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Abstract
As superconductors are cooled below their critical temperature, stray magnetic flux can become
trapped in regions that remain normal. The presence of trapped flux facilitates dissipation of ac
current in a superconductor, leading to losses in superconducting elements of microwave
devices. In type II superconductors, dissipation is well-understood in terms of the dynamics of
vortices hosting a single flux quantum. In contrast, the ac response of type I superconductors
with trapped flux has not received much attention. Building on Andreev’s early work (Andreev
1967 Sov. Phys. JETP 24 1019), here we show theoretically that the dominant dissipation
mechanism is the absorption of the ac field at the exposed surfaces of the normal regions, while
the deformation of the superconducting/normal interfaces is unimportant. We use the developed
theory to estimate the degradation of the quality factors in field-cooled cavities, and we
satisfactorily compare these theoretical estimates to the measured field dependence of the
quality factors of two aluminum cavities. We also identify a regime in which the dissipated
power depends weakly on the Ginzburg-Landau parameter; this makes it possible to apply our
findings to cavities made of other materials, such as niobium.

Keywords: cavities, Ac losses, type I, flux flow

(Some figures may appear in colour only in the online journal)

1. Introduction

Superconducting cavities are under intense investigation for
diverse applications such as particle accelerators [1] and
quantum information processing [2]. A fundamental question
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Stern-Weg 1, 8093 Zürich, Switzerland.
5 Present address: HRL Laboratories, LLC, 3011 Malibu Canyon Road,
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of practical importance is what limits their quality factors, or
equivalently what mechanisms are responsible for power dis-
sipation. In type II superconductors, it has long been recog-
nized that one such mechanism is the motion of vortices, also
known as flux flow. Vortices are present when a supercon-
ductor is cooled in a magnetic field B0 exceeding the lower
critical field Bc1 . For high-field applications, such as super-
conducting magnets and RF cavities for particle accelerat-
ors, the flux-flow dissipation can significantly impact perform-
ance. By pinning vortices, the dissipation can be reduced,
and this has led to intense and still ongoing research into
ways to pin vortices, both for dc [3] and ac [4, 5] applic-
ations, and into surface treatments [6] to remove defects
facilitating vortex penetration into the bulk of superconducting
cavities [7].
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In the case of superconducting devices for quantum inform-
ation processing the ac fields involved are usually weak, and
external magnetic fields are carefully screened. The most
widely used material for superconducting quantum devices—
including bulk cavities—is aluminum, which is a type I super-
conductor. When cooled in a field, type I superconductors can
enter into the so-called intermediate state, in which normal-
state regions are interspersed among superconducting ones,
allowing the passage of magnetic flux. These normal regions
can take different shapes, such as flux tubes, resembling vor-
tices, or laminar domains; a number of theoretical and experi-
mental studies have focused on this aspect of the intermediate
state over the years [8–10], and on dc losses [11, 12]. Surpris-
ingly little attention has been given to the question of ac losses
in the intermediate state associated with these normal regions,
with the notable exception of the seminal works by Andreev
and collaborators [13–15]. Here we revisit this issue to give a
unified picture of ac dissipation in superconductors (valid for
both type I and type II in an appropriate regime), and to com-
pare the theory to the results of experiments performed with
type I cavities.

In the next section we summarize Andreev’s result for dis-
sipation in type I superconductors [13] and relate it to that in
type II materials. In section 3 we first derive an estimate for
the dependence of a superconducting cavity quality factor Q
on cooling field, which is then compared to experiments with
bulk aluminum cavities of two different geometries. We sum-
marize and discuss our findings in section 4, where we also
consider previous experiments with niobium cavities.

2. Ac dissipation in type I superconductors

In contrast to vortices in type II superconductors, whose
normal-core radius is of the order of the coherence length ξ
and much shorter than the magnetic field penetration depth λ,
normal regions in type I superconductors can be of a macro-
scopic size. As already shown in the early work by Landau [8],
for the laminar configuration the width wn of the normal
parts is of the order of wn ∼

√
dδ, with δ ≈ ξ−λ and d the

sample thickness (see for instance section 2.3.2 in [16]); for a
strongly type I superconductor, with Ginzburg-Landau para-
meter κ= λ/ξ ≪ 1, we have δ ∼ ξ, far exceeding λ. In the
absence of pinning and at a relatively low frequency, this dif-
ference is inconsequential, as the normal regions in a type I
superconductor can move. As was shown in [13], due to this
motion there is flux-flow dissipation in the presence of a dc
current, and the dc resistance in the intermediate state is pro-
portional to the normal-state fraction xn = B0/Bc of the sample
(Bc =Φ0/2πξλ is the thermodynamic critical field, with Φ0

the magnetic flux quantum). This mechanism of the dc dissip-
ation, which was later extended to flux tubes [15], is no dif-
ferent than the one at work in type II superconductors. Inter-
estingly, at a sufficiently high frequency ω the ac dissipation
in a type I superconductor does not involve motion of the nor-
mal regions, and is therefore unaffected by pinning (the similar
regime for type II superconductors is discussed in appendix
A). Once the electromagnetic normal-state skin depth becomes

shorter than wn, the impinging field penetrates into the static
normal domains thus producing the dissipation.

