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Abstract
Salt marshes are unique habitats between sea or saline lakes and land that need 
to be conserved from the effects of global change. Understanding the variation in 
functional structure of plant community along environmental gradients is critical to 
predict the response of plant communities to ongoing environmental changes. We 
evaluated the changes in the functional structure of halophytic communities along 
soil gradients including salinity, in Iranian salt marshes; Lake Urmia, Lake Meyghan, 
Musa estuary, and Nayband Bay (Iran). We established 48 plots from 16 sites in four 
salt marshes and sampled 10 leaves per species to measure leaf functional traits. Five 
soil samples were sampled from each plot and 30 variables were analyzed. We ex-
amined the changes in the functional structure of plant communities (i.e., functional 
diversity [FD] and community weighted mean [CWM]) along local soil gradients using 
linear mixed effect models. Our results showed that FD and CWM of leaf thickness 
tended to increase with salinity, while those indices related to leaf shape decreased 
following soil potassium content. Our results suggest that the variations in functional 
structure of plant communities along local soil gradients reveal the effect of different 
ecological processes (e.g., niche differentiation related to the habitat heterogeneity) 
that drive the assembly of halophytic plant communities in SW Asian salt marshes.
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functional structure, functional trait, Lake Urmia, null model, salt marsh, standardized effect 
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1  |  INTRODUC TION

Salinization is a global degradation process affecting not only soil 
quality and plant distribution but also the ecosystem services 
provided by healthy drylands (Flowers et al.,  2010; Parida and 
Das, 2005; Wang et al., 2015). Paradoxically, natural habitats linked 
to saline soils located between sea or saline lakes and land such as 
“salt marshes” have been considered of significant importance for 
nature conservation (Isacch et al., 2006; Milotić et al., 2010; Tabot 
and Adams,  2013). They are extremely influenced by fluctuations 
of salinity, which are periodically caused by annual rainfalls, flood-
ing, and inundation (Chapman,  1977; Clarke and Hannon,  1970; 
Gleason,  1926; Tug et al.,  2012). Consequently, salt marshes are 
fragile and many of them face critical anthropogenic disturbance 
(Bouchard et al., 2003; Zahran and Willis, 1992). Indeed, direct and 
indirect anthropogenic factors such as overgrazing, agriculture and 
intensive irrigation may severely disturb salt marshes and so natural 
vegetation of these areas (Tug et al., 2012).

Salt marshes are frequently used as study systems to exam-
ine plant community structure (Wilson and Whittaker,  1995; 
Zedler, 1977; Orson and Howes, 1992), as they are colonized by rela-
tively simple plant communities with few dominant species and very 
low plant diversity (Asri and Ghorbanli,  1997; Cutini et al.,  2010; 
Ghorbanalizadeh et al., 2020; Tug et al., 2012). Generally plant com-
munities in SW and Central Asian salt marshes are dominated by 
plants specialized to saline soils which their zonation is depending on 
local topography, existing macroclimate and hydrological conditions. 
Usually eu-halophytes such as annual Salicornia spp. and C3 annual 
Suaeda spp. (Thero-Salicornietea class) occur in highly saline soil near 
the sea or saline lake, both in inland and littoral marshes. Mangroves 
(Avicennia marina belonging to Avicennio-Sonneratietea class) are re-
stricted to Persian Gulf coasts with tropical macroclimate. Both in 
temperate and tropical climates, the shrubby and semiwoody stem 
succulent chenopods (Halocnemum strobilaceum and Halostachys be-
langeriana, belonging to Salicornietea fruticosae class) dominate the 
muddy salt flats. The hygro-halophytic rush and brushwood com-
munities (Phragmites spp. and Tamarix spp. belonging to Phragmito-
Magnocaricetea and Tamaricetea arceuthoidis classes) occur in areas 
where fresh or brackish water inflow from rivers, streams, aquifers, 
and wetlands. The C4 transitional plant formations with species 
of Chenopodiaceae family are common in moderately saline soils 
or ruderal salt affected soils as a usually wide zone ending to xe-
rophytic steppes largely dominated by Artemisia and Stipa species. 
(Akhani,  2004; Akhani,  2015; Akhani and Mucina,  2015; Djamali 
et al. 2011; Ghorbanalizadeh et al., 2020).

