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One of the fundamental results in the theory of strongly inter-
acting electron systems is the Kohn–Luttinger theorem, 
which states that electron pairing is inevitable in systems 

with purely repulsive interactions. Following the original paper by 
Kohn and Luttinger in 19651, it was commonly assumed that their 
pairing mechanism gives rise to critical temperatures that are too 
small to be observable in realistic experimental systems. The dis-
covery of high-temperature superconductivity in cuprates2 triggered 
renewed interest in the study of pairing in systems with repulsive 
interactions. Even today, one key question in the field of cuprate 
superconductors is whether electron pairing in these materials can 
be explained by purely repulsive Coulomb interactions. The lack of 
theoretical consensus on this question motivated the development 
of the field of quantum simulation using ultracold atoms: the Fermi–
Hubbard model, commonly believed to capture the main properties 
of cuprate superconductors, is naturally realized using fermions in 
optical lattices3–5. During the past few years, considerable experi-
mental progress has been made in analysing the properties of this 
model, including the observation of long-range antiferromagnetic 
order6, magnetic polaron properties7, the crossover from polarons to 
Fermi liquids8 and bad metallic transport9. However, the demonstra-
tion of pairing has so far been out of reach as temperatures substan-
tially below the superexchange would be required.

This Article has two goals. First we identify a microscopic bilayer 
model that features repulsive interactions between fermions, yet 
exhibits pairing at temperatures comparable to the superexchange, 
realizable by state-of-the art quantum simulators5 (Fig. 1). A special 
characteristic of this model is its mixed-dimensional (mixD) char-
acter: it features interlayer exchange interactions, but no interlayer 
single-particle tunnelling10,11 (Fig. 1a,b). Such systems can be real-
ized experimentally using ultracold atoms by applying a potential 
gradient in bilayer and ladder models, which have been recently 
realized in cold atom experiments12–15.

The second goal of our paper is to reveal a general mechanism 
for pairing in doped antiferromagnetic Mott insulators (AFMI). It 
is based on the idea that a single hole can be understood as a bound 
state of chargon and spinon16–20, carrying the respective charge 
and spin quantum numbers of the underlying AFMI21–25, which 
are connected by a geometric string of displaced spins. The anti-
ferromagnetic correlations (which may also be short-range) of the 
parent state are assumed to induce a linear string tension26. Within 
the same framework, a bound state of two holes corresponds to a 
bound state of two chargons. We demonstrate that the interplay of 
the potential energy, arising from the string tension, and kinetic 
energy of the partons leads to large binding energies for mesonic 
pairs of chargons. Our work goes beyond earlier analysis27–31 by 
including adverse effects that suppress pairing in a generic system. 
Effects detrimental to pairing will be suppressed in the mixD bilayer 
model we propose, featuring overwhelmingly attractive emerging  
parton interactions.

In the present work we focused on the case without interlayer 
tunnelling, t⊥ = 0, which enabled an effective theoretical description. 
We considered strong spin–charge coupling, where the intralayer 
tunnelling t∣∣ exceeds the relevant superexchange J⊥ (t∣∣ ≫ J⊥; Fig. 1). 
We demonstrate that the deeply bound pairs are highly mobile. This 
constitutes a notable exception from the common expectation32 that 
bipolarons should carry a heavy effective mass. The light mass of 
bipolarons is also significant, because it allows for high condensa-
tion temperatures Tc and has important implications for the ground 
state at finite doping: a light mass renders the localization of pairs 
unlikely. Therefore, we expect density wave states, such as stripes, to 
be less competitive with the superfluid states of pairs. In the oppo-
site limit, t∣∣ ≪ J⊥, we also expect pairing, but in this case the pairs are 
heavy and thus Tc is low5.

The microscopic mixD bilayer model we studied hosts a Bose–
Einstein condensate (BEC) regime with mobile but tightly bound 
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pairs at low doping, and a Bardeen–Cooper–Schrieffer (BCS) regime 
at high doping5. Hence our findings may have further implications 
for our understanding of the phenomenology of high-temperature 
superconductivity: when the interlayer couplings J⊥ are switched off, 
the bilayer systems we consider reduce to independent copies of the 
two-dimensional (2D) Fermi–Hubbard model. The latter is widely 
believed to capture the essential physics of the cuprate superconduc-
tors. Although experiments indicate that the cuprates do not realize 
a BEC phase with tightly bound Cooper pairs, they may be close in 
parameter space to models that exhibit a full BEC-to-BCS crossover. 
This would help to explain the pseudogap observed in cuprates, 
which is reminiscent of the pseudogap that arises at strong coupling 
in a BEC-to-BCS crossover, as realized in the mixD bilayer model.

