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Abstract

Cloud storage security gained significant importance in the last decades
due to the vast amount of outsourced sensitive information. Increased
privacy awareness has led more and more cloud operators to adopt
end-to-end encryption, removing the necessity for customers to trust the
providers for data confidentiality. We analyze the cryptographic design
of Mega, a cloud storage provider storing over 1000 petabytes of data for
more than 243 million users. This thesis contributes four severe attacks
allowing a malicious service provider or man-in-the-middle adversary
who compromises the TLS connection to break the confidentiality and
integrity of user keys and files. We exploit the lack of ciphertext integrity
of the encrypted and outsourced RSA private key and characteristics of
RSA-CRT to perform a binary search for one prime factor of the RSA-2048
modulus and recover the secret key – with lattice-based optimizations –
in 512 user login attempts. During a single login attempt, the second at-
tack decrypts any key ciphertext and exploits key reuse and knowledge
of the RSA key. Furthermore, the third attack allows an attacker to frame
users by inserting new files indistinguishable from genuinely uploaded
ones. Finally, the fourth attack contributes a new variant of Bleichen-
bacher’s attack on PKCS#1 v1.5 adapted for Mega’s custom padding
scheme, which tolerates small unknown prefix values through a new
guess-and-purge strategy. We discuss significant challenges introduced
by Mega’s massive scale for a fundamental redesign of their architecture
and suggest short-term and long-term countermeasures. We generalize
our findings, examine the reasons for flawed cryptography in large-scale
applications, and advocate for a cloud storage standard to improve the
security and transparency of cloud providers in practice.
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Chapter 1

Introduction

In the last decades, the popularity of cloud storage services increased signifi-
cantly, and they are projected to store 50% of the global data – corresponding
to 100 zettabytes – by 2025 [143]. The benefits of outsourcing data are sharing,
convenient access from multiple devices, and automatic backups. However,
storing private information online changes the threat model dramatically.
Previously, physical presence or tricking users into disclosing their data
(e.g., through social engineering or infected user devices) was necessary to
compromise data. Today, a vulnerability in a major cloud service provider si-
multaneously affects millions of customers. Therefore, attacks on outsourced
data can be remotely exploitable and easily applied on a grand scale. At the
same time, the digitalization of our world increases, and more sensitive data
– including scanned contracts, corporate secrets, and medical histories – are
gathered and stored digitally. COVID-19 recently accelerated this already
remarkable digitalization trend significantly [78]. The Snowden revelations
increased public awareness of privacy issues and fostered the adoption of
end-to-end encryption [109]. We examine the state of encryption and docu-
mentation of fourteen cloud providers and find that although some popular
services still did not transition to E2EE, many operators advertise secure and
privacy-preserving storage. Consequently, these progressive cloud providers
adopt a new threat model where customers are no longer required to trust
them for confidentiality. In this thesis, we utilize the stronger adversary
capabilities implied by this thread model to perform attacks.

We analyze Mega, one of the major cloud providers offering E2EE, and find
substantial issues in their cryptographic design. A malicious cloud provider
or strong MitM attacker can compromise the confidentiality of various keys
and consequently all user files and chat messages. Our attacks recover the
RSA private key of any particular user after as few as 512 login attempts.
Subsequent attacks can decrypt file keys or forge a file indistinguishable from
a genuinely uploaded one in a single login attempt. Among other issues
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1. Introduction

with Mega’s cryptographic design, our attacks exploit the lack of integrity
protection of key ciphertexts. We propose various measures and highlight
practical issues with backward compatibility and the massive scale of Mega
that make rigorous mitigation challenging.

The remainder of the introduction positions this thesis among previous re-
search (Section 1.1) and details our contributions (Section 1.2). Chapter 2
introduces notation and specifies cryptographic primitives used in the fol-
lowing chapters and should serve as a quick reference. Next, we examine the
suitability of existing cloud services for third-party analysis in Chapter 3 and
analyze the design of Mega in detail. Building on the insights of this analysis,
we present four attacks in Chapter 4: an RSA private key recovery attack, an
AES-ECB plaintext recovery, a framing attack, and a Bleichenbacher-esque RSA

decryption. In Chapter 5, we propose short-term and long-term mitigations
and highlight various feasibility issues of invasive mitigation approaches due
to the scale of Mega. We conclude in Chapter 6 by extracting general insights
on the state of cloud storage security – and other cryptographic designs used
at a large scale – from the case of Mega.

1.1 Related Work

Cloud Storage Surveys. As cloud storage became popular, several pa-
pers [73, 165, 168] discussed possible architectures and specifications, fo-
cusing on practical issues including redundant storage, load balancing, and
physical security. In contrast, we consider the cryptographic design of end-
to-end encrypted cloud services. Kamara and Lauter survey architectures
for clouds supporting searchable encryption [122]. Our overview focuses
on existing systems, their classical confidentiality guarantees, and their suit-
ability for third-part analysis. Other comparisons [89, 145, 166] evaluated
different aspects, including performance and pricing. The review [160] from
2011 is closer to our survey, albeit making a broader comparison with fewer
details on the cryptographic primitives. Moreover, cloud storage providers
developed significantly in the last decade.

Mega. Mega’s security white paper [62] describes their cryptographic de-
sign. Compared to it, our source code analysis resulted in more insights and
technical details, especially on their custom AES-CCM implementation, the key
obfuscation, the chunk-wise file encryption, and the RSA decryption.

Key Overwriting and Power Fault Attacks. The first key recovery attack
on RSA and DSA using key overwriting of the outsourced and encrypted key
material appeared in [127] in the context of OpenPGP. We present a key
recovery attack that observes results from the victim’s RSA-CRT decryption
with tampered key material. While previous work attacked RSA signatures,
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1.2. Contributions

we focus on encryption where only partial instead of complete output is
available. Furthermore, power fault attacks on RSA signatures [93, 135]
inspired our attack on RSA-CRT. Unlike them, we tamper with the private
key instead of inducing errors in single computations. In summary, our
attack setting and the capabilities of our adversary differ from previous
work: the cited attacks target RSA signatures in a known-plaintext setting and
require access to the full signature. We use chosen plaintexts to factor the
RSA modulus, where we can observe only slightly more than a sixth of the
decryption. Moreover, we can only modify the private key ciphertext at a
granularity of 128 bits instead of the octet-granularity of [127]. Furthermore,
we introduce a plaintext recovery attack that builds on the RSA private key
recovery and is specific to the analyzed architecture.

CBC-MAC Cryptanalysis. We present a framing attack exploiting that
CBC-MAC allows the construction of a file that produces a target MAC tag
if the key is known, and we can choose a single AES block in the plaintext.
We are not aware of any previous work which analyzed CBC-MAC in this
unusual cryptanalytic setting where the adversary knows the key but cannot
choose the tag. Related work on authenticated encryption without key com-
mitment constructs ciphertexts that preserve essential structures of two file
formats [77, 99, 134]. The authors utilize the junk-tolerance of parsers such
that the decryption of one file produces garbled but ignored data where the
other file is stored. In contrast, we only choose a single junk AES plaintext
block for one key and target CBC-MAC instead of AES-GCM, AES-GCM-SIV, or
OCB3.

Bleichenbacher-Esque Attacks on PKCS#1 v1.5. We contribute an RSA

decryption attack that is a novel variant of Bleichenbacher’s attack on
PKCS#1 v1.5 from 1998 [88]. Other instances of this attack [90, 117, 141,
152, 169] exploit different side-channel leakage to build padding oracles.
Unlike them, we do not target PKCS#1 v1.5 padding but a custom scheme
that includes an unknown prefix circumventing the straightforward adaption
of Bleichenbacher’s attack. To the best of our knowledge, this thesis is the
first to introduce and evaluate a guess-and-purge strategy to account for
these unknown prefix values in the padding oracle.

1.2 Contributions

This thesis makes the following contributions:

1. We evaluate fourteen cloud providers on their suitability for analysis.

2. We provide detailed pseudo-code for the authentication, encryption,
and sharing algorithms to enable the abstract analysis of the design of

3



1. Introduction

Mega and Nextcloud.

3. We introduce attacks on Mega considering a malicious cloud provider
or an active MitM adversary who compromised the TLS connection.

3.1. RSA key recovery: combines key overwriting with a chosen-plaintext
attack to factor the RSA modulus in 512 login queries.

3.2. AES-ECB decryption: recovers the plaintext of two AES blocks en-
crypted with AES-ECB under the master key. In Mega’s architecture,
this affects signing keys, asymmetric chat keys, and node encryp-
tion keys using an adaption of the RSA key recovery attack.

3.3. Framing attack: uses the AES-ECB decryption to place a largely
chosen file (except for one AES block) in a victim’s cloud, which is
indistinguishable from genuinely uploaded data.

3.4. Novel Bleichenbacher variant: motivated by Mega’s custom RSA

padding, we provide a more generic description of Bleichen-
bacher’s attack on PKCS#1 v1.5 that can tolerate small unknown
prefix values.

4. We suggest practical and backwards compatible patches of Mega’s
implementation to protect against our attacks in the short and long
term.

5. We generalize our findings and hypothesize why large-scale services
suffer from flawed designs, what the consequences of a compromise
are, and advocate for a cloud storage standard to improve the security
and transparency of cloud providers.
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Chapter 2

Background

Before we study cloud providers and discuss various attacks in technical
detail, we introduce some notation (Section 2.1) and specify cryptographic
primitives (Section 2.2). The goal of this chapter is to carefully develop a
common understanding of the exact interpretation of any formulation. We
encourage the reader to use the following sections as lookup material, since
most definitions are not repeated later on.

2.1 Notation

We define and use the following conventions in this thesis:

• x ← y; set element x to the value y

• x←$X ; sample element x from the set X uniformly at random

• r $←− f (x); indicates a randomized function f , which in this instances
produces r on input x

• [m]k; ciphertext representing the encryption of message m with the key
k

• [m]σk ; signature of the message m using the key k

• {pk, r}skT ; certificate binding the public key pk to the identity r, signed
by the trusted authority’s secret key skT.

• |s|; number of characters of the string s

• |b|2; number of bits of the binary value b

• |b|8; number of bytes of the binary value b, specifically |b|8 = d|b|2/8e

• s1||s2; string concatenation, appending s2 to s1

5



2. Background

• l[a:b]; take the slice {ea, ea+1, . . . , eb} from the list l ← {e1, e2, . . . , en},
where 1 ≤ a ≤ b ≤ n. We treat strings as lists of characters and byte
strings as lists of bytes.

• [a, b]; for the set {a, a + 1, . . . , b}, where a < b. Variants with parenthe-
ses exclude the boundary, e.g., (a, b] = {a + 1, a + 2, . . . , b}.

• {0, 1}n; for the set of all n-bit strings

• 0n, 1n; as shortcuts for the n-bit strings 00 . . . 0 respectively 11 . . . 1

• bXcp; represents the integer rest when dividing X by p. In other words,
there exist a ∈ Z, r ∈ [0, p) such that X = a · p + r, where r = bXcp. We
use this to distinguish the integer rest from elements in the ring Zp

1.

•
⌊

X−1⌋
p; represents the integer value of the inverse of X modulo p, i.e.,

it corresponds to a ∈ Z such that 0 ≤ a < p and a ≡p X−1.

• ||v||1; the L1 norm of the vector v = [vn, vn−1, . . . , v0]T, i.e., ||v||1 =

∑n
i=0 |vi|

• ||v||2; the L2 norm of the vector v = [vn, vn−1, . . . , v0]T, i.e., ||v||2 =√
∑n

i=0 (vi)2

• lpadN (i); translates the integer i to N bytes of big-endian byte encoding.
If necessary, the value is left padded with zero bytes to reach N bytes.

2.1.1 Object Oriented Syntax

Occasionally, we use object oriented syntax in the mathematical description
of algorithms to make relationships explicit.

For instance, we write the following:

• server.fn(arg); for the API call of the function fn with the argument(s)
arg on the server.

• keychain.Put(x), keychain.Get(x); to specify storing/retrieving a value
x in/from the on-device key chain.

• obj.x; for the variable x stored in the context of obj.

1To give an example for the subtle difference between Xr ← bXcp and Xp ← X mod p
(i.e., Xp ∈ Zp), we consider the multiplication with an integer α ∈ Z. First, we note that α ·Xp
is strictly speaking not defined, because the ring multiplication operation is only defined
for two elements in Zp. However, if we consider αp ← α mod p, then Yp ← αp · Xp is an
element in Zp. In other words 0 ≤ Ȳp < p, where Ȳp is the value of Yp lifted to integers.
On the contrary, Yr ← α · Xr is a well defined operation over integers without any implicit
reduction modulo p. Consequently, we can have Ȳp 6= Yr (however, we always have Ȳp ≡p Yr),
which is relevant when we combine operands that were reduced by different moduli, like in
the CRT.

6



2.2. Cryptographic Zoo

2.2 Cryptographic Zoo

In the following, we specify the various algorithms used by cloud service
providers or us later in this thesis.

2.2.1 ZXCVBN

ZXCVBN is a practical and efficient password strength estimator that was
presented by Daniel Wheeler from DropBoxInc. at USENIX 2016 [163].

We only use the following function of ZXCVBN:

• i← ZXCVBN.score(pw); estimates the strength of the password pw and
returns i ∈ [0, 4], where 0 indicates a very weak secret and 4 a strong
one.

2.2.2 AES

We use different modes of operation for AES. Let B = 128 be the block size
and K the key space. We use the block cipher F : K× {0, 1}B → {0, 1}B, with
F(k, x) → y for a key k, a plaintext block x and a ciphertext block y. In the
following, we use m = m0||m1|| . . . ||mr, where |m0| = |m1| = . . . = |mr| = B
for an arbitrary plaintext message of r blocks and c = c0||c1|| . . . ||cs where
|c0| = |c1| = . . . = |cs| = B for a ciphertext of s blocks.

• Electronic Codebook (ECB)

– c← AES-ECB.Enc(k, m); encrypts the message m using the key k to
obtain the ciphertext c where ci ← F(k, mi)∀i ∈ [0, r] and r = s.

– m ← AES-ECB.Dec(k, c); decrypts the ciphertext c using the key k
to obtain the plaintext m for mi ← F−1(k, ci)∀i ∈ [0, r] and r = s.

• Cipher Block Chaining (CBC) [103]

– c ← AES-CBC.Enc(k, m, iv); encrypts the message m using the key
k and the initialization vector iv to obtain the ciphertext c, where
c0 ← iv and ci+1 ← F(k, mi⊕ ci)∀i ∈ [0, r]. Note that the ciphertext
has one additional block, i.e. s = r + 1.

– m ← AES-CBC.Dec(k, c); decrypts the ciphertext c using the key
k to obtain the message m. c0 is the initialization vector and
mi ← F−1(k, ci+1)⊕ ci∀i ∈ [0, r].

• Galois Counter Mode (GCM)2

2This is a simplified description, refer to the proposal by David McGrew and John
Viega [140] and and NIST SP 800-38D [101] for the full specification.
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2. Background

– c, τ ← AES-GCM.Enc(k, m, n, ad); encrypts the message m with the
associated data ad using the key k and nonce n to obtain the
ciphertext c and the authentication tag τ. We have the key stream
blocks Yi ← F(k, G(n, i)) where G(n, i) calculates the counter value
for position i. The ciphertext blocks are ci = mi ⊕ Yi+1. For
authentication, we have τ ← H(k, ad, c)⊕ Y0, where H is a hash
aggregation of its inputs.

– m/⊥ ← AES-GCM.Dec(k, n, τ, c, ad); attempts to decrypt the cipher-
text c with nonce n, tag τ, and associated data ad. If the au-
thentication fails, this returns ⊥, otherwise, the plaintext m. We
again have the key stream blocks Yi ← F(k, G(n, i)) and compute
mi ← ci ⊕Yi+1. Authentication fails if τ 6= H(k, ad, c)⊕Y0.

• Counter with CBC-MAC Mode (CCM)3

– c, τ ← AES-CCM.Enc(k, n, ivmac, m, ad); encrypts the message m with
the associated data ad, the AES-CTR nonce n, and the CBC-MAC IV
ivmac using the key k. This results in the ciphertext c with the tag
τ. Let Yi ← F(k, G(n, i)) be the key stream blocks, where G(n, i)
calculates the counter value for position i. Then, the ciphertext
blocks are ci ← mi ⊕ Yi+1. For authentication, we compute the
AES-CBC encryption of E(ad)||m with IV ivmac, where E does the
length encoding and padding of ad. Let d be the last block of this
AES-CBC encryption, then we have τ ← d⊕Y0.

– m/⊥ ← AES-CCM.Dec(k, n, ivmac, τ, c, ad); attempts to decrypt the
ciphertext c with nonce n, CBC-MAC IV ivmac, tag τ, and associated
data ad. Let Yi ← F(k, G(n, i)) again be the key stream blocks.
Then, the authentication tag is recomputed on the plaintext as in
the encryption and compared against τ ⊕ Y0. If the tags are not
equal, the authentication failed and we return ⊥. Otherwise, we
return the plaintext m for mi ← ci ⊕Yi+1.

Furthermore, we use the CBC-MAC message authentication code to integrity
protect a message m split into blocks as described above.

• τ ← CBC-MAC.Tag(k, m, iv); produces the authentication tag τ of the
message m using the IV iv for the underlying AES-CBC. The tag τ is the
last AES ciphertext block of AES-CBC.Enc(k, m, iv). Usually, iv← 0128 is
used for CBC-MAC.

• ⊥/> ← CBC-MAC.Vfy(k, m, iv, τ); verifies the tag τ by recomputing
CBC-MAC.Tag(k, m, iv) and comparing the output to τ. Returns failure
(⊥) or success (>).

3RFC 3610 by Whiting et al. [164] describes this mode in more details.
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2.2.3 RSA

RSA is one of the first public key schemes and was proposed by Rivest,
Shamir, and Adleman in 1977 [151]. This influential cryptosystem is still
widely used in 2021. In the following, we define the abstract notation used
in the remaining part of this thesis.

• sk, pk $←− RSA.Gen(l); generates a public key pk and the corresponding
private key sk with an l-bit modulus.

• c $←− RSA.Enc(pk, m); encrypts the message m using the public key pk
and producing the ciphertext c. Since pk is public knowledge, anyone
can perform this encryption. Normally, a randomized padding is
applied to m (see below).

• m← RSA.Dec(sk, c); decrypts the ciphertext c to obtain the message m
using the secret key sk.

RSA-ECB-OAEPWithSHA-256AndMGF1Padding. This is a combination
of RSA with Optimal Asymmetric Encryption Padding (OAEP). Such a ran-
domized padding is needed to achieve IND-CPA security and prevent other
attacks in practice. ECB is only in the name for compatibility reasons and does
not have any function. Finally, OAEP is instantiated with the hash function
SHA-256 and the Mask Generation Function MGF1 [131].

2.2.4 Ed25519

Bernstein et al. proposed Ed25519 as a high-performance EdDSA signature
scheme [85]. It is built on Curve25519 (cf. Section 2.2.5) and uses SHA-512.

We use the following Ed25519 operations:

• sk, pk $←− Ed25519.Gen(); generates a secret signing key sk and the
corresponding public key pk, where the finite field for EdDSA uses the
(almost) 256-bit prime q = 2255 − 19.

• σ ← Ed25519.Sign(sk, m); create the Ed25519 signature σ from the
message m by using the secret key sk.

• ⊥/> ← Ed25519.Verify(pk, σ); verify the signature σ with the Ed25519
public key pk and succeed (>) or fail (⊥).

2.2.5 Curve25519

Curve25519 is a high-speed elliptic curve that is primarily used for Diffie-
Hellman key exchange and provides 128-bit security. Bernstein et al. released
this fast and accessible curve in 2006 [84].

On an abstract level, the functions are defined as:
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• sk, pk $←− Curve25519.Gen(); generate a secret key sk ∈ [1, n− 1], where
n is the curve generator’s order, and a public key pk (which is a point
on the curve).

• xA,B ← Curve25519.DH(skA, pkB); A calculates the shared secret xA,B
between two entities A and B, where skA is A’s secret key and pkB is
the public key of B. The other party B can compute the shared secret
similarly as Curve25519.DH(skB, pkA).

2.2.6 X.509

X509 is a standard from the International Telecommunication Union for
certificates that bind identities to public keys [116]. Such certificates are
ubiquitous in the Internet architecture. The root of trust (e.g., pre-installed
certificates in browsers) stores certificates of some trusted organizations.
These entities use the secret keys corresponding to the trusted public keys to
sign certificates and bind other identities to key material (e.g., associating the
key of a web server with a domain name, as used in HTTPS). By definition,
we transitively trust a certificate whenever we can establish a chain of signed
certificates leading to the root of trust.

We use the following notation:

• csr ← X509.CSR(sk, pk, id); creates a Certificate Signing Request (CSR)
to bind the public key pk to the identity id. This request is signed with
the secret key sk.

• cert ← X509.CreateCert(sk, csr); create a certificate from the CSR by
singing the binding described in csr with the secret key sk.

• ⊥/> ← X509.Vfy(cert, pk); verify the signature of certificate cert using
the (trusted) public key pk and return failure (⊥) or success (>). The
used public key is either in the root of trust or has a trusted certificate
itself.

2.2.7 PBKDF2

The Password-Based Key Derivation Function 2 (PBKDF2) is described in the
Public-Key Cryptography Standards (PKCS) #5 from RSA Laboratories [131].
PBKDF2 is a countermeasure against brute force attacks and repeatedly ap-
plies a pseudo-random function (PRF) to the password and a randomly
selected salt. In the following, we use two instantiations of this primitive:
PBKDF2-HMAC-SHA1 and PBKDF2-HMAC-SHA512. They use the different hash
functions SHA-1 respectively SHA-512 for the PRF HMAC.

We write a call to PBKDF2 as follows (PBKDF2-HMAC-SHA1 is defined similarly):
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• k← PBKDF2-HMAC-SHA512(pw, s, iter=i, len=l); derive an l-bit key k from
the password pw and salt s in i iterations.

2.2.8 CSPRNG

A Cryptographically Secure Pseudo-Random Number Generator provides
random numbers suitable for cryptography. Libraries usually provide such a
secure source of randomness, e.g., the RNGCryptoServiceProvider class of
.NET [42].

We use the following notation:

• k $←− CSPRNG.random bits(l); select key k from {0, 1}l in cryptographi-
cally secure pseudo-random manner
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Chapter 3

Cloud Data Storage Solutions

We examine the current landscape of cloud services and provide a broad
overview of the suitability of existing solutions for independent audits in
Section 3.1. We summarize the features that cloud providers commonly aim
to achieve in Section 3.2. Furthermore, we discuss in Section 3.3 Mega’s cryp-
tographic design in detail based on information from their white paper [62]
and analyzing their client’s source code. This in-depth analysis of Mega’s
architecture lays the foundation for our attacks presented in Chapter 4.

In addition, Appendix B reviews the completely open-source code and design
of Nextcloud and compares it to Mega’s architecture. We focus our analysis
in this thesis on Mega, because they are more widely deployed and have
better integrated end-to-end encryption. Furthermore, attacks by a malicious
service provider are within the threat model since Mega cannot be self-
hosted like Nextcloud. However, future work could build on our summary
of Nextcloud’s design and search attacks on their system.

3.1 Cloud Storage Provider Overview

We briefly discuss the data protection approach, availability of documenta-
tion and source code, as well as the popularity of the following data storage
solutions: BoxCryptor, DropBox, Google Drive, Icedrive, Mega, Nextcloud,
OneDrive, pCloud, Seafile, Sync, Syncthing, and Tresorit. Table 3.1 summa-
rizes the content of this section.

First of all, we introduce the four criteria that we use to evaluate the providers.

Type. The examined services use the following two approaches:

• T1. The vast majority offer a classical cloud storage with a server
component, usually hosted by the provider, and clients for different
operating systems.
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• T2. Two solutions – BoxCryptor and Tresorit – can be used as a
encryption solution in addition to an untrusted cloud storage. This
software encrypts data before uploading.

Available Documentation. We consider a service to have documentation
if it provides a white paper (or something similar) with sufficient technical
information on the design of their solution. A service has partial docu-
mentation, if some relevant technical details (such as the used encryption
algorithms) and a high-level discussion is available. We do not consider
source code to be documentation, as this is evaluated separately.

Available Source Code. Note that we avoid calling this category “Open
Source”, since we are only interested in the reviewability of the code of a
service, irrespective of the license under which it is published. Services that
only publish their client’s code earn the label “Client” if the relevant cryp-
tographic operations are performed on the client and can thus be reviewed.
We consider the extensive use of open source libraries or out-dated source
code as “Partial” availability.

Popularity. We use the number of users as a rough indicator for the pop-
ularity of a service. However, there are two caveats to keep in mind with
this approach: first, some companies publish their user statistics very ir-
regularly or not at all. Consequently, we are in the difficult situation to
compare numbers from different years. This inconsistency is problematic
since user bases do not grow linearly. Second, there is no industry standard
according to which active users are measured. It is entirely the companies’
decision to define after which period of inactivity a user is no longer counted.
Furthermore, identifying users can be challenging itself: on the one hand,
a single user might have multiple accounts. On the other hand, a single
account might be shared by multiple users.

E2EE. We evaluate whether the service claims to offer End-to-End Encryp-
tion (E2EE), which we define as local encryption of all data on the client,
where the key material is only accessible on the client’s devices. This property
is sometimes also referred to as client-side encryption or zero knowledge
encryption.

ToS. In this point, we state whether the provider’s Terms of Service (ToS)
explicitly disallow the analysis of their products (“No”) or do not regulate it
(“Yes”). For instance, many forbid to recover their source code by reverse
engineering, decompilation, or other means. Most disallowing ToS are
formulated in a way to make sure that reverse engineering is illegal if this is
possible in the local legislation. However, the situation varies from country to
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Type
Avail.
Docs

Avail.
Source
Code

Popularity
[106 users]

E2EE ToS

BoxCryptor T2 Yes Partially 0.5 Yes No
DropBox T1 Partially No 700 No No
Google Drive T1 Yes Partially 1000 No No
Icedrive T1 Partially No 0.15 Yes Yes
iCloud T1 Partially No 850 No No
Keybase T1 Yes Client 0.1 Yes Yes
Mega T1 Yes Client 243 Yes Yes
Nextcloud T1 Yes Yes 20 Yes Yes
OneDrive T1 Partially No 500 - 1000 Yes No
pCloud T1 Partially Client 12 Yes No
Seafile T1 No Yes 1 Yes Yes
Sync T1 Yes No 1.7 Yes No
Syncthing T1 Yes Yes 0.067 No Yes
Tresorit T1, T2 Yes No 0.025 Yes No

Table 3.1: Documentation status of popular cloud storage providers. Type
T1 is a standalone storage provider and type T2 is a file encryption solution
that can be used in combination with a cloud provider. The content of this
table is to the best of our knowledge the current status as of 2021.

country, and the legal situation is complicated: for instance, the EFF provides
an overview on how legal regulation affects reverse engineering in the United
States [8].

3.1.1 BoxCryptor

BoxCryptor provides a local data encryption solution that is compatible
with various cloud storage providers. Since they do not offer a server
component, their product inherently provides client-side encryption. Their
documentation is available on their website [153]. Although BoxCryptor
published code to decrypt a single file on March, 2020 [6], this is neither the
complete source code nor the latest version. For instance, the encryption
part is missing entirely. BoxCryptor’s ToS forbid reverse engineering of their
product [7]. They reported in 2021 to have 500,000 users [1].

3.1.2 DropBox

DropBox offers a very popular cloud storage that is used by over 700 million
users in 2021 [16]. Although they have a security white paper [64] for their
business solution, we could not find technical details on the encryption

15



3. Cloud Data Storage Solutions

(e.g., the key rotation). Moreover, there is no white paper for the individual
users’ storage service. They store the user’s file encryption key material
on their servers [64]. DropBox supports the open source community and
has published internal tools [15], however, their cloud storage is proprietary.
DropBox’s ToS do not allow reverse engineering [13].

3.1.3 Google Drive

Google Drive is the most wide-spread cloud storage in our comparison:
already in 2018, Google reported over one billion users [132]. They provide
two security white papers [60, 61] as well as an online resource on their
encryption in transit [59]. Google uses and develops a variety of open source
tools [21] such as BoringSSL. However, their cloud service is not published.
The keys for Google Drive’s encryption at rest are managed centrally by
Google [60]. Google disallows reverse engineering any of their products in
the general ToS [22], which also apply to Google Drive [20].

3.1.4 Icedrive

Icedrive is a comparatively new cloud storage service that started in 2019.
To the best of our knowledge, they have not yet published the number of
active users. We estimate them to have roughly 150,000 users based on the
number of installs on Android devices. We calculate this estimate for the set
of reference cloud storage providers S = {Mega, DropBox, GoogleDrive} as
follows:

1
|S| ∑

s∈S
IIcedrive/Is ·Us (3.1)

where Is is the estimated number of installs on Android devices from an-
droidrank [14, 19, 24, 30] and Us is the number of active users listed in
table 3.1 for the service provider s.

