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Abstract. We succeed in writing 2-dimensional conformally invariant non-
linear elliptic PDE (harmonic map equation, prescribed mean curvature
equations, . . . , etc.) in divergence form. These divergence-free quantities
generalize to target manifolds without symmetries the well known conser-
vation laws for weakly harmonic maps into homogeneous spaces. From
this form we can recover, without the use of moving frame, all the classical
regularity results known for 2-dimensional conformally invariant non-linear
elliptic PDE (see [Hel]). It enables us also to establish new results. In par-
ticular we solve a conjecture by E. Heinz asserting that the solutions to
the prescribed bounded mean curvature equation in arbitrary manifolds are
continuous and we solve a conjecture by S. Hildebrandt [Hil1] claiming that
critical points of continuously differentiable elliptic conformally invariant
Lagrangian in two dimensions are continuous.

I Introduction

The absence of possible applications of the maximum principle to solutions
to non-linear elliptic systems reduces drastically the tools available for an-
swering questions regarding the symmetry, the uniqueness or the regularity
of these solutions. In such an impoverishment of the available technics while
passing from scalar PDE to systems, the search for conservation laws is,
however, one of the remaining relevant strategy to adress these questions.
Weakly harmonic maps into spheres give a good illustration of the efficiency
of conservation laws in this setting. An weakly harmonic map u from the
n-dimensional unit ball Bn into the unit sphere Sm−1 ofRm is a W1,2(Bn,Rm)
map (maps in L2 whose first derivatives are also in L2) which takes values
almost everywhere in the sphere Sm−1 and which solves the following PDE

−∆u = u |∇u|2 (I.1)
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where ∆ is the negative laplacian in Rn: ∆ = ∑n
i=1

∂2

∂x2
i
. They are the

critical points of the Dirichlet energy E(u) = ∫
Bn |∇u|2 dx1 · · · dxn for all

perturbations of the form ut = u − tφ/|u − tφ| where φ is an arbitrary com-
pactly supported smooth map from Bn into Rm . Because of the conformal
invariance of the Dirichlet energy E in 2 dimension (E(u◦ϕ) = E(u) for ar-
bitrary u in W1,2(R2,Rm) and arbitrary conformal map ϕ from R2 into R2),
the harmonic map equation (I.1) is conformally invariant in 2 dimension: if
u is a solution to (I.1) in W1,2(B2,Rm), the composition with an arbitrary
conformal map ϕ: u ◦ ϕ is again a solution to (I.1). The conformal dimen-
sion 2 is also the critical dimension for (I.1): The left-hand-side of (I.1) for
a W1,2 solution is in L1, therefore a solution has a laplacian in L1 which
is the borderline case in 2 dimension which “almost” ensures that the first
derivatives are in L2 (using standard estimates on Riesz potential [Ste]). So,
in some sense, by inserting the W1,2 bound assumption in the non-linearity
we are almost back on our feet by bootstrapping this regularity information
in the linear part of the equation. None of the two sides, linear and non-
linear, of the equation is really dominant: the equation is critical. Solution
to this system enters in the family of solutions of systems of quadratic
growth and can be discontinuous (see for instance [Gia]). Hence, among the
fundamental analysis issues regarding (I.1) are 1) the regularity of solution
in conformal 2-dimension and 2) the passage to the limit in the equation
for sequences of solutions having bounded E energy. Both questions were
solved by the introduction of the following conservation laws discovered by
J. Shatah ([Sha]): u is a solution to (I.1) in W1,2 if and only if the following
holds

∀i, j ∈ {1, . . . , m} div(ui∇u j − u j∇ui) = 0. (I.2)

The cancellation of these divergences can be interpreted by the mean of
Noether theorem using the symmetries of the target Sm−1 (see Hélein’s
book [Hel]). Using this form it becomes straightforward to answer to the
question 2) using the compactness of the embedding of W1,2 into L2

(Rellich Kondrachov embedding Theorem). The answer to question 1):
the fact that W1,2 solutions to (I.1) are real analytic was established by
F. Hélein (see [Hel]) starting again from the conservation laws (I.2). The
main step was to prove the continuity of the solution since, by classical re-
sults in [HiW,LaU] and [Mo], continuous solutions are real analytic. Using
the conservation laws (I.2) and the fact that

∑
j u j∇u j = 0, F. Hélein wrote

(I.1) in the following way:

−∆ui =
∑

j=1

ui ∇uj · ∇u j =
m∑

j=1

[
ui ∇uj − uj ∇ui

] · ∇u j

=
n∑

j=1

∇⊥ Bi
j · ∇u j ,

(I.3)
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where ∇⊥ is the ∇-operator rotated by π/2 (i.e. ∇⊥ := (−∂x2, ∂x1). The
existence of Bi

j in W1,2
loc solving curlBi

j = ui ∇uj − uj ∇ui is given by the
classical theory of elliptic operators. The product curl-grad in the right-
hand-side of (I.3) has in fact some additional regularity than being simply
in L1 and the inverse by the laplace operator of such a product is continuous.
This special phenomenon that we recall in the appendix was first observed in
a particular case in [We] by H. Wente and was proved in its full generality
by H. Brezis and J.M. Coron in [BrC] extending Wente’s argument and
independently, using a quite different approach, by L. Tartar in [Ta1]. Later
on, the product curl-grad was observed to be in the local Hardy space H1

loc,
smaller than L1, by R. Coifman, P.L. Lions, Y. Meyer and S. Semmes
in [CLMS] following the work of S. Müller [Mu] where this result was
obtained under some sign assumption on the product. Among the special
features of distributions in H1

loc is the “nice” behavior of this space with
respect to Calderon–Zygmund operators, in particular the inverse of such
a distribution by the Laplace operator are in W2,1 which embeds in C0

in 2 dimension. Observing that the non-linearity of the weakly harmonic
map equation is in H1

loc gives not only another approach to conclude that
solutions to (I.1) are smooth in 2 dimension but also permits to establish the
estimate

∫

O
|∇2u| dx1 · · · dxn < +∞, (I.4)

for any solution to (I.1), for n arbitrary and where O is an arbitrary open
subset with closure in Bn. This estimate happens to play a crucial role for
establishing energy quantization results as described in [LiR].