String-based chargon pairing
The main result of this Article is the identification of a gen-
eral string-based pairing mechanism for doped holes in AFMIs  
(Fig. 1). We begin by introducing a general formulation of the 
model, which we dub the dimer parton model, in an abstract way 
not tied to any microscopic Hamiltonian. We present the assump-
tions that went into the construction of the model and summarize 
its key predictions, and provide technical details in the Methods. 
In the following section we propose a microscopic bilayer model  
(Fig. 1a,b), and demonstrate that it realizes the abstract string sce-
nario we envisioned. In particular, this allows us to understand the 
surprisingly high binding energies that we found for mobile (that is, 
strongly coupled) holes in 2D mixD bilayers shown in Fig. 1d.

In our general dimer parton model, we described excitations 
of AFMIs by two different types of parton, spinons and chargons, 
which carry the spin and charge quantum number, respectively. The 
partons also carry a flavour index μ = ±, allowing us to work with 

distinguishable chargons without a mutual hard-core constraint, 
which we predicted to pair up at strong couplings. The two different 
flavours μ = ± could, for example, be internal degrees of freedom 
or different layers in a bilayer system (Fig. 1). In the dimer parton 
model, we can treat arbitrary lattice geometries, but we assumed a 
homogeneous coordination number z for all sites; for example z = 4 
for the bilayer system shown in Fig. 1b.

Furthermore, we considered rigid strings Σ on the underlying 
lattice, which connect the partons and fluctuate only through the 
motion of the latter. We assumed a linear string tension σ0; that is, a 
string is associated with an energy cost V(ℓΣ) = σ0ℓΣ proportional to 
its length ℓΣ, which reflects how the short-range antiferromagnetic 
correlations of the underlying AFMI are disturbed by the parton 
motion. In the microscopic mixD bilayer models discussed below 
(Fig. 1a,b), this string tension corresponds to the cost of breaking 
up rung singlets via the parton motion.

Since we considered rigid strings with a linear string tension, the 
partons are always confined in our model, forming mesonic states. 
The binding energy for two charges was hence obtained by compar-
ing the ground state energy of a spinon–chargon (labelled sc) pair 
to the energy per chargon of a chargon–chargon (labelled cc) pair

EB = 2Esc − Ecc. (1)

At strong couplings (that is, when the hopping amplitude t ≫ σ0 of 
the holes exceeds the string tension σ0 ∝ J determined by the super-
exchange J), we predict a binding energy with a characteristic scaling

EB = α (2− 21/3)
︸ ︷︷ ︸
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Fig. 1 | String-based chargon pairing in mixD bilayers. We introduce an efficient pairing mechanism for distinguishable chargons with flavours μ = ± 
connected by a string Σ. a,b, The string pairing mechanism can be realized in a model of d-dimensional bilayers with spin-1/2 particles and strong repulsive 
interactions for d = 1 (a) and d = 2 (b). We consider mixD systems, where the hopping t⊥ between the layers is suppressed by a gradient Δ, while the 
superexchange J⊥ is kept intact and J⊥ ≫ J∣∣. The strong interlayer superexchange leads to the formation of rung singlets (dimers indicated by grey ellipses 
with red and blue spheres), depicted here for d = 1 (a) and d = 2 (b). The motion of doped holes (grey spheres) via t∥ within different layers μ = ± tilts the 
singlets along their paths, which corresponds to the formation of Σ. The potential energy associated with the string increases with its length as more 
singlets are tilted. Grey (green) shading corresponds to vertical (tilted) singlets. c,d, EB obtained by comparing the energies of spinon–chargon and chargon–
chargon mesons in the GSP model, and the ground-state energy for a system with one versus two holes in DMRG as described in the text. We assumed that 
J∥/J⊥ = 0.01 and varies t∥/J⊥ in equation (4). In the DMRG, weak interlayer tunnelling of strength t⊥/J⊥ = 0.01 was added to ensure convergence. The shading 
indicates the tight binding and strong coupling regimes. c, EB for a 40 × 2 ladder (d = 1). d, EB for a bilayer system on a 12 × 4 cylinder.

