
ETH Library

Community detection with a
subsampled semidefinite program

Journal Article

Author(s):
Abdalla, Pedro; Bandeira, Afonso S.

Publication date:
2022-05-06

Permanent link:
https://doi.org/10.3929/ethz-b-000547746

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Sampling Theory, Signal Processing, and Data Analysis 20, https://doi.org/10.1007/s43670-022-00023-9

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000547746
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s43670-022-00023-9
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Sampling Theory, Signal Processing, and Data Analysis            (2022) 20:6 
https://doi.org/10.1007/s43670-022-00023-9

ORIG INAL ART ICLE

Community detection with a subsampled semidefinite
program

Pedro Abdalla1 · Afonso S. Bandeira1

Received: 24 September 2021 / Accepted: 12 April 2022
© The Author(s) 2022

Abstract
Semidefinite programming is an important tool to tackle several problems in data
science and signal processing, including clustering and community detection. How-
ever, semidefinite programs are often slow in practice, so speed up techniques such as
sketching are often considered. In the context of community detection in the stochastic
block model, Mixon and Xie (IEEE Trans Inform Theory 67(10): 6832–6840, 2021)
have recently proposed a sketching framework in which a semidefinite program is
solved only on a subsampled subgraph of the network, giving rise to significant com-
putational savings. In this short paper, we provide a positive answer to a conjecture
of Mixon and Xie about the statistical limits of this technique for the stochastic block
model with two balanced communities.

Keywords Community detection · Clustering algorithms · Graph and network
theory · Semidefinite programming

Mathematics Subject Classification 94-XX

1 Introduction

Clustering problems are ubiquitous in data science. The main goal is to find a partition
of the data into clusters in such form that the members in the same cluster are more
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similar than the members in different clusters. At the same time it is necessary to
balance the clusters sizes to avoid the trivial solution of one cluster per member.

A large body of work has focused on the stochastic block model, a random network
model with a planted cluster structure, we refer the reader to [2] for a survey on
recent developments. We will focus on case of two balanced communities. Let n be
an even natural number and G ∼ G(n; p, q) be a random graph on n nodes drawn as
follows: Randomly partition the set of n vertices V in two equally sized communities
V = S1 ∪ S2. For every pair of vertices, an edge is placed with probability p if
they belong to the same community Si and with probability q < p otherwise, all
independent. The goal is to exactly recover the partition {S1, S2} from the graph alone.
Let the matrix A ∈ R

n×n denote the adjacency matrix of the graph G. Considering a
label vector x ∈ {±1}n representing communitymembership of notes1. Themaximum
likelihood estimator for the node labels x is given by the program below [2],

max
x

xT Ax

s.t. 1T x = 0

x ∈ {±1}n
(1)

Here 1 denotes all-ones vector. Since it is well known that the problem (1) is NP-Hard
[6], we consider the standard semidefinite relaxation [7].

max
X∈Rn×n

Tr(AX)

s.t. Xii = 1

X � 0

Tr(XJ) = 0

(2)

Where X is a surrogate variable for xxT and J denotes all-ones matrix. The fol-
lowing theorem gives the sharp phase transition for the community detection problem
with two balanced communities.

Theorem 1 (Exact recovery threshold [1, 4, 8, 10]) Let G ∼ G(n; p, q) with p =
α
log n
n , q = β

log n
n and planted communities {S1, S2}. Then,

(I) For
√

α − √
β <

√
2, no algorithm can exactly recover the partition with high

probability.
(II) For

√
α − √

β >
√
2, with high probability: The semidefinite program (2) has a

unique solution given by X � = x�(x�)T where x� corresponds to the memberships
of the true communities, thus achieving exact recovery.

Although polynomial time, semidefinite programs tend to be computationally
costly. A powerful tool to overcome computational complexity is that of sketching
(we refer the reader to [13] for an instance of this idea in least squares, and [5, 14] for

1 Note that there is a natural ambiguity in the labelling of each of the communities, thus the goal is best
formulated in terms of recovering the partition; this corresponds of an ambiguity of global sign flip in x .
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semidefinite optimization). In the particular framework addressed in this paper, Mixon
and Xie [9] have recently proposed a sketching approach wherein a potentially sig-
nificantly smaller semidefinite program is solved, its size depends on the community
structure strength. Our main contribution is to resolve in the positive a conjecture in
[9] regarding the dependency of the size of the resulting semidefinite program and the
community structure strength. We now describe the sketching approach in [9], which
consists of a three step process, and a tuning parameter 0 < γ < 1.

