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Forest fires alter soil microbial communities that are essential to support ecosystem
recovery following land burning. These alterations have different responses according
to soil abiotic pre- and post-fire conditions and fire severity, among others, and tend
to decrease along vegetation recovery over time. Thus, understanding the effects of
fires on microbial soil communities is critical to evaluate ecosystem resilience and
restoration strategies in fire-prone ecosystems. We studied the state of community-level
physiological profiles (CLPPs) and the prokaryotic community structure of rhizosphere
and bulk soils from two fire-affected sclerophyll forests (one surveyed 17 months and
the other 33 months after fire occurrence) in the Mediterranean climate zone of central
Chile. Increases in catabolic activity (by average well color development of CLPPs),
especially in the rhizosphere as compared with the bulk soil, were observed in the
most recently affected site only. Legacy of land burning was still clearly shaping soil
prokaryote community structure, as shown by quantitative PCR (qPCR) and Illumina
MiSeq sequencing of the V4 region of the 16S rRNA gene, particularly in the most recent
fire-affected site. The qPCR copy numbers and alpha diversity indexes (Shannon and
Pielou’s evenness) of sequencing data decreased in burned soils at both locations. Beta
diversity analyses showed dissimilarity of prokaryote communities at both study sites
according to fire occurrence, and NO3

− was the common variable explaining community
changes for both of them. Acidobacteria and Rokubacteria phyla significantly decreased
in burned soils at both locations, while Firmicutes and Actinobacteria increased. These
findings provide a better understanding of the resilience of soil prokaryote communities
and their physiological conditions in Mediterranean forests of central Chile following
different time periods after fire, conditions that likely influence the ecological processes
taking place during recovery of fire-affected ecosystems.
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INTRODUCTION

Fires are key events regulating the structure and function
of ecosystems (Yang et al., 2020); they have been important
drivers of vegetation evolution and adaptation in most of the
Mediterranean biomes across the globe. However, in the case of
the Mediterranean ecosystem of central Chile, as opposed to the
other four biomes of this type across the globe, land burning
has not been considered an evolutionary force to select for fire-
prone vegetation (Rundel et al., 2016, 2018). Fires have also
represented an important pressure inducing land degradation
worldwide, especially in ecosystems of warm and dry summers
(Esteves et al., 2012), which are highly susceptible to the effects
of climate change (Fletcher and Zielhofer, 2013). This is the
case of Mediterranean ecosystems, which, despite occupying only
about 2.2% of the land surface worldwide (Rundel et al., 2018),
are considered biodiversity hotspots constantly threatened by
anthropogenic disturbances (García-Vega and Newbold, 2020).
This is of particular concern in Chile, where fire events are
expected to increase due to extended megadroughts synchronized
with human interventions (Fuentes-Castillo et al., 2019).

In forests, land burning not only exert an individual impact
on each of their biotic and abiotic components but also on
the relationship among these constituents, compromising the
functionality of the whole ecosystem (Brown and Smith, 2000).
Land burning can alter forest belowground conditions that are
essential to support aboveground life (Certini, 2005). Several
studies have reported a greater sensitivity of soil biological
properties as compared with physicochemical properties to fire
occurrence (Hart et al., 2005; Mataix-Solera et al., 2009). For
microbial indicators, phylogenetic community structure has been
shown to evidence greater sensitivity to land burning than those
targeting soil ecosystem functions such as microbial biomass,
respiration, and specific enzyme activities related to C, N, and P
cycles (Pérez-Valera et al., 2019). The impact on soil microbial
status is of particular importance since microbe-mediated soil
processes are one of the most important drivers of ecosystem
recovery in fire-affected lands (Neary et al., 1999). Forest fires
can threaten soil organisms due to their different sensitivity
to soil heating (Hart et al., 2005; Mataix-Solera et al., 2009;
Rodríguez et al., 2018). In addition, indirect effects of fires occur
by altering abiotic factors known to shape microbial community
structure, such as soil pH (Lauber et al., 2009; Rousk et al.,
2010), soil organic matter (SOM) and soil organic carbon (SOC)
(Eilers et al., 2010), soil oxygen (e.g., aeration) (Fierer, 2017),
and nutritional conditions (Lauber et al., 2008), all of which are
affected by fires (Hart et al., 2005). Direct and indirect forest
fire effects on soil microbiota can reduce the total number of
microbial species (Certini, 2005), increase the proportion of
bacteria over fungi (Fultz et al., 2016), and change the abundance
of particular taxonomic groups (Pressler et al., 2019). Moreover,
several studies have shown negative effects of land burning on soil
microbial activity and functional diversity (Mataix-Solera et al.,
2009; Wang et al., 2016; Alcañiz et al., 2018; Sadeghifar et al.,
2020).

Shifts in prokaryote community composition following fires
have been reported in Mediterranean ecosystems, which have

been related to local environmental conditions prior to land
burning (Goberna et al., 2012). Soil prokaryote communities
play key soil functions, including soil weathering, primary
production, and organic matter decomposition, all of which are
essential in the ecological functioning of soils and susceptible
to fires (Pérez-Valera et al., 2019). For example, increases in
Proteobacteria and Firmicutes, and a decrease in Acidobacteria
in Mediterranean burned soils after 2 and 3 years of fire have
been previously reported (Rodríguez et al., 2018). Proteobacteria
are recognized by their ability to respond to labile C sources
particularly in the rhizosphere, while Acidobacteria have the
ability to degrade cellulose and lignin (Lagos et al., 2015).
Therefore, changes in soil bacteria composition induced by fires
and alterations of soil abiotic properties will have a direct effect
of soil ecosystem functions (Pérez-Valera et al., 2019). Although
several studies have reported effects of forest fires on microbial
composition at phylum level, the evaluation of such effects on
Mediterranean ecosystems of central Chile is rare, especially
when considering potential relationships with soil functionality
and physicochemical properties after fire.

The degree of alterations in soil microbial community
structure and functional diversity after fires greatly depends on
soil physicochemical characteristics prior and after land burning,
fire severity, vegetation type, and other site-specific conditions
(Certini, 2005; Hart et al., 2005; Mataix-Solera et al., 2009). The
effect of forest fires on soil microbial conditions also depends on
time after fires, as immediate to long-lasting effects have been
reported (Mataix-Solera et al., 2009; Singh et al., 2017). Fire
perturbance to belowground conditions is usually expected to last
until vegetation recovers over ecological successions (Hart et al.,
2005). Soil microbial activity following fires in Mediterranean
forests have been shown to increase within the first year of fire
occurrence and then reach values comparable with unburned
conditions after 32 months of land burning (Bárcenas-Moreno
et al., 2011). Other studies have evidenced different responses
of microbial activity indicators following fires, which mainly
remain altered within 1 year after fires to later resemble unburned
conditions over a 3-year time frame (Sadeghifar et al., 2020).
In boreal forest ecosystems, bacterial community composition
and diversity have also been shown to be affected following
1 year of land burning and then recovered after 11 years (Xiang
et al., 2014). As the literature suggests, ecosystems affected by
fires take varying time spans to recover after land burning.
Nonetheless, it is known that changes in soil microbial conditions
and ecosystem functioning rapidly occur within the earliest stages
following fires; thus, studies focusing on post-fire dynamics in the
scale of months to years are of particular interest to understand
recovery in relation to plant succession and changes in soil
properties (Knelman et al., 2017; Pérez-Valera et al., 2019). This
is particularly true for understudied environments that are less
represented in the literature where local evidence is required, as
it is the case for fire-affected soils of the Mediterranean ecosystem
of central Chile.

