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1 Computational Methods

Unless otherwise stated, the optimizations
and rate calculations in this work are
based on potential-energy surfaces computed
with double-hybrid density-functional theory
(DFT). We employ the B2-PLYP functional1

using the resolution-of-the-identity (RI) ap-
proximation for the perturbation-theory cal-
culation2 with corresponding auxiliary basis
set3 as implemented in the ORCA 4 program
suite.4,5 In the self-consistent field cycle, the
RI-J approximation is used for the Coulomb in-
tegrals while the Hartree–Fock (HF) exchange
is evaluated with COSX numerical integration.
Since double-hybrid functionals can be rather
sensitive to the choice of integration grid, we
select the finest grids available in ORCA 4.0 for
both the DFT and HF-exchange calculation.

Dispersion interactions are accounted for with
Grimme’s DFT-D3 correction6 with Becke–
Johnson damping.7 In order to accurately de-
scribe the nitrene’s non-bonded electrons, we

choose the Karlsruhe triple-ζ valence basis set
with polarization and additional diffuse func-
tions (def2-TZVPD)8 in conjunction with the
corresponding auxiliary basis sets for the calcu-
lations based on the RI approximation.9,10

While analytic gradients are available for
double-hybrid functionals, the Hessians re-
quired for the rate calculations are computed
numerically by central finite differences.

We treat the molecules in vacuum under the
assumption that the interaction with the Ar, Ne
or N2 gas matrices used in experiment is weak.
This seems reasonable because the experimen-
tally measured rate constants do not differ by
more than a factor of 2 between the different
gases.

The MECPs were obtained by a constrained
minimization on the crossing seam using a
Lagrange multiplier.11 For the ring-polymer
instanton optimization12 we employed an
eigenvector-following algorithm.13–15 In order
to avoid the recomputation of the Hessian at
each step, we employed a Powell update algo-
rithm.16

All structure optimizations of minima and
MECPs were converged to a maximum total

force of 3× 10−4Eh
�A−1

. For the instantons the
forces were computed as the negative combined
gradient with respect to bead positions and
imaginary time τ of the N -bead ring-polymer
potential, UN/N = S/ β~ and converged to a

maximum total force of 3× 10−5Eh
�A−1

. The
τ -coordinate was scaled by a factor ξ/β~ with
ξ in the range of 1− 5 �A.

In order to test for the effect of static cor-
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relation in the isomerization reaction, we car-
ried out calculations based on multireference
Møller–Plesset perturbation theory to second
order (MRMP2),17,18 as implemented in the
GAMESS (US) program suite.19–21 The active
space consists of 10 electrons in 9 orbitals. The
latter were chosen as the natural orbitals with
occupation numbers between 1.98 and 0.02 at
the MECP. For these calculations the Karl-
sruhe triple-ζ valence basis set with polarization
(TZVP) was employed. Gradients were com-
puted numerically by central finite differences.

Since optimizations on the MRMP2 level were
computationally unfeasible for the larger molec-
ular system of the cyclization reaction, we sim-
ply carried out single-point MRMP2 calcula-
tions with an active space of 10 electrons in 10
orbitals at the optimized DFT geometries for
the reactant and MECP.

The barrier height, V ‡, is defined as the
potential-energy difference between the MECP
and the reactant minimum. Results for barrier
heights calculated with DFT and CASSCF are
presented in Tables SI.1 and SI.2, together with
the barrier heights obtained from MRMP2 and
CASSCF calculations at the DFT geometries.