NAturE PHySIcS | VOL 18 | JUnE 2022 | 651–656 | www.nature.com/naturephysics652

http://www.nature.com/naturephysics


ArticlesNaTuRe PHysIcs

where α > 0 is a non-universal constant proportional to (z − 1)1/6 
(see Methods for details).

Since a combination of t and σ0 ∝ J appears in equation (2), we 
predicted a remarkably strong asymptotic EB. The appearance of t in 
this expression highlights the key aspect of the underlying binding 
mechanism, where two chargons share one string and gain equal 
amounts of superexchange and kinetic energy: the motion of one 
chargon frustrates the underlying AFMI along the string Σ. In the 
case of two chargons, the second chargon can retrace the string cre-
ated by the first, thus lowering the energy cost due to frustration in 
the spin sector. EB becomes positive because binding to a light sec-
ond chargon with mass ∝ 1/t is favoured over binding two chargons 
individually to heavy spinons with mass ∝ 1/J.

In a 2D square lattice α ≈ 2 and using a string tension of 
σ0 ≈ J = 4t2/U, where U are on-site interactions, we expect a binding 
energy on the order of ∣EB∣ ≃ t1/3J2/3 ≃ 2.5t(t/U)2/3. This suggests that 
binding energies of a significant fraction of a typical tunnel cou-
pling t may be possible, at least in principle, potentially exceeding  
room temperature.

As a second main result of the dimer parton model we estimated 
the effective mass of the chargon pair at strong couplings

M−1
cc = 4t

√

z− 1/z. (3)

Despite being tightly bound, the pair is highly mobile—contrary to 
common expectations for bipolarons.

We anticipate that the general string-based pairing mechanism 
plays a role in different microscopic models of AFMIs. Below, we 
discuss a specific realization in the mixD bilayer systems shown  
in Fig. 1.

Microscopic model
We considered a bilayer of d-dimensional sheets with spin-1/2 par-
ticles ĉj,μ,σ, which can be either bosons or fermions. Here, μ, σ = ± 
are layer and spin indices, respectively, and j is a d-dimensional 
site index. In the following, we considered fermions. The particles 
were assumed to be strongly repulsive, allowing us to work in a 
subspace without double occupancies. The Hamiltonian we con-
sidered includes nearest-neighbour hopping t within the layers and 
spin-exchange couplings J∥, J⊥:

ˆ
H = −t∥ ˆ

P

∑

⟨i,j⟩

∑

μ,σ=±

(

ĉ†i,μ,σ ĉj,μ,σ + h.c.
)

ˆ
P+

+J∥
∑

μ

∑

⟨ij⟩

(

ˆSiμ · ˆSj,μ − 1
4 n̂i,μn̂j,μ

)

+

+J⊥
∑

i

(

ˆSi,+ ·
ˆSi,− −

1
4 n̂i,+n̂i,−

)

,

(4)

where ˆP projects to the subspace with maximum single occupancy 
per site; ˆSj,μ and n̂j,μ denote the on-site spin and density operators, 
respectively, and h.c. denotes the Hermitian conjugate. The sum in 
the second line includes nearest-neighbour bonds within the layers, 
whereas the third line corresponds to bonds between the layers (Fig. 1b).

Experimentally, the model in equation (4) can be realized in 
d = 1, 2 starting from a Hubbard Hamiltonian5 with on-site interac-
tions U. A strong interlayer gradient Δ can be used to obtain a mixD 
setting10 along the third direction where the two layers μ = ± are 
physically realized. Note that the antiferromagnetic coupling J⊥ > 0 
can be realized both for fermions and bosons via an appropriate 
choice of the gradient Δ and the Hubbard interaction U33–36. In the 
following we assume that the interlayer spin-exchange is dominant, 
J⊥ ≫ ∣J∥∣, which can be achieved by choosing U ≫ t∣∣.