The present work aimed to evaluate the state of community-
level physiological profile and prokaryotic community structure
of soil compartments (bulk and rhizosphere soils) at two fire-
affected sclerophyll forests in the Mediterranean zone of central
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Chile. These sites had similar arboreous plant composition
but contrasting land location and time elapsed after fire
(17 months and the other 33 months after fire occurrence).
We hypothesized that fire occurrence affects community-level
physiological profiles and prokaryote community structure to a
different extent depending on the time elapsed after fires, with
the least recent fire affected soils closely resembling unburned
conditions. To accomplish this, we used microbial community-
level physiological profiles to evaluate carbon source utilization
patterns, molecular approaches such as qPCR, and high-
throughput sequencing of 16S rRNA genes to assess abundance
and structure of the prokaryotic community, and classical soil
physicochemical analyses to describe microbial habitats.

MATERIALS AND METHODS

Research Sites
This study was conducted within the Mediterranean climate zone
of Central Chile, specifically in the O’Higgins administrative
region, at two locations affected by one forest fire event, either
in January of 2017 or May of 2018 (Figure 1). The first
research site (affected by a low-severity fire in January of 2017;
García-Carmona et al., 2021) is in the Pumanque commune
(34◦35′44.99′′ S; 71◦42′17.349′′ W) toward the east front of
the coastal mountain range at an elevation of 100 m. At this
place, a mean monthly precipitation of 36.7 mm is registered
for the period 2000–2017 (Center of Climate and Resilience
Research, n.d.). Soils are classified as Aquic Dystric Xerochrepts
(Inceptisol), which originated from alluvium-colluvial parent
materials, exhibited mainly loam to loamy sand textures, are
stratified with 50–120 cm of depth, and have a mean slope of 15%
(CIREN, 1996). The second site [affected by a low-severity fire in
January of 2018, according to visual inspections recommended
by Keeley (2009)] is in the Requínoa commune (34◦14′19.314′′
W, 70◦41′26.52′′ S) on the Piedmont of the west side of the
Andes Mountain ridges at an elevation of 1,000 m. Here, a
mean monthly precipitation of 25.0 mm was registered for the
period 2000–2017 (Center of Climate and Resilience Research,
n.d.). Soils at this place are classified as Mollic Haploxeralfs
(Alfisol); they were developed on volcanic material, and exhibit
loamy sand textures and shallow depths (20–80 cm depth), with
a mean slope of 17% (CIREN, 1996). Vegetation at both sites
is dominated by typical woody native species of the sclerophyll
forest of Central Chile, including the tree species Peumus boldus,
Lithraea caustica, and Quillaja saponaria and shrubs such as
Trevoa trinervis (Supplementary Figure 1A). In addition, the
herbaceous vegetation is composed by approximately 18 species
in Requínoa and 30 species in Pumanque, of which six are
common for both sites [Erodium sp., Loasa triloba, Bromus
hordeaceus, Hypochaeris radicata, Anthriscus caucalis, Oxalis
micrantha (Supplementary Figure 1B)].

Experimental Design and Soil Sampling
In October of 2019, study sites of ∼0.7 and ∼1 ha in
Pumanque and Requínoa, respectively, were chosen for this
study. Within these, burned and unburned (undisturbed) areas

were selected (Supplementary Figure 2), which represents
the main variation source (treatment) in this study. Thus,
Pumanque was surveyed 33 months following land burning
while Requínoa was evaluated 17 months after fire occurrence.
At each burned and unburned areas, three experimental plots
of 20 × 20 m were marked (total = 12), and these were
separated from the center of each other by 40–60 m, where
the closest plots between burned and unburned areas were
approximately 10 m apart from their border (Supplementary
Figure 2). Inside each experimental plot, a 5 × 5 m grid
was projected to obtain nine equidistant points from which
soil samples were obtained (Supplementary Figure 3). At each
sampling point, a radial buffer area of 1 m was selected and shovel
excavated (up to rooting deep, 5–10 cm) to aseptically obtain
(1) rhizosphere soil samples by hand shaking and collecting
soil attached to roots of all herbaceous species described for
each site (Supplementary Figure 1), and (2) bulk soil samples
from soil not attached to plant roots. Rhizosphere and bulk soil
samples (soil compartments) from each of the nine sampling
points per plot were pooled to obtain 12 composite samples
for bulk soil (∼2 kg each) and 12 composite samples for
rhizosphere (∼300 g each) in total. Thus, within each study
location (i.e., Pumanque and Requínoa), the studied variation
sources were (1) treatment (burned and unburned soils) and
(2) soil compartment (bulk soil and rhizosphere). For every
composite soil sample, an aliquot was kept at 4◦C for gravimetric
water content and physiological profiling, a second portion was
stored at −80◦C until DNA extraction and further molecular
analyses, and the rest was air-dried at room temperature for
physicochemical analyses.

Physicochemical Analysis
Soil physicochemical properties, except for gravimetric water
content (GWC), were measured only for bulk soil samples due
to the small amount of rhizosphere samples obtained. The GWC
was determined by oven-drying 10 g of samples at 105◦C for
48 h. Soil pH and electrical conductivity (EC) were determined
in a 1:2.5 and a 1:5 (w/v) water extract, respectively (Sadzawka
et al., 2006). Nitrate (NO3

−) and ammonium (NH4
+) contents

were determined by a distillation-titration method using a 2M
potassium chloride (KCl) extraction solution (Sadzawka et al.,
2006). Organic matter (OM) was assessed by acid oxidation
and colorimetric measurement (Sadzawka et al., 2006). Total
carbon (C) and nitrogen (N) contents were determined by
the Dumas dry combustion method using a LECO TRUSPEC
analyzer (Leco Corporation, MI, United States). Total elements
(P, K, Fe, Mg, S, Mo, Na, Ca) were obtained from acid
digestion and later determined by inductively coupled plasma
atomic emission spectrometry (ICP-AES) (Agilent Technologies,
Victoria, Australia) (U.S. EPA, 2007). Soil bulk density (BD) was
determined by the clod method (Baver et al., 1973); clay, silt,
and sand contents (soil texture) were determined by the soil
hydrometer method (Bouyoucos, 1962); and aggregate stability
(AS) was determined by wet sieving (Kemper and Rosenau,
1986), using a wet sieving apparatus (Eijkelkamp Soil & Water,
Giesbeek, Netherlands).
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FIGURE 1 | Sampling sites consisting of sclerophyll forests located within the Mediterranean climate zone of Central Chile, in the O’Higgins administrative region.
White dots represent the study locations, which were affected by forest fires in January of 2017 (Pumanque) and May of 2018 (Requínoa). Image created using QGIS
3.12.3.