Icedrive’s websites explains their encryption on a fairly high-level[25]: they
use Twofish for client-side encryption of files and meta-data. However, we
did not find any further details on their architecture, key wrapping, or key
rotation.

3.1.5 iCloud

Apple’s closed source cloud storage service iCloud is automatically enabled
on Apple’s devices starting from iOS 9. In 2018, Barclays’ analysts estimated
iCloud to have 850 million users [148]. Some Apple services – including
health and home data – use E2EE. However, other data – such as iCloud
drive, backups, and photos – is only encrypted with AES-128 in transit and at
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rest, with keys known to Apple [66]. The available documentation provides
few technical details on the implementation. The ToS of iCloud [67] do not
explicitly mention reverse engineering; however, they prohibit any copy of
the software, which is often part of the reverse engineering process. The
terms and conditions for Apple media services, which may be argued to
include iCloud, explicitly prohibit any attempt to derive the source code.

3.1.6 Keybase

Keybase is a chat and document sharing service with over 100’000 registered
users [27], which clearly describes their design and threat model [126]. They
distinguish themselves from other services by enabling users to link their
accounts to their online presence by posting signed statements on other
public accounts. For authentication, a user defines a set of public profiles
they know to belong to the target person, and Keybase verifies the publicly
posted signatures on these accounts. Keybase realizes E2EE with device-
specific public keys associated with every account. Interestingly, Keybase
uses multiple Merkle trees to make server and user actions publicly verifiable
and malicious behavior detectable. Keybase’s unusual approach entails
building a public graph linking social media and key material, which raises
privacy concerns.

The continuation of Keybase is unclear since only the code of their clients [28]
but not their servers [161] is open source. Therefore, only Zoom, which
acquired Keybase in 2020 [167], can continue the project. However, this
seems unlikely since the development activity of Keybase has decreased
significantly after the ownership change [130]. They publish most client
software under the BSD 3-Clause license, and Keybase’s ToS do not mention
reverse engineering.

3.1.7 Mega

Section 3.3 describes the cloud storage service Mega in detail. They provide
a detailed white paper [62] and the source code of their clients [55]. However,
the server code is proprietary, presumably for economic reasons. In 2021,
they report to have over 243 million users [3]. Although Mega’s ToS disallow
analyzing their products in general, there is an exception for the clients
published under open source licenses [71].

3.1.8 Nextcloud

The architecture of Nextcloud’s storage service is described in two white
papers: one on E2EE [146] and the other on their server-side encryption mode.
They completely open source their clients and servers [35] and provide a
manual for developers [32]. It is challenging to estimate the number of
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Nextcloud users, since they are spread over self-hosted Nextcloud server
instances. In 2017, Nextcloud estimated to have “well over 20 million users”
spread on tens of thousands of servers [150]. Today, there are over 400’000
server instances [2] and we therefore expect the number of users to be
multiple factors higher. Nextcloud explicitly welcomes the public scrutiny of
their cryptographic design [146].

We describe Nextcloud in detail in Appendix B. Nextcloud’s documenta-
tion [146, 147] includes limited technical details, and they have not yet
implemented all of the described concepts. We derive detailed pseudo-code
algorithms for registration and node encryption from the source code. Fur-
thermore, we discuss plausible future implementations for sharing folders.

3.1.9 OneDrive

OneDrive has multiple resources where they discuss their encryption on
a high-level [56, 72, 139]. However, some implementation choices of their
closed source product remain unclear, especially concerning the non-business
instances. Microsoft does not frequently publish the usage statistics of indi-
vidual products. Back in 2015, OneDrive’s CEO Satya Nadella disclosed that
they have more than 500 million users [125]. In April 2021, they announced
to have over 1.3 billion monthly active Windows 10 users. Since OneDrive
is installed by default on all these devices, we expect the current number
of OneDrive users to be around one billion too. Microsoft disallows any
reverse engineering for all their services, including OneDrive, in their service
agreement [69]. OneDrive Business uses per-file keys to protect data at rest,
however, the keys are stored by Microsoft [72].

3.1.10 pCloud

pCloud offers a cloud storage with client-side encryption of individual
folders [40]. They briefly describe pCloud’s general architecture [40, 53],
however, some information is missing. For instance, they do not describe
how their Merkle-tree based authentication works. They publish multiple
SDKs [37] and the code for at least some clients [41]. pCloud’s ToS ban
analyzing their proprietary services [39]. We decided to give them a “No”
for the ToS column, because neither the server-side code nor the source code
of their main clients is published. Consequently, a significant part of their
services cannot be analyzed. In 2021, pCloud reports having over 12 million
users [38].

3.1.11 Seafile

Seafile is a completely open source cloud storage [44, 45, 46] with client-side
encryption [43]. However, apart from the code, there is little documenta-

18



3.2. Cloud Storage Provider Features

tion about the general architecture. Seafile’s ToS naturally do not prohibit
analyzing their code [29]. They report to have one million users in 2021 [43].

3.1.12 Sync

Sync’s end-to-end encrypted cloud storage architecture is described in a
white paper from 2015 [156]. Although this specification tends to be a bit
vague (e.g., regarding the implementation) and somewhat dated, it does give
an overview about the used primitives. They do not publish their source
code and their ToS disallow reversing [52]. Sync reports to have 1.7 million
users in 2021.

3.1.13 Syncthing

Syncthing provides peer to peer file synchronization without particular
focus on security [47]. Documentation about the general architecture is rare.
From their transparent usage reports, we can see that 67,000 users are using
Syncthing in 2021 [51]. As a decentralized open source project [50], they do
not have ToS.

3.1.14 Tresorit

Tresorit provides a solution that can either be used as standalone E2EE
cloud service or as encryption layer for another untrusted service. Their
architecture is described in two white papers [158, 159]. Although they
specify which third party tools they use [54], some of which are open source,
their own product is proprietary. We were only able to find that they had
25,000 business users in 2019 [157], but not the total number (which includes
the individual users). Tresorit defines in their Acceptable Use Policy [4],
which is part of their ToS [12], that reversing their products is not allowed.

3.2 Cloud Storage Provider Features

Based on our survey, we identify the following advanced features to be of
particular relevance for an E2EE cloud storage service. Although by far not
all of the studied providers achieves all of the mentioned properties, they
seem desirable in general.

• Multi-device support; a user can access and manage his files from differ-
ent devices

• File sharing; nodes can be made accessible to other users or with
public/password-protected links

• Share management; users can manage the people with whom they share
a folder and securely remove individuals
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• Account Recovery; users who lost their key material can regain access to
their encrypted data

• File Versioning; files keep a history of their modifications

• Contact Relationships; users can establish trusted connections with other
entities and verify their identity and key material. Ideally, these rela-
tionships are private to prevent malicious providers from gathering
metadata.

3.3 Mega’s Cryptographic Design

We chose to take a closer look at Mega because they have a large user
base, good documentation, and publish the source code of their clients.
Furthermore, they focus on security and provide end-to-end encryption.

Kim Dotcom, Mathias Ortmann, and Bram van der Kolk launched Mega in
2013 and claimed it to be the “only major cloud storage provider supporting
browser access to end-to-end encrypted cloud storage” [62]. Initially, Mega
received some pushback for their system design. Prof. Alan Woodward
pointed out two issues of doing cryptography in JavaScript [95]: first, the
encryption code is loaded every time the user visits Mega’s website. There-
fore, a malicious administrator or a MitM could perform targeted attacks and
replace the served encryption code with an instance that does not properly
encrypt the files or discloses the keys. Second, the random numbers gener-
ated in JavaScript that Mega uses for key material were known to be weak.
Furthermore, there were concerns that Mega would be used predominately
to share copyright infringing material as its predecessor Megaupload [119].
Since Dotcom’s previous website was shut down by law enforcement, it
was unclear whether authorities could force Mega to adapt their service
and disclose customers’ keys [95]. In 2015, Kim Dotcom caused further
controversy by announcing that he no longer trusts Mega and is not involved
anymore [26], his claims being repudiated by Mega [58]. A company based
in Hong Kong now holds 99.8% of Mega Limited’s shares [31].

Despite all initial controversy, Mega continues to grow rapidly and now
has over 10 million daily active users [3] and stores more than 1000 PB of
data [65]. Mega’s security white paper addresses some of the initial concerns
and discusses their design decisions [62]. The service employs a rather
stringent takedown policy and quickly removes public links to material
violating copyright. They report to have received 746,336 takedown requests
in Q3 2021, which corresponds to only 0.0007% percent of the total number
of files stored on Mega [68]. Furthermore, they offer various alternative
clients (desktop, Android, iOS) to their web browser. Additionally, there is a
browser extension that avoids re-downloading the encryption-performing
code. Nevertheless, normal web browser users still get the JavaScript code
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served on connection. Concerning the insecure randomness, browsers have
improved significantly and now provide CSPRNG. Section 3.3.7 discusses
the last two points in more detail.

In this case study, we first present Mega’s implementation for registering
users (Section 3.3.1), authenticating clients (Section 3.3.2), encrypting files and
folders (Section 3.3.3), and sharing (Section 3.3.4). Furthermore, we briefly
discuss the account recovery (Section 3.3.5) and business user (Section 3.3.6)
features. Finally, we discuss the more higher-level properties of privacy
(Section 3.3.8), confidentiality (Section 3.3.9), authentication (Section 3.3.10),
and integrity (Section 3.3.11).

Algorithm 1 Mega’s user registration function for the email email, the pass-
word p1, and the verification password p2

1: procedure register user(email, p1, p2)
. Email verification

2: if |email| > 190 then
3: return false

. Password verification
4: if p1 6= p2 or |p1| < 8 or ZXCVBN.score(p1) = 0 then
5: return false

. Create key
6: NC, [kM]ke , hka

$←− MASTER KEY GEN(p1)

. Create user
7: server.create user(name, surname, email, NC, [kM]ke , hka)

3.3.1 Registration

Algorithm 1 gives an overview of Mega’s user registration. The new customer
needs to enter an email address email and a password p1. Following common
practice, p2 is the repetition of the latter for verification. The email address
has to be at most 190 characters, because it is later used in a hash function
with constant bounded input size (to thwart timing side-channels). Passwords
that are too short or scored by ZXCVBN to be too weak are not accepted.

Next, the client generates the user’s master key (cf. Algorithm 2) and calls
the server’s API to register the user. We remark that the generated master
key does not depend on any user identifier. Mega justifies this decision in
their security white paper [62] with usability: the only identifier on Mega is
the user’s email address. If the master key would depend on this contact
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information, changing it would make all the user’s data inaccessible unless
it is re-encrypted. It is unclear, why they are not using a user ID, which is
detached from the email. However, equal passwords of different users do
not lead to the same master key as there are no collisions in the client nonces.
Since the nonce is 128 bits, the Birthday Paradox tells us that approximately
264 user accounts with the same password would be required to find a
collision.

Algorithm 2 Mega’s master key generation function from the password pw

1: procedure master key gen(pw)
. Calculate the derived key kd

2: NC
$←− CSPRNG.random bits(128) . Client random value

3: s← SHA-256(PAD(′mega.nz′)||NC) . Salt
4: kd ← PBKDF2-HMAC-SHA512(pw, s, iter=100′000, len=256)

. Calculate the derived encryption resp. authentication keys ke and ka
5: ke||ka ← kd . |ke|2 = |ka|2 = 128

. Generate and encrypt master key kM

6: kM
$←− CSPRNG.random bits(128)

7: [kM]ke ← AES-ECB.Enc(ke, kM)

. Calculate the hashed authentication key hka

8: hka ← SHA-256(ka)[:16] . hka is the leftmost 16B of the hash

9: return NC, [kM]ke , hka

Algorithm 3 Mega’s padding of the string s

1: procedure pad(s)
2: while |s| < 200 do
3: s← s||′P′

4: return s

Master Key Generation. Algorithm 2 describes the client’s master key
derivation. First, the client chooses a random 128-bit nonce NC. The salt
s is the SHA-256 hash of NC concatenated to a constant string padded with
Algorithm 3. Next, it calculates the 256-bit derived key kd from the password
and s using PBKDF2-HMAC-SHA512. It splits this key into an encryption key ke
and an authentication key ka, both consisting of 128 bits. Finally, it generates
the 128-bit master key km using a CSPRNG and encrypts it with ke using
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AES-ECB. The key generation then returns the nonce, the encrypted master
key, and the first 128 bits of the SHA-256 hash of the authentication key ka.
Note that the salt is not returned and ultimately not stored on the server.
This is done to avoid timing side-channels: Mega calculates the salt for login
requests with valid and invalid email addresses (cf. Algorithm 6).

User Creation. When the server receives a create user request, it gener-
ates a random 128-bit token t and constructs the confirmation link:

′https://mega.nz/#confirm′||base64 urlencode(′ConfirmCodeV2′||t||email)

The client sends this token back to the server’s API. When it is correct, the
user can log in with his password.

Additional Key Generation. On the very first login, right after confirming
the email address, additional key material is generated. Algorithm 4 shows
the generation of three public key pairs: an Ed25519 key pair for signatures,
an RSA key pair for sharing data, and a Curve25519 key pair for messaging.
The Ed25519 private key acts as root of trust and is used to sign the public
keys of the latter two. These signatures, together with the public keys, are
stored on the server. Moreover, the secret keys are encrypted by the master
key km and also uploaded.

Algorithm 4 Mega’s function to generate additional key material

1: procedure additional key gen(km)
. Generate signature key pair

2: sksign, pksign
$←− Ed25519.Gen()

3: [sksign]kM ← AES-ECB.Enc(kM, sksign)

. Generate public key pair for data sharing
4: skshare, pkshare

$←− RSA.Gen(2048)
5: [skshare]kM ← AES-ECB.Enc(kM, skshare)
6: [pkshare]

σ
sksign
← Ed25519.Sign(sksign, pkshare)

. Generate chat key material
7: skchat, pkchat

$←− Curve25519.Gen()
8: [skchat]kM ← AES-ECB.Enc(kM, skchat)
9: [pkchat]

σ
sksign
← Ed25519.Sign(sksign, pkshare)

10: server.store(([sksign]kM , pksign), ([skshare]kM , pkshare, [pkshare]
σ
sksign

),

([skchat]kM , pkchat, [pkchat]
σ
sksign

))
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After the described initial setup actions, the user now has an account regis-
tered with Mega. The service provider stores various key material, where
confidential parts are protected by the master key km, which is itself stored
and encrypted by ke. The latter is derived from the user’s password and
therefore device-independent.

3.3.2 Client Authentication

Algorithm 5 shows the client-side login procedure. First, we request the salt
for a given email from the server. Despite not having access to the server’s
source code, Algorithm 6 shows how the white paper [62] describes the
server functionality.

Algorithm 5 Mega’s client login procedure for a given email email and
password pw

1: procedure client login(email, pw)
2: s← server.get salt(email)
3: kd ← PBKDF2-HMAC-SHA512(pw, s, iter=100′000, len=256)
4: ke||ka ← kd . |ke|2 = |ka|2 = 128
5: [kM]ke , [skshare]kM , [sid]pkshare ← server.authenticate(email, ka)
6: kM ← AES-ECB.Dec(ke, [kM]ke)
7: skshare ← AES-ECB.Dec(kM, [skshare]kM)
8: sid← RSA.Dec(skshare, [sid]pkshare)

Fetching the Salt. Recall from Algorithm 1 that the server stores the client
nonce NC. If the email address is in the database, the server fetches this
nonce and recomputes the salt. Otherwise, the server uses NS, a 128-bit
random value chosen by the server once a year, to compute the salt. In an
effort to prevent timing side-channels, both hashed strings are padded to 200
characters. Furthermore, the server adds a random delay for non-existant
email addresses.

It depends on the server implementation whether this is an adequate measure
to prevent leaking the email registration status. Let X, Y, Z be random
variables. X ∈ [0, 50] models the database accesses since Mega reports
searches to take at most 50 ms [62]. Assuming that the database searches
are linear and only depend on the position of the email address in the
records, then X is uniformly distributed (over all registered addresses), and
we have E[X] = 25. Furthermore, Y ∈ [0, 50] is the random variable for the
chosen delay. Finally, Z represents the time needed for detecting a record’s
presence in the database. We first treat Z as independent of X, because
this is implementation dependent: for instance, one could use Bloom filters
for probabilistic keys presence detection and only traverse all records for
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hits in the Bloom filter. In conclusion, the two branches of Algorithm 6
have the following expected delays: E[Z] + E[X] if the email is present and
E[Z] + E[Y] otherwise. If Y is chosen uniformly at random, these expected
values are the same over all email addresses.

However, there are two subtle issues with the previous analysis: first, for
a given fixed email address email, we have a fixed search delay xemail ∈
X if it is in the database. Otherwise, unless the chosen delay depends
deterministically on email, Y is independent of email. Therefore, we have
E[Z] + xemail 6= E[Z] + E[Y]. If Y is chosen uniformly at random, this case
can be detected by having a mean delay of E[Z] + 25 and higher variance
than the xemail = 25 case. In other words, the measured timing of multiple
requests for the same email address would change more if the entry is not
present. Second, it depends on the implementation if detecting the presence
of an email address and searching its record are actually two processes. For
instance, the straightforward approach always searches the database and
defines no matching record as a non-existant entry. However, in that scenario,
Z is not a random variable. We either have E[Y] if the entry is present, or
50 + E[Y] if it is not present (since we always search the entire database in
the latter case). Thus, a non-present email address could be detected by
having longer time measurements. Both of these issues show potential timing
side-channels depending on the unknown server implementation. Further
research could test this in practice and try to overcome the challenges of
network-induced noise and potential rate limiting. We further discuss the
implications of leaking registered email addresses in Section 3.3.8.

Algorithm 6 Mega’s server login part 1 (getting the salt)

1: procedure get salt(email)
2: if email in database DB then
3: NC ← DB.get(email)
4: s← SHA-256(PAD(′mega.nz′)||NC)
5: else
6: s← SHA-256(PAD(email||′mega.nz′)||NS)
7: sleep(r), for r←$ [0, 50] miliseconds
8: return s

Authentication The client proceeds to calculate the derived key kd from the
user password pw and the fetched salt s using PBKDF2-HMAC-SHA512. Next,
it sends the rightmost 128 bits of kd, the so called authentication key ka, to
Mega. The server hashes ka with SHA-256 and compares the leftmost 128
bits of the hash to the stored hka . If these values are equal, authentication
succeeds. The server generates a session ID sid and encrypts it with the
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user’s public key and returns it to the client, together with the encrypted
master key and secret sharing key.

Mega does not mention whether the latency of this second database access is
obfuscated. However, they use double HMAC to compare hauth

ka
and hka . Instead

of directly comparing the hashes, this technique hashes them again with a
randomly chosen key and then compares the results [79]. This breaks the
comparison’s dependency on the length of the matching prefix, as optimized
implementations terminate early on the first character that differs. Without
this measure, an attacker could recover hauth

ka
character by character assuming

the timing side-channel is sufficiently precise.

Algorithm 7 Mega’s server login part 2 (authentication)

1: procedure authenticate(email, ka)
2: hauth

ka
← SHA-256(ka)

3: hka , [kM]ke , ([skshare]kM , pkshare)← DB.get(email)
4: if hauth

ka
[:16] = hka then . Double HMAC comparison

5: sid←$ SID . SID is the set of session IDs
6: [sid]pkshare

$←− RSA.Enc(pkshare, sid)
7: return [kM]ke , [skshare]kM , [sid]pkshare

8: else
9: return ⊥

After authenticating, the client sends the session identifier sid with all its
requests to prove its identity to the server.

3.3.3 Node Encryption

Algorithm 8 describes how Mega encrypts a file or folder, which is a file or
folder in their terminology. They maintain a flat hierarchy, where each node
has an (encrypted) handle pointing to its parent. As folders do not have
content, only their attributes are encrypted. First, the client samples a random
128-bit node key kF and a 64-bit nonce NF. Large nodes are partitioned into
chunks ci of size between 128 KB and 1 MB (depending on the client) [48].
Let lc be the number of AES blocks per chunk, which is between 210 and
213 since AES blocks are 128 bits. These chunks are then encrypted with
Mega’s custom AES-CCM implementation with key kF. Algorithm 11 describes
AES CCM ENC MEGA in detail: it encrypts the counter blocks with AES-CTR to
produce the key stream. Each counter consists of the 128-bit concatenation
of the random file nonce NF (leftmost 64 bits) and the AES block index
(interpreted as 8 bytes in big-endian encoding). The concatenation in the
counter blocks ensures that all AES blocks across different chunks are XORed
with a key stream derived from unique and consecutive counter values. The
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IV for the MAC of the plaintext is implicit in Mega’s version of AES-CCM and
set to NF||NF.

The client aggregates the file chunk MACs into a single condensed tag
value Mcond. This corresponds to the CBC-MAC of M0||M1|| . . . ||Mn−1, the
concatenation of all chunk MACs with the key kF. Currently, Mega only
checks the integrity of a file by recomputing Mcond after downloading all
chunks. In the future, they want to verify the integrity of individual chunks
separately for performance reasons [48].

Algorithm 8 Mega’s procedure to encrypt node F with the master key kM

1: procedure node enc(kM, F)
2: kF←$ {0, 1}128 . Node key
3: NF←$ {0, 1}64 . Node nonce

. Chunk-wise file encryption
4: lc ← 2j for j ∈ [10, 13] . Number of AES blocks per chunk
5: c1||c2|| . . . ||cn ← F . Where ∀i ∈ [1, n] . |ci|2 = 128 · lc
6: ∀i ∈ [1, n] .[ci]kF , Mi ← AES CCM ENC MEGA(kF, NF||(i · lc), ci)

. Create condensed CBC-MAC Mcond
7: Mcond ← 0128

8: for i ∈ [1, n] do
9: Mcond ← AES-ECB.Enc(kF, Mcond ⊕Mi)

. Obfuscated file key kob f
F

10: kob f
F ← OBFUSCATE FILE KEY(kF, NF, Mcond)

11: [kob f
F ]kM ← AES-ECB.Enc(kM, kob f

F )

12: server.store([kob f
F ]kM)

. Upload encrypted file and attributes
13: [attr]kF ← AES-CBC.Enc(kF, attr, 0128)
14: server.store([attr]kF)
15: server.store(∀i ∈ [1, n].[ci]kF)

Before encrypting the key kF and sending it to the server, it is obfuscated
together with Mcond and the 64-bit AES-CTR nonce NF as described in Al-
gorithm 9. The obfuscation aggregates the condensed MAC Mcond to the
so-called metamac by splitting Mcond into four 32-bit chunks and XORing
together the first two chunks as well as the last two chunks. The obfusca-
tion intertwines the key kF with the concatenation of the nonce NF and the
metamac Mmeta resulting in the obfuscated file key kob f

F . In addition to the
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scrambled file key kscr
F , the obfuscated file key has NF and Mmeta appended.

This entire key is then encrypted with AES-ECB, i.e., also the nonce and
metamac are hidden from the cloud provider. Unfortunately, Mega provides
no reasoning for the design of Algorithm 9. We think their goal is to create
some binding between the randomly selected key kF, the nonce NF, and MAC
Mcond that are used to encrypt node F. If a single bit flips in the obfuscated
key, the file key kF changes due to the XOR. Consequently, the file decrypts
to garbled chunks and the integrity validation fails with high probability.

Finally, the client encrypts the node attributes (including its type, file name,
and parent handle) with AES-CBC and uploads this, together with the en-
crypted chunks, to the server. Although the IV is fixed to the zero vector,
deterministic encryption is not a problem since every file has a different file
key. However, we remark that the attributes have no integrity protection.

Algorithm 9 Mega’s obfuscation of the file encryption key kF and the con-
densed mac Mcond

1: procedure obfuscate file key(kF, NF, Mcond)
. Calculate metamac Mmeta

2: M0
cond||M1

cond||M2
cond||M3

cond ← Mcond . |Mi
cond|2 = 32, ∀i ∈ [0, 3]

3: Mmeta ← (M0
cond ⊕M1

cond)||(M2
cond ⊕M3

cond)

4: kscr
F ← kF ⊕ (NF||Mmeta)

5: return kscr
F ||NF||Mmeta

3.3.4 Node Sharing

Mega supports different types of sharing: public links, password-protected
links, and sharing with contacts. We briefly discuss all of them and go into
more details on the second one.

Public Links. If you share a file publicly, the client generates an URL that
contains the obfuscated file key. Since it is located after a hashtag, this value
is not submitted to the server but only processed locally, in the receiver’s
browser. Therefore, the cloud provider does not get access to the public
link and consequently does not see the key material required to decrypt the
shared file. The Mega web app uses this value to decrypt the file. Sharing
folders requires the extra step of generating a share key, which then encrypts
all obfuscated node keys for files located in that folder. The public link then
contains this share key.

Password-Protected Links. Algorithm 10 shows how the link share pass-
word is integrated with the existing node key (for files) or share key (for
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folders). First, the client calculates a 512-bit derived key kd from the share
password pw and a randomly generated 256-bit salt s. The leftmost 16B
(resp. 32B) of this key are simply XORed with the file key (share key). The
rightmost 16B are used as MAC key kMAC. Next, the client concatenates the
1B algorithm identifier (currently unused), a 1B node type (0 for a folder,
1 for a file), the 6B public file/folder handle, the salt, and the encrypted
node key. The final link then contains this concatenation together with the
HMAC-SHA-256 tag over it.

Algorithm 10 Mega’s procedure to share a link to node F protected with the
password pw

1: procedure share node(F, pw)
2: s←$ {0, 1}256 . Salt
3: kd ← PBKDF2-HMAC-SHA512(pw, s, iter=100′000, len=512)

. Encrypt node key
4: [kF]kd ← kF ⊕ kd[0:x], where x = 16 (file) or x = 32 (folder).

. Construct and MAC link
5: kMAC ← kd[32:64]
6: l ← A||T||H||s||[kF]kd . Alg A, type T, public handle H
7: mauth ← HMAC-SHA-256(kMAC, l)
8: return l||mauth

Sharing with Contacts Mega allows users to establish contact relationships
inside their service. Users can send contact requests using the other’s email
address or scanning his or her QR code. The client stores the fingerprint of
this key and warns the user if this value changes. Shared data for pending
requests is not encrypted for the recipient until the contact relationship was
established. To share a file with a contact, the sender encrypts the file key
with the receiver’s public RSA key (cf. Algorithm 4).

3.3.5 Account Recovery

Mega allows users to export their master key kM and use it to reset an account
password. For this purpose, the user sets a new password and re-encrypts
the master key.

The mega client detects the correct master key by decrypting the RSA private
key and verifying that it matches the user’s public key. Since this is only a
client-side check, a malicious user with a reset link can garble another user’s
data by resetting the password with an invalid recovery key.
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Mega allows password resets without entering the old password in active
sessions. They argue in the white paper [62] that many users who lost their
password still have an active session on one of their devices. Therefore, this
implementation allows such users to recover their accounts without knowing
the master key. Technically, this is possible because the logged-in device still
stores the master key. On the downside, this implies that if you can hijack a
session, you can lock out the real user and gain exclusive access to his or her
data by changing the password.

3.3.6 Business Users

Another functionality that Mega provides are business accounts. They are
administered by master users, who have management permissions on the
business account and can view the key material of sub-users. The master
key of normal users is additionally encrypted with the business account’s
key, which in turn is encrypted for every master user. Clients should display
when a business sub-user is created, so that people that pay attention cannot
be tricked to share their key material with a malicious business owner.

3.3.7 Source Code Observations

The previous sections discussed Mega functionality on an abstract level. In
the next part, we discuss some observations on the source code of Mega’s
SDK and web client [55].

Crypto++. Mega’s SDK uses the open-source C++ library Crypto++ [9] for
cryptographic primitives such as AES-ECB and hash functions. This library is
still actively maintained and does not have any critical CVEs for the primitives
used by Mega [11]. However, Mega implements some block cipher modes
manually (see Section 3.3.9).

SJCL. The web client uses the Standford JavaScript Crypto Library (SJCL)
contributed by Stark, Hamburg, and Boneh in the paper Symmetric Cryptog-
raphy for JavaScript from 2009 [154]. Although the SJCL code base did not
see significant changes in the last few years, this library seems to be stable,
well-designed, and does not have any known vulnerabilities.

Encryption. We noticed that the web client’s source code repository does
not include the files aesasm.js and encrypter.js. We retrieved them
using the browser’s developer tools when connecting to Mega: the client
downloads them as soon as the user uploads a file. The former implements
AES encryption, including AES-CCM, based on a version from 2014 of an open
source implementation on GitHub [5]. The latter is responsible for encrypt-
ing and uploading chunks of a file. In general, this behavior adds to the
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concerns mentioned by Prof. Woodward about in-browser cryptography [95]:
a malicious provider could run a targeted attack and replace the encryp-
tion code to modify the web client dynamically to disclose information or
decryption keys. We selectively verified some of the encryption code and
saw that it is the same code that is published on GitHub. Of course, such
incidental evidence does not exclude targeted attacks. Mega offers a browser
extension that fixes the cryptographic code and only changes it with updates
of the extension [62]. Moreover, non-web clients do not load the encryption
code dynamically. Nevertheless, we suspect that the majority of the users are
agnostic to this issue and use the web client without any additional measures.

