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Dipolar electron paramagnetic resonance (EPR) experiments, such as double electron–electron resonance
(DEER), measure distributions of nanometer-scale distances between paramagnetic centers, which are
valuable for structural characterization of proteins and other macromolecular systems. One challenge
in the least-squares fitting analysis of dipolar EPR data is the separation of the inter-molecular contribu-
tion (background) and the intra-molecular contribution. For noisy experimental traces of insufficient
length, this separation is not unique, leading to identifiability problems for the background model param-
eters and the long-distance region of the intra-molecular distance distribution. Here, we introduce a reg-
ularization approach that mitigates this by including an additional penalty term in the objective function
that is proportional to the variance of the distance distribution and thereby penalizes non-compact dis-
tributions. We examine the reliability of this approach statistically on a large set of synthetic data and
illustrate it with an experimental example. The results show that the introduction of compactness can
improve identifiability.

� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dipolar electron paramagnetic resonance (EPR) spectroscopy
enables the measurement of distributions of nanometer-scale dis-
tances between pairs of electron spin centers in paramagnetic sys-
tems [1]. The most widely applied dipolar EPR technique is four-
pulse double electron–electron resonance (DEER) [2,3], but a range
of other methods exist [4–15]. All these techniques record a time-
domain signal modulated by the dipolar interaction between pairs
of electrons.

From this time-domain signal, the distance distribution and
other quantities of interest are inferred by least-squares fitting a
physical model to the signal [16–20]. The model depends on an
intra-molecular distance distribution PðrÞ, a modulation depth
parameter, and parameter(s) for the inter-molecular contribution
to the signal (the background) such as the total spin concentration.
The distance distribution P is modeled either as a linear combina-
tion of parameterized basis functions, such as Gaussians, or as a
non-parametric histogram. The parameters, including the his-
togram weights, are determined by least-squares fitting.

When a non-parametric histogram is used to represent P, the
model has several specific properties that lead to challenges and
failures in the ordinary least-squares approach. In the presence
of noise and signal truncation, the fits are not unique regarding
P. Hence, one cannot define a quality or amount of time-domain
data that ensures a desired uncertainty of the distance distribution
P. In other words, a subset of different P can fit an experimental sig-
nal roughly equally well. These P differ in their spikiness, and in
order to stabilize the least-squares fitting and obtain a unique P,
a term is added to the objective function that penalizes spiky dis-
tributions [21,22,16]. This is called Tikhonov regularization. Sec-
ond, the fits are not unique regarding the long-distance region of
P and the background. Different combinations of long-distance P
and background parameters can fit a given experimental signal
roughly equally well. Using a parametric model with a small num-
ber of components for P alleviates these problems to some extent,
but at the cost of putting restrictions on the shape and complexity
of P.

From a broader model fitting perspective, both challenges above
concern the (practical) identifiability of model parameters. A
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model parameter is identifiable when distinct parameter values
yield distinct model predictions [23] for a given amount and qual-
ity of the data. Otherwise, the parameter, and the entire model, is
non-identifiable. Identifiability affects models in many different
fields and is a broad topic in statistical literature [24–26,26–
29,23,30].

In this work, we introduce an approach to address the second
identifiability challenge, i.e. the uniqueness of background vs.
long-distance contributions in P. We use the profile likelihood
approach to examine identifiability. We then propose to add a sec-
ond penalty term to the objective function that is proportional to
the variance of the distribution and penalizes non-compact distri-
butions. This regularization approach converts many, though not
all, non-identifiable models into identifiable ones. We demonstrate
its effectiveness on individual synthetic examples, on two large
synthetic test datasets, and on an experimental example. The
Python-based DeerLab software package [19] implements all rele-
vant methodology presented in this work.

2. Modeling dipolar EPR signals

For samples with highly diluted molecules with two spins each,
the dipolar EPR signal contains separate contributions arising from
intramolecular and intermolecular interactions [1]. The latter is
also referred to as background. In this situation, the signal is mod-
eled as an average over the distribution PðrÞ of spin–spin distances
r as

VðtÞ ¼
Z 1

0
dr Kðt; rÞPðrÞ ð1Þ

where Kðt; rÞ is the dipolar kernel function that describes the map-
ping from the distance-domain to the time-domain signal.

