] Total lifetime cost for energy systems and retrofits
𝑇 𝐶𝑂2 [kgCO2] Total lifetime energy system CO2 emissions
𝑇 𝑣𝑎𝑙𝑢𝑒 [CHF] Total lifetime value of building (location 𝑙), defined as the sum of discounted rental income over the horizon, minus discounted total

cost of energy systems and retrofits
𝑟𝑒𝑛𝑡𝑙,𝑝 [CHF] Rent per period for location 𝑙, in period 𝑝
𝑉 𝐴𝐼𝑙,𝑝 [CHF] Value-added investment portion per period supplemented to the rent for location 𝑙, in period 𝑝

𝐶𝐼𝑀𝑃
𝑙,𝑝 [CHF] Total cost due to energy carrier imports at location 𝑙, in period 𝑝

𝐶𝑀𝐴𝐼𝑁𝑇
𝑙,𝑝 [CHF] Total maintenance cost for all conversion, storage, retrofitting, and miscellaneous technologies installed at location 𝑙, in period 𝑝

𝐶𝐼𝑁𝑉
𝑙,𝑤 [CHF] Total investment cost for conversion and storage technologies (TECH) along with retrofitting technologies (RET) and miscellaneous

technologies (MISC) installed at location 𝑙, in investment stages 𝑤𝑐𝑠 and 𝑤𝑓 , respectively
𝑅𝐸𝑋𝑃

𝑙,𝑝 [CHF] Total income due to energy carrier exports at location 𝑙, in period 𝑝

𝑅𝑆𝐿𝑉 𝐺
𝑙 [CHF] Salvage value of all conversion, storage, retrofitting, and miscellaneous technologies at location 𝑙 not reaching the end of their lifetime

at the end of the model horizon
The 𝑇 𝑐𝑜𝑠𝑡 objective is composed of summation terms including
he investment costs for energy technologies (𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻

𝑙,𝑤𝑐𝑠
), retrofitting

echnologies (𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

), and miscellaneous technologies (𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

)
t each location 𝑙 and investment stages 𝑤𝑐𝑠 and 𝑤𝑓 , the energy carrier

import costs (𝐶𝐼𝑀𝑃
𝑙,𝑝 ), maintenance costs (𝐶𝑀𝐴𝐼𝑁𝑇

𝑙,𝑝 ) and revenues due
to energy carrier exports (𝑅𝐸𝑋𝑃

𝑙,𝑝 ) at each location 𝑙 and period 𝑝, and,
finally, the salvage value at each building location 𝑙 at the end of the
model horizon due to technologies not reaching the end of their lifetime
(𝑅𝑆𝐿𝑉 𝐺

𝑙 ). Definitions for these terms are given in Eqs. (A.8) to (A.14).
Note that all cost terms are discounted to present value using the

building-specific discount rate 𝑟𝑙. Cost terms pertaining to investment
expenditure are assumed to occur at the beginning of the investment
stage, hence, the exponent 𝑤𝑐𝑠 − 1 or 𝑤𝑓 − 1, for energy system,
retrofitting, and miscellaneous technologies respectively, in the dis-
counting term of Eqs. (A.8) to (A.10). The same applies to the salvage

𝑆𝐿𝑉 𝐺
23

revenue term (𝑅𝑙 ) with the discounting term using the term |𝑌𝑝|
which denotes the cardinality of the set, in this case refers to the
number of years representing each period.

Due to the addition of model periods representing multiple years at
once, discounting is altered from the original MANGO formulation for
model decision variables 𝐶𝐼𝑀𝑃 , 𝐶𝑀𝐴𝐼𝑁𝑇 , and 𝑅𝐸𝑋𝑃 . Here, we discount
based on the real year of consideration in each period by discounting
for all elements of exponent 𝑖 from all real years 𝑦𝑝 to 𝑦𝑝 + |𝑌𝑝| − 1.

𝐶𝐼𝑁𝑉 ,𝑇𝐸𝐶𝐻
𝑙,𝑤𝑐𝑠

=
∑

𝑐

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠

⋅ 𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

]

⋅
1

(1 + 𝑟𝑙)𝑤𝑐𝑠−1

+
∑

𝑠

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠

⋅ 𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

]

⋅
1

(1 + 𝑟𝑙)𝑤𝑐𝑠−1
, ∀ 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 
(A.8)
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𝐶𝐼𝑁𝑉 ,𝑅𝐸𝑇
𝑙,𝑤𝑓

=
∑

𝑔

[

𝑓𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤

𝑔,𝑙,𝑤𝑓

]

⋅
1

(1 + 𝑟𝑙)
𝑤𝑓−1

+
∑

𝑗,𝑔
𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 =1
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

[

𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤

𝑔,𝑙,𝑤𝑓
⋅ 𝑐𝑜𝑚𝑝𝑎𝑓,𝑙,𝑝

]

⋅
1

(1 + 𝑟𝑙)
𝑤𝑓−1

+
∑

𝑓

[

𝑝𝑟𝑜𝑗𝑟𝑒𝑡𝑔,𝑤𝑓
⋅ 𝑌

𝑟𝑒𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑐𝑎𝑓𝑓
𝑙,𝑤𝑓

⋅ 𝑐𝑜𝑚𝑝𝑎𝑓,𝑙,𝑝
]

⋅
1

(1 + 𝑟𝑙)
𝑤𝑓−1

,

∀ 𝑙 ∈ , 𝑤𝑓 ∈ 

(A.9)

𝐶𝐼𝑁𝑉 ,𝑀𝐼𝑆𝐶
𝑙,𝑤𝑓

=
∑

𝑔

[

𝑓𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓
⋅ 𝑌 𝑚𝑖𝑠𝑐

𝑛,𝑙,𝑤𝑓

]

⋅
1

(1 + 𝑟𝑙)
𝑤𝑓−1

+
∑

𝑔

[

𝑙𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓
⋅ 𝑌 𝑚𝑖𝑠𝑐

𝑛,𝑙,𝑤𝑓
⋅ 𝑚𝑖𝑠𝑐𝑎𝑛,𝑙,𝑝

]

⋅
1

(1 + 𝑟)𝑤𝑓−1
,

∀ 𝑙 ∈ , 𝑤𝑓 ∈ 

(A.10)

𝐶𝐼𝑀𝑃
𝑙,𝑝 =

∑

𝑒𝑐𝑖 ,𝑑,𝑡

[

𝑃 𝑖𝑚𝑝
𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

⋅𝑖𝑒𝑐𝑖 ,𝑝 ⋅𝑛𝑑𝑝,𝑑
]

⋅|𝑌𝑝|⋅
𝑦𝑝+|𝑌𝑝|−1

∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

, ∀ 𝑙 ∈ , 𝑝 ∈ 

(A.11)

𝐶𝑀𝐴𝐼𝑁𝑇
𝑙,𝑝 =

∑

𝑐,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠

⋅ 𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

]

⋅ 𝑜𝑚𝑐𝑜𝑛𝑣
𝑐 ⋅ |𝑌𝑝| ⋅

𝑦𝑝+|𝑌𝑝|−1
∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

+
∑

𝑠,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑠𝑙𝑠−1

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠

⋅ 𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

]

⋅ 𝑜𝑚𝑠𝑡𝑜𝑟
𝑠 ⋅ |𝑌𝑝| ⋅

𝑦𝑝+|𝑌𝑝|−1
∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

+
∑

𝑗,𝑔,𝑓 ,𝑤𝑓
𝑝≥𝑤𝑓

𝑝≤𝑤𝑓 +𝑔𝑙𝑔−1
𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 =1
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

[

𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤

𝑔,𝑙,𝑤𝑓
⋅ 𝑐𝑜𝑚𝑝𝑎𝑓,𝑙,𝑝 + 𝑓𝑐𝑟𝑒𝑡𝑔,𝑤𝑓

⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

]

⋅ 𝑜𝑚𝑟𝑒𝑡
𝑔 ⋅ |𝑌𝑝| ⋅

𝑦𝑝+|𝑌𝑝|−1
∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

+
∑

𝑛,𝑤𝑓
𝑝≥𝑤𝑓

𝑝≤𝑤𝑓 +𝑛𝑙𝑛−1

[

𝑙𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓
⋅ 𝑌 𝑚𝑖𝑠𝑐

𝑛,𝑙,𝑤𝑓
⋅ 𝑚𝑖𝑠𝑐𝑎𝑛,𝑙,𝑝 + 𝑓𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓

⋅ 𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

]

⋅ 𝑜𝑚𝑚𝑖𝑠𝑐
𝑛 ⋅ |𝑌𝑝| ⋅

𝑦𝑝+|𝑌𝑝|−1
∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

, ∀ 𝑙 ∈ , 𝑝 ∈ 

(A.12)

𝑅𝐸𝑋𝑃
𝑙,𝑝 =

∑

𝑒𝑐𝑒 ,𝑑,𝑡

[

𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡

⋅𝑒𝑒𝑐𝑒 ,𝑝⋅𝑛𝑑𝑝,𝑑
]

⋅|𝑌𝑝|⋅
𝑦𝑝+|𝑌𝑝|−1

∑

𝑖=𝑦𝑝

1
(1 + 𝑟𝑙)𝑖

, ∀ 𝑙 ∈ , 𝑝 ∈ 
24

(A.13)
𝑆𝐿𝑉 𝐺
𝑙 =

∑

𝑐,𝑤𝑐𝑠
𝑤𝑐𝑠≥||−𝑐𝑙𝑐+1

[

𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣

𝑐,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠

⋅ 𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠

]

⋅ 𝑐𝑠𝑙𝑣𝑔𝑐,𝑤𝑐𝑠
⋅

1
(1 + 𝑟𝑙)

|𝑌𝑝|

+
∑

𝑠,𝑤𝑐𝑠
𝑤𝑐𝑠≥||−𝑠𝑙𝑠+1

[

𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠
⋅𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟

𝑠,𝑙,𝑤𝑐𝑠
+ 𝑓𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠

⋅ 𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠

]

⋅ 𝑠𝑠𝑙𝑣𝑔𝑐,𝑤𝑐𝑠
⋅

1
(1 + 𝑟𝑙)

|𝑌𝑝|

+
∑

𝑗,𝑔,𝑓 ,𝑤𝑓
𝑝≥𝑤𝑓

𝑝≤𝑤𝑓 +𝑔𝑙𝑔−1
𝑚𝑎𝑝𝑐𝑜𝑚𝑝𝑗,𝑓 =1
𝑚𝑎𝑝𝑑𝑒𝑝𝑡ℎ𝑔,𝑗=1

[

𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤

𝑔,𝑙,𝑤𝑓
⋅ 𝑐𝑜𝑚𝑝𝑎𝑓,𝑙,𝑝 + 𝑓𝑐𝑟𝑒𝑡𝑔,𝑤𝑓

⋅ 𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

]

⋅ 𝑟𝑠𝑙𝑣𝑔𝑔,𝑤𝑓
⋅

1
(1 + 𝑟𝑙)

|𝑌𝑝|

+
∑

𝑛,𝑤𝑓
𝑝≥𝑤𝑓

𝑝≤𝑤𝑓 +𝑛𝑙𝑛−1

[

𝑙𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓
⋅ 𝑌 𝑚𝑖𝑠𝑐

𝑛,𝑙,𝑤𝑓
⋅ 𝑚𝑖𝑠𝑐𝑎𝑛,𝑙,𝑝 + 𝑓𝑐𝑚𝑖𝑠𝑐𝑛,𝑤𝑓

⋅ 𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

]

⋅ 𝑚𝑠𝑙𝑣𝑔𝑛,𝑤𝑓
⋅

1
(1 + 𝑟𝑙)

|𝑌𝑝|
,

∀ 𝑙 ∈ , 𝑝 ∈ 

(A.14)

.5. Constraints

.5.1. Retrofitting energy balance
Eq. (A.15) describes how the energy demands of the end-users at

he different locations are met at each time step of the model via en-
rgy imports, conversion, storage charging and discharging, while also
llowing for exports. Note that the main retrofitting-relevant change
rom MANGO includes the addition of the binary variable 𝑌 𝑟𝑒𝑡𝑑𝑒𝑚

ℎ,𝑙,𝑝 which

enotes which retrofitting packages’ energy demand should be used.

ℎ
𝑑𝑒𝑚𝑒𝑐𝑑 ,ℎ,𝑙,𝑝,𝑑,𝑡 ⋅ 𝑌

𝑟𝑒𝑡𝑑𝑒𝑚
ℎ,𝑙,𝑝 = 𝑃 𝑖𝑚𝑝

𝑒𝑐𝑖 ,𝑙,𝑝,𝑑,𝑡

+
∑

𝑐,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

(

𝑃 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

⋅ 𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤𝑐𝑠
⋅ 𝑐𝑑𝑒𝑔𝑐,𝑒𝑐,𝑤𝑐𝑠 ,𝑝

)

+
∑

𝑠,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑠𝑙𝑠−1

[

𝑠𝑡𝑐𝑠,𝑒𝑐 ⋅ (𝑄𝑑𝑖𝑠
𝑠,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

−𝑄𝑐ℎ
𝑠,𝑙,𝑤𝑐𝑠 ,𝑝,𝑑,𝑡

)
]

− 𝑃 𝑒𝑥𝑝
𝑒𝑐𝑒 ,𝑙,𝑝,𝑑,𝑡

∀ 𝑒𝑐 ∈ , 𝑙 ∈ , 𝑝 ∈  , 𝑑 ∈ , 𝑡 ∈ 

(A.15)

.5.2. Retrofitting-relevant constraints
This section outlines the remaining retrofitting-relevant constraints

sed in the MANGOret model not described in the manuscript.
qs. (A.16) and (A.17) outline the remaining constraints relating to the
odel’s retrofitting functionality. Next, Eqs. (A.18) to (A.27) outline all

onstraints relevant to the number and/or sizing of conversion, storage,
r miscellaneous technologies.