The surface resistance Rs is associated with the skin effect
in the normal domains [13],

Rs =

√
µ0ωρn

2
B0

Bc
, (1)

where the square root factor is the normal-state surface res-
istance6, µ0 is the vacuum permeability, ρn is the normal-
state resistivity, and B0/Bc is the normal fraction xn in a thick
(d≫ λ) superconducting plate cooled in a field perpendicular
to its surface (the generalization to a tilted field can be found
in [13]). The power dissipated per unit area P̃I for a type I
superconductor is then

P̃I =
1
2
RsH

2
p =

B0

Bc

H2
p

2

√
µ0ωρn

2
, (2)

where Hp denotes the component of the ac magnetic field par-
allel to the surface. While the ac field does not lead to the
overall motion of the normal regions, it can cause a deform-
ation of the interface between the normal and superconduct-
ing regions. It was claimed [13] that this deformation does not
significantly contribute to losses in type I superconductors; we
show next that this is indeed the case. The result will enable
us to interpolate between the dissipation in type I and type II
superconductors.

2.1. Deformation of the normal/superconductor interface

Let us consider a planar domain wall separating a normal
region from a superconducting one; in the intermediate state,
the magnetic field is zero in the superconducting part and Bc
in the normal one. The equation governing the displacement
u(z, t) of the wall has the same form as for vortices [17],

η̃u̇= ε̃u ′ ′ + F̃e−z/λe−iωt. (3)

Here u̇ and u′′ are, respectively, the time derivative and the
second spatial derivative of the displacement, η̃ is the drag
coefficient, ε̃ is the domain wall’s surface tension, and F̃ is
the Lorentz force (per unit area) at z= 0; this force acting on
the domain wall is due to the ac field parallel to the super-
conductor’s surface. (The displacement u is in principle also a
function of the other direction, x, along the wall, but since the
force depends only on z, there is translational invariance along
x.) The dissipated power Pw (per unit length along the wall)
associated with the deformation of the domain wall, obtained
by integrating over z the velocity time force product u̇F̃e−z/λ,
is (see appendix A)

Pw =
1
2
(λF̃)2

√
ω

2η̃ε̃
. (4)

Next we address the question of how to estimate the paramet-
ers in the right hand side of equation (4) for a type I supercon-
ductor.

6 Equation (1) assumes the most common case of the normal skin effect.
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As with any domain wall separating two phases, there is
a surface energy γ associated with the domain wall. In the
present case the surface energy is (see also section 4.3 in [16])

γ = δ
B2
c

2µ0
, (5)

with δ ≈ ξ−λ, as introduced at the beginning of this section.
Therefore we estimate the surface tension for a domain wall
in a type I superconductor as

ε̃= ξ
B2
c

2µ0
. (6)

For the drag coefficient η̃, we can reason in a way sim-
ilar to that for vortices (section 5.5.1 in [16]), but adapting
it to the domain wall. As for vortices, we attribute the drag
to Joule heating in the normal part, and if the wall is moving
with speed vD in the direction normal to the wall, the dissip-
ated power per area is then η̃v2D. Here the relevant normal part
is the region of thickness ξ over which the order parameter is
rising, while the magnetic field has already decreased signific-
antly over the shorter length λ, see figure 1. Indeed, if we take
an arbitrary contour fully contained in the normal region with
magnetic field Bc, the flux through the enclosed area does not
change in time, so there is no electric field in that region. On
the other hand, by considering a rectangle with a side in the
normal region with field Bc and the parallel side in the normal
region (of thickness ∼ξ) with no field, by Maxwell equations
the electric field E in the latter region has magnitude

E= BcvD . (7)

According to Ohm’s law, the dissipated power density is
E2/ρn. Integrating it over the thickness ξ of the normal region
with electric field E of equation (7) and equating the result to
η̃v2D, we arrive at the estimate

η̃ = ξ
B2
c

ρn
. (8)

We estimate the force per unit area F̃ acting on the domain
wall by evaluating the difference between the energy density
E in the presence of a small external quasi-static field of mag-
nitude Hp ≪ Bc/µ0 and the energy density in its absence [see
equation (6) in [13]]. The energy density is given by the kin-
etic energy density µ0λ

2j2/2 of the current density j in the
domain wall. Without the ac field, we have the field going
from Bc to zero over distance λ (see figure 1); then byMaxwell
equation, the magnitude of the screening current in that region
is js ≈ Bc/µ0λ. Once the quasi-static ac field is applied, there is
additional current jp ≈ (Hp/λ)e−z/λe−iωt. Assuming that the
ac field is perpendicular to the wall, the additional current is
parallel to js, and the change in energy density is

∆E =
1
2
µ0 λ

2
[
( js+ jp)

2 − j2s
]
≈ µ0 λ

2 jsjp

≈ BcHpe
−z/λe−iωt . (9)

Figure 1. Top: schematic representation of a domain wall. From left
to right, the magnetic field B (solid line) decreases from Bc to zero
over the penetration depth λ, while the order parameter ∆
(dotted line) rises from zero to a finite value over the much longer
coherence length ξ. The superconducting region S is shaded, while
the normal region N with finite electric field is comprised between
the two vertical dashed lines. Bottom: the rectangular integration
contour used to calculate the electric field, as viewed from above the
surface of the superconductor. Contours fully to the left (right) of
the left (right) dashed line give no electric field in the regions
outside the two vertical lines.

