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Summary

Modern soil science relies upon the measurement of quantitative and qualitative soil

attributes, and is, whenever possible, based on data that we typically measure in the

laboratory and also in the field. Soil is a critical component of farming systems and is a

limited resource, but also tends to be more and more degraded and lost due to human

activities. Thus, sustainable soil management practices are needed more than ever to

sustain and improve chemical, physical and biological aspects of soil quality. These

are related to key ecosystem functions such as supplying water and nutrient to crops,

carbon sequestration, nutrient recycling, and the promotion of biodiversity. There-

fore, soil systems require a lot of data so that we can understand, localize or generalize

processes in soils, and accordingly manage them from environmental and agronomic

viewpoints. For example, we need a better integration of knowledge of how soil man-

agement practices (i.e, tillage, fertilization) affects the dynamics of soil’s properties, to

better manage this precious resource, to protect life across the ecological landscapes,

and feed the world’s population.

Soil properties emerge in function of their mineral and organic compositional diversity,

but also processes governed by living components, across space and time. With the

classical methods, we have not managed to collect enough static and dynamic param-

eters of soils’ direct physical, chemical and biological composition and properties, for

basic soil research and soil decision making (i.e., land planning, construction, environ-

mental and agricultural policy). In Switzerland, only about 10% to 15% of agricultural

soil landscapes have been sufficiently characterized to make informed land use deci-

sions. This is mainly because most of the classical methods with established measure-

ment protocols and procedures need a lot of time and financial capacities, for example

for soil sample collection and processing. To complement and scale up estimates of the

soils properties, diffuse reflectance infrared (IR) spectroscopy in the mid-IR and visible

near infrared (vis–NIR) range are powerful methods to rapidly integrate the chemical

and physical complexity of soils. Soil spectral libraries (SSLs) are harmonized collec-

tions of spectroscopic measurements and analytical reference values. The SSL can be

used to estimate soil properties on new soil samples collected, primarily within but
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not necessarily limited to the geographical regions covered. For robust predictions, a

gradient from global machine learning methods using all data, to local chemometric

modeling methods are used.

The research of my thesis evolved around creating SSLs from collected samples and

soil archives. I developed spectroscopic data processing and modeling workflows to

evaluate the trade-off between accuracy and requirement of updating with analytical

measurements for agronomic soil quality assessments and local estimation for tem-

poral soil monitoring. My thesis consists of the general introduction, three chapters,

each of which represent this progressive evolution of local or regional modeling, gen-

eral modeling and transfer learning. Finally, there is an overall conclusion of the work

done and I give a research outlook.

In the first chapter, I built cost-effective diagnostic databases of soil quality in four

project regions under yam production. I focused on specific soil proxies related to

different yam production landscapes that then allow to scale up for other similar land-

scapes in West Africa. There I sampled typical soil variation in 20 fields of smallerholder

farmers in each region, and complemented the soil library with 14 samples from the

Land Health Degradation Framework. The purely local calibrations across all samples

that we built for total carbon (C), nitrogen (N), sulfur (S), exchangeable calcium, ef-

fective CEC, diethylenetriaminepentaacetic acid (DTPA)-extractable iron and clay con-

tent gave excellent estimates (R2 > 0.75), which can be recommended for screening

major soil constraints at new sites within the region. Despite the small size of the li-

brary and a gradient in inherent soil fertility (texture; organic carbon (OC)) across the

soil ecoregions (humid forest to Northern Guinean savannah), the calibration with a

standard multivariate linear method gave good results that are comparable to SSLs de-

veloped with higher sample number and local soil sampling densities.

In the second chapter, I led the development of a mid-IR SSL for Switzerland (n = 4374).

It was oriented towards local soil estimation and monitoring and based on time series

data and soils from the Swiss Soil Monitoring Network (NABO) from 71 agricultural

monitoring sites since 1985 (n = 596), and single-time measurements made at 1094

sites from the Swiss Biodiversity Monitoring program (BDM; n = 3778). Of the 16 prop-

erties we tested, ten showed good discrimination capacity (R2 > 0.72) using mid-IR

measurements and rule-based predictions with the CUBIST algorithm. Of these, to-

tal C, OC, total N, pH and clay showed very good agreement with the analytical mea-

surements (R2 > 0.8), and were almost unbiased across all data. We also designed a

strategy for site-local adaptation based on performance-driven selection (RS-LOCAL),

which we tuned with 2 reference observations for each of the 71 modeling sites and

relevant observations from the SSL. Using such a transfer approach reduced the root
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mean squared error (RMSE) for total C projections of repeated time measurements

more than four times (RMSE(C) = 0.7 gkg−1) for a monitoring site compared to the gen-

eral rules. Interestingly, we also found substantial soil heterogeneity in the respective

subsets from the SSL that were selected for localized modeling. The results suggest

that the relatively large and diverse SSL has good potential to facilitate temporal soil

monitoring at the plot level (10×10 m).

Finally, in the third chapter, I determined the uncertainty and effectiveness of spectro-

scopic measurement and modeling in combination with the established Swiss mid-IR

SSL for detecting soil OC changes at individual plots at a long-term experiment (LTE;

n = 311; five sampling times between 2002 and 2018) for the evaluation of sustain-

able farming practices. The estimation of measured OC changes between all possible

consecutive time points and individual combinations of plot and depth had high cross-

validation accuracy with partial least squares regression (PLSR) across all data points

(n = 311; RMSE(∆C) = 1.9 gkg−1). The approach was only 1.3 times more inaccurate for

cluster-based and data-driven sample transfer from the SSL using the RS-LOCAL algo-

rithm. The transfer was highly effective because it only needed 2% of the LTE samples

to achieve marginally lower prediction accuracy than the purely local calibration. De-

spite the promising results, high small-scale soil variation in mineralogy might reduce

the information transfer that is related to the functional change of SOM. To mitigate

this effect, there is the need for either better representation of the soil conditions at spe-

cific LTEs in SSLs, or more innovation in the learning scheme to normalize soil changes

directly via the spectra.

The establishment of the first version of the mid-IR SSL of Switzerland with the NABO

and BDM collections was a key deliverable to test the suitability of SSLs for systematic

soil monitoring over time. With chapters two and three, my PhD research has been one

of its first country-to-plot level transfers of a large spectroscopic collection. With the

findings of this thesis I conclude that the operationalization of SSLs needs adequately

designed workflows for soil information transfer and modeling that are tailored to the

soil conditions at the respective monitoring locations. For effective learning, it matters

how we present data to predictive algorithms. Global modeling with all data in SSLs

is useful if data is really scarce and can sometimes work out of the box. Therefore, it

is important to continuously update SSLs with new soil records. Simultaneously, to

make best use of them, I stand for that we should infuse local adaptation and also

independent validation samples to extract and verify knowledge for specific uses, such

as soil monitoring, digital soil mapping, agronomic soil testing or soil OC accounting.
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Zusammenfassung

Die modernen Bodenwissenschaften basieren auf den Messungen quantitativer Bo-

denattribute, deren Daten im Labor aber auch direkt in Böden im Feld erhoben werden.

Der Boden ist eine wichtige Komponente von Agrarökosystemen und eine limitierte

Ressource. Beispielsweise sind viele Böden auf der Welt erosionsgefährdet und wir er-

leben durch menschliche Aktivitäten zunehmend Verluste an Bodensubstanz. Deshalb

wird es immer wichtiger, nachhaltige Bodenbewirtschaftungspraktiken zu realisieren,

um die chemischen, physikalischen und biologischen Parameter der Bodenqualität zu

verbessern. Diese Parameter haben einen starken Einfluss auf ökologische Schlüssel-

funktionen wie Wasser- und Nährstoffversorgung von Pflanzen, Kohlenstoffspeiche-

rung, Nährstoffkreisläufe und die Förderung der Biodiversität. Um Bodenumweltsyste-

me zu verstehen, interpretieren, generalisieren, aber auch im Kontext von umweltrele-

vanten und agronomischen Kriterien schützen und nützen zu können, benötigen wir

eine grosse Menge Daten. Diese ermöglichen eine verbesserte Integration unseres Wis-

sens, durch welches wir das Bodenmanagement optimieren können. So können bei-

spielsweise reduzierte Bodenbearbeitung oder standortspezifisches Düngen den Bo-

den als Ressource stärken. Ausserdem müssen wir den Boden als wertvolle Ressource

besser bewirtschaften, um sowohl Leben in und auf den ökologischen Bodenlandschaf-

ten zu schützen und zugleich die Weltbevölkerung zu ernähren.

Bodeneigenschaften werden durch die mineralogische und organische Zusammenset-

zung und Struktur des Bodens bestimmt, welche wiederum durch Prozesse von Boden-

organismen über Raum und Zeit beeinflusst werden. Durch traditionelle Laboranayl-

semethoden können statische und dynamische Attribute der bodenphysikalischen, -

chemischen und -biologischen Zusammensetzung für die Grundlagenforschung und

die Anwendung von Massnahmen (z.B. Landnutzungsplanung, Bauten, Umwelt- und

Agrargesetzgebung), nicht in ausreichender Menge und schnell genug generiert wer-

den. In der Schweiz sind nur 10% bis 15% der landwirtschaftlich genutzten Böden aus-

reichend beschrieben, um gut kalkulierte Landnutzungsentscheidungen durchzufüh-

ren. Einer der Gründe dafür ist, dass die etablierten Messmethoden und -verfahren viel

Zeit und grosse finanzielle Mittel benötigen, so wie etwa für die Beprobung und Pro-
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benvorbereitung. Für die Ergänzung und Skalierung von Bodendaten bietet sich die In-

frarot(IR)spektroskopie in diffuser Reflektion im mittleren Infrarotbereich (mid-IR) so-

wie sichtbaren und Nahinfrarot (vis–NIR) Bereich an. Spektralbibliotheken von Böden

(soil spectral libraries; SSLs) sind harmonisierte Sammlungen von Spektralmessungen

und laboranalytisch–bestimmten Bodeneigenschaften inklusive Metadaten. Eine SSL

wird genutzt, um Eigenschaften neuer Bodenproben schnell analysieren zu können,

dies hauptsächlich jedoch nicht nur innerhalb einer geographisch abgedeckten Regi-

on. Um Bodenattribute robust und präzise spektral zu bestimmen, wird eine Palette

von Modellierungsansätzen verwendet. So werden Regressionsverfahren lokaler Mo-

delle, globale Machine-Learning Verfahren, welche alle Daten nutzen oder Transfer-

Modellansätze, verwendet.

Die Forschung meiner Doktorarbeit konzentrierte sich auf den Aufbau und die me-

thodische Umsetzung von SSLs aus Bodenarchiven. Ich entwickelte spektroskopische

Datenprozessierungs- und Modellierworkflows um den den Trade-Off zwischen Schätz-

genauigkeit und notwendiger Probenanzahl von laboranalytischen Messwerten für agro-

nomische Bodenqualitätsdiagnosen und lokale Schätzungen für das Bodenmonitoring

zu evaluieren und zu verbessern. Meine Dissertation umfasst eine allgemeine Einlei-

tung, drei Kapitel, welche die progressive Evolution von lokaler Kalibration, genereller

Kalibration und Transfer-Lernen abdeckt. Zuletzt folgt die Schlussfolgerung und ein

Forschungsausblick.

Im ersten Kapitel entwickelte ich eine kostengünstige spektral-diagnostische Daten-

bank für Bodenqualitätsattribute in vier Projektregionen, in welchen Yams angebaut

wird. Die Fragestellung beschäftigte sich mit spezifischen Proxygrössen des Bodens in

verschiedenen ökoklimatischen Produktionslandschaften, mit dem Ziel die kalibrier-

te Methodik für ähnliche Landschaften in Westafrika anzuwenden und zu skalieren.

Dazu beprobte ich Böden mit charakteristischer Variabilität von 20 Feldern von Klein-

bauern in jeder Region und ergänzte die Bibliothek mit 14 Proben aus dem Land He-

alth Degradation Framework. Die rein lokalen spektralen Kalibrationen aller Daten

für Gesamtkohlenstoff (C), Gesamtstickstoff (N), Schwefel (S), austauschbares Kalzi-

um, die effektive Kationaustauschkapazität (KAK), Diethylentriaminpentaessigsäure

(DTPA)-extrahierbares Eisen und Tongehalt ergaben gute kreuzvalidierte Schätzwerte

(R2 > 0.75). Diese Eigenschaften können für das Selektion von Bodenfruchtbarkeitsin-

dikatoren an neuen Standorten in den Regionen empfohlen werden. Trotz der kleinen

Probenanzahl in der Bibliothek und einem Gradient der inherenten Bodenfruchtbar-

keit (Textur, organischer Kohlenstoff) über die Ökoregionen (feuchter Wald bis nörd-

liche Guineasavanne), ergaben die Kalibrationen mit einer linear-multivariaten Stan-

dardmethode gute Resultate. Diese sind vergleichbar mit SSLs, die deutlich mehr Pro-

ben und höhere geographische Beprobungsdichten aufweisen.
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Im zweiten Kapitel übernahm ich die Entwicklung einer ersten mid-IR SSL für die

Schweiz (n = 4374). Das Ziel war es, standortspezifische spektrale Schätzungen von

Bodeneigenschaften anhand der 71 Zeitserien des Nationalen Bodenbeobachtungs-

netz NABO der Agrarstandorte seit 1985 (n = 596) und den 1094 Standorten des Bio-

diversistätsmonitoring Schweiz (BDM; n = 3778) zu optimieren. Von den 16 geteste-

ten Bodeneigenschaften konnte für zehn mittels mid-IR Messungen und regelbasier-

ter Vorhersage mit dem CUBIST Verfahren, die gemessene Variation relativ zuverlässig

abbildet werden (R2 > 0.72). Von diesen zehn Eigenschaften zeigten Gesamt-C, Corg,

Gesamt-N, pH-Wert und der Tongehalt sehr gute Übereinstimmung mit den analyti-

schen Messungen (R2 > 0.8). Die Modelle wiesen praktisch keine systematischen Feh-

ler über alle Datenpunkte auf. Ich entwarf zudem eine Strategie, um standortspezi-

fische Adapation der SSL via datengetriebener Selektion (RS-LOCAL) mittels je zwei

Bodenproben mit Referenzanalysen für jede der 71 Modellierungsstandorte und den

jeweils relevanten Beobachtungen der SSL durchzuführen. Mit einem solchen Trans-

fer Learning Ansatz konnte die Wurzel aus mittlerer quadratischer Abweichung (root-

mean-square error; RMSE) für die jeweilige Gesamt-C Zeitserie pro NABO Standort im

Schnitt im Vergleich zu den generellen Regeln um mehr als Faktor 4 reduziert werden

(RMSE(C) = 0.7 gkg−1). Interessanterweise fanden wir erhebliche Heterogenität der Bo-

deneigenschaften in den jeweiligen Teilen der SSL, die für die lokale Modellierung aus-

gewählt wurden. Die Resultate zeigen, dass relativ grosse und bodenchemisch diver-

se SSLs gutes Potential haben, um das zeitlich aufgelöste Bodenmonitoring auf Plot-

Ebene (10×10 m) in Zukunft zu unterstützen.

Zum Schluss ermittelte ich im dritten Kapitel den Schätzfehler und die Effektivität

von mid-IR Spektroskopie und Transfer Learning in Kombination mit der etablierten

Schweizer mid-IR SSL, um Änderungen in Corg in individuellen Plots eines Langzeit-

experiments (n = 311; fünf Probeentnahmezeitpunkte zwischen 2002 und 2018) festzu-

stellen. Das Langzeitexperiment untersucht nachhaltige Agrarpraktiken. Die im Labor

gemessenen Corg-Werte und berechneten Änderungen, welche ich zwischen allen auf-

einanderfolgenden Zeitpunkten und individuellen Kombinationen von Plot und Tiefe

berechnete, konnten mit relativ hoher Genauigkeit mit mid-IR und partial least squa-

res regression (PLSR) reproduziert werden (n = 311; RMSE(∆C) = 1.9 gkg−1). Im Ver-

gleich dazu hatte ein cluster-basierter Ansatz mit datengetriebener Probenauswahl

aus der SSL mittels dem RS-LOCAL Verfahren nur eine 1.3 mal höhere Ungenauigkeit

(RMSE). Dieser Transfer war hocheffektiv, zumal nur von 2 % der Proben des Lang-

zeitversuchs benötigt wurdenn (rein lokale Kalibration). Trotz der vielversprechenden

Resultate scheint eine hohe kleinräumige Variation in der Mineralogie den Informati-

onsgehalt des Transfers im Bezug auf die funktionellen Änderungen in der bodenor-

ganischen Substanz einzuschränken. Um diesen Effekt zu reduzieren schlage ich vor,
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biophysikalischen Bodenbedingungen von Langzeitexperimenten in die SSL mit spezi-

fischen Proben zu integrieren. Zudem sollten innovativere Lernmethoden für die Mo-

dellierung entwickelt werden, die Veränderungen im Boden über Zeit direkt über die

Spektren normalisieren können.

Die erste Version einer mid-IR SSL der Schweiz, welche NABO und BDM Proben ein-

schliesst, war eines der Hauptziele meiner Doktorarbeit. Damit konnte ich geeignete

Modellansätze für den Einsatz von Spektroskopie spezifisch für das Bodenlangzeitmo-

nitoring testen. In den Kapiteln zwei und drei konnte ich während meiner Forschung-

zeit im Doktorat als eine der ersten Arbeiten eine relativ grosse SSL auf nationalem Le-

vel auf Parzellen-Ebene transferieren und erreichte dabei Modellfehler, welche norma-

lerweise bei reinen Kalibrationen auf Feldskala mit 30 oder mehr Proben zu finden sind.

Aus den Ergebnissen meiner Dissertation schlussfolgere ich, dass die Operationalisie-

rung von SSLs entsprechend der Fragestellung und den lokalen Bodenbedingungen im

Monitoring, zugeschnittene Abläufe für einen gezielten spektralen Informationstrans-

fer benötigt. Für effektives statistitisches Lernen ist es massgebend, wie wir vorhersa-

genden Algorithmen die Daten präsentieren. Globale Modellierungsansätze mit allen

Daten von einer SSL sind hilfreich, wenn es nicht genügend Daten für neue Progno-

sen von Bodeneigenschaften gibt. Sie funktionieren jedoch nicht immer zuverlässig

ohne Rekalibration. Es ist daher sinnvoll, eine SSL kontinuierlich mit neuen Bodenpro-

ben zu ergänzen. Gleichzeitig stehe ich dafür ein, dass wir in Zukunft lokale Adaptions-

und unabhänge Validerungsproben bereitstellen sollten. Damit können wir sowohl ge-

zielt Wissen aus SSLs extrahieren als auch spezifische Anwendungen verfizieren, wie

etwa für Bodenmonitoring, digitale Bodenkartierung, agronomische Diagnostik oder

Bodenkohlenstoffinventarisierung.
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Part 1

General Introduction

1.1 The principles and history of soil sensing

The soil community delft into visible–near-infrared (vis–NIR; 25000–4000 cm−1; 400–

2500 nm) spectroscopic sensing already in the 1960ties and 1970ties, with experimen-

tal work pioneered by Bowers and Hanks (1965), and follow-up research by Bowers and

Smith (1972). Their research, together with other colleagues, investigated the effect

of soil moisture, organic matter contents and particle size on the diffuse reflectance

patterns in the vis–NIR range. They reported that reflectance increased with decreas-

ing moisture contents, smaller particle sizes, and soil organic carbon (SOC) contents

(Peterson and Baumgardner, 1981; Baumgardner et al., 1986). First key research was

conducted with focus on understanding the reflectance behavior of soils and nuisance

factors of the measurement process on the field and in the laboratory, in prospect to

proposed applications in soil survey, soil degradation assessment, and the develop-

ment of soil information systems (Stoner et al., 1980; Baumgardner et al., 1986). These

studies usually focused on a handful of soil types and texture classes, and simple Pear-

son correlative or linear regression analysis was usually used to focus on single wave-

lengths that discriminated the aforementioned soil characteristics that were studied

(Sinha, 1987). However, robust empirical calibrations with reference measurements

selected for the estimation of soil physical and chemical properties in many new soils,

based on spectra only, were not yet developed at that time.

It was not until the early 1980ties that the correlative nature of soil infrared (IR) spectra

and several soil composition and properties, such as minerals and soil organic matter

(SOM), could in principle be efficiently used in a predictive manner. The IR reflectance

spectra of minerals were systematically measured before, to understand their funda-

mental structure, composition and reactions better (Farmer, 1974). The emergence

1
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of an interdisciplinary field called "chemometrics" had quietly sparked the "applica-

tion of mathematical and statistical methods to 1) improve chemical measurement pro-

cess, and 2) extract more useful chemical information from chemical and physical mea-

surement data" (Workman et al., 1996). In chemistry, the application of spectroscopic

methods to characterize chemical structure and concentration of specific compounds

— but also their joint occurrence in chemical mixtures or complex biological media

(Wold and Sjöström, 1977) — has also left many scientists and practitioners in the in-

dustry with much data (typically more variables than samples), but major obstacles in

their analyses. The early analytic task was for example best selecting and combining

relevant variables in spectra. Moreover, methods for reducing measurement noise and

environmental nuisance factor were demanded by the community (i.e., humidity, tem-

perature). This was because common methods such as multiple linear regression or

principal components regression often not worked reliably enough for generalization.

"The problem of multivariate calibration" (Wold et al., 1983), as it was termed by ap-

plied statisticians (chemometricians), was resolved to a significant proportion by the

development of partial least squares regression (PLSR). This success, along with the

continuous improvement and combination of methods for signal correction (e.g, Tan

and Li, 2007) and calibration transfer between instruments and environments (e.g.,

Shenk et al., 1985; De Noord, 1994; Bouveresse and Massart, 1996; Tan and Li, 2007),

has boosted a variety of applications of IR spectroscopy in various domains, such as

analytical chemistry, the food industry, the agricultural sector, the pharmaceutical in-

dustry, mining, chemical manufacturing, and natural sciences until today (Martens

and Næs, 1984; Martens and Naes, 1989; Ozaki et al., 2006).

The introduction of PLSR, and also the technological advances, for example Fourier-

Transform (FT) IR instrumentation that became more affordable and the rise of scien-

tific computing, was followed by wide-spread usage of predictive analytics with IR spec-

troscopy. With the increasing capacity of statistical methods to deal with many noisy

and highly correlated (multicollinear) variables from spectroscopic measurements, cal-

ibrations became more robust, accurate, and generally accessible. Moreover, the ana-

lysts’ toolbox had been gradually extended over time with more non-linear machine

learning methods, such as multivariate adaptive regression splines (MARS; Friedman,

1991) and neural networks, and others (Gemperline et al., 1991; Sekulic et al., 1993).

Parallel to the development of these classical non-linear statistical learning methods

that were popularized in the chemometric scene and also machine learning in the

1980ties and 1990ties, instance-based learning (Stanfill and Waltz, 1986) developed

into characteristic modeling principles. It gained relatively low attraction in its begin-

ning but was found to be very successful for IR calibrations from mid to end of the

1990ies.
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The rise of methods for memory-based learning (MBL) opened the realm of more com-

plex, globally non-linear, but locally-linear statistical modeling (Wilson and Martinez,

2000b,a). It is also known under instance-based or lazy learning. However, the ap-

proach of "quantification of the similarity concept (SIMCA)" (soft modeling; classes)

had been developed much earlier (Wold and Sjöström, 1977). MBL approaches create

explicit model sub-sets for every new sample that needs to be predicted, using distance

or dissimilarity metric and thresholds for nearest neighbors, and builds an explicit sta-

tistical model for each new prediction sample with a specific selection of instances

from the training set (Aha, 1992). Although first criticized (Breiman et al., 1984), most

of their limitations have been addressed (Volper and Hampson, 1987; Salzberg, 1990).

Thereby, instance based principles were also further elaborated and incorporated into

models such as rule-driven systems such as Cubist (Quinlan, 1987, 1993). Local center-

ing (Lorber et al., 1996), and the famous LOCAL algorithm (Shenk et al., 1997), which

weighted the relative model influence of neighboring samples by a distance function,

are also forms of local learning. The latter influenced the development of the spectrum-

based learner (SBL) (Ramirez-Lopez et al., 2013a,b), that perfected the use of spectral

relatedness for modeling based on chemical similarity in complex soil collections. Al-

together, this gave better generalization capacity to calibrate and predict attributes of

more complex materials and media, such as compositional contents and concentra-

tions of chemical analytes, organic plant compounds and mineral elements, and —

much later — chemically complex soils over broader and more complete physicochem-

ical ranges at continental and country-level soil variation (Shepherd and Walsh, 2002;

Viscarra Rossel and Webster, 2012; Clairotte et al., 2016).

In the 1990ies, the combination of IR spectroscopy and statistical modeling had its

breakthrough for quantitative soil estimation (Nguyen et al., 1991; Janik and Skjemstad,

1995; Ben-Dor and Banin, 1995; Couillard et al., 1997). Either mid-infrared (mid-IR;

4000–500 cm−1; 2500–25000 nm) ) or NIR diffuse reflectance spectroscopy was com-

bined with standard chemometric techniques — signal correction and PLSR — to esti-

mate multiple soil properties and interpret the predictive ability with loading vectors.

The advantage of NIR for soils is that one only needs sieving and no milling to pro-

duce robust spectra, that are not influenced by physical scattering. In contrast, mid-IR

measurements and modeling need fine milling for good quality spectra, but allow very

detailed assessments of SOM and the mineralogical composition. Another interesting

IR application in soil science was the selection of soil samples from a large population

of soils from major cultivation areas of Sweden, with retention of variation in major soil

properties using principal component analysis on NIR spectra (Stenberg et al., 1995).

Because some non-linear effects between specific spectral features and soil attributes

were observed, subsetting of the calibration set into ranges of the properties of interest
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improved calibrations as shown by Janik and Skjemstad (1995). In soils, this leads to

mineralogically more distinct and chemically related subsets, and thus allowed the par-

simonious modeling of linearly related spectral features and variables. This and other

types of subsetting was reported to make learning algorithm locally more linear, less

biased and more accurate (Sekulic et al., 1993).

In the beginning, preparing milled soils with potassium bromide (KBr) as a carrier was

required to reduce absorbance and yield stable mid-IR spectra. Gains in efficiency and

accuracy of IR spectroscopic methods from improved spectroscopic processing and

modeling methods went hand in hand with the technological advances in instrumen-

tation (i.e., making KBr redundant). The benefits in developing of larger soil spectral li-

braries (SSL) were that higher soil diversity with a larger pools of predictive information

can make soil assessment in new, related geographical regions within the calibration

range of soil properties more efficient (Brown et al., 2006), because of the pre-trained

relationships in the SSL. To handle increasing soil complexity with the substantial en-

largement of SSLs, non-linear predictive modeling — machine learning — was used rel-

atively early on (i.e., MARS: Shepherd and Walsh, 2002; boosted regression trees Fried-

man, 2001 – Brown et al., 2006; Viscarra Rossel and Behrens, 2010). Large SSLs and

"general" modeling over all data points, also called "global" modeling, became possible

with non-linear machine learning methods, that conduct model-internal partitioning.

Thus, general rules could be extrapolated more straight-forwardly. Rule-based learn-

ing with CUBIST for soil spectroscopy gave satisfatory results along with the establish-

ment of the Australian continental SSL, which yielded very interpretable soil rules that

partitioned the data space (Viscarra Rossel and Webster, 2012).

Nevertheless, global modeling with large SSL had in the meantime also received double-

edged perception within the soil community; in particular, it had been questioned for

specific target sites, where small-sized SSLs showed optimal prediction performance

(Guerrero et al., 2016). Furthermore, SSLs built within individual countries had difficul-

ties at predicting particular regions using a general modeling approach; however they

were much less biased when spiking was used (i.e, Wetterlind and Stenberg, 2010; Guer-

rero et al., 2010, 2014). Still, growing SSL with more soil diversity has become a major

driving force for research to make spectroscopic workflows more efficient. For exam-

ple, the aforementioned spectrum-based learner (SBL; Ramirez-Lopez et al., 2013b)

can leverage a variety of dissimilarity concepts and uses optimized principal compo-

nents to decide for chemically projected spectral similarity (Ramirez-Lopez et al., 2013a).

This has again advocated locally-linear learning for knowledge extraction from chem-

ically diverse SSLs (i.e., Clairotte et al., 2016), however it was also similarly accurate

as CUBIST for the USDA NSSC-KSSL library at continental extent (Dangal et al., 2019).

Lately, an instance-based transfer learning method, called RS-LOCAL (Lobsey et al.,
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2017) was developed. It selects optimal calibration sets from SSLs with minimal num-

ber of local augmentation samples, through a process of repeatedly sampling training

observations from the SSL and dropping those that on average yield worst PLSR test

predictions for the local augmentation samples, are successively removed from the

training set. Satisfactory ratios of minimal amounts of reference measurements and

estimation errors were found for novel regions and also for extending local soil estima-

tion and monitoring (Helfenstein et al., 2021; Baumann et al., 2021).

There have been many attempts at subsetting large and diverse SSLs for yielding better

modeling results based on various geographical, pedological, land use, and soil man-

agement factors, that influence the physical state and chemical conditions of soils in

its distribution over space, depth, and time (Moura-Bueno et al., 2020; Vohland et al.,

2022). Such apparently simple stratification of diverse soil data sets are often done

for SSLs collected across regional, country, or even continental extents. As the extents

vary, so does the sampling density over the soil landscapes. Although overall model-

spectroscopic evaluation metrics can be improved, many of the criteria used to form

appropriate groups within SSLs for modeling are still far from universally applicable

for new soil samples. This is mainly because they do often not always reflect soil com-

positional similarity or do not embrace soils’ beneficial diversity directly in the mod-

eling. Although taxonomic information (i.e., soil order) has been found to improve

predictions in grouped calibrations in vis–NIR, scarcity in detailed soil survey data

can however limit these approaches (Vasques et al., 2010). In fact, the better results

obtained for human decision-based subset modeling is confounded by the statistical

model choices and learning setup, to extract useful representations in more locally lin-

ear relationships from generally non-linear data relationships. This caveat still often

attains marginal attention and thus tends to be poorly addressed in current studies.

Notwithstanding the rise of machine learning in spectroscopic applications, general

calibrations or global models of large and considerably diverse SSLs were often found

to be considerably biased when estimating soils within the same country or with simi-

lar soil types but could be considerably improved with the addition of local data (Sankey

et al., 2008). When parameters of models are optimized with a global measure of good-

ness of fit obtained over all data, this approach often implies that there are better

models that are able to adapt to the structure in local data spaces for defined target

application domains that render the global model incomplete (Hand and Vinciotti,

2003). With the global perspective, rules trained on a defined data population with

discrete distributions of the response and marginal distributions of high-dimensional

data, such as spectra, are in reality from multiple sources. These multi-source prop-

erties are often not specifically accounted for when a general spectroscopic model

is tuned by optimizing mean performance on all training data. These empirical lim-
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itations of general learning become intuitively clear when we expand our view to a

sub-domain of machine learning — transfer learning (Pan and Yang, 2010; Pratt et al.,

1991) — and also when we consider that soils have enormous chemical diversity. Sta-

tistical transfer learning is characterized by the transfer of relevant knowledge from

the source domain(s) or task(s) (i.e., large training population(s)) to the target domain

(i.e., new application, new region with soils collected to estimate spectroscopically).

There are various ways to transfer information from the source domain to the target

domain, such as instance-based transfer (i.e., RS-LOCAL; MBL). This is why, for exam-

ple, it was recommended to use an external data set for optimizing tuning parameters

(Ellenbach et al., 2020). To avoid over-optimistic model assessment after optimization

for off-training set errors (OTE; i.e., Wolpert, 1995 for formal implications on CV), a sec-

ond data set should be available that has not been touched in modeling (as principles

of training, validation and test). While this is intuitively clear, spectroscopic measur-

ing, modeling and estimation should consider these dualistic properties of source and

target domain as integral part of the localized prediction workflow.

For regional and field-level calibrations of soil collections with a few soil types, the

root-mean-square errors (RMSEs) of general empiric calibrations are often reported

to significantly improve from 30 to 50, and often also until 100 calibration samples,

while the increase in accuracy has a much flatter curve until 200 reference used for rel-

atively defined, farm-to-regional general spectroscopic modeling in absence of trans-

fer or adaptation (Wetterlind et al., 2008; Ramirez-Lopez et al., 2014; Debaene et al.,

2014). Further, it is important to consider the methods for calibration sampling and

its properties with regard to covering the multivariate spectral space and representing

the measured response(s) well in its empirical distribution(s). The use of local-only

calibrations at the soil spatial extents of farms or fields has been advocated before be-

cause already as few as 25 samples were successful for calibrations (Wetterlind and

Stenberg, 2010; Vagen et al., 2010). From the current perspective it seems that inter-

operable knowledge between partly dissimilar soil physical and chemical conditions at

different locations (e.g., Schirrmann et al., 2013) was mostly limited by the size of the

available SSLs and particularly influenced by the model choice. Further, the framing

of the spectroscopic modeling and estimation workflow —- defining the way how data

were presented to algorithms for deriving adaptive forms of spectroscopic learning —

seems crucial for statistical algorithms to adapt to structures in the data.