Eq. (A.16) mandates that a miscellaneous technology must be active
= 1) in any given year through the summation of 𝑌 𝑚𝑖𝑠𝑐 .
∑

𝑤𝑓
𝑤𝑓 ≥𝑖𝑛𝑡𝑚𝑖𝑛𝑛,𝑝
𝑤𝑓 ≤𝑖𝑛𝑡𝑚𝑎𝑥𝑛,𝑝

𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤𝑓

= 1,

(A.16)
∀ 𝑛 ∈  , 𝑙 ∈ 
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The ‘retrofit continuity constraint’ in Eq. (A.17) assures that another
retrofit (based on component lifetime) is conducted in all further
intervals after the first necessity interval, representing the deterministic
approach for scheduling.

𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

≥
(

𝑌 𝑟𝑒𝑡𝑛𝑒𝑤
𝑔,𝑙,𝑤𝑓

− 𝑔𝑙𝑔
)

∀ 𝑔 ∈ , 𝑙 ∈ , 𝑤𝑓 ∈  | {𝑤𝑓 − 𝑔𝑙𝑔 ≥ 1}
(A.17)

Next, we constrain the model for both the number and/or capacity
izing of conversion, storage, and miscellaneous technologies. This is
ecessary in order to prevent the model from over-installing technolo-
ies. First, we define two constraints in Eq. (A.18) that both existing
onversion and storage technologies can only be installed in year 1.

𝑐𝑜𝑛𝑣
𝑐𝑒𝑥𝑡 ,𝑙,𝑤𝑐𝑠

= 0 AND 𝑌 𝑠𝑡𝑜𝑟
𝑠𝑒𝑥𝑡 ,𝑙,𝑤𝑐𝑠

= 0 | {𝑤𝑐𝑠 ≠ 1}

𝑌 𝑐𝑜𝑛𝑣
𝑐𝑒𝑥𝑡 ,𝑙,𝑤𝑐𝑠

≤ 1 AND 𝑌 𝑠𝑡𝑜𝑟
𝑠𝑒𝑥𝑡 ,𝑙,𝑤𝑐𝑠

≤ 1 | {𝑤𝑐𝑠 = 1},

∀𝑐𝑒𝑥𝑡 ∈ , 𝑠𝑒𝑥𝑡 ∈  , 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 

(A.18)

In Eqs. (A.19) and (A.20), we define the maximum number of
heating and cooling dispatchable technologies allowed to be alive in a
given period, respectively, based on real-world real estate management
constraints.

∑

𝑐𝑑ℎ,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

𝑌 𝑐𝑜𝑛𝑣
𝑐𝑑ℎ ,𝑙,𝑤𝑐𝑠

≤ 𝑚𝑎𝑥𝑐𝑑ℎ ,

∀ 𝑒𝑐𝑑 ∈ , 𝑙 ∈ , 𝑝 ∈  |

{𝑒𝑐𝑑 = 𝐻𝑒𝑎𝑡}

(A.19)

∑

𝑐𝑑𝑐 ,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

𝑌 𝑐𝑜𝑛𝑣
𝑐𝑑𝑐 ,𝑙,𝑤𝑐𝑠

≤ 𝑚𝑎𝑥𝑐𝑑𝑐 ,

∀ 𝑒𝑐𝑑 ∈ , 𝑙 ∈ , 𝑝 ∈  |

{𝑒𝑐𝑑 = 𝐶𝑜𝑜𝑙}

(A.20)

Next, we set limits for the capacity sizes of conversion and storage
technologies. First, Eq. (A.21) sets a constraint for the maximum ca-
pacity of dispatchable technologies according to the relevant maximum
energy demand per energy carrier of any retrofitting package which
that technology could serve, in order to avoid over-investment and
retain a safety factor. Second, Eq. (A.22) utilizes two parameters to
convert the maximum kWh of storage based on a space utilization
factor per technology (𝑠𝑎𝑓𝑠) and the maximum floor area available
(𝑓𝑠𝑎) for the example of a utility room.

𝑁𝐶𝐴𝑃 𝑐𝑜𝑛𝑣
𝑐𝑑 ,𝑙,𝑤𝑐𝑠

≤ 𝑚𝑎𝑥(𝑑𝑒𝑚𝑒𝑐𝑑 ,ℎ,𝑙,𝑝,𝑑,𝑡)

∀ 𝑐𝑑 ∈ , 𝑙 ∈ , 𝑤𝑐𝑠 ∈  |

{ 𝑒𝑐𝑑 ∈  AND 𝑝 ≥ 𝑤𝑐𝑠 AND 𝑝 ≤ 𝑤𝑐𝑠 + 𝑐𝑙𝑐 − 1 AND
𝜂𝑐𝑜𝑛𝑣𝑐𝑑 ,𝑒𝑐,𝑤

> 0}

(A.21)

∑

𝑠,𝑤𝑐𝑠
𝑝≥𝑤𝑐𝑠

𝑝≤𝑤𝑐𝑠+𝑠𝑙𝑠−1

𝑁𝐶𝐴𝑃 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤𝑐𝑠 ,𝑝

∕𝑠𝑎𝑓𝑠 ≤ 𝑓𝑎𝑙,𝑝 ⋅ 𝑓𝑠𝑎,

∀ 𝑙 ∈ , 𝑤𝑐𝑠 ∈  , 𝑝 ∈  |

{𝑤𝑐𝑠 = 𝑝}

(A.22)

Eqs. (A.23) to (A.25) state that there can only be one conversion,
storage, and miscellaneous technology type (e.g. one ASHP, one bat-
tery, one kitchen & bathroom) installed in any given stage, to avoid
25

multiple of the same technology installed in the same investment stage s
Table A.7
Intervention necessity intervals for each of the four case study buildings reported in
real years (𝑦𝑝) as outputs from the Schroeder method (see Section 2.2).

Component Building 𝑖𝑛𝑡𝑚𝑖𝑛 𝑖𝑛𝑡𝑚𝑎𝑥

Roof

Building 1 2 15
Building 2 1 3
Building 3 3 16
Building 4 5 18

Facade

Building 1 13 26
Building 2 3 16
Building 3 3 16
Building 4 5 18

Windows

Building 1 1 6
Building 2 9 21
Building 3 1 7
Building 4 1 9

Kitchen + bath

Building 1 2 8
Building 2 10 16
Building 3 10 16
Building 4 1 3

Pipes

Building 1 9 23
Building 2 1 10
Building 3 1 13
Building 4 1 13

while they are alive.
∑

𝑤′
𝑐𝑠

𝑤′
𝑐𝑠≥𝑤𝑐𝑠

𝑤′
𝑐𝑠≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

𝑌 𝑐𝑜𝑛𝑣
𝑐,𝑙,𝑤′

𝑐𝑠
≤ 1,

∀ 𝑐 ∈ , 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 

(A.23)

∑

𝑤′
𝑐𝑠

𝑤′
𝑐𝑠≥𝑤𝑐𝑠

𝑤′
𝑐𝑠≤𝑤𝑐𝑠+𝑠𝑙𝑠−1

𝑌 𝑠𝑡𝑜𝑟
𝑠,𝑙,𝑤′

𝑐𝑠
≤ 1,

∀ 𝑠 ∈  , 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 

(A.24)

∑

𝑤′
𝑓

𝑤′
𝑓 ≥𝑤𝑓

𝑤′
𝑓 ≤𝑤𝑓 +𝑛𝑙𝑛−1

𝑌 𝑚𝑖𝑠𝑐
𝑛,𝑙,𝑤′

𝑓
≤ 1,

∀ 𝑛 ∈  , 𝑙 ∈ , 𝑤𝑓 ∈ 

(A.25)

To add an additional real world constraint on specific heating
ystem types to simplify real estate owners’ decisions, we state in
qs. (A.26) and (A.27) that there can only one of either a ASHP or
SHP alive, or only one of either an oil or gas boiler alive in any given

tage.
∑

𝑤′
𝑐𝑠

𝑤′
𝑐𝑠≥𝑤𝑐𝑠

𝑤′
𝑐𝑠≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

𝑌 𝑐𝑜𝑛𝑣
𝐴𝑆𝐻𝑃 ,𝑙,𝑤′

𝑐𝑠
+ 𝑌 𝑐𝑜𝑛𝑣

𝐺𝑆𝐻𝑃 ,𝑙,𝑤′
𝑐𝑠
≤ 1,

∀ 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 

(A.26)

∑

𝑤′
𝑐𝑠

𝑤′
𝑐𝑠≥𝑤𝑐𝑠

𝑤′
𝑐𝑠≤𝑤𝑐𝑠+𝑐𝑙𝑐−1

𝑌 𝑐𝑜𝑛𝑣
𝑂𝑖𝑙,𝑙,𝑤′

𝑐𝑠
+ 𝑌 𝑐𝑜𝑛𝑣

𝐺𝑎𝑠,𝑙,𝑤′
𝑐𝑠
≤ 1,

∀ 𝑙 ∈ , 𝑤𝑐𝑠 ∈ 

(A.27)

.6. Further information on the Schroeder method

While many methodologies for considering retrofit scheduling exist
or both deterministic and probabilistic classes, most real estate owners
se deterministic methods for their simplicity and robustness [105].
eterministic approaches deem the necessity to replace a component
ased on their remaining End-of-Life (EOL) or otherwise expected
ervice life, treated simplistically as a single value, further mandating
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Fig. A.15. Detail on the classes of building types, Swiss geographic zones, and building ages which were clustered to develop the archetypes. These archetypes were then simulated
or each ten year time step from 2020–2060, over 3 climate scenarios, and over the 11 retrofitting packages.
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n installation directly after the components’ retirement. Here, man-
gers evaluate the techno-economic attractiveness of retrofitting the
omponent, along with the possibility to align various component’s EOL
n order to reduce management or project costs. This is important as the
llowable retrofitting budget considers all components to be retrofitted:
nergy systems, retrofits, and non-energy [15].

However, deterministic elements are limited in considering a more
xpanded techno-economic decision space of various intervention years
nd technology options [76]. This is because building components de-
rade at various rates, inherently allowing for flexibility in investment
ecisions on a year-to-year basis to align with budgeting or managerial
onstraints. Building owners often utilize such flexibility in retrofit
cheduling to determine step-by-step renovation measures [76,106,
07], implying that probabilistic methods would be better suited to
apture real-world aspects.

A number of probabilistic methodologies are available for retrofit
cheduling, typically taking a Life-Cycle Costing (LCC) approach [76,
07,108]. One intuitive methodology widely used in the real estate
ndustry for supporting strategic maintenance and renovation deci-
ions for mixed-use portfolios is named after the original author, Jules
chroeder [78,79]. The methodology is based on a two-phase non-
inear method to degrade components’ value over their remaining
xpected service life, covering all of the main components considered
n renovations.4 The main benefit of the probabilistic Schroeder method
s its simplicity. Relying on a few standardized parameters such as
omponent lifetimes, degradation factors, among others, the method
reates degradation curves for each component to output a range of
ears in which a renovation would be suitable [79], as shown in the
anuscript in Fig. 4. Table A.7 reports the necessity intervals for each

ase study building, as the output of the Schroeder method.

.7. Further information on the archetypal energy demand database

Each existing building presents a certain uniqueness depending
n the building type, construction quality, and age, which vary the

4 Examples of considered components are: Windows, insulation and renova-
ion of the Facade, Roof, and Basement; thermal distribution and production;
lectrical systems; along with other non-energy related elements such as lifts,
anitary facilities, interior walls, etc.
26

a

retrofitting packages’ energy demands [109]. Since a complete un-
derstanding of the retrofitting project is not available until technical
planning several years before project start, typically engineers rely on
deterministic norms (e.g. kWh/m2) to estimate retrofitting packages’
energy demands for various building types, constructions, and ages
in a certain climate zone [51]. Advancing beyond norms to estimate
retrofitting packages’ energy demands, a wide range of studies have
employed urban building energy modeling and simulation for archety-
pal buildings in a certain city, state, or country [110,111]. We build
on these studies by utilizing a combination of government and open-
source databases to develop the archetypal energy demand database for
Switzerland.

The GWR database of residential buildings is used to identify res-
idential single and multi-family homes [82]. Further, we utilize the
STATENT database to identify commercial building use [83]. This is
combined with the building geometry that is provided from Open-
StreetMap data [84]. A significant part of the methodologies used in the
creation of this database are reported in Murray et al. [48,112], where
a similar set of retrofitting packages (ℎ) – combinations of retrofitting
depths (𝑗) – were utilized although without the use of retrofitting
technologies (𝑔). In all, there are 11 retrofitting packages simulated for
eating, cooling, and electricity demands to 2050.

Depicted in Fig. A.15, buildings are clustered based on their location
Switzerland’s 7 major geographic zones), major building types, and
ges. These building types also include the most common categories
f mixed-use buildings if the building types include both residential
nd businesses. Within each of these sub-categories, the buildings are
lustered according to their total floor area, the number of occupants
or residential buildings, and number of employees for commercial
uildings.