Therefore the magnitude of the force acting on the domain
wall is7

F̃= BcHp . (10)

Note that if Hp has a component Hpp parallel to the wall, the
added current is perpendicular to the wall, and its contribution
to the energy density is smaller by a factor µ0 Hpp/Bc ≪ 1, so
we neglect its effect.

We have now all the ingredients needed to estimate the dis-
sipated power per unit area associated with the deformation of
the interfaces between normal and superconducting domains.
For each superconducting domain, there are two such inter-
faces, and the number of domains per unit length (i.e. their
linear density) can be written as B0/Bcwn, accounting for the
‘squeezing’ of the cooling field B0 into regions of width wn
where the field reaches the critical value Bc (see section 2.3.3

7 A more accurate modeling of the forces acting on the domain wall should
also take into consideration the Lorentz force due to the currents flowing in
the N region. The corresponding current density is ∼ Hp/δs, where δs is the
skin depth, see equation (20). However, at the frequencies under consideration
(ω ≪ ωλ, see appendix A), we have δs ≫ λ, so it is consistent to neglect this
contribution.

3
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in [16]). Therefore, the dissipated power per unit area P̃w ori-
ginating from the domain walls is

P̃w = 2Pw
B0

Bcwn
= P̃I 2κ

2

√
2ξ
wn

, (11)

where we have substituted equations (6), (8) and (10) into
equation (4) and used equation (2). For a type I supercon-
ductor, 2κ2 < 1 and if the laminae are macroscopic,wn ∼

√
dξ

with d≫ ξ being the sample thickness, then ξ/wn ≪ 1. There-
fore we expect that P̃w ≪ P̃I: the power loss from deformation
of the interfaces can be neglected, which confirms Andreev’s
assertion [13].

The above result holds also if the normal regions are flux
tubes rather than laminae. In this case, the parameters entering
equation (3) are per unit length rather than per unit area [see
equation (A.2)] and can be approximately obtained by mul-
tiplying those in equations (6), (8) and (10) by πRt, with Rt
the tubes’ radius (see also appendix B); this leads to a dissip-
ated power πRtPw per flux tube. Since the number of tubes per
unit area is B0/BcπR2

t , we find

P̃t = P̃I 2κ
2

√
2ξ
Rt

(12)

for the dissipated power per unit area from the deformation of
the interfaces of the tubes; this power P̃t can again be neglected
in comparison to P̃I.

2.2. Dissipation as function of κ

The above findings enable us to estimate how the dissipated
power in the presence of flux depend on the Ginzburg-Landau
parameter κ. To this end, we compare the dissipation by flux
tubes in type I superconductors to to that by vortices in type
II superconductors. Let us introduce the powers per unit area
P̃d arising from the deformation of the normal/superconductor
interface and P̃s due to direct, local loss from the parts of the
surface which are in the normal state. For type I superconduct-
ors they are given in equations (2) and (12), respectively. The
corresponding expressions for type II superconductors can be
found in appendix A [equations (A.9) and (A.10)]. We can
summarize the results in the form

P̃d
P̃I

≈

{
2κ2

√
2ξ/Rt , κ≪ 1√

2/ lnκ, κ≫ 1
(13)

and

P̃s
P̃I

≈
{

1 , κ≪ 1
1/2κ, κ≫ 1,

(14)

where formulas for κ≪ 1 apply at intermediate frequencies
(above the depinning one and below the saturation one8, see
appendix A for more details).

8 For niobium the saturation frequency is about 250 GHz [17], well above
typical frequencies used in applications.

As discussed above, we have P̃s ≫ P̃d for κ≪ 1, while we
find P̃s ≪ P̃d for κ≫ 1. Interestingly, at κ of order unity both
mechanisms give contributions of similar order. In the case of
the power P̃d for flux tubes in the type I regime, this can be
seen as follows: for small κ the tube radius is macroscopic,
Rt ∼

√
dδ ≈

√
dξ (we remind that d is the sample thickness

and δ ≈ ξ−λ); as κ increases, the coherence length ξ and
the penetration depth λ become of the same order, and there-
fore δ→ 0. However, the coherence length is the minimum
length over which the order parameter can vary, so we must
always have Rt ≳ ξ, and the inequality will saturate for val-
ues of κ of order unity. In summary, for the total dissipated
power per unit area P̃= P̃d+ P̃s we find a weak dependence
on κ at intermediate frequencies, since we have shown that
in this regime there is a smooth crossover from P̃I at small κ
to P̃II = P̃I

√
2/ lnκ at large κ. The crossover is smooth des-

pite the fact that the dominant dissipation mechanisms in the
two limits are distinct: in type II superconductors the power
is determined by the interplay between the elastic deforma-
tion of the vortex core and the ohmic loss in it, while in type
I superconductors the power is given by the local loss within
the surface layer of the normal-state regions exposed to the ac
field (the surface layer thickness is given by the skin depth). In
the next section we consider how this dissipated power affects
the quality factor of a superconducting cavity.