As a central result of our Article, we predict strong binding 
energies of holes, on the order of ∣EB∣ ≳ J⊥, in the strong coupling 
regime t∥ ≫ J⊥ where charges are highly mobile. In Fig. 1c,d we show 

binding energies obtained from density-matrix renormalization 
group (DMRG) simulations37 in mixD ladders (d = 1) and bilayers 
(d = 2) for J∥ = 0. The strong binding observed numerically can be 
explained by the string-based pairing mechanism introduced above.

The undoped ground state of equation (4) at half filling and for 
∣J∥∣ ≪ J⊥ corresponds to a product of rung singlets

|Ψ0⟩ = 2−V/2∏

j

(∣
∣
∣
↓
↑

〉

j
−

∣
∣
∣
↑
↓

〉

j

)

, (5)

where V = Ld is the volume. Excitations correspond to the break up 
of singlets and dope the system with holes. The motion of a hole 
introduces tilted singlets along its path, directly imprinting the 
string Σ between two partons into the spin background. As illus-
trated in Fig. 1a,b, the mixD bilayer model naturally realizes spi-
non–chargon and chargon–chargon bound states.

Effective parton models
Now we discuss how the microscopic model, equation (4), can 
be related to effective parton models (see the Supplementary 
Information for a detailed derivation). We considered systems with 
two distinguishable partons, n = 1, 2, where the label n summarizes 
the set of properties layer μ, parton type (spinon or chargon) and 
spin σ. To obtain distinguishable partons, at least one of these prop-
erties has to be different between n = 1 and n = 2. We introduce the 
notation |x1, x2,Σ⟩, where Σ is a string of tilted singlets connecting 
x2 to x1, and xn are the positions of the partons.

Below, we discuss two parton models, the dimer parton model 
and the refined Gram–Schmidt parton (GSP) model. They can be 
related to the model in equation (4) within the following approxi-
mations (Supplementary Information):
 (1) The frozen-spin approximation38 neglects fluctuations of spins 

along Σ; this is justified by a separation of time scales when 
t∥ ≫ J⊥.

 (2) We neglect the effects of self-crossings of strings, which be-
comes exactly valid for large coordination numbers z ≫ 1 (or in 
ladders with d = 1). Even for a d = 2 square lattice bilayer, such 
effects are expected to be quantitatively small due to their small 
relative share of the string Hilbert space39.

 (3) In the dimer parton model, following the spirit of the Rokhsar–
Kivelson quantum dimer model40, we assumed that spin configu-
rations |x1, x2,Σ⟩ with parton positions x1,2 form an approximate-
ly orthonormal basis, ⟨x′1, x′2,Σ′

| x1, x2,Σ⟩ ≈ δx2′ ,x2δx1′ ,x1δΣ′ ,Σ 
where ẟ denotes the Kronecker delta, which is justified by the 
small overlaps of configurations with non-identical singlet con-
figurations. This leads to an effective dimer parton Hamiltonian 
with nearest-neighbour hopping of the partons under simulta-
neous adaption of the string states, and a string potential VΣ.

The third approximation differs between the dimer parton and 
the GSP models. In the GSP model, the assumption that string 
states form an orthonormal basis is partially dropped. To this 
end, we performed a Gram–Schmidt orthogonalization of the 
string states defined in the t–J Hilbert space and accounted for the 
non-orthogonal nature of spinon–chargon states, up to loop effects 
(Supplementary Information). This led to an accurate prediction 
of the spinon dispersion. For chargon–chargon states, the GSP and 
dimer parton models are equivalent.

In the parton models, for simplicity, we assumed a linear string 
potential, Vsc

Σ = σ0 ℓΣ, where ℓΣ is the length of string Σ. For the 
tilted singlets in the mixD bilayer setting, equation (4), the linear 
string tension is σ0 = 3/4J⊥, corresponding to the energy difference 
between a singlet and a random spin configuration. In the chargon–
chargon case, the string potential has an additional on-site attrac-
tion, Vcc

Σ = Vsc
Σ − δΣ,0J⊥/4, which leads to slightly stronger binding 

than that predicted by equation (2).
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Two holes are distinguishable if they move within separate layers 
μ1 = −μ2, and they can thus occupy the same position x in the lat-
tice. Note that the motion of a second hole in the opposite layer and 
along the same path can completely remove the geometric string Σ 
of displaced spins.