Several studies on the relationship between vegetation and soil 
showed that salt concentration in the groundwater, soil salinity, ele-
vation, K, Na, Ca, and Mg content in the soil are strong determinants 
of soil-vegetation dynamics in salt marshes (Brewer and Grace, 1990; 
Cantero et al., 1998; He et al., 2011; Rogel et al., 2000). However, 
although there is ample information on the differences in plant 
community composition of salt marshes at the global (Adam, 2002; 
Simas et al., 2001) and regional scale (Asri, 1998; Ghorbanalizadeh 

et al., 2020; Niering and Scott Warren, 1980), we have no information 
on the effect of Na salinity and other soil variables on the functional 
structure of halophyte communities. Understanding the underlying 
factors that determine the functional structure of plant communities 
along local gradients is essential to predict the response of vegeta-
tion to different global change drivers and to define conservation 
programs to protect salt marshes and halophyte communities.

Here, we evaluated the functional structure of plant communities 
in salt marshes from Iran in relation to salinity and other relevant soil 
variables. In this regard, we aimed to answer two questions: (i) how 
does functional plant diversity change with increased soil salinity? (ii) 
What are the most dominant trait values for certain functional traits 
in the plant communities occurring along salinity gradients?

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This study was conducted in four salt marshes in Iran: Lake Urmia 
(NW Iran), Lake Meyghan (Central Iran), Musa estuary and Nayband 
Bay (South of Iran) (Figure 1; Appendix S1; See Matinzadeh et al. 2019 
for further details). All studied salt marshes are dominated by halo-
phytic and salt-tolerance plants and present local salinity gradients, 
which lead to a natural zonation of halophytic vegetation. The two 
first of these salt marshes are inland and both suffer the reduction 
of water income due to agriculture and unsustainable irrigation man-
agement. They are located in a semiarid region with similar biocli-
mate and so their precipitation is largely similar. The last two salt 
marshes are coastal with similar bioclimate. Their vegetation is in-
fluenced by inundation and tide, which is remarkably different to 
inland salt marshes (Akhani, 2004; Akhani, 2015; Ghorbanalizadeh 
et al., 2020).

Lake Urmia is known as the largest inland lake in Iran and sec-
ond largest hypersaline lake in the World (Stone, 2015; ULRP, 2018). 
Several vegetation zones are identified from the coasts (often a belt 
of Salicornia), muddy high saline plains (H. strobilaceum), patches of 
sedges, C4 transitional plant formations, Tamarix patches or belts 
and finally Artemisia or ruderal plant communities in undulating 
hills (Asri,  1998; Asri and Ghorbanli,  1997; Djamali et al.,  2008; 
Ghorbanalizadeh et al.,  2020). According to the range of EC (4–
182 dS m−1) and pH values (7.2–9.4), most soils of this area are sa-
line and alkaline with dominance of sodium and chloride (Asri and 
Ghorbanli,  1997). Its climate is semiarid continental, which is part 
of the Irano-Turanian Xeric Continental (Mxc) bioclimate (Djamali 
et al., 2011) (Figure 1a).

Lake Meyghan is located in the north of the Arak city, in 
Markazi Province (Akhani, 2006). The vegetation of this area has 
an extremely rich halophytic flora consisted of Halocnemum stro-
bilaceum in muddy salt flats, Nitraria schoberi shrub vegetation 
(largely cultivated), annual C4 dominated chenopods (Climacoptera 
spp., Bienertia cycloptera, Halimocnemis rarifolia, and Petrosimonia 
glauca), hydrophilous eury-halophytic rush vegetation (Phragmites 
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australis), and Stipa steppe (Akhani,  1989). The measured range 
of EC (0.1–97 dS m−1), pH (7.6–9.14) and the formation of saline 
crusts composed of halite (NaCl), glauberite (Na₂Ca[SO₄]₂), gyp-
sum (CaSO4·2H₂O), and calcite (CaCO₃) on the surface of the 

Meyghan Lake during summer indicate the saline and alkaline soil 
in this area (Akhani, 1989; Safari-Sinegani et al., 2017). This area 
is part of the Irano-Turanian Xeric Continental bioclimate (Mxc) 
(Djamali et al., 2011) (Figure 1b).