The clusters are identified using the k-medoids technique, which
dentifies a maximally representative building for each cluster, and as-
igns this as the archetype. K-medoids is a variation of the unsupervised
-means algorithm that assigns the centroid of the cluster to one of the
uildings within the set of the buildings, commonly used for building
nergy systems [139]. K-means would normally assign the centroid to
he theoretical feature center of the group, but using this dataset, this
ould result in an artificial building. To simulate real buildings, the k-
edoids method is used. The number of centroids for each sub-category

s chosen for the number that results in the highest silhouette value,
nd thus the most representative clustering. This resulted typically
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Table B.8
Energy carrier import prices and export compensation, along with the CO2 emission factor for grid electricity during the 30-year planning horizon. All price and compensation
units are in CHF/kWh and the CO2 emission factor in kgCO2/kWh. Constant values were used for life cycle emissions parameters for the following energy carriers: natural gas
(𝑐𝑔𝑎𝑠 = 0.228 kgCO2/kWh), fuel oil (𝑐𝑜𝑖𝑙 = 0.301 kgCO2/kWh), and biomass (𝑐𝑏𝑖𝑜 = 0.027 kgCO2/kWh) [113].

Import prices Export compensation CO2 emission factors

Ref. [114,115] [114,115] [114,115] [114,115] [115,116]
Year Fuel oil, 𝑖𝑜𝑖𝑙,𝑦𝑝 Natural gas, 𝑖𝑔𝑎𝑠,𝑦𝑝 Biomass, 𝑖𝑏𝑖𝑜,𝑦𝑝 Grid electricity, 𝑖𝑒𝑙𝑒𝑐,𝑦𝑝 Grid electricity, 𝑒𝑒𝑙𝑒𝑐,𝑦𝑝 Grid electricity, 𝑐𝑒𝑙𝑒𝑐,𝑦𝑝
2021 0.093 0.069 0.072 0.161 0.054 0.102
2022 0.095 0.070 0.074 0.163 0.054 0.101
2023 0.096 0.071 0.076 0.165 0.055 0.099
2024 0.097 0.072 0.079 0.167 0.056 0.098
2025 0.099 0.073 0.081 0.169 0.056 0.096
2026 0.100 0.075 0.085 0.171 0.057 0.095
2027 0.102 0.076 0.089 0.173 0.058 0.094
2028 0.105 0.078 0.093 0.175 0.058 0.092
2029 0.107 0.080 0.096 0.177 0.059 0.091
2030 0.109 0.081 0.100 0.180 0.060 0.089
2031 0.112 0.083 0.103 0.181 0.060 0.088
2032 0.113 0.084 0.106 0.183 0.061 0.087
2033 0.115 0.085 0.108 0.185 0.062 0.085
2034 0.117 0.086 0.111 0.187 0.062 0.084
2035 0.118 0.088 0.114 0.188 0.063 0.082
2036 0.120 0.088 0.116 0.189 0.063 0.081
2037 0.121 0.089 0.118 0.189 0.063 0.079
2038 0.122 0.090 0.120 0.189 0.063 0.078
2039 0.124 0.091 0.122 0.189 0.063 0.077
2040 0.125 0.092 0.124 0.190 0.063 0.075
2041 0.126 0.093 0.125 0.191 0.064 0.074
2042 0.127 0.093 0.126 0.192 0.064 0.072
2043 0.128 0.094 0.128 0.193 0.064 0.071
2044 0.128 0.094 0.129 0.194 0.065 0.070
2045 0.129 0.095 0.130 0.195 0.065 0.068
2046 0.130 0.095 0.131 0.195 0.065 0.067
2047 0.131 0.096 0.133 0.196 0.065 0.065
2048 0.131 0.096 0.134 0.196 0.065 0.064
2049 0.132 0.097 0.135 0.197 0.066 0.063
2050 0.133 0.098 0.136 0.197 0.066 0.075
Table B.9
Dynamic linear cost and efficiency coefficients of GSHP, ASHP & comp. chiller, CHP, PV, and battery technologies during the 30-year planning horizon based on the learning curve
coefficient (𝜇) for each technology, 𝐶𝑦 = 𝐶𝑜 ⋅ 𝑒−𝜇𝑦. All linear cost (𝑙𝑐) units are in CHF/kW. In the Table, references labeled with ∗ are used to obtain current (2021) cost values
and efficiencies for the technologies, while references labeled with + are used to create projections for the future.

GSHP ASHP & Comp. chiller CHP PV Battery

𝜇 0.035 0.027 0.005 0.021 0.019

Ref. [117]∗, [118]+ [119]∗, [120]∗,+, [121]∗,+ [122]∗, [123]∗, [118]+ [119]∗, [120]∗,+, [121]∗,+ [124]∗,+ [125]+, [124]∗ [125]∗, [126]+ [127]∗, [128]+, [129]+

Year 𝑙𝑐𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤𝑐𝑠
𝜂𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤𝑐𝑠

𝑙𝑐𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤𝑐𝑠
, 𝑙𝑐𝑐𝑜𝑛𝑣𝐶𝐶,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤𝑐𝑠
, 𝜂𝑐𝑜𝑛𝑣𝐶𝐶,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝐶𝐻𝑃 ,𝑤𝑐𝑠
𝑙𝑐𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤𝑐𝑠
𝑙𝑐𝑠𝑡𝑜𝑟𝐵𝐴𝑇 ,𝑤𝑐𝑠

2021 1827 3.75 858 3.05 900 267 16.6% 367
2022 1765 3.79 835 3.08 896 261 16.8% 360
2023 1704 3.83 813 3.11 891 256 17.0% 354
2024 1645 3.87 791 3.14 887 251 17.2% 347
2025 1589 3.91 770 3.17 882 246 17.4% 341
2026 1534 3.95 750 3.20 878 241 17.6% 334
2027 1481 3.99 730 3.24 873 236 17.7% 328
2028 1430 4.02 710 3.27 869 231 17.9% 322
2029 1381 4.06 691 3.30 865 226 18.1% 316
2030 1334 4.10 673 3.33 860 221 18.3% 310
2031 1288 4.14 655 3.36 856 217 18.5% 304
2032 1243 4.18 638 3.39 852 213 18.7% 298
2033 1201 4.22 621 3.43 848 208 18.9% 293
2034 1159 4.26 604 3.46 843 204 19.0% 287
2035 1120 4.30 588 3.49 839 200 19.2% 282
2036 1081 4.33 572 3.52 835 196 19.4% 277
2037 1044 4.37 557 3.55 831 192 19.6% 271
2038 1008 4.41 542 3.58 827 188 19.8% 266
2039 973 4.45 528 3.61 823 184 20.0% 261
2040 940 4.49 514 3.65 818 180 20.1% 257
2041 907 4.53 500 3.68 814 176 20.3% 252
2042 876 4.57 487 3.71 810 173 20.5% 247
2043 846 4.61 474 3.74 806 169 20.7% 242
2044 817 4.65 461 3.77 802 166 20.9% 238
2045 789 4.68 449 3.80 798 162 21.1% 233

(continued on next page)
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Table B.9 (continued).
GSHP ASHP & Comp. chiller CHP PV Battery

𝜇 0.035 0.027 0.005 0.021 0.019

Ref. [117]∗, [118]+ [119]∗, [120]∗,+, [121]∗,+ [122]∗, [123]∗, [118]+ [119]∗, [120]∗,+, [121]∗,+ [124]∗,+ [125]+, [124]∗ [125]∗, [126]+ [127]∗, [128]+, [129]+

Year 𝑙𝑐𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤𝑐𝑠
𝜂𝑐𝑜𝑛𝑣𝐺𝑆𝐻𝑃 ,𝑤𝑐𝑠

𝑙𝑐𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤𝑐𝑠
, 𝑙𝑐𝑐𝑜𝑛𝑣𝐶𝐶,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝐴𝑆𝐻𝑃 ,𝑤𝑐𝑠
, 𝜂𝑐𝑜𝑛𝑣𝐶𝐶,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝐶𝐻𝑃 ,𝑤𝑐𝑠
𝑙𝑐𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤𝑐𝑠

𝜂𝑐𝑜𝑛𝑣𝑃𝑉 ,𝑤𝑐𝑠
𝑙𝑐𝑠𝑡𝑜𝑟𝐵𝐴𝑇 ,𝑤𝑐𝑠

2046 762 4.72 437 3.84 794 159 21.3% 229
2047 736 4.76 425 3.87 790 156 21.4% 225
2048 710 4.80 414 3.90 786 153 21.6% 221
2049 686 4.84 403 3.93 782 150 21.8% 216
2050 662 4.88 392 3.96 779 146 22.0% 212
2]
Table B.10
Constant linear costs, conversion efficiency, lifetime, O&M cost, pass-on rates, and embodied emissions characteristics of all conversion technologies. Where there are missing values
(–), parameters change over the 30-year planning horizon (see Table B.9). Comp. chillers are modeled with the same efficiency as ASHPs, with ASHPs not being able to be used
reversibly. Other miscellaneous parameters such as the maximum number of heating 𝑚𝑎𝑥𝑐𝑑ℎ and cooling 𝑚𝑎𝑥𝑐𝑑𝑐 technologies, are set at 2 and 1 respectively based on consultations
from the building owner.

Technical characteristic GSHP ASHP Oil boiler Natural gas boiler Biomass boiler CHP Abs. chiller Comp. chiller PV

Linear conversion technology
cost, 𝑙𝑐𝑐𝑜𝑛𝑣𝑐,𝑤𝑐𝑠

(CHF/kW)
– – 441 [130] 649 [119] 825 [63] – 549 [131] – –

Conversion factor, 𝜂𝑐𝑜𝑛𝑣𝑐,𝑒𝑐,𝑤𝑐𝑠 – – 92% [130] 91% [117] 89% [130] 55% (thermal)
35% (electrical)
[117]

76% [131] – –

Conversion technology lifetime,
𝑐𝑙𝑐 (y𝑝)

23 [117] 21 [122] 22 [127] 20 [117] 20 [117] 20 [117] 20 [131] 20 [131] 27 [13

Maintenance cost factor, 𝑜𝑚𝑐𝑜𝑛𝑣
𝑐 0.8%

[133]
0.8%
[133]

2.3% [122] 2.4% [122] 2.1% [134] 5.0% [134] 2.0% [131] 0.8% [118] 1.7%
[127]

Pass-on rate, 𝑝𝑎𝑠𝑠𝑜𝑛𝑐 [96] 100% 100% 0% 0% 100% 50% 50% 100% 100%
Embodied emissions, 𝑐𝑐,𝑤𝑐𝑠

(kgCO2/kW) [113]
273 364 51 51 51 364 364 364 254
Table B.11
Constant techno-economic characteristics of thermal and the battery electrical storage
technologies. The floor area available for storage technologies 𝑓𝑠𝑎 in utility rooms is
set to 5%. Storage technology floor area factors 𝑠𝑎𝑓 𝑠 in kWh/m2 were set at HWTS -
9, and Battery - 5 based on industry-standards.

Technical characteristic Thermal Battery

Charge/discharge efficiency, 𝜂𝑐ℎ𝑠 ∕𝜂𝑑𝑖𝑠𝑠 91% [34] 96% [117]
Maximum charge/discharge rate, 𝑞𝑐ℎ,𝑚𝑎𝑥𝑠 ∕𝑞𝑑𝑖𝑠,𝑚𝑎𝑥𝑠 25% [34] 25% [125]
Self-discharge rate, 𝜂𝑠𝑒𝑙𝑓𝑠 0.750% [134] 0.054% [135]
Linear storage technology cost, 𝑙𝑐𝑠𝑡𝑜𝑟𝑠,𝑤𝑐𝑠

(CHF/kWh) 13 [117] –
Storage technology lifetime, 𝑠𝑙𝑠 (y𝑝) 23 [136] 13 [125]
Yearly storage degradation coefficient, 𝑠𝑦𝑑𝑒𝑔𝑠 0% 2.0% [137,138]
Maintenance cost factor, 𝑜𝑚𝑠𝑡𝑜𝑟

𝑠 [134] 1.5% 2.5%
Pass-on rate, 𝑝𝑎𝑠𝑠𝑜𝑛𝑠 [96] 50% 50%
Embodied emissions, 𝑐𝑠,𝑤𝑐𝑠

(kgCO2/kWh) [113] 5 157

between 1–5 centroids for each sub-category of building defined by
location, age and building type. Lastly, a k-Nearest Neighbors (kNN)
classification algorithm is trained to assign each building of a certain
location, type and age sub-category to the nearest centroid (archetype).
Since the original dataset was not comprehensive for every building
in Switzerland, additional buildings can also be assigned to a centroid
using this kNN model.

Some assumptions were made in the clustering process based on
data retrieved from the databases. For example, buildings which were
classified as SFH mixed-use were simulated assuming SFH only. This
is because mixed-use SFHs often do not exist in reality and this was
seen to be an anomaly of the clustering procedure. There were several
other buildings types assigned in the clustering: Water, Arts, Power,
Transportation, Mining, Agriculture, Trade. Inspection of the clustering
assignment led us to believe that these were headquarter buildings of
different companies and therefore, these buildings were all simulated
as the Office archetype.

We used a nearest-neighbor spatial join to match the case study
addresses to the assigned buildings in the database. This process had a
mean join distance of 12.6 m and a maximum join distance of 208 m.
28
For the cases with a large join distance, we assume that the correct
archetype was assigned to the building due to the likelihood of similar
buildings being located near each other. As more data becomes avail-
able, the quality and completeness of input data will improve leading
to an improvement in archetype classification and higher accuracy in
the spatial join.