3. Dependence of cavity quality factor on cooling
field

The quality factor Q of a resonant systems is defined as the
ratio between the energy U stored in the resonator over the
energy loss per unit cycle Ptot/ω,

Q=
Uω
Ptot

, (15)

where Ptot and ω are the total dissipated power and the angu-
lar frequency, respectively. As discussed in the Introduction,
reaching a high quality factor is useful in many applications.
Here we focus on the contribution P to the dissipated power
originating from trapped flux, Ptot = P0 +P, where P0 denotes
the power loss in the absence of trapped flux (due, for example,
to dielectric losses, two-level systems, etc). We have seen in
the previous sections that P is proportional to the cooling
field B0; therefore we can separate the inverse quality factor
of a superconducting cavity into a zero-field part and a field-
dependent part:

1
Q

=
1
Q0

+
1

Q(B0)
(16)

with

1
Q(B0)

=
P
ωU

≡ αB0 . (17)

Here we have introduced the coefficient α, which meas-
ures how the quality factor degrades as the cooling field
increases. The dissipated power P is obtained by integrat-
ing the dissipated power per unit area P̃; over those parts of

4
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the internal cavity surface, denoted with Sf , where there is
trapped flux passing through the surface; then surfaces parallel
to the cooling field are in general excluded from the integral.
Moreover, there has to be a finite parallel component Hp(r)
of the magnetic field at the active surfaces for the power to
be non-zero. (See figure 2 for examples of surfaces Sf .) The
stored energy U can be calculated as the magnetic energy in
the volume V enclosed in the cavity; therefore α is given by

α=

´
Sf
P̃dS

ωB0
µ0
2

´
VH

2(r)dV
(18)

with H being the magnetic field inside the cavity. We focus
henceforth on type I superconductors, P̃≈ P̃I, to facilitate
comparison with experimental data; the corresponding results
for α at large κ can be obtained by multiplying our findings by√

2/ lnκ, see section 2.2.
We can separate α into a material-dependent factor and a

geometry-dependent one: substituting equations (2) into (18),
we write the result as

α=
δs(ω)

2Bc
G (19)

where

δs(ω) =

√
2ρn
µ0 ω

(20)

is the skin depth and

G=

´
Sf
H2
p (r)dS´

VH
2(r)dV

(21)

has units of inverse length9. The appearance of the skin depth
δs in equation (19) can of course be traced back to the fact
that for type I superconductors the power loss is dominated
by the normal-state parts of the surface, see equation (1). The
formula (20) for δs is valid for the normal skin effect, when
δs ≫ ℓ, where ℓ is the mean free path. If this inequality is not
satisfied, one should use instead the formula for the anomalous
skin effect [18]. Up to a numerical factor ∼1, the anomalous
skin depth is

δs,a(ω) =
[
δ 2
s (ω)ℓ

]1/3
; (22)

it is independent of the mean free path, since ρnℓ= 3/νe2 vF
with ν and vF being the density of states at the Fermi energy
and the Fermi velocity, respectively.

3.1. Measurements of quality factor vs cooling field

To quantitatively test the theory described above, we outline
here measurements of the quality factor of two cavities cooled

9 To avoid confusion, we note that the geometry factor introduced here is
not the same used in the accelerator community, Gacc. However, if all sur-
faces contribute to loss by trapped flux, they are related as Gacc = πZ0/2G̃,
where Z0 is the vacuum impedance and the dimensionless factor G̃ is defined
in equation (23).

Figure 2. Schematic representation of the (a) rectangular and
(b) coaxial cavities. The vertical orange arrows gives the direction
of the cooling field B0. The straight blue arrows represent the
electric field of the measured mode and the red curved ones the
magnetic field Hp. The relevant surfaces Sf with trapped flux are in
(a) the top and bottom ones inside the cavity and in (b) the bottom
ring between the end of the coaxial cylinder and the cavity wall
(at the top of the coaxial cylinder, the field Hp is negligible).

in the presence of a magnetic field B0, as reported in [19].
Two cavities of different shapes were fabricated by machining
holes into blocks of high purity (4N) aluminum. One cavity
is rectangular in shape, see diagram in figure 2(a), and con-
sists of two halves joined by a seam. The cooling field was
applied parallel to the seam, so that normal domains can form
without crossing it; this was done to minimize possible field-
dependent losses at the seam. For the same reason, the quality
factor of the TE101 mode with frequency∼9.7 GHz was meas-
ured; the measurement technique was described in [20]. The
second cavity was a λ/4 coaxial cavity, figure 2(b), similar to
those of references [21, 22], but with a higher resonant fre-
quency ∼9.4 GHz. The cooling field was applied normal to
the bottom circular surface, which is therefore the only one
that contributes to the trapped-flux dissipation; qualitatively
similar results were obtained for fields perpendicular to the
cavity axis.

The cavities were cooled down to 30 mK inside a mumetal
can to shield them from ambient magnetic fields. Starting from
temperature above Tc, different cooling fields were gener-
ated by Helmholtz coils placed inside the can and the fields
were calibrated by measuring with a fluxgate magnetometer at
room temperature for different applied coil currents. To meas-
ure cavity performance with different trapped fields, the refri-
gerator was warmed to approximately 1.5 K, and a current
through the coil was applied until the samples cooled to mil-
likelvin temperatures. We observed no significant change in
cavity dissipation when either the fields were applied when
well below Tc, nor when the magnet was turned off at low
temperature.