It is now natural to try to understand to which extend the above re-
sults are still valid when we are considering W1,2 weakly harmonic maps
taking values in an arbitrary submanifold of Rm . What about questions
1), 2) or what about the validity of the estimate (I.4) in this general set-
ting? Let then, Nk be a C2 k-dimensional submanifold of Rm . Denote πN
the C1 orthogonal projection on Nk defined in a small tubular neighborhood
of Nk in Rm which assigns to each point in this neighborhood the nearest
point on N. We denote by W1,2(Bn, Nk) the subset of W1,2 maps from Bn

into Rm which take values in Nk almost everywhere. The critical points u in
W1,2(Bn, Nk) of the Dirichlet energy E(u) = ∫

Bn |∇u|2 for all perturbations
of the form πN(u + tφ), where φ is an arbitrary smooth compactly supported
map from Bn intoRm , are the weakly harmonic maps from Bn into Nk . They
are the maps in W1,2(Bn, Nk) which solve the following Euler–Lagrange
equation (in distributional sense)

−∆u = A(u)(∇u,∇u) =
n∑

l=1

A(u)(∂xl u, ∂xl u) = 0, (I.5)

where A(u) is the second fundamental form at u(x) for the submanifold
Nk in Rm . For instance for k = m − 1 when Nm−1 is an oriented codimen-
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sion 1 submanifold, if we denote by n(y) the Gauss map of Nm−1 at y, the
unit perpendicular vectorfields which generates the orientation of Nm−1,
(I.5) becomes

−∆u = n ∇n · ∇u, (I.6)

where we keep denoting n the composition n◦u. In order to try to extend the
above described results established for W1,2 solutions to (I.1) to solutions
of (I.6), or even more generally to solutions to (I.5), it is then natural to look
for conservation laws (divergence free quantities) generalizing (I.2). Is for
instance the non-linearity n ∇n · ∇u in the right-hand-side of (I.6) (or even
(I.5) in the local Hardy space H1

loc? Do we have estimates of the form (I.4)
for general W1,2 solutions to (I.6) or even (I.5)? Can we write the equation
(I.6) or (I.5) in divergence form? Until now the answers to these questions
were open and only the introduction of the indirect but beautiful technic
of moving frame by F. Hélein permitted to avoid the direct conservation
law approach for proving questions like the regularity in dimension 2 of
the weakly harmonic maps into general target (i.e. solutions to (I.6)) – see
again [Hel]. This set of questions has motivated the following, which is one
of the main result of the present paper:

Theorem I.1 Let m ∈ N. For every Ω = (Ωi
j)1≤i, j≤m in L2(D2, so(m)⊗R2)

(i.e. ∀i, j ∈ {1, . . . , m}, Ωi
j ∈ L2(D2,R2) and Ωi

j = −Ω
j
i ), every u ∈

W1,2(D2,Rm) solving

−∆u = Ω · ∇u (I.7)

is continuous where the contracted notation in (I.7) using coordinates stands
for ∀i = 1, . . . , m −∆ui = ∑m

j=1 Ωi
j · ∇u j .

This theorem is optimal because of the following counterexample of
Frehse [Fre]: for m = 2 the map u = (u1, u2) from D2 into S1 ⊂ R2

defined by

u1(x) = sin log log
2

|x| , u2(x) = cos log log
2

|x| , (I.8)

is in W1,2(D2,R2) solves (I.7) for

Ω =
(

(u1 + u2)∇u1 (u1 + u2)∇u2

(u2 − u1)∇u1 (u2 − u1)∇u2

)

∈ L2
(
D2, M2 ⊗ R2

)
, (I.9)

but Ω is not antisymmetric and the solution is L∞ but not continuous. One
can even find counterexamples for Ω non antisymmetric and for which u is
not in L∞: for m = 2 the map u = (u1, u2) from D2 into R2 given by

u1(x) = log log
2

|x| , u2(x) = log log
2

|x| , (I.10)
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is in W1,2(D2,R2) and solves (I.7) for

Ω =
(∇u1 0

0 ∇u2

)

∈ L2(D2, M2 ⊗ R2), (I.11)

but Ω is symmetric and not antisymmetric.
Theorem I.1 applies to (I.6) because of the following observation: every

derivative of u solving (I.6) is tangent to Nm−1 and is therefore perpendicular
to n. Thus

∑m
j=1 n j∇u j = 0 and we can rewrite (I.6) in the form:

−∆ui =
m∑

j=1

[
ni∇n j − n j∇ni

] · ∇u j . (I.12)

Taking now Ωi
j := ni∇n j − n j∇ni we can apply Theorem I.1 to get the

continuity of u. This way of rewriting the equation has to be compared
with the particular case (I.3) except that in the general case there is no
reason for Ωi

j := ni∇n j − n j∇ni to be divergence free. One of the main
observation of the present work is that what is important in (I.3) is not the
divergence free structure of ni∇n j − n j∇ni , valid in the particular case of
the round sphere and which disappears as soon as one perturbs the metric
of the target, but it is the anti-symmetry of this quantity which is much
more robust and which is the key point for the regularity of solution to (I.6).
This is a new compensation phenomenon that we discovered, which goes
beyond the curl-grad structures although it is strongly linked to it as we will
explain in the paper. In fact we observed that not only solutions to (I.6), not
only solutions to (I.5) but every critical point of any elliptic conformally
invariant Lagrangian in dimension 2 can be written in the form ( I.7) and the
regularity result obtained in Theorem I.1 can be applied to them. Precisely
we have

Theorem I.2 Let Nk be a C2 submanifold of Rm (k and m being arbitrary
integer satisfying 1 ≤ k ≤ m). Let ω be a C1 2−form on Nk such that the
L∞ norm of dω is bounded on Nk. Then every critical point in W1,2(D2, Nk)
of the Lagrangian

F(u) =
∫

D2

[|∇u|2 + ω(u)(∂xu, ∂yu)
]

dx ∧ dy (I.13)

satisfies an equation of the form (I.7) for some Ω in L2(D2, so(m) ⊗ R2)
and is therefore continuous.