F I G U R E  1  Location of the four studied salt marshes in Iran; Lake Urmia (a), Lake Meyghan (b), Khore Musa (c), and Nayband Bay 
(d). Inserts show the sites of each sampling area, climatic diagrams (https://www.irimo.ir) for the studied locations, and pictures of the 
vegetation are also shown

(a)

(b)

(c)

(d)

https://www.irimo.ir
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Khore Musa (Musa estuary) is located in the south of Khuzestan 
Province. Vegetation in this area is dominated by C3 communities, 
consisting of Salicornia iranica subsp. sinus-persica and Suaeda iran-
shahrii along the shores followed by C4 rich plant zones of Bienertia 
sinuspersici, Limonium failachicum, Suaeda khalijefarsica, and S. 
fruticosa (Akhani,  2015; Akhani and Deil,  2012; Chatrenoor and 
Akhani, 2021). Our study site is in the tidal coast of the Musa estuary 
where the inflow of seawater causes high soil salinity. Sodium and 
chloride are the main ions in these highly saline soils (Akhani, 2015). 
This area is part of the tropical desertic (Trd) bioclimate (Djamali 
et al., 2011) (Figure 1c).

Nayband Bay is located near the Asaluyeh industrial zone on 
the Persian Gulf coasts. Its tidal vegetation includes mostly man-
grove forests of Avicennia marina followed by Arthrocaulon macro-
stachyum on the high saline shores, Sporobolus arabicus on saline 
sand shores, and end to xerophyte plants on coastal dunes and dry 
plains (Akhani,  2004). The inflow of seawater in the coastal area 
and lowlands, the presence of soil layers containing salts and the 
high transpiration rates caused by strong winds are the main fac-
tors causing soil salinity in this area (range of EC = 1.07–10.52 and 
pH = 8.1–9.8). The presence of sodium and chloride as the main ions 
along with other ions such as calcium, potassium, magnesium, and 
sulfate contribute to the high salinity of this area (Akhani, 2015). This 
area is typical of a tropical xeric (Trx) bioclimate (Djamali et al., 2011) 
(Figure 1d).

2.2  |  Experimental sampling

We sampled 48 plots from 16 sites (U1-U8, N1-N5, K, M1-2; capital 
letters indicate the region of origin) in four salt marshes. Sampling 
sites were selected in the less disturbed areas with almost natural 
zonation of halophytic vegetation around the lake or sea. Plots were 
located in areas covered by homogeneous vegetation (avoiding eco-
tones) with 25 m2 surface area in herbaceous vegetation types and 
100  m2 surface area in shrubby or very open vegetation types in 
accordance with the most studies with similar vegetation structure 
(Akhani et al., 2013). The first plots were established on the commu-
nity observed on the dry lake bed or the sea shore in a given site and 
continued away from the lake or sea to capture the whole salinity 
gradient in each region.

Plant cover was visually estimated for each species per plot. Ten 
mature healthy leaves (or part of photosynthetic shoots of plants 
with reduced leaves such as Salicornia) were randomly sampled from 
each species in each plot for leaf traits measurements. Five soil sam-
ples were collected at ca. 5–15 cm depth in every plot.

Sampling was conducted from early March to October 2015 and 
2016, but dates varied among salt marshes depending on plant phe-
nology. Sampling in Lake Urmia was done in spring and summer (May 
2015, April 2016 and July 2015), in Khore Musa in autumn (October 
2015), in Nayband bay in spring (March 2016) and in Lake Meyghan 
in summer (June 2016).