We show in figure 3 the results of the measurements
for the coaxial cavity (circles) and the rectangular one
(squares). The lines are best linear fits with intercepts cor-
responding to zero-field quality factors Qc = 7× 107 and
Qr = 2.2× 107, and experimental slopes αc,e = 0.0020 T−1

and αr,e = 0.0034 T−1 for coaxial and rectangular cavity,
respectively. The data display linear behavior down to less

5
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Figure 3. Inverse quality factor vs cooling field. Blue circles:
measured quality factor for the coaxial cavity; orange squares: same
for the rectangular cavity. Dashed lines are best linear fits to the
experimental data.

than 5 mG, indicating that the ambient field is smaller than
that. Both slopes agree with an order-of-magnitude estim-
ate from equation (19), as we now show: first, the critical
field of aluminum is Bc ≃ 0.01 T [23]. The skin depth at low
temperature can be estimated from the residual resistivity,
which for 4N aluminum is of order ρn ∼ 10−10Ω·m [24]; sub-
stituting this value and ω/2π = 10 GHz into equation (20)
gives δs ∼ 50 nm. However, this value is small compared to
the mean free path ℓ= 3/ρnνe2 vF ∼ 4 µm, where we used
ν = 1.5× 1047 Jm−3 and vF = 2× 106 m s−1. Therefore, we
use instead equation (22) to find δs,a ≃ 0.2 µm. Finally, the
geometry factor G is, for low-lying modes, of order of the
inverse of the cavity size; the latter is ∼ c/ω ∼ 1 cm. Substi-
tuting these values into equation (19) we get α∼ 10−3 T−1,
which agrees in order of magnitude with the values extracted
from the experiments.

For a more accurate comparison between theory and exper-
iment, we now improve our estimates for the geometry factor.
To that end, we find it convenient to introduce a dimensionless
geometry factor G̃ defined as

G̃=
πc
2ω

G. (23)

For the coaxial cavity we find G̃c = 2, and for the rectangular
cavity G̃r = 1/b

√
1/a2 + 1/d2, where b is length in the elec-

tric field direction, a and d in the perpendicular directions, see
appendix C. In experiment we have b≈ 5 mm, a≈ 17.8 mm,
and d≈ 31.3 mm; therefore we estimate G̃r ≃ 3.1.
From the dimensionless G̃ we obtain G−1

c ∼ 0.40 cm
and G−1

r ∼ 0.25 cm, implying αc,t ∼ 0.0025 T−1 and
αr,t ∼ 0.0040 T−1. The agreement of the two estimates with
the respective experimental results is fairly good, given that
the anomalous skin depth, equation (22), is defined only up to
a numerical factor of order unity.

4. Summary and discussion

When cooled in the presence of a magnetic field,
superconductors can trap flux in the form of vortices in type II

superconductors, or normal domains (tubes, laminae) in a type
I material. The motion of these normal regions is responsible
for dc dissipation. At low temperatures (when the quasiparticle
density is exponentially suppressed), and at higher frequen-
cies rendering pinning ineffective, the dominant contribution
to the ac absorption may come from twomechanisms: deform-
ation of the superconducting/normal state interfaces and dir-
ect absorption at the surfaces of the normal regions exposed
to ac fields. In this work, we have reviewed and extended
the analysis of these mechanisms to include both type I and
type II superconductors; in particular, for type I we study the
deformation of the S/N interface in section 2.1. While the
deformation of vortex lines is the dominant effect in type II
superconductors (at intermediate frequencies [17]), the direct
absorption is dominant in type I superconductors, as discussed
in section 2.2.

We considered the dependence of the quality factor of
a superconducting cavity on the cooling field in section 3.
Focusing on type I superconductors, we presented the exper-
imental data for aluminum cavities of two shapes, rectangu-
lar and coaxial. The measured reduction of the quality factor
associated with an incrementally increasing cooling field is in
a good agreement with our theoretical calculation based on
independent estimates of material parameters. A further test
of the theory could come from the measurement of the cav-
ity frequency shift δf= f(B0)− f(0) vs field. Indeed, using
the relation 1/Q+ 2iδf/f(0)∝ Rs+ iXs [20], where f (0) is
the zero-field frequency and Xs is the imaginary part of the
surface impedance, and since in the normal state the real
and imaginary parts are related by Rs/Xs =−1 [13], we find
δf/f=−1/2Q(B0), with Q(B0) of equation (17)10. With our
findings, we can answer an important question for applica-
tions: what is the maximum field Bmax

0 in which one can cool a
cavity while maintaining a high quality factor? As an example,
let us assume that Q∼ 109 is targeted in an aluminum cavity;
then inverting equation (17) and using α∼ 3× 10−3 T−1, we
estimate Bmax

0 ∼ 3× 10−7 T (i.e. a fewmilliGauss). Since with
careful shielding fields smaller than this (about 1 mG) can be
obtained, dissipation due to the trapped flux does not necessar-
ily limit the quality factor of such Al cavities to the measured
≲ 109 values [20, 25]. In fact, taken together, our estimate for
Bmax
0 , the observed linear behavior down to few mG, and the

finite intercept corresponding to Q< 108 in figure 3, indic-
ate that our cavities are limited by some other, independent
of field dissipation mechanism (such as dielectric losses, two-
level systems, or non-equilibrium quasiparticles). Therefore,
further improvements inmagnetic shielding to reduce the cool-
ing field are not likely to improve the cavity quality factors,
even though at 1 mG the flux trapped e.g. at the bottom of the
coaxial cavity corresponds to over 104 magnetic flux quanta.