Critical points of F which are conformal are immersed discs in Nk

whose mean curvature in Nk at u is given by |∇u|−2dω(u)(·, ∂xu, ∂yu).
This is the so called prescribed mean curvature equation in a manifold Nk .
It is not difficult to see that the Lagrangian of the form (I.13) are conformally
invariant. Conversely, It was proved in [Gr1] that every conformally invari-
ant elliptic Lagrangian, satisfying some “natural conditions”, generates an
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Euler–Lagrange equation corresponding to a prescribed mean curvature
equation in a manifold. A particular case of interest is the case k = m = 3
and N3 = R3. Denote 2dω = H(z)dz1dz2dz3 the Euler–Lagrange equation
to F in that case is

−∆u = −2H(u) ∂xu ∧ ∂yu. (I.14)

There has been several attempts to prove the continuity of solutions to (I.14)
under several assumptions on H like ‖H‖∞ + ‖∇H‖∞ < +∞ (see for
instance [Hei1,Hei2,Gr2,Bet1,BeG1,BeG2,Cho]). It was conjectured by
E. Heinz, see [Hei3], that the weakest possible assumption ‖H‖L∞(R3) <

+∞ should suffices to ensure the continuity of W1,2 solutions to (I.14) and
that no control of any kind of the differentiability of the prescribed mean
curvature H was needed. By denoting ∇⊥ := (−∂y, ∂x) and introducing

Ω := H(u)

⎛

⎜
⎝

0 ∇⊥u3 −∇⊥u2

−∇⊥u3 0 ∇⊥u1

∇⊥u2 −∇⊥u1 0

⎞

⎟
⎠ (I.15)

Equation (I.14) becomes of the form

−∆u = Ω · ∇u,

where Ω ∈ L2(D2, so(3)⊗R2). We can then apply Theorem I.1 to (I.14) and
we have then proved Heinz’s conjecture on prescribed mean curvature equa-
tions. In fact Theorem I.2 solves a conjecture by S. Hildebrandt claiming
that the critical points of the second order C1 elliptic conformally invariant
lagrangian in 2 dimensions are continuous see [Hil1] and [Hil2] (3.15).
In [Hel1] the class of general conformally invariant lagrangian in 2 dimen-
sion is analyzed.

Theorem I.1 is based on the discovery of conservation laws generaliz-
ing (I.2). Denoting Mm(R) the space of square m × m real matrices, we
have:

Theorem I.3 Let m ∈ N. Let Ω = (Ωi
j)1≤i, j≤m in L2(Bn, so(m) ⊗ ∧1

R
n)

and let A ∈ L∞(Bn, Mm(R)) ∩ W1,2 and B ∈ W1,2(Bn, Mm(R) ⊗ ∧2
R

n)
satisfying

dΩ A := dA − AΩ = −d∗ B (I.16)

(where explicitly (I.18) means ∀i, j ∈ {1, . . . , m} dAi
j − ∑m

k=1 Ai
kΩ

k
j =

−d∗ Bi
j ). Then every solution to (I.7) on Bn satisfies the following conser-

vation law

d
(∗A du + (−1)n−1(∗B) ∧ du

) = 0. (I.17)
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For n = 2, using different notations, the theorem says that given Ω =
(Ωi

j)1≤i, j≤m in L2(D2, so(m) ⊗ R2), A ∈ L∞(D2, Mm(R)) ∩ W1,2 and
B ∈ W1,2(D2, Mm(R)) satisfying

∇Ω A := ∇ A − AΩ = ∇⊥ B. (I.18)

Then every solution to (I.7) satisfies the following conservation law

div(A∇u + B∇⊥u) = 0. (I.19)

For instance going back to the symmetric situation of weakly harmonic
maps into Sm−1 we take A and B satisfying

{
A = idm = (

δ
j
i

)
1≤i, j≤m

,

∇⊥ Bi
j = ui∇uj − uj∇ui.

Using now the fact that div(Bi
j ∇⊥u j) = ∇Bi

j · ∇⊥u j = −∇⊥ Bi
j · ∇u j

the harmonic map equation into Sm−1, with these notations, is equivalent
to (I.19). We then have included the classical conservation law (I.2) into
the larger set of conservation laws of the form (I.19). The question remains
of finding A and B satisfying (I.18). We shall prove the following local
existence result

Theorem I.4 There exists ε(m) > 0 and C(m) such that, for every Ω =
(Ωi

j)1≤i, j≤m in L2(D2, so(m) ⊗ R2) satisfying
∫

D2
|Ω|2 ≤ εm, (I.20)

there exists A ∈ L∞(D2, Glm(R)) ∩ W1,2 and B ∈ W1,2(D2, Mm(R))
satisfying

i)
∫

D2
|∇ A|2 + |∇ A−1|2 + ‖dist(A, SO(n))‖2

∞ ≤ C(n)

∫

D2
|Ω|2, (I.21)

ii)
∫

D2
|∇B|2 ≤ C(n)

∫

D2
|Ω|2, (I.22)

iii)

∇Ω A := ∇ A − AΩ = ∇⊥B. (I.23)

A corresponding local existence result in higher dimension is still an
open problem. If the weakly harmonic map we are considering is stationary
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(see [Hel]), Ω is in the Morrey space given by

‖Ω‖M2
2

= supx,r
1

rn−2

∫

Br(x)
|Ω|2 < +∞. (I.24)

Then, under the assumption that ‖Ω‖M2
2

is below some positive constant
depending only on n and m, the elliptic linear system (I.16) becomes crit-
ical and the existence of A and B solving (I.16) should be looked for in
the space M2

2 (following the search of a Coulomb gauge in Morrey spaces
introduced in [MeR], one has a replacement of Lemma A.3 in higher di-
mension).

Local existence of conservation law (I.19) for stationary weakly har-
monic maps permits to extend to general C2 targets the partial regularity of
L.C. Evans [Ev] for weakly harmonic maps into spheres following the same
strategy that Evans introduced.

This program is partly realised in a work in preparation of the author
together with Michael Struwe.

Using conservation laws (I.19) we can prove the following result.

Theorem I.5 Let Ωn ∈ L2(D2, so(m) ⊗ ∧1
R

2) such that Ωn weakly con-
verges in L2 to some Ω. Let fn be a sequence in H−1(D2,Rm) which
converges to 0 in H−1 and un be a bounded sequence in W1,2(D2,Rm)
solving

−∆un = Ωn · ∇un + fn in D2. (I.25)

Then, there exists a subsequence un′ of un which weakly converges in W1,2

to a solution of (I.7).