In the simple case of four-pulse DEER with no overlap between
pump and probe pulse excitation profiles the dipolar kernel reads

Kðt; rÞ ¼ V0½1� kþ kK0ðt; rÞ� exp �jckjtjð Þ ð2Þ
where k is the modulation depth, c is the spin concentration, V0 is
the overall amplitude, and j ¼ 8p2=ð9

ffiffiffi
3

p
ÞD is numerical constant

with the dipolar constant D given by

D ¼ l0

4p
g2
el2

B

�h
ð3Þ

which includes the g-value of the free electron ge, the Bohr magne-
ton lB, the magnetic constant l0, the reduced Planck constant �h.
The elementary dipolar kernel K0ðt; rÞ function is given by

K0ðt; rÞ ¼
Z 1

0
dz cos ð1� 3z2ÞDt

r3

� �
ð4Þ

While in this work we assume a spatially homogeneous 3D distri-
bution of isolated spin pairs for the intermolecular contribution,
the method is expected to work similarly for models that include
volume exclusion effect or fractal dimensions [31–33]. Also, note
that the dipolar kernel in Eq. (2) accounts for the intermolecular
contributions and bypasses the need for a modification of the pri-
mary signal [34].

Experimentally, the echo amplitude VðtÞ is recorded at a dis-
crete set of n time points ti, leading to a discretized dipolar signal
vector V ¼ ðV1; . . . ;VnÞ with Vi ¼ VðtiÞ. In the analysis, PðrÞ is also
represented as a vector P ¼ ðP1; . . . ; PmÞ over a discrete set of m
equidistant distances rj, where Pj ¼ PðrjÞ. With this, Eq. (1) reads

V ¼ KP ð5Þ
where K is the n�m kernel matrix with elements Kij ¼ Kðti; rjÞDr
and Dr is the distance-domain increment. While PðrÞ is defined
for r P 0, in the analysis the range is limited to rmin 6 rj 6 rmax,
2

implicitly assuming that the distance distribution is zero outside
of this range. Typically rmin � 1:5nm is selected as the lower limit,
and rmax is usually selected according to some empirically derived
heuristic [35,36]. Both rmin and rmax are model parameters.

Besides rmin and rmax, the dipolar kernel K½h� depends on the two
independent parameters h ¼ ðk; cÞ. If the shape of the distance dis-
tribution is known, the vector P can be represented by a parametric
function (e.g. Gaussian). We will focus on semiparametric models,
which use a non-parametric distance distribution PðhÞ, where each
element Pj is an independent parameter.

The analysis of an experimental signal

Vexp ¼ V þ d ð6Þ
with additional noise vector d, involves the estimation of the model
parameters that best fit the model to the signal. When using non-
parametric distance distributions, this can be solved via separable
non-linear least-squares [37,38,19]. In this approach, all parameters
except P are determined via

hfit ¼ argmin
h

FðhÞf g ð7Þ

with the objective function

FðhÞ ¼ kVexp � KðhÞPðhÞk2 þ a2kLPðhÞk2 ð8Þ
In each iteration of Eq. (7), PðhÞ is determined for the given h via the
linear sub-problem

PðhÞ ¼ argmin
PP0

kVexp � KðhÞPk2 þ a2kLPk2
n o

ð9Þ

The first term in the objective functions in Eqs. (8) and (9) describes
the discrepancy between the model prediction and the experimen-
tal signal. The second term is the Tikhonov regularization term that
penalizes spiky distributions, where L is the second-order differen-
tial operator and a is the regularization parameter. An adequate
value of a can be selected via, e.g., an L-curve criterion, the Akaike
information criterion (AIC) or generalized cross-validation (GCV)
[39].

The least-squares method is closely related to maximum-
likelihood estimation. If the noise in Vexp is normally distributed
(as is the case in dipolar signals [40]), minimization of a least-
squares objective function is equivalent to the maximization of
the likelihood function LðhÞ which is related to the objective func-
tion via

LðhÞ ¼ 1
r

ffiffiffiffiffiffiffi
2p

p exp � FðhÞ
2r2

� �
ð10Þ

where r is the standard deviation of the noise d in Vexp.

3. Identifiability analysis

In the context of least-squares and maximum-likelihood esti-
mation, a model parameter hi is said to be identifiable at hfit;i on
a given interval if for a given experimental dataset all other param-
eter values hi – hfit;i yield different objective function values
[24,26], formally

FðhiÞ ¼ Fðhi;fitÞ () hi ¼ hi;fit ð11Þ
This is illustrated in Fig. 1. Practical non-identifiability corresponds
to the presence of nearly equivalent minima of the objective func-
tion such as a flat region or multiple equivalent global minima,
where multiple parameter combinations yield objective-function
values for a given noisy and truncated experimental signal.

There are several methods for analyzing identifiability. A
straightforward approach involves mapping the objective function
FðhÞ over the whole parameter space to assess whether the objec-
tive function has extended minima regions. This becomes imprac-
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tical in the presence of more than a few parameters. Instead, we
will use the profile likelihood method [41–43] for this purpose.
This method is well established in other fields [29,44–46,30].