10 The latter expression holds for the normal skin effect; the right-hand side
should be multiplied by

√
3 in the case of anomalous skin effect [18]. For

the frequency shift to be reliably measured, the change in 1/Q with the field
should be larger than a factor of ∼2, so that the shift exceeds the linewidth.
Such a condition was not met in our measurements, see figure 3, but it may be
reached in the future by either using cavities with higher zero-field Q, or by
exploring a wider field range.
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Recently, niobium cavities designed for particle acceler-
ators have been considered also for quantum information
applications [26]. Given the room temperature resistivity
(1.5× 10−7 Ω·m) and residual resistivity ratio (∼200), using
equation (20) we estimate δs ∼ 4× 10−7m at 1.3 GHz. With
Bc ∼ 0.2 T [7] and G∼ ω/c∼ 30 m−1, from equation (19)
we find αNb ∼ 3× 10−5 T−1, indicating that Nb cavities are
much less affected by ambient field than Al ones. We note
that, given the weak dependence of the dissipated power on
κ discussed in section 2.2, using type-I formulas is adequate
for an order-of-magnitude estimate, since κ∼ 0.73− 1.5 for
Nb [7, 27]; in fact, cavity-grade Nb behaves as a type-II/1
superconductor in which, due to attraction at long distances,
vortices form bundles interspersed by Meissner state regions,
a state known as intermediate mixed state [27]. Interestingly,
cooling protocols under which flux can be expelled have been
developed [28]. Without flux expulsion, the quality factor
in a cooling field B0 = 10−6 T was measured to be about
1.5× 1010, in reasonable agreement with the estimate Q=
1/αNbB0 ∼ 3× 1010. Moreover, measurements of the temper-
ature dependence of the quality factors, both before and after
heat treatments, confirm the limiting effect of two-level sys-
tems in Nb cavities with low-temperature Q≲ 2× 1010 [26],
in qualitative agreement with our analysis for Al cavities;
after heat treatment and at the optimal temperature (∼1K) of
highestQ, the measured quality factors are within a factor of 2
from the value 1/αNbB0, where B0 = 2 mG. While these res-
ults point to the need to further improvements in the mater-
ial properties and surface treatments for both Nb and Al,
our findings establish that, even for Nb, careful shielding (or
flux expulsion) during cooling is necessary to achieve record
quality factors.
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Appendix A. Ac dissipation in type II
superconductors

As mentioned in the Introduction, in type II superconductors
the pinning of vortices has long been investigated as a way to
reduce flux-flow dissipation. Early models treated pinning by
introducing, for example, a harmonic confining potential [29].
In such a model, there is a depinning frequency above which
pinning is ineffective and the dissipated power saturates to a
frequency-independent value proportional to the flux-flow res-
istivity ρf . Following empirical suggestions, ρf is expected to
be proportional to the normal-state resistivity ρn and the ratio
between magnetic field B0 and second critical field Bc2 ,

ρf = ρn
B0

Bc2
. (A.1)

Theoretical justification of equation (A.1), attributing ρf to the
losses in the normal cores of moving vortices was given by
Bardeen and Stephen, see [30] and references therein.

Below the depinning frequency, the ac dissipated power
increases quadratically with the frequency ω. However,
in [29], as well as in subsequent refinements aimed at cal-
culating the surface impedance while accounting for vortex
creep [31, 32], the role of the vortex line tension was neg-
lected. More recently, a model accounting for both line ten-
sion and strong pinning centers predicted not only a quadratic
increase with frequency at the lowest frequencies and a satur-
ation at high frequencies, but also an intermediate frequency
domain with a

√
ω dependence for the dissipated power. We

note that in this regime and at higher frequencies there is no
overall motion of a vortex (no vortex creep), and the dissipa-
tion can be ascribed to the deformation of the vortex line away
from its equilibrium position; in the main part of the paper we
use the term deformation rather than motion, as it enables us
to treat type I and type II superconductors on the same footing.

Here for simplicity we neglect the effect of pinning11, thus
dispensing with the low-frequency quadratic asymptote for the
dissipated power, and refer the reader to [17] for its treatment.
The extension to random, weak pinning centers of different
dimensionalities can be found in [36]. We also disregard the
exponentially small effect of quasiparticles which are assumed
to be at thermal equilibrium with temperature much smal-
ler than the superconducting gap divided by the Boltzmann
constant, T≪∆/kB; thus the ac dissipation is dominated by
the flux-flow contribution. This contribution is a potential

11 In other words, we assume a frequency large compared to the depinning
frequency. Here we note that the value of the depinning frequency depends on
the material considered, including the electron mean free path in it, as well as
temperature, magnetic field, and sample thickness, see e.g. [33–35]; while a
more detailed analysis of the validity of our assumption is beyond the scope of
this work, we note that for a 160 nm thick Nb film, the depinning frequency
is below 1 GHz [33] and it decreases with increasing thickness. Therefore
for cavities, whose walls are typically at least millimeter thick, frequencies of
order hundreds of MHz to several GHz (typical for accelerator and quantum
information applications) can indeed be considered large.
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explanation for the observation that in many experiments with
thin-film quantum devices, the internal dissipation is no longer
exponentially improving below ∼100–200mK 12.