More recent advances come from further development of sensor technologies, such as

microelectromechanical system (MEMS) sensors that have miniaturized interferom-

eters on electronic chips (Xu et al., 2017b; Karyotis et al., 2021; Wang and Liu, 2021).

These technologies enable the current development of smart sensing solutions that are

of pocket size, and hence can be used directly on-field in soil surveys and soil mapping,
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so that less samples need to be processed and analyzed in the laboratory.

1.2 Basics of soil mid-infrared spectroscopy and predic-

tive diagnostics

The mid-IR is characterized by the fundamental vibrations of molecular bonds that

occur within that wavenumber range. The energies of molecular bonds are quantized,

meaning they have defined energies for different vibration modes such as stretching or

bending. Infrared spectroscopy makes the vibrational transitions of molecular bonds,

which are part of the respective functional molecular groups, visible in the form of spec-

tra. The mid-IR spectral absorption features are relatively narrow compared to the NIR.

Still, for soils that are chemically complex, characteristics of soil compounds overlap in

a soil diffuse reflectance spectrum. Therefore, we need to apply supervised and unsu-

pervised statistical methods so that we can systematically interpret and reproducibly

use soil spectra for classification and prediction purposes. Here we mostly use the tool

to estimate emerging soil properties that we traditionally measure in the laboratory by

means of chemical and physical reference methods (Shepherd and Walsh, 2007).

The interaction of soil particles and light within the mid-IR range produces optical scat-

tering effects, which mostly follow the physics of the Lorenz-Mie theory (Kerker, 1982).

The scattering happens for spherical microparticles that are smaller or about the same

size as the wavelength. Downstream effects of scattering are for example peak shifts,

altered baselines, additive effects, or multiplicative changes in features of spectra. Typ-

ically, there is a critical radius r for each particle, which depends strongly on the re-

fractive index of the particle (Dazzi et al., 2013). The scattering effects complicate the

analysis and modeling of mid-IR spectra because they confound or irreversibly reduce

the chemical information content. Hence, milling is strongly recommended to dimin-

uate such effects prior spectroscopic measurements (Guillou et al., 2015; Deiss et al.,

2020).

To further reduce present distortions and measurement noise in spectra, signal pro-

cessing on the spectral matrix X can be applied prior or as part of the modeling (Var-

muza and Filzmoser, 2016; Rinnan, 2014). Savitzky-Golay filtering is a popular method

to smooth the spectra and to remove baseline effects through derivatives (Savitzky and

Golay, 1964). There are many other preprocessing techniques, from multiplicative scat-

ter correction (MSC), the standard normal variate (SNV; Barnes et al. 1989) to wavelets

(Bruce and Li, 2001; Viscarra Rossel and Behrens, 2010; Igne et al., 2010). Many of these

come from the chemometric research. While some methods are purely empirical, oth-

ers are formulated by the chemical and physical theory. The SNV is a row-wise auto-
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scaling the spectrum with the mean and the standard deviation across all columns of a

sample. The choice of preprocessing methods for a particular data set is typically based

on validation statistics. However, there are also re-projection methods to overlay cali-

brated data spaces onto new data sets (Ramirez-Lopez et al., 2013a; Roger and Boulet,

2018). The optimal preprocessing of spectra differs among data contexts. Hence, there

is a trade-off between reducing spectral noise, producing processing artifacts and de-

creasing the absorption signal of a major soil constituent. For example, finite deriva-

tives with insufficient smoothing can introduce noise, but together with smoothing

(e.g., Savitzy-Golay first derivatives) they can enhance the relevant information of the

spectral features relative to the modeled response.

The exploratory data analysis is an integral part of the spectral analysis. It typically fol-

lows the preprocessing step. Because of the multivariate nature of spectra, dimension-

ality reduction methods, such as principal component analysis (PCA), are computed

to investigate broadly the relationship between spectra and the response, the modeled

soil property. Dimensionality reduction is also combined with the analysis of atypical

samples by outlier detection methods (Filzmoser et al., 2008, e.g.). Although the com-

mon dimensionality reduction are linear, there are non-linear methods available, such

as self-organizing maps.

The statistical modeling of soil attributes with spectra and particularly the application

of such models onto new soil populations requires thorough validation and testing

(Stenberg et al., 2010). Data spliting or resampling from statistical learning theory

serves this purpose (Friedman et al., 2008). It is particularly important that the data

splitting covers the diversity of future prediction samples and also separates depen-

dent units such as samples along the same soil core or other repeated measures. A

typical complete data split involves a proportion of the data for model fitting, which is

called the training (set). A validation set is used to verify the model performance de-

pending on the preprocessing and the choice of empirical model parameters on held

out data that is unseen during training. Lastly, the test set is an independent new data

set to evaluate how model generalizes to predict new data. For spectroscopy applica-

tions, a totally independent sample drawn is often not available. To maximally use the

available training data but reduce the over-fit at the same time, 10-fold cross-validation

works often well. It is a good compromise that delivers relatively unbiased and low-

variance estimates of performance for validation (Beleites et al., 2005; Kuhn and John-

son, 2013). Figure 1.1 illustrates one repeat of a 10-fold cross-validation, which was

further grouped by the respective sites. The folds Fold01 to Fold10 illustrate the ten

data segments.
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Figure 1.1: Illustration of a 10-fold cross-validation (CV) scheme that is grouped by location.

Top: The x-axis shows the training and validation samples of the folds (splits), and the y-axis

corresponding observations of individual sites. Bottom: Example of the data split of the first

repeat for observations of an example site.
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libraries

1.3 Extending quantitative soil research and information

systems with soil spectral libraries

As our society evolves culturally and with the advancement of soil and related envi-

ronmental domains of science, new interdisciplinary questions and challenges arise.

Soils are in essence non-renewable because soil need in the range of 10000’s (temper-

ate zone) or millions of years (tropical soils) for their formation and transformation.

Because soils have utmost importance for many pillars of world’s ecosystems and hu-

man well-being, and nowadays are impacted more than ever by human activities caus-

ing biophysical changes, we need quantitative and objective measures to record soils’

state and changes in landscapes and ecosystems (FAO, 2006; Dwivedi, 2017; Arrouays

et al., 2021). Soil information systems need to be ready to fetch many attributes in sys-

tematic ways. We also need to update past, current and future description layers, and

we need to be ready to answer new questions when our societal needs change, when

research agendas change, or when we challenge the past concepts of co-existing with

soils.

Soil information systems are the foundation to assess soil functions and to investigate

fundamental questions of soil research. They help us also to understand the formation

of soils and their variability in space and time. Maybe even more importantly, they

enable us to focus on current environmental and agricultural questions, for example

on how we evaluate and manage soil landscapes from a science perspective but also as

a society (Bouma, 1989, 2014; Greiner et al., 2018). The definition of diagnostic features

of soils in context of modern land use requires quantitative data on soils, which are

often scarce in the context of traditional soil surveys; which is therefore augmented by

the framework of digital soil mapping (DSM; Hartemink et al., 2008).

The induction of soil properties from soil-landscape relationships by data mining with

large point databases (i.e., digital elevation models and terrain attributes, satellite bands,

lithology, land use, etc.), serves the purpose of knowledge discovery for pedogenesis

and landscape ecology, and extrapolation of soil maps within suitable extents (Bui

et al., 2006). DSM has a long history of integrating both remote and proximal sens-

ing methods together with statistical methods (Minasny and McBratney, 2016). In the

beginning, pedometric research focussed on gamma spectrometry, electromagnetic in-

duction and ground-penetrating radar (GPR) as proximal sensors for data input (Wong

et al., 2010). Later on, along with the success and advancement of soil IR spectroscopy,

it was increasingly used in soil landscape modeling and mapping (McCarty et al., 2010).

Abundant soil profile measurements in a geographical context are needed to model the

relationships of soil processes and to derive a spatial prediction map of soil properties.

Hence, after soil diffuse reflectance spectroscopy and modeling had been widely estab-
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lished and accepted as an alternative tool to scale up the production of key properties

in the soil research scene and precision farming (Viscarrra Rossel and McBratney, 1998;

McCarty et al., 2002), time was ready to propose it as a high-throughput and inexpen-

sive technique to produce quantitative data on a handful of measurable properties that

are key for soil mapping over larger areas (Rossel and McBratney, 2008). Nowadays,

national soil classification are more frequently updated because of vis–NIR modeling

and estimation that is integrated into a DSM approach (Teng et al., 2018; Seybold et al.,

2019).

In support of soil spectroscopy, particularly in the infrared area, the data collection

becomes more efficient and a larger amount of soil variability can be quantified com-

pared to traditional wet chemistry. Proximal sensing is often primarily a data source for

high-resolution DSM. Because of this, accelerating the time and decreasing the cost of

analytical measurements and even sensing by improving computational methods has

been and will advance in soil mapping in practice. Furthermore, an important com-

ponent to improve the accuracies and the uncertainties of the soil maps is to develop

better methods that can extract stored knowledge from SSLs more efficiently and ac-

curately. With more sampling points and proxy measurements, the resolution of soil

maps can be drastically improved. Further, good data quality of input attributes is

important to calibrate accurate DSM models, based on rapid sampling and proximal

measurement methods. This way more sampling sites and soil depth can be included.

Because vis–NIR and particularly mid-IR spectra contain a footprint of the mineralogy

in soils, this information is frequently used to produce useful maps at different scales

and extents, even over continents. For example, a map of soil types was made, which

was supported by vis–NIR predictions from the Australian SSL. IR-based soil analytics

brings significantly improved spatial support to DSM approaches, and increases the

update frequency of such maps (Teng et al., 2018).

Previously, possibilities of the rapid estimation capacity of soil properties with diffuse

reflectance spectroscopy had been elaborated for soil agricultural, environmental and

engineering applications. Together with the development and use of soil spectral li-

braries (SSL), this enabled the prediction of new soil samples from the target area

(Shepherd and Walsh, 2002). In the beginning, when initiatives and research institu-

tions just started to build larger SSLs with relatively diverse physical, chemical, and

biological attributes, to leverage the capacity to characterize new soils with broader

ranges of attributes, Shepherd and Walsh (2002) emphasized that "global models may

be more robust than local models in terms of ability to predict new samples". This was

a strong statement for fostering the worldwide capacity building in SSLs, but as we will

see later, this perspective on general vs. local modeling is not a question of "either-or".
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Various research institutes and larger research organizations and networks have in-

vested in building SSLs with standardized reference analysis methods and spectral

measurement protocols. France has for example a national Vis–NIR and mid-IR spec-

tral library that was developed with samples collected on a 16 km × 16 km grid across

the country Clairotte et al. (2016). The LUCAS (Land Use/Cover Area frame statisti-

cal Survey; Tóth et al., 2013) open-access SSL (Stevens et al., 2013) constitutes about

18000 soil samples from 23 countries in the European Union (EU). There is also com-

plementary sub-collections of the LUCAS SSL in the mid-IR (Leenen et al., 2022). The

Australian soil vis-NhIR infrared spectroscopic database contains about 20000 samples

with 24 measured soil properties that were compiled from the national inventories (Vis-

carra Rossel and Webster, 2012). In the United States, the USDA-NRCS Kellogg Soil Sur-

vey Laboratory has been assembling a mid-IR SSL with over 80,000 soil samples called

KSSL (Dangal et al., 2019). The Brazilian vis–NIR SSL has started with a community

effort and now contains about 40,000 samples with reference measurements (Demattê

et al., 2019). The Chinese SSL contains about 4000 soil reference and Vis–NIR observa-

tions from 19 provinces. The Africa Soil Information Service (AfSIS) and the World Agro-

forestry Centre have grown a continental mid-IR SSL to deliver soil decision support to

countries in sub-saharan Africa Sila et al. (2016); Vågen et al. (2020). With the 1800

soil samples in the central African SSL, the estimation of soil properties in the soils of

the Congo Basin was improved because of the soil diversity in ten distinct geoclimatic

regions (Summerauer et al., 2021). Finally, researchers have also compiled a collabora-

tive vis–NIR SSL to enable predictions on the global scale (Viscarra Rossel et al., 2016).

More recently, research capacity building has also shifted towards web platforms that

provide spectral analysis and prediction services (e.g., Shepherd et al., 2022). Joint li-

brary collections have the advantage of being more flexible to new applications be-

cause they contain more pedological knowledge. At the same time, harmonization of

the soil analysis methods and sometimes also the standardization of spectral measure-

ments remains challenging. Altogether, these and other SSLs are joint efforts to make

the analysis of soil properties more efficient and attractive for many research, decision

making and operational contexts. This effort further requires reproducibility.

Optimizing biogeochemical processes such as soil C sequestration and nutrient cy-

cling in agroecosystems requires frequent quantitative information on soil properties

in large amounts and in relatively high spatial densities (Paustian et al., 2016). Char-

acterizing soils’ attributes in their spatial and temporal variation is key to establish a

decision-making and intervention system in order to sustain soil functions and related

ecosystem services, including agricultural production potentials. There is a manifold

of studies which have framed general concepts that embrace soil function aspects, in

particular soil fertility, over the last decades. For example, Haines-Young and Potschin
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(2008) proposed a cascading framework for mapping relations between soil proper-

ties and processes, and the resulting services that the soil systems provide. Based on

this cascading framework, Greiner et al. (2017) not only discuss soil function assess-

ment methods that are adequate to describe multi-functionalities of soils and various

ecosystem services, but also provide key soil property data and pedotransfer functions

required to determine individual soil function assessment criteria. Last but not least,

such soil physical, chemical or biological transfer functions are increasingly provided

through spectroscopic modeling (Xu et al., 2017a; Yang et al., 2022; Baumann et al.,

2022).

Soil monitoring networks and long-term experiments (LTEs) are an important back-

bone for providing soil inputs and process-level information of soil dynamics into mod-

eling platforms. They deliver quality-assured measurements, controlled and well-described

records on environmental and management factors. Both, experimental research and

modeling in the realms of environment and agricultu re form contexts with high de-

mand of quantitative soil data. For example, processed based models — e.g., soil-plant-

climate biogeochemical models (Del Grosso et al., 2006; Lee et al., 2020) — need inputs

of basic soil data such as texture, which become more readily available with IR spectro-

scopic predictions and larger SSLs.

1.4 The chemical nature of soil organic matter and its trans-

formation processes in light of IR spectroscopy

Soil organic matter is — against to former beliefs of persistent recalcitrant humic sub-

stances — a vastly diverse collection of organic compounds that is under continuous

decomposition through physical, biological and chemical transforming forces. The

myth of humic substances was busted long time ago. For example, as Greenland et al.

(1992) stated: ""Humus" as an identifiable substance that can be separated from other

constituents of soil organic matter is a myth that has confounded soil scientists in the

temperate as well as tropical zone for too many years.". The gradient of functional

complexity of soil organic matter spans from fresh plant and animal residues to bio-

polymers of different sizes until highly oxidized C compounds (Lehmann and Kleber,

2015).

Molecular diversity and functional complexity is currently understood as one of the

main drivers of OC persistence (Lehmann et al., 2020). The three facets of complexity of

SOM are molecular diversity, spatial heterogeneity, and temporal variability (Lehmann

et al., 2020). Microscale spatial heterogeneity, namely the patchiness of SOM, is accord-

ing to our current understanding of soil processes at high molecular level one of the
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main factors for limited decomposition, which is caused by distance of substrate and

enzymes of microbial decomposers. From a continental process perspective, lignin

and carbonyl-C abundance had a positive relationship, while lignin and protein, and

also carbohydrates and char-like aromatics, had a negative one (Hall et al., 2020). The

stabilizing link between oxalate-extractable aluminium and carbonyl-C was not found

for protein, which is also believed to cycle faster between living and dead microbial

biomass. Thereby, major functional groups of O-alkyl, alkyl and aromatic C varied

in their relative importance across a relatively variable set of soils (Hall et al., 2020).

While biogeochemical description of controls on SOM are important from a coarse

view across soil ecosystems over large areas of the world, the distinction of SOM into

particulate organic matter (POM) and mineral-associated organic matter (MAOM) de-

scribes the association to size fractions and aggregates, and characterizes the vulnera-

bility of SOM to decomposition (Cambardella and Elliott, 1992; Lugato et al., 2021). For

the European continent, arable land use had higher proportions of MAOM than POM,

while coniferous forest had the highest POM storages (Lugato et al., 2021). POM is less

stabilized by mineral protection, and its fine fraction has even higher turnover rates, so

that it is mostly preserved in no-till systems (Six et al., 1998).

The surplus C principle (Prescott et al., 2021) assumes that regenerative agricultural

practices with optimal rates of nitrogen and phosphorus nutrient supply, which should

promote root exudates hence diverse microbial biomass, can lead to the accumula-

tion of mineral-associated organic matter (MAOM). However, for improving soil qual-

ity and resilience, to contribute to the mediation of climate change in medium-term

by increasing C, we also need more biomass input from both aboveground and below-

ground plant residues. Most importantly, we must experimentally evaluate whether

and when the proposed principle holds true.

Most of the aforementioned functional aspects of OC, apart from their microscale spa-

tial arrangement, can principally be assessed by diffuse reflectance mid-IR spectroscopy,

SSLs, and predictive modeling. For example, the IR reflectance behavior has been

studied in detail through experimental work in the laboratory, with mixes of pure min-

erals and spiking of defined components of SOM (Calderón et al., 2013). The func-

tional groups of SOM are relatively well separated and well described in the litera-

ture (Calderón et al., 2011). For example, aliphatic C – H stretching occurs at 2950

and 2870 cm−1, vibrations of the C –– C bonds in aromatic groups and C –– O in ketonic

group are located at 1660 cm−1. In addition, OC contents in specific size fractions were

predicted well with both NIR and mid-IR spectroscopy, across relatively diverse soils

(i.e., MAOM; POM; Leifeld, 2006; Zimmermann et al., 2007; Bornemann et al., 2010;

Viscarra Rossel and Hicks, 2015; Ramírez et al., 2021).
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1.5 The importance of soil spectroscopy for future envi-

ronmental monitoring, modeling, and for agricultural

management

Soil infrared reflectance spectroscopy has traditionally been used as an integrative mea-

sure of soil quality, and hence has been proposed as tool to monitor chemical and bi-

ological aspects of soil quality (Terhoeven-Urselmans et al., 2008; Cécillon et al., 2009).

Soil IR spectroscopy has also been proposed to derive more holistic soil health indi-

cators — under the umbrella term "evidence-based diagnostic surveillance approach"

(Shepherd and Walsh, 2007) — which is an emergent property of its capability to sense

many aspects of the characteristic links of soil composition, chemical properties, and

correlated biological proxies, to fundamental IR vibrations in functional groups. In the

tropics, many soil properties are proportional to the levels of SOM or OC contents (Fos-

ter, 1981; Tiessen et al., 1994; Six et al., 2002). Its presence has for example a positive

influence on the cation exchange capacity (CEC), because SOM has high surface bind-

ing capacity for cations relative to clay minerals, which are generally more weathered

and have lower exchange capacity than in temperate soil (1:1 vs. 2:1 layer clay miner-

als).

Deriving and interpreting the measured and modeled trajectory of the functional diver-

sity of soil OC compounds and their total contents requires the capacities to measure

the response in fluctuating soil biological, chemical and physical properties. With the

classical laboratory methods alone, it is unlikely that we will manage to verify a rep-

resentative amount of soil effects after site-specific improvement measures. To study,

monitor, and model soils, and to, for example, answer questions about impacts of cli-

mate change in different environmental contexts, it becomes more and more impor-

tant to filter the relevant indicators that drive soil changes at specific locations indi-

vidually and from systems perspective (Smith et al., 2012). The same applies for up-

scaling the conditions from local observational extents over larger areas. Spectroscopy,

especially mid-IR spectroscopy modeling, can quantify a great deal of the functional

diversity of SOM and the mineral components. It can hence be considered as a holistic

fingerprinting solution that entails many soil health indicators in one measurement.

It is postulated that we could sequester more C in the form of soil OC compounds in the

short to medium term (Paustian et al., 2016). SOM is key to soil functioning and health

in general, which maybe an even better argument for sustainable management prac-

tices (Bai et al., 2018; Bünemann et al., 2018). At the moment, soil measurement, mon-

itoring, reporting, and verification (MRV) is being heavily promoted as inter-operable

science and societal framework, especially in the context of climate mitigation and soil



16
1.5. The importance of soil spectroscopy for future environmental monitoring,

modeling, and for agricultural management

status improvement. This includes many components such as measurement and mon-

itoring tools, protocols, decision frameworks, sustainable soil management practices,

as well as data and software platforms to manage and use the tremendous knowledge

collected. The mission statement for such harmonized frameworks across the world

is concisely summarized as follows by the Soil Global Partnership of FAO: "In today’s

world, there is a strong demand for standardized, robust, reliable, cost-effective, and

easily applicable MRV platforms to measure SOC change and GHG removals related

to different agricultural systems." (FAO, 2020) . The compilation of these guidelines in

FAO (2020) was initialized based on the Global Symposium on SOC (GSOC17), which

was conducted in Rome in March 2017. There many follow-up programmes such as

RECSOIL for the global recarbonisation of soils to maintain C rich soils and also re-

duce the degradation of croplands by sustainable soil management practices centered

around SOC (FAO, 2021).

While the efforts in such international protocols are pivotal for scientific validation of

soil responses in managed agroecosystems, and forming policies around farming prac-

tices, the protocol was only released under advisory nature. The "protocol for measure-

ment, monitoring, reporting and verification of SOC in agricultural landscapes" (FAO,

2020) treats spectroscopic measurements mainly in the context of reducing the mea-

surement uncertainties that stem from high spatial variability in SOC contents. Fur-

ther, soil spectroscopic methods are advised only when an evaluation of the appropri-

ateness of the calibration in the agroecological zone(s) the project is embedded into is

given.

Such broad and general recommendations on soil OC reporting can be useful for the

adaption and verification of sustainable farm management practices tailored to spe-

cific intervention areas (i.e., fields) at individual or multiple farms. Improving such

spectroscopy-based soil diagnostic systems, so that they can become an effective com-

ponent in MRV systems, is a key deliverable of active soil spectroscopic research. In the

context of addressing knowledge gaps in soil science to resolve major environmental

challenges, for which integrated soil monitoring and modeling will play an important

role, members of the soil research community are calling out for more detailed test-

ing of spectroscopic methods to reliably determine SOC change (Evans et al., 2021).

As a matter of fact, ongoing research activities in the soil spectroscopic community re-

flect this comprehensible call from interdisciplinary teams of scientists that are pulling

their forces together to advance the capacities of soil change assessments. We should

further explore the use of advanced mobile IR sensors on-field (internet of things (IoT

devices)), and find better ways to correct for homogeneous sample surface under field

conditions, and find effective ways to correct for moisture (i.e., develop calibration

transfer for it).
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Direct measurements of soil OC stock changes require bulk density measurements

across the depths, but also as many measurements of contents of different forms of

C. Of these forms, at least roughly organic and inorganic C should be discriminated

in the measurements. Particularly, the assessment across depth seems important be-

cause reduced vs. conventional tillage can have heterogeneous effects on OC storage

depending on depth (Olson and Al-Kaisi, 2015). Spectroscopic methods can, broadly

speaking, deliver rapid, cheaper and faster measurements than the reference methods,

but they come at the cost of lower accuracy, often require adequate expertise in data

mining, and (eventually) extensive calibrations. According to Paustian et al. (2019), ma-

jor complications of direct measurement methods for determining SOC stock changes

can be addressed with "designing effective sampling methods and reducing the time

and effort in sample processing and analysis". The same can be said about proxy mea-

surements such as infrared spectroscopy, that greatly facilitate and scale the effect of

classical measurements in combination statistical learning, and ultimately need less

but representative reference analyses.

1.6 Outline of the thesis

The research of my dissertation was centered around the development of SSLs and

their efficient use by statistical modeling and localized soil estimation workflows with

state-of-the-art methods in the soil spectroscopy community. I developed strategies

to maximize the general soil knowledge for local estimation suitable for agricultural

diagnostics, long-term soil monitoring, and experimental soil research, so that we can

minimize the need of new laborious and expensive laboratory measurements. Thereby,

I focused on deriving 1) regional calibrations with purely local methods to assess many

properties describing soil quality (chapter 1), 2) predictive models to estimate key soil

properties with general and interpretable rule-based learning with incorporation of

harmonized data from the Swiss long-term monitoring network and soil data of the

biodiversity monitoring (chapter 2), and 3) adaptive modeling and a new data-driven

method that combine relevant chemical knowledge in the diverse national SSL with

minimal local analytical reference data from soil monitoring sites and a LTE to spec-

troscopically assess soil changes over space and time (chapters 2 and 3). Figure 1.2

depicts the spectroscopic modeling tasks and selected strategies that I have applied

for the three chapters of my dissertation.

All three chapters show detailed performance assessments that compare the modeled

mid-IR estimates of soil properties with their analytical reference measurements. Fur-

ther, each research chapter includes an interpretation of important spectral features,

and also the criteria of application, for example in the context of agronomic soil qual-
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Figure 1.2: Conceptual modeling schemes for soil spectral libraries (SSLs) that I used for the

three chapters of my PhD thesis.

ity assessments, are critically discussed.

Chapter 1: Estimation of soil properties with mid-infrared soil spectroscopy across

yam production landscapes in West Africa

In chapter one, I addressed the following sets of related research questions around the

development of a project-specific SSL for agricultural soil diagnostics in Ivory Coast

and Burkina Faso:

1. How reliable are mid-IR regression models for a wide set of soil properties that

are specifically developed for landscape-level soil variation in farmers’ fields within

four climatically distinct soil zones suitable for yam growth in West Africa?

2. What are the biophysical and statistically linked model mechanisms that allow

the spectroscopic estimation of properties related to inherent soil status but also

properties that regulate or are an agronomic proxy for nutrient availability?

3. What are the caveats of rapid soil diagnostics with the relatively small but agro-

nomically targeted mid-IR SSL, and where are its benefits to derive region-specific

and farm-adapted nutrient management strategies?

Chapter 2: Developing the Swiss mid-infrared soil spectral library for local estima-

tion and monitoring

In chapter two, where I and my collaborators developed a mid-IR SSL for broad quanti-

tative soil characterization and local soil monitoring, was centered around the follow-
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ing research aims and questions:

1. What is the predictive potential of including soil organo-mineral diversity when

building a harmonized mid-IR SSL for Switzerland that includes soils from many

selected geographical locations and also time-series data from national soil mon-

itoring? How reliable can rule-based modeling extract general information for

each of the 16 calibrated soil properties?

2. How useful is the developed SSL in combination with data-driven modeling to

extract specific subsets of the SSL to perform localized estimation and monitor-

ing of measured soil changes at the temporal monitoring sites? How does the

accuracy of local transfer compare to the general modeling done under objec-

tive one?

3. What are the underlying spectroscopic features of the SSL and their associations

to functional groups of characteristic organic and mineral substances of soils?

How does their model contribution to the general model of total C differ in rela-

tive importance? What are the predictive mechanism behind the local transfer?

Chapter 3: Determining management induced SOC changes at the plot level based

on soil infrared spectroscopy

Chapter three aimed at critically assessing the capacities of mid-IR spectroscopy for

detecting management-induced changes of OC contents at plot-level over time for a

LTE under organic agriculture. Previous research on this LTE has shown management-

induced changes of OC, which was mainly due to reduced tillage practice. Local-only

modeling vs. localized modeling with optimized subsets of the Swiss mid-IR SSL were

tested for accuracy and analytical sampling efficiency. The research objectives were:

1. How does the local-only workflow with both standard PLSR and Cubist model-

ing on all available observations from the LTE perform in comparison to cluster-

based similarity-driven and performance-driven transfer learning compare in

terms of trade-off between the accuracy and number of local samples need for

estimating OC contents?

2. What proportion of the measured differences at individual experimental plots

and depths can be inferred with mid-IR spectroscopy and the three tested pre-

dictive modeling workflows? Are there particular trends in uncertainty for treat-

ments?

3. What are the physico-chemical mechanisms that are involved in the estimation

of site-local contents and changes in OC with mid-IR modeling? What are the rel-
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ative importance of mineral and organic substance groups in soils inferred from

the purely local calibration of OC, and to what degree can we explore and con-

firm the soil chemical variability in the experimental design with mid-IR spectra?
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This chapter is a reprint of the paper published in SOIL, 7, 717731, 2021,

https: // doi. org/ 10. 5194/ soil-7-717-2021

Abstract

Low soil fertility is challenging the sustainable production of staple crops in the yam

belt of West Africa. Quantitative soil measures are needed to assess soil fertility de-

cline and to improve crop fertilization management in the region. We developed and

tested a mid-infrared (mid-IR) soil spectral library to enable timely and cost-efficient

assessments of soil properties. Our collection included 80 soil samples from four land-

scapes (10 km×10 km) and 20 fields/landscape across a gradient from humid forest

to savannah and 14 additional samples from one landscape that had been sampled

within the Land Health Degradation Framework. We derived partial least squares re-

gression models to spectrally estimate soil properties. The models produced accurate

cross-validated estimates of total carbon, total nitrogen, total sulfur, total iron, total

aluminum, total potassium, total calcium, exchangeable calcium, effective cation ex-

change capacity,and diethylenetriaminepentaacetic acid (DTPA) extractable iron and

clay content (R2 > 0.75). The estimates of total zinc, pH, exchangeable magnesium,

bioavailable copper and manganese were less predictable (R2 > 0.50). Our results con-

firm that mid-IR spectroscopy is a reliable and quick method assess the regional-scale

variation in most soil properties, especially the ones closely associated with soil or-

ganic matter. Although the relatively small mid-IR library shows satisfactory perfor-

mance, we expect that frequent but small model updates will be needed to adapt the

library to the variation of soil quality within individual fields in the regions and their

temporal fluctuations.

2.1 Introduction

Yam (Dioscorea spp.) is an important food and cash crop in West Africa. The yam belt

of West Africa spans across the central zone of coastal countries in West Africa, located

across the humid forest zone and northern Guinean savanna. It contributes to about

92 % of total world yam production, e.g. a total yield of 72×106 t in 2017 (FAO, 2014a).

The cropping area in the West African yam belt has been expanded with accelerated

population growth, which has in many places caused soil degradation. Furthermore,

there is a trend of shortened fallow periods in the cropping areas of West Africa over the

last decades, which has further exacerbated the decline in soil fertility across the yam

belt. Traditionally, yam is grown without external input in these areas. Therefore, the

production of yam and other crops grown in the region depends on soil organic matter
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(SOM) status (Padwick, 1983), which serves as a main pool of plant-available nutrients

and provides cation exchange surfaces for soil nutrients (Syers et al., 1970; Soares and

Alleoni, 2008). Particularly, a strong positive relationship between high organic matter

stocks and yam productivity is reported after fallow and when no fertilizer is added

(Diby et al., 2009; Kassi et al., 2017). Thus, maintaining or increasing SOM and avail-

able nutrient levels is of utmost importance for sustainable production of yam and

other crops in West Africa (Carsky et al., 2010). Furthermore, linking soil properties

and yam yields (Frossard et al., 2017) and accounting for soil macro- and micronutri-

ent status (O’Sullivan and Jenner, 2006) are fundamental to improving crop yields and

soil management strategies.

Soil fertility is an integrative measure of soil attributes and their interactions that sup-

port the long-term agricultural production potential. Soil fertility is commonly decom-

posed into three main components, the physical, chemical and biological (Abbott and

Murphy, 2007). Here, it is important to interpret soil fertility in the form of soil con-

ditions and functions at an adequate resolution over time and space, and in relation

to the crop of interest. For yam, low tuber yields are often attributed to an unbalanced

ratio of essential nutrients (i.e. N, P, K) available in the soil (Enyi, 1972) and a fast miner-

alization and hence depletion of organic matter (Carsky et al., 2010; Hgaza et al., 2011).

Yet, the relationship between soil properties and tuber yield is not fully understood

(Frossard et al., 2017). The reason is that the response of yam to mineral fertilization

is highly variable because of confounding environmental and management variables,

such as climate, soil type, micronutrient deficiencies, seed tuber quality and planting

density or disease pressure across the yam belt (Kang and Wilson, 1981; O’Sullivan and

Jenner, 2006; Cornet et al., 2016). Further, there are no soil fertility recommendations

specific for yam under West African conditions. For this reason, establishing yam field

trials designed with different organic and mineral fertilization strategies within differ-

ent yam-growing regions is required to optimize yam fertilization targeting regional

soil and environmental conditions (Frossard et al., 2017). Despite the importance of

soil fertility, it is challenging to quantify soil measures at sufficient temporal and spatial

resolution to relate them to yam productivity together with other management effects.