Archetypal energy demand approaches employ a wide range of
input data assumptions, building energy simulation models, and cali-
bration methodologies, making validation and verification of building
energy models difficult [140,141]. Particularly important, while diffi-
cult to capture in parametric analysis, is the consideration of the energy
performance gap [142]. While the developed database is deterministic,
we are able to capture uncertainty of climate change RCP scenarios
which has been shown to be important [143,144] due to the potential
effects of climate change to reduce heating and increase cooling de-
mand, for the example of Europe [145]. In future work, such an rich
archetypal database could be up-scaled to provide high-level insights
on energy demands, along with other risk factors for demands such
as economic shocks [146]. This could lend further insight into studies
focusing on the Swiss heating [147–150] and cooling [151] demands
over time considering climate change, or all of them together [152].

Appendix B. Techno-economic database parameter values

Tables B.8 to B.14 comprise all dynamic and static parameters of
the techno-economic database.

Embodied emissions parameters of all technologies are presented as
static values. While circular economy initiatives in the building indus-
try are making strides in reducing these figures from today, due to data
unavailability they are kept constant for all technologies. Further, life
cycle grid electricity emission factors (kg CO2-eq) for the beginning of
the time horizon are taken from a Swiss government project according
to the ecoinvent methodology.



Applied Energy 314 (2022) 118901I. Petkov et al.
Table B.12
Constant techno-economic characteristics of Window component retrofitting technologies.
Technical characteristic — 𝑊 𝑖𝑛𝑑𝑜𝑤 𝑀𝑖𝑛𝑃 𝑙𝑎𝑠𝑡𝑖𝑐 𝑇 𝑎𝑟𝑃 𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑖𝑛𝑊 𝑜𝑜𝑑𝐴𝑙 𝑇 𝑎𝑟𝑊 𝑜𝑜𝑑𝐴𝑙

Linear retrofit tech. cost, 𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓
(CHF/m2) [153] 586 644 645 709

Retrofit component lifetime, 𝑔𝑙𝑔 (y𝑝) [154] 32 32 32 32
Maintenance cost factor, 𝑜𝑚𝑟𝑒𝑡

𝑔 [153] 0.5 0.5% 0.5% 0.5%
Pass-on rate, 𝑝𝑎𝑠𝑠𝑜𝑛𝑔 [96] 20% 20% 25% 25%
Embodied emissions, 𝑐𝑔,𝑤𝑓

(kgCO2/m2) [113] 285 342 217 260
Table B.13
Constant techno-economic characteristics of Facade and Roof component retrofitting technologies. The pass-on rate for all Facade technologies
is 65% while the pass-on rate for all Roof technologies is 20% [96]. The fixed retrofit project cost for scaffolding is set to 15 CHF/m2 per
facade area.
Technical characteristic — 𝑅𝑜𝑜𝑓&𝐹𝑎𝑐𝑎𝑑𝑒 𝑀𝑖𝑛𝑋𝑃𝑆 𝑇 𝑎𝑟𝑋𝑃𝑆 𝑀𝑖𝑛𝐸𝑃𝑆 𝑇 𝑎𝑟𝐸𝑃𝑆 𝑀𝑖𝑛𝑆𝑡𝑜𝑛𝑒 𝑇 𝑎𝑟𝑆𝑡𝑜𝑛𝑒
Linear retrofit tech. cost, 𝑙𝑐𝑟𝑒𝑡𝑔,𝑤𝑓

(CHF/m2) [153] 150 165 180 198 218 240
Retrofit component lifetime, 𝑔𝑙𝑔 (y𝑝) [154] 40 40 40 40 40 40
Maintenance cost factor, 𝑜𝑚𝑟𝑒𝑡

𝑔 [153] 0.5% 0.5 0.5% 0.5% 0.5% 0.5%
Embodied emissions, 𝑐𝑔,𝑤𝑓

(kgCO2/m2) [48,113,155] 33 40 24 29 18 22
Table B.14
Constant techno-economic characteristics of miscellaneous technologies. Due to data
unavailability, costs and lifetimes for kitchens and bathrooms are based on interviews
with the building owner.

Technical characteristic Kitchen + bathrooms Pipes

Linear misc. technology cost, 𝑙𝑐𝑟𝑒𝑡𝑛,𝑤𝑓
(CHF/unit) 8000 348 [153]

Misc. component lifetime, 𝑛𝑙𝑛 (y𝑝) 20 40 [154]
Maintenance cost factor, 𝑜𝑚𝑚𝑖𝑠𝑐

𝑛 [153] 0.5% 0.5%
Pass-on rate, 𝑝𝑎𝑠𝑠𝑜𝑛𝑛 [96] 75% 10%
Embodied emissions, 𝑐𝑛,𝑤𝑓

(kgCO2/unit) [113] 2250 27.3

References

[1] Levesque A, Pietzcker RC, Baumstark L, Luderer G. Deep decarbonisation of
buildings energy services through demand and supply transformations in a 1.5◦

c scenario. Environ Res Lett 2021;16(5):054071. http://dx.doi.org/10.1088/
1748-9326/ABDF07.

[2] Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V, McCollum DL, Rao ND,
Riahi K, Rogelj J, De Stercke S, Cullen J, Frank S, Fricko O, Guo F, Gidden M,
Havlík P, Huppmann D, Kiesewetter G, Rafaj P, Schoepp W, Valin H. A low en-
ergy demand scenario for meeting the 1.5◦ c target and sustainable development
goals without negative emission technologies. Nat. Energy 2018;3(6):515–27.
http://dx.doi.org/10.1038/s41560-018-0172-6.

[3] IEA, UNEP. 2019 global status report for buildings and construction. Tech. rep.,
International Energy Agency (IEA), United Nations Environment Programme
(UNEP); 2019, URL https://webstore.iea.org/download/direct/2930?fileName=
2019_Global_Status_Report_for_Buildings_and_Construction.pdf.

[4] Sandberg NH, Heidrich O, Dawson R, Dimitriou S, Vimm-r T, Filippidou F,
Stegnar G, Šijanec Zavrl M, Brattebø H. Dynamic building stock modelling:
Application to 11 European countries to support the energy efficiency and
retrofit ambitions of the EU. Energy Build 2016;132:26–38. http://dx.doi.org/
10.1016/J.ENBUILD.2016.05.100.

[5] SFOE. Energy strategy 2050: Once the new energy act is in force. Tech. rep.,
Swiss Federal Office of Energy (SFOE); 2018, p. 1–25, URL http://www.bfe.
admin.ch/energiestrategie2050/index.html?lang=en{&}dossier_id=07008.

[6] European Commission - Joint Research Centre. Achieving the cost-effective
energy transformation of Europe’s buildings. Tech. rep., 2019, p. 1–56, URL
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC117739/cost_
optimal_energy_renovations_online.pdf.

[7] European Commission. A Renovation Wave for Europe - greening
our buildings, creating jobs, improving lives. Tech. rep., 2020, URL
https://eur-lex.europa.eu/resource.html?uri=cellar:0638aa1d-0f02-11eb-bc07-
01aa75ed71a1.0003.02/DOC_1{&}format=PDF.

[8] Kontokosta CE. Modeling the energy retrofit decision in commercial office
buildings. Energy Build 2016;131:1–20. http://dx.doi.org/10.1016/j.enbuild.
2016.08.062.

[9] Geltner DM, Miller NG, Clayton J, Eichholtz P. Commercial real estate: Analysis
and investments. 3rd ed.. Mason, OH, USA: Oncourse Learning; 2014, p. 1–826,
3rd edition.

[10] Hecher M, Hatzl S, Knoeri C, Posch A. The trigger matters: The decision-making
process for heating systems in the residential building sector. Energy Policy
2017;102:288–306. http://dx.doi.org/10.1016/j.enpol.2016.12.004.

[11] Federal Statistical Office of Switzerland (Bundesamt für Statistik). Bau- und
wohnbaustatistik (construction and housing statistics). 2018.
29
[12] 2o Investing Initiative and Wüest Partner. Bridging the gap: Measuring progress
on the climate goal alignment and climate actions of Swiss Financial Insti-
tutions. Tech. rep., Swiss Federal Office for the Environment (SFOE); 2020,
p. 1–104, URL https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-
specialists/climate-and-financial-markets.html{#}-194175513.

[13] SSF. EU action plan on sustainable finance: Effects on Swiss financial institu-
tions. Tech. rep., Swiss Sustainable Finance (SSF); 2019, p. 12, URL https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097.

[14] EBA. EBA action plan on sustainable finance. Tech. rep., European Bank-
ing Authority (EBA); 2019, p. 1–22, URL https://eba.europa.eu/sites/default/
documents/files/document_library//EBAActionplanonsustainablefinance.pdf.

[15] Petkov I, Knoeri C, Hoffmann VH. The interplay of policy and energy retrofit
decision-making for real estate decarbonization. Environ Res: Infrastruct Sustain
2021;1(3):035006. http://dx.doi.org/10.1088/2634-4505/ac3321.

[16] Larsen T. Implementing ESG in private real estate portfolios: The case of US
and pan-europe core fund managers. J Sustain Real Estate 2010;2(1):249–67.
http://dx.doi.org/10.1080/10835547.2010.12091806.

[17] Streicher KN, Mennel S, Chambers J, Parra D, Patel MK. Cost-effectiveness
of large-scale deep energy retrofit packages for residential buildings under
different economic assessment approaches. Energy Build 2020;215:109870.
http://dx.doi.org/10.1016/j.enbuild.2020.109870.

[18] Deb C, Schlueter A. Review of data-driven energy modelling techniques for
building retrofit. Renew Sustain Energy Rev 2021;144:110990. http://dx.doi.
org/10.1016/J.RSER.2021.110990.

[19] Christensen PH, Robinson SJ, Simons RA. The influence of energy considera-
tions on decision making by institutional real estate owners in the U.S.. Renew
Sustain Energy Rev 2018;94:275–84. http://dx.doi.org/10.1016/j.rser.2018.05.
061.

[20] Nielsen AN, Jensen RL, Larsen TS, Nissen SB. Early stage decision support for
sustainable building renovation - a review. Build Environ 2016;103:165–81.
http://dx.doi.org/10.1016/j.buildenv.2016.04.009.

[21] Gulotta TM, Cellura M, Guarino F, Longo S. A bottom-up harmonized energy-
environmental models for europe (BOHEEME): A case study on the thermal
insulation of the EU-28 building stock. Energy Build 2021;231:110584. http:
//dx.doi.org/10.1016/J.ENBUILD.2020.110584.

[22] Streicher KN, Berger M, Panos E, Narula K, Soini MC, Patel MK. Optimal
building retrofit pathways considering stock dynamics and climate change
impacts. Energy Policy 2021;152:112220. http://dx.doi.org/10.1016/J.ENPOL.
2021.112220.

[23] Sandberg NH, Næss JS, Brattebø H, Andresen I, Gustavsen A. Large potentials
for energy saving and greenhouse gas emission reductions from large-scale
deployment of zero emission building technologies in a national building
stock. Energy Policy 2021;152:112114. http://dx.doi.org/10.1016/j.enpol.2020.
112114.

[24] Nägeli C, Jakob M, Catenazzi G, Ostermeyer Y. Policies to decarbonize the
swiss residential building stock: An agent-based building stock modeling as-
sessment. Energy Policy 2020;146:111814. http://dx.doi.org/10.1016/j.enpol.
2020.111814.

[25] Ma Z, Cooper P, Daly D, Ledo L. Existing building retrofits: Methodology
and state-of-the-art. Energy Build 2012;55:889–902. http://dx.doi.org/10.1016/
j.enbuild.2012.08.018.

[26] Abdul Hamid A, Farsäter K, Wahlström Å, Wallentén P. Literature review on
renovation of multifamily buildings in temperate climate conditions. Energy
Build 2018;172:414–31. http://dx.doi.org/10.1016/j.enbuild.2018.04.032.

[27] Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. Multi-stage and
multi-objective optimization for energy retrofitting a developed hospital ref-
erence building: A new approach to assess cost-optimality. Appl Energy
2016;174:37–68. http://dx.doi.org/10.1016/j.apenergy.2016.04.078.

