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Abstract—When human locomotion is used to interact with
virtual or augmented environments, the system’s immersion
could be improved by providing reliable information about the
user’s walking intention. Such a prediction can be derived from
tracking data to determine the future walking direction.

This paper analyses how tracking data relates to navigation
decisions from an egocentric view in order to achieve a reliable
and stable path prediction. Since tracking data is noisy, a
smoothening is required that eliminates oscillations while still
recognizing trends in human locomotion. Thus, we analyze
different approaches for path prediction, determine relevant
setting values, and verify the results by a user study.

Results indicate that robust short term prediction of human
locomotion is possible but care must be taken when designing
such a predictor.

Keywords-prediction; human path prediction; head tracking;
walking direction; facing direction; virtual reality; augmented
reality; exponential smoothing

I. INTRODUCTION

Walking or human locomotion is our most intuitive way

of navigating in the real world and an important human

perception entity to gain information about objects’ sizes

and distances to each other, and for the orientation in

our environment. In order to further increase immersion of

virtual environments, this real walking experience should be

integrated in a way that goes far beyond today’s treadmills

or walking-in-place installations. Such new systems should

be non-obtrusive and should not hinder the user to perform

tasks in a virtual environment. However, constructing such

systems is still a challenging task, since it requires to mea-

sure a user’s position, and also to make correct assumptions

about his future actions in the environment.

Today’s smart mobile phones for instance can help the

user to find destinations by using GPS data and mapping

services. But in order to perceive the information from the

mobile, the user has to interrupt his main activity to retrieve

or to enter information. Such systems - as well as those

being used in a virtual environment - only offer information

related to the current position of the user and thus to his

current action. Today’s systems only have little intelligence

in determining the user’s intention and in making the correct

suggestions.

Hence, it is crucial to improve such systems by making

them know what a user is doing or is planning to do.

Having such information about the user’s intention would

make virtual environments more responsive, and also more

intelligent. In order to provide information at the right

time some sort of prediction is required. Head-up displays

for instance, which are used in augmented reality (AR)

systems, might provide the user with information about the

environment while he continues some other activity. When

entering a train station for example, a train schedule could

be shown to the user; or when walking down a hallway

towards a shop that just closed, the system could inform the

user before he reaches the closed door.

When providing real walking in virtual environments

where the virtual environment is larger than the tracked

space, path predicition is essential. In this so-called redi-

rected walking, a virtual room is compressed into a phys-

ically smaller room by guiding the user on a curved or

scaled path [1]–[3]. Since the visual perception overrides

the haptic sensation of walking, the user does not notice

this compression. However, in order to plan ahead such

redirections of the user, it is required to integrate path

prediction.

One approach to determine what a person plans to do

when walking in a real or virtual environment is to use

position and orientation tracking data. Such sensors are often

already integrated in mobile phones (e.g. accelerometers,

gyroscopes and GPS). By using advanced sensor fusion

algorithms, such sensor information can be combined to

provide continuous position and orientation tracking data

[4]. Since orientation and acceleration tracking devices can

be designed with a very small form factor, they can easily

be integrated into head-up displays or attached to other

AR glasses [5], [6]. However, when providing real walking

in virtual environments, such sensors usually have to be

attached to the visual output device, i.e. to the head-mounted

display (HMD) or to other glasses.

Having position and orientation data of a person’s head,
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the challenge is to make some feasible prediction of the

future path, in particular when the user is allowed to make

decisions whether he wants to go left or right at some

positions in the environment. In contrast to other literature

for predicting pedestrians’ movements [7], this paper treats

this problem from an egocentric perspective.

Path prediction can be divided into three time intervals.

A very short term prediction (milliseconds) of human loco-

motion is given by different physical constraints of human

movement like maximum acceleration etc. A short term

prediction (seconds) is given by human way finding and the

target a persons wants to reach. Long term path prediction

(minutes) is closely related to a person’s cognitive map of

the environment and the planned destination.

In this paper, we analyze how tracking data relates to

navigation or direction decisions for short term prediction

of human locomotion. We present an experiment in which

participants had to walk through a maze-like environment

and had to decide for different directions. An analysis of the

recorded user paths shows the problems when trying to make

a robust estimation of the future path. Different approaches

for path prediction are presented and discussed. Finally, the

path data from the experiment is used for a comparison of

the proposed approaches.