Microbial Community-Level
Physiological Profile (CLPP)
Carbon source utilization patterns of soil microbial communities,
also known as community-level physiological profiles (CLPPs)
(Garland and Mills, 1991), were assessed using Biolog EcoPlates
(Biolog Inc., Hayward, CA, United States) for all samples
(i.e., including both bulk soil and rhizosphere samples). Every
plate included the following 31 different carbon sources: (1)
carbohydrates: α-D-lactose, i-erythritol, D-xylose, β-methyl-D-
glucoside, D-cellobiose, D-mannitol, N-acetyl-D-glucosamine;
(2) carboxylic acids: 2-hydroxy-benzoic acid, 4-hydroxy-
benzoic acid, D-glucosaminic acid, pyruvic acid methyl ester,
α-ketobutyric acid, D-galactonic acid γ-lactone, D-malic acid,
itaconic acid, γ-hydroxy-butyric acid, D-galacturonic acid; (3)
amino acids: L-threonine, L-phenylalanine, glycyl-L-glutamic
acid, L-asparagine, L-arginine, L-serine; (4) polymers: α-
cyclodextrin, glycogen, tween 80, tween 40; (5) miscellaneous:
D,L-α-glycerol-phosphate, glucose-1-phosphate; and (6)
amines/amides: phenylethylamine, putrescine. In addition, a
blank well was considered in triplicates. Each Biolog EcoPlate
well was inoculated with a 150-µl aliquot of a 10−3 soil dilution
obtained from 5 g of soil suspended in 45 ml of sterile saline
solution (0.85% NaCl). The plates were incubated at 25◦C and
absorbance at 590 nm was determined after 24, 48, 72, 96,

120, 144, and 168 h using the Infinite 200 PRO NanoQuant
Microplate Reader (Tecan Group Ltd., Männedorf, Switzerland).
At each time interval, optical density (OD) values were corrected
by subtracting the control (blank well) values from each plate
well. The OD values at 120 h for each C-substrate by sample
were averaged to determine microbial catabolic activity, this
time corresponded to the mid-exponential growth phase of the
average well color development (AWCD-CLPP) (Garland, 1996;
Sofo and Ricciuti, 2019).

Soil DNA Extraction and Molecular
Analyses
Soil DNA was isolated from 0.25 g of fresh soil from all samples
using the DNeasy PowerSoil DNA isolation kit (QIAGEN,
Valencia, CA, United States) following the manufacturer’s
instructions. Prokaryotes (bacteria and archaea) were surveyed
by quantitative PCR (qPCR) assay and bar-coded amplicon
sequencing using the primers 515F (5′ GTG YCA GCM GCC
GCG GTA A 3′) (Parada et al., 2016) and 806R (5′ GGA
CTA CNV GGG TWT CTA AT 3′) (Apprill et al., 2015)
complementary to the V4 region of the 16S rRNA genes. For
qPCR, a TaqMan probe (16S probe 5′ TGT AGC RGT GAA
ATK CGT AG 3′) was designed for the conserved sequence
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region amplified by 515F and 806R, by which the dye 6-carboxy-
fluorescein (6-FAM) and the Black Hole Quencher (BHQ1)
were attached to their 5′ and 3′ ends, respectively. The qPCRs
were carried out on a StepOne Plus Real Time PCR System
(Thermo Fisher Scientific, United States), in a final volume
of 20 µl, containing 10 µl of NZY qPCR Probe Master Mix
ROX plus (NZYTech), 0.9 µM of the probe, 0.4 µM of the
amplification primers, 2 µl of template DNA, and ultrapure
water up to 20 µl. The reaction mixture was incubated as
follows: an initial incubation at 95◦C for 10 min, followed by
40 cycles of denaturation at 95◦C for 15 s, hybridization at
50◦C for 1 min, extension at 60◦C for 1 min, and a final
extension step at 60◦C for 30 s. The intensity of the fluorescence
emitted by the probe at each cycle of the PCR reaction was
registered by using the software StepOne (Applied Biosystems,
Foster City, CA, United States), which allowed the estimation of
the quantification cycle (Cq). Standard for qPCR was prepared
from a known unburned sample (ranging from 5 × 1010 to
5 × 106 16S copy numbers). This standard was obtained from
the amplification of the 16S rRNA region complementary to
the 515F/806R primer set, which was carried out on a Bio-
Rad T100 Thermal Cycler (Bio-Rad, United States), in a final
volume of 25 µl, containing 2.5 µl of template DNA, 0.5 µM
of the primers, 12.5 µl of Supreme NZYTaq 2 × Green Master
Mix (NZTech), and ultrapure water up to 25 µl. The PCR
reaction mixture was incubated as follows: an initial denaturation
at 95◦C for 5 min, followed by 25 cycles of 95◦C for 30 s,
50◦C for 45 s, 72◦C for 45 s, and a final extension step at
72◦C for 10 min. The PCR product was purified and used
to generate the standard curve in the qPCR experiment. The
standard curve was performed by a five-fold dilution series of 16S
copy numbers from the qPCR standard by plotting the Cq values
against the total 16S rRNA gene copy numbers (Jiang, 2018).
Efficiency and R2 values for the 16S quantification were 84.65 and
0.99%, respectively.

Bar-coded amplicon sequencing was performed on an
Illumina MiSeq PE300 platform (Illumina, San Diego, CA,
United States) at the AllGenetics & Biology SL laboratory service
facility (A Coruña, Spain). PCRs were carried out in a final
volume of 25 µl, containing 2.5 µl of template DNA, 0.5 µM
of the primers, 12.5 µl of Supreme NZYTaq 2 × Green Master
Mix (NZYTech, Lisbon, Portugal), and ultrapure water up to
25 µl. The reaction mixture was incubated as follows: an initial
denaturation at 95◦C for 5 min, followed by 25 cycles of 95◦C
for 30 s, 50◦C for 45 s, 72◦C for 45 s, and a final extension step at
72◦C for 10 min. The oligonucleotide indices that are required for
multiplexing different libraries in the same sequencing pool were
attached in a second PCR round with identical conditions but
only 5 cycles and 60◦C as the annealing temperature. No template
controls were included to check for cross-contamination during
library preparation. The libraries were run on 2% agarose
gels stained with GreenSafe (NZYTech, Lisbon, Portugal) and
imaged under UV light to verify the library size. Libraries were
purified using the Mag-Bind RXNPure Plus magnetic beads
(Omega Bio-tek, Norcross, GA, United States), following the
instructions provided by the manufacturer. Then, they were
pooled in equimolar amounts according to the quantification

data provided by the Qubit dsDNA HS Assay (Thermo Fisher
Scientific, Waltham, MA, United States).