The custom AES implementation in aesasm.js uses lookup tables. Although
very similar code is still present in OpenSSL [36], it was largely superseded
by implementations using the native instruction set AES-NI. In addition to the
performance gains, another reason for this switch were many side-channel
attacks on OpenSSL’s AES [94, 74, 86, 75, 112, 80, 91, 162, 149, 111, 83, 115].
In particular, cache observations on the lookup tables, which are also present
in aesasm.js, leak bits of the key because they are used as indices in the
lookup tables. Further work could test whether the classic OpenSSL side-
channel attacks can be applied to the in-browser cryptography of Mega. One
challenge is to account for the noise introduced by the browser that interprets
the JavaScript.

Another observation on the source code is that AES-ECB is used to encrypt
the RSA secret key. Since this key is an encoding of the prime factors and
secret exponent of a 2048-bit key, the encryption consists of multiple 128-bit
AES blocks. The lack of integrity protection in AES-ECB enables tampering
with the key, which is only constrained by the key verification function
that validates the private key’s length encoding. Our attack in Section 4.1
leverages such manipulations to recover the private key. This attack vector
has multiple challenges: we do not know the key that the victim recovers
from our tampered ciphertext and we can only induce bit flips at AES block
granularity in AES-ECB. Furthermore, the usage of RSA encryption is limited
to node key sharing, decrypting the session identifier after authentication,
and as a fallback for chat key exchange (if no Curve25519 keys are available,
the chat keys are encrypted with the recipient’s RSA public key).

CSPRNG. While legacy browsers did not provide any secure randomness,
modern ones implement crypto.getRandomValues to generate cryptograph-
ically strong random values [63]. This functionality is present in all major
browsers [10].

31



3. Cloud Data Storage Solutions

3.3.8 Privacy

After we have seen Mega’s implementation in detail, we will now shift our
focus and reflect on Mega’s general security properties. We first discuss pri-
vacy and then continue with confidentiality (Section 3.3.9) and authentication
(Section 3.3.10).

Mega claims to provide privacy by design due to E2EE. While this is true
for the uploaded data content, they do admit in section 1.4 of their white
paper to store transaction and metadata for “operational and compliance
purposes” [62]. According to their GDPR statement, the collected metadata
involves access information (browser type, OS, IP address, port), usage
statistics (file uploads, folder creations, sharing behavior), file metadata
(sizes, timestamps), and communication metadata (time and identity of chat
partners, email addresses of contacts) [70]

Despite considering timing side-channels to avoid leaking existing accounts
during authentication, there is a direct leak on the recovery page: in order to
use the recovery key to reset a password, one needs to enter the account’s
email address to obtain a reset link. While Mega displays an error message
for not registered addresses, they confirm the successful sending of a reset
message for registered addresses. One reason why leaking the registered
customers can be security critical is targeted spear-phishing: an attacker can
validate that a user has a Mega account and pose as a Mega technician or
imitate an official maintenance email.

3.3.9 Confidentiality

The overall design of Mega builds on E2EE, which strongly benefits confi-
dentiality: the file data and attributes are encrypted on the client. Therefore,
assuming a secure implementation, they are protected in transit and at rest
at the cloud provider. In this section, we further comment on the usage of
TLS and AES encryption primitives.

TLS. Mega considers HTTPS to only be relevant for loading their home page
and API requests. They discourage the use of HTTPS for bulk file transfers
with the argument that this data is already encrypted. They argue that their
other content is not confidential and integrity protected by hashes transmitted
over HTTPS. We note that integrity is especially relevant for Mega’s web client,
since it transfers the highly sensitive JavaScript cryptography code over
this connection. A successful MitM attacker could modify this code and
change the web client to send the master key to the adversary’s server.
We scanned the supported TLS cipher suites of the three primary servers
that the Mega web client uses and list them in Appendix C. We note that
the more security sensitive domains g.api.mega.co.nz and mega.nz support
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TLS-1.2 and TLS-1.3. The latter includes cipher suites that use AES-CBC and
SHA-256. The former may be vulnerable to the plaintext recovering MitM
attacks presented by Paterson et. al. in [76]. The SHAttered paper [155] found
the first collision on SHA-1 in 2017. This hash function is now considered to
be deprecated and should be avoided. The server for static content at the
domain eu.static.mega.co.nz supports significantly more and older cipher
suites. It still offers to run the outdated TLS-1.0 and includes many cipher
suites without perfect forward secrecy (i.e., they use static RSA keys for key
transfer). Moreover, we observed the command line client to occasionally use
HTTP connections for less critical requests unless it is explicitly forced to only
use HTTPS.

Encryption Primitives. Mega makes some unusual choices in the crypto-
graphic building blocks: First, they use AES-ECB for encrypting key material
and building AES-CTR or CBC-MAC schemes themselves. Second, they use
AES-CCM for authenticated encryption. Although there are no known vul-
nerabilities in AES-CCM, we generally prefer AES-GCM in practice, because it
supports buffering data and can be parallelized. We note that Mega’s variant
of AES-CCM does not implement the standard [164] correctly because they do
not encrypt the authentication tag. Therefore, their implementation is an
Encrypt-and-MAC scheme instead of MAC-then-Encrypt. However, they
later encrypt the tag with a different key as part of the obfuscated file key.
This avoids Encrypt-and-MAC’s problem of leaking plaintext information
via the MAC, such as repeated AES blocks in a file chunk. Nevertheless, the
ciphertext is still not integrity protected and the MAC can only be checked
after decryption.

Algorithm 11 describes the AES-CCM implementation of Mega’s SDK. Con-
sistent with the node encryption in Algorithm 8, they split the iv into the
64-bit file nonce NF and the 64-bit chunk offset oi. They compute the CBC-MAC
of the message m using NF||NF as the IV for the underlying AES-CBC. This
deviates from the standard CBC-MAC [103], which does not take an IV as input
and instead fixes to the zero byte string. Mega’s implementation manually
performs AES-CTR encryption of incremented counter blocks and XORs the
resulting key stream to the file chunks. Different chunks have distinct counter
values for all their AES blocks as long as the entire file has less than 264 AES

blocks. Larger files would overflow oi and lead to repeated key streams,
however, this is not a concern for any practical file size. Likewise, the reduc-
tion modulo 2128 on Line 7 of Algorithm 11 never reduces iv in practice. We
remark that Mega deviates from the AES-CCM specification in RFC 3610 [164],
by not encrypting the tag τ. According to RFC 3610, Mega would need to
use the first key stream block AES-ECB.Enc(kF, NF||064) to encrypt the tag and
start encrypting the message m with the next key stream block.
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Algorithm 11 Mega’s custom AES-CCM implementation to encrypt a mes-
sage m with node key kF and IV iv

1: procedure AES CCM ENC MEGA(kF, m, iv)
2: NF||oi ← iv . File nonce NF, chunk offset oi
3: τ ← CBC-MAC.Tag(kF, m, NF||NF)

. Mega’s AES-CTR encryption of m
4: m0||m1|| . . . ||mn ← m, where ∀i ∈ [0, n] .|mi|2 = 128
5: for all j ∈ [0, n] do
6: cj ← AES-ECB.Enc(kF, iv)⊕mj
7: iv← biv + 1c2128

8: return c0||c1|| . . . ||cn, τ

3.3.10 Authentication

We discuss three instances relevant for user authentication: the use of the
derived authentication key ka, Two Factor Authentication (2FA), and the
account recovery process. Furthermore, we point out the dangerous use of
CBC-MAC on variable length data.

Authentication Key. Algorithm 7 shows that the client authenticates itself
by directly sending ka to the server. Therefore, a MitM attacker can record ka
and impersonate the user. Since this requires a stronger than usual adversary
who compromises the TLS connection, we hereafter refer to it as TLS-MitM.
Mega argues for this design as a precaution against server database com-
promise. They only store the truncated SHA-256 hash, which cannot be used
to authenticate, as the user needs to send the plain authentication key. If
an attacker still manages to impersonate a user, the server’s response is
encrypted based on the user password, which is never transmitted. However,
knowing ka allows for a trivial dictionary attack: anyone can request the
victim’s salt s given its email address. We discussed in Section 3.3.8 how
an adversary could detect registered email addresses. Using s and a list of
frequently used passwords (for instance, the RockYou password list), the
adversary can run PBKDF2 with 100’000 iterations. The attack has identified
the correct password when the least significant 256 bits of the derived 512-bit
key correspond to ka. Since PBKDF2 has moderate memory requirements,
GPUs and customized hardware can be used to parallelize the key derivation
and crack the password in reasonable time [100]. This attack cannot only be
performed by Mega themselves but also by any entity compromising Mega’s
server and observing a connection request, by a TLS-MitM adversary, or by
any attacker tricking the victim into disclosing ka (e.g., by redirecting a client
to a malicious website with DNS poisoning).
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2FA. Although Mega supports 2FA, this can be deactivated by their staff.
Therefore, an additional factor only increases our security against outsider
attacks and not against a malicious provider.

Account Recovery. Since the authentication key ka is derived from the
password, account recovery has to use an alternative way to authenticate
users. Resetting the password or deactivating the account both work by
sending an email to the user, which provides a link to perform this action.
As described in Section 3.3.5, the password reset requires the recovery key,
which is the user’s master key. Therefore, despite being able to intercept
authentication emails, Mega can only deactivate an account, but not set a
new password. However, they could replace the account with a new one that
uses the same email address. This would trigger a warning for chat partners
that the public key’s fingerprint changed, and remove established contact
relationships.

3.3.11 Integrity.

We make the following remarks about the integrity protection provided by
Mega.

CBC-MAC. Algorithm 11 shows that Mega uses CBC-MAC to compute an
authentication tag over the variable-length concatenation of file chunk MACs
to create the condensed MAC Mcond. NIST recommends CMAC for authen-
tication in NIST SP 800-38B [102] because textbook CBC-MAC is vulnerable
to truncation attacks. However, there is no immediate attack because the
individual chunk MACs are not uploaded to the server. Moreover, the same
issue arises for computing the chunk MACs themselves, however, the web
client and SDK use the same chunk size for the entire file.

File Attributes. File attributes are encrypted with AES-CBC and therefore
not integrity protected. Mega could try to tamper with the file name or
serve different attributes, since they are not associated to the file content.
However, the IV is fixed and therefore, Mega cannot leverage the malleability
of AES-CBC to make controlled changes.
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Chapter 4

Attacks on Mega

We present multiple attacks in a threat model with a malicious cloud provider
or a TLS-MitM adversary (i.e., a strong MitM attacker who compromises
the TLS connection). Section 4.1 shows a practical RSA key recovery attack
combining key overwriting capabilities and properties of the RSA-CRT decryp-
tion to perform a binary search for one of the factors of the RSA modulus.
The recovered RSA private key enables the adversary to decrypt key material
for nodes that were shared with the victim. Building on this key recov-
ery attack, Section 4.2 presents a plaintext recovery attack, which decrypts
two blocks encrypted with AES-ECB under the master key in a single query.
This attack enables the malicious cloud provider to recover the victim’s file
encryption keys, chat key, and signature key. Building on this decryption
attack, Section 4.3 shows how a malicious cloud provider can stealthily plant
a new file in the victim’s cloud storage. Furthermore, Section 4.4 presents a
more expensive RSA decryption attack that uses a different attack vector than
Section 4.1 and contributes a novel variation of Bleichenbacher’s attack on
PKCS#1 v1.5 [88] adapted to Mega’s custom padding and taking into account
an unknown prefix.

Throughout this chapter, we assume the standard notation for RSA with
the modulus N = p · q for two large primes p and q. Furthermore, we
have the public exponent e and the secret exponent d = e−1 mod ϕ(N) for
ϕ(N) = (p− 1) · (q− 1).

4.1 Mega RSA Key Recovery Attack

We present a practical attack to recover a user’s private key by factoring
the RSA modulus. A malicious provider or a TLS-MitM adversary can use
the RSA private key to decrypt node sharing key material. If the legacy RSA

key transfer was used to exchange chat keys with the victim, the adversary
can additionally recover these chat keys. Furthermore, a TLS-MitM attacker
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can decrypt future SIDs, which enables passive eavesdropping on the ses-
sion. Section 4.1.1 starts by describing the RSA encryption and padding of
Mega. After introducing the setting in Section 4.1.2, we provide the attack
in Section 4.1.3 and an optimization to increase its performance and reduce
its detectability in practice in Section 4.1.4. Finally, Section 4.1.5 explains
our proof of concept setup. Furthermore, Section 4.2 describes an attack to
decrypt arbitrary AES-ECB ciphertext blocks encrypted under the master key,
which builds on the RSA key recovery attack. Section 4.3 combines these two
attacks to frame users with maliciously inserted files.

4.1.1 Mega’s RSA Encryption

We start by presenting Mega’s usage of RSA encryption. We recall from Algo-
rithm 4 that the user’s client generates a 2048-bit RSA key pair (skshare, pkshare)
during registration. The client stores the secret key skshare on Mega’s servers
after encrypting it with AES-ECB under the master key kM. The server sends
the encrypted private key to the client to support multiple devices. The client
uses RSA to receive key material shared by a contact and as a fallback for
exchanging symmetric chat keys. Our attack targets the RSA decryption of
the session ID that the server sends after authentication.

Algorithm 12 shows our reconstruction of Mega’s RSA encryption and decryp-
tion of the session ID sid to the best of our knowledge. The padding values
(r1 and r2) and the generation of the 43-byte sid are left undefined because
Mega does not publish their server code. However, the need for compatibility
with the client-side decryption determines the position of the SID. Moreover,
the client does not check the padding and our attack replaces sid independent
of how the original value was chosen. Therefore, any instantiation of this
algorithm works for our attack.

Algorithm 12 Mega’s RSA encryption of the SID

1: procedure mega rsa encrypt sid(pkshare)
2: sid ∈ [0, 255]43 . E.g., sid←$ [0, 255]43

3: sidpadded ← r1||sid||r2 . For some r1 ∈ [0, 255]2 , r2 ∈ [0, 255]211

4: N, e← pkshare
5: return

(
sidpadded

)e mod N

The client encrypts the following encoding of the RSA private key with
AES-ECB under the master key kM:

skencoded
share ← l(q)||q||l(p)||p||l(d)||d||l(u)||u

where l(x) is the two-byte big-endian length encoding of the byte-length
of x and u ←

⌊
q−1⌋

p. The length encoding is used to split the secret key
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components during decoding. The client pads skencoded
share to a multiple of the

AES block size. For 2048-bit RSA, skencoded
share contains four length encodings

of 2 B each, three (close to) 128 B elements (q, p, and u), and the private
exponent of approx. 256 B. In the previous size estimations, we use the rough
approximation that inverses modulo a random x-bit number are close to
uniformly distributed and, thus, have close to x bits with high probability1.
Since AES blocks are 16 B (128 bits), this results in 41 blocks, where the last
one has eight bytes of padding.

Algorithm 14 shows the RSA decryption of the SID sid. The server sends
the encrypted session ID csid and RSA private key cskencoded

share
. The client first

attempts to decrypt the latter using its master key kM. Since there is no
integrity protection, it can only decode the AES-ECB-decryption result, and
sanity check the length encodings as shown in Algorithm 13. The inverse
l−1(b) of the length encoding function l converts two bytes b from big-endian
encoding to an integer. We remark that the client neither verifies the padding
nor the lengths of the individual components. Instead, it ensures that the
private key contains four length encodings and components, and parses them.
After decoding the private key, the client performs RSA-CRT decryption, which
saves a factor of four compared to the computation time of naı̈ve decryption⌊
(csid)

d⌋
N . The additional values dp and dq for RSA-CRT are precomputed

once per session at the end of Algorithm 13 and reused for every subsequent
decryption. Lines 7 and 8 of Algorithm 14 decrypt the padded session ID
m in the smaller rings Zp and Zq. Note that the exponents dp respectively
dq have about half the bit size of d. Next, Lines 9 to 11 recover the padded
session ID m modulo N using Garner’s formula [107] for the CRT. Instead of
checking the padding, the code uses the known session ID length to truncate
the decryption m to sid′. Before the truncation, m is left padded with zero
bytes until it has length |N|8. Next, the unpad operation removes the trailing
|N|8 − 45 bytes of padding as well as the leading two bytes. Line 12 specifies
this extraction of the 43-byte sid′ by operating on integers instead of bytes.
In a correct execution, we have m = sidpadded and sid′ = sid. The client sends
sid′ in subsequent requests to the server to authenticate itself.

4.1.2 Threat Model

In our attack, we assume a malicious service provider. A slight variation
considers a TLS-MitM adversary. Note that the server controls the SID and its
padding. Moreover, the attacker has access to a partial decryption oracle since
the client returns the truncated session ID if its decryption was successful.
Finally, the adversary can garble AES blocks of the private key due to the lack
of integrity protection in AES-ECB.

1As a rough approximation, the average bit size of a random number in [0, 2x) is

2−x
(

2 + ∑x
i=2 i · 2(i−1)

)
= 2−x · (2 + x2x − 2x) ≈ x− 1.
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Algorithm 13 Parses the encoded RSA private key into the components q, p,
d, and u, and constructs the missing components N, e, dp, and dq for RSA-CRT.

1: procedure decode rsa privk(skencoded
share )

2: L← 0
3: for i ∈ [0, 3] do

. Parse length encoding
4: if L + 2 > |skencoded

share |8 then return ⊥
5: li ← l−1(skencoded

share [L:L + 2])
6: L← L + 2

. Parse private key component
7: if L + li > |skencoded

share |8 then return ⊥
8: xi ← skencoded

share [L:L + li]
9: L← L + li

. Allow at most one AES block of padding
10: if |skencoded

share |8 − L > 16 then return ⊥

. Derive RSA-CRT components
11: q, p, d, u← x0, x1, x2, x3
12: N ← p · q
13: e←

⌊
d−1⌋

ϕ(N)

14: dp ← bdcp−1
15: dq ← bdcq−1
16: return N, e, d, p, q, dp, dq, u

Section 4.1.3 explains how we leverage the above capabilities to factor the
RSA modulus. Section 4.1.4 reduces the number of client logins required for
the attack.

4.1.3 Factoring the RSA Modulus Using Binary Search and Robust-
ness Properties of RSA-CRT

We start by investigating the effect on the RSA-CRT decryption when we
garble the value u from the private key. We can change u at the granularity
of AES blocks: e.g., modifying the second to last ciphertext block2 of cskencoded

share
changes the 128 bits of the corresponding plaintext block. Since the AES block
cipher is a pseudo-random permutation, we cannot predict the resulting
block. However, it suffices for our attack that the client recovers u′ 6=

⌊
q−1⌋

p.

2This is a better choice than garbling the last block, because it does not change the
padding. Thus, the attack still works, even if clients verify the padding in the future.
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Note that any non-identity transform of the ciphertext block is guaranteed to
fulfill this property, since AES is a permutation and, therefore, two different
ciphertext blocks are guaranteed to decrypt to different plaintext blocks.

Algorithm 14 Mega’s RSA decryption of the encrypted SID csid using the
user’s encrypted private key cskencoded

share

1: procedure mega rsa decrypt sid(cskencoded
share

, csid)

2: skencoded
share ← AES-ECB.Dec(kM, cskencoded

share
)

3: γ← decode rsa privk(skencoded
share )

4: if γ = ⊥ then
5: return ⊥ . Private key parsing failed
6: N, e, d, p, q, dp, dq, u← γ

. RSA-CRT decryption
7: mp ←

⌊
(csid)

dp
⌋

p

8: mq ←
⌊
(csid)

dq
⌋

q

9: t←
⌊
mp −mq

⌋
p

10: h← bt · ucp

11: m← h · q + mq . Equal to
⌊
(csid)

d⌋
N

12: sid′ ←
⌊⌊

m
256|N|8−45

⌋ ⌋
25643

. Simplification for |m|2 < 256254

13: return sid′

We distinguish two cases for the decryption: m < q and m ≥ q. Note that
RSA-CRT is not symmetric. Garner’s formula selects one prime q for which
it directly adds mq to the result and then computes the multiple h of q
required to satisfy the second equation for mp. Our attack always recovers q,
independent of whether it is the larger or smaller prime factor of N.

Case m < q. First, we note that mq = m because by the CRT m ≡q mq
and since m < q we have bmcq = m. As mq < q by definition, we conclude
that mq = m. For mp, we again have by the CRT that m ≡p mp. Therefore,
there exists α ∈ Z such that m = mp + α · p. Combining these observations
on mq and mp, we have for t on Line 9 of Algorithm 14 that mp − mq =
m − α · p − m = −α · p and thus t =

⌊
mp −mq

⌋
p = 0. Therefore, h = 0,

independent of the value of u. In other words, the client recovers the correct
result m′ = h · q + mq = mq = m despite the modified u value.

Case m ≥ q. It directly follows that we have mq 6= m from mq < q ≤
m. There exist α, β ∈ Z such that mp = m − α · p and mq = m − β · q.
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Therefore, t = b−α · p + β · qcp = bβ · qcp. Since p and q are coprime, t 6= 0
iff gcd(β, p) = 1. This happens with overwhelming probability 1− 1/p.
Therefore, with high probability, h 6= 0 and m′ = h · q + mq 6= m. Although
m′ ≡q mq, we have m′ 6≡p mp because u 6=

⌊
q−1⌋

p and, therefore, Lines 9
to 11 no longer compute the CRT.

We observe that if the adversary would be able to obtain the full value m′,
then it could easily distinguish the two cases (w.h.p.): if m′ = m, then we
have m < q, otherwise m ≥ q. This oracle on the size of q allows the attacker
to perform a binary search for the factor q. It can halve the interval containing
q by querying the middle value as the padded session ID m. Although the
benign encoding of sid right pads it so that m is close to the modulus, there
is no padding check on the client. Due to this implementation, any integer
m ∈ [0, N) is a valid message.

However, the adversary only sees the unpadded sid′ instead of m′. We notice
that for m < q we have sid′ = 0, because m′ < 256|N|8−45 and we divide m′

by 256|N|8−45 on Line 12. This upper bound on m′ holds because q < 2|N|2/2

since Mega’s RSA key generation algorithm selects primes of exactly |N|2/2
bits (where |N|2 is a power of two). For 2048-bit RSA, we clearly have
m′ < q < 2|N|2/2 = 21024 < 21688 = 256|N|8−45. Moreover, we observe that
m′ ≥ 256|N|8−45 with high probability if m ≥ q. The reason is that m′ has the
summand h · q, where we argued above that h 6= 0 with probability 1− 1/p.
In fact, h is a random number of approx. |N|2/2 bits3. Since q has |N|2/2
bits, h · q has approx. |N|2 bits and, thus, m′ is w.h.p. larger than 256|N|8−45.
More precisely, the probability of a false positive is:

Pr
[

h · q < 256|N|8−45
]
≤ Pr [|h · q|8 < |N|8 − 45] ≤ Pr

[
|h|8 <

|N|8
2
− 45

]
For RSA-2048, this is Pr [|h|8 < 83] ≈ 25683 · 256−128 = 2−360, if we assume
h←$ {0, 1}1024 (which ignores the slight bias of small numbers due to the
wrap around modulo p).

In conclusion, despite the truncated decryption oracle, our adversary can
distinguish the two cases with overwhelming probability.

Algorithm 16 summarizes the binary search attack on a higher level by using
the comparison oracle Ocomp specified in Algorithm 15. Ocomp returns true
with high probability if m < q. In our model, the adversary can implement
this oracle because he has access to the encrypted RSA secret key cskencoded

share
:

Mega stores this value and transmits it on every authentication. Algorithm 15
3h is a close to uniformly random number in [0, p] (there is a very slight bias towards

smaller numbers due to a possible wrap around). As a rough approximation, the average bit

size of a random number in [0, 2x) is 2−x
(

2 + ∑x
i=2 i · 2(i−1)

)
= 2−x · (2 + x2x − 2x) ≈ x− 1.

Similarly, we expect h to have close to |N|2/2 bits w.h.p.
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Algorithm 15 Abstract oracle comparing a query m with the prime factor q
of N and returning true if m < q w.h.p.

1: procedure Ocomp(m)
2: Known: pkshare, cskencoded

share

3: c′skencoded
share

← cskencoded
share

⊕ r · 2128 . For some r ∈ ({0, 1}128 \ {0})
4: csid ← RSA.Enc(pkshare, m)
5: sid′ ← mega rsa decrypt sid(c′skencoded

share
, csid)

6: return sid′ = 0

first modifies the second to last ciphertext block to garble u used in the
RSA-CRT decryption. Next, it sends the RSA encryption of m as the encrypted
session ID and lets the victim execute Algorithm 14 on the prepared inputs.
The victim responds by sending sid′, where sid′ = 0 means that m < q
with high probability. For the sake of presentation simplicity, we assume in
Algorithm 16 that |N|2 is a power of two and that the primes p and q have
exactly |N|2/2 bits (which is the case for Mega). The initial interval contains
all |N|2/2-bit values. Next, the attack continues to query the middle value of
the current interval and updates the lower bound a or the upper bound b of
the interval depending on the query result. We stop when only one value –
the solution q – remains in the interval.

Algorithm 16 Binary search key recovery attack on Mega’s RSA encryp-
tion/decryption of the SID using the comparison oracle Ocomp.

1: procedure mega key recovery attack(Ocomp)

2: a, b← 2
|N|2

2 −1, 2
|N|2

2 . Invariant: q ∈ [a, b)
3: while a 6= b do
4: m←

⌊
a+b

2

⌋
5: if Ocomp(m) then . Ocomp(m) : return m < q
6: a← m
7: else
8: b← m
9: return a

4.1.4 Reducing the Number of Queries

The attack presented in Section 4.1.3 requires |N|22 − 1 queries due to the

binary search on an interval of the size 2
|N|2

2 − 2
|N|2

2 −1 = 2
|N|2

2 −1. For 2048-bit
RSA, this involves 1023 queries. If the adversary is the service provider, it
can stealthily mount the attack by accepting any session ID returned by the
victim. However, a TLS-MitM adversary does not know the correct SID,
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because it cannot decrypt csid itself, and it already convinced the victim to
decrypt and store a different value. Consequently, the user needs to perform
an additional login after every attacker query. This section aims to reduce
the number of required login requests to make the attack faster in practice
and less noticeable in the TLS-MitM scenario.

For this purpose, we terminate the binary search as soon as the interval
is “small enough” and use lattices to factor the modulus given the leading
bits of one prime factor. In the following, we describe the straightforward
application of a lattice with small dimension adapted from the explanation
in section 4.2.2 of Gabrielle et al. [98]. This approach works for up to⌊

log2(N1/6)
⌋

unknown bits. Therefore, we reduce the required number of

queries to |N|22 −
⌊
|N|2−1

6

⌋
, which corresponds to 683 queries in the case of

RSA-2048. With more complex lattices described by Howgrave-Graham [113]
and May [138], it is possible to recover up to

⌊
log2(N1/4)

⌋
unknown bits

(512 queries for RSA-2048).

Lattice Attack. Assume we know the leading bits p̂1 of the prime p ←
p̂1||p0, where l ← |p0|2 bits are unknown. Let p1 ← p̂1 · 2l be the integer
shifted to the left by l bits such that p = p1 + p0. On a high level, we rewrite
the problem of recovering p0 to finding small roots of a polynomial. For this
purpose, we consider the following three polynomials f1, f2, and f3 over Z,
which all have the small root p0 modulo p:

f0(x) = x · (p1 + x), f1(p0) = p0 · (p1 + p0) = p0 · p ≡p 0
f1(x) = p1 + x, f0(p0) = p1 + p0 = p ≡p 0
f2(x) = N, f2(p0) = N = p · q ≡p 0

We observe that every linear combination of these polynomials has the same
root p0 modulo p. Another way to express this is using coefficient vectors
[v2, v1, v0] ∈ Z3 to represent any polynomial of degree two: v2 · x2 + v1 · x+ v0.
We can easily see that the addition of polynomials corresponds to coefficient
vector addition. The polynomials f2, f1, and f0 correspond to the coefficient
vectors [1, p1, 0], [0, 1, p1], and [0, 0, N]. The basis consisting of these three
coefficient vectors spans the vector space containing all linear combinations
of f2, f1, and f0. We use this observation to construct the following lattice
basis B, where we put the coefficient vectors of our polynomials in the rows
and scale the first column by L2 and the second by L, where L = 2l :

B =

 L2 Lp1 0
0 L p1
0 0 N


The columns are scaled in this way to make the L1 norm of any vector
in the lattice an upper bound on the value of the corresponding unscaled
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polynomial evaluated at p0. In more detail, for the coefficients α2, α1, α0 ∈ Z,
we have the following vector w in the lattice:

w = [α2, α1, α0] · B = [α2 · L2, (α2 · p1 + α1) · L, α1 · p1 + α0 · N]

The corresponding unscaled polynomial g is:

g(x) = v2 · x2 + v1 · x + v0, for


v0 = α1 · p1 + α0 · N
v1 = α2 · p1 + α1

v2 = α2

We have g(p0) = v2 · (p0)2 + v1 · p0 + v0 < v2 · L2 + v1 · L + v0 = ||w||1, since
p0 < L = 2l because |p0|2 = l.