II. RELATED WORK

Path prediction is especially important when real walking

is used as a locomotion interface to navigate in a virtual

environment. For instance, Peck et al. propose a real walking

locomotion interface where users can visit immersive virtual

environments that are larger than the tracked space [8].

They make use of the fact the vision usually dominates the

proprioceptive sensation and thus imperceptibly rotate the

virtual environment around the user [9]. Hence, the user is

kept inside the borders of the tracked space. In order to plan

such redirections, it is crucial to know the user’s future path.

Nitzsche et al. proposed a similar locomotion interface

and suggested two path prediction approaches [2]. A non-

target based approach simply uses the user’s current facing

direction (i.e. the head orientation) as future walking direc-

tion. For an environment, in which targets can be identified,

a more sophisticated approach is suggested. Weight coef-

ficients are assigned to all targets or potential goals. The

coefficients of all targets in the field of view are increased

while a user is looking at them or decreased otherwise. The

target with the highest weight defines the predicted direction.

Another approach is to use linear extrapolation of the user’s

previous path [10].

Interrante et al. suggest to use a hybrid approach [11].

While a person is walking, the average direction of motion

over the past n seconds is used as prediction. Whenever a

person is not moving the facing direction is used. As soon as

person starts moving, the influence of the facing direction on

the prediction is decreased and the influence of the walking

direction is increased. Steinicke et al. proposed another

hybrid approach [3]. The walking direction is used for the

prediction and the facing direction is used for verification.

The walking direction is considered as prediction if the angle

between walking and facing direction is smaller than 45

degrees, otherwise no reliable prediction is assumed.

Above publications present different approaches for path

prediction in virtual reality (VR), but lack evaluation or

comparison of the proposed methods.

In the research field of human robot interaction, recog-

nizing a person’s intended action using motion prediction

is of great interest. In this case, the movement prediction

is primarily used to classify interactions with the robot and

thus is regarded from a exocentric perspective [12].

In the research area of urban planning and transportation

science, the movement patterns of pedestrians are analyzed

[13]. These models are usually used for large scale simula-

tions of pedestrian flow.

Different tracking systems for pedestrian tracking have

been proposed - e.g. using shoe-mounted inertial sensors

[14] or ultrasound-aided systems [15]. These systems focus

on providing a stable and accurate estimation of the user’s

position. Usually a Kalman Filter (KF) is used for the esti-

mation, which also allows providing some sort of predictive

tracking. For instance, Kiruluta et al. present a method

for predictive head movement tracking [16] using a KF.

Similarly, LaViola shows that double exponential smoothing

can be used for predictive tracking [17]. A comparison of

prediction and filtering methods is given in [18].

Such predictive tracking algorithms usually have predic-

tion times of several milliseconds up to one second in

order to compensate for system latencies. They employ

a movement model and noise model that fit such short

prediction times (e.g. 100ms in [17]). In contrast to this, our

goal is not to make a robust estimation of the head position

but a robust prediction of the intended walking direction.

Ideally, this prediction should hold for several seconds rather

than milliseconds.

III. PATH PREDICITON FROM TRACKING DATA

A tracking system that is carried by a person typically

provides position and orientation data at discrete time steps.

Assuming a decent update rate, the current speed and ac-

celeration can be estimated by approximating the derivative

from the discrete time samples.

In order to make a prediction of the future direction of

movement, we can interpret and extrapolate this tracking

data in different ways presented below.

It makes sense to limit the path prediction problem to the

actual walking plane (2 dimensions for position, orientation

as rotation around the normal of the walking plane). This

implies that the position and orientation data is projected on

the walking plane. The position data at time t is referred to
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as �xt where �x denotes the 2-dimensional position vector and

t is the discrete time index starting at time 0.

A. Facing Direction
If the orientation sensor of the tracking system is attached

to a person’s head, it can track the facing orientation.

We can express the facing orientation as a 2-dimensional

direction vector in the reference frame of the tracking system

projected on to the walking plane. The normalized facing

direction vector is denoted by �f .
The current facing direction can be directly interpreted as

a prediction of a person’s intended direction of movement.