Passage to the limit in the equation in 2 dimension for the prescribed
mean curvature equation or for the harmonic map equation was established
in [Bet2] using involved technics. A much simpler proof using moving
frames was then given in [FMS]. In both proofs a Lipschitz bound on
the prescribed mean curvature was required. This is no more the case in
Theorem I.5 where only an L∞ bound on the prescribed mean curvature is
needed.

Following similar ideas Theorem I.1 can be extended in its spirit to first
order elliptic complex valued PDE’s

Theorem I.6 Let m ∈ N and k ∈ N. Let Ω = (Ωi
j)1≤i, j≤m in

L2(D2, so(m) ⊗ C⊗ ∧1
R

2) and let α ∈ L2(D2, Mm,k(C)) solving

∂α

∂z
= Ωα, (I.26)

then there exists P ∈ W1,2(D2, SOm(C)) and β ∈ C∞(D2, Mm,k(C)) such
that α = Pβ, where SOm(C) is the group of invertible matrices in Glm(C)
satisfying Pt P = idm.
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Conservation laws and moving frames. Existence of global conserva-
tion laws can be obtained in the same spirit by the mean of moving
frames. Considering a map u in W1,2(D2, N2) where N2 is a closed C2

oriented 2-dimensional submanifold of Rm , then there exists a map e1 in
W1,2(D2, Sm−1) such that e1(x) ∈ Tu(x)N2 for almost every x in D2. More-
over, denoting e2(x) the unit vector perpendicular to e1 such that e1∧e2 is the
unit 2-vector giving the oriented tangent plane Tu(x)N2, we can choose e1

such that div((e2,∇e1)) = 0 on D2 (see [Hel]) where (·, ·) denotes the
scalar product in Rm that we also sometime simply denote ·. Such a pair
(e1, e2) is called a Coulomb moving frame associated to u. We have then
the following conservation law

Theorem I.7 Let u be a W1,2 weakly harmonic map from D2 into N2, let
(e1, e2) be a Coulomb moving frame associated to u, let a be the function
solving

⎧
⎨

⎩

−∆a = (∇⊥e1,∇e2
) = ∂e1

∂x
· ∂e2

∂y
− ∂e1

∂y
· ∂e2

∂x
in D2,

a = 0 on ∂D2.

(I.27)

then the following conservation law holds
{

div
(
cosh a (∇u, e1) + sinh a (∇⊥u, e2)

) = 0,

div
(
cosh a (∇u, e2) − sinh a (∇⊥u, e1)

) = 0.
(I.28)

Moreover the following estimate holds
∫

D2
1/2

|∇2u| ≤ C exp

[
1

4π

∫

D2
|∇e|2

]
(‖∇e‖L2(D2) + 1

) ‖∇u‖L2(D2),

(I.29)

where |∇e|2 := |∇e1|2 + |∇e2|2.

Observe that, because of Wente’s Lemma A.1 that we recall in the
appendix, the solution a of (I.27) is bounded in L∞. When N2 is not
diffeomorphic to S2 one can estimate

∫
D2 |∇e|2 in terms of ‖u‖W1,2 . This

is no more the case for N2 = S2: one can find sequences of un , weakly
harmonic from D2 into S2 with uniformly bounded W1,2 norm but for
which, however, every sequence of Coulomb moving frame is not bounded
in W1,2. Nevertheless we still believe that the following holds true:

Conjecture For every k ≤ m, for every n ∈ N for every Nk , k-dimensional
closed submanifold ofRm , and for every C > 0 there exists δ(C, n, Nk) > 0
such that if u is a W1,2 weakly harmonic map from Bn

2(0) into Nk satisfying
∫

Bn
2(0)

|∇u|2 ≤ C, (I.30)
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then
∫

Bn
1(0)

|∇2u| ≤ δ(C, n, Nk). (I.31)

Such an estimate is known when C is small enough. The existence of
such an estimate for arbitrary C would, in particular, permit to extend the
quantization result of [LiR] to general targets.

Finally, in general dimension, the following conservation laws general-
izing (I.28) should play an important role in the theory of weakly harmonic
maps:

Theorem I.8 Let u be a W1,2 weakly harmonic map from Bn into Nk,
a closed oriented C2 k-dimensional submanifold of Rm. Let (e1, . . . , ek)
be a Coulomb moving frame associated to u (the map x → (e1, . . . , ek)
is in W1,2, for almost every x, (e1(x), . . . , ek(x)) is an orthonormal basis
of Tu(x)Nk and ∀i, j ∈ {1, . . . , k} d∗(ei, de j) = 0.) Denote Ω = (Ω

j
i ) ∈

L2(Bn, so(k) ⊗ ∧1
R

n) the connection given by

Ω
j
i := (e j, dei).

Let Φ ∈ L4(Bn, Mk(R)) ∩ W1,2 and Ψ ∈ L4(Bn, Mk(R) ⊗ ∧2
R

n) ∩ W1,2

solving the linear equation

dΩΦ + d∗
ΩΨ = 0, (I.32)

where (dΩΦ)
j
i := dΦ

j
i + Φk

i ∧ Ω
j
k and d∗

Ω is the adjoint of dΩ given by
(d∗

ΩΨ)
j
i := d∗Ψ j

i +∗(∗Ψk
i ∧Ω

j
k). Then the following conservation laws are

satisfied

d
(∗Φ(du, e) + (−1)n−1(∗Ψ) ∧ (du, e)

) = 0, (I.33)

where (du, e) is the element in L2(Bn,Rk⊗∧1
R

n) given by {(du, e j)} j=1,... ,k
and Φ(du, e) and ∗Ψ ∧ (du, e) denote respectively the elements in
L

4
3 (Bn,Rk ⊗ ∧1

R
n) and in L

4
3 (Bn,Rk ⊗ ∧n−1

R
n) given by Φ

j
i (du, e j )

and ∗Ψ
j
i ∧ (du, e j ).