Processing and Analysis of Sequencing
Data
Sequencing data were processed with a customized pipeline
largely based on “VSEARCH” (Rognes et al., 2016). Illumina
MiSeq reads can be found in the Sequence Read Archive
(SRA) of the National Center for Biotechnology Information
(NCBI) under accession number PRJNA784510. PhiX reads
were removed with Bowtie2 (Langmead and Salzberg, 2012) and
primer sequences were trimmed with Cutadapt (Martin, 2011).
Paired-end reads were merged by using the fastq_mergepairs
algorithm in “VSEARCH” and quality filtered using a maximum
expected error of one using the fastq_filter algorithm in
“VSEARCH” (Edgar and Flyvbjerg, 2015). Merged and quality
filtered sequences were dereplicated using derep_fulllength
algorithm in “VSEARCH” and the UNOISE algorithm
implemented in “VSEARCH” (Edgar, 2016) was used to
retrieve amplicon sequence variants (ASVs). The uchime
algorithm implemented in “VSEARCH” (Edgar et al., 2011)
was applied to detect and remove chimeric ASVs. Remaining
ASVs were verified by using Metaxa2 to evaluate the presence of
non-target sequences for the 16S rRNA gene (Bengtsson-Palme
et al., 2015). The final ASV table was obtained by mapping the
high-quality sequences against the verified ASV centroids using
the usearch_global algorithm implemented in “VSEARCH”.
Taxonomic classification was performed by using the Naïve
Bayesian classifier Sintax implemented in “VSEARCH” (Edgar,
2016) to classify the sequences against the non-redundant
SILVA v132 database (Quast et al., 2012). ASVs assigned to
mitochondria, chloroplasts, and eukaryotes were removed. Rare
ASVs with an abundance < 0.005%, sparse ASVs that occur
in less than four samples (which represent 1/6 of the sampling
effort), and ASV outliers for which the greatest abundance
was more than 0.15 times in a sample compared with the
second most abundant value across the other samples were
removed from the ASV table. Finally, the filtered ASV table was
normalized by iterative subsampling with 100 iterations using
the rrarefy function implemented in the “vegan” package in R
(Oksanen et al., 2020).

Statistical Analysis
Statistical analysis were performed in R statistics version 3.5.1
(R Core Team, 2021). Treatments (burned vs. unburned) and
soil compartments (bulk soil and rhizosphere) were considered
as the variation sources for statistical analyses, while research
location (i.e., sites) was not considered due to the natural
differences in biophysical characteristics described previously.
The analysis for physicochemical properties of bulk soil samples
were performed following normality and homoscedasticity
confirmation. To assess differences within treatments (i.e.,
burned and unburned conditions), a Student’s t-test was applied
for each of the variables analyzed. For CLPP data sets, a two-
way ANOVA considering treatment and soil compartment (i.e.,
bulk and rhizosphere soil) was performed after normality and
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homoscedasticity were confirmed. These datasets included the
AWCD-CLPP values and the diversity of substrate utilization,
determined by the Shannon diversity index (Shannon-CLPP)
by: H′ = −6 pi × ln pi (Shannon, 1948), where pi is the
ratio of the respiration rate of every single C-substrate to the
sum of all substrates, both obtained from OD values at 120 h
of incubation. A heatmap with hierarchical clustering (based
on Euclidean distance) was performed for the 31 different
carbon sources, considering the average of each C-substrates
per treatment and compartment, with the function heatmap
from the package “stats” (R Core Team, 2021). The rarefied
sequencing data were used to determine α-diversity indexes
(ASVs, as observed richness, Shannon diversity index, and
Pielou’s evenness) with the diversity function in “vegan.” A
Spearman correlation analysis between soil physicochemical,
AWCD-CLPP, Shannon-CLPP, and microbial α-diversity indexes
was applied with the function cor from the package “corrplot”
(Wei and Simko, 2021). To assess differences within treatments
and soil compartment for each of these indexes, a two-way
ANOVA was conducted after normality and homoscedasticity
were confirmed. Differences in β-diversity were assessed by
calculating Bray–Curtis dissimilarities based on the iteratively
rarefied ASV abundance tables with a PERMANOVA and
PERMDISP by using the functions adonis2 and betadisper from
the package “vegan”, respectively. This allowed the detection
of factors with significant effects on prokaryotic community
structure. Thus, a canonical analysis of principal coordinates
(CAP, Anderson and Willis, 2003) was applied with the function
CAPdiscrim from the package “BiodiversityR” (Kindt and Coe,
2005). A distance-based redundancy analysis (dbRDA, Legendre
and Andersson, 1999) was used to constrain β-diversity patterns
by the bulk soil physicochemical properties using the function
dbrda and envfit from the package “vegan.” In addition, relative
abundance data of ASVs was Z-transformed to show relative
change between burned and unburned soils. A univariate
PERMANOVA (Anderson, 2001) and PERMDISP (Anderson,
2001) were applied on Z-transformed relative abundance of ASVs
at the phylum level and also at the order taxa and genus taxa
levels to evaluate treatment effects on each soil compartment with
the adonis2 and betadisper function from the package “vegan”
(Oksanen et al., 2020).

RESULTS

Soil Abiotic Properties
Statistically significant differences between burned and unburned
bulk soils were observed for NH4

+ and NO3
− in Pumanque

(taken 33 months after fire occurrence) and for P, Fe, Na,
and AS in Requínoa (taken 17 months after fire occurrence)
(Supplementary Table 1). In Pumanque, NH4

+ contents
almost doubled in burned soils, and NO3

− contents decreased
by approximately two thirds compared with unburned soils
(Supplementary Table 1). In Requínoa, total P and Fe contents
dropped by 43 and 14% in burned soils, respectively, and
Na increased by almost 70% in burned soils. In terms of
physical properties, AS was significantly lower in burned soils in

Requínoa. Although non-significant, NH4
+ and NO3

− contents
showed opposite results in Requínoa compared with Pumanque.
In addition, also not significant, a decreasing trend in OM, C, and
N and an increasing trend in soil pH and BD were observed for
burned soils at both sites.

Microbial Community-Level
Physiological Profile (CLPP)
Microbial catabolic activity and diversity of substrate utilization
[here assessed by AWCD-CLPP and Shannon diversity index
(Shannon-CLPP), respectively] responded differently to forest
fires at both sites. In Pumanque (assessed 33 months after fire),
there were no effects of burning on AWCD-CLPP or Shannon-
CLPP (Table 1). In addition, no differences in carbon utilization
were observed between bulk and rhizosphere samples at this
site (Figure 2), although higher values for AWCD and Shannon
were observed for rhizosphere samples in both burned and
unburned conditions (Figure 2). On the contrary, in Requínoa
(assessed burned 17 months after fire), soils showed significantly
higher catabolic activity, with AWCD values in the burned soils
being 37% higher than in the unburned soils (Table 1 and
Figure 2). Significant differences were also observed between
soil compartment (Table 1), with rhizosphere samples showing
higher AWCD values than bulk soil samples in both burned and
unburned conditions (Figure 2). Shannon diversity of substrate
utilization was also significantly higher in the rhizosphere when
compared with the bulk soil, whereas burning had no effect
(Table 1 and Figure 2).