Consequently, if we can find a vector w with ||w||1 < p in the lattice, then
there is a corresponding unscaled polynomial g, such that g(p0) < p. Fur-
thermore, p0 is a root of g modulo p by construction because g is a linear
combination of f2, f1, and f0. Thus, from g(p0) < p and g(p0) ≡p 0, it
follows that g(p0) = 0 over the integers. Polynomials can be factored in
polynomial-time [136], which enables us to efficiently compute the roots of g
and test which root r satisfies 1 < gcd(p1 + r, N) < N. That r consists of the
missing bits p0 of p and p = p1 + r.

It remains to show that our lattice contains a sufficiently small vector w.
Minkowski’s first theorem states that the shortest vector in the vector space
spanned by basis B has the length ||w||2 ≤

√
n · det(B)1/n, where n is the

dimension of B [142]. Although the shortest vector problem is NP-hard for
arbitrary lattices, the LLL algorithm [136] by Lenstra, Lenstra, and Lovász
finds an exponential approximation of the shortest vector in polynomial
time [98]. Nguyen and Stehlé showed that the vector w found by LLL
satisfies ||w||2 ≤ 1.02n det(B)1/n on average for random lattices. Our lattice
basis B is of dimension n = 3 and has determinate det(B) = L3N. Using
||w||1 ≤

√
n · ||w||2, we therefore derive ||w||1 ≤

√
3 · 1.023 · L · N1/3. In order

to find ||w||1 < p, we arrive at the following condition, using p < 2
√

N as
bound4:

√
3 · 1.023 · L · N1/3 < p < 2

√
N =⇒ L <

2√
3 · 1.023

N1/6 =⇒ l ≈ |N1/6|2

For 2048-bit RSA, we can therefore recover approximately l = 341 bits. Hence,
we can stop the binary search when b− a < 2l for the interval [a, b). In that
case, either the upper 683 bits of a or of b are the most significant bits of p.
To explain this, we first observe that any number of upper bits of a and b

4For Mega, the prime factors of N have exactly |N|2/2 bits and |N|2 is a power of two.
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can be different despite these numbers being close together. For instance,
all leading 683 bits of a ← 21023 − 1 and b ← 21023 differ despite b− a = 1.
However, there cannot be more than one change to the bits above the least
significant l bits, because otherwise the difference between a and b would be
larger than 2l . Therefore, all values in [a, b) either start with the leading bits
of a or b. We run the lattice attack for both prefixes and identify the correct
prime p by verifying that it factors the modulus N. We empirically verified
that we can successfully factor N for l = |N1/6|2 unknown bits in 1000 out of
1000 runs with 683 queries.

In conclusion, this optimization reduces the number of queries for our
attack from 1023 to 683. As mentioned previously, higher-dimensional
lattices [113, 138] would allow us to further decrease the number of queries
to 512 at the limit.

4.1.5 Proof of Concept Attack

This section describes our proof of concept implementation of the attack.
Since Mega does not publish their server’s source code, we realize the attack
with a TLS-MitM attacker who hijacks the victim’s connection to Mega’s
servers and patches their responses on the fly.

Figure 4.1 shows the (simplified) requests of a normal successful login at-
tempt. The client starts by making a connection request to mega.nz. In
response, it receives the static content of the landing page. The client initiates
the login procedure by sending the user’s email address to receive the salt.
The client derives the decryption and authentication keys from the salt and
the user’s password and sends the authentication key to the server (see
Algorithm 5 for a detailed description of this process). After successfully
verifying the client’s identity, the server sends the client’s encrypted private
RSA key cskencoded

share
and csid, the session ID encrypted for this RSA key. The client

uses Algorithm 14 to decrypt the SID. The client includes the session ID to
authenticate itself to the server in subsequent requests. In this session, the
client can obtain more account information or request the user’s encrypted
files.

Figure 4.2 visualizes our TLS-MitM key recovery attack realizing the pro-
cedure from Section 4.1.4 in practice. We use mitmproxy5, an interactive
HTTPS proxy, to implement the adversary. After installing a trusted root
certificate in the victim’s root of trust, mitmproxy forges TLS certificates on
the fly for all requests routed over it. It is rather sophisticated and pauses
the connection, requests the benign certificate, and creates a forgery with
the correct common name, subject alternative names, and other properties
set as in the genuine certificate. Moreover, it exposes an API and allows

5https://mitmproxy.org/
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Figure 4.1: Visualization of a normal authentication and login between a
client and Mega’s servers.

registering Python scripts. Therefore, we implement our attack in Python
and Sage and register listeners for the server response containing cskencoded

share
and csid. We intercept these values, garble the second to last AES block in
cskencoded

share
and send cm, the center m of the current interval encrypted under the

victim’s public key, to the client (cf. Section 4.1.3). Next, we intercept the first
request where the victim includes the SID. If it is the URL Base64 encoding
of zero, we know m < q and otherwise m ≥ q.

To test the entire attack end-to-end, we create a test account on Mega. We
implement a victim who uses Selenium6 to automate a Firefox browser
and request Mega’s login page, enter the test account’s credentials, and log
in. We route the victim’s requests over mitmproxy and observe that our
binary search for a factor of the RSA modulus is successful. Furthermore, we
empirically verify the lattice attack from Section 4.1.4 in an offline simulation
to successfully recover 341 bits of a factor of the modulus for RSA-2048 in
1000 out of 1000 runs. Together with 683 queries from the binary search
attack, we can therefore factor the RSA-2048 modulus and recover the private
key.

We remark that we could improve this MitM attack to not be detectable from
the server. The adversary can store the correct csid value sent by the server
and subsequently impersonate the server for all requests during the binary
search attack. When the adversary decides to allow the victim to log in
successfully, it can send the original csid and stop intercepting traffic. For the
server, this appears as if a slightly slower client made a single login attempt.
The MitM can choose a tradeoff between attack speed and detectability:
more queries lead to a quicker factorization of the RSA modulus. However,
they cause more failed login attempts at the client and a more noticeable
authentication delay for the server.

6https://www.selenium.dev/
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Figure 4.2: Visualization of the key recovery proof of concept attack by a
TLS-MitM adversary.

4.2 Mega Plaintext Recovery for AES-ECB Under the
Master Key

We build on the RSA private key recovery attack from Section 4.1 and use the
recovered RSA private key, together with a similar attack vector consisting
of key overwriting and RSA-CRT, to decrypt AES-ECB ciphertexts. Since Mega
protects all key material with AES-ECB under the master key, we can decrypt
node keys, the victim’s signing key, and its chat keys. A single hijacked
login attempt suffices to decrypt two AES blocks, which corresponds to a full
node key. Section 4.2.1 recalls the setting and introduces some notation, and
Section 4.2.2 describes the plaintext recovery attack.

4.2.1 Threat Model and Preliminaries

We consider a malicious cloud service provider who recovered the victim’s
private RSA key with the attack discussed in Section 4.1 and who has access to
the victim’s encrypted key material. Clients store the latter on Mega’s server
to support access from multiple devices7. The adversary aims to recover the
plaintexts pti ← AES-ECB.Dec(kM, cti) for i ∈ {0, 1}, which are the decryption

7The case study in Section 3.3 provides a detailed description of Mega’s design.

48



4.2. Mega Plaintext Recovery for AES-ECB Under the Master Key

of the the target ciphertexts cti encrypted with AES-ECB under the master key
kM.

We recall that the victim encodes its RSA private key as follows before en-
crypting it with AES-ECB under the master key kM:

skencoded
share ← l(q)||q||l(p)||p||l(d)||d||l(u)||u

where l(x) is the two-byte big-endian length encoding of the byte length of
x and u ←

⌊
q−1⌋

p. We split this encoding into 128-bit AES blocks for the
AES-ECB encryption:

b0||b1|| . . . ||bα ← skencoded
share , where ∀i ∈ [0, α] . |bi|2 = 128

ci ← AES-ECB.Enc(kM, bi)∀i ∈ [0, α]

For instance, we have b0 ← l(q)||q[0:13] and b1 ← q[14:29]. We focus on
the case where d requires 256 bytes and u needs 128 bytes to simplify the
analysis. Consequently, the RSA-2048 private key encoding consists of α =
41 AES blocks with eight bytes of padding in the last block b40. We are
particularly interested in the first block containing bits of u for our attack:
b32 ← d[250:255]||l(u)||u[0:7]. Although deviations in the size of d and u are
possible8, they are very unlikely to change |d|8 or |u|8 because inverses are
roughly uniformly distributed and thus close in bit size to their modulus.
Nevertheless, it is straightforward to adapt our attack to corner cases with
shorter encodings of d or u.

4.2.2 Attack Description

We focus in this section on attacking RSA-2048, which Mega uses. Straightfor-
ward modifications of the attack suffice to adapt it for different key sizes.

Key Overwriting. In the first step of our attack, we overwrite ciphertext
blocks c33 and c34 with our target blocks ct0 and ct1. Let u0 ← u[0:7],
u1 ← u[8:39], and u2 ← u[40:127]. Then, we have u = u0||u1||u2, b32 =
d[250:255]||l(u)||u0, and b33||b34 = u1. By replacing the ciphertext blocks c33
and c34, the AES-ECB decryption recovers some u′ ← u0||x||u2. Our goal is
to recover x, which corresponds to pt0||pt1. We leverage that the RSA-CRT
decryption of a ciphertext of our choosing uses u′. Since we have already
recovered the victim’s private key, we know u0 and u2 together with the
RSA private key. The client sends a truncation of the RSA-CRT decryption as
session identifier to the server. The adversary can observe this SID and, as
explained in the following paragraphs, recover x.

8A value y← x−1 mod n for some n ∈ Z and x ∈ Zn has |n|8 − 1 bytes with probability
approximately 2−8, because half of the values have the first bit set to one assuming roughly
uniform distribution.
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Simplifying RSA-CRT. We choose m ← u · q as the “session ID” that we
encrypt using the victim’s RSA public key pk to cm ← RSA.Enc(pk, m). We
send cm together with the tampered private key encryption from the previ-
ous paragraph to the victim. The RSA-CRT decryption of Mega’s clients in
Algorithm 14 derives on Line 7 and Line 8 that mp =

⌊
(cm)d⌋

p = bu · qcp = 1

(because u =
⌊
q−1⌋

p) and mq =
⌊
(cm)d⌋

q = bu · qcq = 0. These steps are not
affected by the modified private key, since they only use the preserved values
p, q, and d from the RSA private key encoding. Furthermore, mp = 1 and
mq = 0 lead to t = 1 and h = bu′cp. Consequently, the decryption result
for cm simplifies to m′ = bu′cp · q for u′ prepared as discussed above with
the two target ciphertexts. We now argue that with high probability, this
corresponds to m′ = u′ · q. Intuitively, this is desirable for the adversary
because it can recover u′ ← m′/q. We discuss below how we can recover
x from a truncated m′. To argue that u′ < p w.h.p., let p0||p1 ← p, where
|p0|2 = |u0|2. Since u and u′ both start with u0 and u < p, we can only have
u′ ≥ p if u0 = p0. Thus, we derive the following lower bound for Pr[u′ < p]:

Pr[u′ < p] ≥ 1− Pr[u0 = p0] = 1− p1 + 1
p
≥ 1− 2−63

Where we use in the last step that the 1024-bit prime p satisfies p > 21023

and p1 + 1 ≤ 2960, because p0 is eight bytes large. Together, we conclude that
p1+1

p ≤ 2960 · 2−1023 = 2−63.

Recovering x. Instead of m′, the victim only returns the 43-byte session ID
to the server. With probability 1− 2−8, the truncation triggers a special case
that we omitted in the description of Algorithm 14, where only one prefix
byte is removed instead of two9. We briefly discuss the case for two removed
bytes at the end of this paragraph. Let m′ ← y0||y1||y2, where |y0|8 = 1 is
the removed prefix, y1 is the 43-byte SID returned to the adversary, and y2
is a 212-byte unknown suffix. To recover x, we try all possible prefix values
ŷ0 ∈ {0, 1}8 and argue that for the correct prefix guess ŷ0 = y0, we have:

Pr
[⌊⌈

ŷ0||y1 · 256212

q

⌉
· 256−88

⌋
= u0||x

∣∣∣∣ u′ < p
]
≥ 1− 2−31

Before explaining this probability, we observe that iterating over the 28

prefixes ŷ0 is computationally feasible and does not involve the victim. For
the correct prefix guess ŷ0 = y0, we have y = ŷ0||y1 · 256212 + y2. We detect
ŷ0 when the result starts with u0. This detection has a probability for false
positive of approximately 2−64, because |u0|8 = 8. However, we ignore false

9According to the source code comments, this is due to a patch for bogus legacy padding.
The special case is triggered when the second leftmost byte of m′ is non-zero, which happens
for the roughly uniformly random value m′ with probability 1− 2−8.
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positives in the further analysis, since we can recognize the correct plaintext
in practice using additional information on its structure. We condition the
probability on the event that u′ < p, leading to y = u′ · q as the previous
paragraph explains. Rewriting this equation and using u′ = u0||x · 25688 + u2,
we obtain:

ŷ0||y1 · 256212 + y2

q
= u0||x · 25688 + u2

=⇒ ŷ0||y1 · 256212

q
= u0||x · 25688 + u2 −

y2

q

We bound the last term with y2
q < 28·212 · 2−1023 = 2673. The prefix u0||x is

separated by at least 31 bits10 from y2
q . Thus, the subtraction of y2

q can only
affect the prefix if the bits in between are all zeros, i.e., we have the prefix
u0||x||031. For an approximately uniformly random value, this happens with

probability 2−31. Therefore,
⌈

ŷ0||y1·256212

q

⌉
has the prefix u0||x with probability

greater or equal to 1− 2−31 given that u′ < p.

In the case where |y0|8 = 2, we iterate over the 216 values ŷ0 ∈ {0, 1}16.

We then recover the prefix u0||x =
⌊⌈

ŷ0||y1·256211

q

⌉
· 256−88

⌋
with probability

1− 2−39, where the improved success probability comes at slightly higher
computational cost.

Conclusion. Our attack recovers the decryption x of any target ciphertexts
ct0||ct1, which were encrypted with AES-ECB under the master key km, with
a success probability of at least (1− 2−31) · (1− 2−63) > 1− 2−30. It only
requires a single login attempt of the victim. The malicious service provider
can modify the encrypted RSA private key, choose the encrypted session ID,
and observe the SID recovered by the victim. The attack is hard to detect
as a client, since the server can accept any session ID. However, the victim
might observe an error message when it tries to use its garbled private
key after authenticating. Then, the client likely deletes the bogus private
key and refetches it. Alternatively, the service provider can also throw an
authentication error and have the user re-attempt the login process.

4.3 Mega Framing Attack to Place a New File

This section presents a framing attack allowing a malicious cloud service
provider to add files to a victim’s cloud. An adversary can trivially modify
existing files by recovering their keys with the AES-ECB decryption attack
from Section 4.2 and decrypt, change, and re-encrypt the files. However, a

10The prefix u0||x starts after 88 ∗ 8 = 704 bits, the last term has less than 673 bits.
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more ambitious adversary might want to preserve existing files or add more
documents than the user currently stores. For instance, a conceivable attack
might frame someone as a whistle-blower and place an extensive collection
of internal documents in the victim’s account. Such an attack might gain
credibility when it preserves the target’s files. Without the ability to place
new files, the attacker is limited by the user’s total number of files11.

Our attack bypasses the challenge of an unavailable AES-ECB encryption
oracle under the master key. Otherwise, a full chosen-message forgery would
be trivial by choosing the key material and using the regular file encryption.
Instead, our attack employs the decryption oracle from Section 4.2 and takes
the reverse direction: it re-constructs a file for which the adversary can choose
all but one AES block. We set the remaining bits such that the file encryption
produces some target MAC value.

After discussing the threat model in Section 4.3.1, we describe the attack
using a decryption oracle in Section 4.3.2. Section 4.3.3 explains our imple-
mentation of this attack using a MitM proxy to target Mega’s web client.
Furthermore, Section 4.3.4 briefly outlines how the framing attack can be per-
formed without a full decryption oracle. Finally, we conclude in Section 4.3.5.

4.3.1 Threat Model

We consider a malicious cloud service provider who successfully performed
the RSA secret key recovery attack from Section 4.1 and can use the AES-ECB
decryption attack from Section 4.2. The adversary aims to place a malicious
file in the victim’s cloud storage, indistinguishable from genuinely uploaded
files. Furthermore, we assume that the uploaded file format tolerates 128
arbitrarily chosen bits at an AES-block aligned location.

4.3.2 Framing Attack Description

On a high level, the attacker first obtains a file key kF, file nonce NF, and
metamac Mmeta by decrypting a randomly sampled node key ciphertext. Next,
it works backward to insert a single AES block at some chosen location in the
malicious file F. This block ensures that the integrity verification succeeds
by producing Mmeta when the file is encrypted with key kF and nonce NF.
Many standard file formats such as PNG and PDF tolerate 128 injected bits
(for instance, in the file’s metadata, as trailing data, or in unused structural
components) without affecting the displayed content. Figure 4.3 visualizes
the framing attack presented in this section, where the light red blocks are
constraints that the adversary must satisfy in order to pass the integrity
verification.

11An attacker could bypass this limitation by reusing file keys for multiple documents.
However, this is trivial to detect.
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Figure 4.3: This visualization illustrates how we derive a single AES block
to ensure that a predominantly chosen file produces the desired metamac

Mmeta. The light red blocks are fixed values determined by the recovered
obfuscated key, all other AES blocks of the file can be chosen by the adversary.
The arrows indicate the direction in which we compute values: we calculate
intermediate results in the CBC-MAC before the red block as usual, but we
compute blocks after the fixed one in reverse order, starting from the desired
result.

Obtaining Obfuscated File Key. We select the two AES ciphertext blocks
ct0, ct1←$ {0, 1}128 uniformly at random. Next, we use the AES-ECB decryp-
tion attack from Section 4.2 to recover the corresponding plaintext blocks pt0
and pt1. As described in Algorithm 9, an obfuscated node key consists of
a 64-bit nonce NF and the 64-bit metamac Mmeta, concatenated to the 128-bit
scrambled file key kscr

F ← kF ⊕ (NF||Mmeta). Thus, the decryption gives us
kF ← pt0⊕ pt1 and NF||Mmeta ← pt1,. We now need to ensure that the placed
file F produces the metamac Mmeta when the victim encrypts it with key kF
and the nonce NF.

Deriving Matching MAC. In order to construct a file with metamac Mmeta,
we work backward and select a condensed MAC Mcond that produces Mmeta.
For this purpose, we split the metamac into two 32-bit chunks M0

meta||M1
meta ←

Mmeta and choose τ0, τ2←$ {0, 1}32 uniformly at random. Then, we set τ1 ←
τ0 ⊕M0

meta and τ3 ← τ2 ⊕M1
meta and verify that the 128-bit condensed MAC
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Mcond ← τ0||τ1||τ2||τ3 indeed results in our desired metamac Mmeta:

(τ0 ⊕ τ1)||(τ2 ⊕ τ3) = M0
meta||M1

meta = Mmeta

In order for our file to produce Mcond, we only have to select the MAC of
a single chunk. We recall from Algorithm 8 that the condensed MAC is
a CBC-MAC over the concatenation of all n chunk MACs Mi for i ∈ [1, n].
Therefore, we select j ∈ [1, n] for which the file F tolerates 128 random bits
(aligned to AES blocks) in the j-th chunk. Let c1||c2|| . . . ||cn ← F be the file
chunks, each consisting of lc AES blocks. First, we calculate all chunk MACs
except Mj using Mega’s AES-CCM encryption:

∀i ∈ [1, n] \ {j}.[ci]kF , Mi ← AES CCM ENC MEGA(kF, NF||(i · lc), ci)

We compute the partial condensed MAC Mcond,j−1 by calculating the CBC-MAC
of M0||M1|| . . . ||Mj−1. Moreover, we calculate intermediate condensed MAC
values backward starting from the desired output Mcond,n ← Mcond. I.e., for
i = n− 1, n− 2, . . . , j, we calculate:

Mcond,i ← AES-ECB.Dec(kF, Mcond,i+1)⊕Mi+1

The remaining chunk MAC Mj is defined by the preceding value Mcond,j−1
and the intermediate condensed MAC Mcond,j from the reverse calculation:

Mj ← Mcond,j−1 ⊕ AES-ECB.Dec(kF, Mcond,j)

Now, we have a fixed MAC Mj for the file chunk cj. By very similar reasoning
as above (except that we use the IV NF||NF instead of 0128), we can choose a
single 128-bit AES block of the chunk, which we need to set to a chosen value
such that the overall chunk MAC is Mj. We choose the chunk and AES block
such that the 128 random bits are in a place that is either ignored by the file
format or not visible to the unsuspecting user.

4.3.3 Proof of Concept Attack

Similar to Section 4.1.5, we use mitmproxy to realize a TLS-MitM adversary.
This software allows us to spoof TLS certificates on the fly and impersonate
Mega for the client. We implement a Python script that waits for the relevant
requests and injects malicious responses. In this section, we describe the
four steps performed by our implementation of the framing attack under the
assumption that the adversary already recovered the victim’s RSA private key
(e.g., by using the attack from Section 4.1).
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Figure 4.4: The forged image12 (on the right) is padded with zeros (to make
the image size a multiple of the AES block size) and has a trailer of 128
random bits chosen by our attack. There is no visual difference between the
images.

Step 1: Obtaining an Obfuscated Node Key. We choose two random
AES-ECB ciphertext blocks, ct0 and ct1, and perform the plaintext recovery
attack described in Section 4.2. During a login attempt for a user, we inject
the chosen blocks in the RSA private key ciphertext and send a maliciously
chosen SID. The returned session ID allows us to recover the obfuscated key
(corresponding to the decryption of ct0 and ct1).

Step 2: Forging a File. We rebuild Mega’s AES-CCM and attribute encryp-
tion and implement the forward and backward AES-CBC calculation from
Section 4.3.2 to derive a file that produces a given condensed MAC. We
inject a PNG image because the format structure tolerates appended bits: a
PNG starts with the magic bytes 0x89504E47 followed by a series of chunks
between an IHDR and an IEND chunk. The parser ignores any data after
the latter. Figure 4.4 shows that the images constructed as described in Sec-
tion 4.3.2 are visually equivalent13, but the forged file ends with 128 chosen

12A meme generated with https://imgflip.com/memetemplate/97924249/
hacker-cat.

13The difference between the forged and original image is not only invisible to the naked
eye: all pixels are effectively the same since the PNG parser never reads the chunk data added
to the forged file.

55

https://imgflip.com/memetemplate/97924249/hacker-cat
https://imgflip.com/memetemplate/97924249/hacker-cat


4. Attacks on Mega

bits. The CBC-MAC of the forged file produces Mcond, which gives the metamac

required by the obfuscated node key from Step 1. From analyzing the source
code, we know that Mega uses the following attribute format for the JSON
key-value pairs (k1, v1), (k2, v2), etc.:

MEGA{"k1":"v1", "k2":"v2"}

Clients using Mega’s SDK can add custom attributes, but most files contain
a name (key "n") and a cyclic redundancy check (key "c"). However, we
found that the latter is not required to display the file correctly in Mega’s
web client. A careful adversary might still want to implement the checksum
to avoid deviating from genuinely inserted files. The attribute ciphertext
consists of the AES-CBC encryption of the UTF-8 encoding of the above string
zero-padded for the block cipher. This attribute ciphertext, together with the
previous file encryption, decrypts to our forged PNG under the key from
Step 1. Although this forged file is indistinguishable from a genuine one for
Mega, we conservatively chose to perform a non-persistent attack instead of
uploading self-created data. Therefore, we only inject the file on the client
by manipulating server responses. Of course, a real adversary has no such
ethical restrictions and will likely store the forged file persistently to avoid
having to perform an active attack whenever the framed user accesses their
cloud storage.

Step 3: Modifying the File Tree. We activate Mega’s security setting to
wipe all local metadata, which forces the client to request the file tree on
login. We emphasize that this is not required for our attack in general: a
malicious service provider can directly add the files to the user’s cloud and
pretend this is a new file uploaded by another client of the same user. The
file tree fetch command contains the JSON algorithm identifier "a":"f". We
intercept the server response, which contains a key "f" storing a list of file
metadata. The most relevant keys present for each file are:

• "h": encoded14 file handle (six bytes)

• "p": encoded parent handle

• "t": integer file type; important ones for us are FILENODE (0) and
ROOTNODE (2)

• "a": encoded attribute encryption

• "k": encoded owner handle and obfuscated node key (separated by a
colon)

• "s": file size

14To be precise, Mega uses URL-safe base 64 encoding for all byte values in JSON API
commands.
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We inject a file into the file tree by choosing a random file handle (distinct
from the already existing ones) and populate the other fields honestly. We
place the file in the root folder of the client’s Mega storage by searching
the entry in the file tree of type ROOTNODE. We can use this node’s handle
(key "h") as the parent handle and the node’s owner (key "u") as the owner
handle. The latter is necessarily the victim’s handle since the root folder
cannot be shared. Since we inject the obfuscated node key and attributes
from Step 2, the client correctly decrypts them and displays our forged file in
the web client. Extended file attributes (key "fa") could contain handles for
additional data such as thumbnails. A motivated adversary can forge this
part as well, but we limit our proof of concept to the file content.

Step 4: Serving the Forged File. When the victim double clicks on the
injected file, Mega’s in-browser image viewer opens, and the client requests
a file with the command "a":"g" and our chosen file handle (stored with
key "n" in the command). Instead of forwarding this request, we directly
impersonate the server’s response (since Mega’s server does not store any
file for our injected handle). A valid response provides the client with
information to fetch the file from Mega’s user storage (which is a different
server than the one handling API requests) and contains the following fields:

• "g": one or multiple URL(s) of the requested data on

• "ip": a list of IPv4 and IPv6 addresses for every URL in "g"

• "s": file size

• "at": encoded attribute encryption

• "pfa": permission settings for attributes

We choose a valid Mega domain and a random path for the URL to avoid
issues with the browser’s Content Security Policy (CSP). We set the other
values consistent with the file tree metadata and choose "pfa" to allow
the client to write attributes. As a result of this injected answer, the client
requests the file chunk-by-chunk from the sent URL, where it specifies the
start and end values in the path. We again intercept this request and serve
the encrypted file from Step 2 as a binary transfer (using the response content-
type application/octet-stream). Since we constructed the file to decrypt
correctly under the key from Step 1 and produce the correct metamac, the
client displays the forged image in the victim’s cloud.

4.3.4 Framing Attack Without Decryption Oracle

Although Section 4.2 implements a decryption oracle, this is a rather strong
prerequisite in general, and, even in the case of Mega, the initial key recovery
in Section 4.1 required for the decryption attack is intricate. However, we
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can perform the framing attack with a weaker adversary by trading off
stealthiness. Given at least two known plaintext-ciphertext blocks of AES-ECB
under the master key kM (i.e., without relying on an AES-ECB decryption
oracle), the adversary can use them as node key ciphertexts and perform, as
described in Section 4.3.2, the reverse derivation of a mostly chosen file F
that produces a fixed condensed MAC. Using such known blocks restricts the
number of derivable unique node keys. Thus, if we insert more documents
than we have node keys, repeated key ciphertexts indicate the attack since
they are very unlikely to occur during genuine file encryption.

4.3.5 Conclusion

In conclusion, the above attack allows a malicious cloud provider to place
any file F in the user’s cloud as long as the file format tolerates 128 random
AES-block aligned bits. Using an AES decryption oracle, the forged file is not
suspicious because the reversely constructed node key is indistinguishable
from genuine node keys due to AES-ECB being a pseudo-random permutation.
Therefore, the framed user lacks cryptographic arguments to convince a third
party that it did not upload F. A weaker adversary can perform the framing
attack only with known plaintext-ciphertext pairs, which either limits the
number of forged documents or makes the attack easier to detect due to
repeated key ciphertext blocks. This framing attack is made possible by the
lack of integrity protection for the key ciphertexts.

4.4 Bleichenbacher Variant With Unknown Prefix

In this section, we discuss a new variant of Bleichenbacher’s attack [88]
to decrypt RSA ciphertexts by using a padding oracle. Instead of targeting
PKCS#1 v1.5, we extend the attack to Mega’s custom padding scheme in-
volving an unknown prefix. Although this attack is weaker than the RSA

key recovery from Section 4.1, it does not require the ability to overwrite
keys. Furthermore, it attacks a different instance of RSA encryption and
can be performed by a slightly weaker adversary. Section 4.4.1 explains the
oracle exposed by Mega’s code for decrypting chat keys with RSA. Next,
Section 4.4.3 discusses our guess-and-purge strategy that accounts for an
unknown prefix while keeping the number of additional queries reasonable.
Finally, Section 4.4.6 concludes with an empirical performance analysis.