Observe that (I.33) generalizes (I.28) to general dimension by taking

Φ = cosh a

(
1 0
0 1

)

and Ψ = sinh a

(
0 −1
1 0

)

dx ∧ dy. (I.34)

Existence of Coulomb moving frames is discussed in [Hel] and is proved
under the assumption that Nk is sufficiently regular and modulo some iso-
metric embeddings in a submanifold diffeomorphic to a torus. Again here,
under the assumption that ‖Ω‖M1

2
is below some positive constant depend-

ing only on n and k, the elliptic linear system (I.32) becomes critical and
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the existence of Φ and Ψ solving (I.32) should be looked for in the space
M2

2 which embeds in L4 in every dimension.
The paper is organised as follows: in Sect. 2 we prove Theorem I.1

to Theorem I.6. In Sect. 3 we prove Theorem I.5. In Sect. 4 we prove
Theorem I.7 and Theorem I.8. In the appendix we recall Wente’s result and
establish several lemmas used in Sects. 2 and 3.

Acknowledgements. This work was carried out while the author was visiting the Université
de Bretagne Occidentale at Brest. The author would have like to thank the mathematics
department of the UBO for it’s hospitality. He is also grateful to the referee for his careful
reading and his contribution to improve the presentation of the present paper.

II Proof of Theorems I.1–I.6

II.1 Proof of Theorem I.4. Let ε(m) > 0 given by Lemma A.3. Let
Ω ∈ L2(D2, so(m) ⊗ ∧1

R
2) satisfying

∫

D2
|Ω|2 ≤ ε(m). (II.1)

Let then P ∈ W1,2(D2, SO(m)) and ξ ∈ W1,2(D2, so(m)) given by Lem-
ma A.3 satisfying

∇⊥ξ = P−1∇ P + P−1ΩP in D2, (II.2)

with ξ = 0 on ∂D2 and such that

‖ξ‖W1,2 + ‖P‖W1,2 + ‖P−1‖W1,2 ≤ C(m) ‖Ω‖L2 . (II.3)

We look for A and B solving (I.18) and introducing Ã := AP, it means that
we are looking for Ã and B solving

∇ Ã − ∇⊥BP = Ã∇⊥ξ. (II.4)

First we aim to solve the following system (Ã will be chosen to be Â + idm
later)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∆ Â = ∇ Â · ∇⊥ξ + ∇⊥ B · ∇ P in D2,

∆B = ∇⊥ Â · ∇ P−1 − div( Â∇ξP−1) − div(∇ξP−1) in D2,

∂ Â

∂ν
= 0 and B = 0 on ∂D2,

and
∫

D2
Â = 0

(II.5)

for Â ∈ Mm(R) and B ∈ Mm(R). Observing that the right-hand-side of the
first equation of (II.5) is made of jacobians: (∇ Â · ∇⊥ξ)

j
i = ∂y Âk

i ∂xξ
j

k −
∂x Âk

i ∂yξ
j

k and −(∇⊥B ·∇ P)
j
i = ∂x Bk

i ∂y P j
k −∂y Bk

i ∂x P j
k , using Lemma A.1,
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standard elliptic estimates and the fact that P ∈ SO(m), we have the a-priori
estimates

‖ Â‖W1,2 + ‖ Â‖L∞ ≤ C ‖ξ‖W1,2 ‖ Â‖W1,2 + C ‖P‖W1,2 ‖B‖W1,2, (II.6)

‖B‖W1,2 ≤ C ‖P−1‖W1,2 ‖ Â‖W1,2 + C ‖ξ‖W1,2 ‖ Â‖L∞ + C‖ξ‖W1,2 . (II.7)

Thus for ‖Ω‖L2 small enough, using a standard fixed point argument,
we obtain the existence of Â and B satisfying (II.5) and

‖ Â‖W1,2 + ‖ Â‖L∞ + ‖B‖W1,2 ≤ C ‖Ω‖L2 . (II.8)

(Observe that, using the result of [CLMS], we even have ‖ Â‖W2,1 ≤
C ‖Ω‖L2). Let now Ã := Â + idm . From the first equation of (II.5) we
obtain the existence of C in W1,2 satisfying

∇ Ã − Ã ∇⊥ξ − ∇⊥ BP = ∇⊥C. (II.9)

Moreover, up to addition of a constant, C satisfies
{

div(∇CP−1) = 0 in D2,

C = 0 on ∂D2.
(II.10)

Using now Lemma A.2, we obtain that C is identically zero and A := ÃP−1

and B satisfy (I.21), (I.22) and (I.23). Theorem I.4 is then proved.

II.2 Proof of Theorem I.3. Theorem I.3 follows from a direct computa-
tion.

II.3 Proof of Theorem I.1. Since the desired result is local (continuity of
u), we can always assume that

∫
D2 |Ω|2 ≤ ε(m) where ε(m) is given by

Theorem I.4. Moreover, let A and B given by Theorem I.4. From Theo-
rem I.4 they solve the following system

{
div(A ∇u) = −∇B · ∇⊥u,

curl(A ∇u) = ∇⊥ A · ∇u.
(II.11)

Using standard elliptic estimates, we get the existence of E and D in
W1,2(D2) such that

A ∇u = ∇⊥E + ∇D. (II.12)

Moreover, using the jacobian structure of the right-hand-sides of the
equations in (II.11), the results in [CLMS] imply that E and D are in W2,1

on the disk of half radius D2
1/2. Therefore ∇u = A−1∇⊥E + A−1∇D is in

W1,1 on this disk. Using the embedding of W2,1 into C0 in 2 dimension we
get the desired result and Theorem I.1 is proved.
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II.4 Proof of Theorem I.2. Let Nk be a k-dimensional submanifold of
R

m . Let πN be the orthogonal projection on Nk defined in a small tubular
neighborhood of Nk . Let ω be a 2-form on Nk and let ω̃ be the pull back
of ω by πN in this small tubular neighborhood: ω̃ := π∗

Nω. Following [Hel]
Chap. 4, critical points of (I.13) in W1,2(D2, Nk) satisfy the following
Euler–Lagrange equation

∆ui + Ai(u) j,l∇u j · ∇ul + λ(u)i
j,l∂xu j∂yul = 0, (II.13)

where λ(u)i
j,l := dω̃u(εi, ε j, εl) where (εl)l=1,... ,m is the canonical ba-

sis of Rm . Thus, in particular, λ(u)i
j,l = −λ(u)

j
i,l . Since (A j

i,l) j=1,... ,m =
A(εi , εl) is perpendicular to Tu Nk for every i and l, we have that

∀i, l ∈ {1, . . . , m}
∑

j

A j
i,l∇u j = 0. (II.14)

Thus finally (II.13) becomes

∆ui + [
Ai(u) j,l − A j (u)i,l

]∇ul · ∇u j

+ 1

4

[
λ(u)i

j,l − λ(u)
j
i,l

]∇⊥ul · ∇u j = 0.
(II.15)

Introducing Ω := (Ω
j
i )i, j where

Ωi
j := [

Ai(u) j,l − A j (u)i,l
]∇ul + 1

4

[
λ(u)i

j,l − λ(u)
j
i,l

]∇⊥ul, (II.16)

we have succeeded in writing W1,2 critical points of lagrangian of the form
(I.13) as solutions to PDE of the form (I.7) for some Ω ∈ L2(D2, so(m) ⊗
∧1
R

2). Theorem I.2 is then proved.