Clustered heatmaps for the average (n = 3) of each C-substrate
utilization showed different catabolic capacity for soil microbial
communities in both study locations (Figure 3), where utilization
decreased for recalcitrant substrates (e.g., polymeric compounds
and carboxylic acids) compared with labile C sources (e.g.,
carbohydrates). Soil microbial communities from Requínoa
showed higher C utilization capacity than those from Pumanque,
with unclear trends regarding the type of C, while C sources in
the form of carbohydrates and carboxylic acids were generally
more used by soil microorganisms in Pumanque. A closed look
to C source consumption indicated that L-asparagine (ASP) was
the C source most consumed in soils from Pumanque, especially
rhizosphere of burned soils. Similarly, ASP was the C source most
consumed in soils from Requínoa particularly in rhizosphere of
burned soils, in addition to galacturonic acid (GALACTU) and
N-acetyl-D-glucosamine (NAGA), which were specific for this
site.

Prokaryotic Abundance, Alpha and Beta
Diversity, and Taxonomy Assignments
DNA-based analyses were more sensitive to detect the effects of
fire than the substrate utilization profiles (Table 1). Unburned
soils in both Pumanque and Requínoa showed significantly
higher 16S rRNA gene copy numbers when compared with the
burned soils (Table 1 and Figure 4). No differences in gene
copy numbers were observed between bulk and rhizosphere soils
(Table 1 and Figure 4).
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TABLE 1 | F-values from two-way ANOVA for biological activity and α-diversity of prokaryotic communities, permutational multivariate analysis (PERMANOVA), and
permutation test for homogeneity of multivariate dispersion (PERMDISP) for prokaryotic community (β-diversity) (the table is split by study locations).

Pumanque AWCD-CLPP Shannon-
CLPP

16S rRNA copy
number (log)

Richness_16S Shannon_16S Pielou’s
Evenness_16S

β-Diversity_16S
PERMANOVA

β-Diversity_16S
PERMDISP

Treatment 0.887 2.354 7.635* 3.652 35.148*** 62.87*** 7.95*** 16.98**

Source 3.387 2.539 2.982 0.425 8.564* 17.30** 5.51*** 4.61

Treatment:source 1.144 0.264 0.913 1.037 15.309** 29.61*** 1.59 1.19

Requínoa AWCD-CLPP Shannon-
CLPP

16S rRNA copy
number (log)

Richness_16S Shannon_16S Pielou’s
Evenness_16S

β-Diversity
PERMANOVA

β-Diversity
PERMDISP

Treatment 6.361* 3.39 11.240* 8.331* 13.694** 14.573** 6.43** 0.17

Source 6.511* 6.243* 1.514 0.000 0.380 0.092 0.62 0.03

Treatment:source 1.053 0.271 2.007 0.119 0.000 0.051 0.49 0.04

Treatment = Burned vs. unburned. Source = bulk soil vs. rhizosphere. Biological indices followed by “CLPP” were obtained with data from Biolog EcoPlates sequencing.
Biological indices followed by “16S” were obtained with data from Illumina sequencing. log = logarithmic transformed variables. AWCD-CLPP = average well color
development. Significance codes are based on p-values as follows: “***” 0.001, “**” 0.01, “*” 0.05.

FIGURE 2 | Bar plots of the average well color development (AWCD) (mean ± SE, n = 3) and Shannon diversity index based on CLPP (Shannon-CLPP)
(mean ± SE, n = 3) of microbial communities for each study location contrasting treatments (burned vs. unburned) and soil compartment (bulk soil vs. rhizosphere
soil). Different uppercase letters show significant (p < 0.05) differences by treatment. Different lowercase letters show significant (p < 0.05) differences by
compartment within each treatment. Interactions between treatment and compartment were not significant (p > 0.05).

A total of 3,782 curated prokaryote ASVs were obtained
across all samples. Statistically significant differences in observed
richness were detected only between burned and unburned
samples in Requínoa (Table 1), where ASVs in burned soils
decreased by 12% (2,687± 143.7) when compared with unburned
soils (3,041 ± 229.1) (Figure 4). No differences in richness
were observed between soil compartments. Shannon diversity
(Shannon-16S) and Pielou’s evenness (Evenness-16S) were higher
in unburned soils at both study locations, with alterations due to
soil compartment only in Pumanque (Table 1 and Figure 4).

Beta diversity analyses showed differences in soil prokaryotic
community structure according to fire occurrence at both study
locations (Table 1 and Figure 5, and Supplementary Figure 6).
Moreover, in Pumanque, communities also separated apart
according to their compartment (bulk soil and rhizosphere),
and larger dissimilarities were observed between rhizosphere of
burned and unburned soils when compared with the bulk soils
(Figure 5A). In Requínoa, prokaryotic community structures
also showed dissimilarities between burned and unburned soils
(Figure 5B), while differences between compartment were

not conclusive due to low CAP reclassification success. On
the other hand, Bray–Curtis distances between burned and
unburned soils from Requínoa were approximately two times
greater than Pumanque. Distance-based redundancy analysis
(dbRDA) for bulk soil data sets showed discrimination of
prokaryote communities by forest fire associated to some
soil physicochemical properties. The most parsimonious and
significant dbRDA models showed that soil pH and NO3

−

content explained prokaryotic community changes in Pumanque
(Figure 5C), while contents of NO3

−, and total contents of
Fe, N, Ca, and NO3

− were important explanatory variables of
prokaryote community changes in Requínoa (Figure 5D).

Taxonomy assignments resulted in a total of twenty-two and
two classified bacterial and archaeal phyla, respectively. The most
abundant phyla (>70%) across samples were Proteobacteria,
Actinobacteria, and Acidobacteria (Supplementary Figure 5A).
A total of sixteen and eight classified prokaryotic phyla were
affected by fire occurrence in Pumanque and Requínoa,
respectively. In Pumanque, forest fire negatively affected
the relative abundance of Thaumarchaeota, Nitrospirae,
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FIGURE 3 | Clustered heatmaps based on the average (n = 3) of carbon source utilization patterns of soil microbial communities, also referred as community-level
physiological profile (CLPP) for (A) Pumanque and (B) Requínoa, by treatment (burned vs. unburned) and soil compartment (R = rhizosphere; BS = bulk soil). Row
dendrograms show the Euclidean distance between treatments, while column dendrograms show the distance between the utilization of C sources. Yellow boxes
represent higher microbial C utilization. The following 31 different carbon sources were used: (1) carbohydrates: α-D-lactose (LAC), i-erythritol (ERY), D-xylose (XYL),
β-methyl-D-glucoside (BMDG), D-cellobiose (CELL), D-mannitol (MAN), N-acetyl-D-glucosamine (NAGA); (2) carboxylic acids: 2-hydroxy-benzoic acid (2HBA),
4-hydroxy-benzoic acid (4HBA), D-glucosaminic acid (GLUCA), pyruvic acid methyl ester (PAME), α-keto-butyric acid (KETO), D-galactonic acid γ-lactone (GALAC),
D-malic acid (MAL), itaconic acid (ITA), γ-hydroxy-butyric acid (GHBA), D-galacturonic acid (GALACTU); (3) amino acids: L-threonine (THRE), L-phenylalanine (PHE),
glycyl-L-glutamic acid (GLYC), L-asparagine (ASP), L-arginine (ARG), L-serine (SER); (4) polymers: α-cyclodextrin (CYCLO), glycogen (GLYC), Tween 80 (T80), Tween
40 (T40); (5) miscellaneous: D,L-α-glycerol-phosphate (GLYPHO), glucose-1-phosphate (GLUC); and (6) amines/amides: phenylethylamine (PHE), putrescine (PUT).