The use of the profile likelihood method [41–43] for identifiabil-
ity analysis as proposed by Raue et al. [29] provides a simple and
graphical representation to qualitatively and quantitatively assess
the identifiability of a model. The profile likelihood (or likelihood
ratio) for a parameter hi is calculated by fixing hi at different values
and maximizing the likelihood with respect to all other parame-
ters. Equivalently, the profile objective function is obtained via

FðhiÞ ¼ min
h0

Fðhi; h0Þf g ð12Þ

where h0 represents the subset of h without hi. Graphically, as
shown in Fig. 2, this corresponds to traversing the parameter space
along hi at values of h0 that minimize F.

Under certain regularity conditions [47,48], we can define a
c� 100% likelihood-based confidence region consisting of the set
of values of parameter hi that satisfy the inequality

FðhiÞ < FðhfitÞ þ r2v2
c;1 ¼ Dc ð13Þ

where v2
c;1 denotes the c-quantile of the chi-squared distribution for

one degree of freedom. In the context of dipolar EPR spectroscopy,
these confidence intervals have been applied to dipolar models
based on multi-Gaussian parametrization of the distance distribu-
Fig. 1. Schematic representation of (non)-identifiability based on flatness of the
objective function. The objective function FðhÞ is shown as greyscale contours for
three cases: (left) both parameters are identifiable, (center) one of the parameters is
non-identifiable, and (right) both parameters are non-identifiable. The presence of a
non-identifiable parameter renders the model non-identifiable.

Fig. 2. Profile likelihood method for identifiability analysis. (Left) The objective
function for two parameters hi and hj is shown as greyscale contours and the
minimum is indicated as a white circle. The superimposed colored lines represent
the isometric likelihood profiles FðhiÞ and FðhjÞ computed at the model estimate.
The insets show the likelihood profiles for both parameters. The dashed grey lines
represent the threshold Da. (Right) Identifiability analysis based on the profile
likelihood. If the profile FðhiÞ crosses the threshold Da twice, shown as black circles,
the parameter hi is identifiable (green profile). If the profile remains flat and crosses
only once, the parameter hi is non-identifiable (red profile).

3

tion [49,17]. In this work, we will use the c ¼ 0:95 confidence
regions as threshold, i.e. v2

0:95;1 ¼ 3:841.
In the framework proposed by Raue et al. we can make a binary

decision on the identifiability of individual parameters hi by calcu-
lating the profile objective functions and comparing them to the
threshold Dc [29]. In the case of an identifiable parameter, the pro-
file FðhiÞ has a well-defined minimum and crosses Dc twice as
depicted in Fig. 2, meaning that the confidence region of hi is
bounded. For a non-identifiable parameter, the profile has a mini-
mum but does not increase enough to cross the threshold again as
depicted in Fig. 2 or will be completely flat, indicating an
unbounded confidence region of hi. While a binary interpretation
might be useful to automated workflows, the most important cri-
terion to apply to these profiles is the presence/absence of signifi-
cant flat minima regions or multiple equivalent minima.
4. Identifiability in dipolar EPR spectroscopy

Dipolar models feature several parameters, such as the spin
concentration, the modulation depth, or the parameters of a para-
metric distance distribution model. Most of them can suffer from
non-identifiability. Some examples of likelihood profiles of multi-
Gaussian distance distribution model parameters can be found in
the literature [49,17], where some examples of non-identifiable
distribution parameters can also be found.

If a non-parametric distance distribution is used, the estimation
of PðhÞ constitutes an ill-posed problem. Ill-posedness represents
an extreme case of non-identifiability. Still, regularization provides
a stable estimate of the distance distribution by imposing a degree
of smoothness that renders the histogram coefficients identifiable.
However, if the modulation depth or the spin concentration are
non-identifiable, the fitted distance distribution, while being stable
for the assumed background model, can be an inaccurate estimate
of the ground truth and should not be interpreted.

We illustrate this in Fig. 3 for a 4-pulse DEER signal. The
objective-function surface Fðk; cÞ from Eq. (8) presents a flat valley
showing that both the modulation depth and the spin concentra-
tion parameters are non-identifiable. This is supported by the pro-
file objective functions, which indicate the non-identifiability of
the spin concentration. While the modulation depth profile is iden-
tifiable according to the definition above, it still presents a wide
region of flat profile. The set of solutions cover a wide range of val-
ues for both the modulation depth (k=0.3–0.7) and spin concentra-
tion (c = 0–150l M) that cannot be associated with the typical
uncertainty arising from such a noise level. The wide range of solu-
tions for the parameters results in a wide range of distance distri-
butions that contain multiple artifacts or distortions, particularly
towards longer distances or at the edge of the distance range.
Despite this, all solutions provide a good fit of the data, supported
by the reduced-v2 values close to 1. These observations exemplify
the dangers of neglecting identifiability in dipolar EPR spec-
troscopy, particularly for automated data analysis workflows. In
this example, it would not be obvious to an expert how to distin-
guish the ground truth from all other solutions.