III Conservation laws and passage to the limit in PDEs

The goal of this section is to prove Theorem I.5.
Let Ωn ∈ L2(D2, so(m) ⊗ ∧1

R
2) converging weakly to some Ω and

fn and un respectively converging to zero in H−1(D2,Rm) and bounded in
W1,2(D2,Rm). We can always assume that un converges weakly to some u
in W1,2(D2,Rm). Let λ < 1 and let ε(m) given by Theorem I.4. To every x
in B2

λ(0) we assign rx,n ≤ 1 − |x| such that
∫

Brx,n (x) |Ωn|2 = ε(m) or

rx,n = 1 − |x| in case
∫

B1−|x|(x) |Ωn|2 < ε(m). {Brx (x)} for every x in B2
λ(0)

realizes of course a covering of B2
λ(0). We extract a Vitali covering from

it which ensures that every point in B2
λ(0) is covered by a number of balls

bounded by a universal number. Since
∫

D2 |Ωn|2 is uniformly bounded, the
number of balls in each such a Vitali covering for each n is also uniformly
bounded and, modulo extraction of a subsequence, we can assume that it
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is fixed and equal to N independent of n. Let {Bri,n (xi,n)}i=1,... ,N be this
covering. Modulo extraction of a subsequence we can always assume that
each sequence xi,n converges in B

2
λ(0) to a limit xi and that each sequence ri,n

converges to a non negative number ri (which could be zero of course). We
claim that equation (I.7) is satisfied on each Bri(xi). Let Ai,n and Bi,n given
by Theorem I.4 in Bri,n (xi,n) for Ωn . We then have

div
(
Ai,n∇un + Bi,n∇⊥un

) = −Ai,n fn in Bri,n (xi,n), (III.1)

where Ai,n and Bi,n satisfy

∇ Ai,n − Ai,nΩi,n = ∇⊥Bi,n. (III.2)

We can extract a subsequence such that each of the couples (Ai,n , Bi,n)
weakly converge in W1,2 to some limit (Ai , Bi) in every Bri(xi). Because
of the weak convergences in W1,2 we have strong convergences in L2 and
then we have that

Ai,n∇un + Bi,n∇⊥un −→ Ai∇u + Bi∇⊥u in D ′, (III.3)

∇ Ai,n − Ai,nΩi,n − ∇⊥ Bi,n −→ ∇ Ai − AiΩ − ∇⊥Bi in D ′, (III.4)

and

−Ai,n fn → 0 in D ′. (III.5)

Combining then (III.1), . . . ,(III.5) we obtain that

div
(

Ai∇u + Bi∇⊥u
) = 0 in Bri(xi), (III.6)

and that

∇ Ai − AiΩ = ∇⊥Bi in Bri(xi). (III.7)

Combining (III.6) and (III.7) we then have that

Ai [∆u + Ω · ∇u] = 0 in Bri(xi). (III.8)

From (I.21), because of the pointwise convergence of Ai,n , we get the
invertibility of Ai and (III.8) implies that

∆u + Ω · ∇u = 0 in Bri(xi). (III.9)

It is clear that every point in B2
λ(0) is in the closure of the union of the

Bri(xi). Let x be a point which is none of the Bri (xi). It seats then on the
circle, boundary of one of the Bri (xi). For convexity reason, it has to seat at
the boundary of at least 2 different circles. 2 different circles can intersect
at only finitely many points (0,1 or 2 points), since there are finitely many
circles, only finitely many points in B2

λ(0) can be outside the union of the
Bri(xi). Thus the distribution ∆u +Ω · ∇u is supported at at mostly finitely
many points. Since ∆u +Ω ·∇u ∈ H−1 + L1 it is identically zero on B2

λ(0).
Since this holds for every λ < 1 we have proved Theorem I.5.
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IV Conservation laws and moving frames

IV.1 Proof of Theorem I.7. First (I.28) is the result of a direct computation,
granting the fact that (∆u, e) = 0. It remains then to prove (I.29). We
rewrite (I.28) in the form (using Z2 indexation)

{
div(cosh a(∇u, ei)) = (−1)i(∇(sinh a ei+1),∇⊥u),

curl(cosh a(∇u, ei)) = (∇u,∇⊥(cosh a ei)).
(IV.1)

Using then Lemma A.1, and standard elliptic estimate, there exist E ∈
W2,1(D2

1/2,R
2) and D ∈ W2,1(D2

1/2,R
2) such that

cosh a(∇u, ei) = ∇Ei + ∇⊥Di, (IV.2)

moreover

‖E‖W2,1(D2
1/2)

+ ‖D‖W2,1(D2
1/2)

≤ C‖∇(sinh ae)‖L2 ‖∇u‖L2

+ ‖∇(cosh ae)‖L2 ‖∇u‖L2

+ ‖ cosh a(∇u, e)‖L2 .

(IV.3)

Thus we have

‖E‖W2,1(D2
1/2)

+ ‖D‖W2,1(D2
1/2)

≤ C e‖a‖∞ ‖∇e‖L2 ‖∇u‖L2

+ e‖a‖∞ ‖∇a‖L2 ‖∇u‖L2 + e‖a‖∞ ‖∇u‖L2 .