Entotheonellaeota, Elusimicrobia, Acidobacteria, and
Rokubacteria in both soil compartments, except for Rokubacteria
with differences in rhizosphere samples only (Figure 6).
Contrarily, relative abundance of the candidate division
FBP, Gemmatimonadetes, Planctomycetes, Fibrobacteres,
Hydrogenedentes, Armatimonadetes, Cyanobacteria, Firmicutes,
Actinobacteria, and Patescibacteria increased in burned soils
as compared with unburned soils, with similar responses in
bulk soil and rhizosphere. However, relative abundance of
Actinobacteria and Patescibacteria only increased in rhizosphere
and bulk soil samples, respectively. In Requínoa, forest fire
negatively affected the relative abundance of Rokubacteria,
WS2, Planctomycetes, Acidobacteria, and Verrucomicrobia,
which showed similar responses in bulk soil and rhizosphere. In
contrast, Actinobacteria, Firmicutes, and Bacteroidetes increased
in burned soils, with similar responses in both soil compartments.

From the classified phyla significantly affected by fires, there
were also 33 and 26 orders showing significant changes due to
fires in Pumanque and Requínoa, respectively (Supplementary
Figure 7). In Pumanque, the relative abundance of 16 orders
decreased due to fire occurrence, which mainly belonged to
Actinobacteria (Supplementary Figure 7). Nitrososphaerales
(Thaumarchaeota) was also among the taxa most affected
by fire at this site, in both soil compartments. Instead, 17
orders increased in burned soils from Pumanque, which
mainly belonged to Actinobacteria, Gemmatimonadetes,
Planctomycetes, and Acidobacteria (Supplementary Figure 7).
Among them, Hydrogenedentiales (Hydrogenedentes) showed
the greatest increase in relative abundance due to fire occurrence.

In Requínoa, 17 orders were negatively affected by fire and
most of them belonged to Actinobacteria, Acidobacteria, and
Planctomycetes (Supplementary Figure 7). Only ten orders
increased in relative abundance after fire, which mainly belonged
to Actinobacteria (Supplementary Figure 7). Fires reduced the
relative abundance of Pyrinomonadales (Acidobacteria),
Rokubacteriales (Rokubacteria), Solirubrobacterales
(Actinobacteria), and Pseudonocardiales (Actinobacteria) at
both locations. Contrarily, Bacillales (Firmicutes) was the only
order that consistently increased in burned soils at both study
locations (Supplementary Figure 7).

DISCUSSION

Soil physicochemical properties did not show strong differences
according to fire occurrence, especially in Pumanque where only
clear alterations of NO3

− and NH4
+ were found in burned

soils. In fire-affected soils, NH4
+ is known to form as a result

of organic matter mineralization induced by land burning,
which is later transformed to NO3

− by nitrification (Certini,
2005). However, this latter transformation could be differently
altered after fire, as some findings have reported a decrease in
nitrifying microorganisms after fires (Acea and Carballas, 1996),
while others have reported higher nitrification rates occurring
12 months after fire (Covington and Sackett, 1992). Thus,
lower nitrification rates in Pumanque, and the opposite trend
for Requínoa, could partly explain differences in NO3

− and
NH4

+ after forest fire, which is similar to those reported by
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FIGURE 4 | Bar plots of abundance (mean ± SE, n = 3) and alpha diversity (mean ± SE, n = 3) of prokaryotic communities for each study locations showing effect of
treatment (burned vs. unburned) and soil compartment (bulk soil vs. rhizosphere soil). Different uppercase letters show significant (p < 0.05) differences by treatment.
Different lowercase letters show significant (p < 0.05) differences by compartment. Interactions between treatment and compartment were not significant (p < 0.05).

Ball et al. (2010) who found higher nitrification rates in recent
burned soil (12 years old) compared with a site without fire for
75 years. In addition, NH4

+ and NO3
− contents also respond

to their different mobility in soils, where NO3
− is prone to

leaching over time while NH4
+ could be retained in burned soils

due to adsorption to organic matter (OM) or mineral surfaces
(Mroz et al., 1980). A combination of these biotic and abiotic
processes would likely relate to the negative correlations observed
between NO3

− and NH4
+ contents in soils from Pumanque

and Requínoa, where in the former NH4
+ increased and NO3

−

decreased 33 months after land burning, and in the latter NH4
+

decreased and NO3
− increased after 17 months of forest fire

occurrence. On the other hand, lower P and Fe contents in
burned soils from Requínoa might be related to losses of Fe/P
bound to organic matter (OM) in fire-affected soils (Norouzi and
Ramezanpour, 2013), which might have migrated from surface
to lower horizons (Mosugu et al., 1999). In addition, both study
locations showed a slight increase in pH in burned soils, which
was expected due to the OH− and cation release from the
denaturation of OM occurring after fires (Certini, 2005; Alcañiz
et al., 2018).

In burned soils, microbial activity can be promoted by the
combustion of plant residues that increase C and N input to
microorganisms (Díaz-Raviña et al., 1996; Liu et al., 2000),
especially in the rhizosphere that is considered as a hotspot for

microbial activity in soils (Prashar et al., 2014). Thus, negative
effects of forest fires on plant cover and diversity indirectly
affect soil microorganisms associated with roots (Certini,
2005; Hart et al., 2005). In our study, forest fires differently
affected microbial catabolic activity assessed by Biolog EcoPlates.
Influence of land burning was mostly evident in Requínoa, where
forest fires increased the microbial catabolic activity, especially
in the rhizosphere. Different responses of microbial metabolic
fingerprints based on Biolog EcoPlates have been related to
vegetation coverage after fires in Mediterranean pine forest
(Moya et al., 2021). For instance, microbial catabolic activity has
been shown to increase a few months after forest fires, especially
under soils with high vegetation cover, while C substrate
utilization patterns have also been observed to increase in burned
soils, but with no relation to vegetation (Moya et al., 2021).
However, opposite results have been reported in desert grassland
ecosystems, where fires were shown to reduce soil microbial
substrate utilization with variations observed across seasons (Liu
et al., 2000). In our study, although herbaceous species richness in
Pumanque (assessed 33 months after land burning) was greater
than in Requínoa (assessed after 17 months following fires), the
latter showed significant increase of substrate usage in burned
soils. Thus, conditions in burned soils in Pumanque might closely
resemble biological functionality of unburned soils at this site.
Despite dissimilar responses of substrate utilization observed
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FIGURE 5 | Beta diversity for prokaryotic communities from burned and unburned bulk and rhizosphere soil samples. Canonical analysis of principal coordinates
(CAP) based on Bray–Curtis dissimilarities constrained by burned and unburned as well as bulk and rhizosphere soils from Pumanque (A) and Requínoa (B). The
CAP reclassification (in percent) for each treatment is shown next to each cluster. Distance-based redundancy analysis (dbRDA) based on Bray–Curtis dissimilarities
constrained by soil physicochemical properties (pH, NO3