Especially when the person is not moving, i.e. the recorded

position data is constant, orientation data is the only predic-

tion information.
In case targets are known in an environment, �f can serve

as a prediction by choosing the target at position �p that

has the smallest angular deviation from the current facing

direction �ft. The angle between a target and the facing

direction can be calculated using the scalar product:

θ = arccos

(
�ft · (�p− �xt)

|�ft||(�p− �xt)|

)
(1)

The major problem of using the facing direction for

prediction is that it does not necessarily represent a person’s

gaze direction. For this, an eye tracker would be required.

When looking at a target, humans often only move their

eyes instead of their complete head. Hence, especially if

two targets are close to each other, the facing direction is a

critical predictor.

B. Walking Direction and Speed
The change of the position �x over time provides informa-

tion about a person’s current and past movement. Thus, the

displacement vector �wt, defined by

�wt = �xt − �xt−1 (2)

gives the direction of movement from time t-1 to t. Given a

constant sampling interval τ , the current speed is given by

|�wt|/τ .
If we assume no information about an environment, it

is plausible to postulate that humans walk to a target in a

straight line, as a matter of energy minimization. Therefore,

the current walking direction is an intuitive prediction of the

future path.
As for the facing direction above, �w can be used to

determine the chosen target in an environment using the

angular deviation.
When a person is not moving, �w is zero and no prediction

can be made. The displacement vector must be used care-

fully as a predictor when the movement is slow. I.e. if |�w| is

of the same or smaller magnitude as the tracking system’s

noise, the predictions will be wrong. Thus, a lower bound

for |�w| must be chosen depending on the characteristics of

the tracking system (update rate, noise, etc.).

C. Smoothing and Robustness

Tracking data is usually noisy. Therefore, some smoothing

of the data is required to reduce the effect of noise on the

path prediction. Noise will make the prediction unstable.

Additionally, the movement of the body during walking is

not perfectly aligned with the intended walking direction.

If the tracking system is mounted on a person’s head, it

will also move sideways and up and down due to the

mechanics of human gait. Hence, if we want to determine

the intended walking direction we have to reduce the effect

of gait oscillations on the path prediction.

Next, different approaches for smoothing data are pre-

sented. These smoothers could be applied to the �ft or the

�wt vectors. But as discussed in Section V, smoothing is

especially important for the walking direction. Hence, the

equations are presented for the �wt vectors. �st denotes the

smoothed path prediction at time t.
1) Unweighted Moving Average: One of the simplest

methods to smooth data is the moving average method given

by

�st =
1

k

k−1∑
i=0

�wt−i (3)

k represents the time horizon over which the arithmetic

mean is built. Hence, this means that �st is the average

displacement of the past k time steps.

The major problem of the unweighted moving average is

that at least k samples must be recorded before a prediction

can be made. Another problem is given by the fact that

the �wt are displacement vectors. Hence the moving average

rewritten using (2), reduces to

�st =
1

k

k−1∑
i=0

(�xt−i − �xt−i−1) =
1

k
(�xt − �xt−k) (4)

This means that all position samples between time t-1 and

t-k+1 are actually ignored for the smoothing. If the time

horizon k is not chosen carefully, the prediction will be

unstable e.g. due to gait oscillations.

2) Exponential Smoothing: The simple moving average

smoother gives the same weight to all k past measurements.

In contrast to this, exponential smoothing weighs past mea-

surements with an exponentially decaying factor:

�s0 = �w0 (5)

�st = α�wt + (1− α)�st−1 (6)

�st can be rewritten as

�st = α�wt + α
t−1∑
i=1

(1− α)i �wt−i + (1− α)t �w0 (7)

Exponential smoothing includes all past measurements

into the current prediction. The smoothing is controlled with

the factor α ∈ (0, 1). If α is close to 1, the smoothing effect
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is low and new measurements are weighted higher. If α is

close to 0, the level of smoothing is higher.