(IV.4)

Applying Lemma A.1 (with the optimal constants given in [Hel]) to (I.27)
we have

‖a‖L∞(D2) ≤ 1

2π
‖∇e1‖L2 ‖∇e2‖L2, (IV.5)

and

‖∇a‖L2(D2) ≤ 1√
2π

‖∇e1‖L2 ‖∇e2‖L2 . (IV.6)

We rewrite (IV.2) in the form

∇u = (cosh a)−1 (∇E je j + ∇⊥D je j
)
. (IV.7)

Combining then (IV.4), (IV.5) and (IV.7) we get (I.29) and Theorem I.7 is
proved.

IV.2 Proof of Theorem I.8. Theorem I.8 follows from a direct computa-
tion.
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A Appendix

Lemma A.1 [We,BrC,Ta1,CLMS] Let a and b in L1(D2,R) such that ∇a
and ∇b are in L2(D2). Let ϕ be the solution of

⎧
⎪⎪⎨

⎪⎪⎩

∆ϕ = ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
in D2,

ϕ = 0 or
∂ϕ

∂ν
= 0 on ∂D2.

(A.1)

Then the following estimates hold

‖ϕ‖L∞(D2) + ‖∇ϕ‖L2(D2) + ‖∇2ϕ‖L1(D2) ≤ ‖∇a‖L2(D2) ‖∇b‖L2(D2), (A.2)

where we choose
∫

D2 ϕ = 0 for the Neumann boundary data.

Lemma A.2 There exists ε > 0 such that for every P ∈ W1,2(D2, Gl(m))
satisfying

∫

D2
|∇ P|2 + |∇ P−1|2 ≤ ε, (A.3)

then, C ≡ 0 is the unique solution in W1,2(D2, Mm(R)) of the following
problem

{
div(∇C P−1) = 0 in D2,

C = 0 on ∂D2.
(A.4)

Proof of Lemma A.2 From (A.4) there exists D ∈ W1,2(D2, Mm(R)) such
that ∇⊥ D = ∇C P−1 and we can choose D such that

∫
D2 D = 0. Thus C

and D satisfy respectively
{

∆C = ∇⊥ D · ∇ P in D2,

C = 0 on ∂D2,
(A.5)

and
⎧
⎨

⎩

∆D = −∇⊥C · ∇ P−1 in D2,

∂D

∂ν
= 0 on ∂D2.

(A.6)

Thus, using Lemma A.1 and (A.3), for ε small enough, we have

‖∇C‖L2(D2) ≤ 1

2
‖∇D‖L2(D2) and

‖∇D‖L2(D2) ≤ 1

2
‖∇C‖L2(D2),

(A.7)

which implies that C ≡ 0 and D ≡ 0 and Lemma A.2 is proved.
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Lemma A.3 There exist ε(m) > 0 and C(m) > 0 such that for every Ω in
L2(D2, so(m) ⊗ ∧1

R
2) satisfying

∫

D2
|Ω|2 ≤ ε(m), (A.8)

then there exist ξ ∈ W1,2(D2, so(m)) and P ∈ W1,2(D2, SO(m)) such that

i)

∇⊥ξ = P−1∇ P + P−1ΩP in D2, (A.9)

ii)

ξ = 0 on ∂D2, (A.10)

iii)

‖ξ‖W1,2(D2) + ‖P‖W1,2(D2) ≤ C(m) ‖Ω‖L2(D2). (A.11)

In order to prove Lemma A.3 we follow the strategy of [Uhl] and we first
prove the following result.

Lemma A.4 There exist ε(m) > 0 and C(m) > 0 such that for every Ω in
W1,2(D2, so(m) ⊗ ∧1

R
2) satisfying

∫

D2
|Ω|2 ≤ ε(m), (A.12)

then there exist ξ ∈ W2,2(D2, so(m)) and P ∈ W2,2(D2, SO(m)) such that

i)

∇⊥ξ = P−1∇ P + P−1ΩP in D2, (A.13)

ii)

ξ = 0 on ∂D2, (A.14)

iii)

‖ξ‖W1,2(D2) + ‖P‖W1,2(D2) ≤ C(m) ‖Ω‖L2(D2), (A.15)

iv)

‖ξ‖W2,2(D2) + ‖P‖W2,2(D2) ≤ C(m) ‖Ω‖W1,2(D2). (A.16)

Proof of Lemma A.4 �⇒ Lemma A.3 Let Ω in L2(D2, so(m) ⊗ ∧1
R

2)
satisfying (A.8). Introduce Ωk in W1,2(D2, so(m) ⊗ ∧1

R
2) converging

strongly in L2 to Ω. Let ξk and Pk satisfying (A.13), . . . , (A.16) for Ωk.
Because of (A.15) there exists a subsequence ξk′ and Pk′ converging weakly
in W1,2 to ξ and P. Weak convergence in W1,2 implies almost everywhere
convergence of Pk′ to P. Since Pt

k′ Pk′ = idm , this equation passes to the limit
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and we have that P ∈ W1,2(D2, SO(m)). Moreover, from Rellich compact
embedding, Pk′ converges strongly in every Lq (q < +∞) and Pt

k′Ωk′ Pk′
respectively Pt

k′∇ Pk′ converge in distribution sense to PtΩP and respec-
tively Pt∇ P. Therefore (A.9) is satisfied at the limit. By continuity of the
trace (A.10) is also satisfied. Finally, by lower-semicontinuity of the W1,2

norm with respect to the weak W1,2 convergence, we also obtain (A.11) and
Lemma A.3 is proved.

Proof of Lemma A.4 We follow the strategy in [Uhl]. We introduce the set

Uε,C =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ω ∈ W1,2(D2, so(m) ⊗ ∧1
R

2) satisfying
∫

D2
|Ω|2 ≤ ε,

and for which there exists ξ ∈ W2,2(D2, so(m)),

and P ∈ W2,2(D2, SO(m)) solving (A.13), . . . , (A.16)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(A.17)

The previous argument can be adapted to show that Uε,C is closed. We now
establish the following assertion:

Claim For any fixed C there exists ε small enough, such that, for any Ω in
Uε,C there exists a neighborhood of Ω in W1,2 included in Uε,C.