http://dx.doi.org/10.1088/1748-9326/ABDF07
http://dx.doi.org/10.1088/1748-9326/ABDF07
http://dx.doi.org/10.1088/1748-9326/ABDF07
http://dx.doi.org/10.1038/s41560-018-0172-6
https://webstore.iea.org/download/direct/2930?fileName=2019_Global_Status_Report_for_Buildings_and_Construction.pdf
https://webstore.iea.org/download/direct/2930?fileName=2019_Global_Status_Report_for_Buildings_and_Construction.pdf
https://webstore.iea.org/download/direct/2930?fileName=2019_Global_Status_Report_for_Buildings_and_Construction.pdf
http://dx.doi.org/10.1016/J.ENBUILD.2016.05.100
http://dx.doi.org/10.1016/J.ENBUILD.2016.05.100
http://dx.doi.org/10.1016/J.ENBUILD.2016.05.100
http://www.bfe.admin.ch/energiestrategie2050/index.html?lang=en{&}dossier_id=07008
http://www.bfe.admin.ch/energiestrategie2050/index.html?lang=en{&}dossier_id=07008
http://www.bfe.admin.ch/energiestrategie2050/index.html?lang=en{&}dossier_id=07008
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC117739/cost_optimal_energy_renovations_online.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC117739/cost_optimal_energy_renovations_online.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC117739/cost_optimal_energy_renovations_online.pdf
https://eur-lex.europa.eu/resource.html?uri=cellar:0638aa1d-0f02-11eb-bc07-01aa75ed71a1.0003.02/DOC_1{&}format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:0638aa1d-0f02-11eb-bc07-01aa75ed71a1.0003.02/DOC_1{&}format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:0638aa1d-0f02-11eb-bc07-01aa75ed71a1.0003.02/DOC_1{&}format=PDF
http://dx.doi.org/10.1016/j.enbuild.2016.08.062
http://dx.doi.org/10.1016/j.enbuild.2016.08.062
http://dx.doi.org/10.1016/j.enbuild.2016.08.062
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb9
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb9
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb9
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb9
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb9
http://dx.doi.org/10.1016/j.enpol.2016.12.004
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb11
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb11
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb11
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-and-financial-markets.html{#}-194175513
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-and-financial-markets.html{#}-194175513
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-and-financial-markets.html{#}-194175513
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eba.europa.eu/sites/default/documents/files/document_library//EBAActionplanonsustainablefinance.pdf
https://eba.europa.eu/sites/default/documents/files/document_library//EBAActionplanonsustainablefinance.pdf
https://eba.europa.eu/sites/default/documents/files/document_library//EBAActionplanonsustainablefinance.pdf
http://dx.doi.org/10.1088/2634-4505/ac3321
http://dx.doi.org/10.1080/10835547.2010.12091806
http://dx.doi.org/10.1016/j.enbuild.2020.109870
http://dx.doi.org/10.1016/J.RSER.2021.110990
http://dx.doi.org/10.1016/J.RSER.2021.110990
http://dx.doi.org/10.1016/J.RSER.2021.110990
http://dx.doi.org/10.1016/j.rser.2018.05.061
http://dx.doi.org/10.1016/j.rser.2018.05.061
http://dx.doi.org/10.1016/j.rser.2018.05.061
http://dx.doi.org/10.1016/j.buildenv.2016.04.009
http://dx.doi.org/10.1016/J.ENBUILD.2020.110584
http://dx.doi.org/10.1016/J.ENBUILD.2020.110584
http://dx.doi.org/10.1016/J.ENBUILD.2020.110584
http://dx.doi.org/10.1016/J.ENPOL.2021.112220
http://dx.doi.org/10.1016/J.ENPOL.2021.112220
http://dx.doi.org/10.1016/J.ENPOL.2021.112220
http://dx.doi.org/10.1016/j.enpol.2020.112114
http://dx.doi.org/10.1016/j.enpol.2020.112114
http://dx.doi.org/10.1016/j.enpol.2020.112114
http://dx.doi.org/10.1016/j.enpol.2020.111814
http://dx.doi.org/10.1016/j.enpol.2020.111814
http://dx.doi.org/10.1016/j.enpol.2020.111814
http://dx.doi.org/10.1016/j.enbuild.2012.08.018
http://dx.doi.org/10.1016/j.enbuild.2012.08.018
http://dx.doi.org/10.1016/j.enbuild.2012.08.018
http://dx.doi.org/10.1016/j.enbuild.2018.04.032
http://dx.doi.org/10.1016/j.apenergy.2016.04.078


Applied Energy 314 (2022) 118901I. Petkov et al.
[28] Guariso G, Sangiorgio M. Multi-objective planning of building stock renova-
tion. Energy Policy 2019;130:101–10. http://dx.doi.org/10.1016/j.enpol.2019.
03.053.

[29] Iturriaga E, Aldasoro U, Terés-Zubiaga J, Campos-Celador A. Optimal renova-
tion of buildings towards the nearly zero energy building standard. Energy
2018;160:1101–14. http://dx.doi.org/10.1016/j.energy.2018.07.023.

[30] Shen P, Braham W, Yi Y. The feasibility and importance of considering climate
change impacts in building retrofit analysis. Appl Energy 2019;233–234:254–70.
http://dx.doi.org/10.1016/J.APENERGY.2018.10.041.

[31] Richarz J, Henn S, Osterhage T, Müller D. Optimal scheduling of modernization
measures for typical non-residential buildings. Energy 2021;238:121871. http:
//dx.doi.org/10.1016/j.energy.2021.121871.

[32] Schütz T, Schiffer L, Harb H, Fuchs M, Müller D. Optimal design of energy
conversion units and envelopes for residential building retrofits using a compre-
hensive MILP model. Appl Energy 2017;185:1–15. http://dx.doi.org/10.1016/
J.APENERGY.2016.10.049.

[33] Jafari A, Valentin V. An optimization framework for building energy retrofits
decision-making. Build Environ 2017;115:118–29. http://dx.doi.org/10.1016/j.
buildenv.2017.01.020.

[34] Stadler M, Groissböck M, Cardoso G, Marnay C. Optimizing distributed energy
resources and building retrofits with the strategic DER-camodel. Appl Energy
2014;132:557–67. http://dx.doi.org/10.1016/j.apenergy.2014.07.041.

[35] Passer A, Ouellet-Plamondon C, Kenneally P, John V, Habert G. The impact
of future scenarios on building refurbishment strategies towards plus energy
buildings. Energy Build 2016;124:153–63. http://dx.doi.org/10.1016/j.enbuild.
2016.04.008.

[36] Galimshina A, Moustapha M, Hollberg A, Padey P, Lasvaux S, Sudret B,
Habert G. What is the optimal robust environmental and cost-effective solution
for building renovation? Not the usual one. Energy Build 2021;251:111329.
http://dx.doi.org/10.1016/J.ENBUILD.2021.111329.

[37] Ayoub AN, Gaigneux A, Le Brun N, Acha S, Shah N. The development
of a low-carbon roadmap investment strategy to reach science based tar-
gets for commercial organisations with multi-site properties. Build Environ
2020;186:107311. http://dx.doi.org/10.1016/j.buildenv.2020.107311.

[38] Guardigli L, Bragadin MA, Della Fornace F, Mazzoli C, Prati D. Energy retrofit
alternatives and cost-optimal analysis for large public housing stocks. Energy
Build 2018;166:48–59. http://dx.doi.org/10.1016/J.ENBUILD.2018.02.003.

[39] Jennings M, Fisk D, Shah N. Modelling and optimization of retrofitting
residential energy systems at the urban scale. Energy 2014;64:220–33. http:
//dx.doi.org/10.1016/J.ENERGY.2013.10.076.

[40] Gabrielli L, Ruggeri AG. Developing a model for energy retrofit in large
building portfolios: Energy assessment, optimization and uncertainty. Energy
Build 2019;202:109356. http://dx.doi.org/10.1016/j.enbuild.2019.109356.

[41] He Y, Liao N, Bi J, Guo L. Investment decision-making optimization of
energy efficiency retrofit measures in multiple buildings under financing bud-
getary restraint. J Cleaner Prod 2019;215:1078–94. http://dx.doi.org/10.1016/
J.JCLEPRO.2019.01.119.

[42] McArthur JJ, Jofeh CG. Portfolio retrofit evaluation: A methodology for
optimizing a large number of building retrofits to achieve triple-bottom-line
objectives. Sustainable Cities Soc 2016;27:263–74. http://dx.doi.org/10.1016/
j.scs.2016.03.011.

[43] Wu R, Mavromatidis G, Orehounig K, Carmeliet J. Multiobjective optimisation
of energy systems and building envelope retrofit in a residential community.
Appl Energy 2017;190:634–49. http://dx.doi.org/10.1016/j.apenergy.2016.12.
161.

[44] Zheng D, Yu L, Wang L. A techno-economic-risk decision-making methodology
for large-scale building energy efficiency retrofit using Monte Carlo simulation.
Energy 2019;189:116169. http://dx.doi.org/10.1016/j.energy.2019.116169.

[45] Antipova E, Boer D, Guillén-Gosálbez G, Cabeza LF, Jiménez L. Multi-objective
optimization coupled with life cycle assessment for retrofitting buildings. Energy
Build 2014;82:92–9. http://dx.doi.org/10.1016/j.enbuild.2014.07.001.

[46] Hosseinian S, Choi K, Asce M, Bae J. IRIER: A Decision-support model for opti-
mal energy retrofit investments. J Constr Eng Manage 2017;143(9):05017016.
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.000136.

[47] Zhang H, Hewage K, Prabatha T, Sadiq R. Life cycle thinking-based energy
retrofits evaluation framework for Canadian residences: A Pareto optimiza-
tion approach. Build Environ 2021;204:108115. http://dx.doi.org/10.1016/J.
BUILDENV.2021.108115.

[48] Murray P, Marquant J, Niffeler M, Mavromatidis G, Orehounig K. Optimal
transformation strategies for buildings, neighbourhoods and districts to reach
CO2 emission reduction targets. Energy Build 2019;207:109569. http://dx.doi.
org/10.1016/j.enbuild.2019.109569.

[49] Pannier ML, Recht T, Robillart M, Schalbart P, Peuportier B, Mora L. Iden-
tifying optimal renovation schedules for building portfolios: Application in
a social housing context under multi-year funding constraints. Energy Build
2021;250:111290. http://dx.doi.org/10.1016/J.ENBUILD.2021.111290.

[50] Mavromatidis G, Petkov I. MANGO: A Novel optimization model for the long-
term, multi-stage planning of decentralized multi-energy systems. Appl Energy
2021;288:116585. http://dx.doi.org/10.1016/j.apenergy.2021.116585.
30
[51] Mavromatidis G, Orehounig K, Bollinger LA, Hohmann M, Marquant JF,
Miglani S, Morvaj B, Murray P, Waibel C, Wang D, Carmeliet J. Ten ques-
tions concerning modeling of distributed multi-energy systems. Build Environ
2019;165:106372. http://dx.doi.org/10.1016/j.buildenv.2019.106372.

[52] Petkov I, Gabrielli P. Power-to-hydrogen as seasonal energy storage: an un-
certainty analysis for optimal design of low-carbon multi-energy systems. Appl
Energy 2020;274:115197. http://dx.doi.org/10.1016/j.apenergy.2020.115197.

[53] Pecenak ZK, Stadler M, Fahy K. Efficient multi-year economic energy plan-
ning in microgrids. Appl Energy 2019;255:113771. http://dx.doi.org/10.1016/
j.apenergy.2019.113771.

[54] Dalton B, Fuerst F. The ‘green value’ proposition in real estate. In: Routledge
handbook of sustainable real estate. 1st ed.. 2015, p. 177–200. http://dx.doi.
org/10.1201/9781315622750-12.

[55] Fuerst F, McAllister P. Green noise or green value? Measuring the effects of
environmental certification on office values. Real Estate Econ 2011;39(1):45–69.
http://dx.doi.org/10.1111/j.1540-6229.2010.00286.x.

[56] Institute RM. How to calculate and present deep retrofit value. Tech. Rep. April,
2015, p. 105, URL http://www.rmi.org/retrofit_epot_deepretrofitvalue.

[57] Ferreira J, Pinheiro MD, de Brito J. Refurbishment decision support tools
review - energy and life cycle as key aspects to sustainable refurbishment
projects. Energy Policy 2013;62:1453–60. http://dx.doi.org/10.1016/j.enpol.
2013.06.082.

[58] Österbring M, Camarasa C, Nägeli C, Thuvander L, Wallbaum H. Prioritizing
deep renovation for housing portfolios. Energy Build 2019;202:109361. http:
//dx.doi.org/10.1016/j.enbuild.2019.109361.

[59] Gade AN, Jensen RL, Larsen TS, Nissen SrB, Andresen I. Value-based de-
cision making in the pre-design stage of sustainable building renovation
projects–exploring two methods for weighting criteria. Int J Comput Math
2019;21(6):648–63. http://dx.doi.org/10.1080/15623599.2019.1578913.

[60] Friege J, Chappin E. Modelling decisions on energy-efficient renovations: A
review. Renew Sustain Energy Rev 2014;39:196–208. http://dx.doi.org/10.
1016/j.rser.2014.07.091.

[61] Ruggeri AG, Calzolari M, Scarpa M, Gabrielli L, Davoli P. Planning energy
retrofit on historic building stocks: A score-driven decision support system.
Energy Build 2020;224:110066. http://dx.doi.org/10.1016/J.ENBUILD.2020.
110066.

[62] Gade AN, Larsen TS, Nissen SrB, Jensen RL. REDIS: A Value-based decision sup-
port tool for renovation of building portfolios. Build Environ 2018;142:107–18.
http://dx.doi.org/10.1016/j.buildenv.2018.06.016.

[63] Serrano-Jiménez A, Femenías P, Thuvander L, Barrios-Padura A. A multi-criteria
decision support method towards selecting feasible and sustainable housing
renovation strategies. J Cleaner Prod 2021;278:123588. http://dx.doi.org/10.
1016/j.jclepro.2020.123588.

[64] Hirsch J, Spanner M, Bienert S. The carbon risk real estate monitor -
developing a framework for science-based decarbonizing and reducing strand-
ing risks within the commercial real estate sector. J Sustain Real Estate
2019;11(1):174–90. http://dx.doi.org/10.22300/1949-8276.11.1.174.

[65] Gliedt T, Hoicka CE. Energy upgrades as financial or strategic investment?
Energy star property owners and managers improving building energy perfor-
mance. Appl Energy 2015;147:430–43. http://dx.doi.org/10.1016/j.apenergy.
2015.02.028.

[66] Menassa CC, Baer B. A framework to assess the role of stakeholders in
sustainable building retrofit decisions. Sustainable Cities Soc 2014;10:207–21.
http://dx.doi.org/10.1016/j.scs.2013.09.002.

[67] Almeida M, Ferreira M. Ten questions concerning cost-effective energy
and carbon emissions optimization in building renovation. Build Environ
2018;143:15–23. http://dx.doi.org/10.1016/j.buildenv.2018.06.036.

[68] Iturriaga E, Campos-Celador A, Terés-Zubiaga J, Aldasoro U, Álvarez-Sanz M.
A MILP optimization method for energy renovation of residential urban areas:
Towards zero energy districts. Sustainable Cities Soc 2021;68:102787. http:
//dx.doi.org/10.1016/j.scs.2021.102787.