The model we consider is a slightly simplified version of
that in [17]; while this appendix does not present new res-
ults, it is included here to make the paper self-contained and
to make it easy for the reader to compare the type II and type I
cases. The model accounts for the viscous motion of a vortex
line under the action of the ac field; denoting by u(z, t) the dis-
placement of an infinitesimal vortex element at depth z from its
position in the absence of the ac field, the equation of motion
for u reads [see equation (3)]

ηu̇= εu ′ ′ +Fe−z/λe−iωt. (A.2)

Here the parameters η, ε, andF are per unit length of the vortex
line. The textbook expressions for these three quantities can be
found, e.g., in [16]. Note that u is in general a two-dimensional
vector, but here we treat it as a scalar in the direction of the
applied force, a direction which is assumed constant in time.

The drag coefficient η originates from dissipation in
the normal core of the vortex. The dissipation is caused
by the electric field generated by the vortex motion
(section 5.5.1 in [16]),

η =
Φ2

0

2πξ 2 ρn
. (A.3)

Here ρn is the normal-state resistivity and ξ is the coherence
length, which gives approximately the radius of the normal
core. The line tension

ε=
Φ2

0

4πµ0 λ2
lnκ (A.4)

is given by the free energy per unit length of a static vortex;
the term proportional to it in equation (A.2) accounts for the
energy cost of elastic deformation of the vortex. The line ten-
sion is mainly due to the kinetic energy of the superfluid cur-
rent around the vortex, see section 5.1.2 in [16]. There is an
additional contribution to ε from the vortex core, which is neg-
lected there; we show explicitly in appendix B that this is a
good approximation in strongly type II superconductors with
Ginzburg-Landau parameter κ= λ/ξ ≫ 1. Finally, the mag-
nitude F of the Lorentz force acting on the vortex line is pro-
portional to the magnitude Hp of the parallel to the surface
alternating magnetic field of the impinging electromagnetic
wave (see section 5.2 in [16]),

F=Φ0 Hp/λ. (A.5)

12 In the case of thin-film devices in the presence of an out-of-plane magnetic
field, one can generically expect type II behavior: thin films are usually dis-
ordered superconductors with ℓ≪ ξ0, where ξ0 is the coherence length of the
clean material. For disordered superconductors the Ginzburg-Landau para-
meter is approximately given by κ≈ λ/ℓ (see section 4.2.1 in [16]), which is
larger than the corresponding ‘clean’ value. Moreover, for thickness d small
compared to λ, the length scale λ⊥ that determines the extent of the supercur-
rent surrounding the vortex core is λ⊥ ≈ λ 2/d (see section 3.11.4 in [16]);
this length scale is longer than the bulk value λ, so that using λ⊥ to calculate
κ leads to a further increase in its value compared to that for the bulk material.

Interestingly, the force per unit length F is related to that per
unit area F̃, equation (10), by F̃= F/2πξ, as one would expect
by geometrical considerations alone. For the drag and sur-
face tension, on the other hand, there are additional depend-
encies on κ: comparing equation (A.3) to equation (8) and
equation (A.4) to equation (6) we find η̃ = η/2πξκ2 and
ε̃= ε/2πξ lnκ.

We are interested in calculating the power Pv dissipated by
a vortex as it moves and bends under the action of the ac field.
To this end, we need to integrate over z the product Fe−z/λu̇ of
the force and velocity. Therefore, we first solve equation (A.2)
for u by performing a Fourier transform,

u(z, t) = e−iωt
ˆ

dk
2π

ũ(k)eikz , (A.6)

with the boundary condition u ′(0, t) = 0 corresponding to no
surface pinning.We do not present here explicitly the mathem-
atical derivation of the final expression for Pv, as it is a simpli-
fied version of that given in [17]. We note, however, that the
line tension ε in general depends on k, but that this dependence
can be neglected at low frequency, such that ω ≪ ωλ = ε/ηλ2

[the dissipated power saturates to a frequency-independent
value for ω ≳ ωλ [17], see also the text after equation (A.9)].
In this regime, the dissipated power Pv is

Pv =
1
2
(λF)2

√
ω

2ηε
(A.7)

which, using equations (A.3)–(A.5), agrees with the corres-
ponding result in [17]. We mention in passing that the

√
ω fre-

quency dependence of the dissipated power is not unique to
the vortex flow mechanism; on its own, it is insufficient to dis-
tinguish it, e.g. from the quasiparticle losses at low (effective)
temperature kBT≪ ω.

It is important to note that even at finite frequency ω the
dissipation in a type II material is associated with the motion
of vortices, rather than with the penetration of the impinging
electromagnetic wave into the normal core of a static vor-
tex. The reason is that the skin depth (which is in general
longer than the penetration depth in the superconducting state)
exceeds greatly the core radius ξ, which makes such penetra-
tion impossible.