In order to quickly assess key soil properties, such as soil organic carbon (SOC) and

cation exchange capacity (CEC), we need more cost- and time-efficient methods in ad-

dition to the traditional wet chemistry laboratory analyses that are often cost-intensive

and time consuming. Proximal sensing is a method that can provide reliable soil mea-

surements rapidly and inexpensively (UNEP, 2012). Soil visible and near-infrared (vis-

NIR) and mid-infrared (mid-IR) diffuse reflectance spectroscopy has gained popularity

over the past 30 years to assess soil properties to complement conventional labora-

tory analytical methods (Nocita et al., 2015a). For model development and calibration
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but, importantly, also for validation purposes, soil IR spectroscopy requires laboratory

reference analysis data. Previous studies have shown successful spectroscopic predic-

tions of soil properties, such as organic C, texture, cation exchange capacity (CEC), and

exchangeable K (Viscarra Rossel et al., 2006; Cécillon et al., 2009; Nocita et al., 2015a;

Sila et al., 2016). Many soil chemical and physical properties, such as soil mineralogy,

and the concentration, forms, and distribution of SOM, are closely associated with IR

spectral diversity. Nevertheless, soil IR spectroscopy often needs laboratory reference

analysis data for model development and calibration. Further, a library that includes a

broad range of soil biophysical conditions found in the region in which it is used needs

to be established. Depending on the study scale — field (e.g., Cambou et al., 2016),

region, country (e.g., Clairotte et al., 2016), continent (e.g., Sila et al., 2016)), world

(e.g., Viscarra Rossel et al., 2016) — various statistical predictive modeling strategies

are typically employed to account for regional variability in soil properties and deter-

mine empirical relationships between spectra and soil attributes. However, particu-

lar regions in spectra are characteristic for functional groups of soil components and

thus, elucidating spectral features that are important for the prediction of a particular

soil attribute helps to understand and validate the mechanisms based on which the

empirical-derived models predict the soil properties.

Thus the main objectives of this study are to (1) develop and evaluate mid-IR spectro-

scopic models to estimate soil properties for selected landscapes representing major

soil and climatic conditions in the West African yam belt, (2) to determine important

spectral features for specific soil properties, and (3) to build a new soil spectral library

in four landscapes of the West African yam belt for soil prediction and assessment.
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2.2 Materials and methods

Landscapes and soil sampling

Our study area covered the climatic and soil biophysical conditions representative of

the West African yam belt. We selected four landscapes, two in Côte d’Ivoire and two in

Burkina Faso. Each landscape (10 km x 10 km) represents a diverse geographic ecore-

gion. The landscapes cover a gradient between humid forest and the northern Guinean

savannah. Specifically, the landscape Liliyo in Côte d’Ivoire is at 5.88°N and in the hu-

mid forest zone. The predominant soil type is Ferralsol (FAO, 2014b). The landscape

Tieningboué in Côte d’Ivoire is at 8.14° N and belongs to the forest savannah transi-

tional zone. The soils are dominated by Nitisols and Lixisols (FAO, 2014b). The land-

scape Midebdo is at 9.97°Năand in the sub-humid savannah of Burkina Faso. Its dom-

inant soil types include Lixisols, Gleysols, and Leptosols (FAO, 2014b). The landscape

Léo is at 11.07°N and in the northern Guinean savannah of Burkina Faso and has Lix-

isols and Vertisols as the dominant soil type (FAO, 2014b). The mean annual rainfall

were approximately 1300mm in Liliyo, and 900mm in Tiéningboué, Midebdo, and Léo.

During July and August 2016, we sampled the soil from a total of 80 fields under yam

cultivation across the four landscapes, i.e. 20 yam fields in each landscape. The fields

were selected in advance by taking into account visual variation in soil color and tex-

ture across the landscape. The yam fields selected contained the maximum soil vari-

ability based on soil color and cropping history, taking into account both local farmers’

knowledge on soil fertility and agronomic extension expertise. Yam is typically planted

on soil mounds, ranging from 5000 to 10000 mounds per hectare with a single yam

plant per mound. Within each field, we sampled the soil at four adjacent mounds in

square arrangement, which were spaced between 0.5 and 2 m. At each mound, six to

eigth auger cores (2.5 cm in diameter) to the 30 cm depth were taken at a radius be-

tween 15 and 30 cm away from the center of a mound, depending on the size of the

mounds. Then the soils from the four mounds were combined into one composite

sample per field (around 500 to 1000 g of soil).

An additional set of 14 composite soil samples was collected by the International Cen-

ter for Research in Agroforestry (ICRAF) at Liliyo from one sentinel site called "Petit-

Bouaké" (UNEP, 2012). Sampling took place between 25 and 29 August, 2015 at posi-

tions that were previously selected for the Land Degradation Surveillance Framework

(LDSF) in a spatially stratified manner (Vagen et al., 2010). The soil samples received

from ICRAF were within the same landscape as the sampled soils in Liliyo within YAM-

SYS, but sampled from different positions. All soil samples were air-dried and stored in

plastic bags until further analysis.
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Soil reference analyses

The air-dried soil samples were crushed and sieved at 2 mm. About 60 to 70 g of the

sieved soil was oven-dried at 60 °C for 24 hours, of which 20 g was ball-milled. All chem-

ical analyses except soil pH were conducted both on the soils sampled in yam fields

(n = 80) and the LDSF soils obtained from ICRAF (n = 14).

The milled soils were analyzed for total C and macronutrient (N and S) concentrations

using an elemental analyzer (vario PYRO cube, Elementar Analysensysteme GmbH, Ger-

many). For each of the four landscapes, two soils were selected and analyzed based

on three analytical replicates for quantifying within-sample variance of the elemental

analysis. For the remaining samples, the analysis was not repeated. Sulfanilamide was

used as a calibration standard for the dry combustion. For pH determination 10 g of

air-dried soil per sample was placed in a 50 mL Falcon tube and 20 mL of de-ionized

water was added. The samples were shaken in a horizontal shaker for 1.5 hours and

measured for pH using a pH electrode (Benchtop pH/ISE meter model 720A, Orion

Research Inc., USA).

Bioavailable micronutrient (Fe, Mn, Zn, and Cu) concentrations in soils were deter-

mined with the diethylenetriaminepentaacetic acid (DTPA) extraction method, as de-

scribed in Lindsay and Norvell (1978). The extracting solution consisted of 0.0005 M

DTPA, 0.01 M CaCl2, and 0.1 M triethanolamine. Briefly, 10 g of the sieved <2 mm)

soils was extracted with 20 mL of DTPA solution. Micronutrient concentrations in the

filtrates were measured by inductively coupled plasma optical emission spectroscopy

(ICP-OES; using a Shimandzu ICPE-9820 plasma atomic emission spectrometer). Final

DTPA-extractable concentrations of Fe, Mn, Zn, and Cu were calculated back to per kilo-

gram dry soil. For each landscape, two soils were selected and analyzed in triplicate to

assess analytical errors. For the remaining soils the analysis was not repeated.

For each sample, the concentrations of total element (Fe, Si, Al, K, Ca, P, Zn, Cu, and

Mn) in the soil was assessed by energy dispersive X-ray fluorescence spectrometry

(ED-XRF) measurements on 4 g of the milled soil with a SPECTRO XEPOS instrument

(SPECTRO Analytical Instruments GmbH, Germany). The soil was mixed with an equal

amount of wax using a ball mill and pressed into pellets. Exchangeable cations (Ca2+,

Mg2+, K+, Na+, and Al3+) were determined with the BaCl2 method (Hendershot and

Duquette, 1986). About 2 g of the air-dried soil (<2 mm) was extracted by shaking for

2 hours with 30 mL of 0.1 M BaCl2 on a horizontal shaker (120 cycles min−1). The

suspension was filtered through no. 40 filter paper (Whatman, Brentford, UK). For

each landscape, two soils were analyzed in analytical triplicates. The concentrations

of exchangeable cations in the BaCl2 extract were measured by inductively coupled

plasma optical emission spectroscopy (ICP-OES, Shimandzu Plasma Atomic Emission
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Spectrometer ICPE-9820). Different BaCl2 extract dilutions were used in order to ob-

tain an optimal signal intensity for the quantification of specific elements across all

samples. Concentration of H+ per kilogram of dry soil was calculated based on the pH

measured in the BaCl2 extractant. The BaCl2 extraction does only slightly modify pH

and is therefore an appropriate method to calculate effective CEC (CECeff) at native soil

pH. Using the concentrations of the BaCl2-extractable cations (i.e., Ca2+, Mg2+, K+, Na+,

Al3+ and H+), CECeff was calculated as the sum of exchangeable cations in centimoles

(cmol) of cation charge per kilogram of dry soil. Exchangeable acidity was defined by

the sum of exchangeable Al3+ and H+. Base saturation in percent was calculated as a

ratio of the sum of basic cations (Ca2+, Mg2+, K+, Na+) in cmol(+) per kilogram of soil to

the CECeff multiplied by 100.

Particle size analysis was conducted by IITA in Cameroon as described in Bouyoucos

(1951). Briefly, 50 g of dried 2 mm sieved soil was stirred with 50 mL 4 % sodium hex-

ametaphosphate and 100 mL of deionized water in a mixer, for breaking down the ag-

gregates into individual particles. Readings with a hydrometer (ASTM 152 H, Thermco,

New Jersey, USA) were taken after letting it stand in the suspension for 30 minutes.

The silt content was calculated by subtracting the measured proportion of sand and

clay from 100 %.

Spectroscopic measurements

The milled soils (n = 94) were measured on a Bruker ALPHA DRIFT spectrometer (Bruker

Optics GmbH, Ettingen, Germany), which was equipped with a ZnSe optics device, a

KBr beamsplitter, and a DTGS (deuterated triglycine sulfate) detector. Mid-IR spectra

were recorded between 4000 cm−1 and 500 cm−1 with a spectral resolution of 4 cm−1

and a sampling resolution of 2 cm−1. Reflectance (R) spectra were transformed to ap-

parent absorbance (A) using A = log10(1/R) and corrected for atmospheric CO2 using

macros within the OPUS spectrometer software (Bruker Corporation, US). The spectra

were referenced to a IR-grade fine ground potassium bromide (KBr) powder spectrum,

which was measured prior to the first soil sample and measured every hour again. All

spectra were recorded by averaging 128 measurements for each of the three sample

repetitions per soil.

Spectroscopic modeling

Processing of soil spectra

Three replicates of spectra were averaged for each sample. The spectra were trans-

formed by using a Savitzky–Golay-smoothed first derivative using a third-order poly-

nomial and a window size of 21 points (42 cm−1 at spectrum interval of 2 cm−1) (Sav-



28 2.2. Materials and methods

itzky and Golay, 1964). Prior to spectral modeling, Savitzky–Golay-preprocessed spec-

tra were further mean-centered and scaled (divided by standard deviation) at each

wavenumber.

Model development and validation

The measured soil properties were modeled by applying partial least squares regres-

sion (PLSR) (Wold et al., 1983) with the preprocessed spectra as predictors. The models

were fitted using the orthogonal scores PLSR algorithm. A 10-fold cross-validation, re-

peated five times, was performed to provide unbiased and precise assessment of PLSR

model performance (Molinaro et al., 2005; Kim, 2009). For each individual soil prop-

erty, the number of factors for the most accurate PLSR model was tuned separately. For

each soil property model, the sample set was repeatedly randomly split into k = 10

(approximately) equally sized subsets without replacement for all repeats r = 1,2, ..,5

and all candidate values in the tuning grid with the number of PLSR factors (ncomp)

= 1,2, ...,10. Within each of the r ×ncomp = 5×10 = 50 resampling data set splits, each

of the 10 possible held-out and model fitting set combinations (folds) was subjected to

candidate model building at the respective ncomp, using k−1 = 9 out of 10 subsets and

remaining held-out samples were predicted based on the fitted models. The root mean

square error (RMSE, eq. (2.1)) of the held-out samples was calculated by aggregating all

repeated K -fold cross-validation predictions (ŷi ) and corresponding observed values

(yi ) grouped by ncomp, which resulted in a cross-validated performance profile RMSE

vs. ncomp.

RMSE =
√∑n

i=1(ŷi − yi )2

n
(2.1)

Based on this performance profile, the minimal ncomp among the models whose per-

formance was within a single standard error ("one standard error rule", (Breiman et al.,

1984)) of the lowest numerical value of RMSE was selected.

Model assessment was done with the best factors for each property using cross-validation

hold outs. We reported the cross-validated measures RMSE, R2 (coefficient of determi-

nation) obtained via linear least squares regression, and ratio of performance to devia-

tion (RPD), after averaging predictions across repeats. The RPD index is the ratio of the

chemical reference data standard deviation to the RMSE of prediction.
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RPD = sy

RMSE
(2.2)

Besides calculating the above listed performance measures, the uncertainty of spectral

estimates was graphically reported for each soil sample, using prediction means and

95% confidence intervals derived from cross-validation repeats (n = r = 5; Eq. 2.3 and

2.4).

S2
n = 1

n −1

n∑
i=1

(yi − ŷi )
2

(2.3)

ŷi ± t (n −1,1−α/2)
Snp

n
;α= 0.05 (2.4)

In order to cover the full training data space in the models for future sample predic-

tions, the final PLSR models were rebuilt using the entire training set and the respective

values of optimal final number of PLSR components determined by the procedure de-

scribed above.

Model interpretation

The mid-IR spectra contain complex information about soil composition and prop-

erties. To establish a predictive relationship, statistical models need to find relevant

spectral features for each soil property. Model interpretation requires a variable im-

portance assessment to decide on the contribution of spectral variables to prediction

and to explain spectral mechanisms. Therefore, we conducted model interpretation

based on the variable importance in projection (VIP) method (Wold et al., 1993; Chong

and Jun, 2005), using the model at respective best number of factors (ncomp). The VIP

measure v j was calculated for each wavenumber variable j as

v j =
√√√√p

A∑
a=1

[
SSa

(
wa j /‖wa j‖

)2]
/

A∑
a=1

(SSa) (2.5)

where wa j are the PLSR weights for the ath component for each of the wavenumber

variables and SSa is the sum of squares explained by the ath component:
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SSa = q2
a tTa ta (2.6)

where qa are the scores of the predicted variable y and ta are the scores of the predic-

tors X . These VIP scores account for multicollinearity found in spectra and are consid-

ered to be a robust measure to identify relevant predictors. Important wavenumbers

were classified with a VIP score above 1. A variable with VIP above 1 contributes more

than average to the model prediction. For model interpretation, we only computed VIP

at the respective finally chosen number of PLS (partial least squares) components afinal

for each considered model. We focused on a selection of three well-performing models

with R2 ≥ 0.8 (RPD ≥ 2.3) to illustrate model interpretation. These were total C, total N

and clay content.

Statistical software

The entire analysis was performed using the R statistical computing language and en-

vironment (version 3.6.0) (R Core Team, 2017). We used the pls (Mevik et al., 2019)

package for PLSR, as described by Martens and Naes (1989). Cross-validation resam-

pling, model tuning, and assessment was done using the caret package (Kuhn et al.,

2019). Custom functions from the simplerspec package were used for spectroscopic

modeling (Baumann, 2019). All data and code to reproduce the results of this study are

available online via Zenodo (Baumann, 2020).

2.3 Results

Measured properties and mid-IR estimates of yam soils

The distribution of soil properties at the yam fields showed a wide variation across the

landscapes (Figure 2.1). Total C concentrations across all fields ranged from 2.4g C kg−1

to 24.7g C kg−1. Total C values at the landscape scale were the lowest (median) in Léo

and the highest in Tiéningboué. Soils from yam fields in the two landscapes from Côte

d’Ivoire (13.0 ± 5.4 g C kg−1 soil; mean ± standard deviation) had relatively higher to-

tal C compared to the fields in the landscapes in Burkina Faso (6.1 ± 3.6 g C kg−1 soil).

The median value and variation of CECeff exhibited similar patterns across the land-

scapes to total C. Total N concentrations across all fields ranged from 0.18g N kg−1 to

2.48g N kg−1. Total N within and across the four landscapes exhibited a similar pattern

as total C. Generally, the landscapes in Burkina Faso were low in total N compared to

those from Côte d’Ivoire (0.44 ± 0.24 g N kg−1 soil vs. 1.09 ± 0.46 g N kg−1 soil). Median
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total N concentrations were almost identical for Liliyo and Tiéningboué (1.1g N kg−1).

Total S concentrations varied between 41mg S kg−1 to 242mg S kg−1 across all fields,

and showed a similar pattern as total C and N. The yam fields in the landscapes of Buk-

ina Faso had on average more than two times higher total S than the other landscapes.

Total P concentrations were in a similar range for the landscapes Léo, Midebdo, and

Liliyo. In Tiéningboué, total P values were on average almost two times higher than the

other fields (817mg S kg−1 vs. 453mg S kg−1), with more within-landscape variation.

Total Fe, total Al, total Ca, total Zn, and total Cu concentrations in the soil tended to

be higher for the landscapes in Côte d’Ivoire than in Burkina Faso (Figure 2.1). To give

an example, median concentrations of total Ca were 2.16g Ca kg−1 in fields sampled

from the Tiéningboué region, and similar in Liliyo (= 1.90g Ca kg−1), while they were

markedly lower in Léo and Midebdo (= 0.90 vs. 1.26g Ca kg−1). In general, the ranges

for total micronutrient contents were more variable in the landscapes of Côte d’Ivoire

(e.g., range = 14−57mg Zn kg−1 in Liliyo; lowest range in Léo = 12.2−19.7mg Zn kg−1).

Total K concentration was highly variable within and across the landscapes (overall

range = 0.5−34.1g K kg−1), and lowest in Midebdo (range = 0.9−8.9g K kg−1), while the

highest total K median was measured for yam fields in Léo (range = 4.1−25.0g K kg−1).

Soil resin-extractable P concentrations varied between 0.8mg P kg−1 to 33.1mg P kg−1.

In Tiéningboué, resin-extractable P was on average higher than in soils of the other

landscapes (Figure 2.1). Median extractable Fe and its interquartile ranges were com-

parable across the landscapes (see Figure 2.1). However, there were some fields where

extractable Fe reached values higher than 100mg Fe kg−1. Median extractable Zn values

showed a similar pattern as total C, with the highest median values and interquartile

range in Tiéningboué and had the lowest in Léo. In comparison, the highest median

values and interquartile range of extractable Cu and Mn were found in Liliyo. For ex-

tractable Zn, Cu, and Mn median values and interquartile range were higher in the two

landscapes in Côte d’Ivoire than the two landscapes in Burkina Faso.

Across all samples and landscapes, soil pH varied between 4.7 and 8.4. Median pH was

comparable in Tiéningboué (i.e., 6.4), Liliyo (i.e., 6.5), and Midebdo (i.e., 6.5). Median

pH of yam fields in Léo (i.e., 6) was lower than in the other landscapes. Exchangeable

K, Ca, and Mg concentrations showed similar patterns across the four landscapes. In

Burkina Faso, each of the exchangeable cations showed relatively low median concen-

trations across the fields and less landscape-level variation than in Côte d’Ivoire. In

general, the highest median and variation of exchangeable cations among the land-

scapes were measured for the yam field soils in Tiéningboué. Median exchangeable

Al values were comparable among the landscapes, although there were some outliers

with exchangeable Al > 20mg kg−1 for Midebdo, Liliyo, and Tiéningboué. The CECeff
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ranged from 0.9cmol(+) kg−1 to 14.6cmol(+) kg−1 across all fields and landscapes. Me-

dian CECeff tended to decreases in the following order across landscapes: Léo>Midebdo

> Liliyo > Tiéningboué. The interquartile range of CECeff was also the greatest in Tién-

ingboué and the smallest in Léo.

Reference measurements for total N, S, exchangeable Ca, exchangeable Mg and CECeff.

were highly correlated to total C (Figure 2.2;ă0.71 ≤ r ≤ 0.92 (CECeff.)). Also, total Ca, Al,

and clay content correlated strongly to total C (r > 0.70). Clay contents were weakly

related to silt (r = 0.21), while sand had a markedly negative relationship to silt (r =
−0.89). Bioavailable Cu and Zn . Resin-extractable P was moderately correlated to to-

tal C (r = 0.53) and pH (r = 0.38). Bioavailable Zn (DTPA) was co-varying with both

CECeff. (r = 0.58) and total Zn (r = 0.59). Bioavailable Cu (DTPA) had a strongly positive

association to total Cu (r = 0.90). Exchangeable K (BaCl2) had the strongest relation-

ship to total C and CECeff. (r = 0.63, and r = 0.64).

Soil mid-IR spectroscopic models

Among the measured soil properties, mid-IR PLSR models for total K (R2 = 0.96) and

total Al (R2 = 0.97) performed best (Table 2.1). Out of a total of 27 soil attributes,

11 were well quantified by the models when considering categorization judged upon

on an R2
cv ⩾ 0.75 criterion (Figure 2.3). The confidence intervals derived from cross-

validation prediction were very narrow, showing all PLSR models were stable. Within

this group of stable models, four soil attributes are directly related to the mineralogy

(total Fe, Al, K and Ca), three are related to soil organic matter (total C, N and S), one

is related to texture (clay fraction), one is related to plant nutrition (exchangeable Fe),

and two are related to mineralogy and plant nutrition (exchangeable Ca and CECeff).

More specifically, total C was accurately predicted, with an R2 of 0.92 and a RMSE

of 1.6g C kg−1. The models were also able to predict total N well (R2 = 0.89; RMSE =

0.16g N kg−1). Prediction accuracy of total S was slightly lower than for total C, but its

goodness-of-fit and RMSE suggest that the model was reliable for prediction. However,

exchangeable K (R2 = 0.28) and BSeff (R2 = 0.24) were poorly predicted (Table 2.1). Pre-

dictions for percent clay were reliable (R2 = 0.81; RMSE = 2.1%), whereas predictions

for percent sand (R2 = 0.45; RMSE = 8.1%) and percent silt (R2 = 0.41; RMSE = 6.5%)

were not accurate. Finally chosen models of all soil attributes had between one and

nine PLSR components.
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Figure 2.2: Correlation matrix of soil properties measured on each 20 soils sampled from in-

dividual yam fields per landscape, and 14 additional agricultural soils received from the World

Agroforestry Center (n = 94; see Figure 2.1 for further details and abbreviated chemical proper-

ties). Pearson correlation coefficients (r ) were rounded to 1 digit.
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Model interpretation

A large proportion of absorptions had VIP > 1 for each the total C, total N and clay mod-

els (Figure 2.4). Important wavenumbers (VIP > 1) for total C were mostly between

3140cm−1 and 1230cm−1. Besides clear absorption peaks, there were relatively contin-

uous spectral features that were important to the models. For example, the relatively

continuous and smooth spectral region between the alkyl C – H vibrations at 2855cm−1

and 2362cm−1 had a comparable contribution to the model as peak regions associated

with total C prediction. The VIP patterns across wavenumbers were almost identical

for total C and N models, and its reference measurements were strongly correlated

(r = 0.94; Figure 2.2). In contrast, the clay content model deviated from the total C

model in particular regions, for example around the kaolinite OH – feature at 3620cm−1

or at kaolinite Al – O – H vibrations at 934cm−1 and 914cm−1.

2.4 Discussion

Accuracy of mid-IR spectroscopy for agronomic diagnostics

Timely and accurate estimates of multiple soil properties are required to better under-

stand and predict soil constraints across the yam belt in West Africa. The soil spectral

library from our study, which includes four landscapes of the yam belt, can be practi-

cal to diagnose and monitor (and eventually manage) soil fertility that is considered

to be low and therefore being a major constraint for yam production in West Africa.

Specifically, our results show that properties closely related to organic matter — total

amount of C, (micro)-nutrients, and exchangeable cations — can be accurately esti-

mated using mid-IR spectra and in the selected yam growing landscapes (Figure 2.3).

Soil organic matter plays a crucial role during vegetative growth and tuber formation

phases of yam, as it guarantees among many other functions the storage and avail-

ability of essential nutrients needed for yam and tuber growth throughout the season,

and as well prevents soil erosion due to it’s structural stabilization capacity. Fertiliz-

ers are becoming more essential to replenish mineral nutrients for prolonged crop-

ping; however, soil organic matter is at high risk of depletion in the regions because

of the increasing land use frequencies and shorter fallows to restore the soil organic C

pools. Thus, when testing sustainable soil and crop management options, for example

to derive region-specific and farm-adapted nutrient management strategies, validated

quantitative statements of soil organic carbon concentrations are of huge importance.

Fertilizers are becoming more essential to replenish mineral nutrients for prolonged

cropping. Nevertheless, soil organic matter is at high risk of depletion in the these re-

gions because of the increasing land use frequencies and shorter 20 fallows to restore
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Figure 2.3: Cross-validated predictions of soil properties (y axis) derived from best mid-IR par-

tial least squares regression (PLSR) models vs. laboratory reference measurements (x axis; see

Figure 2.1). Average estimates, their confidence intervals (error bars), and evaluation metrics

were derived with 5× repeated 10-fold cross-validation. ncomp is the number of PLSR com-

ponents of most accurate final models, RSME is the root mean square error, RPD is the ratio

of performance to deviation. Only soil properties modeled with R2 > 0.75 are shown. CECeff is

the effective cation exchange capacity. Exchangeable (exch.) elements were determined with

BaCl2. Bioavailable Fe was determined diethylenetriaminepentaacetic acid (DTPA) extraction.
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the soil organic C pools. While it is pivotal to develop innovative crop and soil manage-

ment solutions to this problem (O’Sullivan and Jenner, 2006; Frossard et al., 2017; Kiba

et al., 2020), it is also crucial to perform a separate but complementary activity to give

feedback on potential soil changes: developing and applying soil conventional and

proximal sensing methods. When testing sustainable soil and crop management op-

tions, for example to derive region- specific and farm-adapted nutrient management

strategies, putting both validated quantitative statements on the status 30 of soil or-

ganic carbon and local farmers soil knowledge into the equation is crucial (Wawire

et al., 2021). Inevitably, both determining the inherent soil status (i.e., soil texture

and organic carbon) and measuring the chemical and physical environment that reg-

ulates nutrient availability at trial sites (e.g., pH) , is of agronomic and environmental

importance (Foster, 1981). Maintaining and improving soil quality attributes will be

paramount to sustaining soils ecosystem functions and crop yields over time. Activities

to maintain and improve soil properties can for example be oriented towards fostering

nutrient recycling.

Quick and reasonably accurate soil estimates derived from mid-IR spectra and empiric

models as for example outlined in this study can inform the site-adapted timing, plac-

ing and form of nutrient supply based on local soil conditions. Specifically, to give an

example, light-textured soils can attain high tuber yields but at a high risk of losing

large proportions of applied N and K (e.g., O’Sullivan and Australian Centre for Inter-

national Agricultural Research, 2010) — which are both demanded in relatively large

quantities by yam — to the environment (e.g., Diby et al., 2011). Therefore, spectral

estimates of texture can give an indication that applying larger amounts of N and K

at once would 20 not improve yield potential under such situations. Hence, more fre-

quent and local mineral applications of these nutrients after crop emergence, eventu-

ally combined with organic mulch, could improve the fertilizer efficiency and mitigate

negative environmental impacts under these soil conditions. To estimate the avail-

ability of specific (micro)nutrients, however, more efforts need to be made to measure

them at fine temporal and spatial resolution.

The mid-IR model accurately estimated C (RMSE = 1.6g kg−1; Table 2.1; Figure 2.3).

Mostly, only field-scale spectroscopic models achieve such accuracy (Nocita et al., 2015a;

Guerrero et al., 2016), whereas the predictive accuracy reported for larger scale applica-

tion of spectroscopic models is lower than for our model (Viscarra Rossel and Webster,

2012; Stevens et al., 2013; Sila et al., 2016). Models covering a wide geographical range

of soils often result in high prediction errors (Stenberg and Rossel, 2010). Despite differ-

ent soil types and climate regimes across a wide geographic spacing between the cali-

bration fields, we achieved an accurate spectroscopic estimation of total C. The model

was also able to reliably estimate a range of other important soil properties than to-
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tal C. Specifically, other soil variables eligible for a mid-IR quantification include total

N, total S, total Ca, total K, total Al, exchangeable Ca, Fe DTPA, CECeff., and clay con-

tent (R2 > 0.75). The high correlations of total C to N, S, exchangeable Ca, exchange-

able Mg, CECeff., total Ca, Al, and clay content (Figure 2.2) are consistent with Johnson

et al. (2019), who reported very similar associations of clay content and exchangeable

cations (Ca, Mg, K) as well as CECeff. in soils from rice fields (0.54 ≤ r ≤ 0.65) — nev-

ertheless they spectrally modeled a considerable soil variability (20 countries in sub-

Saharan Africa; 42 study sites) and a larger sample size (n = 285) using PLS regression.

At the same time, the measured range and the error in spectral estimates of CEC were

larger compared to ours (RMSE = 6.7 cmol(+) kg−1 vs. 1.4 cmol(+) kg−1; range = 1.9–

66.5 cmol(+) kg−1 vs. 0.9–14.6 cmol(+) kg). Even though, total K and Fe(DTPA) were

poorly correlated to total C, their spectroscopic estimates were relatively accurate. This

suggests that the mid-IR prediction of other soil properties is largely based on their cor-

relation with total C as well as other absorption features of many organic and mineral

soil components having a specific IR adsorption.

We also found reasonable prediction accuracy for Cu(DTPA) (R2 = 0.74) and Mn(DTPA)

(R2 = 0.55), despite that soil nutrients that are extraction-based or dependent on sur-

face chemistry usually have variable predictive performance (Janik et al., 1998). Since

relationships between soil composition and soil matrix exchange processes are typi-

cally complex, some properties may not be represented in the models in a straightfor-

ward manner (Janik et al., 1998; Nocita et al., 2015a).

Although total elements are not necessarily a direct proxy for plant-available nutrients

– with the exception of total C from organic matter — they can be related to mineralog-

ical status, which is influenced by weathering and nutrient supply. For example, total

Fe from iron oxides can be important in controlling the availability of P (Parfitt et al.,

1975), and total P can be correlated to available P in other cases. For yam which is

an understudied crop with a relatively large yield gap fertilizer response to N, P, and K

are often absent on soils that have been under long fallow periods (O’Sullivan and Aus-

tralian Centre for International Agricultural Research, 2010). Even more importantly,

the number of thoroughly conduced yam fertilizer trials in a region and for distinct

soil types is not sufficient for the specific calibration of soil tests with regard to fertil-

izer response and recommendations (OSullivan and Jenner, 2006)

Interpretation of spectral features

All mid-IR spectra that we measured for soils in the four landscapes exhibited a similar

pattern of absorbance (Figure 2.4). The O – Si – O absorptions in quartz at 1080 cm−1,

800–780 cm−1 and 700 cm−1 were a prominent feature in the spectra due to relatively
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high sand contents across the landscapes (range 30% to 92%, median 76%). Our spec-

tra further had hydroxyl (OH) absorptions that are typical for kaolin minerals, at 3695 cm−1

(surface OH), 3620 cm−1 (inner OH), 914 cm−1 (inner OH), and 936 cm−1 (surface OH)

(Madejová et al., 2002). The spectral pattern between the hydroxyl bands at 3695 cm−1

and 3620 cm−1 was relatively consistent and the intensity ratio of these flanking peaks

was close to 1. This is typical for halloysite (0.8–0.9), while the ratio for kaolinite is of-

ten higher (1.2–1.5) and dickite lower (0.6–0.8) (Lyon and Tuddenham, 1960). The two

weak intermediary stretching absorptions at around 3657 cm−1 and 3670 cm−1 indi-

cate surface hydroxyls. Together with the absorption at 936 cm−1, the spectra would

suggest the presence of rather well-ordered prismatic halloysite (Hillier et al., 2016).

This aligns well with the spectral patterns of soils that were assigned to the Halloysite

archetype through similarity mapping (by comparison to the pure mineral spectra) by

Sila et al. (2016). Our spectra confirm the presence of kaolin minerals, which reflects

the advanced state of mineral weathering in these tropical soil types.

Our accurate predictions, which are comparable to field-scale calibrations, are most

likely because of the relatively uniform mid-IR spectra we obtained for our samples.