Fig. 4 illustrates how this non-identifiability arises for truncated
signals. For the sake of clarity, we assume that the objective func-
tion is solely given by the least-squares goodness-of-fit of the
experimental dipolar signal. For the model to be identifiable,
according to Eq. (11), the objective function values Fðh1Þ and
Fðh2Þ for both of parameter sets must be different, meaning that
the model predictions Vfit;1 and Vfit;2 must also be different. Here
is where the length and quality of the dipolar signal come into play.
If the dipolar signal length (tmax) is long enough, the model predic-
tions Vfit;1 and Vfit;2 become distinguishable (see Fig. 4), but if tmax is
too short, the model predictions are indistinguishable, resulting in



Fig. 3. Example of non-identifiability in a 4-pulse DEER model, using a synthetic
dataset with modulation depth k ¼ 0:25 and spin concentration c ¼ 100lM. The
objective function FðhÞ is shown as grey shades on a log scale. The profile objective
functions of the modulation depth FðkÞ and spin concentration FðcÞ are shown as
black lines. The threshold D0:95 is shown as a grey dashed line for reference. Five
parameter sets that minimize the objective function are shown as colored circles.
For each, the corresponding model prediction in shown in a separate box. The
simulated noisy dipolar signal is shown as grey dots, and the corresponding fitted
dipolar signal and background models are shown as solid and dashed colored lines.
The associated fitted AIC-Tikhonov distance distributions are shown as colored lines
in the insets. For each solution, the corresponding reduced chi-squared v2

red values
are given. The ground truth solution is colored turquoise, while all red solutions are
incorrect but still minimize the objective function.

Fig. 4. Equivalence of dipolar model predictions. Two model parameter sets h1

(turquoise) and h2 (magenta) and their corresponding distance distributions result
in two model predictions Vfit;1 (turquoise) and Vfit;2 (magenta). The equivalency of
the model predictions (colored lines) depends on the length of the dipolar signal
tmax. If tmax is not long enough (bottom), Vfit;1 and Vfit;2 are nearly identical, resulting
in similar objective function values Fðh1Þ and Fðh2Þ, and in non-identifiability.
Inversely, if tmax is sufficiently long (top), it will result in identifiability.
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equivalent solutions. The importance of the dipolar signal length
tmax for robust estimation of dipolar models has long been known
[50,51]. While not under the scope of identifiability, the discussion
of extended trace length to ”detect” or ”access” longer distances
has long been an intensively researched topic and has even moti-
vated the development of new protocols [52,53] and new dipolar
EPR experimental techniques (e.g., 5-pulse DEER [6], 7-pulse DEER
[7]), and nDEER [8] that aim to surpass the limitations in tmax.

The distance vector r is another quantity that critically influ-
ences (non)-identifiability of dipolar models. Non-identifiability
can occur due to the ability of the distance distribution to allocate
distribution mass at long distances to compensate for deviations in
spin concentration and modulation depth. Therefore, a larger r
range increases the risk of non-identifiability. The distance vector
is parametrized by its boundaries rmin and rmax. While rmin usually
has minimal effect on model identifiability, rmax is essential in
terms of identifiability. The larger rmax, the more distances will
be available, and the more likely the model will be non-
identifiable. This was the rationale for empirically deriving a
heuristic for determining an appropriate rmax given a tmax [54].

Fig. 5 illustrates these dependencies on the profile objective
functions of a 4-pulse DEER model. As can be seen, unless we
choose a sufficiently long tmax and short rmax, the profile objective
functions exhibit extended flat region for one or both model
parameters, indicating non-identifiability. Note that the profiles
progressively flatten asymmetrically about the ground truth: the
modulation depth presents only flat profile regions for values lar-
ger than the ground truth and the spin concentration predomi-
nantly for values smaller than the ground truth. This can be
Fig. 5. Dependence of the profile objective functions of a 4-pulse DEER signal on
rmax and tmax. A noisy 4-pulse DEER signal, simulated from the distance distribution
shown in the inset with a modulation depth k ¼ 0:3 and pump spin concentration
c ¼ 50lM, is shown as grey dots for rmax ¼ 11nm and tmax ¼ 12ls. Different
profiles objective functions FðkÞ and FðcÞ for the modulation depth k and pump
spin concentration c, respectively, as colored lines. The objective profiles depen-
dency on tmax at rmax ¼ 9nm are shown as red lines and the objective profiles
dependency on rmax at tmax ¼ 5ls are shown as green lines. The parameter ground
truth values are given as grey dashed lines for reference. The corresponding tmax and
rmax values are shown on top of each line.