Proof of the claim Let Ω ∈ Uε,C satisfying
∫

D2 |Ω|2 < ε. Let ξ and P
satisfying (A.13), . . . , (A.16) for Ω. Following the arguments in [Uhl,
Lemmas 2.7 and 2.8], for every α > 0 we can find δ > 0 such that, for every
λ ∈ W1,2(D2, so(m) ⊗ ∧1

R) satisfying ‖λ‖W1,2 ≤ δ, there exists ξλ ∈
W2,2(D2, so(m)) and Qλ ∈ W2,2(D2, SO(m)) satisfying

{
∇⊥ξλ = Q−1

λ ∇Qλ + Q−1
λ (∇⊥ξ + λ)Qλ in D2,

ξλ = 0 on ∂D2,
(A.18)

and

‖Qλ − Idm‖W2,2 + ‖ξλ − ξ‖W2,2 ≤ α. (A.19)

From (A.13) and (A.18) we then have

∇⊥ξλ = (PQλ)
−1∇(PQλ) + (PQλ)

−1(Ω + PλP−1)PQλ. (A.20)

Since P ∈ W2,2 the map λ → PλP−1 and its inverse ζ → P−1ζP are
continuous from W1,2 into W1,2 (using the fact that W2,2 embeds in W1,4

in dimension 2 and that P ∈ SO(m)). Therefore, for every β > 0, there
exists η > 0 such that for every ζ ∈ W1,2(D2, so(m) ⊗ ∧1

R) satisfying
‖ζ‖W1,2 ≤ η, there exists R ∈ W2,2(D2, SO(m)) and ν ∈ W2,2(D2, Mm(R))
such that

{
∇⊥ν = R−1∇R + R−1(Ω + ζ)R in D2,

ν = 0 on ∂D2.
(A.21)
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Moreover we have

‖R − P‖W2,2 + ‖ν − ξ‖W2,2 < β. (A.22)

Considering now β < ε
1
2 , since ‖P‖W1,2 +‖ξ‖W1,2 ≤ Cε

1
2 ((A.15) is satisfied

for Ω ∈ Uε,C), we have

‖R‖W1,2 + ‖ν‖W1,2 ≤ (C + 1)ε
1
2 . (A.23)

In order to complete the proof of claim it remains to establish (A.15)
and (A.16), providing that ε has been chosen small enough. This will be
a consequence of the following lemma.

Lemma A.5 There exist C(m) > 0 ε and δ > 0 such that for every P ∈
W2,2(D2, SO(m)) and ξ ∈ W2,2(D2, so(m)) satisfying (A.13) and (A.14)
for some Ω ∈ W1,2(D2, so(m)) satisfying

∫
D2 |Ω|2 ≤ ε, if

‖P‖W1,2 + ‖ξ‖W1,2 ≤ δ, (A.24)

then (A.15) and (A.16) are satisfied.

Proof of Lemma A.5 We first establish the critical estimate (A.15).
(A.13) and (A.14) imply that ξ solves the following elliptic PDE

{
−∆ξ = ∇ Pt · ∇⊥ P + div(PtΩP) in D2,

ξ = 0 on ∂D2.
(A.25)

Using Lemma A.1 and standard elliptic PDE we have

‖∇ξ‖L2 ≤ C ‖∇ Pt‖L2‖∇ P‖L2 + C‖Ω‖L2 . (A.26)

Using the hypothesis that ‖∇ P‖L2 ≤ δ we have that

‖∇ξ‖L2 ≤ C δ ‖∇ P‖L2 + C‖Ω‖L2. (A.27)

From (A.13) we have that

‖∇ P‖L2 ≤ 2‖∇ξ‖L2 + 2‖Ω‖L2 . (A.28)

Combining (A.27) and (A.28) we have then

‖∇ξ‖W1,2 ≤ 2C δ ‖∇ξ‖L2 + (C + 2C δ)‖Ω‖L2 . (A.29)

Choosing then 2C δ < 1/2 we obtain inequality (A.15).
It remains to establish (A.16). From (A.25) again, using standard elliptic

estimates and the embedding of W1,1 into L2 in 2 dimensions, we have

‖ξ‖W2,2 ≤ C‖∇ Pt · ∇⊥ P‖W1,1 + C‖Ω‖W1,2

+ C‖∇ PtΩ‖L2 + C‖Ω∇ P‖L2 .
(A.30)
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Using Cauchy-Schwarz we have first

‖∇ Pt · ∇⊥ P‖W1,1 ≤ C‖P‖W2,2‖P‖W1,2 . (A.31)

Using the embedding of W1,1 in L2 and Cauchy-Schwarz we have

‖∇ PtΩ‖L2 + ‖Ω∇ P‖L2 ≤ C‖∇ PtΩ‖W1,1 + ‖Ω∇ P‖W1,1

≤ C‖P‖W2,2‖Ω‖L2 + C‖Ω‖W1,2‖P‖W1,2 .

(A.32)

Combining (A.30), (A.31) and (A.32) we have then that

‖ξ‖W2,2 ≤ C(δ + ε
1
2 ) ‖P‖W2,2 + C‖Ω‖W1,2. (A.33)

Using now (A.13), we have

‖∇ P‖W1,2 ≤ C‖ξ‖W2,2 + C‖|∇⊥ξ||∇2 P|‖L1

+ C‖|∇2ξ||∇ P|‖L1 + C‖Ω‖W1,2 + C‖∇ PΩ‖W1,1

≤ C(1 + δ)‖ξ‖W2,2 + C(1 + δ)‖Ω‖W1,2 + C(δ + ε
1
2 ) ‖P‖W2,2 .

(A.34)

Combining (A.33) and (A.34), for C(δ + ε
1
2 ) < 1/2 we obtain estimate

(A.16) and Lemma A.5 is proved.

End of the proof of Lemma A.4 Let Ω in W1,2(D2, so(m) ⊗ ∧1
R

2) satis-
fying

∫
D2 |Ω|2 < ε for ε for which claim holds. We consider the path

Ωt = φ∗
t Ω where φt(x) = tx and t ∈ [0, 1]. Since

∫
D2 |Ωt |2 = ∫

D2
t
|Ω|2

is an increasing function of t we have then a path among the elements in
W1,2(D2, so(m) ⊗ R2) satisfying

∫
D2 |Ωt |2 ≤ ε connecting 0 and Ω. Using

the closeness of Uε,C, the openness property given by claim and the fact
that 0 ∈ Uε,C, by the mean of a standard continuity argument we obtain
that Ω is in Uε,C and Lemma A.4 is proved.
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