The difficulty in exponential smoothing lies in the correct

choosing of α. If it is too high, noise and gait oscillations

will influence the prediction. If it is too low, real changes

in the walk direction might be detected too late. In order

to give a mathematical basis for estimating α, the following

limit case can be regarded. Assume that the measurement v

has been constant at some value vo and the smoothed value

has been stable at so = vo. Now at time t-k the measurement

input changes to a new constant value vn. We want to know

how many time steps k it will take until st reaches factor q
of the new measurement value vn. Hence st can be rewritten

as

αvn + αvn

k∑
i=1

(1− α)i + αvo

t−1∑
i=k+1

(1− α)i + (1− α)tvo

(8)

Now the factor of change from the old to the new

measurement is given as

q =
st − v0
vn − vo

(9)

= 1− (1− α)k+1 (10)

α = 1− (1− q)1/k+1 (11)

Using the equations for the summation of geometric series

on (8) and inserting in (9) gives an equation for determining

α. For instance, if the smoother is to follow a step function

to 80% (q = 0.8) within the next k = 180 measuring time

steps, α should be about 0.009.

3) Double Exponential Smoothing: Exponential smooth-

ing can be improved if there is a trend in the data like

the change of the walking direction. This so-called double

exponential smoothing is given by

�s0 = �w0 (12)

�st = α�wt + (1− α)(�st−1 +�bt−1) (13)

�bt = β(�st − �st−1) + (1− β)�bt−1 (14)

The�bt vectors represent the current trend in the data. α is the

data smoothing factor as for normal exponential smoothing.

β ∈ (0, 1) is the so-called trend smoothing factor. It controls

how much the current trend is influenced by the change in

the smoothed prediction output over time. �b0 defines the

initial trend in the data.

By looking at the definition of �wt in (2), we see that �w0 is

not defined by the data. Thus in order to use the smoothing

methods, prediction actually has to start at time t=1.

Another solution is to give �w0 a suitable initial value.

For path prediction with double exponential smoothing, the

following approach is suggested. Assuming that a person

starts to move at time t=0, set �w0 = c�f0 using the facing

direction at time 0 (similar to [11]). Under the assumption

(a) (b)

Figure 1. (a) The symmetric T-maze for the experiment. Walls are in
black, two red ellipses show the start and end position, the four blue bars
mark the position of the calendar pictures. (b) Shows a typical walk path
through the maze during the study.

that the initial facing direction is the most likely direction of

movement, we can set the initial trend to �b0 = (0, 0). The

magnitude of �w0 influences how much impact it has on the

smoothed output. Therefore the constant c should be chosen

so that it reflects a reasonable speed. E.g. c could be defined

using the human average walk speed v̄ and the given update

rate r as c = v̄/r.

IV. EXPERIMENT

A study was conducted where participants had to walk

inside a simple maze-like environment. Different paths

through the maze were available so that participants were

forced to make a choice. During walking, a head-mounted

tracking system was used to record the path. The goal of

the study was to allow the analysis of head position and

orientation data and especially how the choice of a target or

direction relates to the recorded data.

A real, physical maze environment was constructed de-

liberately instead of a virtual environment. Even though the

hardware allows visiting a virtual scene by real walking, the

limited field of view (FOV) of the head mounted display

(HMD) and simulator latency might influence the results of

the study.

A. Experimental Setup

In a 5m x 7m room, movable walls were installed to

form a ’T’ shaped maze. Figure 1 shows the design and

dimensions of the maze. An obstacle in the center of the

maze forced subjects to walk left or right. Four calendar

pictures were placed at both ends of the maze (see Figure

1). The maze was designed to be perfectly symmetric

(left, right) and no distractions were present except for the

calendar pictures. The pictures were not visible during the

decision phase whether to move left or right. The start
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Figure 2. Picture of the study setup. A subject wears the backpack with
the notebook and the HMD with the tracking system. The red paper in the
middle is the center mark for the initial calibration.

position was placed in the center of the lower end of the

maze.

The ceiling of the whole room is equipped with paper

markers for the Intersense IS-1200 tracking system [19].

The IS-1200 system is an inside-out tracking system that

can easily be attached to an HMD. It tracks position and

orientation (6 degrees of freedom) at an update rate of 180

Hz. In order to track a subject wirelessly in the maze, a

backpack-mounted notebook was used to record the tracking

data. The tracking system was attached to a Triviso Scout

HMD. The HMD was only used to mount the tracking

system properly on a subject’s head. Figure 2 shows a photo

of the maze environment and a user wearing the notebook

and the tracking system.