• (Step 1) Given a graph with vertex set V . Subsample a smaller vertex set V � by
sampling each node in V independently at random with probability γ .

• (Step 2) Solve the community detection problem in the subgraph induced by V �.
• (Step 3) For each node v not in V � use a majority vote procedure among the
neighbours of v in V � to infer its community membership.

The main goal of this paper is to determine the minimum value of γ such that the
approach above exactly recovers both communities with high probability. The com-
putational savings come from the reduced size of the semidefinite program and so the
parameter γ governs the computational cost of the algorithm (we refer the reader to
[3] for the dependency of the computational cost of semidefinite programming on the
number of variables).

Mixon and Xie [9] conjectured that, as long as

γ >
2

(√
α − √

β
)2 ,

the sketching approachworkswith high probability.Ourmain result provides a positive
answer for this conjecture. In particular, for γ = 1, we recover the threshold in
Theorem 1 (see part II).

2 An oracle bound

As described above, the sketching approach consists of three steps: Sampling, solving
the community detection problem for a smaller sampled graph and then recovering
the entire communities using a majority vote procedure. In this section, we analyze
the Step 3 and prove that it works, for a certain range of the parameter γ , as long as we
know the smaller communities in Step 2. The analysis is described in the proposition
below, we refer to it as an oracle bound because it assumes the knowledge of the
communities in Step 2.

Proposition 2 Let G ∼ G(n; p, q) with planted communities {S1, S2} and with p =
α
log n
n and q = β

log n
n satisfying p > q. Draw a vertex set V � at random by sampling

each node of the graph G independently at random with probability γ . Let R1, R2 be
the planted communities in the sampled graph, i.e, Ri = Si ∩ V � for both i ∈ {1, 2}.
Moreover, let e(v, S) be the number of edges of G between the vertex v and the set
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S ⊂ V (G) where V (G) is the vertex set of the graph G. Now, consider

Ŝ1 = R1 ∪ {v ∈ V (G)\V � : e(v, R1) > e(v, R2)}.
Ŝ2 = R2 ∪ {v ∈ V (G)\V � : e(v, R2) > e(v, R1)}.

Then there exists absolute constants C, c > 0 such that, with probability 1 −
Cn−c((α+β)

γ
2 −γ

√
αβ−1), (Ŝ1, Ŝ2) = (S1, S2). In particular, (Ŝ1, Ŝ2) = (S1, S2) with

probability 1 − o(1), as long as

γ >
2

(√
α − √

β
)2 .

The next lemma will play a key role in the proof of Proposition 2, it is similar to
Lemma 8 in [1] but it deals with almost balanced communities, this is crucial to our
analysis.

Lemma 1 Suppose α > β > 0. Let X and Y be two independent random variables
with X ∼ Binom(K1, α

log n
n ) and Y ∼ Binom(K2, β

log n
n ), where K1 = nγ

2 + o(n)

and K2 = nγ
2 + o(n) as n → ∞. Then,

P(X − Y ≤ 0) ≤ n−((α+β)
γ
2 −γ

√
αβ)+o(1).

We present a simple and direct proof of this lemma.

Proof Let ε > 0. We proceed with the Laplace transform method, for all t ≥ 0 we
write

P(X − Y ≤ 0) ≤ P(X − Y ≤ ε) ≤ etεEe−t(X−Y ) := e−ψ(t), (3)

where ψ(t) := −tε − logEe−t(X−Y ). Now we use the fact that the function ψ(t) is
additive for sums of independent random variables together with the formula for the
moment generating function of a binomial distribution (Example 3.32 in [12])

logEe−t(X−Y ) = K1 log(1 − p(1 − e−t )) + K2 log(1 − q(1 − et )),

where p = α
log n
n and q = β

log n
n . Using the elementary inequality, log(1− x) ≤ −x ,

valid for all 0 ≤ x ≤ 1, we get

ψ(t) ≥ −εt + K1 p(1 − e−t ) + K2q(1 − et ).

We pick t∗ = log((2K2q)−1(−ε + √
ε2 + 4K1K2 pq)) in order to optimize the right

hand side. The second term in the right hand side becomes

K1 p(1 − e−t∗) = K1 p

(

1 − 2K2q

−ε + √
ε2 + 4K1K2 pq

)

.
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We are interested in the behaviour of ψ(t∗) when ε → 0+, so we take the limit
both sides in the equality above

lim
ε→0+ K1 p(1 − e−t∗) = K1 p − √

K1K2 pq.

Similarly, we get

lim
ε→0+ K2q(1 − et

∗
) = K2q − √

K1K2 pq.