Numerical results
In Fig. 1c we show the EB predicted by the GSP model for the mixD 
ladder (d = 1). Plotting the results over (t∥/J⊥)1/3 shows that EB at 

strong couplings, t∥ > J⊥, scales as |EB| ≃ t1/3∥ J2/3⊥  as predicted by the 

dimer parton model. In the opposite tight binding regime, t∥ ≪ J⊥, 
we found excellent agreement with our perturbative result from  
ref. 5 (see the dash-dotted line in Fig. 1c). For our DMRG simula-
tions, we defined the binding energy as EB = 2E1 − (E0 + E2), where 
EN is the ground state energy of the state with N holes. Our DMRG 
results are in excellent agreement with our prediction from the GSP 
model for couplings t∥/J⊥ ranging over several orders of magnitude, 
from 0.1 to >30.

In Fig. 1d, we show our results for the mixD bilayer system 
(d = 2). From the dimer parton model we again expected strong 
pairing when t∥ ≫ J⊥. This prediction was confirmed by our DMRG 
results in 2 × 12 × 4 systems, where the first direction denotes the 
two layer indices and we assumed periodic (open) boundary con-
ditions along the short (long) axes of the cylinder. For t∥/J⊥ = 3 we 
found remarkably strong EB below J⊥. For small t∥/J⊥ ≪ 1, the pertur-
bative tight binding result5 was obtained.

We also compared predictions made by the GSP model with 
DMRG results for d = 2. In Fig. 2 we show the energies per hole 
in the spinon–chargon and chargon–chargon cases, respectively, 
and obtained very good agreement. However, a small deviation of a 
few per cent could be observed at strong couplings in the two-hole 
case, where the GSP and dimer parton models were identical. We 
expect that loop effects, ignored in the parton models, led to the 
slightly lower energy per hole found by DMRG. Since EB, shown in 
Fig. 1d, was obtained as the small difference between the large one- 
and two-hole energies, see equation (2), the deviation of the GSP 
model from DMRG seems sizable at strong couplings. We empha-
size, however, that GSP and DMRG consistently predicted positive 

EB throughout, and a crossover from tightly bound to strongly fluc-
tuating extended pairs of holes.

Signatures of parton formation in one- and two-hole spectra
To further corroborate the parton structure of the one- and two-hole 
states we found at strong coupling and demonstrate the high degree 
of mobility of the paired states, we investigated their spectral prop-
erties. We performed time-dependent DMRG simulations41–43 in 
the mixD ladder (d = 1) and bilayer (d = 2) to extract the following 
spectral functions A

A1/2(k,ω) =

∑

n
δ(ω − E(1/2)

n + E0)
∣
∣
∣

〈

ψ
(1/2)
n

∣
∣
∣
ˆC(1/2),k |ψ0⟩

∣
∣
∣

2
, (6)

with frequency ω, wavevector k and where |ψ0⟩ (E0) is the ground 

state (energy) without holes, and 
∣
∣ψ(1/2)

n
〉

 (E(1/2)
n ) are the eigenstates 

(energies) with one (two) holes. The excitations are created through 
the operators ˆC(1/2),k, which are defined as the Fourier transforms of 
ˆC1,i = ĉi,+,↑ and ˆC2,i = ĉi,+,↑ĉi,−,↓ (see insets in Fig. 3a,b).

Our results in Fig. 3a,b for the ladder (d = 1) reveal a series of nar-
row lines that are visible up to high energies, in both the one-hole 
(Fig. 3a) and two-hole (Fig. 3b) spectra. They correspond to 
long-lived vibrational excitations of the spinon–chargon and char-
gon–chargon mesons, respectively. This intuition was confirmed 
by the excellent agreement we obtained with energies predicted by 
the GSP model. In the Supplementary Information, we show that 
the parton model also captures the spectral weights. The existence 
of discrete internal excitations, as revealed in Fig. 3, is a hallmark 
of emerging mesonic states in doped AFMIs. In addition to the 
vibrational states visible in Fig. 3, we also predicted odd-parity spi-
non–chargon and chargon–chargon states25 from the parton model, 
whose spectral weights are negligible in Fig. 3 (Supplementary 
Information).