2.3  |  Studied species and nomenclature

Studied plants included 188 species collected from 48 plots 
(Appendix S2). The mean species richness and cover percentage 
were 10.53 and 8.3, respectively (Appendix S3). Nomenclature 
is mostly based on Flora Iranica (Rechinger, 1963). Recent generic 
names were applied for some groups such as Chenopodiaceae 
(Akhani et al., 2007; Akhani, 2015; Hernández-Ledesma et al., 2015; 
Rudov et al., 2020; Chatrenoor and Akhani, 2021).

2.4  |  Functional traits measurement

Six continuous plant traits including plant height (PH), leaf thick-
ness (LT), leaf shape (LS; leaf length (LL)/leaf width (LW)), leaf area 
(LA), leaf perimeter (LP), specific leaf area (SLA) and leaf dry mat-
ter content (LDMC) were measured, obtaining the average of each 
trait value per species and plot (Table 1). In addition, six categori-
cal traits were included in Appendix S2 to provide more information 
about study species. These traits, including life history, growth form, 
and life form were determined according to Pérez-Harguindeguy 
et al.  (2013), salt-tolerance category was determined based on 
Breckle  (1990), eco-morphotypes according to Breckle  (1986) and 
photosynthetic pathway by information available in the literature 
(Akhani et al., 1997; Akhani and Ziegler, 2002; Osborne et al., 2014; 
Rudov et al., 2020) (Appendix S2).

The “water saturated-leaf mass” was measured with a precision 
balance (Sartorius, TE153S, d = 0.001 g) after rehydrating samples for 
12 h (and succulent plants for 6 h), and LT was measured by a digital mi-
crometer (Mitutoyo, MDC-25SB, d = 0.001 mm) (Pérez-Harguindeguy 
et al., 2013). In detail, we measured thickness of the young succulent 
stems of stem succulent plants (e.g., Salicornia) as LT trait. The scans of 
water-saturated leaves were used to calculate LA, LP, LL, and LW using 
image analysis software ImageJ 1.42q (National Institutes of Health, 
USA; http://rsb.info.nih.gov/ij). Leaves were subsequently oven dried 
at 70–75°C for 72 h, and weighed to obtain the “dry leaf mass”. SLA 
was calculated as the ratio of LA to its dry leaf mass (mm2  mg−1) 
(Minden et al., 2012), and LDMC as the dry leaf mass divided by the 
water-saturated leaf mass (Vendramini et al., 2002).

2.5  |  Soil chemical analyses

Soil samples were air-dried, milled in a ball mill (Retsch Mixer 
MM400) and then dissolved in HCl-HNO3 (9,3) using Microwave Acid 
Digestion (speedwave MWS-3+, BERGHOF). The filtrated extract 
solution was used to determine Aluminium (Al), Arsenic (As), Calcium 
(Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium 
(K), Lithium (Li), Magnesium (Mg), Manganese (Mn), Molibden (Mo), 
Sodium (Na), Nickel (Ni), Phosphorus (P), Lead (Pb), Sulfur (S), Silicium 
(Si), Titanium (Ti), Vanadium (V), and Zinc (Zn) content using induc-
tively coupled plasma-optical emission spectrometry (ICP-OES, 

http://rsb.info.nih.gov/ij
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Varian ICP 720-ES, analytical services of the Estación Experimental 
del Zaidín, CSIC, Spain). Total nitrogen and carbon (N and C total) 
concentrations were measured by an elemental analyzer (Elementar 
N/CN; VarioMax). Soil pH and electrical conductivity (EC) were 
measured with a pH/conductivity meter (ORION STAR A215) after 
diluting with distilled water to 1:2.5 and 1:5 (g: ml), respectively. Soil 
EC was used to measure and as a surrogate for soil salinity. Also, 
high Na was used as indicative of high salinity in soil, since Na is 
a main cation in the studied sites (Akhani,  1989, 2015; Asri and 
Ghorbanli, 1997). The percentage of gypsum was determined gravi-
metrically comparing the weight of samples dried at 50 and 105 °C 
(Porta et al., 1986). Soil carbonate was estimated with a Bernard cal-
cimeter (Bolukbasi et al.,  2016) and organic matter was measured 
through the wet oxidation method (Heanes, 1984). Soil texture was 
determined with a particle analyzer (Mastersizer 2000, Malvern) 
(Sochan et al., 2012) (Appendix S4).