4.4.1 Oracle in Mega’s Legacy Chat Key Decryption

Algorithm 17 describes the decryption of chat key material using the client’s
private RSA key skshare

15. The client parses the decrypted value mbytes as

15Algorithm 4 specifies Mega’s generation of the RSA key pair (skshare, pkshare).
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four components: a prefix y of two bytes, a two-byte length encoding L,
concatenated keys K, and some random padding r to make mbytes of the
size of the RSA modulus. The length encoding function l (as introduced in
Section 4.1) transforms an integer to a two byte big-endian encoding. The
inverse l−1 recovers the byte length of the plaintext from the length encoding
L. The length validation on Line 4 of Algorithm 17 checks that the decrypted
and unpadded K consists of key-sized blocks. A user can send multiple
chat keys concatenated to a single message. The client aborts if K cannot be
split into chat keys, i.e., |K|8 is not a multiple of the chat key length. The
decryption tolerates an encoded length that exceeds the number of available
bytes due to the error resilience of the web client’s JavaScript implementation.
In that case, the plaintext has maximal size, i.e., |r|8 = 0. Although such
an invalid L does not raise an error nor result in an out-of-bound read, the
length validation on Line 4 can still fail if the maximal size is not a multiple
of 16.

Under the assumption that the adversary can observe the error symbol
returned by Line 5, one might get the impression that this construction only
leaks whether

⌊
l−1(L)

⌋
16 = 0. However, upon closer inspection, there is more

leakage depending on the size of the RSA modulus N. The maximal plaintext
length is |N|8 − 4 because the encoding uses four bytes for the prefix and
length encoding. Since |N|8 is a power of two larger than sixteen, we know
that b|N|8 − 4c16 = 12. Therefore, the length validation fails for all values
l−1(L) ≥ |N|8 − 4 because they all result in K of length |K|8 = |N|8 − 4,
which does not pass Line 4 of Algorithm 17.

In summary, we know for a successful decryption that l−1(L) < |N|8− 4 and⌊
l−1(L)

⌋
16 = 0. Concretely, for RSA-2048 we decrypt successfully iff L is of

the form 08||b3b2b1b0||04 with four unknown bits bi for i ∈ [0, 3]. Our variant
of the Bleichenbacher attack described in Section 4.4.3 mainly uses the zero
prefix. Using the rightmost four zero bits of the length encoding could enable
further optimizations.

4.4.2 Threat Model

We consider a malicious cloud provider or an adversary impersonating Mega.
Unlike in the previous attack, the real cloud provider is not strictly required
to perform the attack, since no tampering with encrypted key material sent
by the server is necessary. Given a target ciphertext, this attack can be
performed offline using a direct connection between victim and adversary.
More importantly, integrity protecting the key encryption does not protect
against this attack.

59



4. Attacks on Mega

Algorithm 17 Mega’s RSA decryption of chat key ciphertext ckey containing
one or more symmetric AES keys.

1: procedure mega rsa decrypt chat keys(ckey, (skshare, pkshare))
2: mbytes ← RSA.Dec(skshare, ckey) . mbytes is a |N|8-byte string
3: y||L||K||r ← mbytes

. Where |y|8 = 2 (ignored prefix), |L|8 = 2 (length encoding), |K|8 =
min(l−1(L), |N|8 − 4) (keys), and r (random padding)

. Length validation
4: if b|K|8c16 6= 0 then
5: return ⊥
6: return K

4.4.3 Guess-And-Purge Variant of Bleichenbacher’s Attack

This section explains our modifications of the original Bleichenbacher attack
steps [88] to account for Mega’s leakage pattern and the unknown prefix.
Section 4.4.4 discusses practical optimizations, Section 4.4.5 provides the
mathematical reasoning for our modifications, and Section 4.4.6 evaluates
the performance empirically. On a high level, our attack tries to guess
the unknown prefix y and removes it from the result before performing
Bleichenbacher’s attack adapted to Mega’s length encoding leakage. We
quickly identify and purge wrong guesses with subsequent multipliers.

To stay close to the notation of [88], let c = bmecN be the RSA ciphertext
(with modulus N and public exponent e) of a target message m. Let
B ← 256|N|8−4 be the power of two that exceeds the largest possible un-
encoded plaintext by one16. Let m0 be the conforming multiple of the target
plaintext. If m0 is of known length, then the maximal plaintext interval
is [|m0|8 · B, (|m0|8 + 1) · B− 1]. We introduce the notation of workloads
w = (Mi,ti ,Hi,ti), where Mi,ti is the set of closed intervals after iteration i,
resulting from the choice of multipliers Hi,ti = (s0,t0 , s1,t1 , . . . , si,ti) with the
guesses tj ∈ {0, 1}16 for all j ∈ [0, i] of the most significant two bytes of

lpad|N|8

(⌊
sj,tj ·m0

⌋
N

)
(where lpadN left pads

⌊
sj,tj ·m0

⌋
N

with zero bytes

to |N|8 bytes). We denote with t0 = t1 = ε that there is no prefix guess
for the first two multipliers. As explained in detail below, they are chosen
independent of any prefix guess: Step 1 chooses s0,t0 randomly and Step
2.a linearly searches for s1,t1 , starting from a value derived from the ini-
tial bounds. For k ∈ [2, i], Step 2.c chooses the multiplier sk,tk ∈ Z based
on the shifted prefix guess yk ← 2562 · B · tk of the conforming message

16The maximal plaintext byte length is |N|8 − 4 because there are always two unknown
prefix bytes and two length bytes.
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4.4. Bleichenbacher Variant With Unknown Prefix

Figure 4.5: Visualization of the guess-and-purge strategy for our modified
Bleichenbacher attack with T = 216 prefix guesses t ∈ {0, 1}16. The blue path
up to iteration i corresponds to a workload w = (Mi,ti ,Hi,ti), whereMi,ti is
the implicitly associated solution interval that depends on the previous choice
of multipliers (s0,ε, s1,ε, s2,t2 , . . . , si,ti) stored in Hi,ti . We no longer follow paths
with empty intervals (marked by a cross).

lpad|N|8
(⌊

sk,tk ·m0
⌋

N

)17 and the previous intervals Mk−1,tk−1 such that sk,tk

reduces the size of the possible solution intervals adequately. We guess the
prefix of lpad|N|8

(⌊
sk,tk ·m0

⌋
N

)
before selecting sk,tk . The attack tree visual-

ization of Figure 4.5 shows that the indices tk define a path by specifying
prefix guesses for a workload. The indices tk differ for every workload and if
we guessed all previous prefix values yj ∀j ∈ [1, k) correctly, then we have
m0 ∈ [a, b] for [a, b] ∈ Mk,tk . Otherwise, we quickly arrive at a contradiction
with Mk,tk = ∅ and eliminate this workload. Furthermore, we introduce
the oracle Oc(s) described in Algorithm 18, which returns true iff the RSA

decryption from Algorithm 17 succeeds for the target ciphertext c multiplied
by se modulo N.

For our modified Bleichenbacher attack, we perform Step 1 once at the
beginning of the attack and repeat Step 2 to Step 4 for every workload
w = (Mi−1,ti−1 ,Hi−1,ti−1) ∈ W , where i is counting the iterations through all
steps.

17In other words,
⌊
sk,tk
·m0

⌋
N − yk is in the plaintext interval defined by the length

encoding, where we can make use of the zero bits in the prefix similar to Bleichenbacher’s
attack on the leading 0x0002 of PKCS#1 v1.5.
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4. Attacks on Mega

Algorithm 18 Oracle checking whether the padding format required for our
modified Bleichenbacher attack is satisfied when decrypting bse · ccN for a
target ciphertext c.

1: procedure Oc(s)
2: c′ ← bse · ccN
3: m← mega rsa decrypt chat keys(c′, (skshare, pkshare))
4: return m 6= ⊥

Step 1: Blinding. Given a target ciphertext c = bmecN , we sample random
multipliers s0,ε until Oc(s0,ε) returns true. For the first successful
value s0,ε, we set:

c0 ← bc · (s0,ε)
ecN

M0,ε ← {[ptmin, ptmax]}
H0,ε ← (s0,ε)

W ← {(M0,ε,H0,ε)}
i← 1

where ptmin ← 0 is the smallest possible plaintext and ptmax ←
(|N|8 − 15) · B− 1 is the largest possible plaintext (including length
encoding), because |N|8 − 16 is the first conforming length18 that is
smaller than |N|8− 4, and B− 1 is the largest possible content of that
length19. The subsequent attack recovers m0 ← bs0,ε ·mcN , which is
the decryption of c0. We do not need any prefix guess (as indicated
by ε) as M0,ε contains a single interval specifying the maximum
range of conforming plaintexts.

Step 2: Searching for s satisfying Oc(s).

Step 2.a: Starting the search. For i = 1, we have only a single work-
load with M0,ε = {[a, b]}20. We search for the smallest
s1,ε ≥ N/(b + 1) such that Oc(s1,ε) is true.

Step 2.b: Sequential searching with
∣∣Mi−1,ti−1

∣∣ > 1. For i > 1 and
more than one interval left, where si−1,ti−1 ∈ Hi−1,ti−1 , we
search for the smallest si,ti > si−1,ti−1 where Oc(si,ti) is
true.

Step 2.c: Interval-based searching with
∣∣Mi−1,ti−1

∣∣ = 1. For i >
1 and exactly one interval [a, b] left, where si−1,ti−1 ∈

18Recall from Algorithm 17 that the length must be a multiple of 16 and we assume |N|8
to be a multiple of 16.

19Thus, (|N|8 − 16) · B + B− 1 = (|N|8 − 15) · B− 1 is the largest message with the length
encoding |N|8 − 16.

20In the generic case, a = 0 and b = (|N|8 − 15) · B− 1.
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4.4. Bleichenbacher Variant With Unknown Prefix

Hi−1,ti−1 , we iterate over the prefix guesses ti ∈ [0, 216)
with the corresponding shifted values yi ← 2562 · B · ti of
the yet to be computed value lpad|N|8

(
bsi,ti ·mcN

)
. We

search the smallest pair of variables ri and si,ti that satis-
fies the following two constraints as well as Oc(si,ti). Due
to the choice of ri and si,ti , we approximately halve the
interval [a, b] in Step 3 (see Section 4.4.5).

We start incrementing ri from

ri ≥
2 · b · si−1,ti−1 − ptmin − yi

N

For every ri value, we try the following multipliers:

ptmin + ri · N + yi

b
≤ si,ti <

ptmax + ri · N + yi

a

Section 4.4.5 discusses our reasoning for this search proce-
dure in detail. However, the intuition is as follows: there
exists at least one solution because we are guaranteed
to find a conforming si,ti value for the workload with all
correct prefix guesses since our procedure then performs
Step 2.c from the original Bleichenbacher attack without
an unknown prefix. If we end up using another multi-
plier si,ti for a wrong prefix guess, this still reduces our
intervals. Although this si,ti might not eliminate as many
plaintext candidates as the one for the correct prefix, it
is still a correct multiplier because the oracle decision is
independent of our prefix guess.

Step 3: Narrowing the set of solutions. For all [a, b] ∈ Mi−1,ti−1 andHi−1,ti−1 =
(s0,t0 , s1,t1 , . . . , si−1,ti−1), we update the bounds for every prefix guess
t∗ ∈ {0, 1}16 of lpad|N|8

(
bsi,ti ·mcN

)
and the corresponding y∗ ←

2562 · B · t∗, as follows:

Mi,t∗ ←∪a,b,r
{[

a′, b′
]}

for a′ ← max
(

a,
⌈

ptmin + r · N + y∗

si,ti

⌉)
and b′ ← min

(
b,
⌊

ptmax − 1 + r · N + y∗

si,ti

⌋)
where

a · si,ti − ptmax + 1− y∗

N
≤ r ≤ b · si,ti − ptmin − y∗

N
Hi,t∗ ←

(
s0,t0 , s1,t1 , . . . , si−1,ti−1 , si,t∗

)
, for si,t∗ ← si,ti
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4. Attacks on Mega

We add a new workload (Mi,t∗ ,Hi,t∗) toW wheneverMi,t∗ 6= ∅.

It is necessary to consider all possible prefixes t∗ ∈ {0, 1}16 to guar-
antee the existence of a fully correct prefix guess history t0, t1, . . . , t∗

(which is implicitly stored in Hi,t∗). For instance, if we would only
use the prefix ti for which Step 2.c found the multiplier si,ti , m0 might
not be in any of the remaining intervals because the first two bytes
t∗ of lpad|N|8

(
bsi,ti ·m0cN

)
are not equal to ti.

Step 4: Computing the solution. If there is only one workload W =
{(Mi−1,ti−1 ,Hi−1,ti−1)} left and only one intervalMi−1,ti−1 = {[a, a]}
containing a single value, we have a = m0 and return the solution
m←

⌊
a · (s0)−1⌋

N . Otherwise, if there is no workload for iteration i
left (i.e., ∀(Mi∗,ti∗ ,Hi∗,ti∗ ) ∈ W . i∗ > i), we set i← i + 1 and continue
with Step 2. If there is still a workload left for iteration i, we go to
Step 2 with that one.

4.4.4 Optimizations

Dynamic Programming to Avoid Duplicate Oracle Queries. We introduce
the set S of already queried multiplier intervals and maintain the following
invariant: ∀I ∈ S .∀s ∈ I. ¬Oc(s). To query the s values in [smin, smax] in
Step 2, we consider the intervals {[a0, b0), [a1, b1), . . . , [an, bn)} ⊆ S such that
the intervals are ordered by increasing bounds ∀i ∈ [0, n). bi < ai+1 and
∀i ∈ [0, n] . [ai, bi) ∩ [smin, smax] 6= ∅. Then, we only query s values from the
following intervals (i.e., s /∈ ∪S∈SS) until we find a conforming value s∗:

[smin, a0), [b0, a1), [b1, a2), . . . , [bn−1, an), [bn, smax)

The first and last intervals are empty if smin ∈ [a0, b0) respectively smax ∈
[an, bn). After every query, we update S to reflect the new queries: S ← S ∪
{[min(a0, smin), s∗)}. We implement S as a sorted list and merge overlapping
intervals to improve performance. This enables us to conduct efficient binary
searches for the intervals of new query values s.

Optimizing Step 1 by Specialization. We can often start with a significantly
shorter interval in Step 1, given more knowledge on the initial ciphertext. If
we decrypt a single 16B chat key, we already know that Oc(1) is satisfied
because the given ciphertext c encrypts a padding-conforming message.
Consequently, we can skip the random search for s0,ε. Furthermore, we
know the plaintext length is 16 and, thus, can reduce the initial interval to
M0,ε ← {[16 · B, 17 · B− 1]}.

Optimizing Step 4 by Specialization. We can optimize Step 4 in case the
target message m was already conforming (i.e., we skipped Step 1), and there
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4.4. Bleichenbacher Variant With Unknown Prefix

are γ bits of random padding in the LSBs of m. Since we do not need to
recover the padding, we can abort as soon as the last intervalMi,ti = {[a, b]}
has a stable prefix containing all non-padding bits, i.e., ba · 2−γc = bb · 2−γc.
The larger the random padding is, the earlier we can stop the attack. In
comparison, the classic Bleichenbacher attack is forced to recover the entire
padding because PKCS#1 v1.5 left pads the message. In other words, the
message is in the least significant bits and therefore requires a remaining
interval of size one for recovery. With Mega’s padding scheme, we can
terminate early because the least significant bits are padding, and, thus, a
larger interval can contain only a single message with different paddings.

Skipping Holes and Trimming. We evaluated the applicability of advanced
optimization techniques for Bleichenbacher’s attack presented by Bardou
et al. [81]. The skipping holes optimization improves the lower bound for
s1,ε in Step 2.a by observing that we require s1,ε ·m0 > ptmin + N such that
Oc(s1,ε ·m0) holds for s1,ε ·m0 ≥ N. Therefore, we improve the lower bound to
s1,ε ≥ ptmin+N

ptmax
using m0 ≤ ptmax, which saves us approximately ptmin

ptmax
queries.

Such holes of non-conforming multipliers can further be identified in Step 3.
However, as analyzed in [81], we can only skip significant regions together
with the trimming optimization. Trimming searches for factors of m0 and uses
them to trim the search interval. Unfortunately, proposition 1 of [81]21 cannot
be adapted to detect factors in our setting due to the unknown prefix.22

Further work could search for a condition to detect factors of m0 in our
setting, which would enable trimming and increase the benefit of skipping
holes.

4.4.5 Analysis of the Introduced Modifications

Bleichenbacher’s attack [88] builds on the following observation for some
multiplier si:

si ·m0 conforming =⇒ ∃ri ∈ Z. 2 · B′ ≤ si ·m0 − ri · N < 3 · B′

where B′ ← 256|N|8−2 because a valid PKCS#1 v1.5 padding starts with 0x0002.
The ri value removes the reduction modulo N of bsi ·m0cN . Bleichenbacher’s
steps provide a structured approach to finding si values that significantly
reduce the interval of possible plaintext values.

21Proposition 1 of [81] (for the classic Bleichenbacher attack): Let u and t be two coprime
positive integers such that u < 3

2 t and t < 2N
9B . If m0 and m0 · ut−1 mod N are PKCS#1 v1.5

conforming, then m0 is divisible by t.
22The core issue is that Bardou et al. can bound the size of conforming value x ← m0 · ut−1

mod N < 3B since PKCS#1 v1.5 requires them to start with the prefix 0x0002. Therefore, they
have xt < N since t is a small factor, and can derive xt = m0u =⇒ t | m0. In our setting, x
has an unknown prefix leading to xt > N even for very small factors t with high probability.
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4. Attacks on Mega

The challenge in our scenario is that conforming messages start with an
unknown prefix yi. We adapt the above observation to account for yi as
follows:

Oc(si) =⇒∃r ∈ Z, t∗ ∈ {0, 1}16.

ptmin ≤ si ·m0 − r · N − 2562 · B · t∗ ≤ ptmax − 1 (4.1)

Let r and t∗ ∈ {0, 1}16 with the corresponding shifted value y∗ ← 2562 · B · t∗
be values satisfying the right-hand side of Equation (4.1) for some si with
Oc(si). We solve the inequalities for m0 to derive the bounds for m0 used in
Step 3 to narrow intervals:

ptmin + r · N + y∗

si
≤ m0 ≤

ptmax − 1 + r · N + y∗

si
(4.2)

Furthermore, we can derive the bounds for r in Step 3 from Equation (4.1) by
using a ≤ m0 ≤ b for some interval [a, b] ∈ Mi,t∗ and m0 ∈ [a, b]:

si · a− ptmax + 1− y∗

N
≤ si ·m0 − ptmax + 1− y∗

N
≤ r

r ≤ si ·m0 − ptmin − y∗

N
≤ si · b− ptmin − y∗

N
(4.3)

Very similarly, we derive the bounds for si in Step 2 using 1
b ≤

1
m0
≤ 1

a for
some interval [a, b] ∈ Mi,t∗ and m0 ∈ [a, b]:

ptmin + r · N + y∗

b
≤ si <

ptmax + r · N + y∗

a
(4.4)

Correctness. We can use the above statements to prove the correctness
of our algorithm by induction over i. Let T(i) ≡ ∃ti ∈ {0, 1}16. ∃ [a, b] ∈
Mi,ti . m0 ∈ [a, b] be our induction hypothesis stating that in every iteration,
there exists at least one interval containing the target message m0. Since the
last interval has length one, this implies that we find the correct plaintext m0
and, thus, return the decryption m of the target ciphertext c. The base case
T(0) trivially holds becauseM0,ε = {[ptmin, ptmax]} and m0 ∈ [ptmin, ptmax]
by definition since ptmin and ptmax are the smallest, respectively largest,
plaintext values. We assume T(i− 1) for the induction step and show T(i).
Step 2 uses some si with Oc(si) by construction. Therefore, by Equation (4.1)
there exist r and t∗ ∈ {0, 1}16 such that the right-hand side equality holds. By
Equation (4.3), we know that the range of r values used in Step 3 contains the
correct one. Furthermore, we iterate over all t∗ ∈ {0, 1}16 and add intervals
toMi,t∗ . Therefore, for the correct r and t∗, we narrow [a, b] to [a′, b′] in Step
3 where the bounds from Equation (4.2) guarantee that m0 ∈ [a′, b′]. We
conclude the induction proof by noting that [a′, b′] ∈ Mi,t∗ implies T(i).
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4.4. Bleichenbacher Variant With Unknown Prefix

Interval Reduction. We motivate the choice of the lower bound of ri in
Step 2.c by showing that it leads to roughly halved intervals. Let si be the
multiplier chosen in Step 2.c satisfying Oc(si) and let y∗ be the prefix of
lpad|N|8 (bsi ·m0cN). We recall from Step 2.c for the previous multiplier si−1
of this workload:

ri ≥
2 · b · si−1 − ptmin − y∗

N
(4.5)

We deviate from Bleichenbacher’s original Step 2.c in addition to subtracting
the prefix by moving the factor 2 in front of b · si−1 to enable the reasoning
below.

Step 3 updates the bounds of the interval [a, b] to [a′, b′], where:

a′ ← max
(

a,
⌈

ptmin + ri · N + y∗

si

⌉)
b′ ← min

(
b,
⌊

ptmax − 1 + ri · N + y∗

si

⌋)

We now show that the interval length |[a′, b′]| is approximately half of |[a, b]|.
First, we use Equation (4.4) and Equation (4.5) to derive a lower bound for si:

si ≥
ptmin + ri · N + y∗

b
≥ 2 · si−1

Consequently, we derive the following for the interval bounds:

∣∣[a′, b′
]∣∣ ≤ ptmax − 1 + ri · N + y∗

si
− ptmin + ri · N + y∗

si

≤ ptmax − 1− ptmin

si

≤ ptmax − 1− ptmin

2 · si−1

The last interval size is approximately half of the maximal interval size of
|[a, b]|.

4.4.6 Empirical Evaluation

This section evaluates the performance of our modified Bleichenbacher attack
and shows that wrong prefix guesses quickly result in empty intervals. We
target the RSA-2048 encryption of a single 16-byte chat key using Mega’s
custom padding scheme.
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Figure 4.6: Density of the number of oracle queries (calls to Oc) required by
our variant of Bleichenbacher’s attack when recovering a 16-byte chat key
encrypted with RSA-2048. There is a 2-byte unknown prefix, and we aborted
71 out of 1000 runs because they exceeded the threshold of 106 queries.

Query Complexity. The density histogram in Figure 4.6 shows that our
attack has a query complexity of approximately 216.9 on average with a
comparatively high standard deviation. A quarter of all runs only require 214

queries, but the distribution has a long tail, and we aborted 71 out of 1000
runs because they exceeded our cutoff of 106 queries. We use the Freedman-
Diaconis binning rule [106] to decide for an appropriate number of bins of
equal width.

Workload Purging. The query complexity of our attack is significantly
lower than executing 216 classic Bleichenbacher attacks for every prefix guess.
Figure 4.7 visualizes the core reason: every conforming multiplier si,ti allows
us to detect workloads with an invalid prefix guess inHi,ti because they result
in an empty solution intervalMi,ti = ∅. The stacked bar plot shows that the
first multiplier s1,ε adds approximately 2500 plausible prefix guesses. The
next multiplier s2,t2 eliminates more than 95% of the wrong guesses shown
with a blue bar in Figure 4.7; the remaining workloads are gray with an
error bar showing the standard deviation. As the solution intervals narrow,
every multiplier adds fewer new workloads while following multipliers
rapidly eliminate wrong guesses. After 28 multipliers, only a single workload
remains, and (in most cases) a multiplier leads to only one valid prefix guess.
Therefore, we do not require more queries than the classic Bleichenbacher
attack after this point. In general, we require a fraction of the multipliers
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4.4. Bleichenbacher Variant With Unknown Prefix

Figure 4.7: Number of purged and remaining workloads for every multiplier
si,ti satisfying Oc(si,ti). The error bars show the standard deviation of the
purged workloads across 929 runs (1000 runs, 71 of them aborted).

necessary for attacking PKCS#1 v1.5 since we do not need to recover the
padding. The total number of multipliers ranges from 110 to 140, which
is one reason for the long tail in Figure 4.6. However, finding the first
multipliers often affects the number of oracle queries more significantly.

Guessing Padding Bits for PKCS#1 v1.5. This paragraph applies the prefix
guessing Bleichenbacher attack on PKCS#1 v1.5. Figure 4.8 shows that the
direct application requires more queries when guessing padding bits than
the same code (which approximates the classic Bleichenbacher attack with
minor improvements) needs without guessing. We see in Figure 4.9 that
Step 2.a is executed more when we guess padding bits. The attack on Mega
does not have this behavior because we know the initial interval and guess
prefixes of all si,ti · m mod N values. In contrast, guessing padding bits
means adding multiple initial intervals in Step 1 (one for every padding
guess) and then executing Step 2.a for every workload. Although we detect
most wrong padding guesses with a single multiplier, we still execute the
expensive Step 2.a for the remaining ones. Bardou et al. [81] introduced the
Skipping Holes and Trimming optimizations for Step 2.a. Although Section 4.4.4
discussed the difficulties of adapting them for our attack in the Mega setting,
we could implement them when guessing PKCS#1 v1.5 padding bits. We
observe that Trimming has a similar effect as padding guessing: it reduces the
initial interval by finding small factors t of m0. On the one hand, this process
has the benefit to reduce intervals without causing additional executions of
Step 2.a. On the other hand, our variant of Bleichenbacher’s attack does not
require searching optimal factors to reduce the interval, it is only limited
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Figure 4.8: Densities for the number of oracle queries (calls to Oc) required
when applying our Bleichenbacher variant to guess the first 0, 8, or 12 bits
after the 0x0002 prefix of the PKCS#1 v1.5 padding. The ratio r represents
the fraction of aborted runs (exceeding 106 queries) over all runs, µ is the
average number of queries and σ the standard deviation.

by the additional computational cost of guessed prefixes and the queries
necessary to eliminate wrong guesses.

Future work could evaluate whether there is a beneficial combination of
padding-guessing and Trimming to avoid the cost of Step 2.a. Furthermore, our
approach of maintaining intervals and purging empty ones could be extended
to account for noisy oracles. Bleichenbacher’s attack already tolerates when
an oracle fails to recognize a correctly padded message (false negative) at
the cost of more queries. However, classifying a message as PKCS#1 v1.5
conforming by mistake can cause Bleichenbacher’s attack to fail. Such false
positives are challenging when building oracles from microarchitectural side-
channels [152]. Our modified version could be extended with backtracking
when no valid solution remains. Since our variant quickly detects wrong
intervals given a correct multiplier, it would be interesting to compare its
performance to repeated measurements proposed by Ronen et al. [152].

4.4.7 Conclusion

This section contributes a new variant of Bleichenbacher’s attack, which
can tolerate unknown prefixes. We evaluated this variant to require 216.9

queries on average despite guessing a two-byte prefix. The main reason for a
performance in the same order of magnitude as the original Bleichenbacher
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Figure 4.9: Number of times an attack executes Step 2.a, Step 2.b, or Step 2.c
from Section 4.4.3. We compare four variants: attacking PKCS#1 v1.5 and
guessing the 0, 8, or 12 leftmost bits of the padding, and our attack on Mega’s
padding scheme, guessing a two-byte unknown prefix.

attack is that we can use multipliers for wrong prefix guesses to purge
incorrect guesses and quickly identify the correct prefix.

This attack is challenging to exploit in practice for multiple reasons: first,
it requires a substantial amount of queries. Second, the error oracle is
challenging to realize because the legacy RSA decryption is only a fallback
if no Curve25519 keys are available23. Our static analysis indicates that the
web client reports two different error messages to the server depending
on whether Algorithm 17 failed to decrypt the keys (i.e., Oc(s) is false) or
successfully recovered some invalid keys that will later fail on a chat message
decryption (i.e., Oc(s) is true). We did not attempt to implement this oracle
in practice due to the high reverse-engineering effort required to reconstruct
the server code and trigger this legacy code.

Despite the theoretical nature of the attack in this section, it still points out
two weaknesses in Mega’s design beyond the key overwriting attacks from
Section 4.1 and Section 4.2. First, it is dangerous to use a custom RSA padding
scheme. Although we need a non-trivial adaption of Bleichenbacher’s attack
to exploit it, the cryptographic literature agrees that the non-linear and
provable RSA-OAEP padding scheme is preferable. Second, the reuse of a
single RSA key pair for decrypting shared node keys as well as chat keys
allows an adversary to attack the former using deprecated legacy code in the
latter code path. Although the format of shared keys is not compatible with

23According to source code comments, accounts created before 2016 may still execute this
code even without further malicious operations of the service provider [18].
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Figure 4.10: Overview of Mega’s key hierarchy and the parts affected by our
attacks.

the one of chat keys, Step 1 finds a multiplier s0,ε such that Oc(s0,ε) is satisfied.
It is feasible to find this multiplier because the message only requires twelve
bits to be zero24, which happens approximately with probability 2−12 for
multipliers chosen uniformly at random.