For the two-hole case (Fig. 3b), we observed a strong 
centre-of-mass dispersion. This indicated that the deeply bound 
pair was highly mobile, confirming a key prediction of the parton 
model equation (3). Additionally, at kx = π the relative motion of the 
partons is suppressed by quantum interference, and only the lowest 
mesonic state has non-vanishing spectral weight.

The parameter set we used in Fig. 3a,b assumed that J∥/J⊥ = 0.31 
and corresponded to a situation that could be realistically realized 
in a Ferm–Hubbard ladder with a potential gradient between the 
two legs5. Hence, the emerging spinon–chargon and chargon–char-
gon meson states we predicted in our model should be experimen-
tally accessible with ultracold atoms in optical lattices with current 
technology.

In Fig. 3c we show two-hole spectral cuts at rotationally invari-
ant momenta k = 0 = (0, 0) and π = (π, π) for the mixD bilayer where 
d = 2; we considered t∥/J⊥ = 2 in the strong coupling regime. Here, 
our underlying time-dependent DMRG simulations on a 2 × 40 × 4 
cylinder were more challenging and we reached shorter times than 
in d = 1. This resulted in significant Fourier broadening, and pre-
vented us from identifying individual vibrational excitations at high 
energies. Nevertheless, at k = 0 a first peak was visible in the DMRG 
data. Comparison with a broadened GSP model spectrum sug-
gested that this peak probably corresponds to the first vibrational 
meson state.

At k = π, the two-hole spectrum in Fig. 3c collapsed to a single 
peak. As in d = 1 at k = π, this can be understood within the dimer 
parton model from destructive quantum interference that leads to 
a cancellation of the chargon’s relative motion. The energy of the 
tightly bound two-hole state at k = π was accurately predicted by 
the GSP model.

As suggested by the large energy difference of the chargon–char-
gon state between k = 0 and k = π, on the order of 6t∥ in Fig. 3c, we 
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Fig. 2 | MixD bilayers in 2D. We studied ground state energies in a mixD 
bilayer system with d = 2 using the GSP model and DMRG for a bilayer 
system on a 12 × 4 cylinder. a,b, Energy per hole as a function of t∣∣/J⊥ for 
one hole (a) and two holes (b).
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found that the deeply bound state at k = 0 had a light effective mass. 
A fit k2x/(2Mcc) to the lowest spectral peak Ecc(kxex) − Ecc(0) yielded 
Mcc = 2.44/t∥ at t∥/J⊥ = 2. This compares reasonably with our estimate 
Mcc ≥ 0.63/t∥ from the dimer parton model; we used an improved 
version of equation (3) (Supplementary Information). This result 
should be contrasted with the much heavier Mcc = 25/J⊥ in the tight 
binding regime5, at t∥/J⊥ = 0.1 with a comparable EB on the order of 
∣EB∣ ≈ 3/4J⊥.

Finite-temperature phase diagram
At finite temperatures, the emergence of two kinds of mesons can 
lead to rich physics. Although the ground states we found are always 
paired, we expected a mixture of spinon–chargon and chargon–char-
gon pairs in chemical equilibrium when T > 0. Because a gas of N 
spinon–chargon pairs has more entropy than a gas of N/2 chargon–
chargon pairs at high T, we expected a crossover from spinon–char-
gon to chargon–chargon domination around some temperature Tmix.

In d ≥ 2 dimensions, we expected an even richer phase diagram. 
The chargon–chargon pairs can form a (quasi-) condensate below 
the respective temperature (TBKT) Tc in (d = 2) d > 2 dimensions at 
finite doping and before spinon–chargon pairs dominate beyond 
Tmix. Furthermore, at a critical temperature T* on the order of J⊥ we 
expect a thermal deconfinement transition of the mesons to take 
place when d ≥ 2 (ref. 44).

Discussion and outlook
We introduced a general string-based pairing mechanism for distin-
guishable chargons in AFMIs, and demonstrated that the resulting 
binding energy scales as ∣EB∣ ≃ t1/3J2/3, or ∣EB∣ ≃ t(t/U)2/3, when t ≫ J. 
The highest binding energies are expected when the chargon–char-
gon mesons become extended, with an average string length scal-
ing as ℓ ≃ (t/J)1/3 (ref. 27; see also the Supplementary Information). 
We confirmed the validity of our analytical arguments using DMRG 
simulations of bilayer toy models that can be realized experimentally 
using, for example, ultracold atoms in optical lattices5. Another inter-
esting situation corresponds to cuprate materials with a multilayer 
structure and an effective chemical potential offset between the lay-
ers45,46: starting from half filling, we expect that a strong pump pulse 
may allow the creation of metastable pairs of doublons and holes in 
opposite layers. These may then form the mesonic bound states that 
we propose, and could be probed by a subsequent laser pulse.