In section 2.2 we compare the ac dissipation in type I
and type II superconductors, which we denote as P̃I and P̃II,
respectively. For such a comparison, we define P̃I and P̃II as
the dissipated power per unit surface area of a superconductor
cooled in a field B0. Considering a sample of area S, the num-
ber of vortices Nv is given by the ratio of flux to the flux
quantum,

Nv =
B0 S
Φ0

. (A.8)

Then at intermediate frequencies the dissipated power per unit
area P̃II is

P̃II =
PvNv
S

=
B0

Bc

H2
p

2

√
µ0ωρn
lnκ

. (A.9)
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For completeness we address next the dissipated power at
higher frequencies, ω ≳ ωλ. The power can be estimated by
accounting for the flux-flow resistivity equation (A.1) to be
responsible for dissipation over a surface layer of depth λ.
That yields the surface resistivity Rs ∼ ρf/λ; substituting this
expression into the central formula in equation (2) gives the
correct result up to numerical factors of order unity.

So far we have neglected the direct absorption at the
exposed surface of the normal core of the vortex. To estimate
this dissipated power P̃s, we calculate the normal-state frac-
tion in a sample of area S as Nvπξ 2/S= B0/2κBc, with Nv of
equation (A.8), and using this estimate (instead of xn = B0/Bc)
in equations (1) and (2) we find

P̃s =
1
2κ

B0

Bc

H2
p

2

√
µ0ωρn

2
. (A.10)

Note that we are here assuming that penetration of the
impinging wave into the vortex core is possible, which
likely overestimates P̃s for κ≫ 1. Nonetheless, the power in
equation (A.10) is much smaller than that in equation (A.9).

Appendix B. Vortex core contribution to line
tension

Here we consider in more detail the line tension ε for vortices
in type II superconductors. In section 5.1.2 of [16] the for-
mula in equation (A.4) is obtained by considering the energy
of currents and fields outside the vortex core in the limit κ≫ 1.
In principle, there is energy associated with the bending of
the core, which is neglected there. We now substantiate such
approximation for type II superconductors.

We start by considering a flux tube in a type I supercon-
ductor; we indicate below how to extend the final result to the
bending of a vortex core. We treat the flux tube as a cylinder of
radius Rt and we denote with γ the surface energy associated
with a domain wall separating a normal region from a super-
conducting one. Consider a small piece of height dz of the flux
tube: when the top of the small piece is displaced perpendic-
ularly to the z direction by a small amount du, the change in
energy due to deformation of the surface is

∆E= γ∆A≃ γ2πRt

(√
(dz)2 +(du)2 − dz

)
≃ γ2πRtdz

1
2

(
du
dz

)2

. (B.1)

From this expression, we estimate the bending contribution εb
to the line tension to be

εb = 2πγRt. (B.2)

As discussed in section 2.1, the surface energy is [see
equation (5)]

γ = δ
B2
i

2µ0
(B.3)

with δ ∼ ξ−λ and Bi the field in the normal region. The latter
is the critical field Bc in a type I material, but may in general
differ from it. In fact, we may apply equation (B.2) to a type II
superconductor by setting Rt ≈ ξ and using for Hi the vortex
core field [see equation (5.14b) in [16]],

Hi =
Φ0

2πλ2
lnκ. (B.4)

This yields

εb ≃−2πξλ
Φ2

0

4π 2µ0 λ4
ln2 κ=−2

lnκ
κ

ε (B.5)

where in the last formulawe use ε of equation (A.4) [that is, the
main contribution to the vortex line tension originating from
outside the core]. Since κ≫ 1, we find |εb| ≪ ε.

Appendix C. Dimensionless geometry factor

We sketch here the calculation of the dimensionless geometry
factor G̃ for the two cases of interest, a coaxial cavity and a
rectangular one, see figure 2.

For the coaxial cavity, the magnetic field for the TEMmode
in a λ/4 resonator can be written in cylindrical coordinates
{ρ,θ,z} as [37]

H̄(ρ,z) = θ̂Hm
a
ρ

1
loga/b

cos
πz
2L

(C.1)

where Hm is the maximum value of the magnetic field in the
cavity, a is the radius of the inner conductor, b is that of the
outer one, and L= λ/4 is the length of the inner conductor
(in this Appendix, λ denotes the wavelength, not the penetra-
tion depth). The shorted part of the coaxial cavity is at z= 0
and the open part at z=L. The resonant frequency is ω =
2πc/λ= πc/2L. Integrations of H2(ρ,z) over the volume of
the cavity and ofH2(ρ,0) over the bottom surface are straight-
forward and, using the definitions in equations (21) and (23),
give G̃c = 2.

For the TE101 mode of a rectangular cavity, if the electric
field is pointing in the y direction, the magnetic field has com-
ponents in the x and z directions [37]. We do not need to know
the spatial profile of the field: the cavity volume is in the region
0< x< a, 0< y< b, 0< z< d and the surfaces with trapped
flux are those at y= 0 and y= b. Then from equation (21) one
immediately finds Gr = 2/b, since the integrals over variables
x and z are the same in the numerator and in the denominator.
The result for G̃r follows from ω = c

√
(π/a)2 +(π/d)2 [37].
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