2.6  |  Functional structure of plant community

Two complementary indices, community weighted mean (CWM) and 
functional diversity (FD), were used to evaluate functional structure 
of plant community (Adler et al., 2014; Batriu et al., 2015; Bernard-
Verdier et al., 2012; de Arruda Almeida et al., 2018). CWM reflects 
changes in mean functional trait values of the plant communities 
along salinity gradients (Equation 1) (Garnier et al., 2004; Valencia 
et al., 2015):

where aij is abundance of the species i in the plot j, and tij is trait value of 
the species i in the plot j. FD illustrates the diversity of functional traits 
in a given community (Equation  2) (de Arruda Almeida et al.,  2018; 
Song et al., 2014; Valencia et al., 2015). For that, we used the mean 
pairwise distance (MPD):

where n is the species number in the plots, δ the trait distance matrix, 
and δi,j the Gower distance (Gower, 1971; Podani, 1999) of any given 
single trait between species i and j.

The correlation of the traits was analyzed by cor function in 
R package “stats” (R Core Team,  2018). LP was excluded before 
analysis to reduce correlation (>70%). After that, trait values were 
centered and scaled (Muscarella and Uriarte, 2016) using the scale 
function in Base R (R Core Team, 2018). To compute MPD and CWM 
independent to local species richness, the functional structure of 34 
observed plots (only plots with more than two species were included 
in the analyses) were compared to 999 random communities derived 
from null models using an “independent swap” algorithm. We pre-
viously tested reshuffling effects on our results, through running 
three different algorithms of null models: (a) frequency, (b) richness 
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and (c) independent swap algorithms. Because the results of these 
three null models were similar (Appendix S5), only the results of the 
‘independent swap’ algorithm are presented here. Finally, MPD and 
CWM values of observed and null communities were used to calcu-
late a standardized effect size (SES) by the following equation:

where Obs is the observed value of MPD or CWM in the communities, 
and Meannull and SDnull are the mean and standard deviation of MPD 
or CWM in the null communities, respectively.

SES of MPD (SES-MPD) was calculated for six continuous traits 
in each plot, using the function ses.mpd in the R package “picante” 
(Kembel et al.,  2010). SES of CWM (SES-CWM) was calculated 
within each community for each six continuous traits separately by 
the Equation 3.

2.7  |  Statistical analyses

We examined the variation of plant community functional structure 
along soil gradients using linear mixed effect models (LMMs), such 
that soil elements were considered as predictors or fixed effects and 
sites as random effects. By this model, we analyzed the effect of soil 
variables on trait distribution patterns (SES-MPD or SES-CWM; as re-
sponse factor). To reduce correlation among variables, we checked the 
correlation of soil variables using cor function and selected pH, OM, 

As, K, Mg, Na, P, Si, and N. After that, we performed a principal com-
ponents analysis (PCA) using prcomp function in R package “stats” se-
lecting the less orthogonal variables with high loading in the first two 
PCA axes (Appendix S6). As a result, the soil variables selected were 
K, Mg, Na, and N. Then, VIF scores were used to check for multicol-
linearity using the vif function in the package “car”. Before that, soil 
parameters were log-transformed by log function in Base R (R Core 
Team, 2018). The statistical significance of each predictor in the model 
was determined using likelihood ratio tests (Winter, 2015). Finally, the 
best model was selected with Na, K, Mg, and N as factors showing 
the highest contribution to the statistical significance of the model. 
LMMs were performed using lmer function in “lme4” package (Bates 
et al., 2014) in R i386 3.5.1 (R Core Team, 2018).

3  |  RESULTS

The SES-MPD and SES-CWM of each functional trait showed effec-
tive shifts along the soil salinity gradients. LT and LA varied signifi-
cantly with increasing Na content in the soil, whereas the other four 
studied functional traits (LS, PH, SLA and LDMC) were independent 
of soil Na content (Figure 2). SES-MPD (Figure 2a) and SES-CWM 
(Figure 2b) significantly increased with increasing Na content in the 
soil for LT. In contrast, SES-CWM of LA significantly decreased along 
the sodium gradients (Figure 2b).