[69] Bynum ML, Hackebeil GA, Hart WE, Laird CD, Nicholson BL, Siirola JD,
Watson J-P, Woodruff DL. Pyomo–optimization modeling in python, Vol. 67.
3rd ed.. Springer Science & Business Media; 2021, http://dx.doi.org/10.1007/
978-3-030-68928-5.

[70] Hart WE, Watson J-P, Woodruff DL. Pyomo: modeling and solving mathematical
programs in python. Math Program Comput 2011;3:219–60. http://dx.doi.org/
10.1007/s12532-011-0026-8.

[71] Gurobi Optimization, LLC. Gurobi optimizer reference manual. 2020.
[72] Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA,

Darmenov A, Bosilovich MG, Reichle R, Wargan K, Coy L, Cullather R, Draper C,
Akella S, Buchard V, Conaty A, da Silva AM, Gu W, Kim GK, Koster R, Lucch-
esi R, Merkova D, Nielsen JE, Partyka G, Pawson S, Putman W, Rienecker M,
Schubert SD, Sienkiewicz M, Zhao B. The modern-era retrospective analysis for
research and applications, version 2 (MERRA-2). J Clim 2017;30(14):5419–54.
http://dx.doi.org/10.1175/JCLI-D-16-0758.1.

[73] Pfenninger S, Staffell I. Long-term patterns of European PV output us-
ing 30 years of validated hourly reanalysis and satellite data. Energy
2016;114:1251–65. http://dx.doi.org/10.1016/j.energy.2016.08.060.

http://dx.doi.org/10.1016/j.enpol.2019.03.053
http://dx.doi.org/10.1016/j.enpol.2019.03.053
http://dx.doi.org/10.1016/j.enpol.2019.03.053
http://dx.doi.org/10.1016/j.energy.2018.07.023
http://dx.doi.org/10.1016/J.APENERGY.2018.10.041
http://dx.doi.org/10.1016/j.energy.2021.121871
http://dx.doi.org/10.1016/j.energy.2021.121871
http://dx.doi.org/10.1016/j.energy.2021.121871
http://dx.doi.org/10.1016/J.APENERGY.2016.10.049
http://dx.doi.org/10.1016/J.APENERGY.2016.10.049
http://dx.doi.org/10.1016/J.APENERGY.2016.10.049
http://dx.doi.org/10.1016/j.buildenv.2017.01.020
http://dx.doi.org/10.1016/j.buildenv.2017.01.020
http://dx.doi.org/10.1016/j.buildenv.2017.01.020
http://dx.doi.org/10.1016/j.apenergy.2014.07.041
http://dx.doi.org/10.1016/j.enbuild.2016.04.008
http://dx.doi.org/10.1016/j.enbuild.2016.04.008
http://dx.doi.org/10.1016/j.enbuild.2016.04.008
http://dx.doi.org/10.1016/J.ENBUILD.2021.111329
http://dx.doi.org/10.1016/j.buildenv.2020.107311
http://dx.doi.org/10.1016/J.ENBUILD.2018.02.003
http://dx.doi.org/10.1016/J.ENERGY.2013.10.076
http://dx.doi.org/10.1016/J.ENERGY.2013.10.076
http://dx.doi.org/10.1016/J.ENERGY.2013.10.076
http://dx.doi.org/10.1016/j.enbuild.2019.109356
http://dx.doi.org/10.1016/J.JCLEPRO.2019.01.119
http://dx.doi.org/10.1016/J.JCLEPRO.2019.01.119
http://dx.doi.org/10.1016/J.JCLEPRO.2019.01.119
http://dx.doi.org/10.1016/j.scs.2016.03.011
http://dx.doi.org/10.1016/j.scs.2016.03.011
http://dx.doi.org/10.1016/j.scs.2016.03.011
http://dx.doi.org/10.1016/j.apenergy.2016.12.161
http://dx.doi.org/10.1016/j.apenergy.2016.12.161
http://dx.doi.org/10.1016/j.apenergy.2016.12.161
http://dx.doi.org/10.1016/j.energy.2019.116169
http://dx.doi.org/10.1016/j.enbuild.2014.07.001
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.000136
http://dx.doi.org/10.1016/J.BUILDENV.2021.108115
http://dx.doi.org/10.1016/J.BUILDENV.2021.108115
http://dx.doi.org/10.1016/J.BUILDENV.2021.108115
http://dx.doi.org/10.1016/j.enbuild.2019.109569
http://dx.doi.org/10.1016/j.enbuild.2019.109569
http://dx.doi.org/10.1016/j.enbuild.2019.109569
http://dx.doi.org/10.1016/J.ENBUILD.2021.111290
http://dx.doi.org/10.1016/j.apenergy.2021.116585
http://dx.doi.org/10.1016/j.buildenv.2019.106372
http://dx.doi.org/10.1016/j.apenergy.2020.115197
http://dx.doi.org/10.1016/j.apenergy.2019.113771
http://dx.doi.org/10.1016/j.apenergy.2019.113771
http://dx.doi.org/10.1016/j.apenergy.2019.113771
http://dx.doi.org/10.1201/9781315622750-12
http://dx.doi.org/10.1201/9781315622750-12
http://dx.doi.org/10.1201/9781315622750-12
http://dx.doi.org/10.1111/j.1540-6229.2010.00286.x
http://www.rmi.org/retrofit_epot_deepretrofitvalue
http://dx.doi.org/10.1016/j.enpol.2013.06.082
http://dx.doi.org/10.1016/j.enpol.2013.06.082
http://dx.doi.org/10.1016/j.enpol.2013.06.082
http://dx.doi.org/10.1016/j.enbuild.2019.109361
http://dx.doi.org/10.1016/j.enbuild.2019.109361
http://dx.doi.org/10.1016/j.enbuild.2019.109361
http://dx.doi.org/10.1080/15623599.2019.1578913
http://dx.doi.org/10.1016/j.rser.2014.07.091
http://dx.doi.org/10.1016/j.rser.2014.07.091
http://dx.doi.org/10.1016/j.rser.2014.07.091
http://dx.doi.org/10.1016/J.ENBUILD.2020.110066
http://dx.doi.org/10.1016/J.ENBUILD.2020.110066
http://dx.doi.org/10.1016/J.ENBUILD.2020.110066
http://dx.doi.org/10.1016/j.buildenv.2018.06.016
http://dx.doi.org/10.1016/j.jclepro.2020.123588
http://dx.doi.org/10.1016/j.jclepro.2020.123588
http://dx.doi.org/10.1016/j.jclepro.2020.123588
http://dx.doi.org/10.22300/1949-8276.11.1.174
http://dx.doi.org/10.1016/j.apenergy.2015.02.028
http://dx.doi.org/10.1016/j.apenergy.2015.02.028
http://dx.doi.org/10.1016/j.apenergy.2015.02.028
http://dx.doi.org/10.1016/j.scs.2013.09.002
http://dx.doi.org/10.1016/j.buildenv.2018.06.036
http://dx.doi.org/10.1016/j.scs.2021.102787
http://dx.doi.org/10.1016/j.scs.2021.102787
http://dx.doi.org/10.1016/j.scs.2021.102787
http://dx.doi.org/10.1007/978-3-030-68928-5
http://dx.doi.org/10.1007/978-3-030-68928-5
http://dx.doi.org/10.1007/978-3-030-68928-5
http://dx.doi.org/10.1007/s12532-011-0026-8
http://dx.doi.org/10.1007/s12532-011-0026-8
http://dx.doi.org/10.1007/s12532-011-0026-8
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb71
http://dx.doi.org/10.1175/JCLI-D-16-0758.1
http://dx.doi.org/10.1016/j.energy.2016.08.060


Applied Energy 314 (2022) 118901I. Petkov et al.
[74] Staffell I, Pfenninger S. Using bias-corrected reanalysis to simulate current
and future wind power output. Energy 2016;114:1224–39. http://dx.doi.org/
10.1016/j.energy.2016.08.068.

[75] Mavrotas G. Effective implementation of the 𝜖-constraint method in
multi-objective mathematical programming problems. Appl Math Comput
2009;213(2):455–65. http://dx.doi.org/10.1016/j.amc.2009.03.037.

[76] Maia I, Kranzl L, Müller A. New step-by-step retrofitting model for delivering
optimum timing. Appl Energy 2021;290:116714. http://dx.doi.org/10.1016/j.
apenergy.2021.116714.

[77] Christen M, Adey BT, Wallbaum H. On the usefulness of a cost-performance
indicator curve at the strategic level for consideration of energy efficiency
measures for building portfolios. Energy Build 2016;119:267–82. http://dx.doi.
org/10.1016/j.enbuild.2016.02.056.

[78] Schroeder J. Zustandsbewertung grosser gebäudebestände (condition assess-
ment of large building stocks). Schweiz Ing Archit (Swiss Eng Archit)
1989;17(27):449–59. http://dx.doi.org/10.5169/seals-77093.

[79] Christen M, Schroeder J, Wallbaum H. Evaluation of strategic building mainte-
nance and refurbishment budgeting method schroeder. Int J Strateg Prop Manag
2014;18(4):393–406. http://dx.doi.org/10.3846/1648715X.2014.971917.

[80] Hosseini M, Bigtashi A, Lee B. Generating future weather files under climate
change scenarios to support building energy simulation – a machine learning
approach. Energy Build 2021;230:110543. http://dx.doi.org/10.1016/j.enbuild.
2020.110543.

[81] Dipasquale C, Fedrizzi R, Bellini A, Gustafsson M, Ochs F, Bales C. Database
of energy, environmental and economic indicators of renovation packages for
European residential buildings. Energy Build 2019;203:109427. http://dx.doi.
org/10.1016/j.enbuild.2019.109427.

[82] Federal Statistical Office of Switzerland (Bundesamt für Statistik). Eidgenös-
sische gebäude- und wohnungsregister GWR (federal register of buildings and
dwellings). 2021.

[83] Federal Statistical Office of Switzerland (Bundesamt für Statistik). Statistik der
unternehmensstruktur STATENT (company structure statistics). 2021.

[84] OpenStreetMap Foundation. Openstreetmap. 2021.
[85] Wang D, Landolt J, Mavromatidis G, Orehounig K, Carmeliet J. CESAR: A

Bottom-up building stock modelling tool for Switzerland to address sustainable
energy transformation strategies. Energy Build 2018;169:9–26. http://dx.doi.
org/10.1016/j.enbuild.2018.03.020.

[86] EnergyPlus. Energyplus simulation software. U.S. Department of Energy; 2019,
URL https://energyplus.net/.

[87] Berger M, Worlitschek J. The link between climate and thermal energy demand
on national level: A case study on Switzerland. Energy Build 2019;202:109372.
http://dx.doi.org/10.1016/j.enbuild.2019.109372.

[88] Domínguez-Muñoz F, Cejudo-López JM, Carrillo-Andrés A, Gallardo-Salazar M.
Selection of typical demand days for CHP optimization. Energy Build
2011;43(11):3036–43. http://dx.doi.org/10.1016/J.ENBUILD.2011.07.024.

[89] Swiss Federal Customs Administration (Eidgenössische Zollverwaltung). Steer-
ing tax on CO2 (Lenkungsabgabe auf CO2). Tech. rep., 2018, p. 1–
2, URL https://www.ezv.admin.ch/ezv/de/home/information-firmen/steuern-
und-abgaben/einfuhr-in-die-schweiz/lenkungsabgabe-auf-co.html.

[90] SIA. Energy efficiency path. Tech. rep., Swiss Society of Engineers
and Architects (Schweizerische Ingenieur- und Architektenverein);
2011, p. 1–4, URL https://www.sia.ch/fileadmin/content/download/sia-
norm/kommissionen/SIA_Faltblatt_Effizienzpfad_A4.pdf.

[91] Bohlayer M, Bürger A, Fleschutz M, Braun M, Zöttl G. Multi-period invest-
ment pathways - modeling approaches to design distributed energy systems
under uncertainty. Appl Energy 2021;285:116368. http://dx.doi.org/10.1016/
J.APENERGY.2020.116368.

[92] Shadram F, Bhattacharjee S, Lidelöw S, Mukkavaara J, Olofsson T. Exploring
the trade-off in life cycle energy of building retrofit through optimization.
Appl Energy 2020;269:115083. http://dx.doi.org/10.1016/J.APENERGY.2020.
115083.

[93] Marsh E, Orr J, Ibell T. Quantification of uncertainty in product stage embodied
carbon calculations for buildings. Energy Build 2021;251:111340. http://dx.doi.
org/10.1016/J.ENBUILD.2021.111340.

[94] Schweizerischer Bundesrat (Swiss Federal Council). Verordnung über die miete
und Pacht von wohn- und geschäftsräumen - VMWG (ordinance on the rent
and lease of residential and commercial premises). 2020.

[95] Mieterinnen- und Mieterverband (Swiss Tenants’ Association), Anfangsmietzins
(Initial Rent).

[96] Mieterinnen- und Mieterverband (Swiss Tenants’ Association). Umbauten,
renovationen, totalsanierungen. 2018.

[97] Nie H, Kemp R, Xu JH, Vasseur V, Fan Y. Split incentive effects on the adoption
of technical and behavioral energy-saving measures in the household sector in
western europe. Energy Policy 2020;140:111424. http://dx.doi.org/10.1016/j.
enpol.2020.111424.

[98] Copiello S, Gabrielli L, Bonifaci P. Evaluation of energy retrofit in buildings
under conditions of uncertainty: The prominence of the discount rate. Energy
2017;137:104–17. http://dx.doi.org/10.1016/J.ENERGY.2017.06.159.