The analysis we performed here was limited to individual 
mesons, but our prediction of deeply bound and highly mobile 
chargon pairs for t ≫ J has important implications at finite doping. 
In such a regime, we expect a quasi-condensate with power-law 
correlations below a critical BKT temperature TBKT. for the mixD 
bilayer (d = 2). Owing to the high mobility of the chargon–chargon 
pairs, a sizable TBKT at a fraction of t and robustness against localiza-
tion are expected.

Another interesting direction would be the investigation of an 
emergent SO(5) symmetry in the bilayer models, see refs. 47,48 for 
studies using a related model.
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Methods
String-based chargon pairing. Here we introduce the general string-based pairing 
mechanism for an idealized parton model of AFMIs in d dimensions (the dimer 
parton model). We considered two flavours of chargons ˆhx,μ with μ = ±, which 
allowed us to work with distinguishable chargons; x ∈ Z

d denotes a lattice vector. 
The two different flavours μ = ± could, for example, be internal degrees of freedom 
or different layers in a bilayer system (Fig. 1). In the dimer parton model, we can 
treat arbitrary lattice geometries (in principle), but we assumed a homogeneous 
coordination number z for all sites; for example z = 4 for the bilayer system shown 
in Fig. 1b. We note that the coordination number considered here is from the point 
of view of the hopping charges, which are confined to the 2D planes and therefore 
have the same coordination number as in a square lattice. We also introduced 2 × 2 
flavours of spinons, ˆfx,μ,σ, where σ = ± denotes the spin index.

Furthermore, we considered rigid strings Σ on the underlying lattice, which 
connect the partons and fluctuate only through the motion of the latter. In our 
idealized scenario, we assumed that such geometric strings retain a full memory of 
the parton trajectories up to self-retracing paths, but including loops. These strings 
can also be viewed as a manifestation of the gauge fluctuations expected from any 
parton representation of an AFMI.

We worked in a regime of low parton density and considered only isolated pairs 
of two distinguishable partons, n = 1, 2. Hence, their quantum statistics played no 
role in the following. The label n summarizes the set of μ, parton type (spinon or 
chargon) and spin σ in the case of a spinon. To obtain distinguishable partons, at 
least one of these properties has to be different between n = 1 and n = 2. We can 
write the orthonormal basis states of the dimer parton model as |x1, x2,Σ⟩, where 
Σ connects x2 to x1; that is:

〈

y1, y2,Σ′
∣

∣ x1, x2,Σ⟩ = δy1 ,x1 δy2 ,x2 δ
Σ′ ,Σ . (7)

The effective Hamiltonian of the two partons written in first quantization reads

ˆH2p = −
2
∑

n=1
1

2mn

∑

⟨y,x⟩,Σ

(∣

∣

∣
yn,Σ′

xn ,yn ,Σ

〉

⟨xn,Σ| + h.c.
)

+

∑

Σ

|Σ⟩ ⟨Σ| VΣ .
(8)

The first line describes nearest-neighbour hopping of the partons, with amplitudes 
1/2mn, and simultaneous adaption of the string state from Σ to Σ′

xn ,yn ,Σ
: hopping 

along the existing string leads to a retraction of the string along yn − xn, otherwise 
the string is extended by the same element. Extensions to next-nearest-neighbour 
hopping can also be considered. The second line in equation (8) describes a general 
string potential VΣ that we assume to be independent of the parton flavours.

In the following we consider a linear string potential

VΣ = σ0 ℓΣ . (9)

In a weakly doped AFMI we may assume that σ0 ≃ J is proportional to J (refs. 21,25). 
Furthermore, we assumed that the parton masses strongly depended on flavour in 
the following way

(2t)−1
= mh ≪ mf ≃ J−1. (10)

That is the chargon mass mh is significantly lighter than the spinon mass mf, since 
t ≫ t2/U ≃ J in AFMIs.