SES-MPD significantly decreased with increasing soil K for LS 
(Figure 3a). This trend indicates that LS became less variable in soils 

(3)SES =
(

Obs −Meannull
)

∕SDnull ,

F I G U R E  2  SES-MPD (a) and -CWM 
(b) of traits along sodium (Na) gradients. 
Log-transformed values of soil Na are 
shown. P-values for every plots show 
the significance of this relation based on 
likelihood ratio test. Solid lines represent 
significant relation while the dashed lines 
represent non-significant correlation in 
the regressions. The 95% confidence 
intervals for the regressions are shown. 
LT, leaf thickness; PH, plant height; LS, 
leaf shape; LA, leaf area; SLA, specific leaf 
area; LDMC, leaf dry matter content
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with high K concentrations. Moreover, SES-CWM for LS and LA sig-
nificantly decreased with increasing soil K (Figure 3b). Conversely, 
SES-CWM for SLA significantly increased with increasing K content 
in the soil (Figure 3b).

No clear significant patterns were observed for SES-MPD along 
soil Mg gradients (Figure 4a). However, SES-CWM for four of the 
six functional traits significantly varied along soil Mg gradients 
(Figure 4b). SES-CWM for LT, PH and LS increased with increasing 
Mg content in the soil (Figure 4b). Furthermore SES-CWM of SLA 
decreased with increasing Mg content in the soil (Figure 4b).

There were no significant patterns for SES-MPD along soil N gra-
dients (Figure 5a). However, we observed an increasing significant 
trend of SES-CWM for LA along the soil N gradients (Figure 5b).

4  |  DISCUSSION

MPD and CWM of several functional traits varied along sodium sa-
linity and other soil variables. LT is an indicator of stress tolerance 
to soil salinity and moisture characterized by leaf succulence (Pérez-
Harguindeguy et al.,  2013; Vendramini et al.,  2002). The increase 
of MPD for LT with high Na contents in the soil suggests the coex-
istence of different functional strategies in high salinity scenarios 
(i.e., two salt-tolerance strategies; succulent plants such as Salicornia 
iranica and Halocnemum strobilaceum and salt-recreting plants such 
as Atriplex tatarica and Aeluropus littoralis) (Figure 2a; Appendix S3). 
However, CWM results for LT showed that the most successful 

strategy in high salinity is that of succulent plants with thick leaves 
(Figure 2b). So, the increasing pattern of MPD for LT along salinity 
gradients could be mainly related to habitat heterogeneity within 
plots, which provides different niches for succulent (e.g., Salicornia 
iranica) and salt-recreting halophytes (e.g., Atriplex tatarica). In de-
tail, succulent C3 halophytes of chenopods occur in the wettest 
and saltiest parts of saline habitats, such as margins of saline rivers, 
salty lakes, and sea, while salt-recreting C4 halophytes of chenopods 
mostly occupy the drier parts of saline soil gradient in transition be-
tween hygro-halophytes and xerophytes (Akhani et al., 2003; Frey & 
Kürschner, 1983). Previous studies have reported a strong hetero-
geneity in space and time in saline and arid conditions, which can 
support species with different traits delimiting different niches (de 
Bello et al., 2006; Ricotta and Moretti, 2011; Scherrer et al., 2018). 
On the contrary, MPD reduction and low CWM for LT indicated the 
dominance of thin-leaved plants (e.g., Alhagi maurorum, Artemisia 
spicigera) at low saline condition. Together with thinner leaves, 
these species may be suited with certain phenological and ecologi-
cal achievements such as earlier germination, well-developed root 
system, vegetative growth, and delayed senescence (i.e., a longer 
growing season) that enable them to colonize more benign soils 
with low salinity by avoiding periods of increased salinity (Rozema 
and Schat,  2013) (Figure  2). In addition, salt-tolerance plants are 
the weaker competitor in this condition and so they were excluded. 
Consequently, our results point at a shift in the dominance strategy 
along salinity gradients: from two salt-tolerance strategies includ-
ing succulent halophytes (e.g., Suaeda altissima, Salicornia iranica, 