[99] Patt A, van Vliet O, Lilliestam J, Pfenninger S. Will policies to promote energy
efficiency help or hinder achieving a 1.5◦ c climate target? Energy Efficiency
2018;12:551—565. http://dx.doi.org/10.1007/s12053-018-9715-8.
31
[100] Strachan N, Fais B, Daly H. Reinventing the energy modelling–policy interface.
Nat. Energy 2016;1(3):1–3. http://dx.doi.org/10.1038/nenergy.2016.12.

[101] Wouters C, Fraga ES, James AM. A policy-based multi-objective optimisation
framework for residential distributed energy system design. Renew Energy
Environ Sustain 2017;2(5):1–6. http://dx.doi.org/10.1051/REES/2017011.

[102] Zhu Q, Leibowicz BD, Busby JW, Shidore S, Adelman DE, Olmstead SM.
Enhancing policy realism in energy system optimization models: Politi-
cally feasible decarbonization pathways for the United States. Energy Policy
2022;161:112754. http://dx.doi.org/10.1016/j.enpol.2021.112754.

[103] Loulou R, Lehtilä A, Kanudia A, Remme U, Goldstein G. Documentation for
the TIMES model part II. Tech. rep., February, Energy Technology Systems
Analysis Programme (ETSAP); 2021, p. 1–408, URL https://iea-etsap.org/docs/
Documentation_for_the_TIMES_Model-PartII.pdf.

[104] Bisschop J. Optimization modeling AIMMS. Tech. rep., 2021, p. 1–306, URL
https://documentation.aimms.com/_downloads/AIMMS_modeling.pdf.

[105] Farahani A, Wallbaum H, Dalenbäck J-O. Optimized maintenance and reno-
vation scheduling in multifamily buildings – a systematic approach based on
condition state and life cycle cost of building components. Constr Manag Econ
2019;37(3):139–55. http://dx.doi.org/10.1080/01446193.2018.1512750.

[106] Femenías P, Mjörnell K, Thuvander L. Rethinking deep renovation: The per-
spective of rental housing in Sweden. J Cleaner Prod 2018;195:1457–67. http:
//dx.doi.org/10.1016/j.jclepro.2017.12.282.

[107] Fawcett W, Hughes M, Krieg H, Albrecht S, Vennström A. Flexible strategies
for long-term sustainability under uncertainty. Build Res Inf 2012;40(5):545–57.
http://dx.doi.org/10.1080/09613218.2012.702565.

[108] Cho K, Yoon Y. Decision support model for determining cost-effective reno-
vation time. J Manage Eng 2016;32(3):1–9. http://dx.doi.org/10.1061/(ASCE)
ME.1943-5479.0000418.

[109] Ben H, Steemers K. Modelling energy retrofit using household archetypes.
Energy Build 2020;224:110224. http://dx.doi.org/10.1016/J.ENBUILD.2020.
110224.

[110] Gholami M, Torreggiani D, Tassinari P, Barbaresi A. Narrowing uncertainties
in forecasting urban building energy demand through an optimal archetyping
method. Renew Sustain Energy Rev 2021;148:111312. http://dx.doi.org/10.
1016/j.rser.2021.111312.

[111] Ben H, Steemers K. Modelling energy retrofit using household archetypes.
Energy Build 2020;224:110224. http://dx.doi.org/10.1016/j.enbuild.2020.
110224.

[112] Murray P, Mavromatidis G, Marquant J, Orehounig K. EnTeR – project report
wp3 – measures and synthesis. Tech. rep., 2019.

[113] KBOB. Ökobilanzdaten im baubereich 2009/1:2016. Tech. rep., Koordina-
tionskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren
(Coordination Conference of the Construction and Real Estate Bodies of public
Developers); 2016, p. 1–19, URL https://www.kbob.admin.ch/kbob/de/home/
publikationen/nachhaltiges-bauen/oekobilanzdaten_baubereich.html.

[114] SFOE. Tech. rep., Swiss Federal Office of Energy (SFOE); 2019, URL
https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-
statistics/overall-energy-statistics.html.

[115] Prognos AG. Die energieperspektiven fur die schweiz bis 2050 (the en-
ergy outlook for Switzerland until 2050). Tech. rep., Swiss Federal Office
of Energy (SFOE); 2012, URL https://www.bfe.admin.ch/bfe/en/home/policy/
energy-strategy-2050/documentation/energy-perspectives-2050.html.

[116] BFE, EnDK and EnFK. Harmonisiertes fördermodell der kantone hfm 2015 (har-
monized support model of the cantons 2015). Tech. rep., Bundesamt für Energie
BFE (Swiss Federal Office of Energy), Konferenz Kantonaler Energiedirektoren
EnDK (Conference of Cantonal Energy Directors), Energiefachstellenkonferenz
EnFK (Energy Specialist Conference); 2015, URL https://www.endk.ch/de/
dokumentation/harmonisiertes-foerdermodell-der-kantone-hfm.

[117] Mavromatidis G, Orehounig K, Carmeliet J. Uncertainty and global sensitivity
analysis for the optimal design of distributed energy systems. Appl Energy
2018;214:219–38. http://dx.doi.org/10.1016/j.apenergy.2018.01.062.

[118] Danish Energy Agency and Energinet. Technology data for individual
heating 2016. Tech. rep., 2018, p. 1–167, URL https://ens.dk/en/our-
services/projections-and-models/technology-data/technology-data-individual-
heating-plants.

[119] ELCO Solutions.
[120] David A, Mathiesen BV, Averfalk H, Werner S, Lund H. Heat roadmap

europe: large-scale electric heat pumps in district heating systems. Energies
2017;10(4):578. http://dx.doi.org/10.3390/en10040578.

[121] Coujard C, Peirano E, Sanchis G, Betraoui B. e-HIGHWAY 2050: Modular devel-
opment plan of the pan-european transmission system 2050. Tech. rep., Euro-
pean Union; 2013, p. 1–16, URL https://docs.entsoe.eu/baltic-conf/bites/www.
e-highway2050.eu/fileadmin/documents/Results/D3/report_heat_pumps.pdf.

[122] Sandvall AF, Ahlgren EO, Ekvall T. Cost-efficiency of urban heating strategies –
modelling scale effects of low-energy building heat supply. Energy Strateg Rev
2017;18:212–23. http://dx.doi.org/10.1016/j.esr.2017.10.003.

[123] HSLU. Heizkostenvergleichsrechner hochschule luzern (HSLU). 2019,
Available from: https://www.hslu.ch/de-ch/technik-architektur/forschung/
kompetenzzentren/zig/software-tools/.

http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1016/j.amc.2009.03.037
http://dx.doi.org/10.1016/j.apenergy.2021.116714
http://dx.doi.org/10.1016/j.apenergy.2021.116714
http://dx.doi.org/10.1016/j.apenergy.2021.116714
http://dx.doi.org/10.1016/j.enbuild.2016.02.056
http://dx.doi.org/10.1016/j.enbuild.2016.02.056
http://dx.doi.org/10.1016/j.enbuild.2016.02.056
http://dx.doi.org/10.5169/seals-77093
http://dx.doi.org/10.3846/1648715X.2014.971917
http://dx.doi.org/10.1016/j.enbuild.2020.110543
http://dx.doi.org/10.1016/j.enbuild.2020.110543
http://dx.doi.org/10.1016/j.enbuild.2020.110543
http://dx.doi.org/10.1016/j.enbuild.2019.109427
http://dx.doi.org/10.1016/j.enbuild.2019.109427
http://dx.doi.org/10.1016/j.enbuild.2019.109427
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb82
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb82
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb82
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb82
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb82
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb83
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb83
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb83
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb84
http://dx.doi.org/10.1016/j.enbuild.2018.03.020
http://dx.doi.org/10.1016/j.enbuild.2018.03.020
http://dx.doi.org/10.1016/j.enbuild.2018.03.020
https://energyplus.net/
http://dx.doi.org/10.1016/j.enbuild.2019.109372
http://dx.doi.org/10.1016/J.ENBUILD.2011.07.024
https://www.ezv.admin.ch/ezv/de/home/information-firmen/steuern-und-abgaben/einfuhr-in-die-schweiz/lenkungsabgabe-auf-co.html
https://www.ezv.admin.ch/ezv/de/home/information-firmen/steuern-und-abgaben/einfuhr-in-die-schweiz/lenkungsabgabe-auf-co.html
https://www.ezv.admin.ch/ezv/de/home/information-firmen/steuern-und-abgaben/einfuhr-in-die-schweiz/lenkungsabgabe-auf-co.html
https://www.sia.ch/fileadmin/content/download/sia-norm/kommissionen/SIA_Faltblatt_Effizienzpfad_A4.pdf
https://www.sia.ch/fileadmin/content/download/sia-norm/kommissionen/SIA_Faltblatt_Effizienzpfad_A4.pdf
https://www.sia.ch/fileadmin/content/download/sia-norm/kommissionen/SIA_Faltblatt_Effizienzpfad_A4.pdf
http://dx.doi.org/10.1016/J.APENERGY.2020.116368
http://dx.doi.org/10.1016/J.APENERGY.2020.116368
http://dx.doi.org/10.1016/J.APENERGY.2020.116368
http://dx.doi.org/10.1016/J.APENERGY.2020.115083
http://dx.doi.org/10.1016/J.APENERGY.2020.115083
http://dx.doi.org/10.1016/J.APENERGY.2020.115083
http://dx.doi.org/10.1016/J.ENBUILD.2021.111340
http://dx.doi.org/10.1016/J.ENBUILD.2021.111340
http://dx.doi.org/10.1016/J.ENBUILD.2021.111340
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb94
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb94
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb94
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb94
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb94
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb96
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb96
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb96
http://dx.doi.org/10.1016/j.enpol.2020.111424
http://dx.doi.org/10.1016/j.enpol.2020.111424
http://dx.doi.org/10.1016/j.enpol.2020.111424
http://dx.doi.org/10.1016/J.ENERGY.2017.06.159
http://dx.doi.org/10.1007/s12053-018-9715-8
http://dx.doi.org/10.1038/nenergy.2016.12
http://dx.doi.org/10.1051/REES/2017011
http://dx.doi.org/10.1016/j.enpol.2021.112754
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-PartII.pdf
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-PartII.pdf
https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-PartII.pdf
https://documentation.aimms.com/_downloads/AIMMS_modeling.pdf
http://dx.doi.org/10.1080/01446193.2018.1512750
http://dx.doi.org/10.1016/j.jclepro.2017.12.282
http://dx.doi.org/10.1016/j.jclepro.2017.12.282
http://dx.doi.org/10.1016/j.jclepro.2017.12.282
http://dx.doi.org/10.1080/09613218.2012.702565
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000418
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000418
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000418
http://dx.doi.org/10.1016/J.ENBUILD.2020.110224
http://dx.doi.org/10.1016/J.ENBUILD.2020.110224
http://dx.doi.org/10.1016/J.ENBUILD.2020.110224
http://dx.doi.org/10.1016/j.rser.2021.111312
http://dx.doi.org/10.1016/j.rser.2021.111312
http://dx.doi.org/10.1016/j.rser.2021.111312
http://dx.doi.org/10.1016/j.enbuild.2020.110224
http://dx.doi.org/10.1016/j.enbuild.2020.110224
http://dx.doi.org/10.1016/j.enbuild.2020.110224
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb112
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb112
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb112
https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges-bauen/oekobilanzdaten_
https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges-bauen/oekobilanzdaten_
https://www.kbob.admin.ch/kbob/de/home/publikationen/nachhaltiges-bauen/oekobilanzdaten_
https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/overall-energy-statistics.html
https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/overall-energy-statistics.html
https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/overall-energy-statistics.html
https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050/documentation/energy-perspectives-2050.html
https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050/documentation/energy-perspectives-2050.html
https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050/documentation/energy-perspectives-2050.html
https://www.endk.ch/de/dokumentation/harmonisiertes-foerdermodell-der-kantone-hfm
https://www.endk.ch/de/dokumentation/harmonisiertes-foerdermodell-der-kantone-hfm
https://www.endk.ch/de/dokumentation/harmonisiertes-foerdermodell-der-kantone-hfm
http://dx.doi.org/10.1016/j.apenergy.2018.01.062
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants
http://dx.doi.org/10.3390/en10040578
https://docs.entsoe.eu/baltic-conf/bites/www.e-highway2050.eu/fileadmin/documents/Results/D3/report_heat_pumps.pdf
https://docs.entsoe.eu/baltic-conf/bites/www.e-highway2050.eu/fileadmin/documents/Results/D3/report_heat_pumps.pdf
https://docs.entsoe.eu/baltic-conf/bites/www.e-highway2050.eu/fileadmin/documents/Results/D3/report_heat_pumps.pdf
http://dx.doi.org/10.1016/j.esr.2017.10.003
https://www.hslu.ch/de-ch/technik-architektur/forschung/kompetenzzentren/zig/software-tools/
https://www.hslu.ch/de-ch/technik-architektur/forschung/kompetenzzentren/zig/software-tools/
https://www.hslu.ch/de-ch/technik-architektur/forschung/kompetenzzentren/zig/software-tools/


Applied Energy 314 (2022) 118901I. Petkov et al.
[124] SCCER JASM. Energy conversion technologies in STEM. 2020, Available from:
https://data.sccer-jasm.ch/energy-conversion-technologies-stem/2020-03-05/.

[125] Murray P, Orehounig K, Grosspietsch D, Carmeliet J. A comparison of stor-
age systems in neighbourhood decentralized energy system applications from
2015 to 2050. Appl Energy 2018;231:1285–306. http://dx.doi.org/10.1016/j.
apenergy.2018.08.106.