This suggests a relatively homogeneous soil chemical composition, particularly with

regard to the mineralogy in the sampled soils. Still, the data set presented here is rel-

atively small and no randomized spatial sampling strategy was used for selecting field

locations. Therefore, we propose to the implementation of a spectroscopy-driven ap-

proach to diagnose soils in more yam-growing areas, as an effort to broaden the library

to achieve better spatial coverage of soil variability.

2.5 Conclusions

We developed models with mid-IR spectra to estimate soil chemical and physical prop-

erties relevant to the production of yam and other staple crops in four landscapes in the

yam belt of West Africa. We tested the models for the important soil properties that are

applied widely for agronomic performance evaluation. We showed that mid-IR spec-

troscopy models have the potential for cost-effective and rapid determination of the

distribution and variability of important soil properties across highly variable yam pro-

duction landscapes in West Africa. Specifically, total C, total N, total S, total Fe, total

Al, total K, total Ca, exchangeable Ca, CECeff, Fe(DTPA), and clay content can be quan-

tified with RPD > 2 and R2 > 0.75 when aiming to predict in the range of soil property

values found in the environmental conditions covered by this study. We achieved spec-

tral estimates with quite small uncertainties, that are typically reported for libraries at

the scale of a field or farm. The correlation analysis of measured values together with

spectral inference helps improve our understanding of how soil properties are interre-
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lated with soil functional composition. This study delivered parsimonious, unbiased

and accurate mid-IR spectroscopy-based models to monitor and predict soil quality

and to manage crop nutrition. Hence, we envision this pilot study as being a starting

point to continuously update and adapt the mid-IR model library for more efficient

site-specific and agronomically relevant soil estimates in the West African yam belt.

This can create a better capacity to diagnose and monitor soils in the long term com-

pared with traditional wet chemistry and will hopefully ameliorate the soil conditions

for sustainably meeting the demand of yam and other important staple crops in the

regions.
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Figure 2.4: Variable importance analysis of partial least squares regression (PLSR) models for

total soil C, total N and % clay , including overlaid raw and preprocessed spectra. Top panel

shows resampled mean sample absorbance spectra (n = 94). Prominent peaks were identified

as local maxima with a span of 10 points 20 cm−1) for the selected wavenumbers. Fundamen-

tal mid-IR vibrations that are well described in the literature (e.g., Madejová et al., 2002; Rossel

et al., 2010; Stevens et al., 2013) were added as labels when identified peaks matched literature

assignments. (Q) stands for quartz and (K) for kaolinite. The middle panel depicts prepro-

cessed spectra (Savitzky-Golay first derivative with a window size of 21 points (42 cm−1); 3rd

order polynomial fit). The bottom panel shows variable importance in the projection (VIP) for

three selected well performing PLSR models (total C, total N and % clay; R2 > 0.81). The black

horizontal line at VIP = 1 indicates the threshold above where absorbance at the wavenumbers

explain more than average to the prediction of a certain soil property. Dashed points closely

below the y = 0 line of the VIP graph visualize positive (above y = 0) and negative (below y = 0)

PLSR β coefficients.
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Abstract

Information on soils’ composition and physical, chemical and biological properties

is paramount to elucidate agroecosystem functioning in space and over time. For

this purpose we developed a national Swiss soil spectral library (SSL; n = 4374) in the

mid-infrared (mid-IR), calibrating 16 properties from legacy measurements on soils

from the Swiss Biodiversity Monitoring Program (BDM; n = 3778; 1094 sites) and the

Swiss long-term Soil Monitoring Network (NABO; n = 596; 71 sites). General models

were trained with the interpretable rule-based learner CUBIST, testing combinations

of {5,10,20,50, and 100} ensembles of rules (committees) and {2,5,7, and 9} nearest-

neighbors used for local averaging with repeated 10-fold cross-validation grouped by

location. To evaluate the information in spectra to facilitate long-term soil monitoring

at a plot level, we conducted 71 model transfers for the NABO sites to induce locally

relevant information from the SSL, using the data-driven sample selection method RS-

LOCAL. In total, 10 soil properties were estimated with discrimination capacity suitable

for screening (R2 ≥ 0.72; ratio of performance to interquartile distance (RPIQ) ≥ 2.0),

out of which total carbon (C), organic C (OC), total nitrogen (N), pH, and clay showed

accuracy eligible for accurate diagnostics (R2 > 0.8; RPIQ ≥ 3.0). CUBIST and the spec-

tra estimated total C accurately with the root mean square error (RMSE) = 8.4 g kg−1

and the RPIQ = 4.3 while the measured range was 1 – 583 g kg−1 and OC with RMSE = 9.3 g kg−1

and RPIQ = 3.4 (measured range 0 – 583 g kg−1). Compared to the general statistical

learning approach, the local transfer approach — using two respective training sam-

ples — on average reduced the RMSE of total C per site fourfold. We found that the

selected SSL subsets were highly dissimilar compared to validation samples, in terms

of both their spectral input space and the measured values. This suggests that data-

driven selection with RS-LOCAL leverages chemical diversity in composition rather than

similarity. Our results suggest that mid-IR soil estimates were sufficiently accurate to

support many soil applications that require a large volume of input data, such as pre-

cision agriculture, soil C accounting and monitoring and digital soil mapping. This

SSL can be updated continuously, for example, with samples from deeper profiles and

organic soils, so that the measurement of key soil properties becomes even more accu-

rate and efficient in the near future.

3.1 Introduction

Soils provide a manifold of functions within terrestrial ecosystems, many of which are

vital for humankind. To quantify these functions from the soils’ composition and prop-

erties, one typically relies on physical, chemical and biological laboratory analytical

measurements. Doing this consumes both financial resources and time. For exam-
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ple, repeated measurements are needed to describe soil functioning in changing envi-

ronments, for example in response to agronomic management. Soil visible (vis) and

infrared (IR) spectroscopic measurements and modeling have become indispensable

tools to gather quick, relatively accurate, and inexpensive estimates of soil properties,

both on the field and in the laboratory (Nocita et al., 2015a; Viscarra Rossel et al., 2016,

2017). Once soil chemical and physical properties are calibrated to the spectra, a sin-

gle mid-IR (mid-infrared; 4000 – 500 cm−1; 2500 – 25000 nm) or vis–NIR (visibe near in-

frared; 25000 – 4000 cm−1; 400 – 2500 nm) measurement can be used to estimate multi-

ple soil properties of new samples. Soil is a complex matrix with many organic and min-

eral components. This yields spectra with absorptions that overlap and contain many

and often highly correlated variables. Hence, to successfully develop calibrations and

make predictions for attributes related to soil composition on more samples, statisti-

cal learning methods are needed to find and use relationships between these variables

and measured attributes. It is important to consider that the diversity in spectral char-

acteristics typically reflects the soils’ chemical and physical composition. Since the

soil composition is influenced by the soil-forming factors — soil parent material, cli-

mate, topography, organisms and age of soils (Dokuchaev, 1899; Jenny, 1941) — these

factors provide further means of causally interpreting and judging the applicability of

the method for a particular set of soils. Compared to the NIR, mid-IR offers a more ac-

curate characterization of soils’ chemistry since this region contains the fundamental

vibrations with more defined peaks (Janik et al., 1998; Viscarra Rossel et al., 2006).

A soil spectral library (SSL) can be defined as a well-ordered and harmonized collection

of soil samples, their spectra, analytical reference measurements, contextual informa-

tion, and additional metadata on samples and methods used. A central question be-

hind the development of large SSLs is how to achieve accurate local predictions based

on established collections of soil information — for example, within a new landscape,

ecosystem, farm, field, or plot in a new region — where reference data of only a few

observations are available. More recently, SSLs that span large geographical extents

are being developed (Sila et al., 2016; Viscarra Rossel et al., 2016; Padarian et al., 2019b;

England and Viscarra Rossel, 2018; Briedis et al., 2020; Angelopoulou et al., 2020; Dan-

gal et al., 2019). These efforts are motivated by the prospect that soil spectroscopy

can supplement many conventional methods of soil analysis. A range of predictive

modeling strategies and algorithms have been tested for soil spectral analysis, among

others involving tools from chemometrics (e.g., partial least squares, PLS, regression);

Janik and Skjemstad, 1995), traditional machine learning (e.g., regression tree methods;

Viscarra Rossel and Webster, 2012, to convolutional neural networks (CNNs; Padarian

et al., 2019a,b; Tsakiridis et al., 2020).

There are two main strategies for estimating properties of new soils using spectra. The
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first one is to calibrate one general or global model that is applied to predict new sam-

ples, and the other is to derive local calibrations by conditioning on a specific set of

observations and features of the SSL to new data based on soil knowledge and/or algo-

rithms. However, empirical evaluations of local and global methods are needed in dif-

ferent contexts where data on soil attributes are needed (i.e. soil studies and soil map-

ping projects). Such studies or applications should consider the "no-free-lunch" the-

orems for machine learning and optimization (Wolpert, 1996; Wolpert and Macready,

1997); i.e., there is no single algorithm combination that works best under all situations

or applications.

General statistical learning makes use of all available training data to construct one

parametric model. In contrast, local learning methods combine different learning meth-

ods, supervised and/or unsupervised, and, together with domain knowledge produce

more modular forms of learning (Solomatine, 2008). The available training set can be a

subset and algorithmic submodels, can, thereby be optimized to more accurately pre-

dict new single observations or groups of them. Local learning has also been termed

transfer learning. Transfer learning is a general expression for adapting previous knowl-

edge gained from existing data (i.e., model representation) for a new prediction case

(Pratt et al., 1993; Pratt and Thrun, 1997; Thrun and Pratt, 1998). It has been defined as

a transfer from knowledge in the source task(s) or domain(s)—here an SSL—to a target

domain (Pan and Yang, 2010), and,thus comprises soils from new locations in this case.

The soil spectroscopy community has suggested several approaches to achieve local

calibrations based on an established SSL and its feature space. One example is aug-

menting (spiking) SSLs with a few unweighted (Guerrero et al., 2010; Seidel et al., 2019)

or extra-weighted (Guerrero et al., 2014, 2016) local samples. Other studies calibrated

separate models on partitions of training data that were derived from applying certain

criteria (i.e., geographical region, terrain attributes, parent material, soil type, land use,

spectra-based clustering) (Sila et al., 2016; Ogen et al., 2019). Still others used memory-

based learning based on spectral similarity, extracting useful information from compo-

sitional relatedness of soils (Ramirez-Lopez et al., 2013b; Clairotte et al., 2016; Hong

et al., 2019; Dangal et al., 2019) or additionally geographic proximity (Tziolas et al.,

2019). These all produce individual models for each sample to be predicted. Memory-

based learning combines both lazy learning, where a subset of stored samples are only

retrieved and modeled when new samples are predicted, and local learning principles,

where modeled subsets define points within a local neighborhood (Dietterich et al.,

1993). The spectrum-based learner developed by Ramirez-Lopez et al. (2013b) is a

prominent memory-based method for which each new prediction sample forms its

own target domain. The selection of source instances is governed by spectral similarity.

Therefore, the spectrum-based learner is also considered a transfer learning method.
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Another approach used by Padarian et al. (2019a) was retraining weights within spe-

cific layers of a deep CNN using local (target) sets, which were spectral soil data sets per

country (parameter transfer approach). Finally, the selection of matching SSL samples

using the resampling-based selection RS-LOCAL algorithm has also been used (Lobsey

et al., 2017). Lobsey et al. (2017) showed that this data-driven transfer approach out-

performs most other current methods for deriving local estimates. Still, despite these

promising learners, transferring the useful information contained within large and di-

verse SSLs, and their resulting calibrations onto new, local target areas with unique soil

characteristics remains challenging due to soil complexity.

RS-LOCAL obtains locally-relevant information by selecting specific rows (instances)

from the training set and transferring them to the prediction set. RS-LOCAL is an ex-

ample of an instance or sample transfer approach. It heavily relies on sampling and

performance-driven reduction of the library, yielding a subset of samples that can ac-

curately estimate the properties of soils in the local target task. We wanted to inves-

tigate this promising new method for local soil estimation and monitoring in Switzer-

land because it makes no prior assumptions on which samples from the library could

be useful. This makes it potentially more accurate and also more flexible to new local

soil contexts than when creating constraints with similarity measures. A further advan-

tage for large SSLs is that it removes samples that might be spectrally similar but cause

inaccurate calibrations (i.e., erroneous measurements or spectra with confounding ef-

fects). Such a local approach, however, requires an well-established and sufficiently

diverse SSL in order to extract useful soils that are locally relevant.

Thus, our first goal was to develop a national mid-IR SSL with reference measurements

for Switzerland to deliver 16 key chemical and physical soil proxies. This SSL includes

soils and their analysis data from the long-term Swiss Soil Monitoring Network (NABO;

71 agricultural sites with time series measurements, n = 596) and the Swiss Biodiversity

Monitoring (BDM) network (1094 grid locations, n = 3778). This is the first operational

SSL for Switzerland in the mid-IR that allows means for spectral estimation with suffi-

cient existing soil diversity. The second goal was to develop general rule-based models

for all available soil properties using the CUBIST algorithm. Furthermore, we wanted to

infer important spectral regions in the models and their chemical associations, which

we illustrated with the estimation of total carbon (C) contents.

For soil monitoring and also for determining C stocks, it is crucial to obtain locally ac-

curate spectral estimates of key soil properties such as organic C contents, from high

soil variability in large SSLs and over time. This was our motivation to design a predic-

tive transfer workflow that was adaptive to soils’ composition and properties for each

long-term monitoring site. Hence, our third goal was to leverage the SSL with its spa-
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tial and temporal variability in soils to derive local calibrations by transfer learning with

RS-LOCAL. Specifically, we aimed at showing local models’ capacity to reproduce time

series measurements (starting from 1985) of soil C at the Swiss agricultural long-term

monitoring sites based on spectral analyses and two calibration samples per site. To

the best of our knowledge, there is no study yet that has evaluated the usefulness of a

large and diverse SSL for systematic soil monitoring. We, therefore, wanted to design

a local calibration strategy using transfer learning, that would be effective in reducing

(conditional) errors at monitoring plots compared to the general rules derived in the

first aim. Furthermore, we had a strong interest in identifying the mechanisms, con-

sidering both soil knowledge and data distributions, of how such a local transfer would

induce locally adaptive soil estimation.

In brief, our work addresses the following three objectives: (1) developing a national

SSL, (2) building general prediction models using CUBIST, and (3) building site-specific

(local) prediction models using RS-LOCAL.

3.2 Material and methods

Soils and data sets

To establish the Swiss SSL, we obtained soil samples and reference data from two dif-

ferent sources: 1) the Swiss Soil Monitoring network (NABO), and 2) the Swiss Biodiver-

sity Monitoring (BDM) program (BAFU, 2014; Fig. 3.1). The NABO currently consists

of 108 sites where soils have been continuously measured every 5 years since 1985 for

long-term soil monitoring. Out of the 108 sites, we selected 71 sites under agricultural

management—comprising arable land (33 sites), permanent grassland (26 sites) and

special crops (11 sites; horticulture)—and one protected area. For the mid-IR SSL, we

used 596 NABO soil samples from six campaigns conducted between 1985 and 2015.

The plots at the NABO sites covered 10 m× 10 m each. These were repeatedly sampled

for 0–20 cm soil depth. In total, four replicate samples were taken by stratified random

sampling and bulking 4 × 25 cores from 100 subareas of 1 m2 to account for small-scale

soil variability. Desaules et al. (2010) and Gubler et al. (2019) detailed the sample col-

lection and data harmonization process of the measurements. The soils of the BDM

were sampled at 0–0.2 m depth from positions on a regular grid of 6 km×4 km laid over

Switzerland (a total of 1094 locations). The points that were not sampled were inac-

cessible; these were mostly in the alpine regions. Each sampled location included four

subsamples that were taken at the intersection of the four cardinal directions from the

center point and the circumference of a circle with a radius of 3 m to 3.5 m (Meuli et al.,

2017). Due to its design which covers all major geographic regions in Switzerland—the
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Figure 3.1: Swiss map with sampling locations of mid-infrared spectral library including the

sites of the Biodiversity Monitoring Program (BDM; 6×4 km; n = 1094) and the National Soil

Monitoring Network (NABO; n = 71). 71 NABO sites (10 m×10 m) were sampled with a grid-

based stratified design. 1094 BDM samples were obtained from single sampling events. The

NABO sites have been continuously sampled and measured in five-year intervals since 1985.

Jura Mountains, the Central Plateau and the Alps—the BDM sampling campaign com-

prises a major part of the biogeochemical diversity of soils and predominant land use

types in Switzerland. The wide coverage of soil conditions are an important source of

soil chemical variability.

Chemical reference analysis

Data on chemical and physical soil properties were previously measured and provided

by the NABO group. All laboratory soil analyses for the 16 properties were based on the

protocols of the Swiss standard method (Agroscope, 1996). Mineral elements were de-

termined by extraction with 1:10 ammonium acetate–EDTA solution (AAE10; method

following, Agroscope, 1996). The measured properties were total C, organic C (OC), to-

tal nitrogen (N), pH (CaCl2), CaCO3, clay, silt, sand, CECpot, P(AAE), K(AAE), Ca(AAE),

Mg(AAE), Cu(AAE), Zn(AAE), and Fe(AAE). For samples of BDM and for the more recent

NABO sampling campaigns five and six (years 2009 – 2014), the total C and N measure-

ments were done with dry combustion (LECO TruSpec). For campaigns one through

four (years 1985 – 2014), the OC contents determined with wet oxidation using a mod-

ified Walkley–Black method were transformed into dry combustion equivalents, using

site-specific robust linear regressions (complementary data of campaigns five and six;

Gubler et al., 2018). Carbonates were determined by volumetric calcimetry using hy-

drochloric acid (HCl) for digestion. Organic C was obtained by difference in total C
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and carbonate C when pH was greater than 6.5. Inorganic (carbonate) C was calcu-

lated with 0.12 × CaCO3. The texture was determined by the pipette method. The pH

was measured in CaCl2 using a 1:2 volumetric ratio of soil to water. For CECpot, the ex-

changeable elements were extracted with a 0.05 N-0.025 N HCl-H2SO4 solution, which

was buffered with triethanolamine for soil samples with pH > 5.9. All soil properties

were referenced to dry weight by water correction after drying at 105 ◦C. All chemical

analyses of NABO soils were done on four bulked replicates per site and sampling event.

For BDM locations, four spatial replicates were measured each.

Measuring and processing spectra

All milled soil samples from the NABO and the BDM archive (n = 4374; with a parti-

cle size below 100µm) were measured with the VERTEX 70v Fourier transform spec-

trometer from Bruker (Bruker Optik GmbH, Ettlingen, Germany) at ETH Zurich, us-

ing a high-throughput accessory (HTS-XT) and custom 24-well plates tailored to dif-

fuse reflectance measurements. The mid-IR spectrometer was equipped with a KBr

beam splitter and a mercury cadmium telluride (MCT) detector, which was perma-

nently cooled with liquid nitrogen during the measurements. The reflectance spectra

were acquired between 7500 cm−1 (1333.3 nm) and 600 cm−1 (16666.7 nm) at an ef-

fective resolution of 2 cm−1 and trimmed to the mid-IR range between 3996 cm−1 and

600 cm−1 before further processing (see below).

Each soil sample was measured twice. The soil surface was flattened evenly and with-

out compression by the thin round middle part of the spatula. The first measurement

position of the 24-well plate contained a gold (Au) reference surface, which produced

a single reflectance spectrum for normalizing the reflectance of the 23 following soil

measurements. The "atmospheric compensation" routine, implemented in the Bruker

OPUS software was used to eliminate unwanted absorptions of H2O vapor continuum

and CO2 gas in the measurement chamber, based on the single channel reference spec-

trum measured once on each plate. All single channel reflectance spectra were ob-

tained by averaging 32 internal measurements.

The resulting reflectance spectra (R; background referenced) were converted to ap-

parent absorbance (A ) by A = log10(1/R). Then, an average spectrum per sample

was produced by calculating the mean of all spectral variables for the measured repli-

cates. Finally, the spectrum offset and further scatter effects were reduced and the fea-

tures were transformed with a Savitzky–Golay (Savitzky and Golay, 1964) first derivative

smoother using a window size of 35 variables (70 cm−1) and third-order polynomial fit.

Finally, we selected every eighth spectral variable to reduce redundancy in the spec-

tra (collinearity) and produce more parsimonious spectral estimates of soil properties.
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This resulted in 209 variables between 634 cm−1 and 3962 cm−1, which formed the pre-

dictors for the subsequent general and local transfer modeling.

Data processing and statistical computing

All spectral and reference data were processed and modeled with the R software envi-

ronment for statistical computing and graphics (version 3.6.0; R Core Team, 2019. We

used the caret (?) R package to streamline the statistical learning process. Basic data

transformations, such as data preparation and aggregation, were done using the tidy-

verse (Wickham, 2019) set of packages and data.table (Dowle and Srinivasan, 2019).

The spectral data were handled and processed with the simplerspec (Baumann, 2019)

and prospectr (Stevens and Ramirez-Lopez, 2013) packages.

General soil estimation: rules for the entire SSL

The general soil estimation was done by rules trained with the CUBIST (Quinlan, 1993)

learner, separately developed for each analytical soil measure. We chose this algorithm

since it has shown excellent performance for modeling soil information and develop-

ing SSLs with rather large soil variability and multicollinear spectral variables (Bui et al.,

2006; Viscarra Rossel and Webster, 2012; Stevens et al., 2013; Miller et al., 2015; Peng

et al., 2015; Viscarra Rossel et al., 2016; Dangal et al., 2019; Padarian et al., 2019b), and

because its interpretation is mechanistically more intuitive as it is a form of data parti-

tioning (simple conditions and linear equations). CUBIST first forms model trees using

basic mechanisms of M5 (Quinlan and others, 1992). CUBIST is a form of a rule-based

decision tree with piecewise linear models. Wang and Witten (1996) outlined detailed

principles behind the construction of the model trees and derivation of rules, and Vis-

carra Rossel and Webster (2012) described it for soil spectroscopic modeling.

A CUBIST prediction rule is a unique set of conditions, i.e., "if, then" logical statements,

together with the associated ordinary linear regression model. During training, the

condensed regression equations are made for samples in the terminal nodes. All pre-

ceding split variables are potentially allowed for regression in a final node; however,

some of them are pruned or combined in the rules. The smoothed regression equation

with the selected variables allows one to predict an individual, new observation. CU-

BIST features two empirical parameters that can improve predictions, namely commit-

tees and neighbors. Committees are ensembles of rules that are created by successive

construction of trees, which correct predictions of preceding rules and, thereby, lower

predictive errors by averaging. When neighbors are used (maximum nine), a new train-

ing sample is predicted, using both unweighted or weighted averages of the measured

values of the nearest neighbors, using all features in the training set and the prediction
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of the new sample using the training rule(s).

Model development and validation

We tested a full-factorial combination of {5,10,20,50, and100} committees of rules and

{2,5,7, and9} neighbors to tune the CUBIST models. To obtain realistic estimates of the

models’ general performance, we defined a grouped ten-fold cross-validation scheme

that treated the entire site (e.g., for total C: NABO –71 sites; BDM –1079 sites) as inde-

pendent in the modeling data sets. This made all observations from a site the unit of

prediction, making the procedure equivalent to external cross-validation.

To reduce the bias variance trade-off in the assessment, we repeated the grouped ten-

fold cross-validation (CV) procedure five times (Friedman et al., 2008; Kuhn and John-

son, 2013). The division into training and validation proportions of the data was done

in consistent and repeatable manner (pseudo random number generation). We con-

sidered this site grouping factor as prior information when cross-validation segments

were created, so that samples from a particular site were only present within one seg-

ment (fold) of a cross-validation split. This grouped assignment prevented that the re-

lationships were trained on the model fitting sets and prevented a particular site from

leaking into the testing segments, yielding reliable generalization errors.

We tested the correspondence of mid-IR and model-derived predictions (x̂i ) and mea-

sured standard reference measurements (xi ) with common regression metrics. We

cross-validated the inaccuracy of the models with the root mean square error (RMSE).

The mean squared error (MSE) was further decomposed into mean error (ME) or bias

and the standard deviation of the error (SDE) or imprecision, so that RMSE2 = ME2 +
SDE2 (Viscarrra Rossel and McBratney, 1998). To describe the linear dependency be-

tween measurements and modeled values and give a relative goodness of fit, the coef-

ficient of determination (R2) from linear regression was also reported. All metrics were

aggregated from five estimates from independent resampling repeats. We reported

mean values and standard deviations to provide uncertainties of the estimates.

Deriving important spectral variables

The importance of each spectral variable was assessed based on its usage in the rule

conditions and the model for CUBIST. We used the recursive feature elimination (RFE)

method, a backwards variable-selection algorithm described by Guyon et al. (2002),

to test whether the modeling can be simplified and to find most important spectral

features. Soil reflectance spectra typically contain many correlated and potentially re-

dundant variables. Therefore, constraining them to relevant subsets that feed into the

modeling can further improve predictive accuracy and reduce computation time and



Part 3. Chapter 2: Developing the Swiss mid-infrared soil spectral library for local
estimation and monitoring 53

storage for model updates. We recursively eliminated subsets of variables with low CU-

BIST variable importance, calculated as the average relative usage frequencies of a par-

ticular variable in split conditions and regressions.This step-wise variable reduction

was based on the following predefined subset sizes Si , starting with the full set at i = 1

and ending with the most important predictor at i = 30:

Si = {209,150,120,105,90,75,60,50,40,35,30,25,20,17,14,12,11,10,9,8,7,6,5,4,3,2,1}

(3.1)

The dropped variables at each specific reduction step received identical importance

ranks, from 30 (least important variables) to 1 (most important variable). Importance

ranks were determined with step-wise variable reduction because model-based impor-

tance of a given input variable can substantially change when some correlated vari-

ables occur more frequently than others. Otherwise, using CUBIST importance mea-

sure on the entire spectrum would confound the importance of relevant but highly

correlated variables. Since RFE is a wrapper method of variable selection, external test

sets (resampling) were needed to exclude selection bias in estimating subset perfor-

mance (RMSE) (Kuhn and Johnson, 2013). For this purpose, we nested another inner

layer of resampling for RFE within the five times repeated 10-fold CV scheme. Impor-

tance ranks of variables and outer test RMSEs were averaged from the 50 CV folds. To

decrease computation time, we conducted the RFE with five CUBIST committees. The

RFE procedure and the resampling setup is explained further in the appendix 3.3.

Local soil estimation for plot-level monitoring

We defined a local soil estimation scenario where a new long-term monitoring site was

initiated at time zero (t0). Each one of the 71 NABO sites was assumed to be novel,

while the remaining ones were established with spectral and reference data records.

We, therefore, conducted 71 separate sample selections from the SSL, each yielding dif-

ferent transfer subsets of the SSL, to test spectral-based soil monitoring using the Swiss

mid-IR SSL presented here.We calibrated models at each site using two local samples

per given site and a relevant subset of the remaining Swiss SSL (see description below).

The two local samples were chosen from pooled samples at t0 (first two out of a maxi-

mum of four replicates), or in addition at t1 if there was only one sample in t0. Figure

3.2 illustrates the local modeling workflow. All other samples per given site besides

the two chosen during calibration (in other words, the successive time series measure-

ments at a monitoring plot) were used as local validation samples (Nsite). The respec-
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tive samples from the remaining SSL included spectra and reference measurements

from all BDM samples and NABO samples, excluding the ones from the respective tar-

get site. We used only two calibration samples per NABO site to capture the predic-

tive mechanisms at site level because we wanted to avoid overoptimistic local assess-

ment; both local calibration and validation samples were repeated soil measurements,

and are otherwise — if not adequately handled in the calibration sampling strategy —

at risk of overfitting when soils’ composition and relevant properties show constant

trends over time.
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Figure 3.2: Conceptual scheme illustrating the transfer of the soil spectral library (SSL) to a

long-term monitoring site using the RS-LOCAL approach. The local calibration samples and a

subset of the SSL are used to calibrate a partial least squares regression (PLSR) model, which

predicts the local validation samples.

For each of the 71 sites, the spectral relevant samples from the remaining Swiss SSL

were selected using the RS-LOCAL algorithm (see Lobsey et al. (2017)). The site-specific

samples (msite) denote local calibration samples from a NABO plot. The recursive re-

ductions of the initial training data, which determined the finally yielded subsets (Ksite

) were driven by model performance (RMSE) for the two local calibration samples. For

each NABO site, the corresponding Ksite set was spiked with the two local calibration

samples. On this combined msite+Ksite data set, a final partial least squares regression

(PLSR) model, locally adapted for the monitoring plot by optimization on the calibra-

tion samples, was developed using 10-fold cross-validation. Finally, the local valida-

tion spectra (Nsite) were predicted using the most accurate calibration model.

The search algorithm RS-LOCAL has three empirical parameters to control the samples

that are selected for the local transfer from the SSL (Lobsey et al., 2017). Parameter k

is both the number of samples drawn from the original and reduced library without

replacement and the number of samples of the returned SSL subset. Parameter b is the

number of times k samples are randomly drawn from the remaining data at iteration

i of the performance-driven library reduction. Parameter r is the proportion of sam-

ples, which are consistently in weakest models, that are removed at it each reduction

step. The configuration of the RS-LOCAL search was optimized for each NABO site. For

each site, we ran separate RS-LOCAL runs, testing a full-factorial combination of em-

pirical parameter sets k = {30,50,150}, b = {10,20,50}, r = {0.05,0.1,0.2}. The RS-LOCAL
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procedure is based on PLSR (Wold et al., 1983). For the RS-LOCAL tuning during the

subset selection procedure and final calibrations, we tested 1 to 10 PLSR components.

The finally selected optimal subset per site yielded the smallest RMSE on the two local

calibration samples, and was therefore used to predict the local validation samples.

Uncertainty of spectral monitoring uncertainty: CUBIST vs. RS-LOCAL transfer

To compare the performance of the CUBIST approach and RS-LOCAL transfer, errors

and concordance of both methods were conditionally assessed per individual NABO

(n = 71) site. For CUBIST, grouped cross-validation holdouts were used. Thereby, the

two respective local calibration samples msite were excluded, so that the test configu-

ration was identical to the local transfer scenario. In addition to the mentioned assess-

ment statistics, the ratio of performance to interquartile distance (Bellon-Maurel et al.,

2010; RPIQ; 75th and 25th percentiles) was used for relative comparisons between the

local transfer and rule-based model because it is robust to non-normal and skewed

distributions of measured values.

Evaluating the predictive mechanisms behind the local transfer

For each of the 71 statistical transfers at a plot level, we quantified the similarity be-

tween the selected data sources Ksite (from SSL) and the respective local target domain

{Nsite} (local validation) by multivariate distances across the spectral input variables.

The distance of single observations within {Ksite; Nsite} was referenced to the center of

all data, which led to two respective distributions of distance measures for these sets

of points and per site. This procedure involved two steps, namely (1) compressing the

input data to reduce the "curse of dimensionality" (Bellman, 1962) and being able to

discriminate similarity with spectra (with many dimensions, distance to nearest neigh-

bor becomes similar to distance to farthest neighbor) and (2) calculating the Maha-

lanobis distance using a robust method (see below; Varmuza and Filzmoser, 2016) so

that the location and scatter were influenced by the main data rather than by atypical

observations.

To condense the spectral information over the entire SSL, Savitzky–Golay preprocessed

spectra that included all observations with C elemental measurements were mean cen-

tered, scaled and then transformed by principal component analysis (PCA) using singu-

lar value decomposition. Dimensionality reduction was necessary to avoid computa-

tionally singular values during the subsequent calculation of the covariance matrix (for

the Mahalanobis distance). The first t10 principal components that explained 86.5 % of

the variation in preprocessed spectra were kept for distance calculations. Finally, the

Mahalanobis distance of all the observations to their center was computed with robust
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estimates for both the center and the covariance matrix of the selected PCA scores, us-

ing the minimum covariance determinant (MCD) estimator (Rousseeuw, 1984; Hubert

and Debruyne, 2010).
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3.3 Results

Summary of reference measurements

The samples from the Swiss Soil Monitoring Network (NABO) exhibited the highest

variability across samples for total C and OC (n = 592; Table 3.1). Organic C ranged

from 1 g kg−1 to 583 g kg−1. The texture of the soils varied considerably. The pH had

values between 3.5 and 7.6 and the soils were slightly acidic overall with a median of

5.8. Compared to the NABO data set, the soils from the BDM program covered a wider

set (n = 3723 for total C) and range of measured soil properties. The measured range of

total C for BDM (1 – 583 g kg−1) extended further than that of the NABO. The distribu-

tion of pH values was similar in the NABO and BDM sets. The BDM data also included

the available cations extracted by AAE (see Table 3.1). The median CECpot (potential

cation exchange capacity) was almost equivalent to the value of the NABO sites (24 vs.