L. Fábregas-Ibáñez, G. Jeschke and S. Stoll Journal of Magnetic Resonance 339 (2022) 107218
observed as long as the noise level is not excessive. An important
consequence of this is that the choice of initial guesses for the opti-
mization of the model parameters becomes relevant. In the DEER
case, it is advantageous to start the optimization with an underes-
timation of the modulation depth and an overestimation of the
spin concentration parameters, i.e. where the profile objective
functions are less likely to present flat regions.
Fig. 6. Illustration of compactness of a distance distribution. Three examples of
distance distributions with different variance r2½PðhÞ� are shown.
5. Resolving non-identifiability

Following our discussion thus far, one way to avoid identifiabil-
ity issues is the acquisition of longer data with less noise. An alter-
native approach requires the collection of multiple dipolar signals
with different configurations or experiments, which can be glob-
ally analyzed [19]. However, enhancements to both dipolar trace
length and noise level are strongly restricted by experimental
and time constraints. Post-acquisition approaches to resolve non-
identifiability rely on the introduction of additional (prior)
information.

An essential type of prior information that firmly controls iden-
tifiability is the aforementioned rmax. However, the choice of rmax is
non-trivial. As shown, too large values can lead to severe non-
identifiability. However, too small values could truncate the dis-
tance distribution, rendering a proper analysis unfeasible. Based
on structural considerations, we can estimate an upper bound for
rmax in specific systems such as proteins or model compounds.
However, unless the rmax estimate is accurately close to the edge
of the distance distribution or tmax is comfortably long, non-
identifiability will remain a problem. It is tempting to rely on
heuristic estimators for an optimal rmax. The DeerAnalysis and
DeerNet software packages include such a heuristic based on the
length of the signal [16,36]

rmax=nm ¼ 108tmax=lsð Þ1=3 ð14Þ

which might provide reasonable estimates in specific instances.
Deriving an exact closed-form definition of the optimal rmax is not
possible due to its random and recursive nature. Overall, having a
reasonable estimate of rmax alleviates non-identifiability but is not
necessarily an optimal treatment for data with an unfavorable ratio
between the longest distances in the ground-truth distribution and
tmax.

If reasonable parameter boundaries can be obtained, e.g., for the
modulation depth and spin concentrations from independent
experiments or simulations, the uncertainty can be significantly
reduced. For instance, as shown above, for the 4-pulse DEER case,
the uncertainty about the modulation depth and spin concentra-
tion parameters can be strongly reduced by a reasonable estimate
of an upper bound on the modulation depth or of a lower bound on
the spin concentration. From the asymmetry observed in the
parameter profiles, it might be tempting to seek the solution with
minimal modulation depth and largest concentration as the
ground truth. While conceptually reasonable, the ground truth
does not always correspond to that solution.

There are many other ways to introduce prior information in
the analysis, some of them well established. By modelling a dis-
tance distribution with a parametric function (such as a Gaussian
distribution), we introduce prior information on the shape and nat-
ure of the distribution. Data analysis with neural networks [18]
introduces prior information based on the nature of the network’s
training set. Tikhonov regularization introduces information about
the smoothness of the distance distribution, resulting in unique
non-parametric distributions. Other parameter constraints such
as the non-negativity constraint of the distance distribution intro-
duce information about the nature of the distance distribution. All
5

these forms of prior information contribute towards the identifia-
bility of dipolar models.

It is important to note that prior information is only beneficial
as long as it matches the physical reality underlying the data.
Otherwise, a dipolar model might become identifiable but no
longer an accurate descriptor of the dipolar signal.

6. Compactness regularization

In this context, we aim to find a new type of prior information
generally applicable to dipolar EPR data, making a non-identifiable
problem identifiable. As shown above, non-identifiability typically
manifests as spurious long-distance peaks in the distance distribu-
tion. Existing approaches aim to minimize these artifacts by penal-
izing distribution mass in the long-distance range [55] or
optimizing the background to ensure the absence of distribution
mass at rmax [16]. Now, if we know that a distance distribution can-
not have that spread, we can introduce new prior information in
the form of compactness. We define a compact distance distribu-
tion as a distribution with a small variance. This is illustrated in
Fig. 6. Conceptually, from the set of possible solutions that fit the
experimental signal, we penalize those with a larger spread of dis-
tances. Compactness can also be justified in terms of protein ther-
modynamics, since folded and compact proteins are more stable
than unfolded ones. A compact distance distribution implies the
existence of a single energetic well for an intramolecular distance,
which is a common feature of well-structured proteins (e.g. the left
panel in Fig. 6) and also very weakly structured proteins (e.g. the
middle panel in Fig. 6). A spread-out distribution implies the exis-
tence of multiple energetic wells separated by significant energetic
barriers (e.g. the right panel in Fig. 6). While specific protein sys-
tems can present this scenario, they are uncommon.