B. Participants

In total, 11 participants took part in the experiment (7

male and 4 female, median age 31). Participants were

recruited from the institute and included students, senior

researchers and administrative staff. All participants were

unaware of the purpose of the study.

C. Tasks and Conditions

In order to evaluate the choice of a path in a known and

unknown environment, the study was conducted under two

conditions.

1) Explore Condition (EX): In the first task, all subjects

were new to the environment and had no information about

the maze. They were told to walk through all corridors of

the maze and to return to the start position.

2) Count Task Condition (CO): At the ends of the T-

maze, calendar pictures with dates were presented (see

Figure 1). The second task was to count the total number

of Sundays on all 4 calendar pictures and return to the start

position. In this condition, all participants already knew the

maze and where to find the targets.
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(b)

Figure 3. Paths recorded during the experiment. Only the lower part of
the T-maze is shown, i.e. until the participants had decided for left or right.
(a) Shows the paths recorded during the EX condition and (b) during the
CO condition.

D. Procedure

All subjects received oral explanations about the task and

procedure. At the beginning of the study, the participants

mounted the HMD and backpack in a different room and

were guided blindfolded to the start position. Subjects had

to place themselves properly at the start position and were

instructed to look 4 seconds at the center mark (see Figure 2)

before starting the task. This served as an initial calibration

of the facing direction. Task 2 (CO condition) was explained

to them after they finished the first task (EX condition).

V. RESULTS AND DISCUSSION

In total, 10 out of 11 participants correctly finished the

tasks of the experiment. One participant did not properly

finish the task in the EX condition but could participate again

in the CO condition. Hence, 10 correct paths were recorded

during the explore task condition (EX) and 11 during the

count task condition (CO).

In the following, the analysis of the path data is limited

to the first 4 m from the start position towards the obstacle,

see Figure 1. We refer to this axis as the y-axis and indicate

position with a y-value in meters starting from 0 at the

start position. Within this “decision area”, subjects had to

decide whether to go left or right. Moreover, we defined two

targets at y = 5, “left” and “right”, each in the center of the

left or right passage around the obstacle. For the evaluation

of the path prediction, we use the angular deviation of the

prediction from the targets as suggested in Section III-A.

Figure 3 shows all paths recorded during the experiment.

Gait oscillations can be easily identified for most paths. The

paths indicate that the majority of the subjects decided early,
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Figure 4. Angular deviation of the facing direction from the two targets
while a subject is moving from y=0 to y=4. A solid blue line shows
the deviation from the chosen target direction and the dashed red line
the deviation from the other target. (a), (b) were recorded during the EX
condition and (c), (d) were recorded during the CO condition. The angular
deviation is positive for rotations from the targets towards the center of the
obstacle.

i.e. y ≤ 1, for left or right. This holds especially for the CO

condition where only one of 11 subjects changed the initially

chosen direction after y ≈ 1.4. During the EX condition,

three to four of 10 subjects decided later at y ≈ 2.5. This

indicates that if the environment is unknown to a person,

path prediction is more difficult.

Within the decision area the average walk speed of all

recorded paths in both conditions was 0.95 m/sec, with a

standard deviation of 0.22 m/sec.

A. Facing Direction

Figure 4 shows the angular deviation of the facing direc-

tion from the targets. The four plots represent four different

subjects while they moved from y = 0 to y = 4. A predictor

using the facing direction would thus predict that target

which is closer to 0 degree. For instance, in Figure 4(d)

the predictor would predict the wrong target for y ∈ [0.6, 1]
and the correct one for y > 1.

The data used in Figure 4 is the raw data from the

tracking system. There is little noise in the data and the

plots represent quite well a subject’s head orientation. Hence,

smoothing cannot improve the prediction. For example in

Figure 4(d) at position y = 0.7 the participant deliberately

turned his head to look towards the other target.