F I G U R E  3  SES-MPD (a) and -CWM (b) 
of traits along potassium (K) gradients. 
Log-transformed values of soil K are 
shown. P-values for every plots show 
the significance of this relation based on 
likelihood ratio test. Solid lines represent 
significant relation, while the dashed lines 
represent non-significant correlation in 
the regressions. The 95% confidence 
intervals for the regressions are shown. 
LT, leaf thickness; PH, plant height; LS, 
leaf shape; LA, leaf area; SLA, specific leaf 
area; LDMC, leaf dry matter content
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Halimocnemis rarifolium, Climacoptera crassa, and Halocnemum stro-
bilaceum) and salt-recreting halophytes (e.g., Atriplex tatarica, 
Aeluropus littoralis, and Frankenia hirsuta) in the most stressful sa-
line parts of the gradients, to salt-avoidance strategy characterized 
by thin leaves and the aforementioned avoidance mechanisms (e.g., 
Bromus tectorum, Helianthemum salicifolium, Sisymbrium septulatum 
and Artemisia spicigera) in the other edge (Appendix S3) (Brewer and 
Grace, 1990; Cantero et al., 1998; Ghorbanalizadeh et al., 2020; He 
et al., 2011; Rogel et al., 2000).

CWM results for SLA in response to shifts in soil K (Figure 3b) in-
dicated a positive relationship between K soil content and high SLA 
values. SLA reflects plant resource-use strategy in many environ-
ments and relates to plant relative growth rate, photosynthetic ef-
ficiency and nutrient conservation strategies (Valencia et al., 2015; 
Wang et al., 2015; Wilson et al., 1999). Allocation of more resources 
to photosynthesis and growth is typical in resource-rich habitats 
(Thuiller et al.,  2010; Wang et al.,  2015; Wellstein et al.,  2013). 
Therefore, the dominant plants growing on soils with high K con-
tent tend to have high SLA and faster relative growth rates, which 
could be annual succulent plants. These plants with high SLA can 
store water in thick tissues of their main photosynthetic organs. 
Accordingly, our results indicate that these annual succulent plants 
(e.g., Suaeda altissima, Bienertia cycloptera, and Climacoptera lanata) 

increased in number of species and abundance in high soil K, and 
consequently, CWM increased for SLA (Appendix S3).

The presence of succulent plants with high SLA (e.g., B. cyclop-
tera, B. sinuspersici, Petrosimonia glauca, Suaeda altissima, S. khalijefar-
sica) along with perennial non-succulent plants with low SLA (such 
as Aeluropus littoralis and Frankenia hirsuta), caused the reduction 
in the CWM of SLA and the dominance of plants with low SLA in 
sites with high soil Mg (Figure 4b). The existence of heterogeneous 
niches in space and time may support the coexistence of these two 
different strategies (i.e., annual succulent plants and perennial spe-
cies with low SLA) in soils with high Mg content. The dominance of 
plants with thin leaves and high SLA (e.g., Eremopyrum triticeum and 
Hordeum murinum) in soils with low Mg content (Figure 4b; Appendix 
S3) could be indicative of a lower investment in storage and defense, 
a decreased production of fibrous tissue and thinner cell walls and 
a higher allocation of resources to growth and photosynthesis in 
these species (Grubb et al., 2015). Furthermore, the opposing pat-
tern of CWM for SLA and LT (Figure 4b) in the soil Mg gradient could 
be related to more variation and plasticity of SLA than LT (Adler 
et al., 2014; Gross et al., 2013; Vendramini et al., 2002).