Therefore, among the distributions that fit the data equally well,
it is reasonable to prefer those distributions that are more com-
pact. To quantify the spread of a distribution, we use the variance
(i.e., its second centralized moment) of distances in the distribu-
tion defined as

r2½PðhÞ� ¼
X
i

PiðhÞ ri � r
�� �2

Dr ð15Þ

where �r is the mean distance given by

r
� ¼

X
i

PiðhÞriDr ð16Þ

This metric is differentiable, robust with respect to heavy-tailed dis-
tributions, and most importantly, location-invariant. Small values of
r2½PðhÞ� indicate a compact distribution, and large values indicate a
spread-out distribution (see Fig. 6). We include this term in the
non-linear part of the separable non-linear least-squares problem
in Eq. (8) as a second weighted penalty

FðhÞ ¼ kVexp � KðhÞPðhÞk2 þ a2kLPðhÞk2 þ b2r2½PðhÞ� ð17Þ
where b is the parameter that determines the scale of the additional
penalty term and PðhÞ remains as defined in Eq. (9). Note that
compactness is only imposed upon the search of the non-linear



Fig. 7. Compactness regularization in the analysis of 4-pulse DEER data. Four noisy
4-pulse DEER signals simulated from different protein systems (see SI for details)
are fitted to a semi-parametric model including the roughness penalty and without
(magenta) and with (turquoise) the variance penalty. Each panel contains (left) the
data shown as grey dots, the fitted signal shown as colored lines, the background
shown as a dashed line, as well as the chi-squared values, the fitted parameter
values and the corresponding ground truth values shown as grey text, (middle)
objective function profiles of the modulation depth k and spin concentration c
parameters shown as colored lines and the threshold values Dc¼0:95 as dashed grey
lines, and (right) the fitted distance distribution as well as the AIC-selected a values
and the ICC-selected b values. Each fit is shown as a colored line along their
bootstrapped 95%-confidence intervals shown as colored shaded areas. The ground
truth distance distribution is shown as a grey shaded area for reference.
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parameters, i.e. the background search in a DEER model, whereas no
compactness is imposed upon the distribution itself.

The challenge now arises in choosing appropriate values for a
and b such that the residual, smoothness, and compactness terms
in the objective function are balanced. Due to the separability of
the least-squares problems, a and b can be optimized over the lin-
ear and non-linear least-squares sub-problems, respectively.

For the selection of b, we require a parsimony criterion that bal-
ances the data agreement and identifiability in terms of parameter
estimability. This is in analogy to the selection of a in regularization
methods [39,56], or model selection in multi-Gaussian models [17]
using AIC or related criteria, but with a crucial difference. The AIC
and other related criteria balance data agreement with model com-
plexity in terms of the number of model parameters, whereas b
must be selected to balance data agreement with parameter
estimability. For this, we use the value of b thatminimizes the infor-
mational complexity criterion (ICC) [57,58], in the following form

ICCðbÞ ¼ kVexp � VðhbÞk2
r2 þ trðlnðWhb ÞÞ þ lnðdetðWhb ÞÞ ð18Þ

where hb is the parameter set that minimizes the objective function
in Eq. (17) for the given value of b and Wh is the matrix of coeffi-
cients of variation of a parameter set h given by

Wh;ij ¼ Rh;ij

hihj
ð19Þ

where Rh is the covariance matrix of the objective function FðhÞ at h.
The first term of the ICC represents data agreement, while the other
two terms represent a form of van Emden complexity [59].

Fig. 7 illustrates the effect of compactness on the analysis of
four simulated 4-pulse DEER signals. Without the inclusion of com-
pactness, the spin concentration profiles present flat regions falling
below the threshold. The modulation depth profiles also present
flat regions and the modulation depth is even non-identifiable in
the bottom case. The non-identifiability is reflected in the uncer-
tainty of the background fits and the uncertain long-distance arti-
facts appearing at the edges of the distribution. In all cases, the
introduction of the variance penalty with ICC-selected regulariza-
tion parameter results in well-defined minima of the profiles of
both parameters, indicating that the model has a unique solution.
Consequently, the uncertainty in the results is reduced, the param-
eter estimates are improved, and the distance distributions no
longer exhibit artifacts.

The ICC criterion adapts the b value to the width of the distribu-
tion. For the narrow distribution in Fig. 7 (top), its value bICC =
0.551 is larger than for the bimodal distribution in Fig. 7 (top mid-
dle), where it is bICC = 0.017. This shows that the addition of the
compactness criterion does not automatically artificially compact
distributions beyond what is necessary to eliminate long-
distance features in P that can be modeled by the background con-
tribution. This is even more evident in the case of the significantly
broad distribution in Fig. 7 (bottom middle) which is correctly
recovered. However, broad distributions can be prone to artificial
compactness in some cases (see later).