23 cmol(+) kg−1). Exchangeable Ca showed the largest coefficient of variation (CV =

1.56) among the measured properties of the BDM set. All soil properties, except pH

and CECpot were positively or neutrally (sand) skewed, for both NABO and BDM data

sets, respectively.

General soil estimation with CUBIST modeling

For most of the properties, minimal cross-validated errors were achieved with 100 com-

mittees and nine neighbors. The rule-based models explained a large proportion of the

variation (R2 > 0.9) in properties that typically have a strong link to total C (organic C

and N; Table 3.3; Fig. 3.3). Clay was accurately estimated (RMSE = 47 g kg−1; RPIQ =

3.0; range = 0–602 g kg−1), whereas sand and silt were less accurately estimated. The

pH was accurately estimated (RMSE = 0.3; RPIQ = 6.5). Our models discriminated a

large proportion in the measured variation of Ca and Mg (ammonium acetate–EDTA)

in the mid-IR (R2 = 0.97 and 0.79; RPIQ = 2.4 and 1.2). Reference values of potential

cation exchange capacity ranged from 0 to 136 cmol(+) kg−1 and were modeled with

an RMSE of 7 cmol(+) kg−1 (R2 = 0.72; RPIQ = 2.0 ). However, the extractable nutrients

P, K, Cu and Zn were insufficiently explained by mid-IR spectral rules (R2 = 0.05 – 0.1;

RPIQ = 0.4 – 0.9). Nonetheless, the rules achieved nearly unbiased property estimates

over all measurements. We found marginal local bias at the largest values, mostly for

variables with positively skewed distributions such as total C (Table 3.3; Fig. 3.3).
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Table 3.1: Summary statistics of the measured soil properties of the Swiss soil spectral
library derived from the sample archive of the Swiss Soil Monitoring Network (NABO)
and the Swiss Biodiversity Monitoring (BDM) program. Total C is total carbon, OC is
organic carbon, CECpot is potential cation exchange capacity.

n No. of Locations Min Max Median Mean SD Skewness

NABO

Total C [g kg−1] 572 71 11 273 33 40 35 3.84
OC [g kg−1] 592 71 11 273 30 37 34 4.03
N [g kg−1] 572 71 1.1 19.9 3.2 3.6 2.6 3.12
pH 574 71 3.5 7.6 5.7 5.8 0.9 0.09
Clay [g kg−1] 80 55 30 590 220 231 105 0.73
Silt [g kg−1] 81 55 150 800 380 397 125 0.95
Sand [g kg−1] 80 55 40 820 400 371 166 0.01
CECpot [cmol(+) kg−1] 121 58 7 136 23 26 17 4.10

BDM

Total C [g kg−1] 3723 1079 1 583 41 55 49 4.04
OC [g kg−1] 3652 1068 0 583 37 50 48 4.55
N [g kg−1] 3724 1079 0.0 26.4 3.2 3.8 2.5 2.91
pH 3765 1094 2.6 8.0 5.6 5.6 1.3 −0.10
CaCO3 [g kg−1] 1565 455 0 885 36 107 144 1.80
Clay [g kg−1] 787 785 5 602 194 213 108 0.71
Silt [g kg−1] 787 785 105 708 303 309 95 0.74
Sand [g kg−1] 787 785 5 817 419 411 168 −0.08
CECpot [cmol(+) kg−1] 674 190 0 94 24 26 12 1.39
P (AAE) [g kg−1] 417 417 1 1047 19 40 77 7.99
K (AAE) [g kg−1] 417 417 22 1255 106 136 115 4.06
Ca (AAE) [mg kg−1] 417 417 141 96250 3927 12226 19127 2.20
Mg (AAE) [mg kg−1] 417 417 16 3196 161 232 259 5.35
Cu (AAE) [mg kg−1] 417 417 2 73 6 8 5 5.32
Zn (AAE) [mg kg−1] 417 417 1 131 4 6 9 8.52
Fe (AAE) [mg kg−1] 417 417 84 1640 342 387 194 1.93
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ś
0

71
ś
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ś
0.

0

Sa
n

d
[g

kg
−1

]
86

7
58

20
10

0
9

16
89

ś
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ś
0.

0

C
a

(A
A

E
)

[m
g

kg
−1

]
41

7
19

62
50

10
0

9
61

4
33

26
ś
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ś
5

0.
79

ś
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Overall, out of the 16 available soil properties, total C, total N, total CaCO3, Ca and Mg

(ammonium acetate–EDTA), OC, CECpot, pH, sand and clay (10) were modeled with

relatively good discrimination capacity in the measured ranges (Fig. 3.3).

Model interpretation and filtering with variable importance

Figure 3.4 shows that the test RMSE of total C first slightly decreased and then steadily

increased from all (209) to less spectral variables using CUBIST and RFE. The lowest er-

ror (RMSEtest = 8.10 g kg−1 total C) of spectroscopic estimation was achieved with the

spectra with 105 variables. For the subsequent variable reduction steps, model perfor-

mance steadily dropped until one wavenumber was left (RMSEtest = 18.8 g kg−1 total

C).

The spectral feature between 1786 cm−1 and 1754 cm−1 was the most important one for

the estimation of total C with CUBIST (Fig. 3.4). The 12 spectral variables with the best

importance ranks across all RFE iterations and test sets derived from the subset sizes

were (starting with the best) 1754 cm−1 (mean(rank) = 1.04) , 1786 cm−1 , 1770 cm−1 ,

2010 cm−1, 2506 cm−1, 1850 cm−1, 1370 cm−1, 2522 cm−1, 1818 cm−1, 1866 cm−1, 2058 cm−1,

and 1386 cm−1 (mean(rank) = 12.7; Fig. 3.4).

Accuracy of the local transfer models compared to the general model

For the example site 65 COR, the best performance of RS-LOCAL was achieved with 55

samples from the SSL (K ), 10 sampling events (B) of size K at each iteration, and 10 %

reduction (r ) at each iteration (Fig. 3.5). Therefore, 55 transfer samples from the SSL

were combined with two site calibration samples previously used to supervise the se-

lection from the data source, to form a PLSR calibration model for the estimation of

the site validation samples (see Fig. 3.5 panel a right). Compared to the target obser-

vations from the site (right part of Fig. 5a and b; measured range = 11.9–16.0 g kg−1 C),

the selected instances were heterogeneous with regard to their characteristic patterns

in raw spectra, their preprocessed feature space, and their measurements (range = 8.7–

97.7 g kg−1 C). The selected instances covered a significant proportion of the first two

components in the feature space of the entire SSL.

The RMSE on the site validation samples (RMSENsite ) at the final subsets varied between

0.01 g kg−1 C and 10.73 g kg−1 C and for all tuning parameter combinations and sites,

and between 0.01 and 3.02 g kg−1 C for the best subsets per site (Fig. 3.8).

The local approach reduced the error of the rule-based approach on average by fac-

tor 4.4 (Fig. 3.6; mean(RMSERS-LOCAL) = 0.7 g kg−1 C; mean(RMSECUBIST) = 3.1 g kg−1 C).

The local transfer was more accurate for the majority of NABO sites (69 out of 71 sites).
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Figure 3.3: Agreement between measured and mid-IR predicted values that were obtained

from CUBIST models. Models’ performance was assessed by site-grouped cross-validation hold-

outs (five times repeated 10-fold). The lines obtained with local regression (LOESS) smoothing

indicate the trends in predictions. Models of soil properties with R2 ≥ 0.72 are shown (see Table

3.3 for more detailed model summaries).
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Figure 3.4: Top: Root mean square error (RMSE) of mid-IR estimates of total C that CUBIST

produced at the respective subsets of spectral variables. The performance profile was obtained

with a recursive feature elimination (RFE) procedure. The error bars represent the standard

deviations of the test RMSE derived with nested cross-validation (n = 50). Middle: Average

importance ranks across the spectrum. Lower rank values indicate higher importance for the

estimation of total C. Ranks were determined with RFE. Bottom: Mid-IR absorbance spectra of

the Swiss soil spectral library (n = 4295; with corresponding total carbon (C) measurements

determined by dry combustion). The unprocessed absorbance spectra are annotated with

the 17 most influential spectral variables (wavenumbers) in the CUBIST model (average impor-

tance rank < 15); these had the highest mean importance ranking determined by the recursive

feature elimination procedure.
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The linear dependency between modeled and measured values was higher for the local

transfer compared to the general model (53 out of 71 sites). Moreover, RS-LOCAL pro-

duced on average 1.3 times less biased estimates of total C per site for 52 out of 69 sites

in terms of absolute values (| ME | = 0.1 g kg−1 C vs. 0.5 g kg−1 C). The ratio of perfor-

mance to interquartile distance (RPIQ) confirmed that local learning in the mid-IR was

able to better discriminate developments of total C over time, relative to its measured

distribution. Overall, local learning with two local calibration samples and targeted

SSL selections allowed for better estimations than the generic CUBIST approach on av-

erage (RPIQ = 3.08 vs. 1.00; RPIQ larger for 66 out of 71 sites). Across all validation data

points of the NABO set, the RS-LOCAL transfer was 5.6 times more accurate for total C

than the general rules in terms of RMSE and RPIQ (RMSE = 0.9g kg−1 C; RPIQ = 31.7)

Predictive mechanisms behind the local transfer

The samples used for the transfer process (RS-LOCAL data) of the example site COR

65 showed high spectral dissimilarity along the first 2 PCs (principal components), ex-

plaining 39.8 % of the preprocessed spectral variance (Fig. 3.5). Compared to the entire

SSL with total C measurements available (the source domain prior selection; range of

PC1 – from −41.4 to 13.0; range of PC2 – from −19.0 to 30.0), the selected transfer sam-

ples of this site occupied a region of major variation in the PC space (range of PC1 –

from −15.4 to 11.4; range of PC2 – from −10.2 to 10.9). The two local calibration sam-

ples and the 12 validation samples on the upper right corner were close to each other

in the PC1-PC2 subspace (Fig. 3.5, panel a, left and right; range PC1: 9.2 to 11.0; range

PC2: 4.9 to 7.5). Not only the absorbance spectra but also the corresponding C refer-

ence values were highly variable compared to the exemplary NABO site (Fig. 3.5, panel

b; 7.3–117.8 g kg−1 C for KRS-LOCAL, and 11.9–16.0 g kg−1 C for the plot of this site). This

particular target monitoring site indicated that RS-LOCAL selected soils from the SSL

with a relatively large spectral diversity and a wide range of total C.

The instances selected by RS-LOCAL filled a substantial proportion of the SSL’s feature

space (Fig. 3.7), confirming the trend of site 65 COR. We found that RS-LOCAL yielded

quite a wide selection of relevant samples from the SSL with reference to both the to-

tal C range and a wide coverage of spectral features expressed with robust multivariate

locations. The spectral estimations of the site validation sets that resulted from RS-

LOCAL-based transfers neither showed trends in the mode or spread for distributions

of C measurements nor in the ones from their spectral distances. The measured distri-

butions of Ksite SSL subsets and Nsite local validation samples for further key soil prop-

erties related to the chemical composition (OC, pH, CECpot, clay and CaCO3) were also

markedly different, confirming the local transfer of quite heterogeneous soils (Table

3.4). For example, standard deviations of the 0 %, 25 %, 50 %, and 75 % percentile dif-
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Table 3.4: Standard deviations (SDs) of the absolute differences in percentiles
(P0,P25,P50,P75, and P100) of final RS-LOCAL subsets (Ksite) and corresponding site vali-
dation samples (Nsite) the across 71 long-term monitoring sites. The aggregated values
for six measured soil properties are shown. Total C is total carbon, OC is organic car-
bon, CECpot is potential cation exchange capacity.

SD
(
|PX (Ksite)−PX (Nsite)|

)
SD

(
|∆P0|

)
SD

(
|∆P25|

)
SD

(
|∆P50|

)
SD

(
|∆P75|

)
SD

(
|∆P100|

)
Total C [g kg−1] 18 22 25 31 61
OC [g kg−1] 25 23 22 22 66
pH 0.8 0.7 0.5 0.6 0.9
CECpot [cmol(+)kg−1] 9.8 10.3 10.6 10.6 23.1
Clay [g kg−1] 110 97 85 68 90
CaCO3 [g kg−1] 74 79 89 98 178

ferences between the transfer sets selected the SSL and the samples from the respective

NABO site were on average between 18 g kg−1 and and 66 g kg−1 for measured C and OC,

respectively. Further, the measured clay and CaCO3 contents were markedly different

between the RS-LOCAL selection and the local validation sets (mean absolute median

differences of 85 g kg−1 clay and 89 g kg−1 CaCO3). This findings correspond with the

dissimilar selection compared to the local target samples found in the PCA space of

preprocessed spectra.
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1) SSL transfer + Site calibration 2) Site validation (65 COR, n = 12)
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Figure 3.5: Illustration of the site-specific transfer modeling of total carbon (C), using RS-

LOCAL for the example site 65 COR of the Swiss Soil Monitoring Network (NABO). Panel a con-

tains the principal components subspace (PC1 and PC2) of the Savitzky–Golay first derivative

mid-IR spectra, and panel b outlines the corresponding absorbance spectra (unprocessed for

illustration), which are colored by the total C content. The left subplots show the SSL trans-

fer samples (n = 55) that were selected from the soil spectral library (n = 4281; excluding all

NABO calibration samples). This subset was most accurate when predicting the two calibra-

tion samples under the mechanisms RS-LOCAL and their optimal tuning configuration for the

site ({K = 50;B = 10;r = 0.1}). The right panels shows the time series data for the validation

samples of the NABO site called 65 COR.
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Figure 3.6: Model assessment of the estimated total carbon (C) of 71 NABO sites for the general

learning with CUBIST (y axis) vs. local learning transfer with RS-LOCAL (x axis). The four panels

depict the root-mean-square-error (RMSE), the mean error (ME), the ratio of performance to

interquartile distance (RPIQ) and R2. The 1:1-line emphasizes the difference between the two

approaches.
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Figure 3.7: Analyzing the mechanisms behind the individual adaptive transfer realized with

RS-LOCAL. Panel a: The left horizontal bars show the root mean square error (RMSE) of mid-

infrared predictions of the temporal validation set Nsite of time series of total carbon (C) for

each of the 71 NABO sites, which was calculated without the two respective calibration sam-

ples. The blue density plots depict the distribution of the site-specific validation samples, and

the brown vertical bars show the measured values of C for the final subsets of SSL used for

the transfer (Ksite). Panel b: The distribution of the robust distances from the PCA center of

Savitzky-Golay preprocessed spectra of the entire soil spectral library compared to the subset

of instances involved in the individual transfer modeling (Ksite) and validation samples (Nsite)

(similarity in site-specific vs. final RS-LOCAL selection), computed with the Minimum Covari-

ance Determinant (MCD) estimator.
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3.4 Discussion

General soil estimation with the Swiss SSL

Many of the chemical properties with distinct links to soil organic matter and the key

minerals (e.g., clays and quartz) were discriminated well with mid-IR CUBIST models

(Table 3.3; Fig. 3.3). Specifically, the models estimated total C, OC, N, pH, texture,

AAE10-Ca and AAE10-Mg with R2 > 0.7. This suggests that the majority of developed

models are useful for applications that require soil proxies in order to manage land

resources. For example, CECpot. (RMSE = 7.0 cmol(+) kg−1) and pH (RMSE = 0.3), have

high ecological importance for nutrient availability in ecosystems. In agriculture, both

measures are key factors for soil fertility and nutrient recommendations.

The accuracy of our estimates for the properties that have direct chemical links, through

compound-associated absorptions, were mostly comparable to established continen-

tal or country-specific mid-IR SSLs. For example, Clairotte et al. (2016) achieved RMSE =
2 g kg−1 for OC using mid-IR and the spectrum-based learner for local predictions,

while Sila et al. (2016) reported RMSE = 4 g kg−1. The accuracy of our general OC es-

timates was lower (RMSE = 9.3 g kg−1; RPIQ = 3.4), which we explain with the relatively

large range of measured values and variable mineralogy (Stenberg and Rossel, 2010).

We found that total C had more CUBIST rules per committee than OC (Table 3.3), in-

dicating that total C, which also included inorganic C (mostly CaCO3), leverages more

chemical constituents and latent absorptions for its estimation. In spite of lower par-

simony, slightly more accurate estimates of total C were achieved (RMSE = 8.4 g kg−1;

RPIQ = 4.3).

The majority of soil properties were most accurately estimated with the maximum

tested 100 committees and nine neighbors. Instance-based correction with similar

data in training set, (nearest) neighbors, yielded considerably higher accuracy for total

C (e.g., RMSE = 8.9 g kg−1 for 20 committees and two neighbors vs. RMSE = 8.1 g kg−1

for 20 committes and nine neighbors; model evaluation across cross-validation folds;

results not shown). The number of rules give a first proxy for model complexity and the

complementary of spectral features that are involved in prediction. The range in num-

ber of rules across the ensembles was widest for total C (6 – 26), similar for OC (4 – 24),

medium wide for CECpot (1 –10), and very narrow for CaCO3 (1 – 5) to give specific ex-

amples. Viscarra Rossel and Webster (2012) report comparably fewer rules (medium –

21; range of all properties – 5 – 64) for OC and relatively similar number of rules for CEC

(15). Nonetheless, such comparisons have to be done with care because the NIR range

has a less pronounced representation of functional groups than the mid-IR range, and

because temperate soils have fundamental differences in chemical composition com-
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pared to more weathered tropical soils. For our mid-IR SSL, we were surprised that

the rules for OC were complex, similar to the ones for total C; in fact, we also could

not find any clear partitioning in the rules with respect to measured ranges and spec-

tral patterns (exploratory analysis not shown), which is in contrast to Viscarra Rossel

and Webster (2012). In fact, this is different from the general patterns found by Vis-

carra Rossel and Webster (2012), where the rules clearly partitioned the data into dis-

tinct measured distributions. Last but not least, the diversity in rules for total C and OC

of the general estimation approach makes the soil diversity selected from the library

and what we found for site-specific local transfer even less exotic (see Sect. 3.4).

The variable importance assessment of the spectroscopic models revealed five major

regions of features with particularly high predictive influence for total C –, i.e., 2890 cm−1,

2522 cm−1, 2010 cm−1, 1754 cm−1 and 1370 cm−1 (Fig. 3.4). We attribute the two ab-

sorption peaks near 2890 cm−1 to C – H stretching vibrations of organic matter (Skjem-

stad and Dalal, 1987), which were also relatively important for estimating C in other

studies (e.g., Janik and Skjemstad, 1995; Viscarrra Rossel and McBratney, 1998). The

important variable at 2522 cm−1 is indicative of C –– O absorption due to the carbonyl

group present in carbonates (e.g., calcite; Nguyen et al., 1991; Soriano-Disla et al., 2014).

The three important absorptions between 2010 cm−1 and 1786 cm−1 result from three

consecutive Si – O – Si (overtone and combination) absorptions, which are indicative of

quartz. However, the most important absorptions near 1754 cm−1 showed no distinct

peak but an edge feature. This is in accordance with Sila et al. (2016), who identified

this region as being most relevant for estimating total C with a (general) random forest

model developed from the SSL of the Africa Soil Information project. This region is

close to the C –– O stretching vibration of the carboxyl group that occurs around 1725 –

1720 cm−1 (Madari et al., 2006), which is further confirmed by the high importance of

these vibrations found by Janik and Skjemstad (1995). The last relatively important

region around 1370 cm−1 was also an edge feature with no distinctly visible peak of

chemical group assigned, which, however, might be influenced by the adjacent car-

boxylate (COO – ) or – CH absorptions at 1400 – 1350cm−1 of aliphatic compounds such

as humic acids (Madari et al., 2006; Parikh et al., 2014). In summary, the CUBIST-RFE

variable importance analysis enabled us to link characteristic absorptions of typically

prominent functional groups of soil organic and inorganic C compounds, and as well

quartz absorptions as indirect correlative features of predictive relevance, with our gen-

eral model-based estimates of total C.

Because the rule-based models we developed can estimate 10 soil properties reason-

ably well (R > 0.6; RPIQ > 2.0; Fig. 3.3), the Swiss SSL will be useful for new soils when

new reference measurements for model adaptation are relatively scarce or not avail-

able. Thereby, the Swiss SSL will be cost and time efficient for characterizing soils of
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similar composition in the near future. The new predictions can further be augmented

with straightforward model interpretation, which allows chemical inference of pedo-

logical aspects to provide means of model applicability. Although the combined BDM

and NABO set comprises a large soil variability in Switzerland, the diversity of subsoils

at depths greater than 20 cm — mostly in terms of the mineral composition — as well as

peat and forest soils are probably not yet represented sufficiently in the SSL. We there-

fore must continuously update the present SSL with more and deeper soil horizons in

the near future.

Local transfer from the SSL for soil monitoring at plot-scale

The local estimates of total C that were derived with RS-LOCAL selection were substan-

tially better on average (RMSE = 0.7 g kg−1 C) as those derived using all of the data and

general CUBIST models (RMSE = 3.1 g kg−1 C; Fig. 3.6). The data-driven estimation at

plot-scale further considerably reduced bias and increased R2 compared to the gen-

eral CUBIST rules.

Our third goal was to analyze the characteristics of soils that were selected from the

SSL and used for establishing locally-adaptive models tailored to the respective long-

term monitoring sites. Surprisingly, the RS-LOCAL subsets selected from the SSL had

rather dissimilar spectra in the robust PCA space (Fig. 3.5; Fig. 3.7); their distances to

the center had a wide distribution compared to the local samples. The Ksite subsets ac-

cordingly covered a large proportion of the spectral input space. The likely dissimilar

chemical composition of soils was also reflected in the reference measurements of to-

tal C. We conducted a broader analysis to interpret the soil context of the selected sam-

ples with further soil compositional covariates (OC, pH, CECpot, clay, CaCO3), which

also did not resemble the soil characteristics of the local monitoring sites (see Fig. 3.4).

These findings together with the accurate validation results clearly indicate that dis-

similarity and diversity in soils can also provide the means for fitting locally-adaptive

models.

Nevertheless, we can yet only speculate about how and why such diverse calibration

sets are able to leverage accurate local calibrations. One hypothesis is that by increas-

ing the range and variability in spectral variables and measurements a model can be-

come quite stable in the central range of local reference measurements because a larger

range of input variables is considered; thereby, the RS-LOCAL subsets that are selected

from the SSL and used for PLS regression would stabilize and reduce the errors of the

local samples. We imagine that we leverage a similar mechanism as in simple linear

regression, where narrowing the range of the independent variable (x) in the train-

ing samples would decrease the accuracy of intermediate values of the independent
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variable. We therefore need to further look into the details of spectral dissimilar learn-

ing, for example, also investigating the relevance of specific spectral features for local

spectral transfers. The inherent working principles of RS-LOCAL are in contrast to the

spectrum-based learner (SBL) or other forms of memory-based learning that utilize

similar samples to infer sample-specific predictions based on existing training data

(Lin and Vitter, 1994; Ramirez-Lopez et al., 2013b). Our approach could describe a

data-driven phenomenon, which implies that spectra can help to estimate a set of un-

related new soils. Another possibility is that there is in fact a pedological explanation

that could be elucidated with more soil covariates such as mineralogy.

Local soil characterization is simpler, quicker and cheaper when a large proportion

of properties of new soils are estimated by spectroscopy. Our results suggest the im-

portance of optimizing the transfer of relevant information present in large SSLs to

minimize the required amount of conventional laboratory analyses of new soils. Soil

chemical and physical heterogeneity can be substantial in large SSLs. Therefore, such

data variation can be beneficial for future predictions of properties of soils. However,

learning a single general model over a heterogeneous training set, and obtaining pa-

rameter estimates optimized with a global measure of goodness of fit can introduce

bias and inaccuracy to local (soil) estimation (Hand and Vinciotti, 2003; Ramirez-Lopez

et al., 2013b; Lobsey et al., 2017). Although the highest estimation accuracy could be

achieved with only soils of the target study area (Stenberg and Rossel, 2010; Guerrero

et al., 2016), it is impractical and inefficient to derive a single spectral prediction model

with those. It requires 1) a large volume of reference measurements for a reasonably

accurate multivariate calibration, and 2) it does not utilize already existing soil infor-

mation.

Currently, the Swiss long-term soil monitoring uses a spatially representative sampling

and then bulking the soils into four replicates for reference measurements (Desaules

et al., 2010; Gubler et al., 2019). When the long-term monitoring would be augmented

with mid-IR spectroscopy, one could make spectral measurements on all subsamples,

rather than only on bulked samples, which would deliver spatially-explicit information

and reduce nuisance factors from different sampling conditions. If not constrained

economically (separate drying, sieving, and milling of sub-samples), a spectral work-

flow could thus allow to account for small-scale soil variability and reduce bias in mea-

surements to robustly estimate temporal soil changes. For example, there is currently

a relatively large variability in C measurements between the bulked replicate samples

at one time point (Gubler et al., 2019). Our results suggest that unbiased spectral

measurements eventually mediate such inconsistencies. Although Gubler et al. (2019)

reported only minor changes for the ensemble of permanent cropland or cropland-

meadow monitoring sites (30), there were four sites with declining trends and nine
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sites with increasing trends in OC (−11% to +16% relative change per decade, respec-

tively). Here, the trend of spectroscopic predictions could be investigated with respect

to specific research questions on agronomic management-induced changes, also with

further physicochemical soil characterization (e.g., OC fractions).

Relatively precise and unbiased geographically-local estimates of soil properties from

diverse and large SSLs can be achived by a handful of data-driven statistical approaches

that are currently popular in the soil science community (Viscarra Rossel and Webster,

2012; Ramirez-Lopez et al., 2013b; Guerrero et al., 2014; Lobsey et al., 2017; Tsakiridis

et al., 2020). Among the methods, we tested RS-LOCAL (Lobsey et al., 2017) in our local

soil monitoring scenario. Compared to memory-based learning, such as SBL (Ramirez-

Lopez et al., 2013b), RS-LOCAL does not precondition the choice of useful subsets based

on similarity in the input dimensions, here spectra, when performing the selection of

SSL samples. The RS-LOCAL method is applied to exhaustively sample instances from

the SSL without replacement, while it preferably selects those that perform well on

the local target set, using PLS regression. An advantage of the method is that it can

deal better with erroneous spectra as well as inaccurate and imprecise analytical ref-

erence measurements in the SSL, because it filters them as irrelevant instances. Be-

sides chemometric and classical machine learning approaches, convolutional neural

networks are being popularized for modeling SSLs with large soil variability (e.g., Liu

et al., 2018; Padarian et al., 2019a,b; Tsakiridis et al., 2020). There seems to be a small

performance gain of a multi-output CNN with a similarity-based error correction using

neighbors compared to the SBL (Tsakiridis et al., 2020; RMSE = 11 g kg−1 vs. 12 g kg−1

for OC). Despite the current development of interpretation methods in deep learning,

CUBIST and PLSR modeling employed in both in the SBL and RS-LOCAL offer easier

interpretation with comparable accuracy to CNNs.

Transfer learning or local learning introduces a new paradigm to supervised learning:

model building is governed by the intended model application and thus coupled to it

(Hand and Vinciotti, 2003). This contrasts general-model application, where the infer-

ence process is separated from the prediction of new data. Including local samples

and their local data characteristics is necessary in order that a combined search and

learning algorithm has a chance to capture predictive mechanisms. At the same time,

the selection process and the partial data dependence within the predictive unit, the

site, requires a careful assessment scheme to prevent a potential selection bias in the

assessment of the approach. To account for this, we kept the respective site-specific

local tuning and calibration set — whose hold-out performance directed the iterative

search process and the reduction of the SSL — at minimum size of two observations at

t0 or in addition t1 when only one measurement was available from the first sampling

(see Fig. 3.2).
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Future applications and updates of the SSL

We found that data-driven modeling with selection of spectral dissimilar soils (see Fig.

3.7) is accurate for inducing local predictions of total C (Fig. 3.6). Hence, there is the

need to further improve data-driven selection using RS-LOCAL, i.e., by further optimiz-

ing the current version of the algorithm. To address this need, we could use combined

memory-based or lazy learning strategies (Stanfill and Waltz, 1986; Lin and Vitter, 1994)

to optimize with more data-driven transfer methods (Pan and Yang, 2010) in terms of

reducing the time needed to evaluate suitable subsets of the SSL for a new applica-

tion. To give an example, some similarity criteria or clustering before doing calibration

sampling could be used as prior information for reducing the SSL size to obtain the

final subsets. In principle, the sample reduction could also be done with algorithms

that can deal with non-linear relationships between spectra and soil properties, such

as random forest or CUBIST. Another extension is to further filter spectral features and

to do data compression to make the local modeling faster and even more adaptive to

local conditions.

Our results showed that a transfer of the SSL to individual monitoring sites yielded very

low bias and was accurate. This indicates that mid-IR spectroscopy and SSLs have the

potential to give quick and relatively precise soil property estimates for soil monitoring.

Nevertheless, the sites of the NABO long-term-monitoring program has not undergone

substantial changes in OC (Gubler et al., 2019). Up to now, although major changes in

C content and organic composition should yield a spectral response, spectral changes

in OC have mostly been reported along chronosequences (i.e., Awiti et al. (2008)), and

only rarely for changes within individual plots over time (Deng et al., 2013). Hence,

to address this, we propose to further investigate to what extent mid-IR spectroscopy

can detect changes of OC considering small-scale variability and different agronomic

management practices. This could for example be achieved with a study using soils

from a long-term field trial, that shows sufficient temporal changes to be detected with

spectroscopy.

The current SSL includes soils that contain between 0 and 583 g kg−1 total C and OC (Ta-

ble 3.1). Because organic soils can have up to 500 g kg−1 OC, and because more than

98% of the samples are mineral soils, organic soils are underrepresented in the current

Swiss SSL. For this reason, Helfenstein et al. (2021) evaluated the present Swiss SSL for

a regional transfer based on new organo-mineral soils from two peat land regions in

Switzerland. Although the range of total C measured was large (14 – 520 g kg−1 C) and

the soils were diverse, as few as 5 or 10 site-specific tuning samples were sufficient

to estimate the validation samples with reasonably accurately (RMSE = < 30 g kg−1 C;

RPIQ > 3.4); this was comparable to a local-only calibration with 50 samples. Helfen-
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stein et al. (2021) found considerably lower conditional prediction errors (< 10 g kg−1 )

when considering measurements of< 100 g kg−1; this suggests that increasing the amount

and compositional complexity of organic soils in the library has potential for more ac-

curately characterizing diverse soil ecoregions with soil high organic matter contents.

Our results suggest that the present mid-IR SSL has great potential for applications

that require soil data in high temporal and spatial coverage (i.e., for deriving quanti-

tative indicators of soil quality for spatial planning or for soil-related environmental

research). Mid-infrared spectral modeling was able to estimate many soil properties

accurately with rather large variation in measurements explained (Fig. 3.3), making

them suitable for agronomic diagnosis and the assessment of soil functions in various

landscapes. Currently, fine grained soil information of properties and function across

agricultural lands in Switzerland is still scarce and often challenging to harmonize (i.e.,

measurement methods) because legacy maps are at varying levels of detail and qual-

ity (Keller et al., 2018; Grêt-Regamey et al., 2018). For example, only 13 % (127000 ha)

of soil in agricultural land has been mapped with soil attributes of sufficient quality

to evaluate its potential for crop production (Rehbein et al., 2020). Soil properties are

also insufficiently mapped nationwide from point into space, depth and over time to

regionally model soil processes, or to evaluate site-specific effects of agricultural prac-

tices on soils (i.e., soil C dynamics). Therefore, we suggest to couple infrared spectral

estimation with traditional soil surveys and digital soil mapping to speed up the col-

lection of soil information in Switzerland and elsewhere. This will offer means to test

and further extend this SSL, so that only minimal amounts of costly and time consum-

ing traditional laboratory analyses will be needed for characterizing and mapping soils’

properties and functions in the next decades.

3.5 Conclusions

We developed the Swiss mid-IR SSL (n = 4374), using legacy soils and reference mea-

surements of 16 properties, from 71 long-term monitoring sites (national soil moni-

toring; NABO) and 1094 locations sampled from a regular grid over Switzerland (bio-

diversity monitoring program; BDM). The trained CUBIST models — a general model-

ing approach using all data — were able to explain a relatively large proportion (R2 ≥
0.72; RPIQ ≥ 2.0) of measured variance for ten of the properties. Total C, OC, total

N, pH, CECpot, and clay content were estimated with high discrimination capacity

(R2 > 0.8; RPIQ > 3.0). Total C was estimated with a cross-validated RMSE = 8.4 g kg−1

at a measured range of 0 – 583 g kg−1, and OC with RMSE = 9.3 g kg−1 at the same mea-

sured range. Compared to the general CUBIST approach, the local transfer yielded on

average 4.4 times more accurate estimates of total C with the mean RMSE = 0.7 g kg−1 C,
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which is a substantial improvement of local estimates at plot-scale. Our similarity anal-

ysis revealed that local learning with subset selection based on RS-LOCAL produced a

chemically diverse calibration set rather than narrowing down soil diversity for local

modeling, as it is for example the case in memory-based learning. The developed na-

tional mid-IR SSL offers rapid soil estimates which are key inputs for many applica-

tions requiring soil information, such as digital soil mapping, agronomic diagnostics

and precision farming, soil C accounting and monitoring, etc. The created mid-IR SSL

and both local and general models can be updated with new soil records, which will

allow to cover more soils conditions and will require less and less soil laboratory ref-

erence measurements in relation to spectral measurements for monitoring, mapping

and modeling new soils.