Our goal in the following is to demonstrate that two distinguishable chargons 
(that is, with different μ) form a strongly fluctuating pair with a large EB when 
t ≫ J. Since we considered rigid strings with a linear string tension, the partons 
were always confined in our model. Hence EB for two charges was obtained by 
comparing mesonic states constituted by a spinon–chargon and a chargon–chargon 
pair, respectively:

EB = 2Esc − Ecc. (11)

First, we considered spinon–chargon mesons. Because 1/mf ≃ J, 
we could treat the spinon motion perturbatively and start from a 
localized spinon. In this case, all charge fluctuations are described by 
nearest-neighbour tunnelling between adjacent string configurations, and 
equation (8) becomes a single-particle hopping problem on the Bethe lattice 
ˆH2p|sc = −t

∑

⟨Σ′ ,Σ⟩

(∣

∣Σ
′
〉

⟨Σ| + h.c.
)

+ σ0
∑

Σ
ℓΣ |Σ⟩ ⟨Σ| + O(J)  

(Fig. 1a). Its spectrum is composed of decoupled rotational and vibrational 
sectors39. The ground state has no rotational excitations, and its energy in the limit 
t ≫ J follows the well-known universal form27

Esc = −2t
√

z − 1 + α t1/3 σ
2/3
0 + O(J), (12)

where α > 0 is a non-universal constant proportional to (z − 1)1/6. Note that 
contributions from the spinon motion are contained in corrections O(J).

Next we considered chargon–chargon mesons composed of a pair, μ = ±, of two 
distinguishable chargons. We then needed to include the dynamics of both partons 
in equation (8). Since ˆH2p is translationally invariant, we can transform to the 

co-moving frame of the first parton x1 by a Lee–Low–Pines transformation49. For 
a given centre-of-mass quasimomentum k from the Brillouin zone corresponding 
to the underlying lattice, one again obtains a hopping problem on the Bethe lattice. 
Although the contributions from the string potential and from x2 were identical 
to the spinon–chargon case, the motion of the first chargon contributes additional 
k-dependent terms that tend to frustrate the motion of the pair for k ≠ 0 (ref. 28).

Around the dispersion minimum at k = 0 we obtained

ˆH2p|cc = −2t
∑

⟨Σ′ ,Σ⟩

(∣

∣Σ′
〉

⟨Σ| + h.c.
)

+ σ0
∑

Σ

ℓΣ |Σ⟩ ⟨Σ| , (13)

up to corrections of order O(k2) (Supplementary Information). The only 
difference from the spinon–chargon problem is that t → 2t has been replaced 
by twice the chargon tunnelling. This replacement can be easily understood by 
noting that the relative motion of the two chargons involves the reduced mass, 
1/mred = 2/mh; that is, tred = 2t. Thus we obtained the energy of the chargon–chargon 
meson by using the same scaling result as in the spinon–chargon case, equation (12),  
and merely replacing t → 2t. It is important to note that this leaves the 
non-universal constant α unchanged, and we obtained

Ecc = −4t
√

z − 1 + α (2t)1/3 σ
2/3
0 + O(J, k2). (14)

Now we were in a position to calculate EB, equation (11), of two holes in 
the limit t ≫ J. While the kinetic zero-point energies ∝ −t(z−1)1/2 cancel, the 
leading-order string binding energies ∝ t1/3σ2/3

0  yield

EB = −α (2 − 21/3)
︸ ︷︷ ︸

= 0.740...

t1/3σ
2/3
0 + O(J). (15)

This is a remarkably strong EB, which depends on a combination of t and σ0 ≃ J. The 
appearance of t in this expression highlights the underlying binding mechanism, 
where two chargons share one string, gaining equal amounts of potential and 
kinetic energy.

Finally, we estimated the effective mass of the chargon pair on a hypercubic 
lattice. We made a translationally invariant ansatz for the chargon–chargon meson 
in the co-moving frame of the first chargon, and expand the variational energy 
up to order k2. As shown in the Supplementary Information, for t ≫ J this yields a 
centre-of-mass dispersion k2/2Mcc of the pair, with

M−1
cc = 4t

√

z − 1/z. (16)

Despite being tightly bound, the pair is highly mobile—contrary to common 
expectations for bipolarons.
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