Nevertheless, the use of compactness inevitably introduces a
certain bias towards a type of distribution. In principle, this crite-
rion can exclude solutions such as the spread-out distribution in
Fig. 6, similarly to how the smoothness criterion can exclude distri-
butions with sharp features.
7. Performance analysis on a large test set

To assess whether the compactness criterion is robust, we per-
formed a statistical analysis on a large set of dipolar signals. As in
previous studies [39,34], we used a library of distance distributions
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based on MMM [60] simulations of T4 lysozyme (T4L, pdb 2LZM)
[39], a small and rigid protein, with relatively short and narrow
distance distributions (mean distances of 2–6nm, inter-quartile
ranges of 0.1–0.9nm) typically encountered in small soluble pro-
teins. We similarly generated a library of distance distributions
based on MMM simulations (using the same principles described
by Edwards and Stoll [39]) from a preliminary structural ensemble
of the protein polypyrimidine-tract binding protein 1 (PTBP1) [61],
a large protein with flexible linkers, with relatively long and very
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broad distance distributions (mean distances of 2–9nm, inter-
quartile ranges of 2–6nm). Both libraries are available in the SI.
For each protein, we simulated a set of 5000 dipolar signals from
a set of randomly sampled ground truth distance distributions
from the corresponding libraries and model parameters randomly
sampled from the grids listed in the provided scripts.

For each protein, we fitted 4-pulse DEER models to all 5000
dipolar signals at different values of rmax using DeerLab [19]. We
repeated the analysis with and without the use of the compactness
criterion as described above. We also performed an analysis using
the heuristic values of rmax given by Eq. (14) as a benchmark
against one of the most established approaches. To quantify the
quality of the fits, we quantified the error in the fit of the modula-
tion depth and spin concentration parameters by their deviation
from the known true values. Similarly, we compared the fitted dis-
tance distribution to ground truth through the earth mover’s dis-
tance (EMD), which quantifies the minimum cost required to
transform one distribution into the other by shifting distribution
mass. Other metrics such as the overlap index, Kullback–Leibler
divergence, and Jensen–Shannon divergence yielded the same con-
clusions (see the SI).

Fig. 8 shows the results of the statistical analysis. The results
illustrate again the dependency of the non-identifiability on rmax

if compactness is not included. As rmax increases, the agreement
of the fitted distance distribution with the ground truth quickly
deteriorates, as well as the agreement of the fitted modulation
depth and spin concentration. The results also show that non-
Fig. 8. Statistical analysis of the compactness criterion in the analysis of 4-pulse
DEER data. The statistics were obtained from the analysis 5000 different dipolar
signals simulated from the structures of T4 lysozyme (top panel) and polypyrim-
idine-tract binding protein 1 (bottom panel) and analyzed for different values of
rmax. The analysis with the heuristic rmax given by Eq. (14) is denoted by an asterisk.
For each signal the agreement between the fitted distance distribution and the
ground truth is quantified by the earth-mover distance EMDðPfit;PtruthÞ. The
agreement between the fitted modulation depth k and spin concentration c with
their respective ground truths is quantified by their differences kfit � ktruth and
cfit � ctruth. The distributions for each quantity are summarized in violin plots shown
as colored areas, with median values indicated wi.th colored dots.
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identifiability results in overestimation of the modulation depth
and underestimation of the spin concentration, as noted above.
Including the compactness criterion leads to fits of higher agree-
ment with the ground truth, generally, as summarized in Fig. 9.
The recovery of the ground-truth distance distributions improved
considerably for 94.8% (T4L) and 76% (PTBP1) of the fits, whereas
for 3.2% (T4L) and 9.1% (PTBP1) no significant changes were
observed. Somewhat inferior results are seen in 2.0% (T4L) and
14.9% (PTBP1) of cases. We found no direct correlations between
any of the signal simulation parameters (e.g., trace length, noise
levels, mean distances, modality, distribution spread, etc.) and
the resulting EMD values. However, we observed a bimodality of
distributions of the relative EMD values shown in Fig. 9. This
bimodality originates from the overlap of a distribution of cases
where the compactness criterion works as expected leading to
greatly improved results and a narrower distribution of cases
where the compactness criterion leads to unchanged or inferior
results. The distribution of inferior cases seems to weakly correlate
with distance distributions containing the longest distances and
short trace lengths. Furthermore, when compactness is included,
we observed a strong statistical correlation between inaccurate
estimates of the distance distribution (with large EMD values)
and significant overestimation of either the spin concentration or
modulation depth and underestimation of the other. Therefore,
prior information on estimates of the modulation depth and spin
concentration can help identify those cases where the compactness
criterion is unsuccessful.

The compactness criterion also shows a better performance in
comparison to the established approach of choosing the heuristic
rmax. Generally, the fits of the distance distribution show a higher
agreement with the ground truth for the well structured globular
protein T4L than for the partially disordered protein complex
PTBP1. The percentage of cases where compactness does not lead
to an improvement or leads to an inferior solution strongly corre-
late with the width of the underlying distance distribution. Such
wide distributions are characteristic of the PTBP1 library.