Appendix A: Figures and tables in appendices

A1 Recursive feature elimination for interpreting general soil estima-

tion with CUBIST

The recursive feature elimination (RFE) procedure started with the initial set of S1 =
209 predictive variables that resulted after processing the spectra (see section 3.2). The

following subset sizes Si representing the number of spectral variables that are retained

after each i th variable elimination step were defined and evaluated within the RFE pro-

cedure:

Si = {209,150,120,105,90,75,60,50,40,35,30,25,20,17,14,12,11,10,9,8,7,6,5,4,3,2,1}

(3.2)

The first variable elimination step (i = 1) started with tuning a full CUBIST model de-

rived from S1 = 209 possible predictors using 10-fold cross-validation, then calculating

the CUBIST model usage statistics for all predictors, next sorting all predictors from

highest to lowest importance, and lastly dropping S1 −S2 = 59 of the least important

predictors. For the next iteration ( i = 2) and the following ones, we repeated this model

fitting and variable reduction procedure with S2 = 150 predictors and the preceding

subsets, until the most important predictive variable (S30 = 1) was left at the last itera-

tion (i = 30).

Variable selection is in addition prone to overoptimistic model assessment when re-

sampling subsets (i.e., cross-validation) are used for two purposes, here model build-
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ing and selection. This selection bias due to data leakage is well-documented for so-

called wrapper methods of variable selection like RFE (Ambroise and McLachlan, 2002;

Kuhn and Johnson, 2013), and occurs if these two tasks are not sufficiently separated by

using independent data sets for each of them; this becomes especially more important

when many predictive variables in relation to to relatively few observations are used,

as it the case for our spectra.

To provide realistic predictive generalization of the RFE method, the aforementioned

iterative selection procedure was done within an internal cross-validation scheme so

that independent data were used to test the performance of the variable selection on

the outer data segments. These outer cross-validation segments served external val-

idation. To quantify the uncertainty of the models using the reduced variable sets

and specifically variable selection, the outer cross-validation layer that served cross-

validation was repeated five times, leading to five independent estimations per sam-

ple.

Tuning profile of the RS-LOCAL parameters for local predictive trans-

fers

The most relevant samples from the SSL at each respective NABO long-term monitor-

ing plot were empirically selected at the RS-LOCAL configuration that yielded the lowest

RMSE on two calibration samples per plot (Fig. 3.8; performance profile). Time-series

validation on the remaining samples of each site was separated from the optimization

in the transfer workflow (see Fig. 3.2).
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Abstract

Sustainable soil management practices should maintain or increase present levels of

soil organic matter (SOM) and organic carbon (OC) stocks in farmlands. SOM is inher-

ently important for the storage and continuous provision of soil nutrients, promotion

of soil structure to prevent erosion and sequester OC in the short to medium term.
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The verification of soil OC changes and its controls needs frequent, spatially-explicit

and reliable measurements of bulk density and OC contents across soil depths. Be-

cause the traditional measurements are too costly and laborious to do this at suffi-

ciently high and financially affordable throughput, soil spectral libraries (SSLs), min-

imal local reference measurements and information transfer to local conditions might

provide an efficient solution to satisfy this high demand of data. Thus, we aimed at

determining the soil OC changes at plot level and across soil depths for short-range

measurements between consecutive time points (∆OC) through mid-IR spectroscopic

calibrations of OC contents (n = 311) for an agronomic long-term experiment (LTE),

which showed primarily tillage-mediated increases of OC contents over five sampling

years between 2002 and 2018. Thereby, we compared purely local mid-infrared mod-

eling (partial least squares regression (PLSR); CUBIST), and both local performance-

driven (RS-LOCAL) vs. similarity-driven (spectrum-based learner; SBL) extraction of

knowledge stored in the mid-IR SSL of Switzerland (n = 4244), together with only 10

LTE observations with analytical measurements for targeted selection and/or spiking.

The purely local cross-validated point estimates were relatively accurate with a root

mean squared error (RMSE) = 1.4 gkg−1 and a ratio of performance to interquartile

range (RPIQ) = 4.8, and were almost unbiased. The SBL approach produced an 1.9-fold

higher RMSE compared to the local PLSR calibration, while the RS-LOCAL approach

with CUBIST modeling across the finally selected SSL subset had only 1.5-times higher

RMSE. The spectroscopically estimated ∆OC were less accurate for the best purely

local model (RMSE(∆OC) = 1.9 gkg−1; RPIQ = 1.7), and was relatively better for RS-

LOCAL (RMSE(∆OC) = 2.5 gkg−1; RPIQ =1.3) compared to SBL (RMSE(∆OC) = 3.2 gkg−1;

RPIQ = 1.0). For SBL, we also found higher non-unity slopes (b = 0.68) for the regression

of measured vs. estimated compared to both RS-LOCAL (b = 0.71) and purely local PLSR

(b = 0.88). We have also found that the gradient in clay contents and contents of inor-

ganic carbon clustered well with the spectra, and that the spatial blocking of the exper-

iment very well accounted for small-range spatial soil chemical heterogeneity. We con-

clude that a locally optimized data-driven selection of beneficial diversity in SSL with

only 3% of novel local reference measurements drastically increases the efficiency of

reproducing plot level ∆OC with the spectroscopic transfer approach. Marginal slope

effects, probably due to unaccounted functional OC complexity in the transfer, call for

more research to improve temporal adaptation of the modeling approaches.

4.1 Introduction

Soil organic matter (SOM) is a heterogeneous mixture of organic substances and one of

the most complex chemical and biological media on earth. SOM supports a plethora

of soil functions that sustain life and ecosystem services, such as carbon (C) seques-
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tration, nutrient cycling, water dynamics, production of food, and providing habitats

and thus enhancing biodiversity. SOM is primarily made of carbon and soil organic

carbon is quantitatively and qualitatively important for many different soil processes,

which foster ecological interactions and transformations (Six et al., 1999). Organic

compounds influence the crop productivity in agroecosystems because they store and

and release water and mineral nutrients. Soil management practices can alter soil con-

ditions and the distribution of contents and forms of organic carbon in spatially and

temporally-explicit manners, e.g., along the soil profile, at micro-scale arrangement

(patchiness of SOM), and in different locations over time. It is therefore critical to mon-

itor its dynamics over time and in space — in context of the soil and environmental

conditions under investigation, and with regard to the extent of agronomic interven-

tions.

The present global challenges such as climate change and soil degradation, which are

a threat to soil and food security, are urging us to better manage our soils as they are

a precious resource. Thus, we need to monitor changes in soil attributes to evaluate

and verify the effects of our interventions, so that we can maintain, restore or even im-

prove soils rather than continue their current global trajectory of soil degradation (Ko-

matsuzaki and Ohta, 2007; FAO, 2020). Agricultural soil carbon crediting is one of the

proposed instruments to steer action towards better soil conservation and improved

soil health. Here, for example, not only records of land use and management changes,

but also a large amount at a high frequency of quantitative data on soils are needed

to do soil monitoring over space and time at low minimal detectable difference (Post

et al., 2001; Conen et al., 2003; Smith, 2004; Viscarra Rossel et al., 2011). Hence, gaining

more data is the only way to ultimately validate positively (or negatively) soil biophysi-

cal changes that occur in terms of ground-truth measurements.

The traditional methods in the laboratory (wet chemistry) are well established and pre-

cise enough for deriving the baseline and change of organic carbon (OC) contents over

time. However, the concept of minimal detectable change (MDC) with required sam-

ples and time periods for reliably measuring changes needs consideration (Necpalova

et al., 2014; Deluz et al., 2020) if given the mean changes are normally distributed (Saby

et al., 2008). The correct determination of changes is still very challenging because of

the interaction of soil C inputs, climate, vegetation and physical, chemical and biologi-

cal soil status, causing large spatial heterogeneity (Post et al., 2001; Spencer et al., 2011;

Arrouays et al., 2012; Smith et al., 2020). Therefore, traditional analyses alone (i.e., dry

combustion before and after adification for OC) are clearly too costly and laborious to

meet the demand of soil data to support most of environmental monitoring endeavors

with those complexities in mind. Alternatively, a practical solution is to utilize spectro-

scopic measurements in the lab and possibly on-field, and intelligently model and in-
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terpret OC contents and also carbon fractions with predictive analytics (Cremers et al.,

2001; Francioso et al., 2005; Zimmermann et al., 2007; Gehl and Rice, 2007; Stevens

et al., 2006; England and Viscarra Rossel, 2018). Mid-infrared (mid-IR) spectroscopy is

particularly useful to describe and model functional diversity and changes in soil or-

ganic matter (McCarty et al., 2002; Calderón et al., 2013). For this, well harmonized

soil, data collections with reference measurements, and a minimal new data set can

be equally important. The crucial part is to maintain these soil archives well and to

make them compatible with quality-controlled measurements from the past, that fit

into the scope of the new diagnostic application. The soil sensing approach roots two

major principles that greatly improve quantitative soil assessment: 1) the ability to

conduct more measurements in local and more coarse study contexts, geographical

extents, and sampling densities, and 2) the parsimonious estimation and interpreta-

tion of spectral signals through statistical modeling (Viscarra Rossel and Bouma, 2016;

Viscarra Rossel et al., 2017). There is greater variance of spectroscopic proxy estimates

that arises from measurement noise and modeling errors compared to chemical and

physical reference analyses. Still, these errors are more than paid off by many more

measurements that are pivotal to deriving robust and relatively unbiased estimates

of changing soil attributes, such as OC. Hence, the sensing paradigm gives statistical

power to quantifying biophysical changes of soils by massively scaling-up the collec-

tion of soil data, so site-specific projections of overall temporal trends of soil OC can

become more feasible.

Established statistical techniques such as partial least squares regression (PLSR; Wold

et al., 1983, 2001) together with other chemometric tools (i.e., signal processing; Del-

wiche and Reeves III, 2010) usually provide accurate calibrations when the spectral in-

tensities are fairly linear to the physical, chemical or biological measurements of inter-

est (Martens and Næs, 1984). The concept of linear dimensionality reduction by latent

projections have also proven to be successful in rather defined soil (data) contexts, as

collected from individual sites up to regions (Fernández Pierna and Dardenne, 2008).

This has in turn facilitated the adoption of local(-only) calibration methods for soil IR

spectroscopy. Custom-made calibrations for isolated areas hosting one or a few chem-

ically distinct soil types, for example at the extents of individual farms (RamirezLopez

et al., 2019), or for subsets of larger spectral libraries are simple to realize in terms of the

standard-modeling approaches (Vohland et al., 2022), but more tricky for application

in new soil contexts. This approach of very (context-)specific calibrations, however,

has the major drawback that the expensive and time-intensive collection of laboratory

reference data and modeling and validation has to be repeated over and over again

for a novel study or project. Further, there is the cost of generally lower accuracy or

completely failing calibrations when new data is too dissimilar in terms of chemical
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soil composition compared to already calibrated soils in a soil spectral library (SSL). Al-

though there are good guideline recommendations for sound soil spectroscopic prac-

tice (e.g., Nocita et al., 2015b), there is no general golden rule for the amount of refer-

ence data needed for calibration as this is typically context-specific (size of data set,

soil variability, geographical extent and sampling density, pedogenetic factors, etc.).

Nevertheless, the number of samples needed for a stable local-only calibration, e.g. at

field-scale or also within smaller landscapes (i.e., land health degradation framework;

Vågen et al., 2012), is typically 25 calibration samples or more (Wetterlind and Sten-

berg, 2010); this is the magical threshold of local-only calibrations below which spec-

troscopic transfer from other related and previously characterized soil collections can

be useful.

There is shareable knowledge available in large soil spectral libraries (SSLs), which

comes along with high soil compositional variability (Vasques et al., 2015; Viscarra Rossel

et al., 2016; Sila et al., 2016). To bring such general soil spectroscopic data sources into

the equation and deal with but also profit from the increasing complexity of soils, ma-

chine learning approaches are often needed for better accuracy (Brown et al., 2006;

Rossel et al., 2010; Viscarra Rossel and Webster, 2012). The reason is that the increas-

ing complexity of soils and relationships to measured properties comes with highly di-

verse spectroscopic feature spaces and predominantly non-linear relationships to the

measured spectra. Despite this, spectral libraries have grown at and over continental

extents (e.g., Viscarra Rossel et al., 2016; Sila et al., 2016; Demattê et al., 2019; Dangal

et al., 2019), not all issues with data representativeness and generalization capacities

have been addressed with highly predictive and often also interpretable machine learn-

ing approaches (i.e., CUBIST; Quinlan, 1993) and memory-based learning, particularly

with the spectrum-based learner (SBL; Ramirez-Lopez et al. (2013b,a)). Such general

or global calibrations on all available training samples can be useful in situations of

data scarcity, for example, when more reference measurements are not affordable. For

example, relatively large errors at new local target sites, that typically spread an area

of few hectares to square kilometers, were problems that were encountered with con-

siderably large SSLs and global calibrations (Guerrero et al., 2016). Recent method

development has lead to a novel data-driven modeling method — ReSampling-local

(RS-LOCAL; Lobsey et al., 2017). RS-LOCAL addresses the main limitations in usabil-

ity of SSLs, which is that they often bring biased prior information that is explicitly

used in modeling, e.g. soil type, geography, depth, or spectral similarity. Because both

RS-LOCAL and the SBL select specific observations (instances) of the source domain

(i.e., SSL), to targeted models for new samples to predict (target domain), they can

both be considered as instance-based transfer learning methods (Pan and Yang, 2010).

Whereas the SBL selects a unique set of neighbors from the SSL to build specific models
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for each new prediction sample, RS-LOCAL determines one set of optimally performing

samples from the SSL for PLSR modeling and prediction for each local target set. Em-

pirical evidence shows that the previous methods do often not improve local predic-

tions. In contrast to this, RS-LOCAL can principally leverage relevant predictive infor-

mation from both (spectral) similarity-based (instance-based) and diversity-leveraging

(learning) paradigms. Hence, this makes SSLs more universally usable. It has also

shown success in spectroscopic estimation when modeling in proximity fails because

of missing training data in the feature space of SSLs or erroneous reference measure-

ments. Results are in particular promising to achieve both site-local (Baumann et al.,

2021) and regional-level adaptation (Helfenstein et al., 2021) with optimal calibration

sets with a selection of chemical diversity that benefits the new prediction tasks. The

reported mid-IR estimation errors were significantly lower than those of large SSLs

combined with general machine learning across all data, but only slightly higher than

purely local calibrations with high data densities for particular soil chemistries.

For soils, spectroscopic diagnostics are prominent in spatial applications, but the col-

lection of soil samples and measurements is often not repeated over time. Hence,

the time component of soil biophysical changes has mostly been limited to chronose-

quences and large-scale land health assessments (Awiti et al., 2008; Vågen et al., 2012;

Deng et al., 2013; Zheng et al., 2016), and only rarely been addressed based on repeated

analyses over time at individual locations at small soil-geographical extents. Recent pe-

dometric work and also an earlier study on experimental amendment with SOM com-

pounds has shown more direct evidence that mid-IR spectroscopy could be efficient

and accurate for detecting shifts in OC contents (Calderón et al., 2013; Sanderman et al.,

2021). However, few have critically assessed the generation of an adaptive statistical

learning framework that keeps track of changes in SOM quality and in particular soil

OC contents over time under different soil mineralogical contexts, and have also criti-

cally discussed how its opportunities and limitations now and back then have changed

(Stevens et al., 2008). Hence, more detailed analysis around the efficient and accurate

transfer of SSLs to field and plot level are still almost absent. A successful application

of mid-IR technology for soil monitoring implies that both spectral measurements and

modeling are responsive to a change in contents of characteristic functional groups —

likely due to enhanced plant residue input and partial decomposition — at individual

agroecological locations. It remains also crucial that spectral interpretation is done for

validating effective biophysical changes in soils. Last but not least, proof-of-concept

requires data sets of sites that have sufficient fluctuations of OC contents compared to

the modeled errors. Since transfer learning with RS-LOCAL at the plot resolution has

not been evaluated in full depth so far in the soil spectroscopic community, but indi-

cated potential as shown in Baumann et al. (2021), we wanted to test this approach for
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its potential in soil monitoring applications.

In this work, we firstly aimed to address the research gap and evaluate the efficiency

of mid-IR spectroscopy to address changes in soil OC contents at short-range spatial

(plot) within field-scale variation based on an agronomic long-term experiment (LTE),

across different agronomic management conditions (experimental treatments), and

changes per plot over time. Secondly, we wanted to elucidate the spectroscopic and

soil compositional (mechanistic) relationships that enable the projection of changes

in SOC over time. Thirdly, we aimed to test the efficiency of transferring relevant in-

formation from the current Swiss mid-IR SSL to field-scale monitoring in terms of the

cost-accuracy trade-off for site-specific reference measurements compared to model-

spectroscopic estimation errors.
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4.2 Material and methods

Experimental site and soil data

We used soils and reference measurements from the archive of the long-term experi-

mental field trial in Frick, Switzerland that has been running since 2002 (Berner et al.,

2008; Fontana et al., 2015; Krauss et al., 2010, 2020). The soils and the soil reference

data from five sampling years (2002, 2005, 2008, 2011, and 2018) was provided by the

Research Institute of Organic Agriculture (FiBL). The Frick long-term experiment ad-

dresses the impact of reduced tillage on indicators of soil fertility and crop yields un-

der organic farming management. The trial has been conducted with a split-split plot

design, whereby subplots are nested within large strip-like main plots (n = 4). The

experimental field is on a stagnic eutric cambisol with loamy clay texture. The clay

content ranged from 420 to 580 gkg−1 (Fontana et al., 2015). The clay mineralogy is

characterized by smectite and illite, and small amount of poorly cristalline kaolinite

(Fontana et al., 2015). For details of the trial layout, more detailed soil conditions, and

the management history, we refer the reader to Berner et al. (2008) and Krauss et al.

(2020).

Soil total OC was measured with wet oxidation by a modified Walkley-Black method,

following the protocols of the Swiss standard method (Agroscope, 1996; Berner et al.,

2008). Corresponding measurements of OC by dry combustion were determined by

measuring total carbon (TC) with a elemental analyzer (Vario Max Cube CHN, Elemen-

tar Analysensysteme GmbH, Langenselbold, Germany) and subtracting inorganic car-

bon (IC) on a different sample aliquot that was heated to 500 °C prior to measurement

with the same instrument.

Spectroscopic measurements

The milled soils were measured on a Bruker Vertex 70v mid-infrared (mid-IR) Fourier-

Transform (FT) spectrometer. We used 24-well plates for high-throughput measure-

ments, in which we measured each soil in two analytical replicates by filling the sample

cups evenly with soils and gently smoothing the surface with the ridge of a spatula. The

first sample position was a gold standard, which was used to reference the reflectance

(R) of the spectra via R = Rsoil/Rgold. The reflectance was transformed into absorbance

(A) using A = log (1/R) and saved on disk in binary format via the Bruker OPUS mea-

surement software. The correction for atmospheric water and CO2 was also performed

in the OPUS software. The spectrometer setting and the measurement procedure was

identical as the measurements done for the establishment of the first version of the

mid-IR SSL for Switzerland Baumann et al. (2021).
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General processing and modeling of spectra

We resampled the spectra from a measured resolution of 1.4 cm−1, to an effective res-

olution of 2 cm−1. To reduce multiplicative and additive noise we did Savitzky-Golay

filtering (Savitzky and Golay, 1964) with a set of window sizes and the first and sec-

ond derivatives prior to the statistical modeling. To reduce the redundancy in Savitzky-

Golay spectra, we selected every 8th variable, which mapped the mid-IR information at

an apparent resolution of 16 cm−1 for modeling. For spectrosopic data pretreatments,

we used the prospectr R package (Stevens and RamirezLopez, 2014).

For local modeling with all samples from the Frick trial, we used a 10-fold cross-validation,

to select optimized preprocessing and to tune and assess the respective best models.

The cross-validation segments were grouped by the plots of the field and repeated 10

times. By grouping the cross-validation by the experimental plot, we ensured the inde-

pendence of training and validation samples. Specifically, we wanted to avoid that any

spatially and temporally autocorrelated and therefore confounding effects could pro-

duce over-fits in the training segments due to inadequate prior information, which in

turn would produce overly optimistic model evaluation in test segments. We describe

the validation strategies for model fitting and evaluation procedures used for the trans-

fer approaches in the corresponding sections below.

We only show results with the locally-best preprocessing optimizations and models.

The principles of empirically testing and the statistical properties of those methods are

generally well elaborated in chemometric and broader machine learning research, and

also well tested on soil data sets.

Local modeling with samples from the long-term trial

To do local learning with generalized patterns, we modeled all preprocessed sets of

spectra with CUBIST and Partial Least Squares Regression (PLSR). Both methods are

highly interpretable and accurate, and therefore highly appreciated and widely used

in the soil spectroscopy modeling community. While CUBIST performs generally bet-

ter for extracting rules from highly diverse calibration sets such as SSLs, PLSR can be

trained with very few samples, and is particularly robust and accurate for small sample

sets with high densities in the local data space. CUBIST was tested with all combina-

tions of the two main empirical parameters (hyperparameters) — model ensembling

with 5 and 10 committees, which are sets of rules derived from tree fitting, and 2, 5, 7,

and 9 neighbors (N ) to adjust the prediction with the n-nearest neighbors. We com-

puted the CUBIST regression models with the Cubist R package.

To uncover the physical and chemical mechanisms that make the detection of SOC
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changes possible, a model variable importance analysis was performed. The relative

importance of spectral variables and regions was derived with relevant importance

metrics for the respective models. We only used the variable importance in the pro-

jection (VIP) metric for PLSR, because PLSR yielded more accurate mid-IR estimates

of OC than CUBIST, consistently for both wet oxidation and dry combustion reference

measurements.

General procedure for transfer learning

The data set of the current mid-IR Swiss SSL that contained corresponding total OC

measurements derived with dry combustion (n = 4244) was used as information source

for transferring knowledge relevant to the soil conditions at the Frick long-term trial.

This library was the basis for the sample transfer using RS-LOCAL and modeling in op-

timized neighborhoods of prediction samples by memory-based learning, specifically

with the SBL. Both transfer learning strategies were fine-tuned accordingly to harvest

efficient, robust and accurate OC estimates. The data setup and workflow for transfer

was influenced by findings from recently published work of the authors, which we ex-

plain in the next paragraph and illustrate in Fig. 4.1. We present identical data setups to

both transfer methods because we want to provide an adequate efficiency comparison

of similarity-driven and completely performance-driven usage of the SSL for plot-scale

soil monitoring to the soil research community.

The transfer scenario aimed to select the most relevant information in the current mid-

IR SSL of Switzerland specifically for the Frick trial, to capture field-level information

from national soil variation. Because the findings in Baumann et al. (2021) indicated

that performing sample transfer learning with RS-LOCAL was quite successful for 71

tested point soil monitoring sites of Switzerland, we here further elaborated this ap-

proach for this long-term experimental site. Our previous results indicated that it was

principally possible to detect temporal trends at decades-time measurement series

when the local sets (target domains) were rather homogeneous in terms of chemical

soil composition and also their mid-IR PCA space (one transfer per single NABO mon-

itoring site each). Along this line, since the Frick trial data indicated a bimodal dis-

tribution of measured carbon, and formed distinct clusters in the mid-IR PCA space,

we decided to apply theRS-LOCAL sample selection algorithm for clusters of spectral

observations from the Frick trial.

We defined an operational scheme for plot-scale transfer for a long-term experimen-

tal site that involves measuring 10 characteristic reference samples from the first year

sampled. The assertive number of samples that would require reference analysis was

chosen because the main motivation to do similarity- or data-driven transfer from a di-
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Figure 4.1: General workflow of transferring information from SSLs to localized modeling at

a long-term experimental (LTE) site. This workflow can significantly increase the amount of

estimated organic carbon (OC) contents for new prediction samples collected. The SSL-to-LTE

transfer workflow for OC monitoring was designed for high efficiency in site-specific spectro-

scopic baseline and temporal change assessments, with minimal amounts of representative

samples that undergo chemical reference analysis for calibration and spiking. The majority

of predictive information is thereby sourced from the harmonized SSL built with soils of high

diversity in spectra (composition) and large range in OC reference measurements, so that 10

representative local reference samples (m) from the first year of the LTE, that are selected un-

der a hierarchical density-based clustering (HDBSCAN algorithm) and standard chemometric

calibration sampling methods (Kennard-Stone), can improve the trade-off between mid-IR es-

timation accuracy and analytical measurement effort.
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verse library would be to save time and financial costs for repeated chemical analyses.

These ten points will serve as local calibration or transfer optimization samples, and

at the same time they are spiking samples for local modeling. We will refer to them as

m set. We use the terminology proposed by the developers of RS-LOCAL and the SBL.

The m site-specific samples will be used as spiking samples in the extended SBL (see

also Fig. 4.1). The recently introduced spiking-functionality in SBL will be explained

in the section of memory-based transfer. For the Frick trial, the local calibration sam-

ples, that are used to steer the selection of the samples from the SSL, were restricted

to the ones sampled in the first year (2002). To capture the main variance in spectra

and hence soil chemical variability evenly for calibration sampling, we used spectra in

optimal preprocessing found in the local modeling scenario and performed a principal

component analysis (PCA) on these. This further facilitated the direct comparison of

local-only and transfer-modeling conditions.

The PCA scores that explained at least 75% of variance in preprocessed spectra (PCs

1–4) were subjected to hierarchical density-based clustering with HDBSCAN (Campello

et al., 2013, 2015). Using a density-based approach that robustly identified clusters on

denoised and dimensionality reduced spectra allowed us to find related data points

that had distinct shapes (sample densities), which were assumed to be associated with

biophysical soil properties. Within each of the two robust hierarchical clusters found,

we assigned the 10 calibration samples proportionally to the total number of samples

present in the density clusters. To obtain a representative calibration set within the in-

dividual cluster spaces, spanning both atypical (edge) and central points equally in the

score space, we again conducted a separate PCA per cluster. Thereby, the calibration

samples were selected with the Kennard-Stones algorithm — to account best for soil

chemical particularities in the local data structures in the modeling procedure. Specifi-

cally, we selected local calibration samples using the first 6 principal components (PCs;

singular value decomposition) of the optimal preprocessing determined for local mod-

eling that explained at least 0.95% of variance in spectra.

Sample transfer from the mid-IR Swiss SSL with rs-local

The parameter k is the final number of samples selected from the SSL and also the

number of samples randomly drawn b-times from the library at each iteration of RS-

LOCAL.

To reduce eventual overfitting in the data-driven optimization of SSL subsets based on

a few local samples per cluster, PLSR fitting in the RS-LOCAL reduction procedure was

constrained within 1 to maximum 10 PLS components. We used a speed-optimized

version of the RS-LOCAL algorithm for tuning the models in the B-loops (PLSR). This
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implementation was based on leave-group-out cross-validation that was derived with

stratified sampling on the distribution of the response, measured OC (25% validation;

75% calibration; 10 sampling repeats across 10 strata). The speed-optimized version of

RS-LOCAL allowed faster and therefore more exhaustive tuning of its controlling param-

eters compared to the original implementation used in (Lobsey et al., 2017), within rea-

sonable times of computation. In this approach, we tested full-factorial combinations

( j ) of r = {0.95;0.98}, b = {50;100;150}, and k = {50,100,150;300;500}. The sampling

rates (b) of the library and its subsets were above the recommendations that are pro-

vided in Lobsey et al. (2017) because further experiments have indicated slight perfor-

mance gains when doing so (personal communication with Raphael Viscarra Rossel).

After reduction of the SSL and the selection of the final best subsets Kcluster;i ;tune, j that

led to minimal root mean squared error (RMSE) on the local mcluster,i samples, PLSR

models were trained on all finally returned RS-LOCAL data sets (Kcluster,i ;tune, j + mcluster;i

(spiking)) using 5-fold cross-validation and ncomp = 1–5 for tuning and assessment.

The RS-LOCAL configuration j for which the final model set indicated the best cross-

validated RMSE was chosen. Then, with the best combination j for each cluster i , the

RS-LOCAL subset selection from the SSL was repeated with the original version of the

algorithm that used PLSR with 10-fold cross-validation in the iterations of the B-loop.

This was to principally reduce the bias component in cross-validated performance

metrics, because it delivered a higher training-to-test set ratio compared to the strat-

ified cross-validation done earlier. The prediction of the test samples Vcluster,i , which

summed up to 301 observations of the Frick long-term experiment in total, was real-

ized with the best models of the cluster-specific RS-LOCAL training sets.

Sample transfer from the mid-IR Swiss SSL with the Spectrum-based

Learner

For memory-based learning, the available training set from the Swiss mid-IR with OC

measurements was identical to the one used in the RS-LOCAL sample transfer. The en-

tire workflow for localized modeling and prediction was computed per density-based

cluster. Here, the site identifiers of the national soil monitoring network (NABO) and

biodiversity monitoring program of Switzerland — which indicated repeated measure-

ments over time and/or space — were used as grouping factor for internal group-leave-

out cross-validation in the SBL. The optimal number of components (PCA or PLS, re-

spectively) used for dissimilarity calculation, which controls the assembly of the neigh-

borhood with local training samples with these projection methods, was done with

optimized principal component (OPC) selection developed by Ramirez-Lopez et al.

(2013a,b). We tested from 1 to 20 components for computing dissimilarity matrices.
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The local modeling in neighborhoods of Frick samples was done with the weighted av-

erage PLS method (Shenk et al., 1997; Ramirez-Lopez et al., 2013b), which was tuned

between 1 and 18 PLSR components.

A custom multi-step similarity selection procedure was elaborated to retrieve optimal

sets of neighborhood samples from the national SSL for each observation of the Frick

prediction set (Ncluster; ntot(Ncluster) = 310). It was inspired by the geographical predic-

tion analysis done within the scope of establishing the Congo SSL by Summerauer et al.

(2021). We adapted the procedure and added more tuning of dissimiliarity for site-level

chemical and physical variability and soil and management context at the Frick LTE.

The procedure started with filtering the training samples of the SSL based on comput-

ing the moving window correlation dissimilarity threshold between SSL and samples

of the Frick trial (N ). This was to yield pre-filtered training sets that excluded irrelevant

SSL observations for every local prediction sample. To empirically choose the opti-

mal correlation dissimilarity threshold and the moving window size (w) specified in

spectral points (variables), the combination of these parameters that yielded the low-

est (aggregated) RMSE of the grouped nearest-neighbor cross-validation statistics in

the training subsets (SSL; k-neighbors) derived with the SBL was chosen. This means

that at this stage we did only plug in local pre-processed spectra, and no local measure-

ments of OC were used in the SBL fitting. Specifically, we tested (tuned) combinations

of w = {3;5;11;23;47;59;93} and a sequence of ρdiss.;cutoffs between 0.025 to 0.4 in in-

crements of 0.025. We limited the range of neighbors that were allowed to be retrained

(kmbl;step1) around each predicted observation for the optimal correlation dissimilarity

to 20 to 500. Then, all samples from the SSL that have never been selected as neighbors

of any local observation were removed from the SSL to be put into the second round of

MBL (filtering based on unique neighbors).