4.5 Conclusion

Figure 4.10 shows Mega’s key hierarchy and marks the parts affected by
our attacks with red crosses. This chapter discussed an attack to recover the
RSA sharing key in 512 user login attempts by combining key overwriting,
observations on RSA-CRT, and lattice optimizations. Building on this attack,
an adversary can recover all other keys encrypted with the master key kM
using our AES-ECB plaintext recovery attack. The symmetric chat keys are
also affected because they are exchanged using compromised asymmetric
key material. Furthermore, an attacker can decrypt node keys and break the
confidentiality of files and attributes. Additionally, our framing attack enables
the adversary to place new files in a user’s cloud storage, indistinguishable
from a genuinely uploaded file. We present a new variant of Bleichenbacher’s
attack on PKCS#1 v1.5 applied to Mega’s custom padding scheme, which
accounts for an unknown prefix using a novel Guess-and-Purge strategy.

Despite being able to decrypt everything encrypted with the master key,
we have not compromised this key itself. Furthermore, our attacks do not
compromise the user password. However, Section 3.3.10 outlined how any
entity knowing the authentication key ka (including Mega) can perform
dictionary attacks on passwords with low entropy.

24Messages with the structure 08||b||04 for some b ∈ {0, 1}4 are valid.
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Chapter 5

Mitigation of Attacks on Mega

This section describes countermeasures that Mega can employ to address the
attacks from Chapter 4. The scale of Mega poses many practical challenges to
changing their cryptographic design fundamentally. For instance, modifying
the file encryption procedure requires re-encrypting over 1000 petabytes of
user data. In addition to the high computational cost, this also causes massive
traffic: users need to download all their data, decrypt it with the legacy file
encryption, re-encrypt it with the new procedure, and then upload it again.
Mega reports to have a total uplink capacity of more than 1000 Gbit/s [23].
Even at constant maximal utilization, it would take approximately 185 days
to re-encrypt all data with this bandwidth. The large size can also be an
issue for customers since their device needs to do expensive cryptographic
operations for re-encrypting the user’s file due to end-to-end encryption.
For instance, a mobile phone might be quite overwhelmed to re-encrypt 500
GB of data. Furthermore, backward compatibility is a significant issue: it is
not realistic that all 243 million users of Mega would re-encrypt their entire
storage within reasonable time due to various reasons (inactive account,
lost password, unreachable user). Therefore, Mega must either continue
to support the current design for backward compatibility or render some
customer’s data inaccessible after a grace period. The former approach brings
the danger of downgrade attacks on users who have already transitioned
to the new design, and the second implicates the loss of customers. Due to
these significant practical challenges, we organize our mitigation in three
levels: first, Section 5.1 describes immediate countermeasures that can be
implemented during the responsible disclosure period and prevent the most
severe security breaches through our attacks. Second, Section 5.2 describes
more substantial changes that address our attacks in more detail while
still avoiding expensive changes to the design (such as file re-encryption).
Finally, Section 5.3 outlines long-term goals for redesigning the cryptographic
architecture and addressing the root causes of our attacks. Figure 5.4 provides
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an overview of how the key hierarchy would change based on the different
mitigation steps.

This section does not aim to provide complete mitigation of Mega’s ser-
vices. They have multiple clients with a considerable code base, and the
cryptographic primitives are used at different locations to provide various
functionality. Despite not analyzing everything, we point out fundamental
issues in the current design, most of which we exploited with the attacks
presented in Chapter 4.

5.1 Immediate Countermeasures

The immediate countermeasures that need to be in place to avoid putting
user data at significant risk due to the attacks we discovered are the follow-
ing: adding ad hoc integrity protection for key ciphertexts (Section 5.1.1),
key separation (Section 5.1.2), and enforcing a stricter RSA padding format
(Section 5.1.3). Figure 5.1 shows the key hierarchy after applying the im-
mediate countermeasures. We remark that these measures do not mitigate
all of our attacks, nor do they address the root flaws in the cryptographic
design. Instead, they are a set of measures that we consider practical to
deploy during a 90-day disclosure window, even for data of the scale that
Mega governs. Some of our proposed measures are temporary and should
be replaced as soon as possible. We recommend to directly implement the
extensions discussed in Section 5.2 whenever a more thorough redesign is
feasible. Moreover, Section 5.3 suggests long-term mitigation goals, which
may require a significant redesign of Mega’s cryptographic architecture and
may be challenging to deploy in practice.

5.1.1 Ad Hoc Integrity Protection for Key Ciphertexts and File
Attributes

The missing integrity protection of key ciphertexts enables the malicious
cloud provider or TLS-MitM adversary to perform key overwriting attacks.
Our RSA key recovery from Section 4.1 exploits this attack vector during
authentication to factor the RSA key. As part of the most immediate counter-
measures, we propose the suboptimal solution to add integrity protection on
top of the existing encryption by using HMAC on the AES-ECB key ciphertexts.
Section 5.1.2 discusses how to derive keys to compute the HMAC tags.

Furthermore, we propose adding integrity protection to the AES-CBC encryp-
tion of the attributes. Although our attacks do not specifically target the
attributes, changing them could confuse the client. For instance, it is possible
to construct “binary polyglots” [77], which are files that are valid in two file
formats, and an adversary tampering with the attributes could decide which
of them is displayed. More theoretically, the file encryption trivially fails to
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5.1. Immediate Countermeasures

Figure 5.1: Redesign of the current key hierarchy for the immediate counter-
measures.

achieve existential unforgeability as long as the integrity of attributes is not
protected: an adversary can change the encrypted attributes and, thereby,
produce a valid ciphertext.

This solution is unsatisfactory in multiple regards. First, implementing
encryption and HMAC has various pitfalls, and even large projects such as
the Google Keyczar cryptographic library have made severe mistakes in
the past [133]. For instance, Nate Lawson showed that non-constant time
HMAC comparison leads to forgery attacks [133]. Furthermore, accidentally
implementing MAC-then-Encrypt or Encrypt-and-MAC instead of Encrypt-
then-MAC likely leads to padding oracles or might leak information. Second,
although we add integrity protection, the keys are still encrypted with
AES-ECB. Therefore, our construction does not achieve authenticated encryp-
tion security since the deterministic AES-ECB is not IND-CPA secure. Therefore,
better but more invasive mitigations proposed in Sections 5.2 and 5.3 are
to switch to a modern authenticated encryption scheme, such as AES-GCM,
which transparently includes efficient integrity protection. Using existing
implementations in widely used cryptographic libraries lowers the threat of
introducing vulnerabilities such as side-channel attacks.

Nevertheless, we decided to propose this suboptimal solution due to its
ease of implementation. Since we only extend the existing encryption, older
clients can remain functional and simply ignore the new authentication tags.
While not addressing the root causes properly, careful implementation of
this measure suffices to prevent our key recovery attack (Section 4.1) and
complicate the AES-ECB decryption and framing attacks (Sections 4.2 and 4.3).
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5.1.2 Master Key Separation

The Key Separation Principle is a widely accepted best practice in cryptography,
which [108] summarizes for block ciphers as “one should always use distinct
keys for distinct algorithms and distinct modes of operation.” Mega violates
this principle on multiple occasions. The most immediate violation is that
they use the same node key for both AES-CCM encrypting file chunks and
CBC-MAC in order to produce chunk MACs and the metamac. Furthermore,
Mega uses the same RSA key pair to share files, receive the SID during
authentication, and exchange chat keys in a legacy solution. Unfortunately,
both violations are intricate and challenging to address without requiring
expensive operations such as file re-encryption. For this reason, we defer
mitigating these key reuses to Sections 5.2 and 5.3.

However, a more pressing issue is the reuse of the master key kM: although
not used in different primitives, it is protecting the RSA sharing key, the
Curve25519 chat key, the Ed25519 signature key, and all node keys. Our
master key decryption attack from Section 4.2 exploits this key reuse to
decrypt all key material using an attack vector on the RSA key. We propose
to replace the master key with different keys derived from a new, uniformly
at random chosen key derivation key kD. The client encrypts kD using an
AEAD-scheme such as AES-GCM under the encryption key ke while specifying
the key’s purpose in the associated data, and uploads this key ciphertext to
Mega. As Figure 5.1 shows, we propose to use HKDF [128] as a key derivation
function (KDF) to derive different key encryption keys (KEKs) to encrypt Share,
Chat, Sign, and Node Keys. As recommended in section 3.1 of RFC 5869 [129],
we advise to use a salt that is stored together with the encrypted kD (either
encrypted itself or as associated data) to strengthen HKDF.

Since the mitigation from Section 5.1.1 introduced MACs for every key
ciphertext, we additionally need to derive a key integrity key (KIK) for each of
these MACs to avoid reusing the same key for AES-ECB encryption and HMAC

computation. We avoid deriving kD directly from the password to support
password recovery: users can export kD and securely store it offline. If they
forget their password, they can reset it and encrypt kD locally with the new
encryption key derived from the updated password. We remark that it is
not necessary to re-encrypt other key material on a password change, since
kD remains unchanged. However, as discussed in Section 5.3.3, a desirable
extension is to add support for key rotation nonetheless.

For the HMAC tag used in the attribute encryption, it is challenging to do proper
key separation without affecting the 1000 petabytes of legacy encrypted data
or introducing the possibility for downgrade attacks. Ideally, and as part
of the recommended measures presented in Section 5.3, we derive different
keys for attribute and file encryption. However, since we need to derive
them from the per-file key kF, this changes the key used to encrypt files.
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Consequently, users need to re-encrypt their files, or the clients need to
support both encryptions simultaneously, which adds significant complexity.
For this reason, we tolerate violating the Key Separation Principle as part of
the short-term mitigations and reuse kF for the HMAC tag. We argue that the
benefit of integrity protection through HMAC outweighs the issues introduced
by reusing kF. The existing key reuse in AES-ECB, AES-CBC, and CBC-MAC leads
to potentially worse interactions than the one introduced by HMAC, since the
AES primitives all use the same block cipher. However, we stress that this is
a purely heuristic argument without provable evidence. This construction
should only be accepted as a temporary solution due to the urgency of the
vulnerabilities and Mega’s scale.

We consider this change feasible because clients can lazily transition to the
new hierarchy. Essentially, whenever a key is used, a client updated with
the improved key hierarchy can first use kM to decrypt the key, re-encrypt it
with the appropriate KEK, and upload the new key ciphertext to the server.
Legacy clients will continue to receive the key material encrypted under the
master key since they have not updated the key encryptions yet. Therefore,
they will continue to work until Mega deprecates older and insecure clients.
A deployment challenge is that as soon as one device of a user updated the
key material, their clients on other devices have to be updated as well to be
able to decrypt the new key material. Consequently, updates on different
platforms have to be coordinated to not lock the user out of his account on
devices with outdated clients. Furthermore, we want to avoid adding more
legacy code and supporting both key encryptions simultaneously since this
could lead to downgrade attacks.

Mega should recommend their users to update their password as a proactive
protection measure to render the old master key kM inaccessible. Without
changing the password, the encryption key ke remains the same and can still
decrypt kM. Thus, if a user can be tricked to decrypt the master key ciphertext
(for instance, by using an outdated client), our attacks can still be performed
by a malicious cloud provider who stored the superseded key ciphertexts.
Nevertheless, even users who do not update their password benefit from
the key separation, as all files uploaded with a new client can no longer be
compromised by our attacks. In addition, performing a downgrade attack
and storing all outdated key material increases the difficulty of performing
our attacks.

5.1.3 Stricter RSA Padding Format

We propose to enforce stricter client-side checks of Mega’s padding to increase
the number of queries for our Bleichenbacher-style RSA decryption attack
from Section 4.4. Again, this is a very short-term and heuristic measure
and does not remove the padding oracle. The further countermeasures in
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Sections 5.2 and 5.3 transition to RSA-OAEP, which adequately addresses the
malleability of RSA ciphertexts.

We recall Mega’s custom RSA padding has the structure y||L||K||r, where y is
an unused two-byte prefix, L is a length encoding of 2 bytes, K are the padded
keys, and r is some randomness. As a temporary solution, we propose to
set y to a constant value C and verify it on the client. Therefore, conforming
plaintexts for RSA-2048 need to satisfy y = C in addition to L = 08||b||04 for
some b ∈ {0, 1}4. This reduces the probability of finding a multiplier that
satisfies the oracle. As an approximation, we consider y||L||K||r ← {0, 1}2048

where |y|8 = |L|8 = 2. In that case, Pr[L = 08||b||04] = 2−12 and Pr[L =
08||b||04 ∧ y = C] = 2−28, i.e., we expect the number of queries of our attack
to increase by a factor of 216 to approximately 233 queries.

This “countermeasure” is certainly not a long-term solution, and an attack
requiring 233 queries is still worrisome as optimizations are conceivable.
Nevertheless, this measure reduces the practicality of Bleichenbacher-style
attack and makes it easier to detect. Furthermore, this should be a minimal
and backward compatible change because Mega can choose the y value that
we expect some clients to require for legacy reasons.

5.2 Minimal Countermeasures

This section presents the minimal countermeasures to address all of our
attacks in a pragmatic manner. We still refrain from proposing measures
that require a fundamental redesign connected with costly migration. Conse-
quently, this section does not resolve all root causes for our attacks. However,
we switch to more standard cryptographic primitives when it does not in-
volve the re-encryption of large data volumes. In particular, this means that
we ideally need to deprecate old clients or, alternatively, support new and
old client versions in parallel and carefully design protocols to avoid down-
grade attacks on users who updated all their clients and affected metadata.
The following two measures either build on Section 5.1 or replace previous
countermeasures. Section 5.2.1 replaces the temporary AES-ECB and HMAC

construction with AES-GCM to encrypt keys. Section 5.2.2 proposes using
two separate RSA keys to share node keys and to exchange legacy chat keys.
Figure 5.2 reflects the changes introduced by our minimal countermeasures.

5.2.1 AEAD for Key Ciphertexts

This section replaces the ad hoc AES-ECB and HMAC construction to encrypt
the share, chat, and sign keys with AES-GCM, an authenticated encryption
scheme standardized in NIST SP 800-38D [101]. This substitution has the
advantages of avoiding the implementation pitfalls discussed in Section 5.1.1
and replacing the IND-CPA-insecure AES-ECB. Furthermore, it removes the
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Figure 5.2: Redesign of the current key hierarchy for the minimal counter-
measures.

necessity for KIKs for all except the node keys since AES-GCM internally takes
care of encryption and integrity protection. We advise Mega to use the
key’s purpose and, for asymmetric primitives, the public key as associated
data to avoid key confusion attacks. This countermeasure appropriately
addresses the key overwriting issue raised and exploited in multiple of our
attacks. However, AES-GCM needs to be implemented carefully to avoid issues
with nonce reuse [121], cache side-channel attacks [114, 124], and fragile
authentication [104, 110]. We recommend using a well-tested library and
adhering to NIST SP 800-38D [101].

We defer applying this improvement for node keys to Section 5.3 because
many keys would require re-encryption. A pragmatic solution might be to
perform this change as part of the migration of the entire file encryption
since that already requires changing the node keys. However, we expect
this to be feasible for key ciphertexts since there are only three keys per
user. A practical challenge of this mitigation is backward compatibility. For
instance, the same user might have both new and old clients on different
devices. Therefore, Mega either needs to force the user to update their clients,
which requires the update to be available on all platforms, or Mega needs to
continue storing the legacy key ciphertexts, which might enable downgrade
attacks.

5.2.2 RSA-OAEP for RSA Sharing Keys

We recommend adding an RSA key pair to separate the two uses of RSA en-
cryption for sharing node keys and transferring chat keys. For this purpose,
we introduce (sklegacy

share , pklegacy
share ) exclusively for the legacy chat key exchange.

In this legacy code, we preserve Mega’s custom padding since we assume
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this code exists because it is challenging to change on some clients. This code
is still vulnerable to our variant of Bleichenbacher’s attack. However, the key
separation at least prevents this insecure legacy code from affecting other en-
cryptions. For sharing node keys, we use a different key pair (skshare, pkshare)
and RSA-OAEP. Bellare and Rogaway proposed this scheme [82], and it was
standardized in PKCS#1 v2.1 [120]. RSA-OAEP was shown to be IND-CCA-secure
in the random oracle model under the standard RSA assumption. Although
this reduction is not very tight [92], RSA-OAEP is widely adopted and consid-
ered to be non-malleable in practice. Therefore, it fundamentally thwarts
Bleichenbacher-style attacks on the padding since we cannot find multipliers
to create modified ciphertexts that would be accepted and whose parsing
could leak information.

We remark that this mitigation preserves the SID exchange, which Section 4.1
abuses as a partial decryption oracle. However, this is no longer a security
concern due to the newly added integrity protection of the RSA secret key:
patched clients should only respond with the correct session ID (which is
already known to the malicious cloud provider) or an error upon tampering.
Nevertheless, the guarantees that Mega obtains from encrypting the SID
instead of sending it in plaintext over the TLS connection remain unclear. We
hypothesize that Mega wants to force clients to demonstrate access to the
RSA secret key since this implies a functional key hierarchy and access to the
master key1. Depending on the unknown server implementation, this can be
advantageous because Mega could avoid allocating state for malfunctioning
(third-party) clients or adversaries who leaked the authentication key but not
the user password.

5.3 Recommended Measures

In this last set of measures, we discuss long-term goals for a cryptographic
refactoring of Mega’s architecture to adequately address all of our attacks
and protect against future ones by replacing non-standard primitives and
cryptographic constructions with provably secure ones. The measures pro-
posed in this section no longer retain backward compatible but knowingly
insecure functionality. For instance, we remove the legacy chat key transfer.
Since we formulate long-term goals, it is reasonable to assume that Mega can
deprecate legacy clients at some point and force users to update. However,
apart from being disruptive, our measures stay in line with the current cryp-
tographic architecture and propose a secure way to implement it without
fundamental changes to the design or functionality. Furthermore, we focus
on achieving confidentiality and integrity and refrain from aiming to achieve

1The client derives the master key from the user password and uses it to decrypt all key
material, including the RSA secret key.
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Figure 5.3: Redesign of the current key hierarchy for the recommended
measures.

more advanced properties like perfect forward secrecy or post compromise
security. Section 5.3.1 introduces a new file encryption with proper key
separation, and Section 5.3.2 replaces the authentication procedure with an
augmented PAKE. Finally, Section 5.3.3 discusses an extension of the current
design that we consider beneficial to add. Figure 5.3 visualizes the effect of
all our changes on the key hierarchy.

5.3.1 Refactoring Node Encryption

This section finally replaces the AES-ECB+HMAC construction for node key
encryption with AES-GCM. Furthermore, we derive separate keys from the
node key for different purposes and replace the flawed AES-CCM encryption
of file chunks.

Node Keys. We replace the ad hoc node key encryption with AES-GCM for
the same reasons as for the other keys (see Section 5.2.1). This requires
changing all key ciphertexts. However, the subsequent changes modify the
file encryption keys themselves and, thus, re-encrypting them is required in
any case. Furthermore, we advise not to shorten the condensed MAC Mcond
to half its size as part of the metamac in the obfuscated file key. Although
we could not exploit this part due to the unavailable chunk MACs and the
encrypted obfuscated file key, we would not be surprised if there would be a
O(264) attack since the size reduction means 264 different Mcond result in the
same metamac.

Key Separation. Instead of using the node keys directly, we use HKDF to de-
rive three keys: a file encryption key kFE to encrypt file chunks with AES-GCM,
a chunk MAC condensing key kFC to aggregate the chunk authentication
tags into the condensed MAC Mcond, and a file attribute encryption key
kFA. This separation finally removes the extensive reuse of the same key for
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AES-CCM encrypting chunks, aggregating the chunk MACs with CBC-MAC, and
AES-CBC encryption for the attributes. Our ad hoc integrity protection from
Section 5.1.1 added yet another key reuse for HMAC in the absence of a better
non-invasive solution.

File Encryption. Since changing the key material requires re-encryption,
we can take this opportunity to change the used algorithms. First, we
replace the flawed implementation of AES-CCM2 with the more widely adopted
and efficient AES-GCM. We must be careful not to reuse IVs for AES-GCM
under the same key [121]. However, this only requires us to ensure that
all file chunks have different IVs since every file has a different key. A
possible implementation uses a counter that starts at zero or a random
value. The advantage of the former is that the IV does not need to be stored
or derived. The latter improves the security guarantees since it reduces
the probability of nonce reuse occurring across all users and files. We can
still avoid storing an IV for every file by deriving it from the node key or
storing one randomly chosen value per user as part of the account metadata.
The following paragraph discusses our proposal for changing the metamac

computation. Furthermore, we replace the AES-CBC+HMAC construction for
attributes with AES-GCM too.

Metamac. AES-GCM, as specified in NIST SP 800-38D [101], returns a ci-
phertext and an authentication tag for every chunk. The absence of an
integrity-protected specification of the total number of chunks requires us
to take measures to prevent truncation attacks. We note that the previous
approach with counters for the IVs already avoids reordering attacks. While
other and arguably more elegant designs exist3, we stay close to Mega’s
current approach and compute a metamac over the chunk MACs. How-
ever, we follow the recommendation of NIST SP 800-38B [102] and replace
textbook CBC-MAC with CMAC [87] because the latter supports authenticating
variable-length messages. We could not perform truncation attacks on Mega’s
CBC-MAC implementation because individual chunk MACs are not available.
However, Mega’s developer documentation states that checking the integrity
of partial reads is a planned future enhancement [48]. This addition could
add a forgery attack if full intermediate chunk MACs are published. To avoid
such subtle pitfalls, we replace the use of CBC-MAC on the concatenation of a
variable number of chunk MACs with CMAC. The computed metamac prevents
an adversary from omitting chunks from the file end.

2Section 3.3.9 discussed that Mega does not encrypt the authentication tag, as demanded
by the standard [164], and, therefore, implements an Encrypt-and-MAC scheme instead of
MAC-then-Encrypt.

3For instance, the AWS Encryption SDK provides a protocol and message format specifi-
cations for framed data transfer.
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The proposed measures in this section require users to re-encrypt their
files because the key material is derived differently, and we use different
primitives. As discussed earlier, re-encrypting over 1000 petabytes of data
bears significant practical challenges and requires a long mitigation window
to give customers time to transition. While this needs to be planned carefully,
the long-term goal should be to replace insecure legacy code and temporary
patches. The previously proposed minimal solutions are only temporary
suggestions that are not unlikely to be vulnerable to more attacks due to the
extensive key reuse and non-standard combination of primitives.

5.3.2 Augmented PAKE for Authentication

We briefly discussed in Section 3.3.10 that Mega’s unusual authentication
is susceptible to dictionary attacks by the malicious cloud provider or a
TLS-MitM adversary. Since the client transmits the authentication key ka,
which is half of the output of PBKDF2, an adversary knowing ka and the salt
can try different passwords. Although publishing some output of PBKDF2
is not a violation of the PKCS#5 v2.1 [144] standard, [100] showed that such
attacks on PBKDF2 are feasible on custom hardware and GPUs.

We propose to replace the current authentication with an augmented Pass-
word Authenticated Key Exchange (augmented PAKE). In such a protocol,
the client proves knowledge of the password to the server without the latter
needing to store password-equivalent data. Concretely, we propose to use
OPAQUE [118] recommended by the Crypto Forum Research Group (CFRG).
OPAQUE won the CFRG’s PAKE selection process [97], which was held at the
request of the Internet Engineering Task Force (IETF). In addition to not
leaking password-related information during authentication, OPAQUE also
provides security against pre-computation attacks [118]. This construction
removes the need for an authentication key: a user can directly authenticate
using their password. We only need to derive the key encryption key ke from
the password, which is used to wrap the key derivation key kD. We use kD
and HKDF to derive further keys for various purposes. Figure 5.3 shows the
restructuring of the authentication.

After implementing OPAQUE, security-conscious users should change their
password since an adversary could have stored ka from a previous authen-
tication and therefore perform a dictionary attack once the user becomes a
worthwhile target. To avoid being vulnerable due to recorded information,
users should refrain from using their Mega password from this point onward
for any account since it might have been compromised and linked to their
email address.
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5.3.3 Recommended Extension

As an extension of Mega’s current design, we consider key rotation for share,
chat, sign, and node keys to provide security benefits at a manageable effort.
We can include expiration dates in the associated data of AES-GCM encryption.
Since there is significantly less key material than data, we consider it feasible
for client devices to rotate keys regularly. Key rotation of public keys limits
the number of messages encrypted with that key and, thus, reduces the
impact of compromising a single key. Moreover, built-in functionality to
rotate keys makes responding to future security incidents more manageable.

We note that rotating the KEKs requires changing the key derivation key
kD since the KEKs are derived from kD. Support for changing kD might be
an additional, desirable property since a malicious cloud provider could
store old encryptions of kD and decrypt it once the adversary learns a leaked
password. In that case, even if the user already changed to a new password,
the same key derivation key is still used to protect all keys and learning
kD enables the adversary to decrypt all keys and compromise the data they
protect. To achieve a notion of forward secrecy against compromises of
past passwords, Mega would need to change kD on password changes and
re-encrypt all keys with the new KEKs.

5.4 Conclusion

Figure 5.4 summarizes the effect of all countermeasures on the key hierarchy.
The intermediate and minimal measures sometimes lead to a more complex
structure due to temporary and backward-compatible solutions. However,
the design in the recommended measures does not increase complexity
and is fundamentally more secure than the current architecture. It adds
key separation, integrity protection for key material and attributes, secure
user authentication, and replaces non-standard primitives. Together, these
improvements prevent key overwriting attacks, padding oracles, and pre-
computation or dictionary-based attacks on the password. They protect the
confidentiality and integrity of the user’s data, key material, and identity.
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Figure 5.4: Redesign of the current key hierarchy for the immediate, minimal,
and recommended countermeasures.
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Chapter 6

Discussion of the Status Quo and
Future Work

We discuss our principal conclusions from analyzing Mega and hypothesize
about root causes for cryptographic flaws in practice. In an attempt to
generalize our insights to any cryptographic design operating on a large scale,
we examine how cryptographic architectures aiming to achieve standard
security notions fail in practice (Section 6.1), what the consequences of these
incidents are (Section 6.2), and why they occur (Section 6.3). In our opinion,
there is a gap between the cryptographic community and industry, leading to
some well-analyzed solutions not being adopted. We advocate in Section 6.4
for future work to develop a cloud storage standard and bridge this gap for
data outsourcing. This section is based on our experience from this project,
and future work should test our hypothesized generalizations.

6.1 How Mega’s Cryptographic Design Fails

We summarize the root causes of our attacks on Mega’s architecture (pre-
sented in Chapter 4) and determine which attack vectors could apply to other
systems.

Key Integrity Protection and RSA-CRT. Our RSA key and AES-ECB plain-
text recovery attacks (Sections 4.1 and 4.2) exploit the missing integrity
protection of outsourced key ciphertexts. The client’s operation on corrupted
key material provides side-channel information that enables us to factor
the RSA modulus or leak AES-ECB plaintexts. Our results show that RSA-CRT
is particularly vulnerable to attacks in the chosen-plaintext setting since
the RSA-CRT decryption directly uses the prime factors of the RSA modulus,
making it more susceptible to leaking information useful for factorizing the
modulus.
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We note that key outsourcing and RSA-CRT are common design choices. The
upload of key ciphertexts enables seamless support of multiple devices:
clients use the password to encrypt key material before uploading it to the
service provider. Users can simply enter their password on a new device,
and their client authenticates them and subsequently fetches and decrypts
the key material. Moreover, RSA-CRT is very widely deployed due to reducing
computational costs by a factor of four compared to textbook RSA decryption.

Our attacks show the importance of authenticated encryption to protect
such outsourced key material. Practitioners might gain the impression that
security games for authenticated encryption use too strong adversaries with
seemingly unrealistic access to decryption oracles. However, we have shown
that (partial) decryption oracles exist in practice, especially in the setting of
an untrusted service provider. Moreover, the ability to forge ciphertexts is
not only of theoretical concern but can lead to much stronger attacks such as
key recovery, as shown in Section 4.1.

Key Separation. Our attacks exploit multiple instances of key reuse: for one,
the AES-ECB plaintext recovery attack (Section 4.2) exploits that Mega protects
all key material with the same master key and algorithm. Therefore, we can
use a vulnerability in the RSA key decryption to compromise unrelated key
material. Furthermore, a padding oracle in the legacy chat key decryption
enables our variant of Bleichenbacher’s attack (Section 4.4) to decrypt shared
node keys because both unrelated functionalities use the same public RSA key.
Additionally, the extensive key reuse to encrypt files, produce chunk MACs,
and compute the metamac leads to many interactions because all instances
use the AES block cipher. Although we could not exploit the last key reuse
due to Mega’s specific structure and the encrypted obfuscated file key, we
consider it not unlikely that further attacks are possible. The principle of key
separation is a widely accepted best practice in the cryptographic community.
Although the interactions between different components are an immediate
problem for proofs, concrete failures, such as the ones in Mega, are more
intricate and numbered.

Non-Standard Primitives. We found many non-standard uses of crypto-
graphic primitives in Mega’s design:

• The key encryption uses the IND-CPA-insecure AES-ECB, which not only
lacks integrity protection but is also deterministic. Our key overwriting
attacks from Section 4.1 are possible because Mega encrypts keys which
are longer than a single AES block with AES-ECB.