[126] Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Photovoltaic materials:
present efficiencies and future challenges. Science 2016;352(6283). http://dx.
doi.org/10.1126/science.aad4424.

[127] Grosspietsch D, Thömmes P, Girod B, Hoffmann VH. How, when, and where?
assessing renewable energy self-sufficiency at the neighborhood level. Environ
Sci Technol 2018;52(4):2339–48. http://dx.doi.org/10.1021/acs.est.7b02686.

[128] Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric
vehicles. Nature Clim Change 2015;5(4):329–32. http://dx.doi.org/10.1038/
nclimate2564.

[129] IRENA. Electricity storage and renewables: Costs and markets to 2030.
Tech. rep., International Renewable Energy Agency (IRENA); 2017, p.
1–132, URL http://www.climateaction.org/images/uploads/documents/IRENA_
Electricity_Storage_Costs_2017.pdf.

[130] Hoval. Hoval catalog 2021. 2021.
[131] Di Somma M, Yan B, Bianco N, Graditi G, Luh PB, Mongibello L, Naso V.

Multi-objective design optimization of distributed energy systems through cost
and exergy assessments. Appl Energy 2017;204:1299–316. http://dx.doi.org/10.
1016/j.apenergy.2017.03.105.

[132] Kurtz S. Reliability and durability of PV modules. In: Photovoltaic solar energy.
Chichester, UK: John Wiley & Sons, Ltd; 2017, p. 491–501. http://dx.doi.org/
10.1002/9781118927496.ch44.

[133] Yazdanie M, Densing M, Wokaun A. Cost optimal urban energy systems
planning in the context of national energy policies: A case study for the city of
basel. Energy Policy 2017;110:176–90. http://dx.doi.org/10.1016/j.enpol.2017.
08.009.

[134] Gabrielli P, Gazzani M, Martelli E, Mazzotti M. Optimal design of multi-
energy systems with seasonal storage. Appl Energy 2018;219:408–24. http:
//dx.doi.org/10.1016/j.apenergy.2017.07.142.

[135] Gabrielli P, Fürer F, Mavromatidis G, Mazzotti M. Robust and optimal design
of multi-energy systems with seasonal storage through uncertainty analysis.
Appl Energy 2019;238:1192–210. http://dx.doi.org/10.1016/j.apenergy.2019.
01.064.

[136] EASE. Thermal hot water storage. Tech. rep., European Association for Storage
of Energy (EASE); 2016, URL http://ease-storage.eu/wp-content/uploads/2016/
03/EASE_TD_HotWater.pdf.

[137] Stroe D-I, Knap V, Swierczynski M, Stroe A-I, Teodorescu R. Operation
of a grid-connected lithium-ion battery energy storage system for primary
frequency regulation: a battery lifetime perspective. IEEE Trans Ind Appl
2017;53(1):430–8. http://dx.doi.org/10.1109/TIA.2016.2616319.

[138] Swierczynski M, Stroe DI, Laerke R, Stan AI, Kjaer PC, Teodorescu R, Kaer SK.
Field experience from li-ion BESS delivering primary frequency regulation in
the danish energy market. ECS Trans 2014;61(37):1–14. http://dx.doi.org/10.
1149/06137.0001ecst.

[139] Schütz T, Schraven MH, Fuchs M, Remmen P, Müller D. Comparison of
clustering algorithms for the selection of typical demand days for energy system
synthesis. Renew Energy 2018;129:570–82. http://dx.doi.org/10.1016/j.renene.
2018.06.028.

[140] Ohlsson KA, Olofsson T. Benchmarking the practice of validation and un-
certainty analysis of building energy models. Renew Sustain Energy Rev
2021;142:110842. http://dx.doi.org/10.1016/j.rser.2021.110842.
32
[141] Tian W, Heo Y, de Wilde P, Li Z, Yan D, Park CS, Feng X, Augenbroe G. A
review of uncertainty analysis in building energy assessment. Renew Sustain
Energy Rev 2018;93:285–301. http://dx.doi.org/10.1016/j.rser.2018.05.029.

[142] Zou PX, Xu X, Sanjayan J, Wang J. Review of 10 years research on building
energy performance gap: Life-cycle and stakeholder perspectives. Energy Build
2018;178:165–81. http://dx.doi.org/10.1016/J.ENBUILD.2018.08.040.

[143] Shen P, Braham W, Yi Y, Eaton E. Rapid multi-objective optimization with
multi-year future weather condition and decision-making support for building
retrofit. Energy 2019;172:892–912. http://dx.doi.org/10.1016/J.ENERGY.2019.
01.164.

[144] Heo Y, Choudhary R, Augenbroe GA. Calibration of building energy models
for retrofit analysis under uncertainty. Energy Build 2012;47:550–60. http:
//dx.doi.org/10.1016/j.enbuild.2011.12.029.

[145] Larsen MA, Petrović S, Radoszynski AM, McKenna R, Balyk O. Climate change
impacts on trends and extremes in future heating and cooling demands over
europe. Energy Build 2020;226:110397. http://dx.doi.org/10.1016/j.enbuild.
2020.110397.

[146] Celik D, Meral ME, Waseem M. Restrictions and driving forces for renewable
energy production development and electrical energy demand in general
and during COVID-19. In: 12th international symposium on advanced topics
in electrical engineering, ATEE 2021. Institute of Electrical and Electronics
Engineers; 2021, http://dx.doi.org/10.1109/ATEE52255.2021.9425216.

[147] Narula K, Chambers J, Streicher KN, Patel MK. Strategies for decarbonising the
swiss heating system. Energy 2019;169:1119–31. http://dx.doi.org/10.1016/J.
ENERGY.2018.12.082.

[148] Streicher KN, Padey P, Parra D, Bürer MC, Patel MK. Assessment of the current
thermal performance level of the swiss residential building stock: Statistical
analysis of energy performance certificates. Energy Build 2018;178:360–78.
http://dx.doi.org/10.1016/J.ENBUILD.2018.08.032.

[149] Streicher KN, Padey P, Parra D, Bürer MC, Schneider S, Patel MK. Analysis
of space heating demand in the swiss residential building stock: Element-
based bottom-up model of archetype buildings. Energy Build 2019;184:300–22.
http://dx.doi.org/10.1016/J.ENBUILD.2018.12.011.

[150] Bhadbhade N, Yilmaz S, Zuberi JS, Eichhammer W, Patel MK. The evolu-
tion of energy efficiency in Switzerland in the period 2000–2016. Energy
2019;191:116526. http://dx.doi.org/10.1016/j.energy.2019.116526.

[151] Li X, Chambers J, Yilmaz S, Patel MK. A Monte Carlo building stock model of
space cooling demand in the swiss service sector under climate change. Energy
Build 2021;233:110662. http://dx.doi.org/10.1016/j.enbuild.2020.110662.

[152] Mutschler R, Rüdisüli M, Heer P, Eggimann S. Benchmarking cooling and
heating energy demands considering climate change, population growth and
cooling device uptake. Appl Energy 2021;288:116636. http://dx.doi.org/10.
1016/j.apenergy.2021.116636.

[153] Energie-Cluster and EnWI. gebäudesanierung – wirtschaftlichkeit der co2-
abgabe (building renovation - economic efficiency of the co2 tax). Tech. rep.,
Bundesamt für Umwelt BAFU (Swiss Federal Office of the Environment SFOE);
2019, p. 1–55, URL https://www.aramis.admin.ch/Texte/?ProjectID=44296.

[154] BBSR. Nutzungsdauern von bauteilen für lebenszyklusanalysen nach
bewertungssystem nachhaltiges bauen bnb (useful lives of building
components for life cycle analyses according to the sustainable building
assessment system). Tech. rep., Federal Institute for Research on Building,
Urban Affairs and Spatial Development (BBSR); 2017, p. 1–17, URL
https://www.nachhaltigesbauen.de/fileadmin/pdf/Nutzungsdauer_Bauteile/
BNB_Nutzungsdauern_von_Bauteilen__2011-11-03.pdf.

[155] Wiprächtiger M, Haupt M, Heeren N, Waser E, Hellweg S. A framework for
sustainable and circular system design: Development and application on thermal
insulation materials. Resour Conserv Recy 2020;154:104631. http://dx.doi.org/
10.1016/j.resconrec.2019.104631.

https://data.sccer-jasm.ch/energy-conversion-technologies-stem/2020-03-05/
http://dx.doi.org/10.1016/j.apenergy.2018.08.106
http://dx.doi.org/10.1016/j.apenergy.2018.08.106
http://dx.doi.org/10.1016/j.apenergy.2018.08.106
http://dx.doi.org/10.1126/science.aad4424
http://dx.doi.org/10.1126/science.aad4424
http://dx.doi.org/10.1126/science.aad4424
http://dx.doi.org/10.1021/acs.est.7b02686
http://dx.doi.org/10.1038/nclimate2564
http://dx.doi.org/10.1038/nclimate2564
http://dx.doi.org/10.1038/nclimate2564
http://www.climateaction.org/images/uploads/documents/IRENA_Electricity_Storage_Costs_2017.pdf
http://www.climateaction.org/images/uploads/documents/IRENA_Electricity_Storage_Costs_2017.pdf
http://www.climateaction.org/images/uploads/documents/IRENA_Electricity_Storage_Costs_2017.pdf
http://refhub.elsevier.com/S0306-2619(22)00326-9/sb130
http://dx.doi.org/10.1016/j.apenergy.2017.03.105
http://dx.doi.org/10.1016/j.apenergy.2017.03.105
http://dx.doi.org/10.1016/j.apenergy.2017.03.105
http://dx.doi.org/10.1002/9781118927496.ch44
http://dx.doi.org/10.1002/9781118927496.ch44
http://dx.doi.org/10.1002/9781118927496.ch44
http://dx.doi.org/10.1016/j.enpol.2017.08.009
http://dx.doi.org/10.1016/j.enpol.2017.08.009
http://dx.doi.org/10.1016/j.enpol.2017.08.009
http://dx.doi.org/10.1016/j.apenergy.2017.07.142
http://dx.doi.org/10.1016/j.apenergy.2017.07.142
http://dx.doi.org/10.1016/j.apenergy.2017.07.142
http://dx.doi.org/10.1016/j.apenergy.2019.01.064
http://dx.doi.org/10.1016/j.apenergy.2019.01.064
http://dx.doi.org/10.1016/j.apenergy.2019.01.064
http://ease-storage.eu/wp-content/uploads/2016/03/EASE_TD_HotWater.pdf
http://ease-storage.eu/wp-content/uploads/2016/03/EASE_TD_HotWater.pdf
http://ease-storage.eu/wp-content/uploads/2016/03/EASE_TD_HotWater.pdf
http://dx.doi.org/10.1109/TIA.2016.2616319
http://dx.doi.org/10.1149/06137.0001ecst
http://dx.doi.org/10.1149/06137.0001ecst
http://dx.doi.org/10.1149/06137.0001ecst
http://dx.doi.org/10.1016/j.renene.2018.06.028
http://dx.doi.org/10.1016/j.renene.2018.06.028
http://dx.doi.org/10.1016/j.renene.2018.06.028
http://dx.doi.org/10.1016/j.rser.2021.110842
http://dx.doi.org/10.1016/j.rser.2018.05.029
http://dx.doi.org/10.1016/J.ENBUILD.2018.08.040
http://dx.doi.org/10.1016/J.ENERGY.2019.01.164
http://dx.doi.org/10.1016/J.ENERGY.2019.01.164
http://dx.doi.org/10.1016/J.ENERGY.2019.01.164
http://dx.doi.org/10.1016/j.enbuild.2011.12.029
http://dx.doi.org/10.1016/j.enbuild.2011.12.029
http://dx.doi.org/10.1016/j.enbuild.2011.12.029
http://dx.doi.org/10.1016/j.enbuild.2020.110397
http://dx.doi.org/10.1016/j.enbuild.2020.110397
http://dx.doi.org/10.1016/j.enbuild.2020.110397
http://dx.doi.org/10.1109/ATEE52255.2021.9425216
http://dx.doi.org/10.1016/J.ENERGY.2018.12.082
http://dx.doi.org/10.1016/J.ENERGY.2018.12.082
http://dx.doi.org/10.1016/J.ENERGY.2018.12.082
http://dx.doi.org/10.1016/J.ENBUILD.2018.08.032
http://dx.doi.org/10.1016/J.ENBUILD.2018.12.011
http://dx.doi.org/10.1016/j.energy.2019.116526
http://dx.doi.org/10.1016/j.enbuild.2020.110662
http://dx.doi.org/10.1016/j.apenergy.2021.116636
http://dx.doi.org/10.1016/j.apenergy.2021.116636
http://dx.doi.org/10.1016/j.apenergy.2021.116636
https://www.aramis.admin.ch/Texte/?ProjectID=44296
https://www.nachhaltigesbauen.de/fileadmin/pdf/Nutzungsdauer_Bauteile/BNB_Nutzungsdauern_von_Bauteilen__2011-11-03.pdf
https://www.nachhaltigesbauen.de/fileadmin/pdf/Nutzungsdauer_Bauteile/BNB_Nutzungsdauern_von_Bauteilen__2011-11-03.pdf
https://www.nachhaltigesbauen.de/fileadmin/pdf/Nutzungsdauer_Bauteile/BNB_Nutzungsdauern_von_Bauteilen__2011-11-03.pdf
http://dx.doi.org/10.1016/j.resconrec.2019.104631
http://dx.doi.org/10.1016/j.resconrec.2019.104631
http://dx.doi.org/10.1016/j.resconrec.2019.104631