Now we can take the limit as ε → 0+ in inequality 3 to obtain

P(X − Y ≤ 0) ≤ elimε→0+ −ψ(t∗) ≤ e−(K1 p+K2q−2
√
K1K2 pq).

Recall that K1 = nγ
2 + o(n), K2 = nγ

2 + o(n), p = α
log n
n and q = β

log n
n . Then,

P(X − Y ≤ 0) ≤ e− log(n)(γ
α+β
2 −γ

√
αβ+o(1)).

��
We end this section with the proof of Proposition 2.

Proof We denote the success event by E , i.e, the event that the communities are recov-
ered and we condition on the event that V � has been drawn. By union bound we can
write,

P(Ec | V �) ≤ P1 + P2.

Here P1 := ∑
v∈S1 1{v∈V (G)\V �}P(e(v, R1) − e(v, R2) ≤ 0) and P2 is defined analo-

gously.
Observe that now the probability in the right hand side of P1 is equal to

P

⎛

⎝
K1∑

j=1

B(p)
j −

K2∑

j=1

B(q)
j ≤ 0

⎞

⎠ ,

where Ki =| Ri | and for all j , the random variables B p
j ∼ Ber(p) and Bq

j ∼
Ber(q) are all independent. We set X := ∑K1

j=1 B
(p)
j ∼ Binom(K1, α

log n
n ) and Y :=

∑K2
j=1 B

(p)
j ∼ Binom(K2, β

log n
n ). In order to apply Lemma 1, we denote the event in

which both K1 and K2 lie in the interval nγ
2 (1 ± 1√

log n
) by A. So we can bound P1

by

P1 ≤
∑

v∈S1
1{v∈V (G)\V �}(1{Ac} + 1{A}P(X − Y ≤ 0 | A)).
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We use the crude bound 1{v∈V (G)\V �} ≤ 1 and write

P1 ≤ n

2
(1{Ac} + 1{A}P(X − Y ≤ 0 | A)).

It is easy to see that the same bound holds for P2, so

P(Ec | V �) ≤ P1 + P2 ≤ n(1{Ac} + 1{A}P(X − Y ≤ 0 | A)).

We take the expectation with respect to V � both sides to obtain,

P(Ec) ≤ n(P(Ac) + EV �P(X − Y ≤ 0 | A)). (4)

By Chernoff’s small deviation inequality (Exercise 2.3.5 [11]), there is an absolute
constant c > 0 such that

P(Ac) ≤ 2P

(
| K1 − nγ

2
|> nγ

2
√
log n

)
≤ 2e−c γ n

log n = o

(
1

n

)
. (5)

By Lemma 1,

EV �P(X − Y ≤ 0 | A) ≤ n−((α+β)
γ
2 −γ

√
αβ)+o(1). (6)

By the assumption on γ , (α + β − 2
√

αβ)
γ
2 > 1. Therefore, there exists an ε > 0

such that

P(X − Y ≤ 0 | A) ≤ n−1−ε+o(1) = o

(
1

n

)
.

Then we combine inequalities 5 and 6 with inequality 4 to complete the proof. ��

3 Exact recovery in the subsampled nodes

In the sampling procedure in Step 1, the unknown communities S1∩V � and S2∩V � are
no longer guaranteed to be balanced, therefore we cannot directly use the optimization
program (2) because the maximum likelihood estimator is no longer (1). However,
thanks to the authors in [8], similar semidefinite programs can be used to handle this
case. We follow the approach in [8].

To begin with, it is straightforward to see that if the communities have sizes K and
n − K , the maximum likelihood estimator becomes

max
x

xT Ax

s.t. 1T x = (2K − n)

x ∈ {±1}n
(7)
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Therefore we can relax the problem in the same as before, we set X := xxT and write

max
X∈Rn×n

Tr(AX)

s.t. Xii = 1

X � 0

Tr(XJ) = (2K − n)2

(8)

We should remark that the formulation (8) requires the knowledge of the sizes of
the communities. To overcome this problem, we consider a Lagrangian formulation

max
X∈Rn×n

Tr(AX) − λ∗Tr(XJ)

s.t. Xii = 1

X � 0

(9)

The intuition is that the Lagrangemultiplier λ∗ adjusts the sizes of the communities.
An important insight from [8] is the following: There exists a value of λ∗ that works
for all values K , so the optimization program (9) can be used to recover unbalanced
communities with unknown sizes. Indeed, the following proposition reflects it. We
use the notation G ∼ G(n1, n2, p, q) to denote a random graph drawn exactly in the
same way as before with the exception that now the planted communities have sizes
n1 and n2 satisfying n1 + n2 = n but n1 is not necessarily equal to n2.