In the second MBL fitting round with the reduced SSL, several different dissimilarity

metrics were tested in combination with fixed number of neighbors starting from 25

and ending with 400 samples in increments of 25. The mcluster local samples were

added to the reduced library for the purpose of spiking, and forced into the neighbor-

hood as part of a recent extension to the resemble R package. The tested dissimilar-

ity methods were PCA distance (Mahalanobis distance computed on principal compo-

nent projection), PLS distance (Mahalanobis distance computed on PLS projection),

Euclidean distance, cosine distance, and the spectral information divergence. The fi-

nal SBL training model was selected based on best RMSE of grouped nearest-neighbor

cross-validation of the training set, based on which the local test samples in the cluster

(Vcluster) were predicted.
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Figure 4.2: Scheme for calculating the differences of soil organic carbon (OC; ∆OC) between

the sampling years (2002, 2005, 2008, 2011, 2018) for each plot and soil depth. For each year

after 2002, we calculated the measured differences in OC contents within each experimental

plot and depth of the time point, to all of the respective preceding years separately. We also

calculated the same ∆OC differences for the mid-infrared estimates from the modeling, and

assessed the agreement between measured and modeled estimates for purely local modeling,

transfer with the spectrum-based learner (SBL), and transfer with RS-LOCAL

Diagnosing changes of organic carbon contents over time with mid-IR

For assessing changes in OC over time at plot-depth level, we defined an approach

that involved calculating all consecutively measured and mid-IR estimated OC differ-

ences. The OC contents obtained for all time points from t0 (year 2002) to t4 (year 2018)

were subtracted from the possible values measured earlier in time (t1–t0), which was

done separately for each plot and depth combination (64 unique spatial, experimental

units) separately (see Fig. 4.2). The calculation of differences in OC contents was done

for the reference measurements (meas. ∆OC ) and their corresponding estimates ob-

tained with mid-IR modeling (pred. ∆OC ). For this, the results of predicted changes

in OC contents were separately assessed for local-only modeling (PLSR), SBL memory-

based learning, and RS-LOCAL local adaption. We also evaluated the performance of

spectroscopic estimates in total OC changes for unique treatment combinations that

had significant effects on measured OC contents (Fontana et al., 2015; Krauss et al.,

2020). These were conventional tillage (CT) vs. reduced tillage (RT), and liquid cattle

slurry (SL) vs. manure compost and liquid cattle slurry (MC).

We assessed the quality and performance of the models with the RMSE, R2, the ra-

tio of performance to the interquartile range (RPIQ) (Bellon-Maurel and McBratney,

2011), and the mean error (bias). Further, for computing and visually comparing the

y-intercept (a) and slope (b) of the linear consistency between observed (O; measured)

and predicted values (P), OP regressions (x-axis: P; y-axis: O) were used. The same

applied for visual displays of assessing the changes in OC over time. Although R2 is not

affected by this swap of PO to OP regressions, a and b are significantly different. There

is both formal proof and empirical evidence that the only correct way to present and

analyze predictive aspects of the slope without spurious effects, that can confound cor-
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rect conclusions, is to do so with OP regressions Piñeiro et al. (2008). For evaluating the

best cross-validated preprocessing and modeling combination, we used the RMSE cal-

culated across all hold-out predictions, and aggregated the performance metrics with

means across all 5 repetitions of cross-validation.

4.3 Results

General performance of local-only models

Among the general approaches tested, PLSR (ncomp = 5) in combination with a first

derivative Savitzky-Golay filter with a window size of 23 points (44 cm−1) and polyno-

mial of second degree, estimated SOC best (R2 = 0.89; RMSE = 1.4 gkg−1; RPIQ = 4.8;

Figure 4.3). For organic C determined with the WB method, the PLSR model (ncomp = 4)

with first derivative SG spectra at a window size of 35 points, which corresponded to a

resolution of 70 cm−1 yielded optimal results (R2 = 0.83; RMSE = 1.6 gkg−1; RPIQ = 3.8).

Cubist had a slightly lower performance for both the WB and DC methods.

General performance for SSL transfer and localized modeling

The PCA-HDBSCAN procedure with the preprocessed spectra of soil samples from 2002

produced two stable clusters of almost equal size when applied on all data with dry

combustion measurements of OC contents (n = 311; n(cluster1) = 156; n(cluster2) =
155)). Five local transfer and spiking samples for each cluster were selected for opti-

mizing the transformation of relevant spectra and reference measurements from the

SSL (m(cluster1) = m(cluster2) = 5), so that the remaining N (cluster) of samples from

n(cluster) were the test or prediction set (N (cluster1) = 151; N (cluster1) = 156).

The SSL transfer workflow with localized modeling predicted the N = 301 test observa-

tions better with RS-LOCAL than with the SBL, with a roughly 1.5-fold increase in RMSE

compared to local-only modeling vs. a 1.9-fold increase for the SBL (Fig. 4.3; RMSE(RS-

LOCAL) = 2.1 gkg−1; R2(RS-LOCAL) = 0.77; RMSE(SBL) = 2.7 gkg−1; R2(SBL) = 0.66). The

RS-LOCAL approach delivered slightly higher RPIQ values compared to SBL (RPIQ = 2.6

vs. 2.3). Both data-driven and similarity-driven transfer delivered relatively unbiased

estimates of OC contents with similar tendency in marginally over-predicting OC con-

tents (ME(RS-LOCAL) = −5 gkg−1; ME(SBL) −4 gkg−1).
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Figure 4.3: Evaluation of best local-only mid-infrared partial least squares regression (PLSR)

calibrations (all samples used in calibration; cross-validated) and estimates derived with both

performance-driven (RS-LOCAL) and similarity-driven (spectrum-based learner; SBL) selection

and prediction workflows (see also Fig. 4.1). Top: For local modeling both organic carbon (OC)

contents determined with dry combustion (DC; panel left; n = 311) and a Walkley-Black wet

oxidation variant (WB; panel right; n = 316) were used. For both, PLSR was the best approach

and performed better than CUBIST (not shown). The OC contents with dry combustion were

best estimated with first derivative Savitzky-Golay smoothed spectra (window size – 23 points;

polynomial degree – 2) and 5 PLSR components (ncomp), and for OC with Walkley-Black the

best performing preprocessing was a first derivative Savitzky-Golay with a window size of 35

points and PLSR ncomp = 4. Bottom: Local transfer results with localized modeling workflow

done within clusters, which was derived with principal component analysis (PCA) scores and

Hierarchical Density-based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm.

For both RS-LOCAL and two-stage memory-based learning approaches, we only used 10 spiking

and/or calibration samples in total (5 per cluster), and determined optimal calibration subsets

with spectra and OC measurements (n = 4244) from the current mid-IR soil spectral library

(SSL) of Switzerland (Baumann et al., 2021)
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Figure 4.4: Cross-validated assessment of the best local mid-infrared partial least squares re-

gression (PLSR) model of organic carbon (OC; dry combustion) contents measured with dry

combustion, conditional on the treatment combination. All points of all repeated measured

per year are discriminated by the block number in the experimental trial that they were sam-

pled from. CT is conventional tillage, RT is reduced tillage, SL is fertilization with liquid slurry,

and MC is fertilization with manure compost and liquid slurry.
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Spectroscopic estimates for carbon trends within treatments and across

individual plots over time

The spectroscopic prediction errors from the best performing local-only PLSR model-

ing were relatively similar for the four main treatment combinations (CT-MC; CT-SL;

RT-MC; RT-SL; RMSE 1.3–1.6 gkg−1). These treatment combinations showed signifi-

cant impact on levels of OC across the years (see also Berner et al. (2008); Krauss et al.

(2020)). For the best local-only model (ncv = 311; RMSE = 1.4 gkg−1), the trends in mea-

sured per plot-depth level changes in OC contents of the different time points were rela-

tively well reproduced from the mid-IR-PLSR estimates (n = 665; range(∆OCmeas.) =−12.5–

11.7 gkg−1; R2 = 0.62; RMSE = 1.9 gkg−1; Fig. ??).

For local-only PLSR, the median and mean estimates reproduced the measured plot-

depth changes between 2018 and 2002 (Median(∆OC2018;2002) = 1.5 gkg−1; Mean(∆OC2018;2002)

= 2.1 gkg−1; n = 58) with an absolute deviation of 0.1 gkg−1 and −0.2 gkg−1, and a rela-

tive deviation of 9.4% and 6.4%, respectively (Table ). The absolute deviations between

mid-IR PLSR estimates and measurements for the first and third quartile were only

slightly higher (0.4 gkg−1; 0.3 gkg−1).

Spectroscopic variability and mechanisms of detecting changes in soil

organic carbon at field and plot level

Samples with higher soil OC contents tended to exhibit constantly higher absorbance

values in the untreated mid-IR spectra. (Fig. 4.7). The clustering into two distinct

absorbance curvatures was pronounced in the preprocessed spectra, and even more so

in the exploration of the PCA score space of the first four loading axes (Fig. 4.6). Many

of the samples with generally lower spectroscopic baselines had the C –– O double peaks

around 2520 cm−1, while samples with high carbon contents had more distinct peaks

at the C – H stretch absorption lines (around 2920 cm−1 and 2855 cm−1). In addition,

samples with less OC and more IC had more narrow (see preprocessed spectra; Fig. 4.7)

and generally lower absorbance peaks at the three consecutive peaks between around

1950 and1750 cm−1. In the organic fingerprint region, visual differences were most

pronounced between 1500 and 1250 cm−1

For the prediction of OC contents with PLSR, the eleven mid-IR variables (wavenum-

bers) of highest importance were distributed in five main regions (Fig. 4.7). These were

at 2966 cm−1, 2982 cm−1, 2998 cm−1, 2950 cm−1 (region 1; VIP = 2.1–1.6); 1750 cm−1,

1766 cm−1, 1734 cm−1 (region 2; VIP = 1.7 –1.5); 1654 cm−1 (region 3; VIP = 1.4); 1478 cm−1

(region 4, VIP = 1.4); and 3574 cm−1 (region 5; VIP = 1.4).
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Figure 4.5: Differences in organic carbon contents (∆OC) of dry combustion measure-
ments (meas.) vs. mid-infrared preditions (mid-IR; pred.) of the Frick long-term trial
within defined plot-depth sample pairs across consecutive years: values at t0 := 2002
to t4 := 2018 (ti ) were substracted from later time points of sampling (t(i+n) := t1 to t4;
i = 0, n > 1; see Fig. 4.2). Three mid-IR estimation strategies were tested. Top panels:
partial least squares regression (PLSR) with cross-validation on the entire local train-
ing set (PLSR local-only). Middle panels: similarity-driven transfer from the current
national mid-IR soil spectral library (SSL) of Switzerland (Baumann et al. (2021)) with
the spectrum-based learner (SBL) in a cluster-wide two-stage dissimilarity approach
including local spiking (SBL transfer; m = 10 local spiking; see also Fig. 4.1). Bottom
panels: Data-driven transfer with RS-LOCAL conducted within the two density-based
clusters (m = 10 local adaptation and spiking samples). Left panels: assessment over
all test data of the Frick long-term trial; observations are colored by their soil analyti-
cal clay contents. Middle (horizontal) panels: conditional model assessment on ∆OC
within the conventional tillage (CT) treatment. Right panels: conditional model assess-
ment on ∆OC within the reduced tillage (RT) treatment. The RMSE is the root mean
squared error, ME is the mean error (bias), R2 is the coefficient of determination of the
linear regression of measured against predicted values. The black lines represent the
linear fits, that are annotated by their respective equation with intercept and slope.
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Figure 4.6: Explorative analysis of the mid-IR variability of the samples of the Frick
trial. The score plots of the principle component analysis of the preprocessed spectra
of the best model training for organic carbon (OC) show characteristic patterns in soil
biophysical properties and error-based outliers.a: PC2-vs-PC1 colored by measured or-
ganic carbon (OC) contents. b: PC-vs-PC1 colored by measured inorganic carbon (IC)
contents. c: PC2-vs-PC1 and PC4-vs-PC3 biplots of soil samples are marked with the
top 5 residual errors with a mean absolute deviation > 4.2 gkg−1. d: PC2-vs-PC1 and
PC4-vs-PC3 biplots annotated with the spatial blocking from the experimental design.
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Figure 4.7: Evaluating mechanisms for estimating OC contents and their changes over
time. Mean absorbance mid-infrared spectra, optimal Savitzky-Golay filtered spectra
(first derivative; window size of 23 points) used for the final partial least squares re-
gression (PLSR) model of OC (ncomp = 5). The variable importance in the projection
(VIP) delineates mid-infrared regions that have a high contribution in the PLSR for OC,
whereby VIP > 1 indicates that a mid-IR variable contributes more than the average
mid-IR variable does to the prediction of OC contents.



Part 4. Chapter 3: Detecting management induced changes in soil organic carbon at
the plot level with mid-infrared spectroscopy 101

4.4 Discussion

General comparison between LTE-only and SSL-to-LTE transfer work-

flow calibrations

The local modeling with all available Frick LTE samples (n = 316 (WB), n = 311 (DC))

was motivated by yielding empirically best spectroscopic calibrations under optimal

data conditions — which is a scenario for research managed trails because of the exten-

sive measurements of OC and other fundamental soil properties. Here, we were able to

reproduce the primarily tillage-induced plot-depth-level changes in OC contents (DC)

between the consecutively sampled years (2002, 2005, 2008, 2011, and 2018; 10 com-

binations of differences) with moderate explanatory and predictive power (R2 = 0.62

and RPIQ = 1.7), but in almost unbiased manner (ME = 0.1 gkg−1). We took maximal

leverage from the information content in mid-IR spectra, so that the PLSR model co-

efficients captured OC in its functional composition at experimental plot, block, time,

and depth resolution. The uncertainties in the mid-IR PLSR point estimates that were

obtained at all sampling times (n = 311), at all plots (32), and their depths (0–10 cm; 10–

20 cm) were 74% smaller than their projections for ∆OC over consecutive differences

(RMSE = 1.4 gkg−1 vs. 1.9 gkg−1). This is an effect of uncertainty propagation, because

OC estimates with spectroscopic measurement, reference analysis and modeling er-

rors at two points are used to calculate each ∆OC.

With only 10 representative reference samples for calibration and spiking within the

transfer scenario (see also Fig. 4.1), the majority of predictive modeling information

was sourced from the harmonized mid-IR SSL of Switzerland (spectra and OC refer-

ence measurements). Data-driven selection and calibration with RS-LOCAL worked

better for estimating both OC contents and also their ∆C values over time, compared

to dissimilarity-based modeling (SBL) (RPIQ(OC; RS-LOCAL) = 3.2; RPIQ(OC; SBL) = 2.6;

RPIQ(∆C; RS-LOCAL) = 1.3; RPIQ(∆OC; SBL) = 1.0)

Soil chemical variability and interpretation of influential spectroscopic

features in local modeling

The spectra of soils with higher OC contents and generally lower contents of IC (carbon-

ates) indicated a clear offset towards higher absorbance values. The soils with an oppo-

site inverse relationship of these two measured compositional properties had the op-

posite effect, which is an albedo effect, which was pronounced by physical scattering

effects in the mid-IR. Soils with higher OC contents tended to have broader absorption

features between 1950 and 1750 cm−1, which can be attributed to Si – O – Si features in

quartz (Janik et al., 1998), that is predominately found in the sand and silt fractions.
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Coinciding with this, we observed lower intensities of C – H double peaks (2920 cm−1

and 2850 cm−1; Calderón et al. (2013)), and distinct peaks for the C –– O vibration found

at 2520 cm−1. This absorption was due to carbonates, probably predominantly from

calcite. Overall, the chemical and textural variability and also the ranges in measured

OC (18.9–40.8 gkg−1) and IC (IC = 0.2–17.7 gkg−1) of topsoil in the field of the Frick LTE

(0.68 ha) were relatively large for the geographic range. The first PC (47.8 %) strongly

discriminated this aspect of soil heterogeneity, whereby low scores indicated low con-

tents of IC, and high scores high IC. In addition, the experiment had a pronounced

clay gradient from north (block 4) to south (block 1) (Fontana et al., 2015) — which

explains the same structure along PC1 when displaying the block in our spectroscopic

explorative analysis (Fig. 4.6). That means that density-based clustering in the transfer

scenario effectively separated the spatial blocks of the LTE and reproduced the spatial

structure of soil heterogeneity (cluster 1: blocks 3 and 4; cluster 2: blocks 1 and 2).

The WB method is known for variable recovery rates of OC. Usually, the deviations from

more accurate DC methods are caused by soil mineralogy (i.e., carbonates; texture) and

different oxidation state of OC that confound its correct determination (Meersmans

et al., 2009; Gubler et al., 2018; Visconti and de Paz, 2021). The correlative analysis

between WB and DC (not shown) revealed that there are non-negligible differences be-

tween those methods (RMSE = 4.1 gkg−1; R2 = 0.81); however the regression line had

a slope of almost 1 (b = 0.99). We found that the local-only PLSR model for OC de-

termined with WB had only a small performance drop compared to the model with

DC (RMSE = 1.6 gkg−1 vs. 1.4 gkg−1), because the mid-IR spectra and modeling al-

lowed to adapt to the differences in average formal oxidation states of OC in these soils,

which is according to Visconti and de Paz (2021) the main reason that results based on

wet dichromate oxidation (WB) deviates from those with DC. Because the results were

more accurate with OC measurements obtained with DC, we continued the transfer

modeling and also the assessment of ∆OC contents at plot-depth level with the mod-

ern, de-facto standard DC method.

The analysis of important model features in the final mid-IR PLSR model clearly showed

that mid-IR regions with soil compositional links to soil OC contributed most strongly

to the prediction of OC in local PLSR (Fig. 4.7). The models were also able to capture a

considerable proportion of variance of OC contents that changed between the years for

each plot and depth (Figure 4.5). Hence, the spectroscopic information imprints the

soil biogeochemical changes and is effectively captured with PLSR modeling. For ex-

ample, the important feature at 1478 cm−1 is in vicinity of 1460–1440 cm−1, which has

amongst others, been attributed to the C–H bending oscillations in polysaccharides

and proteins, and also N – H and C – N stretching (Calderón et al., 2013). The impor-

tant spectral variable found at 1654 cm−1 can be linked to aromatic C –– C and C –– O as
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well as C –– O present in amides (Leifeld, 2006). The second most important region for

the prediction of OC contents was an edge feature at 1750 cm−1, which is influenced

by the C –– O stretch vibrations of the carboxy group located at around 1725 cm−1. Its

interference at the right edge of the three consecutive Si – O – Si vibrations explain the

edge feature. This most important feature for the local-only prediction of OC was al-

most identical to the most important feature at 1754 cm−1 that explained the predic-

tion of total C in the (global) CUBIST rules developed for the establishment of the Swiss

mid-IR SSL (Baumann et al., 2021). These strong model-induced vibrational associa-

tions are mostly linked to moieties in prominent soil organic molecules — for example

carbohydrates, proteins, or (partly) microbiologically decomposed organic matter de-

rived from cellulose and lignin. We therefore conclude that absorbance signals from

aliphatic, carboxyl, and aromatic groups are specifically represented in the local PLSR

calibration.

Although a large proportion of important mid-IR variables are directly linked to func-

tional groups of OC, there are also purely mineralogical links from which the best local-

only PLSR model learned. These include the signal at 3574 cm−1, which is influenced

by clay mineralogy and possibly inter-lattice water, and was one of the top 11 predic-

tors. We also found that the presence of carbonates was negatively correlated with

OC because of the negative PLSR coefficients at the characteristic band at 2520 cm−1

(Fig. 4.7). Altogether, the mid-IR measurements and the modeling indicate the capac-

ity of mid-IR to predict OC contents. This capacity emerges in direct and proportion-

ally significant mid-IR signals that change in response to dominant absorption fea-

tures of a complex mixture of compounds that make up organic matter — and not

only with signatures from the mineralogy. Hence, our data set and analysis supports

that mid-IR predictive modeling works efficiently and robustly for estimating contents

and changes at plot-resolution and under considerable functional complexity of OC,

although this mingles with a gradient in clay fraction (range = 420–580 gkg−1) and car-

bonate contents (range(IC) = 0.2–17.7 gkg−1) in the soil matrix.

Similarity driven vs. local-performance driven prediction based on

soil spectral libraries

The results on transferring relevant samples from the current Swiss mid-IR SSL indi-

cated that mid-IR and data-driven modeling was the better strategy to estimate plot-

depth-level differences in OC between the evaluated time differences compared to

dissimilarity-driven transfer (Fig. 4.5; RPIQ = 1.3 vs. 1.0). It yielded a 1.5-fold higher

RMSE compared to LTE-only local modeling for time point estimates of OC (Fig. 4.3)

and it was relatively more accurate at the level of predicted ∆OC with an 1.3-fold in-
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crease compared to the local-only approach. However, RS-LOCAL transfer imposed

non-unity slope effects (b = 0.71) that were stronger than for PLSR local-only mod-

eling (b = 0.88), but markedly better than the two-stage SBL (b = 0.47; Fig. 4.5). For

local-only PLSR modeling and also the RS-LOCAL and SBL approaches, the RT treatment

yielded less confounded slopes and improved RPIQ values (RPIQ(local-only PLSR = 2.2;

RPIQ(RS-LOCAL) = 1.7; RPIQ(RS-LOCAL) = 1.3).

We were able to do the transfer with only 3% new local reference analyses required to

estimate OC for 311 samples of the Frick LTE from plots with different treatments and

repeats over the five sampling years. Thus, our workflow for SSL transfer and localized

modeling had a really efficient analytical measurement to spectroscopic model error

ratio. The approach was moreover sufficient to capture locally-relevant relationships

in the SSL, so that the estimation of the remaining samples of the Frick trial was suf-

ficiently accurate and relatively unbiased to reconstruct temporal fluctuations in OC

over time at plot level. We can, however, explain the success of the transfer by the

unique soil mineralogical composition of the soil at the Frick long-term trial, which is

to a large degree already represented in the the current mid-IR Swiss SSL.

Despite the overall closely unbiased agreements between measured and PLSR local-

derived estimates in OC contents for time point-plot estimates and also by treatment

combination (Fig. 4.3; Fig. 4.4), the mid-IR model tended to over-predict ∆OC con-

tents for soil samples with rather high increases in OC contents, which was most pro-

nounced in the RT treatment. This can be a sign of unaccounted response of spec-

tral regions that change purely due to functional changes in OC compounds. This

perspective gates novel perspectives that are probably needed for specifically train-

ing functional carbon compounds independently of soil mineral matrix effects (cross-

sectional correlations). This aspect is almost completely neglected in current soil spec-

troscopic research. Furthermore, we made some interesting discoveries within the

cluster-based searches of best performing subsets of the SSL selected with RS-LOCAL.

Despite that spectroscopic clustering should principally decrease non-linearity in the

localized modeling, and RS-LOCAL inherently should select for linear relationships in

the latent variable spaces (PLSR), we found considerable bias on the test set after we ap-

plied a final PLSR model (RS-LOCAL set). We have also found significant soil chemical

diversity for plot level transfer of the Swiss long-term soil monitoring sites (NABO; Bau-

mann et al., 2021), but there we allowed RS-LOCAL to learn in explicitly locally-linear

contexts because we did separate transfers over sites at very small extents (10× 10 m);

therefore, PLSR was sufficient. In the Frick data set, however, we could eliminate the

majority of bias on the Frick test set by training the spiked final selection (K + m) set

in CUBIST. Our conclusion is thus that with more temporal applications of soil spec-

troscopy and potential limitations, concepts of RS-LOCAL can even be further devel-
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oped and improved in the non-linear direction of instance-based transfer learning.

We found systematic but only small under-prediction of the actual observed differ-

ences between the years (Fig. 4.5), although the ensemble of predictions had negligible

bias — which was close to zero. Our interpretation of this is that there is not only direct

spectral information on concentrations of organic C compounds but also mineralogi-

cal context, e.g. related to carbonate contents or clay mineralogy, that has a correlative

relationship to OC contents. The latter contribution is, in contrast to the first one, not

expected to change too much in short-term over the duration of the experiment. For

under-predictions of the OC differences between the years, the small-scale mineralog-

ical context that helps to predict the OC content for a particular soil sample might be

dominant over the spectral response in changing organic moieties; or at least measur-

able change in mid-IR spectra is not captured specifically in the general model built

across all samples. The variable importance analysis is supporting such a granular

view on distinct (major VIP peaks linked to groups of organic molecules) and more cor-

relative chemical predictors of OC contents (mineralogy) distributed along the mid-IR

spectra.

Accountability of the bias-variance trade-off for estimating soil OC changes

with mid-infrared spectroscopy

The application of soil sensing is guided by the principles of gaining more measure-

ments to characterize local soil and environmental conditions. Sensor measurements,

particularly visible-near and mid-infrared spectrometers resolve the chemical and phys-

ical composition and those attributes that are strongly linked to them, very rapidly and

inexpensively. The lower accuracy of spectroscopic modeling compared with classical

laboratory reference measurement methods is compensated by many more spectro-

scopic measurements and estimates of multiple soil attributes (speed and low cost)

through the predictive workflow. Large spatial and temporal heterogeneity in soils that

arises from inherently complex interactions of soil, environmental (biotic and abiotic),

land use and management factors, demand a huge scaling-factor in soil sampling and

determination of soil properties Saby et al. (2008). We therefore believe that local-only

calibrations, that need relatively high data densities in locally-linear soil contexts for ev-

ery new application (typically from 30 to 150 samples with reference measurements),

are not the main way forward for verifying sustained and sustainable soil use and soil

protection across large geographical extents. There are specialized applications (i.e.,

experimental soil research), where this approach is clearly useful. However, the major-

ity of societies’ stakeholders that have a high demand of quantitative soil data across

landscapes are mostly interested in improvement of locally unbiased transfer meth-
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ods. This is because expanding SSLs continuously with diverse soils reduces the de-

pendence on calibration samples measured with traditional lab methods.

4.5 Conclusions

Until now, despite the significant advances in soil spectroscopic research over the last

two decades, there has been little direct proof-of-evidence that soil spectroscopy mod-

eling can significantly enhance and support OC monitoring through detecting management-

induced temporal changes in OC for long-term field experiments, via plot level transfer

of predictively useful information from large SSLs. With this work we deliver conclusive

results that confirm that we can predict and explain a significant amount in the trajec-

tory of changes of OC content at plot level, that are on average slightly higher than

the typical estimation errors reported in studies with high-density local calibrations

(field, farm, and regional level) and many lab reference measurements. A detailed, site-

local, spatially explicit and temporally integrated predictive analysis in combination

with a diverse SSL of medium size at national extent is a novelty. We found that we

only needed very few additional OC reference measurements because these local cali-

bration and augmentation samples (n = 10) could be optimally used. The results were

significantly more accurate for completely data-driven modeling with RS-LOCAL com-

pared to similarity-driven modeling with the SBL method, but relatively unbiased for

both localized modeling approaches across all data. Nevertheless, we also still found

considerable non-linearity aspects in transfer sets selected from the current mid-IR

SSL of Switzerland, which we addressed with CUBIST. Further, non-unity slope effects,

possibly due to the mineralogical context, need to be taken into account in the assess-

ment of OC changes. Our work brings first and foremost credible evidence to the soil

science community that spectroscopy with diverse SSLs and localized modeling work-

flows can not only scale-up to many more measurements of OC over spatial extents,

but is also relatively effective in addressing the temporal component. Moreover, it re-

mains that we need to update SSLs continuously to allow for adaptation in new pedo-

logical contexts, and also create locally-linear knowledge (increased sample density).

With this, we hope that infrared spectroscopy can contribute to soil measurement/-

modeling, verification and reporting initiatives, and still further support experimental

research in soils and farming.
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Research findings and conclusions

Chapters 1 and 2 tackled the development of regional and country-level mid-IR SSLs.

The first chapter was about establishing a relatively small SSL for project-specific agro-

nomic purposes but across four very diverse soil agroecological zones in West Africa

(Ivory Coast and Burkina Faso). The project landscapes spanned a climatic gradient

between humid forest and northern Guinean savannah. This SSL was constructed for

soils with yam growth potential and targeted the assessment of regional-level varia-

tion in properties relevant to soil quality and nutrient supply. The second chapter tar-

geted a considerably larger and more variable soil samples across Switzerland for the

establishment of a soil mid-IR data and model collection with legacy data. The Swiss

mid-IR SSL is the compilation of country-level soil variation at gridded locations of

the Swiss biodiversity monitoring (BDM) and the agricultural sites from the Swiss long-

term monitoring (NABO). The Swiss mid-IR SSL was first established in regard to local

monitoring and soil survey purposes, but also to build soil research capacities in gen-

eral. Specifically, this work involved developing general rules for 16 soil properties and

also showcasing the potential of local adaptation with relevant samples from the SSL

for estimating temporal trends of soil C for each of the 71 monitoring sites individually.

Finally, in chapter three I had the opportunity to test the compiled national mid-IR SSL

as a data source for transferring both targeted, spatially and temporally explicit infor-

mation for the prediction of samples of an LTE field at plot level. In this chapter, I also

included a detailed analysis of the uncertainties and the soil conditions. Specifically, I

tested the scaling possibilities of mid-IR workflows to estimate management-induced

changes of OC contents at individual experimental plots.

107



108 5.1. Good practice for developing spectroscopic libraries and models

5.1 Good practice for developing spectroscopic libraries

and models

I consider the careful study of properties of statistical data splitting and resampling

methods central to the problem of soil IR calibrations (as in any other domain using

statistical learning; e.g., Stone, 1974; Varma and Simon, 2006; Friedman et al., 2008).

For this, Stenberg and Rossel (2010) provide some background specific to soil spec-

troscopy, for example on independent validation. The model evaluation procedure the

basis for deriving suitable, stable empirical model parameters and producing a gener-

alized evaluation of model uncertainties, at least within the data context at hand. This

firstly avoids the injection of auto-correlations that can cause overfitting on data in re-

gression context. Resampling should be further considered at any stage of the model

selection process. The resampling scheme — for model parameter tuning, preprocess-

ing, and evaluation — is in my opinion at least as important as getting acquainted with

soils and their chemistry together with knowledge about soil formation processes.

According to statistical learning theory, the model error (i.e., mean squared error; MSE)

can be decomposed into systematic and asymptomatic error terms (i.e., due to noise

or overfit; precision), which are bias and variance (Friedman et al., 2008). The so-called

bias-variance tradeoff of the different resampling methods and learning algorithms still

seems to receive little attention in the soil spectroscopic community overall. For exam-

ple, there is good reason to disadvise single test-train splits for model development

evaluation in small and highly variable data sets (n < 100), and use CV instead. I will

later in this chapter elaborate why this also needs particular attention for modeling

larger spectroscopic data sets over space and time because of auto-correlation caused

in such profile data. For now, a simple explanation is that multiple realizations mod-

eling and assessment partitions increases the bias in the assessment metrics through

principles of averaging, which lowers bias in those estimates. In fact, the use of 5-fold

or 10-fold CV has been encouraged in machine learning and also for sample sparse

but high-dimensional data in chemometric calibrations to be specific (Kohavi, 1995;

Molinaro et al., 2005; Beleites et al., 2005).

To further reduce — as we have done thoroughly throughout the modeling in chap-

ters one, two and three — the high variance (but low bias) that generally comes with

k-fold CV, we can repeat the resampling procedure multiple times. I usually repeat my

standard 10-fold CV scheme five times. Further realizations of the training population

by splitting the data set in fixed segments therefore produce further means to report

uncertainties of the model metrics. If the k-fold cross-validation or other resampling

schemes are repeated, multiple holdouts of the same observation can also help to as-

sess the robustness of the chosen resampling and modeling scheme. This version of
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repeated CV is in my opinion much more adequate than bootstrapping (Efron, 1983)

is for deriving modeling uncertainties, particularly when many more repeats are cre-

ated in CV. This is because bootstrapping violates the independence of training and

test instances, since 63.2% of training samples are present in multiple copies, which is

too dangerous high-dimensional spectroscopic applications (Friedman et al., 2008; i.e.,

over-fit), regardless of sample size (overfit in machine learning). Bootstrap resampling

and also the derived out-of-bag estimates (36.8% unique samples) are, in contrast, use-

ful for giving low variance estimates for tuning empirical model parameters (hyperpa-

rameters) separately from model selection and evaluation (Efron and Tibshirani, 1997;

Kuhn and Johnson, 2013). It would be certainly best practice if the additional test set is

entirely structurally independent from the soil training samples (Stenberg and Rossel,

2010).

From a soil spatial modeling perspective, a complete independence of validation from

the training can however only be guaranteed when making another probability sam-

pling and design-based inference; thus, by collecting additional soil descriptive and

measurement data that is independent of those sampled as inputs for mapping (Brus,

2019; Wadoux and Brus, 2021). Besides, spatially stratified k-fold CV has been advised

in environmental mapping, but it has been recently challenged due to its controver-

sies and its use has even been entirely disadvised in pedometrics (Wadoux et al., 2021).

The enforcement of vast geographical separation in clustered assessments is believed

to disrupt context-dependent learning of small-scale local spatial relationships that oc-

cur within the typical ranges of the variograms in soil landscapes (Wadoux et al., 2021).