−, and total contents of Fe, N, and Ca) in burned and unburned bulk soils from Pumanque (C) and Requínoa
(D). Soil physicochemical properties (explanatory variables) are shown by solid eigenvectors. PERMANOVA was performed by each site independently (Table 1).

in soils from Pumanque and Requínoa after land burning,
values were always higher for rhizosphere samples at both sites,
supporting the influence of vegetation on this biological indicator
(Zhang et al., 2020). Higher values associated to the rhizosphere
using CLPP approaches (assessed either by Biolog EcoPlates or
MicroResp) in other Mediterranean regions (de Armas-Ricard
et al., 2016), and different ecosystems such as boreal coniferous
forests (Hernesmaa et al., 2005) or agricultural fields (Sneha
et al., 2021), have been attributed to root exudates that serve
as C sources for microbial communities (Grayston et al., 1997;
Rodríguez-Loinaz et al., 2008).

Carbon substrate utilization capacity has been shown to differ
following land burning (Barreiro et al., 2015; Moya et al., 2021).
Immediately after experimental fires, C sources in the form
of carboxylic acids, amino acids, carbohydrates, and phenolic
acids have been shown to greatly increase, while over a year
all C source utilization tends to resemble unburned conditions
(Barreiro et al., 2015). In our study, no clear patterns were
observed for soils from Requínoa; however, soils from Pumanque
showed higher utilization of carbohydrates and carboxylic acids,
especially in rhizosphere samples of the burned soils. This can
be likely due to the recovery of C labile forms reported to occur
over a year after fire occurrence (Martín et al., 2009), which

in the case of Pumanque could have been promoted by the
recovery of herbaceous vegetation. The microbial L-asparagine
(ASP) utilization increased in rhizosphere samples in burned soils
from Pumanque and Requínoa (as well as other carbohydrates
and organic acids in the case of the latter), which can be
associated with the release of ammonia by microbial activity
of asparaginases (Kandeler et al., 2011). However, as previously
mentioned, NH4

+ and NO3
− contents showed opposite results at

each site, which can likely relate to transformation of ammonia to
nitrate differently affected at both sites. In the case of Pumanque,
the consumption of ASP followed by low nitrification rates, as
observed in other ecosystems few years after fire (Cobo-Díaz
et al., 2015), can relate to higher ammonia detected at this site,
while in Requínoa, ASP utilization followed by rapid microbial
uptake and conversion to nitrate (Covington and Sackett, 1992;
Hart et al., 2005; Switzer et al., 2012) likely relates to higher
nitrate contents registered at this site. These findings support the
hypothesis proposed by Yang et al. (2020), who stated that forest
fires could stimulate functional microbial groups related to N
cycling such as ureC, amoA (Ball et al., 2010), and nifH (Sun et al.,
2016) genes.

In our study, the assessments of soil prokaryotic communities,
based on molecular ribosomal markers, evidenced a greater
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FIGURE 6 | Relative change (z-transformed) of prokaryote abundance, at the phylum level, between unburned (blue triangle) and burned (red spot) soils for
Pumanque and Requínoa. The panel to the left shows the relative change in abundance from the overall mean ± SE (considering bulk soil and rhizosphere). The
middle and right panels show the relative change in abundance for bulk and rhizosphere soils, respectively. Bulk soil and rhizosphere panels show the relative
change of phylum between burned and unburned soil for each soil compartments. The significance of the PERMANOVA test is shown at left side of each relative
change in the overall panel. Significance codes are based on p-values as follows: “***” 0.001, “**” 0.01, “*” 0.05, ns = not significant. PERMANOVA was not applied
on bulk soil and rhizosphere due to scarce data.
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sensitivity of this method as compared with CLPP to elucidate
changes in response to the occurrence of fires. This might reflect
different sensitivity of soil genetic and functional diversity after
forest fires under the studied conditions. Although metabolic
activity and the diversity of C substrate utilization were not
affected by forest fires in Pumanque, burned soils at this site
showed lower prokaryote abundance and α-diversity indexes, and
clear dissimilarities in community composition between burned
and unburned samples, as well as rhizosphere and bulk soils.
These findings suggest the presence of functionally redundant
microbial groups at this site, which coincides with other
studies showing recovery of soil functionality but not bacterial
community structure after fires (Pérez-Valera et al., 2019).
Similarly, burned soils from Requínoa, which showed higher
metabolic activity compared with unburned soils, had lower
prokaryote 16S rRNA gene copy numbers and diversity, and clear
distinct community structure. These results agree with several
studies, including those performed in other Mediterranean
regions, that have reported decreases in soil microbial abundance
(e.g., direct counts, qPCR) and diversity (e.g., based on DNA
data) due to negative effect of heating (Mataix-Solera et al., 2009;
Alcañiz et al., 2018; Pressler et al., 2019; Marín and Rojas, 2020).
Low prokaryote abundance and diversity in burned soils can
be likely associated with initial detrimental effects of forest fires
on soil microorganisms followed by slow recovery of genomic
pools, which can be partly explained by persistent changes in
soil physicochemical properties mentioned previously. Long-
term effects of forest fires on soil microbial communities can
also be associated with post-fire climate conditions, substrate
availability, plant recolonization, changes in soil physicochemical
properties, and time after fires, among others (Hart et al., 2005;
Mataix-Solera et al., 2009; Switzer et al., 2012; Singh et al., 2017;
Li et al., 2019). Based on our results, low 16S rRNA gene copy
numbers and α-diversity in burned soils still evidence the legacy
of fires despite the time elapsed after fires. This observation
supports findings from other ecosystems across the globe, which
suggest recovery of soil microbial communities beyond 10 years
following fire occurrence (Xiang et al., 2014; Pressler et al.,
2019), as opposed to those reporting conditions comparable
with unburned counterpart close to 3 years after fires (Bárcenas-
Moreno et al., 2011; Sadeghifar et al., 2020). In the case of
our study, similar to Mediterranean ecosystems located at other
latitudes, legacy of fires in soil microbial community structure
and microbial activity is still detectable within an approximate
1- to 3-year period, which is particularly critical in the Chilean
ecosystem with no fire-prone vegetation (Rundel et al., 2018,
2016).