In addition, Fig. 8 shows that the use of the compactness crite-
rion gives results that are overall independent of rmax. The analysis
is stable even for a vastly overestimated rmax, making it safer to use
an rmax that does not truncate the distance distribution. The overall
good performance of this analysis also illustrates the significant
advantage of this method towards establishing robust and reliable
automated data analysis protocols.
8. Experimental illustration

To illustrate the performance of the compactness regularization
on experimental datasets, we use the publicly available 4-pulse
DEER datasets measured at Q-band on a modified Yersinia outer
protein O (YopO) [63,62] acquired by multiple labs on different
constructs. We chose three experimental DEER signals from differ-
ent constructs measured on different labs based on noise level sim-
ilarity, long trace length, and the absence of additional pathway
contributions. We considerably truncated these signals and ana-
lyzed them with and without the compactness criterion. As refer-
ence, we analyzed the full-length signals.

Fig. 10 shows the results of this analysis. The compactness cri-
terion on these truncated signals leads to results closer to those
obtained when analyzing the entire signals by looking at the back-
ground and distribution fits. The introduction of compactness also
reduces the uncertainty of the fits. These examples also showcase
three possible scenarios. In the middle example in Fig. 10, while
the results’ quality obtained without the compactness criterion
would be acceptable, including the criterion leads to a more certain
distribution, particularly towards its longer distances. The left



Fig. 9. Statistical analysis of the effects of the compactness criterion on the agreement between the fitted distance distribution and the ground truth. The histograms show the
distribution of the relative change in the agreement between the fitted distance distribution and the ground truth quantified by the earth-mover’s distance (EMD) over all
evaluated rmax values. The percentages of cases where the introduction of the compactness criterion leads to a better (EMD is reduced by more than 1%), worse (EMD is
increased by more than 1%) or similar (EMD changes by less than 1%) are shown next to the histograms. The colors indicate the type of change: improvement (turquoise),
deterioration (magenta) or similar (grey).

Fig. 10. Analysis of experimental 4-pulse DEER data from different constructs of a modified Yersinia outer protein O (YopO). For each construct, one of the experimental
datasets published by Schiemann et al. [62] was truncated and is shown in the top panels as grey dots. The truncated datasets were analyzed with (turquoise) and without
(magenta) the compactness criterion. The fits of the dipolar signals and distance distributions are shown as colored lines, and the corresponding 95% bootstrapped confidence
intervals are shown as colored areas. The scaled background fits are shown as colored dashed lines. For reference, the fits of the background and distance distribution obtained
using the full-length datasets of 7ls (left), 5ls (middle), and 7ls (right) are shown as grey dashed lines and area.s, respectively.
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example in Fig. 10 represents a more severe case which is signifi-
cantly improved by the use of the variance penalty. The right
example in Fig. 10 represents another severe case evidenced by
the large long-distance artifact. Here, the use of the compactness
criterion results in an arguably inferior fitted distance distribution.
This case illustrates the effects we observed in the statistical anal-
ysis, namely that the use of the compactness criterion on very
broad distributions can result in the elimination of the long-
distance distribution mass (leading to an identifiable solution) at
the cost of a not-so-obvious bias by strongly reducing the uncer-
tainty in the long-distance range. Nonetheless, we have shown that
the compactness criterion results in unique and realistic solutions
otherwise.

9. Conclusions

In this work we have examined identifiability in the context of
data analysis in dipolar EPR spectroscopy. Non-identifiability man-
ifests as flat regions of the objective function and is detected by
examining one-dimensional profiles. Non-identifiable dipolar EPR
models typically feature artifacts or large uncertainties in the dis-
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tance distribution at long distances in conjunction with erroneous
background parameters and are sensitive to the choice of the upper
distance limit.

To mitigate this and to render the model identifiable, we pro-
pose using compactness of the distance distribution P as an addi-
tional restraint when extracting distance distributions from the
DEER data. Compactness is imposed via an additional penalty in
the objective function that is proportional to the variance of the
distance distribution. The weight of this penalty is selected via
the ICC. We have shown how this compactness improves the qual-
ity and robustness of the fits in most, but not all, cases. Addition-
ally, the use of compactness lifts the strong dependence of the
results on the upper limit of the distance range.

Ensuring identifiability is an important aspect of any reliable
data analysis protocol. It ensures the uniqueness and interpretabil-
ity of the results. If disregarded, it poses an impediment for reliable
automated analysis workflows. Therefore, practitioners should
keep an open eye to symptoms of non-identifiability. In the case
of non-identifiable models, additional prior information must be
incorporated to ensure their identifiability. In such cases, it is
important that the prior information is reported as well. This will
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generally improve both the quality and reliability of dipolar EPR
spectroscopy results.
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