Proposition 3 [8] Let G ∼ G(K , n − K , p, q) with planted communities {S1, S2}
and with p = α

log n
n and q = β

log n
n satisfying p > q. Then, for

√
α − √

β >√
2, the semidefinite program (9) with λ∗ =

(
α−β

logα−logβ

)
log n
n exactly recovers the

communities with probability 1 − Cn−c( 12 (
√

α−√
β)2−1), where C, c > 0 are absolute

constants.

4 Main theorem

We shall proceed to the main result of this paper. We combine the ideas in Sects. 2
and 3 to establish a complete analysis of the sketching procedure.

Theorem 4 (Main result) Let G ∼ G(n; p, q) with planted communities {S1, S2} and
with p = α

log n
n and q = β

log n
n satisfying p > q. Draw a vertex set V � at random

by sampling each node of the graph G independently at random with probability γ .
Denote, for i ∈ {1, 2}, R̂i to be the maximum likelihood estimators of Ri = Si ∩ V �

obtained by running the semidefinite program 9 with the input matrix A being the
adjacency matrix of the graph H ⊂ G induced by V � and the parameter λ∗ chosen as
follows: In the event that | V � |≥ 2, set λ∗ = αH−βH

logαH−logβH

log|V �|
|V �| , where αH := p|V �|

log|V �|
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and βH := q|V �|
log|V �| , otherwise set λ

∗ = 0. Now take

Ŝ1 = R̂1 ∪ {v ∈ V (G)\V � : e(v, R̂1) > e(v, R̂2)}.
Ŝ2 = R̂2 ∪ {v ∈ V (G)\V � : e(v, R̂2) > e(v, R̂1)}.

Then there exists absolute constants C, c > 0 such that, with probability 1 −
Cn−c((α+β)

γ
2 −γ

√
αβ−1), (Ŝ1, Ŝ2) = (S1, S2). In particular, with probability 1 − o(1),

(Ŝ1, Ŝ2) = (S1, S2) as long as

γ >
2

(√
α − √

β
)2 .

Proof Observe that after sampling the vertex set V (G) of the graph, the induced
subgraph H ⊂ G is a random graph with law H ∼ G(S1 ∩ V �, S2 ∩ V �, p, q).
We claim that there exists a λ∗ such that the optimization program 9 recovers both
communities S1∩V � and S2∩V � with the desired probability. The proof of the theorem
easily follows from the claim by applying Proposition 2 and union bound.

Now, we proceed to prove the claim. In order to apply Proposition 3 we need to
check that, with sufficiently large probability,

√
αH − √

βH >
√
2, (10)

where αH := p|V �|
log|V �| and βH := q|V �|

log|V �| if | V � |≥ 2 and zero otherwise. Recall, by

definition, p = α
log n
n and q = β

log n
n . The degenerate event | V � |≤ 1 (empty set or

single vertex) occurs with exponentially small probability. Indeed, observe | V � | is a
sum of n i.i.d random variables with Bernoulli distribution with mean γ , so

P(| V � |≤ 1) = (1 − γ )n + n(1 − γ )n−1γ ≤ 2e−γ (n−1)+log n,

and

P

(
αH = α

| V � | log n
n log | V � |∩ | V � |≥ 2

)
= 1 − 2e−γ (n−1)+log n .

An analogous fact holds for βH , so the event

⎧
⎨

⎩
√

αH − √
βH =

√
| V � | log n
n log | V � |

(√
α − √

β
)
⎫
⎬

⎭
∩ {| V � |≥ 2

}
,
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occurs with exponentially large probability. Since log n
log|V �| ≥ 1 (when the quotient

makes sense), it is enough to prove that, with the desired probability,

⎛

⎝

√
| V � |
n

⎞

⎠
(√

α − √
β
)

>
√
2.

By assumption, there exists a δ > 0 such that
√

α−√
β ≥

√
2
γ
(1+δ) and by the small

Chernoff deviation inequality, for every ε > 0, P
( |V �|

n ≥ γ − ε
)

≥ 1 − 2e−cε2nγ 3
.

Putting these three facts together, we obtain, for every ε > 0,

⎛

⎝

√
| V � | log n
n log | V � |

⎞

⎠
(√

α − √
β
)

≥ √
2(1 + δ)

√
1 − ε

γ
,

with exponentially large probability. We choose ε > 0 small enough to guarantee

that (1 + δ)
√
1 − ε

γ
>

√
1 + δ and then inequality (10) is satisfied with the desired

probability. The claim now follows from Proposition 3. ��
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