Prokaryote communities were dissimilar according to fire
occurrence at both study locations. Dissimilarities of prokaryote
communities in Pumanque were also observed between bulk
and rhizosphere soil samples. Thus, such differences probably
resulted from greater vegetation richness that increased the input
of organic matter with different quality to bulk soil in addition to
C input from rhizosphere, by which these differences were not
attributed to forest fires. On the other hand, greater distances
between microbial community structures were found between
burned and unburned soils from Requínoa compared with

Pumanque, which might reflect the greater number prokaryotic
genera that significantly changed after fire. In Pumanque, pH
and the available NO3

− content significantly explained variability
in the community structure, while available NO3

− and total Fe,
N, and Ca contents were associated with prokaryote community
changes in Requínoa. Soil pH and N has been shown to
be important factors to determine the prokaryote community
composition (Mandakovic et al., 2018; Li et al., 2019; Yang
et al., 2020), which we confirm in this study. For instance,
Li et al. (2019) reported that soil pH, total N, and available
NH4

+ contents were the main drivers of changes in microbial
communities affected by fires. Similar to our study, Pérez-Valera
et al. (2020) reported that soil nitrogen content and pH were
strong predictors of soil microbial functions after forest fire in
a Mediterranean region in Spain. Effects of soil pH on bacterial
communities can be associated with (1) physiological pressure
on soil bacteria, reducing the growth of some taxa unable to
survive in some pH ranges, and (2) pH effects on soil properties,
such as substrate availability (Mandakovic et al., 2018), which
may drive changes in bacterial community composition (Lauber
et al., 2009). On the other hand, NO3

− could be associated
with biological functioning described previously since it is
immediately leached if not taken up (Li et al., 2019). This
also suggests differences in composition of prokaryotic groups
involved in N cycling. In this sense, decreasing total Fe content in
burned soils from Requínoa might also result in lower abundance
of prokaryotes able to synthesize Fe-dependent nitrogenases
(Raymond et al., 2004).

In our study, some prokaryote taxa were consistently affected
by fires at both sites, likely due to different sensitivity to forest
fires reported for several microbial groups (Mataix-Solera et al.,
2009). Firmicutes and Actinobacteria significantly increased in
burned soils from both locations as also reported by Cobo-
Díaz et al. (2015) in a fire-affected forest of the Mediterranean
Basin, while Acidobacteria and Rokubacteria were reduced by
fires at both research sites. Indeed, the former two phyla have
been found to increase following fires due to their resistance
to heat (Pérez-Valera et al., 2019). Moreover, Rodríguez et al.
(2018) reported an increase in Firmicutes and a decrease in
Acidobacteria in Spanish Mediterranean burned soils after 2 and
3 years of fire. Similarly, Li et al. (2019) showed higher abundance
of Proteobacteria and Actinobacteria, and lower abundance of
Acidobacteria, Verrucomicrobia, and Chloroflexi after wildfires.
In our study, Firmicutes found to increase in burned soils at
both locations belonged to the order of Bacillales, particularly to
the genera Tumebacillus and Bacillus in the case of Pumanque
(Supplementary Figure 9) and to Tumebacillus, Conhella, and
Paenibacillus in the case of Requínoa (Supplementary Figure 9).
Spore- or endospore-forming bacteria within all these genera
have been previously described (Khianngam et al., 2010; Kim and
Kim, 2016; Puri et al., 2016). This might explain the increase
of relative abundance of Firmicutes in burned soils in our
study, as such resistance structures allow to better cope with
higher temperature and also promote proliferation of spore- or
endospore-forming microbial groups due to spore germination
enhanced by fire (Dworkin, 2006; Pérez-Valera et al., 2019).
In the case of members of the Acidobacteria, which decreased
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in burned soils from Pumanque and Requínoa, these belonged
to the Pyrinomonadales and DS-100 orders in Pumanque and
to the Pyrinomonadales, Acidobacteriales, and Blastocatellales
and 11–24 orders in Requínoa. Previous studies have shown
that different groups of Acidobacteria have variable responses
to changes in soil pH, nutritional conditions, and C source
availability (Eichorst et al., 2011; Kielak et al., 2016). It has
been shown that Acidobacteria subdivisions 1, 2, 3, 12, 13,
and 15 negatively correlate with soil pH, while subdivisions
4, 6, 7, 10, 11, 11, 16, 17, 18, 22, and 25 show an opposite
behavior (Kishimoto et al., 1991; Janssen, 2006; Sait et al., 2006;
Jones et al., 2009; Kielak et al., 2016); even subdivision 6 can
either increase or decrease according to soil pH (Kielak et al.,
2016). Thus, increases in soil pH registered in our study as
a result of land burning can likely explain the decrease of
Acidobacteria susceptible to this condition (Li et al., 2020; Sun
et al., 2021). Interestingly, Thaumarchaeota was the archaeal
phylum most negatively affected by forest fires in Pumanque,
particularly of the order Nitrososphaerales (Supplementary
Figure 8). Species of this order can oxidize ammonia (Tourna
et al., 2011; Brochier-Armanet et al., 2012; Bustamante et al.,
2012), similar to species of Nitrospirae phylum such as those
within the Nitrospirales order (Vijayan et al., 2021), which also
decreased in abundance after forest fire in Pumanque. This in
part might be related to potentially lower rates of nitrification in
burned soils from Pumanque.

Our results indicate that forest fires have differently
altered prokaryote community-level physiological profiles
and community structure in the study sites located in the
Mediterranean climate zone of central Chile, providing local
evidence that support and complement previous findings
in other Mediterranean ecosystems across the globe. Legacy
of land burning was still clearly shaping soil prokaryotic
community structure rather than community-level physiological
profiles, particularly in the most recent fire-affected site.
However, we acknowledge that these findings cannot be
completely disentangled from site effects (e.g., soil type,
vegetation, and climatic conditions); thus, resilience of soil
prokaryotic communities can also be explained by these
factors. Nonetheless, changes in the relative abundance of
coinciding taxonomic groups were observed in fire-affected
soils at both locations, despite environmental difference
between sites. Moreover, variability between community
structures was moderated by changes in soil physicochemical
properties known to be affected by fires and possibly by
post-fire substrate availability. In an ecosystem that is more

frequently affected by fires and whose vegetation is not well
adapted to such events, as is the case for Mediterranean
ecosystems of central Chile, our results allow for a better
understanding of the state of soil prokaryotes and their
physiological conditions after different time periods following
fire, and suggest that biotic belowground responses to fire
occurrence at this particular Mediterranean ecosystem are
comparable with other Mediterranean biomes across the globe.
These findings highlight the importance of including such soil
microbiological assessments in combination to aboveground
conditions to better understand forest ecosystem resilience
and restoration processes under local conditions where natural
recovery is hampered.
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