• Mega uses CBC-MAC for variable-length concatenations of chunk MACs
instead of CMAC.
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• Mega’s version of AES-CCM deviates from RFC 3610 [164] by not encrypt-
ing the MAC tag, which degenerates this mode of operation from a
provably secure MAC-then-Encrypt scheme to a not analyzed Encrypt-
and-MAC composition.

• Mega uses a custom RSA padding instead of OAEP, which is still vulnera-
ble to a (non-trivial) variant of Bleichenbacher’s attack (see Section 4.4).

• Further non-standard uses that we did not discuss previously include
legacy code that uses AES-ECB to derive a key from a password and the
peculiar structure of the obfuscated file key, which allows an adversary
knowing a single plaintext-ciphertext pair to force the file key to be all
zero bytes.

These examples reinforce that it is dangerous to “roll your own crypto.”
Even though some attacks might not be directly applicable, they can often
be adapted. Furthermore, some non-standard usages can introduce new
vulnerabilities and unintended interactions.

Conclusion. Missing key integrity protection and violating the key sepa-
ration principle can have severe consequences and lead to concrete attacks.
Furthermore, RSA-CRT in a chosen-plaintext setting is susceptible to leak
information about factors of the RSA modulus. Moreover, non-standard prim-
itives frequently occur in practice due to custom solutions or implementation
mistakes. The resulting algorithms lack the rigorous analysis of proven and
standardized primitives and are often vulnerable to (variants of) well-known
attacks from the cryptographic literature.

6.2 The Consequences of Mega’s Flawed Design

Based on our learnings from the impact of fundamental issues in Mega’s
cryptographic design, we discuss the severe consequences of a flawed design
deployed in a large-scale architecture. In addition to the evident security
implications, we conclude from our discussion of countermeasures in Chap-
ter 5 that changing vulnerable architecture poses significant challenges in
practice due to backward compatibility and the massive scale. Furthermore,
we discuss what security guarantees a customer can hope to obtain after a
severe compromise.

Security Implications. Flaws in the cryptographic design of popular appli-
cations affect many customers. Such services – especially when they advertise
secure encryption and privacy – are an attractive target for resourceful adver-
saries. For instance, a nation-state actor might be motivated to compromise
this service because the probability is high that a targeted person is among
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the customers. Moreover, for organized crime, the possible financial gain in-
creases with the number of victims. In both examples, the cost of developing
more complex attacks is amortized by the large number of accounts to which
it can be applied. Hence, operating popular instantiations of cryptography
increases the responsibility to provide a solid design. More resourceful ad-
versaries lead to a higher risk of exploitation and require protection against
more complex attacks.

Backward Compatibility. Patching a flaw in the cryptographic design often
requires fundamental changes to the architecture. Such disruptive updates
are not backward compatible, which causes two main issues: first, users need
to update their devices, which is often challenging in practice as different
platforms have their own processes and allow more or less control for the
developer to enforce updates. Second, simultaneously supporting multiple
client versions can enable downgrade attacks on users who have already
updated their devices. Moreover, the interaction between different versions,
e.g., a new web client and an outdated mobile app of the same account, adds
further complexity. Therefore, new systems designs should already prepare
for future updates. For instance, a modular design approach with version
numbers and scheduled expiration dates facilitates exchanging modules due
to later design updates and avoids the existence of severely outdated clients.

Scale. As we discussed in the mitigation in Chapter 5, it can be very
challenging to transition large-scale applications to a new architecture. Since
Mega stores over 1000 petabytes of data, even with 1000 Gbit/s bandwidth, a
re-encryption of all data requires more than half a year. In addition to the
immense load on the service provider’s infrastructure, all customers need
to download, decrypt, encrypt, and upload their data due to end-to-end
encryption. However, some clients may not be reachable, or overwhelmed
by the task of re-encrypting hundreds of gigabytes of data. Consequently,
even if suitable mitigations for a vulnerability are known, it might remain
challenging if not infeasible to deploy them. This realization can foster short-
term solutions that prevent specific attacks instead of addressing the root
causes. Such temporary solutions run into the danger of being insufficient
against improved attacks.

Post-Compromise Security. After a severe vulnerability has been detected,
customers need in-depth knowledge of the incident to assess what security
guarantees the service still provides them after mitigation. Even if a patch
is feasible, a severe attack could have compromised all previously stored
data and key material. Consequently, re-encryption only restores confiden-
tiality guarantees if the user assumes that their file keys might have been
compromised but not yet used to decrypt their data. However, changing
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the key material requires trusting the service provider to delete the old and
potentially vulnerable ciphertext. Moreover, systems that do not support
key rotation might not even allow users to change key material. For in-
stance, Mega’s design does not change the share, signature, or chat keys
when the user changes or resets the password. In such a case, we cannot
achieve post-compromise security: any adversary who has already recov-
ered unchangeable key material or does so based on vulnerable legacy key
ciphertexts can break the confidentiality or integrity of data exchanged in the
future. Therefore, a defensive implementation should include measures to
recover from a severe incident.

Conclusion. We conclude that new system designs should be reviewed care-
fully by cryptographic experts before their deployment for two reasons: first,
widely deployed systems attract resourceful adversaries. Second, mitigating
security issues might be infeasible after the release, even if the vulnerabil-
ity is well understood and a secure solution exists in theory. Furthermore,
the architecture should facilitate future modifications and incorporate an
infrastructure to deploy updates and prevent severely outdated clients. Fi-
nally, it is advisable to prepare a strategy for recovering from possible future
compromises.

6.3 Why Mega’s Cryptographic Design Fails

In this section, we hypothesize why there is a gap between the cryptographic
community and practitioners. In our opinion, the case of Mega shows
that, on the one hand, it is challenging to combine existing primitives to a
secure system in practice. On the other hand, theoreticians underestimate
the practical challenges present in large-scale deployments of cryptographic
systems.

Fragile Combinations. Our analysis of Mega shows that well-analyzed
components are not enough to build secure end-to-end systems. For instance,
using AES-ECB to encrypt a single block can be acceptable. However, the
missing integrity protection becomes a severe issue when multiple blocks
are encrypted because partial key corruption can compromise the preserved
secret information. Moreover, neglecting the key separation principle might
enable an insecure legacy component to compromise the data of another part
of the system.

This fragility of combinations of cryptographic algorithms is not a new ob-
servation and has received significant attention in research. New paradigms
called universally composable (UC) security [96] and constructive cryptogra-
phy [137] create frameworks where compositions of building blocks remain
secure. However, our analysis of Mega showed that fragile compositions
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remain an acute issue in practice. When building systems, developers need to
rely on best practices and recommendations in standards. However, it does
not suffice to use secure cryptographic primitives due to intricate interactions.
Therefore, developers need support from experts to assess the security of
their design in the presence of side-channel leakage.

Practical Constraints. We hypothesize that another reason for unusual
constructions are practical constraints such as backward compatibility and
performance. The optimal solution might not be economically sensible due
to high migration costs or potential loss of customers. Furthermore, some
backward compatibility can be stipulated (e.g., a contractual agreement to
support some generation of mobile phones for at least four years) and force
the simultaneous support for new and old architectures enabling downgrade
attacks. Moreover, customers highly value usability, and they expect features
such as multi-device support and password recovery, which complicate the
design. Finally, some legacy code might continue to exist due to the lack
of human resources for refactoring. In summary, the non-cryptographic
dimension of companies can provide compelling arguments to the executive
board to tolerate vulnerable designs in practice if adequate mitigations are
costly. Therefore, a system design should facilitate fundamental changes and
make mitigations feasible.

Conclusion. Cryptographic designs fail in practice because developers are
overwhelmed by the delicate task of combining secure primitives to a solid
cryptographic system without expert knowledge. Furthermore, research
insufficiently addresses non-security-related constraints leading to know-
ingly insecure designs persisting in practice. In Section 6.4, we propose to
consolidate industry and academic research by developing a standard in
future work.

6.4 Future Work: Cloud Storage Standard

It is difficult for practitioners to build a secure system design that provides
competitive features for the reasons discussed above. Moreover, many exist-
ing cloud providers neither specify their architecture in detail nor provide
source code (see Table 3.1). Although providers claim secure end-to-end
encryption, which does not require trust in the operator, customers cannot
verify these statements. Paradoxically, users need to trust the untrusted cloud
provider to design and implement a secure system.

We believe that a secure cloud storage standard can significantly increase the
security of cloud solutions by specifying the combination of cryptographic
primitives to achieve strong security guarantees and competitive features. We
envision an extensible specification that developers can follow and customize
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to implement their cloud service. For instance, the standard should support
deriving keys for additional features, such as built-in messaging or video
conferencing. Furthermore, a modular design should allow services to
achieve stronger security notions, including perfect forward secrecy and post-
compromise security. The standardized design should account for common
practical concerns and provide mechanisms or guidelines to address them.
Such a standard avoids that developers need to have expert knowledge. It
enables users to have confidence in a cloud service because it implements a
public, well-analyzed, and possibly proven standard.

6.5 Conclusion

We surveyed fourteen cloud providers and noticed that they are predomi-
nantly closed source and do not document their cryptographic design pre-
cisely. Our analysis of Mega – the most popular documented and actively
developed cloud storage with over 243 million users – resulted in four se-
vere attacks allowing a malicious service provider or TLS-MitM to break
the confidentiality and integrity of user keys and files. Our discussion of
countermeasures shows significant practical challenges to address fundamen-
tal flaws in widely deployed cryptography due to backward compatibility
and the immense strain on the infrastructure for re-encrypting files. Future
work can address these issues by designing a practice-oriented cloud storage
standard that creates a secure and modular system that is well analyzed and
achieves post-compromise security.

93





Bibliography

[1] A Look Behind the Encryption Scenes – 10th Aniversary Info-
graphics. https://static.boxcryptor.com/infographics/
Infographics_10th-Anniversary_EN.png. Retrieved 2021-10-
06.

[2] About – Nextcloud. https://nextcloud.com/about/. Retrieved
2021-10-07.

[3] About Us – Encrypted Cloud Storage – MEGA. https://mega.io/
about. live user count, retrieved 2022-01-07.

[4] Acceptable Use Policy — Tresorit. https://tresorit.com/
acceptable-use-policy. Retrieved 2021-10-21.

[5] asmcrypto.js/aes.asm.js at 4c508d8ffaedf5055d4c6e134530141e1ff8fe9e.
https://github.com/asmcrypto/asmcrypto.js/blob/
4c508d8ffaedf5055d4c6e134530141e1ff8fe9e/src/aes/
aes.asm.js. Retrieved 2021-10-26.

[6] BC File Decryptor. https://github.com/secomba/boxcryptor-
single-file-decryptor/. Retrieved 2021-10-06.

[7] BoxCryptor Terms of Use. https://www.boxcryptor.com/en/
terms-of-use/. Retrieved 2021-10-21.

[8] Coders’ Rights Project Reverse Engineering FAQ, Electronic Frontier
Foundation. https://www.eff.org/issues/coders/reverse-
engineering-faq. Retrieved 2022-01-13.

[9] Crypto++ Wiki. https://www.cryptopp.com/wiki/Main_Page.
Retrieved 2021-10-25.

95

https://static.boxcryptor.com/infographics/Infographics_10th-Anniversary_EN.png
https://static.boxcryptor.com/infographics/Infographics_10th-Anniversary_EN.png
https://nextcloud.com/about/
https://mega.io/about
https://mega.io/about
https://tresorit.com/acceptable-use-policy
https://tresorit.com/acceptable-use-policy
https://github.com/asmcrypto/asmcrypto.js/blob/4c508d8ffaedf5055d4c6e134530141e1ff8fe9e/src/aes/aes.asm.js
https://github.com/asmcrypto/asmcrypto.js/blob/4c508d8ffaedf5055d4c6e134530141e1ff8fe9e/src/aes/aes.asm.js
https://github.com/asmcrypto/asmcrypto.js/blob/4c508d8ffaedf5055d4c6e134530141e1ff8fe9e/src/aes/aes.asm.js
https://github.com/secomba/boxcryptor-single-file-decryptor/
https://github.com/secomba/boxcryptor-single-file-decryptor/
https://www.boxcryptor.com/en/terms-of-use/
https://www.boxcryptor.com/en/terms-of-use/
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.cryptopp.com/wiki/Main_Page


Bibliography

[10] crypto.getRandomValues() — Can I use... Support tables for HTML5,
CSS3, etc. https://caniuse.com/getrandomvalues. Retrieved
2021-10-26.

[11] Cryptopp: Security Vulnerabilities. https://www.
cvedetails.com/vulnerability-list.php?vendor_id=
15519&product_id=0&version_id=0&page=1&hasexp=
0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&
opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&
opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&
cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=
0eec8b6b922ea9be895311786a2d1b386f05a9ce. Retrieved
2021-10-25.

[12] Download Site terms — Tresorit. https://tresorit.com/terms-
of-use. Retrieved 2021-10-21.

[13] Dropbox – Terms of Service. https://www.dropbox.com/terms.
Retrieved 2021-10-21.

[14] Dropbox: Cloud Storage & Drive — androidrank.org.
https://www.androidrank.org/application/dropbox_
cloud_storage_drive/com.dropbox.android. Retrieved
2021-10-07.

[15] Dropbox Open Source. https://opensource.dropbox.com/. Re-
trieved 2021-10-06.

[16] Dropbox Quarterly Filings, Form 10-Q (2021, August 6). https:
//investors.dropbox.com/financial-information/sec-
filings. Retrieved 2021-10-06.

[17] GDPR – Nextcloud Administration Manual. https://docs.
nextcloud.com/server/21/admin_manual/gdpr/index.
html. Retrieved 2021-10-28.

[18] GitHub meganz/webclient: strongvelope.js legacy RSA chat key
decryption. https://github.com/meganz/webclient/blob/
8b8126f1fbf2ee1d82831bdf4b3e77f21bcbeb24/js/chat/
strongvelope.js#L889. Retrieved 2022-01-06.

[19] Google Drive — androidrank.org. https://www.androidrank.
org/application/google_drive/com.google.android.
apps.docs. Retrieved 2021-10-07.

96

https://caniuse.com/getrandomvalues
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://www.cvedetails.com/vulnerability-list.php?vendor_id=15519&product_id=0&version_id=0&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&cweid=0&order=1&trc=7&sha=0eec8b6b922ea9be895311786a2d1b386f05a9ce
https://tresorit.com/terms-of-use
https://tresorit.com/terms-of-use
https://www.dropbox.com/terms
https://www.androidrank.org/application/dropbox_cloud_storage_drive/com.dropbox.android
https://www.androidrank.org/application/dropbox_cloud_storage_drive/com.dropbox.android
https://opensource.dropbox.com/
https://investors.dropbox.com/financial-information/sec-filings
https://investors.dropbox.com/financial-information/sec-filings
https://investors.dropbox.com/financial-information/sec-filings
https://docs.nextcloud.com/server/21/admin_manual/gdpr/index.html
https://docs.nextcloud.com/server/21/admin_manual/gdpr/index.html
https://docs.nextcloud.com/server/21/admin_manual/gdpr/index.html
https://github.com/meganz/webclient/blob/8b8126f1fbf2ee1d82831bdf4b3e77f21bcbeb24/js/chat/strongvelope.js#L889
https://github.com/meganz/webclient/blob/8b8126f1fbf2ee1d82831bdf4b3e77f21bcbeb24/js/chat/strongvelope.js#L889
https://github.com/meganz/webclient/blob/8b8126f1fbf2ee1d82831bdf4b3e77f21bcbeb24/js/chat/strongvelope.js#L889
https://www.androidrank.org/application/google_drive/com.google.android.apps.docs
https://www.androidrank.org/application/google_drive/com.google.android.apps.docs
https://www.androidrank.org/application/google_drive/com.google.android.apps.docs


Bibliography

[20] Google Drive Terms of Service. https://www.google.com/drive/
terms-of-service/. Retrieved 2021-10-21.

[21] Google Open Source – opensource.google. https://opensource.
google/?from=CloudNativeSummit. Retrieved 2021-10-07.

[22] Google Terms of Service – Privacy & Terms – Google. https://
policies.google.com/terms. Retrieved 2021-10-21.

[23] How Reliable is MEGA’s End-to-End Encrypted Storage? – MEGA.
https://mega.nz/about/reliability. Retrieved 2022-02-01.

[24] Icedrive – Free Cloud Storage — androidrank.org. https:
//www.androidrank.org/application/icedrive_free_
cloud_storage/com.icedrive.app. Retrieved 2021-10-07.

[25] Icedrive – Secure Encrypted Cloud Storage. https://icedrive.
net/encrypted-cloud-storage. Retrieved 2021-10-07.

[26] Interviews: Kim Dotcom Answers Your Questions. https:
//yro.slashdot.org/story/15/07/27/200204/interviews-
kim-dotcom-answers-your-questions?utm_source=
feedburner&utm_medium=feed&utm_campaign=Feed%3A+
Slashdot%2Fslashdot+%28Slashdot%29. Retrieved 2022-01-10.

[27] Keybase. https://keybase.io. Retrieved 2022-02-23.

[28] Keybase Client Repo. https://github.com/keybase/client.
Retrieved 2022-02-23.

[29] License - Seafile Admin Manual. https://manual.seafile.com/
deploy_pro/seafile_professional_sdition_software_
license_agreement/. Retrieved 2021-10-21.

[30] MEGA — androidrank.org. https://www.androidrank.org/
application/mega/mega.privacy.android.app. Retrieved
2021-10-07.

[31] MEGA LIMITED (4136598) Registered. https://app.
companiesoffice.govt.nz/companies/app/ui/pages/
companies/4136598/shareholdings. Retrieved 2022-01-10.

[32] Nextcloud developer documentation. https://docs.nextcloud.
com/server/latest/developer_manual/. Retrieved 2021-10-07.

97

https://www.google.com/drive/terms-of-service/
https://www.google.com/drive/terms-of-service/
https://opensource.google/?from=CloudNativeSummit
https://opensource.google/?from=CloudNativeSummit
https://policies.google.com/terms
https://policies.google.com/terms
https://mega.nz/about/reliability
https://www.androidrank.org/application/icedrive_free_cloud_storage/com.icedrive.app
https://www.androidrank.org/application/icedrive_free_cloud_storage/com.icedrive.app
https://www.androidrank.org/application/icedrive_free_cloud_storage/com.icedrive.app
https://icedrive.net/encrypted-cloud-storage
https://icedrive.net/encrypted-cloud-storage
https://yro.slashdot.org/story/15/07/27/200204/interviews-kim-dotcom-answers-your-questions?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Slashdot%2Fslashdot+%28Slashdot%29
https://yro.slashdot.org/story/15/07/27/200204/interviews-kim-dotcom-answers-your-questions?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Slashdot%2Fslashdot+%28Slashdot%29
https://yro.slashdot.org/story/15/07/27/200204/interviews-kim-dotcom-answers-your-questions?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Slashdot%2Fslashdot+%28Slashdot%29
https://yro.slashdot.org/story/15/07/27/200204/interviews-kim-dotcom-answers-your-questions?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Slashdot%2Fslashdot+%28Slashdot%29
https://yro.slashdot.org/story/15/07/27/200204/interviews-kim-dotcom-answers-your-questions?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Slashdot%2Fslashdot+%28Slashdot%29
https://keybase.io
https://github.com/keybase/client
https://manual.seafile.com/deploy_pro/seafile_professional_sdition_software_license_agreement/
https://manual.seafile.com/deploy_pro/seafile_professional_sdition_software_license_agreement/
https://manual.seafile.com/deploy_pro/seafile_professional_sdition_software_license_agreement/
https://www.androidrank.org/application/mega/mega.privacy.android.app
https://www.androidrank.org/application/mega/mega.privacy.android.app
https://app.companiesoffice.govt.nz/companies/app/ui/pages/companies/4136598/shareholdings
https://app.companiesoffice.govt.nz/companies/app/ui/pages/companies/4136598/shareholdings
https://app.companiesoffice.govt.nz/companies/app/ui/pages/companies/4136598/shareholdings
https://docs.nextcloud.com/server/latest/developer_manual/
https://docs.nextcloud.com/server/latest/developer_manual/


Bibliography

[33] Nextcloud FAQ: How to share End-to-End encrypted folder with other
users? https://help.nextcloud.com/t/how-to-share-end-
to-end-encrypted-folder-with-other-users/98696/12/.
Retrieved 2021-10-20.

[34] Nextcloud GitHub Issue #2490. https://github.com/nextcloud/
desktop/issues/2490/. Retrieved 2021-10-20.

[35] Nextcloud GitHub Repository. https://github.com/nextcloud.
Retrieved 2021-10-07.

[36] openssl/aes x86core.c at master. https://github.com/openssl/
openssl/blob/master/crypto/aes/aes_x86core.c. Re-
trieved 2021-10-26.

[37] pCloud – Developers. https://docs.pcloud.com/. Retrieved 2021-
10-07.

[38] pCloud – Europe’s Most Secure Cloud Storage. https://www.
pcloud.com/eu. Retrieved 2021-10-07.

[39] pCloud – Terms and Conditions. https://www.pcloud.com/
terms_and_conditions.html. Retrieved 2021-10-21.

[40] pCloud features – Encryption. https://www.pcloud.com/
features/crypto.html. Retrieved 2021-10-07.

[41] pCloud GitHub. https://github.com/pcloudcom. Retrieved
2021-10-21.

[42] RNGCryptoServiceProvider Class — Microsoft Docs. https://
docs.microsoft.com/en-us/dotnet/api/system.security.
cryptography.rngcryptoserviceprovider?view=net-5.0.
Retrieved 2021-10-29.

[43] Seafile – Open Source File Sync and Share Software. https://www.
seafile.com/en/home/. Retrieved 2021-10-08.

[44] Seafile Server GitHub Repository. https://github.com/haiwen/
seafile-server. Retrieved 2021-10-08.

[45] Seafile Sync Client Daemon GitHub Repository. https://github.
com/haiwen/seafile. Retrieved 2021-10-08.

[46] Security features - Seafile Admin Manual. https://manual.
seafile.com/security/security_features/. Retrieved 2021-
10-08.

98

https://help.nextcloud.com/t/how-to-share-end-to-end-encrypted-folder-with-other-users/98696/12/
https://help.nextcloud.com/t/how-to-share-end-to-end-encrypted-folder-with-other-users/98696/12/
https://github.com/nextcloud/desktop/issues/2490/
https://github.com/nextcloud/desktop/issues/2490/
https://github.com/nextcloud
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://docs.pcloud.com/
https://www.pcloud.com/eu
https://www.pcloud.com/eu
https://www.pcloud.com/terms_and_conditions.html
https://www.pcloud.com/terms_and_conditions.html
https://www.pcloud.com/features/crypto.html
https://www.pcloud.com/features/crypto.html
https://github.com/pcloudcom
 https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
 https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
 https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-5.0
https://www.seafile.com/en/home/
https://www.seafile.com/en/home/
https://github.com/haiwen/seafile-server
https://github.com/haiwen/seafile-server
https://github.com/haiwen/seafile
https://github.com/haiwen/seafile
https://manual.seafile.com/security/security_features/
https://manual.seafile.com/security/security_features/


Bibliography

[47] Security Principles – Syncthing v1 documentation. https://docs.
syncthing.net/users/security.html/. Retrieved 2021-10-08.

[48] Software Developer Documentation – MEGA. https://mega.nz/
doc. Retrieved 2021-10-29.

[49] SonarQube: Code Quality and Code Security. https://www.
sonarqube.org/. Retrieved 2021-10-28.

[50] Syncthing GitHub Repository. https://github.com/syncthing/
syncthing. Retrieved 2021-10-08.

[51] Syncthing Usage Reports. https://data.syncthing.net/. Re-
trieved 2021-10-08.

[52] Terms of Service — Sync. https://www.sync.com/terms. Re-
trieved 2021-10-21.

[53] The GDPR – pCloud’s road to full compliance. https://www.
pcloud.com/gdpr/. Retrieved 2021-10-07.

[54] Third Party sources. https://tresorit.com/third-party-
code. Retrieved 2021-10-08.

[55] Transparency and Public Source Code – MEGA. https://mega.io/
sourcecode. Retrieved 2021-10-06.

[56] File Security in Microsoft SharePoint and OneDrive for Business.
https://www.microsoft.com/en-us/download/details.
aspx?id=53884&culture=en-us&country=US, September 2016.
Retrieved 2021-10-07.

[57] ownCloud Statement concerning the formation of Nextcloud by
Frank Karlitschek. https://owncloud.com/news/owncloud-
statement-concerning-formation-nextcloud-frank-
karlitschek/, June 2016. Retrieved 2021-10-27.

[58] Worried about Kim Dotcom’s tweet concerning MEGA?
https://mega.io/blog/worried-about-kim-dotcoms-
tweet-concerning-mega, April 2016. Retrieved 2022-01-10.

[59] Encryption in Transit in Google Cloud. https://cloud.google.
com/security/encryption-in-transit/, December 2017. Re-
trieved 2021-10-07.

99

https://docs.syncthing.net/users/security.html/
https://docs.syncthing.net/users/security.html/
https://mega.nz/doc
https://mega.nz/doc
https://www.sonarqube.org/
https://www.sonarqube.org/
https://github.com/syncthing/syncthing
https://github.com/syncthing/syncthing
https://data.syncthing.net/
https://www.sync.com/terms
https://www.pcloud.com/gdpr/
https://www.pcloud.com/gdpr/
https://tresorit.com/third-party-code
https://tresorit.com/third-party-code
https://mega.io/sourcecode
https://mega.io/sourcecode
https://www.microsoft.com/en-us/download/details.aspx?id=53884&culture=en-us&country=US
https://www.microsoft.com/en-us/download/details.aspx?id=53884&culture=en-us&country=US
https://owncloud.com/news/owncloud-statement-concerning-formation-nextcloud-frank-karlitschek/
https://owncloud.com/news/owncloud-statement-concerning-formation-nextcloud-frank-karlitschek/
https://owncloud.com/news/owncloud-statement-concerning-formation-nextcloud-frank-karlitschek/
https://mega.io/blog/worried-about-kim-dotcoms-tweet-concerning-mega
https://mega.io/blog/worried-about-kim-dotcoms-tweet-concerning-mega
https://cloud.google.com/security/encryption-in-transit/
https://cloud.google.com/security/encryption-in-transit/


Bibliography

[60] Google Cloud Security Whitepapers. https://services.google.
com/fh/files/misc/security_whitepapers_march2018.
pdf, March 2018. Retrieved 2021-10-07.

[61] Google security whitepaper. https://cloud.google.com/
security/overview/whitepaper, January 2019. Retrieved 2021-
10-07.

[62] MEGA Security White Paper. https://mega.nz/
SecurityWhitepaper.pdf, January 2020. Retrieved 2021-10-
06.

[63] Crypto.getRandomValues() – Web APIs — MDN. https:
//developer.mozilla.org/en-US/docs/Web/API/Crypto/
getRandomValues, October 2021. Retrieved 2021-10-26.

[64] Dropbox Business Security Whitepaper, version V2021.06.
https://assets.dropbox.com//www/en-us/business/
solutions/solutions/dfb_security_whitepaper.pdf, 2021.
Retrieved 2021-10-06.

[65] Eight years of MEGA – Tweet. https://twitter.com/
MEGAprivacy/status/1352564229044277248?s=20, January
2021. Retrieved 2022-01-10.

[66] iCloud Security Overview – Apple Support. https://support.
apple.com/en-us/HT202303, October 2021. Retrieved 2022-02-23.

[67] Legal – iCloud – Apple. https://www.apple.com/legal/
internet-services/icloud/en/terms.html, September 2021.
Retrieved 2022-02-24.

[68] Mega Transparency Report. https://mega.io/Mega_
Transparency_Report_September_2021.pdf, September
2021. Retrieved 2021-10-21.

[69] Microsoft Services Agreement. https://www.microsoft.com/en-
us/servicesagreement, April 2021. Retrieved 2021-10-21.

[70] Privacy and Data Policy – GDPR – MEGA. https://mega.io/
privacy, January 2021. Retrieved 2021-10-25.

[71] Terms of Service – MEGA. https://mega.io/terms, January 2021.
Retrieved 2021-10-21.

100

https://services.google.com/fh/files/misc/security_whitepapers_march2018.pdf
https://services.google.com/fh/files/misc/security_whitepapers_march2018.pdf
https://services.google.com/fh/files/misc/security_whitepapers_march2018.pdf
https://cloud.google.com/security/overview/whitepaper
https://cloud.google.com/security/overview/whitepaper
https://mega.nz/SecurityWhitepaper.pdf
https://mega.nz/SecurityWhitepaper.pdf
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://assets.dropbox.com//www/en-us/business/solutions/solutions/dfb_security_whitepaper.pdf
https://assets.dropbox.com//www/en-us/business/solutions/solutions/dfb_security_whitepaper.pdf
https://twitter.com/MEGAprivacy/status/1352564229044277248?s=20
https://twitter.com/MEGAprivacy/status/1352564229044277248?s=20
https://support.apple.com/en-us/HT202303
https://support.apple.com/en-us/HT202303
https://www.apple.com/legal/internet-services/icloud/en/terms.html
https://www.apple.com/legal/internet-services/icloud/en/terms.html
https://mega.io/Mega_Transparency_Report_September_2021.pdf
https://mega.io/Mega_Transparency_Report_September_2021.pdf
https://www.microsoft.com/en-us/servicesagreement
https://www.microsoft.com/en-us/servicesagreement
https://mega.io/privacy
https://mega.io/privacy
https://mega.io/terms


Bibliography

[72] Data Encryption in OneDrive for Business and SharePoint On-
line — Microsoft Docs. https://docs.microsoft.com/en-
us/microsoft-365/compliance/data-encryption-in-odb-
and-spo?view=o365-worldwide, 2021-09-20. Retrieved 2021-10-
07.