This is in my opinion indeed a valid point made, however, there is no comparable work

for soil spectroscopic analyses yet. I think its useful to compare those aspects of soil

infrared modeling evaluations with aspects of uncertainty in mapping with the factors

of soil formation in its multi-scale nature (Behrens et al., 2019). At the same time, I

believe it is important to further delineate where soil spectroscopic modeling has its

particularities and in what points data differs from soil spatial modeling. I will in the

following reason about paradigms of chemical complexity of soils in chemical sense. It

seems also important to me to have a perspective on spectroscopic information con-

tents with regard to mid-IR in statistical learning. In chapter one, however, no precau-

tionary grouping measures in CV were necessary, because the measurements used for

modeling were from one pooled soil sample originating from spatially distant and bio-

physically relatively independent properties of farmers’ fields (80 smallholder farmers,

one sample per field of max. a few hectares in size) in the four landscapes.

Because of the purely chemical and physical aspects of soil composition seen from

the lens of spectroscopy, the intensity responses in infrared spectra are to a certain

degree context-independent. For example, the same clay minerals can be present in
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different soil types. Therefore, soil spectra also at least partly transferable for univari-

ate responses of interest (measured properties), across different sets of soils. I refer to

this as inter-soil knowledge. This type of knowledge is the basis that transfer learning

approaches and intelligently designed workflows can address the useful knowledge of-

ten better for new target soil domains than training one general model over all data

of an SSL. The matrix of minerals and a multitude of overlapping vibrations of impor-

tant functional groups in molecules builds the backbone of shareable and transferable

inter-soil knowledge. Even though soils are probably the most complex media on earth,

infrared fingerprints of its individual components (e.g., sand, clay minerals, functional

groups of organic molecules in SOM) are characteristic and relatively unique. Hence,

I hypothesize that the compositional information content in spectra that can be trans-

duced by modeling across soil samples from different geographical locations is gener-

ally higher for soil infrared spectroscopy than for simulation modeling of soil processes

across landscapes on very variable scales. Thus, this makes the spectroscopic model-

ing approach also more susceptible to over-fit than soil spatial modeling in DSM.

My most important concern for statistical resampling in the realm of soil spectroscopy

is, therefore, that we should consider spatial or temporal auto-correlation. We should

do so particularly when the training data, for example the SSL, contains repeated mea-

surements at the exact same sampling location or plot and over time. This can be soil

sampled in proximity multiple samples in depth along the soil profile or also repeated

measurements over time. I have experienced such particular situations that require

attention in the modeling process, for example the BDM set (1094 locations each with

sampling radii of 3–3.5 m from a grid of 6×4 km) but also the long-term soil monitoring

sites of Switzerland (NABO set; 71 sites; subsampling from 10×10 m area) have local

replicates with measurements every 5 years since 1985. Thus, for deriving and testing

general rules on all these different, partly overlapping, sources of training data with

principally high degree of short-range local and temporal autocorrelation, we used a

grouped 10-fold CV approach. By considering the site identifier as a grouping infor-

mation, I could entirely avoid that local spectroscopic information on the modeled re-

sponse would otherwise be used in training and testing at the same time, which would

inarguably result in over-optimistic model assessment for rather adaptive non-linear

methods such as CUBIST, but also PLSR. In chapter 3, I followed the same line of argu-

ment when defining the grouped CV, but this time I have done this by the experimen-

tal plot. This also allowed to tackle the probably strong cross-correlation between the

two depths within the plowing pan (0–10 cm, 10–20 cm). In summary, I recommend to

follow two main aspects of resampling and testing for good practice in spectroscopic

modeling:

1. Identify the independent experimental unit in the data set. Consider the group
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hierarchy that identifies this unit and use the labels for constructing resamples

where all instances of a particular group are assigned to either analysis/modeling

or testing sets. Depending on the group size, this is also known under group-

leave-out CV.

2. Tune, train, and select best statistical models with a 5-fold or 10-fold CV with

grouping identified above, and repeat the procedure at least 5 times (i.e., a total

of at least 50 or 100 pairs of training and validation data partitions). If possible,

use an independent test set in addition if the modeling scenario is more complex

and involves several data-dependent steps (e.g., certain preprocessing methods

that depend on the remaining data). To make best use of all data and further

separate the tasks of model selection and assessment in the data, use nested CV

(also called double CV; if computationally feasible; see Varma and Simon, 2006;

Filzmoser et al., 2009; Krstajic et al., 2014; Bates et al., 2021).

5.2 Limitations of soil IR spectroscopy and opportunities

to be seized

Soils are very complex in their chemical composition, and therefore the modeling of IR

spectra can be a complex task for larger libraries. The challenge is further that the tar-

get soil properties can be indirectly or directly related to spectroscopic signals. There

are also physical scattering effects that reduce the information content and complicate

statistical prediction, which are at least partly mediated by preprocessing (Barnes et al.,

1989).

Both PLSR and CUBIST have excellent prediction and interpretation capacities with ac-

cessible variable importance measures (e.g., Wold et al., 1993; Chong and Jun, 2005)

for linear and non-linear data contexts, respectively. Soil IR spectroscopy in combi-

nation with these methods are generally more reliable for properties that are strongly

related to SOM and the more distinct attributes of the mineralogy (e.g., characteristic

IR vibrations of clays). A further requirement is often that the soil data contexts and

learning workflow need to match the data distributions in the new application as well

as training contexts (Shen et al., 2022). Mid-infrared spectroscopy comparably better

discriminates signals of SOM compounds from the mineralogy than NIR spectroscopy

because it contains the fundamental vibrations that are more sharp and less overlap-

ping (Madejová et al., 2017).

In chapter one, a purely local PLSR modeling approach with pooling all field samples

across the four regions was successful and not expected from the literature, because of

major biophysical differences in inherent soil fertility in the four regions. The tropical



112 5.2. Limitations of soil IR spectroscopy and opportunities to be seized

soils that we used for calibrations — the four regions are known for presence of Lixisols,

Gleysols, Leptosols, Vertisols and Ferralsols — confirmed that those properties that are

well linearly correlated to SOM and some chemical properties related to mineralogy

(e.g., total C, N, S; CECeff., pH, Fe(DTPA), Cu(DTPA)) can be estimated with reasonable

accuracy (R2 > 0.6). Hence, we concluded that the established small and targeted SSL

is a first foundation for screening the variation in soil fertility for new locations in the

regions. Nevertheless, despite that the calibrated models gave accuracy that are typical

for small-area calibrations (i.e. field of several hectares), it would probably need small

but frequent updates. I suggest to test RS-LOCAL for this purpose because PLSR worked

well.

In weathered tropical soils with yam-growth potential (chapter 1), DTPA-extractable Fe

and Cu (R2 = 0.77 and 0.74), and also BaCl2-extractable Ca and Mg (R2 = 0.81 and 0.62;

n = 92 and 93) were relatively well discriminated with mid-IR spectroscopy and PLSR

modeling, while available K (BaCl2) and Zn (DTPA) were poorly estimated (R2 = 0.28

and 0.25; n = 94 and 87). A similar tendency was found for the Swiss mid-IR SSL (chap-

ter 3), where the rules developed on the available nutrient contents (AAE; n = 417) of

a subset of BDM sites showed excellent and good results for extractable Ca and Mg

(R2 = 0.97 and 0.79), but they were unreliable to estimate extractable K, Cu, Zn, Fe

and also P (R2 = 0.10; 0.10; 0.06; 0.28; 0.05). In this regard, the tendencies to predict

agronomically important extractable elements for plant nutrition were comparable for

chapter one and two, despite the very different weathering status, size of SSLs, and

sampling extents and densities. For the calibrations with collected samples from yam

fields, measured total C had a strong positive relationship with measured exchangeable

Ca and Mg (r = 0.9 and 0.8), while we observed weaker relationship to the measured

clay content (r = 0.6) and weak negative relationship to sand contents (r = −0.3 and

−0.2). Terhoeven-Urselmans et al. (2010) have reported similar validation success in

terms of linear agreements between mid-IR predicted contents and measurements of

exchangeable Ca and Mg measured by ammoniumacetate (NH4OAc; pH < 7) and natri-

umacetate extractions (NaOAc; pH > 7) (ncal. = 679; nval. = 292; R2
val. = 0.68 and 0.61, re-

spectively). Because we have used identical soils and sample numbers from the same

set of grid sites in Switzerland (n = 417) and non-linear modeling for different plant

relevant macro- and microelements, I argue that the general relationship made about

sample size and R2 of the mid-IR evaluation by Sanderman et al. (2020) does not hold

true in Switzerland. We found that extractable Mg and Ca were performing well in the

SSL while other key plant macro- and micronutrients did not; their statement might

therefore be confounded, simply because these other micro- and macroelements are

less directly (linearly) correlated to SOM, and the mineral matrix that could otherwise

provide such links is vastly complex. Because microelement extraction analyses are
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more laborious and expensive, they might have been less readily accessible to SSLs.

Rather than talking about requirements of more samples (size of SSL) in general, I think

we should be more honest about soil spectroscopy being limited in it’s capacity to pre-

dict available P, K, Zn and Cu, whose values involve dependencies to complex surface

chemistry and exchange processes in the soil solution (extracts) (see also the review by

Soriano-Disla et al., 2014).

Because of the aforementioned complications as well as the generally high errors (vari-

ance) in soil extraction reference methods, combining general modeling and IR spec-

troscopy alone may be often not an adequate strategy to model extraction-based soil

nutrients. For this, it is arguable whether we gain a much better understanding about

soils using this IR technology alone, or if we better focus on making soil IR spectroscopy

more efficient for the domains it is successful already (i.e.,pH, OC, texture, and cation

exchange capacity, carbonates, contents of specific clay minerals, selected total ele-

ments), and couple IR spectroscopy to other spectroscopic approaches and model-

ing workflows to deepen the understanding about the often hidden complexity (X-

ray diffraction analysis, portable XRF, laser-induced breakdown spectroscopy (LIBS),

etc.; see e.g., Hillier et al., 2016; Butler et al., 2020; VillasBoas et al., 2020). If there are

prospects in spectroscopic approaches, then I think we probably need either 1) locally

linear approximations — which comes with the extensive requirement of sufficient lo-

cal sample and sampling densities to cover same soil mineralogy and a functional gra-

dient in SOM in the neighborhood of future samples, or 2) effective transfer learning

approaches (Pan and Yang, 2010; Lobsey et al., 2017). I hypothesize that the latter ap-

proach is the cheapest and more promising one, although we further need to enlarge

SSLs in this regard for sure.

In chapter three, I conducted on of the first detailed studies on model-spectroscopic

diagnosis of changing OC contents over time in an LTE under organic management

together with a large country-level SSL. This taught me that a diverse SSL can save a

lot of new reference measurements. The approach was still relatively accurate in com-

parison to purely local calibrations with many more samples. At the same time, when

we deploy mid-IR spectroscopy in such an adaptive learning workflow, it seems that

the proportion of changes in OC we can explain with spectra in function of selective

responses to the functional diversity of SOM is limited. Here, the results suggest that

the direct information content of the spectra on SOC becomes smaller with strong gra-

dients in the mineralogical composition, due to relatively short-range, local, soil vari-

ation. This observation at a single location can either mean that this challenges the

current approaches we take for spectroscopic modeling, or that it would be useful to

diversify the current mid-IR SSL of Switzerland. I take these comprehensible findings

as lesson that we can improve SSLs even further by updating them, and that the con-
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ceptual modeling approach, i.e., how we present data to models to learn from specific

changes in spectra and specific organic constituents, matters, and needs innovation.

5.3 Soil grouping, similarity-based, and transfer princi-

ples for localized spectroscopic modeling

In chapter two, the general estimation capacity of the established mid-IR SSL has been

shown for all 16 soil properties, of which 10 have potential for diagnostic screening

(RPIQ ≥ 2). The general estimation of total C with CUBIST rules had an average RMSE

per site of 3.1 gkg−1 for the 71 NABO sites, and was substantially more accurate for

when using transfer learning with 2 spiking observations (RMSE = 0.7 gkg−1). Later in

chapter three, similar principles of data-driven selection were more successful than

memory-based approaches, for integrating the diverse SSL into the assessment of soil

OC changes for an agricultural LTE with minimal spiking (RMSE(∆C) = 2.5 vs. 3.2 gkg−1).

The approach with RS-LOCAL only needed 3% of the analytical measurements of the

LTE prediction set to estimate ∆OC of 301 samples over time with only 1.3 times higher

RMSE . Our results from localized transfer modeling in chapters 2 and 3 were very close

to a range of uncertainties that the literature typically suggests for purely local calibra-

tions at the level of agricultural fields or also areas of farms (few hectares to km−1).

Both chapters 2 and 3 conclude that a data-driven way of selecting suitable instances

can utilize the knowledge stored in the SSL in the most efficient and universal way

possible in terms of new applications. Data-driven ways of selecting optimal samples,

i.e., RS-LOCAL, narrow down soil chemical and physical complexity so that the rele-

vant compositional aspects are filtered with regard to a new target application. This

approach is not constrained by spectroscopic and soil compositional similarity per se.

Thus, the selected samples are not necessarily restricted in the multivariate (spectro-

scopic) feature space, so that the relevant part of soil chemical diversity of an SSLs

remains for estimating soil samples in new locations. Memory-based learning, in con-

trast, enforces strong compositional and chemical relatedness of the prediction sam-

ples and the selected subsets of the SSL, which limits its accuracy if there is not not

enough samples in the library that resemble the prediction samples chemically. I note

that performance-driven instance-based transfer learning emphasizes the inter-soil

knowledge more than other popular approaches for spectroscopic modeling currently

do. In chapter 2, I found evidence for leverage effects in the final regression model

based on the RS-LOCAL set. That means that the prediction set is fitted by means of a

relative wide training set (local samples and SSL subset), which is then also evident in

the predicted vs. observed plots. Hence, data outside of the measured range in the pre-

diction set are rather influential. The data distributions in the finally selected subsets
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from the training population had a much large range in carbon and also diversity in the

spectra, compared to the target, the test population. RS-LOCAL is currently a method of

its own, with regard to both the overlapping machine learning and chemometrics fields

in general, and soil spectroscopy in specific. Its working principles heavily draw from

repeatedly sampling observations from the available training set and optimizing the

off-training set error on a few local spiking samples by steadily dropping observations

that are not matching in performance.

The grouping by texture (i.e., Moura-Bueno et al., 2020) is popular for showcasing the

representativity of an SSL for soil landscapes. These laboratory analytical data is often

only available in research scenarios, hence it may not be useful for model subsetting. In

fact, in applied contexts of IR spectroscopy, prediction samples (with exception of local

adaptation (calibration) and validation samples) have probably no laboratory results

on texture, which are rather predicted, too. In my opinion, subsetting an SSL for better

predictive knowledge extraction with human domain knowledge is also less optimal

than algorithms can do (in data-driven manner from spectra) for novel soil environ-

mental contexts. Here, best possible predictions from as few new reference measure-

ments and adaptive training workflows would be needed. There is various reasons that

bring my conclusion forward. First, the mineral and organic soil constituents produce

broader, less intense, and more overlapping overtones and combination bands in the

NIR (mirrored from the mid-IR) than the fundamental absorptions in the mid-IR. Thus,

for soil OC estimation, mid-IR spectroscopy gives generally more information on the

chemical composition and is, combined with global modeling, mostly more accurate

than NIR spectroscopy for soils. Secondly, which is related to the first argument, there

have been also concerns that the concept of grouping by spectral dissimilarity or re-

latedness for modeling does not always exactly mirror useful chemical constraints for

modeling. Modeling by spectral similarity could 1) produce heterogeneous mineralogy

in the neighborhood due to nonspecific chemical signals in the NIR (i.e., Reeves et al.,

1999; McCarty et al., 2002), and 2) can imply that sufficient training samples are needed

in the local (spectral) input spaces for both NIR and mid-IR (i.e., concept of "neigh-

borhoods" or "exemplars" in memory-based learning aka instance-based learning; see

Aha, 1992; Wilson and Martinez, 2000b). The third reason to step away from these type

of sub-library modeling of established SSL for new projects is because some strata can

have highly variable OC, clay contents and mineralogy, and spectra, which decreases

performance compared to modeling all data with CUBIST (e.g., Moura-Bueno et al.,

2020). Lastly, most of the criteria used for partitioning, except clustering based on

spectra in the modeling workflow to reduce non-linearity, are not universally trans-

ferable to new applications because either auxiliary data is not available or the charac-

teristics of soils in the new study region is not (yet) covered by the existing SSL. This
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is consequently reason to test transfer and update of the soil information stored with

new spectroscopic and laboratory information. The results of my dissertation and es-

pecially earlier work that has lead to the development of RS-LOCAL (see Lobsey et al.,

2017) suggest that data-driven selection makes the concepts of traditional soil group-

ing (i.e., by geographic region, land cover and use, soil types)— although still advised

— fairly obsolete in the context of optimizing spectroscopic estimation for site-specific

estimation and temporal soil monitoring.

I conclude that soil grouping in SSLs with clustering by other soil or environmental co-

variates are good ways to 1) show representativeness of existing libraries with regard

to likely future application contexts, and 2) to reveal data gaps. However, we should

not use those criteria directly in the modeling — and use rather spectral clustering as

part of the workflow because it works with chemically distinct data (e.g, chapter three;

also Summerauer et al., 2021). Further, we can also work with model-based partition-

ing (i.e., CUBIST), or use more elaborate transfer methods, because SSLs need anyway

adaptation to work robustly and give accurate estimates in new (uncovered) use cases.

This is not always attributed and there is the need to be more specific here. I also think

that we currently haven’t yet realized the full potential in soil spectroscopy in new con-

texts. Transfer learning is a rapidly growing field of machine learning (not limited to

deep(er) learning only), which allows for adaptation of partial shifts in the marginal

distribution of the training domain (source; stored knowledge; SSL) towards a new tar-

get domain (new application) (e.g., instance-based, model-based, feature-based; Pan

and Yang, 2010; Wang et al., 2019). This will make the extraction of knowledge from

larger and chemically diverse SSLs more straight-forward and more universally useful

in calibration engines.

5.4 Framing efficient soil spectroscopic workflows

The main motivation to do soil spectroscopic research is to accelerate the collection

of soil chemical, biological, and physical information, so that we can harvest possibly

all stored relationships in targeted manner. This means extrapolating the relevant part

of information for predicting selected attributes and emerging properties. However,

one of the main challenges of soil IR spectroscopy and existing SSLs, particularly when

they cover a substantial amount of soil diversity, is that the estimation workflow for

soils need adaption and fine-tuning with regard to data processing and modeling. This

varies depending on expected soil variation within new geographical regions or indi-

vidual sites of small area, but also depends on the study context, soil conditions, and

associated multivariate data at hand. Hence — as the results of my thesis outline — of-

ten neither a univariate perspective on global or general statistical learning on all data
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points of existing SSLs nor purely local calibrations for particular soil sets are entirely

true. Because general learning extracts predictive relationships that minimize errors

across all data points based on a loss function (cost function), the models are therefore

adapted to the data context and the distributions of the population sampled. Novel

samples can be either outside of the calibration range in terms of their properties or

the compositional space, or the model does not have parameterized relationships spe-

cific enough in defined subregions (i.e. varying local density; non-linearities). Purely

local (local-only) calibrations might adapt the prediction for new target soils, but the

general benefits of SSLs are not given if new calibrations with analytical measurements

have to be constructed over and over again. As I have shown before, transfer learning

is maybe one of the main solutions to the problem.

In all three chapters, I have laid careful attention to design, train and test effective

workflows that take (hopefully; we can only falsify) maximum information gain from

SSLs at minimal reference analyses in the different application contexts. Because spec-

troscopy does not make the important reference analytical measurements obsolete,

efficient soil spectroscopic workflows in real-world scenarios need both adaptation

(model transfer) and validation samples. I hereby state that IR-spectroscopic work-

flows are then efficient across space and time, when the errors in the resulting spectro-

scopic estimates are low in comparison to the amount of novel local (classical) analyti-

cal measurements that are required for new target contexts, specifically in comparison

to the efforts that would have been needed to produce the same accuracy by doing

purely local analyses and calibrations.
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Part 6

Research outlook

6.1 Advancement of a spectroscopy modeling platform to-

wards more spatial and temporal soil information con-

texts

The BDM data set brought an important source of topsoil variation across Switzerland

for future mid-IR estimation workflows, which generally broadens the scope of spectro-

scopic estimation of soil properties within the established SSL (Baumann et al., 2021).

We have shown that this data source together with the NABO set has both general and

local estimation capacity for soil monitoring, with minimal requirements of reference

measurements in the spectroscopic feature space that it already covers. The SSL in its

current version has also produced excellent results for estimating total C in the range

of 14–522 gkg−1, across 26 locations of two regions in Switzerland with drained peat-

lands in a recent study (Helfenstein et al., 2021). Only five to ten new reference sam-

ples were necessary, in addition to the SSL, to predict the 122 samples from different

soil horizons with an RMSE of only 3.2 to 2.7 gkg−1. Because the national mid-IR SSL

currently under-represents organic soils in their different decomposition stages and

mineral matrices with presently only 2% organic soils (Helfenstein et al., 2021; Bau-

mann et al., 2021), it is clear that we need to expand the library more towards these

organic soils. Both the general models and localized models for OC and total C, respec-

tively, were more inaccurate for the higher ranges of measured values than the lower

ones where more data are available, because the reference measurements in the SSL

were positively skewed with regard to those measurements (Helfenstein et al., 2021;

Baumann et al., 2021).

I believe that the established mid-IR SSL of Switzerland has more potential to be ex-

119
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tended with soil chemical and physical diversity. If it is updated further, it can repre-

sent the soil ecological contexts in Switzerland better than a finite, coarse grid-sampling

approach. The soil mapping in Switzerland, which is now of higher importance in the

political agenda, is a promising application of mid-IR spectroscopy, that feeds new

training relationships into the SSL. It can thereby also greatly profit from an SSL and

modeling infrastructure. The current and historic speed of soil survey has not been

sufficient to keep up soil information with the spatial planning demands and soil pro-

tection measures in Switzerland, and also anywhere else in the world. We currently,

mostly, have topsoils in the mid-IR SSL of Switzerland. Since the mineral complexity

is much higher in deeper layers of soil profiles, the SSL needs to account better for the

depth component. The main focus of this work was on agricultural soils, whereas we

can also expect enormous soil complexity in forest soils. Forest soils span much wider

ecological zones on diverse geological substrates and large-scale gradients in environ-

mental controlling factors (i.e., expanding to the alpine altitudes). In a hybrid form of

classical and digital soil mapping, my hypothesis is that mid-IR spectroscopy with con-

tinuous updates of and learning from the SSL can replace 95% to 99% of the classical

reference measurements for soil pH, OC, and texture. With that, we can replace the

outdated texture by feel. Further, a well-maintained, quality-controlled, spectroscopic

measurement and fully automated modeling system (i.e., pre-processing, calibration

sampling, adaptive statistical learning, outlier analysis, model-based interpretation),

including a centralized laboratory that provides sufficient but minimal, representative

validation and measurements for model adaptation, will deliver a drastic throughput

increase. With a high-throughput module, a trained person can measure up to 200

milled soils with two replicates each on a mid-IR spectrometer. Because a lot of capaci-

ties will be needed to sample soils on the field and process them in the laboratory (dry-

ing, weighing, crushing, sieving, milling) before measuring their IR spectra, future soil

mapping in Switzerland (and elsewhere) will not only rely on mid-IR spectroscopy in

the laboratory, but also on other proximal sensing approaches. Besides the NIR-range,

which will be useful because it needs no milling, many sensing technologies within the

electromagnetic ranges of radiation will be probably included in the classical measure-

ment, modeling and estimation workflow. This will include both, sensors on field, and

in the laboratory. Hence, we need to develop a tightly linked and modular set of com-

ponents that have their own scaling-up role. The emerging diagnostic soil information

system will not only be data-driven to make best use of SSL, but also be oriented to-

wards pedological knowledge integration and expansion (soil forming factors). It will

also reflect the current state-of-the art knowledge in soil chemistry and soil physics.

Spectroscopy-enhanced grouping of soils is a way of augmenting the purely qualitative

pedological classifications systems. They can, besides information of the environmen-
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tal and management conditions (i.e., climate, land cover and use, vegetation) and ter-

rain, profit from a higher amount of quantitative characteristics of soils’ composition

and their attributes (e.g, Dotto et al., 2020). Quantitative soil grouping systems that

are oriented towards IR spectroscopic fingerprinting have been found to produce het-

erogeneous clusters that can contain multiple soil classes (Vasques et al., 2014; Dotto

et al., 2020). This calls for alternative concepts such as soil series — as practiced by the

Soil Survey staff of USDA, which is mentioned in Dotto et al. (2020) — based on hierar-

chically structured resemblance in landscape, climate, and soil characteristics. Purely

spectral information, for example collected in the NIR range, also showed promising re-

sults to quantify soil types using unsupervised and supervised data classification meth-

ods Xie et al. (2015). However, depending on the complexity of present soil forming

factors, the classification level input for spectroscopic modeling for soil surveying and

mapping purposes needs to be adjusted according to the affordable analytical mea-

surements, the soil variation detected in the spectra. The current Swiss mid-IR SSL

seems already quite useful for many soil properties related to soil quality, but we do

not have the complete soil (profile) description, soil types, and morphological descrip-

tions within the current Swiss classification system, so that we can fully estimate its

representativeness for pedological landscapes within the country. With the prospect

to include legacy soil collections of past soil survey campaigns, and also forest inven-

tories, together with the incorporation of soil-landscape relationships (i.e., digital soil

mapping with remote sensing to capture soil variation on systems level; e.g. Stumpf

et al., 2018), I hope that we can arrive soon at a more complete assessment of soil vari-

ability with IR spectroscopy. At the same time, we can also make informed decisions to

choose more, novel systematic soil monitoring sites. We will be able to do this based

on relevant soil covariates and chemical information in the IR spectrum.

6.2 Detecting the model-spectroscopic response in soil qual-

ity attributes due to management changes

Spectroscopy performs relatively well on single time point estimates, to keep track of

soil variability across broad geographical extents, and also to link the biogeochemical

controls of soil OC. There are high complementary and scaling possibilities of spectro-

scopic measurements and data mining for estimating spatial patterns in soil quality

attributes. This is useful to derive more data in classical soil surveying, and in digi-

tal soil mapping. The potential has been explored and realized relatively early on, but

mostly in research scenarios because its capacity needed empirical evidence in the

soil research community ?. We are about to make first good steps to getting SSLs, en-

sembles of different measurement technologies in the lab and in the field, and sophisti-
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cated sensor data processing and predictive modeling ready, so that they can effectively

address soil biophysical changes at local small-range soil variation. I hypothesize that

soil spectroscopy will soon expand further the time domain. This will be of utmost

importance to cost-effectively and quickly describe the soils’ chemical variability in

many soil forming contexts. Moreover, to meet the growing demand of verification of

sustainable management practices in soil to enhance soil quality and possibly to soil C

sequestration under favorable soil conditions, such a scaling up with proxy tools and

also further modeling (i.e., biogeochemical modeling) integration needs to be made.

6.3 The lesser known foundations of performance-driven

learning and its conceptual extensions in future

Performance-driven learning by the RS-LOCAL algorithm works by discarding those

samples from the SSL that are on average not performing well on the usually small

set of site-specific samples with analytical measurements. Each stage of library reduc-

tion deploys extensive sampling of the library and modeling with an implementation

of PLSR, which is based on linear latent projections with the SIMPLS method (de Jong,

1993). These linear restrictions are therefore important to consider when aiming for

deriving generic calibrations and hence accurate prediction in highly non-linear data

sets. Without further partitioning the spectral space and modeling in locally-linear

subsets of the data, a linear method typically performs poorer on complex data sets.

In the RS-LOCAL selection procedure, those samples that have consistent, towards lin-

earity oriented loading vectors that produce, are consequently kept. That means that

training set scores should get linearly oriented towards the locally projected scores (m

samples). However, in my opinion, this seems ot be the ideal behavior of RS-LOCAL be-

cause of its working principles. In particular, the procedure iteratively removes a spe-

cific proportion of non-linearity in those features that are part of the respective PLSR

loading vectors at the decisions of training drop-out (related to concept of off-training

set error). However, there are situations where the final RS-LOCAL set shows substantial

heterogeneity in soil conditions and is hence better modeled with non-linear methods

such as CUBIST.

The concept of multi-scale features is an important aspect in the scale-space theory

(Lindeberg, 1994), which integrates pieces from signal processing, information theory,

and computer vision. For spectroscopy in general, and soil spectroscopy specifically,

inner scales map to the resolution at which peaks of distinct vibrations of functional

chemical groups start to appear, while outer scales map to the energy range (window;

wavenumber range; wavelength range) that completely contains the spectral feature

or groups thereof. In analogy to geographical maps and the euclidean concepts of dis-
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tances, a holistic analysis of structures requires the ability to increase and decrease the

inner scale of the observation depending on the situation and knowledge to be gen-

erated — to simplify zooming in and out. Linear filters in computer vision perform

the task of selection by preprocessing of image data as a first step in object detection,

which often needs non-linear operations later, while the analogous job that RS-LOCAL

does is linearization and feature selection as part of the modeling and reduction of the

library, which is not constrained by (dis)similarity and multivariate distance.

In chapter three, I first found substantial bias (RMSE(OC) ≈ 2 gkg−1) on the test pre-

diction of the Frick trial (301 samples), when I applied the trained model on the best

RS-LOCAL selection with local spiking observations (K +m). I have tested considerably

high sampling rates from the SSL (up to b = 150). After a lot of testing, PLSR with and

without prior centering or scaling of the preprocessed spectra, and also restricting the

final prediction model to only 3 to 5 components, there was still substantial bias. The

target set (Frick LTE) was clustered for the analysis to even further reduce non-linearity.

I tested CUBIST on the RS-LOCAL selection, to remove the majority of bias across the IR

estimated OC contents of the LTE test set. Thus, it seems that even by drastically re-

ducing sample numbers, there is a point where linear methods of modeling cannot

improve prediction results anymore. In conclusion, it seems that we might also in-

corporate some non-linear machine learning methods to the core of the RS-LOCAL al-

gorithm. I have carefully scanned the literature on instance-based transfer learning

and have found only one method that resembles RS-LOCAL at least partly in its work-

ing principles: "Double-bootstrapping source data selection for instance-based transfer

learning" (Lin et al., 2013). The method reduces the impact of irrelevant or erroneous

samples in the source domain (i.e., SSL) by drawing bootstrap samples from the target

domain, and selecting those observations in the source for which the target model is

performing well.

6.4 Opinion piece on how research in soil spectroscopy

will be evolving and applied by different soil stakehold-

ers

I imagine a world of soil spectroscopy where the coverage of SSLs is critically evalu-

ated and discussed in function of the chemical data distributions, density and con-

nectivity represented in the multivariate spectroscopic space. Further, we should also

discuss more about geographic sampling density and soil landscapes and types cov-

ered. My recommendation is to use these concrete information criteria and metrics,

instead of using rather loose and, in my opinion, often marketing terminology of dif-
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ferent "scales", such as field scale or regional scale, etc.. Scale concepts have their jus-

tification in soils, and more so for the linkage between microscopic and macroscopic

processes and emerging properties, especially in soil physics (e.g., Miller and Miller,

1956; Sadeghi et al., 2016). However, because soil ecosystems are drastically variable in

their short-range variation in composition and properties (e.g., Zhang and Hartemink,

2021) and also across larger geographical extents (e.g., Loescher et al., 2014), sample

size and sampling spacing in the field should be mentioned for the assessment of spec-

troscopic modeling and estimation of soils’ properties and characterization of mineral

and organic composition.

So far, I do not know of any published research in soil spectroscopy that has systemat-

ically tested the caveats of cross-validation for different combinations of sample size

and soil variation (see also section 5.1). It would be therefore beneficial for the com-

munity’s awareness if a soil science journal would feature a case-study in this regard.

It would be good to illustrate and explain the effect different training set sizes and vari-

ability — e.g., small data set with high soil variability vs. large data set with small

soil variability with profile data — under different gross resampling strategies. This

should be done with and without appropriate grouping. Moreover, it could include

linear and non-linear modeling approaches that are useful and established in the soil

spectroscopy community. I hypothesize that these choices will have a significant effect

on how accuracy and bias of the modeling results is reported.

I also hypothesize that data-driven transfer learning approaches such as RS-LOCAL will

be soon on the rise. Regardless of the model choices and learning mantras, which are

sometimes also personal preference, we will probably need continuous learning and

growing SSLs. This is mainly because the world of soils is inherently complex in many

aspects of the soil forming factors. This continuous learning process with efficient

IR-spectroscopic workflows and growing SSLs across space and time will hopefully al-

ready soon deliver a lot more key chemical, physical, and also biological characteristics

of soils than we now can imagine. This will be key for soil monitoring, agronomic soil

testing, environmental mapping and decision making. We urgently need this basic soil

information to implement informed soil decision making, and to foster sustainable

soil management practices that preserve and improve soil health conditions for our

and future generations.
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