In general, the facing direction should be used carefully

as a predictor. First, it does not necessarily reflect a person’s

real gaze direction. A person might just move his eyes

instead of the whole head. Second, the facing direction
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Figure 5. EX condition: angular deviation of the walking direction from
the two targets while a subject is moving from y=0 to y=4. A solid
line represents the deviation from the chosen target and a dashed line
the deviation from the other target. The grey line is the raw data, red
is the exponentially smoothed data and green is the double exponentially
smoothed data.

is not necessarily aligned with the walking path. It is

highly influenced by visual distractions. This experiment was

designed to have no visuals distractions. However, if pictures

would have been placed only on one side of the maze, a

subject might have looked at them from time to time while

walking towards a target. Thus, the average facing direction

vector would not point to the chosen target.

An analysis of the initial facing direction, i.e. when a

person just starts to walk, is omitted because of the study

design, see Section IV-D.

B. Walking Direction and Smoothing

Figure 5 and 6 show the angular deviation of the walking

direction from the targets for the EX and CO condition.

The four plots represent four different subjects while they

moved from y = 0 to y = 4. The walking direction is

calculated as given in Section III-B. The solid lines represent

the angular deviation from the chosen target and the dashed
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Figure 6. CO condition: angular deviation of the walking direction from
the two targets while a subject is moving from y=0 to y=4. A solid
line represents the deviation from the chosen target and a dashed line
the deviation from the other target. The grey line is the raw data, red
is the exponentially smoothed data and green is the double exponentially
smoothed data.

lines the deviation from the other target. The grey lines

show the raw measurement data without any smoothing.

Gait oscillations are well visible in all plots. When using the

walking direction for prediction, gait oscillations turn out to

be the largest disturbance. Hence, smoothing is essential. In

Figure 5 and 6 the colored lines represent smoothed values

using either exponential or double exponential smoothing.

The initial value of �w0 is chosen as suggested in Section

III-C (�f0 points to the center of the obstacle). Smoothing

with moving average turned out to work worse and due to

its problems mentioned above, the results are not presented.

As for the facing direction above, a predictor using the

walking direction predicts that target which is closer to 0

degree in the plot. In other words, if a dashed line is closer

to 0 than its solid counterpart, the wrong target is predicted.

Different parameters for the smoothers were evaluated.

For the given experiment, a smoothing factor of α = 0.004
(for normal and double exponential smoothing) and a trend

smoothing factor of β = 0.004 turned out to work best. I.e.

they provide a stable prediction but still react reasonably

to changes in the intended direction of movement. Using

equation 9 from Section III-C and the given update rate of

180 Hz, we can estimate the percentage of change. Hence,

one second after a change in the walking direction, roughly

50% of that change will be included into the smoothed

walking direction and roughly 75% after two seconds.

Figure 5(a) and (b) show both data from subjects who did

not decide right away for a target and first walked roughly

straight forward. For instance, as can be seen in Figure

5(b), the double exponential smoother is a bit quicker in

detecting the decision and outruns the exponential smoother

at y ≈ 2.2. Figure 6(b) is the extreme case where a

participant changed his decision and turned around (see also

Figure 3). Similarly, the double exponential smoother is

faster in detecting this change. Figure 6(a) shows a typical

plot of a subject who walked straight to the chosen target.

In such cases, both smoothers provide reliable and robust

predictions.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown how short term path predic-

tion of human locomotion can be realized by using tracking

data. One quickly comes up with the idea of using some sort

of extrapolation of the tracking data. As shown in this paper,

the problem must be treated carefully more in detail. It is

crucial how such an prediction is done and what information

is extracted from the tracking data. The dynamics of human

locomotion are different for different persons, e.g. because of

different step lengths, and make it difficult to find a robust

generic predictor. Predicting the future path using double

exponential smoothing of the walking direction turns out to

work well as a predictor while a person is walking. When a

person just starts to walk, the facing direction can be used

as an initialization value for the smoother.

Future path prediction approaches might use accelerome-

ter data to detect steps and thus learn the step length from

the user. This would allow automatic adaptation to a person

and improve the prediction. The displacement of the pelvis

during walking could also be explored for improved tracking

if it is not possible to attach a sensor to a person’s head [20].

Using the facing direction for prediction is critical when a

person moves the eyes only instead of the head. This happens

especially if several targets are close to each other. Hence,

eye trackers could be used to correctly identify the user’s

gaze direction.
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