[73] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon.
RACS: a case for cloud storage diversity. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 229–240, 2010.
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Appendix A

Glossary

API Application Programming Interface; a set of functions provided by one
computer system to another

CRT Chinese Remainder Theorem; states in a simplified form that the system
of equations m ≡p a1 and m ≡q a2 has a unique solution m mod p · q
for coprime p, q. The theorem has a constructive proof to efficiently
obtain this solution.

CSPRNG Cryptographically Secure Pseudo-Random Number Generator;
PRNG producing sufficient entropy for cryptographic applications

CVE Common Vulnerabilities and Exposures; a public list of disclosed vul-
nerabilities, categorized by products and severity

E2EE End-to-End Encryption; a primitive where data is encrypted on the
end users’ devices and the encryption keys never leave those devices

Encrypt-then-MAC Encrypt-then-MAC; generic composition of an encryp-
tion and a message authentication scheme, where we first encrypt the
plaintext and then create a MAC tag on the ciphertext

Encrypt-and-MAC Encrypt-and-MAC; generic composition of a message
authentication and an encryption scheme, where we concatentate the
MAC of the plaintext to the ciphertext

GDPR General Data Protection Regulation; a European regulation governing
the data protection and privacy of European citizens

IND-CPA INDistinguishability against a Chosen-Plaintext Attacker; a com-
mon security game in cryptography, where an attacker can submit two
plaintexts to an encryption oracle and then has to guess which one was
encrypted
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Glossary

IV Initialization Vector; a randomly chosen but not confidential set of bits
that is used to initialize a cryptographic algorithm

LSB Least Significant Bits; the rightmost bits of an integer; i.e., the k LSBs
are bk−1bk−2 . . . b0 of an integer i← ∑n

i=0(bi · 2i).

MAC Message Authentication Code; a keyed, symmetric primitive to verify
the integrity of data

MAC-then-Encrypt MAC-then-Encrypt; generic composition of a message
authentication and an encryption scheme, where we first create the
MAC of the plaintext and then encrypt the both the plaintext and the
MAC

MitM Man-in-the-Middle or Person-in-the-Middle (PitM); an adversarial
strategy, where the malicious entity eavesdrops on the communication
and possibly manipulates exchanged messages

MSB Most Significant Bits; the leftmost bits of an integer; i.e., the k MSBs
are bnbn−1 . . . bn−k+1 of an integer i← ∑n

i=0(bi · 2i).

nonce Number only used once; there are various instanciations (counter,
random value) and the security of schemes building on nonces relies
on the uniqueness (w.h.p.) of them

PKW Puncturable Key Wrapping; an extension of key wrapping with the
ability to puncture the master secret key and thereby for specific,
wrapped keys, making them unrecoverable

SDK Software Development Kit; a set of tools, usually exposed as API, that
implements software-specific functionality that developers can use to
build applications.

SID Session Identifier; a secret token, chosen (often randomly) by the server
and sent to the client after successful authentication. The client needs
to resend this token with subsequent requests identify itself.

TEE Trusted Execution Environment; an isolated processor area where sen-
sitive code can be executed securely despite not trusting the entire
platform

TLS-MitM TLS Man-in-the-Middle; a MitM attack where the adversary has
compromised the TLS connection (e.g., by installing a malicious root
certificate)
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Glossary

TOFU Trust On First Use; a trust assumption that the first connection to a
service happens in an uncompromised environment and exchanged
information can therefore be trusted and stored

ToS Terms of Service; a legal agreement that users of a service need to accept,
also known as Terms of Use
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Appendix B

Nextcloud’s Cryptographic Design

Nextcloud is an exciting research target because it is an entirely open-source
product with a respectably sized user community. Therefore, we can inves-
tigate both server and client source code. In addition, they describe their
design and aim for E2EE.

Regarding the history of Nextcloud, Frank Karlitschek forked this project
in 2016 from ownCloud. He previously started ownCloud in 2010 and later
co-founded ownCloud Inc. Karlitschek explains in a blog post [123] to leave
ownCloud Inc due to conflicting opinions on the company’s long-term focus.
He prefers to involve the community more and to prioritize their contribution
over financial goals. Many senior staff members left ownCloud along with
the founder and joined his new project. Consequently, ownCloud Inc was
forced to shut down [57], but ownCloud GmbH still continues to maintain
the ownCloud project. Karlitschek’s new Nextcloud GmbH does not have an
enterprise edition like ownCloud. Instead, their business model focuses on
support and consulting [105].

Nextcloud provides two white papers explaining their security modes: server-
side encryption [147] and client-side E2EE [146]. A user can selectively enable
the latter mode for individual folders. We note that the documentation from
2017 warns that the “end-to-end encryption feature is a work-in-progress
and this document may describe functionalities or approaches not yet imple-
mented in our testing releases” [146]. Indeed, we discovered that sharing of
E2EE folders is not yet supported.

B.1 Architecture

In the following, we present Nextcloud’s design of the registration process
(Appendix B.1.1) and client authentication (Appendix B.1.2). Furthermore,
we describe their outlines for node encryption (Appendix B.1.3) and shar-
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B. Nextcloud’s Cryptographic Design

ing features (Appendix B.1.4). Finally, we briefly discuss account recovery
(Appendix B.1.5).

B.1.1 Registration

Algorithm 19 describes the two registration cases for a user. For the first
device, the Nextcloud client generates a new RSA key pair and requests a
certificate from the server. Next, the client selects 12 random words from a
set of 2048 English wordsW . This so-called mnemonic is used together with
a random salt s to derive a key k. In other words, the mnemonic replaces
a password with the limitation that it is only used for enabling client-side
encryption on a new device. The client stores the mnemonic in the device’s
key chain, but the user is also responsible for safely keeping it offline. The
client uses k to encrypt the secret key sk with AES-GCM and upload the result
together with the salt s, nonce n, and tag τ to the server. In the other case,
when the user has already registered a device, the client will retrieve the
encrypted secret key, salt s, nonce n, and tag τ from the server. It then derives
the key k from the salt s and the user-provided mnemonic m and decrypts
the secret key sk with k. Before the client stores the key pair (sk, pk) in the
local keychain, it verifies that the secret key sk belongs to pk from the client’s
certificate by encrypting and decrypting 512 random bits. The client fetches
the user’s certificate from the server and verifies it using the server’s public
key, which it requests too if it is not already available.

B.1.2 Client Authentication

The white papers only focus on encryption and do not describe authentication.
A user has a regular password in addition to the mnemonic. The client only
uses the latter to protect the encrypted folders’ asymmetric key material.
However, not all data is encrypted, and instead of the mnemonic, Nextcloud
uses the password to authenticate the user. In the login procedure, the user
transmits his password over the HTTPS connection in cleartext. Depending
on the used backend, the server hashes the password and compares it with a
stored value. If these match, the user is authenticated.

Appendix B.2.4 discusses why this authentication does not compromise E2EE
despite trusting the server.

B.1.3 Node Encryption

Algorithm 20 describes the procedure of uploading a file or folder F to a
shared encrypted folder D. Note that Nextcloud does not yet implement
the sharing-related part of this pseudo-code. To upload F, the client first
fetches the metadata file of D from the server. Next, it selects a file key kF
uniformly at random and uses it to encrypt F with AES-GCM. Afterward, the
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Algorithm 19 Nextcloud’s procedure to register a client with user ID uid

1: procedure register user(uid)
2: if is first device then

. Generate keys
3: sk, pk $←− RSA.Gen(2048)
4: csr ← X509.CSR(sk, pk, uid)
5: cert← server.get cert(csr)

. Store keys
6: m ⊆$ W , |m| = 12 . W is a set of words, |W| = 2048
7: keychain.Put((pk, sk), m)
8: s←$ {0, 1}320 . salt
9: k← PBKDF2-HMAC-SHA1(m, s, iter=1024, len=256)

10: n←$ {0, 1}128

11: [sk]k, τ ← AES-GCM.Enc(k, sk, n, ∅) . nonce
12: server.store([sk]k, s, n, τ)
13: else
14: m← user input(′Enter mnemonic: ′)
15: [sk]k, s, n, τ ← server.get priv key(uid)
16: k← PBKDF2-HMAC-SHA1(m, s, iter=1024, len=256)
17: sk← AES-GCM.Dec(k, n, τ, [sk]k, ∅)
18: cert← server.get cert(uid)

. Verify secret key
19: r←$ {0, 1}512

20: [r]sk ← RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Enc(cert.pk, r)
21: r′ ← RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Dec(sk, [r]sk)
22: if r′ 6= r then
23: return ⊥
24: keychain.Put((sk, cert.pk), m)
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client recovers all metadata key versions k(i)md stored in md.keys and encrypted
with the client’s public key pk. The client needs to pick the most recent key
k(imax)

md for encrypting the new file key kF. All other keys are outdated and
only maintained because the file metadata is lazily re-encrypted with newer
keys once it is accessed. We have to distinguish two cases for picking the file
identifier. If another file g already exists at this path, we reuse g’s identifier
idg and thus overwrite the file. Otherwise, we select a new identifier id f
uniformly at random. As the last step, the client updates the metadata. For
this, it first obtains a locking token t from the server. Next, it uploads the
new file and then modifies the metadata to add the new file information –
encrypted with the file metadata key – to md.files. Finally, the client releases
the md lock again. Note that the client uses the locking token t in subsequent
server requests to prove lock ownership. Without an implementation, it is
unclear how Nextcloud plans to recover when the client holding a token
suddenly goes offline. If this is not done carefully, an adversary could deceive
a client into reverting another user’s changes in the metadata unintentionally.

B.1.4 Node Sharing

Algorithm 22 and Algorithm 23 show the intended design of Nextcloud’s
sharing feature for E2EE folders. However, a GitHub issue [34] and FAQ en-
try [33] confirmed together with the source code [35] that Nextcloud has not
yet implemented this feature. Consequently, some details of the procedures
described in this section might differ from the final implementation.

Every E2EE folder has a md file, storing a metadata key kmd encrypted
for every sharer. This key is used to encrypt all content of the md file.
Furthermore, it stores R, the set of entities with whom the folder is shared,
together with their public keys. Finally, the md file holds file metadata – the
file path, MIME type, and file encryption key.

Algorithm 21 shows how Nextcloud’s client sets up a new E2EE folder:
first, it marks the directory as encrypted. Second, it samples a uniformly
random metadata key k(0)md. The exponent stands for the key version, which
is useful for key rotation, e.g., for the purpose of removing access of for-
mer members to a shared folder (see Algorithm 23). Next, the client en-
crypts the new metadata key with the public keys of all recipients using
RSA-ECB-OAEPWithSHA-256AndMGF1Padding and stores them for key version 0
in md.keys. Finally, it stores all recipients and their public keys, encrypted
with k(0)md and AES-GCM, in the metadata file. In this way, Nextcloud does not
disclose the sharers’ identities from the metadata file. However, the folder
members can decrypt k(0)md and then learn the other sharers.

Algorithm 22 shows how a user r shares a folder D with another user s.
Nextcloud employs Trust On First Use (TOFU): if the client has not seen
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Algorithm 20 Nextcloud’s procedure to upload a new node F to an E2EE
folder D

1: procedure upload node to e2e folder(F, D)
2: md← server.get metadata(D)

. Encrypt file
3: kF←$ {0, 1}128

4: nF←$ {0, 1}128

5: [F]kF , τF ← AES-GCM.Enc(F, kF, nF, ∅)

. If the file name already exists, reuse the ID of that file

6:

k(i)md ←

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Dec(sk, [k(i)md]pk)

∀(i,Ki) ∈ md.keys for [k(i)md]pk ∈ Ki
7: imax ← |md.keys|

8:

G ← {gm |F.name = gm.name,

gm ← AES-GCM.Dec(k(i)md, nm, τm, [gm]k(i)md
, ∅),

and (idg, [gm]k(i)md
, nm, τm, i) ∈ md.files}

9: if |G| = 1 then
10: idF ← idg
11: else
12: idF←$FID . for the set of file identifiers FID
13: t← server.lock(md)
14: server.upload(t, idF, [F]kF)

. Add file encryption key to E2E folder
15: Fm ← (kF, nF, τF, F.name, F.mimetype, version)
16:
17: nm←$ {0, 1}128

18: [Fm]k(imax)
md

, τm ← AES-GCM.Enc(k(imax)
md , Fm, nm, ∅)

19: md.files← md.files∪ {(idF, [Fm]k(imax)
md

, nm, τm, imax)}
20: server.upload metadata(t, md)
21: server.unlock(md)
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Algorithm 21 Nextcloud’s planned procedure to create an E2EE folder D
shared with all recipients in the set R

1: procedure create e2ee folder(D, R)
2: server.mark e2ee(D)

3: k(0)md←$ {0, 1}128

4:
∀r ∈ R.[k(0)md]pkr

$←−

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Enc(pkr, k(0)md)

5: md.keys← {(0, {[k(0)md]pkr | ∀r ∈ R})}
6: ∀r ∈ R.[(r, pkr)]k(0)md

, τr ← AES-GCM.Enc(k(0)md, (r, pkr), nr, ∅) . where

nr←$ {0, 1}128

7: md.sharer← {([(r, pkr)]k(0)md
, nr, τr) | ∀r ∈ R}

the public key for s before, it fetches it from the server and stores it in the
local keychain. Although the client verifies the server’s signature, this only
protects against MitM attacks and not malicious providers. After the first
exchange, the client uses the locally stored values instead of re-fetching
the certificate. Next, it re-encrypts all metadata key versions k(i)md under the
public key pks of the new recipient s. It is necessary to encrypt all keys since
clients re-encrypt file metadata lazily. Therefore, some file keys may still
be encrypted with old metadata keys. In the end, the client uploads the
updated metadata to the server. Note that the white papers do not mention
the locking for this algorithm, and we added it where it would make sense.

Algorithm 23 shows Nextcloud planned – but not yet implemented – design
for the reverse process of removing a user s from a shared folder D. In
this case, the client r first decrypts all metadata. Next, r generates a new
metadata file key k(imax+1)

md and re-encrypts it for all former recipients except
s. It removes s from the recipient list and encrypts the updated list with
k(imax+1)

md . We again added the metadata file locking ourselves. We note that
r does not re-encrypt all file metadata, it only adds a new metadata key
and encrypts it for all other sharers and not anymore for the removed user
s. Although there is no implementation yet, Nextcloud presumably wants
to avoid full re-encryption for performance reasons. The price of this lazy
re-encryption is that we need to maintain old metadata key versions.

B.1.5 Account Recovery

Nextcloud offers the option of using a central recovery key. This is an
additional asymmetric key, which the user should export and store in a
secure location. In addition to the user’s public key, the clients transparently
encrypt all key material for this recovery key. The white paper mentions that
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Algorithm 22 Nextcloud’s procedure how a user r shares an E2EE folder D
with user s

1: procedure share e2ee folder(D, s)
2: if {pks, s}skserver /∈ keychain.Get(s) then . TOFU
3: {pks, s}skserver ← server.get cert(s)
4: if not X509.Vfy({pks, s}skserver , pkserver) then return ⊥
5: keychain.Put({pks, s}skserver)

. Re-encrypt metadata keys for s
6: md← server.get metadata(D)
7: t← server.lock(md)
8: for all (i,Ki) ∈ md.keys, [k(i)md]pkr ∈ Ki do

9:
k(i)md ←

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Dec(skr, [k
(i)
md]pkr)

10:
[k(i)md]pks

$←−

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Enc(pks, k(i)md)

. Update the metadata (keys and sharing)
11: imax ← |md.keys|
12: md.keys← {(i,Ki ∪ {[k(i)md]pks}) | ∀(i,Ki) ∈ md.keys}
13: ns←$ {0, 1}128

14: [(s, pks)]k(imax)
md

, τs ← AES-GCM.Enc(k(imax)
md , (s, pks), ns, ∅)

15: md.sharer← md.sharer∪ {([(s, pks)]k(imax)
md

, ns, τs)}
16: server.upload metadata(t, md)
17: server.unlock(md)

clients should warn users when such a recovery key exists. However, they
do not describe what measures would prevent a malicious cloud provider
from removing this notification.

B.2 Observations and Properties

This section briefly discusses our observations on Nextcloud’s source code
(Appendix B.2.1). Furthermore, we examine the implications of Nextcloud’s
design for privacy (Appendix B.2.2), confidentiality (Appendix B.2.3), and
authentication (Appendix B.2.4).
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Algorithm 23 Nextcloud’s procedure for user r to remove a user s from a
shared E2EE folder D

1: procedure unshare e2ee folder(D, s)
. Decrypt all metadata

2: md← server.get metadata(D)
3: t← server.lock(md)
4: for all (i,Ki) ∈ md.keys, [k(i)md]pkr ∈ Ki do

5:
k(i)md ←

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Dec(skr, [k
(i)
md]pkr)

6: imax ← |md.keys|
7: R ← ∅
8: for all ([(r, pkr)]k(i)md

, nr, τr) ∈ md.sharer do

9: (r, pkr)← AES-GCM.Dec(k(i)md, nr, τr, [(r, pkr)]k(i)md
, ∅)

10: if r 6= s then
11: R ← R∪ {r}

. Update sharers and encrypt new metadata key for them
12: k(imax+1)

md ←$ {0, 1}128

13:
∀r ∈ R.[k(imax+1)

md ]pkr

$←−

RSA-ECB-OAEPWithSHA-256AndMGF1Padding.Enc(pkr, k(imax+1)
md )

14: md.keys← {(0, {[k(imax+1)
md ]pkr | ∀r ∈ R})}

15: ∀r ∈ R.[(r, pkr)]k(imax+1)
md

, τr ← AES-GCM.Enc(k(imax+1)
md , (r, pkr), nr, ∅) .

where nr←$ {0, 1}128

16: md.sharer← {([(r, pkr)]k(imax+1)
md

, nr, τr) | ∀r ∈ R}
17: server.update metadata(t, md)
18: server.unlock(md)
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B.2. Observations and Properties

B.2.1 Source Code Observations

Nextcloud uses the common OpenSSL library for encryption, which is well
known and available on many platforms. Moreover, they use two good en-
cryption schemes: AES-GCM and RSA-ECB-OAEPWithSHA-256AndMGF1Padding.

They are not very transparent regarding the implemented features. For
instance, the website claimed for a while to provide sharing of encrypted
folders, which caused some controversy on GitHub [34]. One possible reason
for the missing functionality is that the closed source enterprise version of
ownCloud had more features than the community edition. Thus, Nextcloud
needed to rebuild some functionality after the fork. Another reason is
that open-source projects tend to progress slowly because many people are
volunteers, and there is a significant communication overhead.

We used the static code analysis tool SonarQube [49] to scan Nextcloud’s code
for vulnerabilities. For the 391,693 lines of code of the Nextcloud server, the
tool reported 453 bugs (1 critical, 319 major, 133 minor), 1 critical vulnerability,
and 758 security warnings (56 high, 171 medium, 531 low). The major bugs
primarily involve deprecated functions and mistreated return values. The
critical vulnerability is a 512-bit RSA key, which is only used in a test vector.
The high-security warnings mainly concern generous folder permissions,
which should be reviewed in more detail. Furthermore, there are many false
positives for hardcoded credentials in unit tests. The server-internally used
weak hash functions MD5 and SHA-1 cause medium warnings. Despite over
10,000 code best practice issues, the code still achieves the best score for
maintainability. The client’s analysis shows very similar results, as it shares
significant parts of its 407,058 lines of code with the server. In conclusion,
SonarQube did not discover major vulnerabilities, and Nextcloud’s codebase
seems to be well-maintained.

B.2.2 Privacy

Nextcloud hides the directory structure, file names, and data in encrypted
folders. However, they explicitly accept leaking the number of files in a
single folder [146]. Nextcloud does not provide an official GDPR because
this product can be self-hosted, and the gathered data, especially usage data,
depends on the installation. According to their administration manual [17],
they only store session and user cookies, the latter containing user IDs.

As a consequence of the per-folder activation of E2EE, not all content of a
user is protected from the service provider. Moreover, the account itself is
accessible to Nextcloud as well, since the user sends his password in cleartext
for authentication (as discussed in Appendix B.2.4).
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B. Nextcloud’s Cryptographic Design

B.2.3 Confidentiality

In general, we get the impression that Nextcloud is designed with a self-
hosted and therefore trusted service provider in mind. Although they provide
E2EE, it is more integrated for additional security in transit or against physical
attacks on the server than for protecting against a malicious provider.

A significant threat to confidentiality is that the adversary acts as the root of
trust for the certificate signing. Although certificates are stored locally, we still
need the TOFU assumption. A malicious provider can always impersonate
users on all certificate requests and thus perform a MitM attack against the
protocol. As a result, the client unintentionally shares encrypted folders with
the adversary instead of another user.

In addition, note that the user removal described in Algorithm 23 only
considers lazy re-encryption of the file’s metadata keys. Nextcloud does not
mention changing the file key when a client updates the file metadata to the
new metadata key. Such an implementation has the disadvantage that a user
who stored all file keys and later, after being removed from the shared folder,
gets access to the ciphertexts can still decrypt the file content. As long as the
file key is not changed, removed users can even see newer file versions.

B.2.4 Authentication

Appendix B.1.2 explained that the authentication procedure completely trusts
the server as the client sends the user’s password in cleartext. However,
although any TLS-MitM adversary or malicious cloud can authenticate as
the user, they do not receive access to encrypted folders: the secret key for
these directories is stored locally in the keychain of the trusted devices. Any
authenticated user can request the encrypted secret key but only decrypt it
with the randomly generated mnemonic.

As we already discussed in Appendix B.2.3, other users are authenticated
by relying on certificates signed by the storage provider. In the case of
a malicious provider, this process fails to provide secure authentication.
Nextcloud’s white paper suggests to use certificate transparency or another
logging mechanism in the future [146]. With such an integrity-protected
history, clients could detect misbehaving servers.

Furthermore, a TLS-MitM attacker can impersonate the server against a
new device. Since the new client does not yet have the server’s public key,
it requests it. An adversary can insert their public key and consequently
generate certificates for other users that the client accepts. This issue is
coherent with Nextcloud’s reliance on TOFU: the first connection of any
device needs to be in a secure environment.
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Appendix C

Mega TLS Cipher Suites

We scan the offered TLS cipher suites of three servers of the cloud storage
provider Mega with the following nmap command

nmap -sV --script ssl-enum-ciphers -p 443 < domain >

The servers for the domains g.api.mega.co.nz and mega.nz offer the following
TLS cipher suites:

• TLS-1.3:

– TLS AKE WITH AES 128 GCM SHA256

– TLS AKE WITH AES 256 GCM SHA384

– TLS AKE WITH CHACHA20 POLY1305 SHA256

• TLS-1.2:

– TLS ECDHE RSA WITH AES 256 GCM SHA384

– TLS ECDHE RSA WITH AES 128 GCM SHA256

– TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256

– TLS DHE RSA WITH CHACHA20 POLY1305 SHA256

– TLS ECDHE RSA WITH AES 128 CBC SHA256

– TLS ECDHE RSA WITH AES 256 CBC SHA384

– TLS ECDHE RSA WITH AES 256 CBC SHA

– TLS ECDHE RSA WITH AES 128 CBC SHA

– TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256-draft

– TLS DHE RSA WITH CHACHA20 POLY1305 SHA256-draft
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C. Mega TLS Cipher Suites

We notice that there are cipher suites in TLS-1.2 that use AES-CBC and SHA-256.
The former may be vulnerable to the plaintext recovering MitM attacks
presented by Paterson et. al. in [76]. The SHAttered paper [155] found the
first collision on SHA-1 in 2017. This hash function is now considered to be
deprecated and should be avoided.

The server for static content at the domain eu.static.mega.co.nz supports
older TLS versions and cipher suites:

• TLS-1.3:

– TLS AKE WITH AES 256 GCM SHA384

– TLS AKE WITH CHACHA20 POLY1305 SHA256

– TLS AKE WITH AES 128 GCM SHA256

• TLS-1.2:

– TLS ECDHE RSA WITH AES 256 GCM SHA384

– TLS ECDHE RSA WITH AES 128 GCM SHA256

– TLS DHE RSA WITH AES 256 GCM SHA384

– TLS DHE RSA WITH AES 128 GCM SHA256

– TLS ECDHE RSA WITH AES 256 CBC SHA384

– TLS ECDHE RSA WITH AES 256 CBC SHA

– TLS DHE RSA WITH AES 256 CCM 8

– TLS DHE RSA WITH AES 256 CCM

– TLS DHE RSA WITH AES 256 CBC SHA256

– TLS DHE RSA WITH AES 256 CBC SHA

– TLS ECDHE RSA WITH AES 128 CBC SHA256

– TLS ECDHE RSA WITH AES 128 CBC SHA

– TLS DHE RSA WITH AES 128 CBC SHA

– TLS RSA WITH AES 128 CBC SHA

– TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256

– TLS DHE RSA WITH CHACHA20 POLY1305 SHA256

– TLS ECDHE RSA WITH ARIA 256 GCM SHA384

– TLS DHE RSA WITH ARIA 256 GCM SHA384

– TLS DHE RSA WITH AES 128 CCM 8
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– TLS DHE RSA WITH AES 128 CCM

– TLS ECDHE RSA WITH ARIA 128 GCM SHA256

– TLS DHE RSA WITH ARIA 128 GCM SHA256

– TLS ECDHE RSA WITH CAMELLIA 256 CBC SHA384

– TLS DHE RSA WITH CAMELLIA 256 CBC SHA256

– TLS DHE RSA WITH AES 128 CBC SHA256

– TLS ECDHE RSA WITH CAMELLIA 128 CBC SHA256

– TLS DHE RSA WITH CAMELLIA 128 CBC SHA256

– TLS DHE RSA WITH CAMELLIA 256 CBC SHA

– TLS DHE RSA WITH CAMELLIA 128 CBC SHA

– TLS RSA WITH AES 256 GCM SHA384

– TLS RSA WITH AES 256 CCM 8

– TLS RSA WITH AES 256 CCM

– TLS RSA WITH ARIA 256 GCM SHA384

– TLS RSA WITH AES 128 GCM SHA256

– TLS RSA WITH AES 128 CCM 8

– TLS RSA WITH AES 128 CCM

– TLS RSA WITH ARIA 128 GCM SHA256

– TLS RSA WITH AES 256 CBC SHA256

– TLS RSA WITH CAMELLIA 256 CBC SHA256

– TLS RSA WITH AES 128 CBC SHA256

– TLS RSA WITH CAMELLIA 128 CBC SHA256

– TLS RSA WITH AES 256 CBC SHA

– TLS RSA WITH CAMELLIA 256 CBC SHA

– TLS RSA WITH CAMELLIA 128 CBC SHA

• TLS-1.1:

– TLS ECDHE RSA WITH AES 256 CBC SHA

– TLS DHE RSA WITH AES 256 CBC SHA

– TLS ECDHE RSA WITH AES 128 CBC SHA

– TLS DHE RSA WITH AES 128 CBC SHA
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C. Mega TLS Cipher Suites

– TLS RSA WITH AES 128 CBC SHA

– TLS DHE RSA WITH CAMELLIA 256 CBC SHA

– TLS DHE RSA WITH CAMELLIA 128 CBC SHA

– TLS RSA WITH AES 256 CBC SHA

– TLS RSA WITH CAMELLIA 256 CBC SHA

– TLS RSA WITH CAMELLIA 128 CBC SHA

• TLS-1.0:

– TLS ECDHE RSA WITH AES 256 CBC SHA

– TLS DHE RSA WITH AES 256 CBC SHA

– TLS ECDHE RSA WITH AES 128 CBC SHA

– TLS DHE RSA WITH AES 128 CBC SHA

– TLS RSA WITH AES 128 CBC SHA

– TLS DHE RSA WITH CAMELLIA 256 CBC SHA

– TLS DHE RSA WITH CAMELLIA 128 CBC SHA

– TLS RSA WITH AES 256 CBC SHA

– TLS RSA WITH CAMELLIA 256 CBC SHA

– TLS RSA WITH CAMELLIA 128 CBC SHA

In addition to the concerns discussed above for the more sensitive domains,
we note what the static content server includes many cipher suites which
do not offer perfect forward secrecy (i.e., they use static RSA keys for key
transfer). Moreover, this server still supports the outdated TLS-1.0 protocol.
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