Plant height is an indicator of plant growth form, species position 
along vertical light gradients, and growth rate (Pérez-Harguindeguy 
et al., 2013). A reduction of CWM for plant height or dominance of 

F I G U R E  4  SES-MPD (a) and -CWM (b) of traits along magnesium (mg) gradients. Log-transformed values of soil mg are shown. P-values 
for every plots show the significance of this relation based on likelihood ratio test. Solid lines represent significant relation, while the dashed 
lines represent non-significant correlation in the regressions. The 95% confidence intervals for the regressions are shown. LT, leaf thickness; 
PH, plant height; LS, leaf shape; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content
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smaller plants as a direct response to decreasing soil Mg, would be 
mainly caused for a deficiency of Mg as a soil essential macronu-
trient (Figure  4b). Conversely, taller plants dominated at the high 
end of Mg gradient (e.g., Juncus heldreichianus, Stipa hohenackeriana, 
Phragmites australis; Appendix S3), which is in line with previous 
findings supporting the view that taller plants might be significantly 
related to higher availability of some macronutrients such as Mg 
(Wellstein et al., 2013).

LA and LS can also affect leaf thermal and water conductance 
since small leaves can help to keep water and leaf temperatures 
lower in hot and dry conditions (Cornwell and Ackerly, 2009). Low 
CWM for LA in high soil Na content (Figure  2b) might be due to 
the adaptation of plants to higher physiological drought which ex-
pected under high soil salinity. When saline stress is high, stomata 
tend to be closed, leading to high leaf temperature and high dam-
age to large leaves (Cornwell and Ackerly, 2009). Our results, sim-
ilar to previous studies, showed that plants with high LA generally 
tend to grow in milder saline habitats, because their photosynthetic 
rates would be high in this condition (Cornwell and Ackerly, 2009; 
Gross et al., 2013). Low CWM for LA and LS or the dominance of 
small-leaved plants in low soil Mg and N, respectively, could be due 
to macronutrient (i.e., Mg and N) deficiencies (Figures  4b and 5b) 
(Trubat et al., 2006; Watson, 1947).

High MPD of LS in plots with low soil K may indicate the high 
niche differentiation in heterogeneous environments between 
functionally different plants with similar responses to low K and 
also high Na content in the soil (i.e., large-elongated non-succulent 
leaves, e.g., Bolboschoenus glaucus and small-scaly succulent leaves, 
e.g., Caroxylon imbricatum) (Figure  3a; Appendix S3). Furthermore, 
the high CWM for LA and LS in low soil K (Figure 3b) indicates the 
most successful strategy is that of large and long leaved plants such 
as Bolboschoenus glaucus, which are distributed in margins of saline 
and moderately saline lakes, salty and brackish swamps (Akhani and 
Ghorbanli, 1993). These results may be explained by the antagonism 
effect of K and Na in the soil, especially in sodic or saline-sodic soils, 
where that high Na content and saline stress is linked to low soil K 
(Matinzadeh et al., 2013; Wakeel, 2013).

5  |  CONCLUSION

Our results demonstrate that the functional structure of plant com-
munities in Iranian salt marshes may change along sodium and associ-
ated nutrient content gradients. We found that the increase of MPD 
and CWM for LT along soil Na gradients would be related to niche 
differentiation in heterogeneous environments and dominance of 

F I G U R E  5  SES-MPD (a) and -CWM (b) of traits along nitrogen (N) gradients. Log-transformed values of soil N are shown. P-values for 
every plots show the significance of this relation based on likelihood ratio test. Solid lines represent significant relation, while the dashed 
lines represent non-significant correlation in the regressions. The 95% confidence intervals for the regressions are shown. LT, leaf thickness; 
PH, plant height; LS, leaf shape; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content
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succulent plants in high saline soil. In addition, MPD and CWM of LS 
decreased along soil K gradients and the plants with small-elongated 
leaves are dominant in high K content in the soil. Furthermore, the 
reduction of CWM for LA along soil Na gradients indicates the plants 
with small leaves are the most successful plants in high Na content 
in the soil, while the increase of CWM for LA towards soil N avail-
ability would be mainly related to success of plants with large leaves 
and high photosynthetic rates in high macronutrient availability. We 
conclude that the variations in functional structure of plant com-
munities along environmental gradients can display some ecological 
processes such as niche differentiation related to habitat heteroge-
neity, which can influence the assembly of halophyte communities 
in Iranian salt marshes.
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