For the isomerization we additionally give
the barrier heights resulting from the MRMP2
optimization. For both reactions CASSCF
overestimates the MRMP2 barrier height by
a substantial amount, implying that an ac-
curate description of dynamic correlation is
paramount in these reactions. In contrast, DFT
(which includes dynamic but not static correla-
tion) underestimates the MRMP2 barrier by no
more than 15%, which indicates that the PESs
are reasonably well-described by double-hybrid
DFT. In order to account for the missing multi-
configurational effects (at least approximately)
in our rate calculations, we scale the potential
energies by this ratio. Within the classical, NA-
TST and WC methods, this means that we sim-
ply use the MRMP2 barrier height. For the
WKB method, all potentials along the MEPs
(obtained with DFT) are scaled by the ratio of
the MRMP2 and DFT barrier, while for instan-
ton theory, the same is done for the potentials
along the instanton pathways, which then enter
into the calculation of the action, S.12

Table SI.1: Data at the MECP and reac-
tant minimum of the cyclization reaction rel-
evant for the rate calculations. The ro-
tational constants are given as their geo-
metric mean (ABC)1/3. In addition to
the DFT and CASSCF(10,10) barriers, we
also give the barrier heights computed with
MRMP2(10,10) and CASSCF(10,10) from the
difference in triplet energies at the DFT geome-
tries (MRMP2//DFT and CASSCF//DFT).

V ‡DFT 0.4034 eV = 3254 cm−1

V ‡MRMP2//DFT 0.4575 eV = 3690 cm−1

V ‡CASSCF//DFT 0.7338 eV = 5918 cm−1

V ‡CASSCF 0.9962 eV = 8035 cm−1

∆ 33.6 cm−1

κT/
√
m 0.9766 eV/�Au1/2

κS/
√
m −1.2466 eV/�Au1/2

λ 0.4391

(ABC)
1/3
MECP 4.572 · 10−2 cm−1

(ABC)
1/3
T 4.427 · 10−2 cm−1

Since spin–orbit coupling calculations with
double-hybrid functionals are currently not im-
plemented in ORCA, we employed the TPSSh22

functional for its calculation with otherwise
identical parameters.23 We obtained values of
33.6 cm−1 and 23.2 cm−1 at the MECPs for the
cyclization and isomerization reaction. The for-
mer is in good agreement with previous work.24

Since there is little corner cutting taking place,
the instanton hopping point is practically iden-
tical to the MECP for all temperatures, and
thus the spin–orbit coupling, ∆, at the MECP
was used for the calculation of all instanton
rates.

2 Rate calculations

In addition to the rate constants computed with
golden-rule instanton theory, the full details of
which can be found in Ref. 12, we also present
results calculated with classical rate theory,
NA-TST, and the WC and WKB approxima-
tions. All of these methods require the loca-
tion of the reactant minimum and MECP of
the reactions. We therefore collect the relevant
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Table SI.2: Data at the MECP and reac-
tant minimum of the isomerization reaction
relevant for the rate calculations. The ro-
tational constants are given as their geomet-
ric mean (ABC)1/3. In addition to the DFT,
MRMP2(10,9) and CASSCF(10,9) barriers, we
also give the barrier heights computed with
MRMP2(10,9) and CASSCF(10,9) from the dif-
ference in triplet energies at the DFT geome-
tries (MRMP2//DFT and CASSCF//DFT).

V ‡DFT 0.6586 eV = 5312 cm−1

V ‡MRMP2//DFT 0.7585 eV = 6118 cm−1

V ‡MRMP2 0.7383 eV = 5955 cm−1

V ‡CASSCF//DFT 0.9930 eV = 8009 cm−1

V ‡CASSCF 1.2601 eV = 10 164 cm−1

∆ 23.2 cm−1

κT/
√
m 1.3403 eV/�Au1/2

κS/
√
m −1.4921 eV/�Au1/2

λ 0.4732

(ABC)
1/3
MECP 9.414 · 10−2 cm−1

(ABC)
1/3
T 9.294 · 10−2 cm−1

data computed at these points for the cycliza-
tion and isomerization reactions in Tables SI.1
and SI.2 and depict the corresponding molec-
ular structures in Fig. SI.1. From these struc-
tures it is evident that the planar symmetry
is retained throughout the cyclization reaction.
In the isomerization reaction both the triplet

Figure SI.1: From left to right, we depict the
T1 minimum, the MECP and the S0 minimum
of the cyclization (top) and isomerization reac-
tion (bottom). The corresponding xyz-files are
included in the supplementary material.

minimum and the MECP have point group C1.
Thus, there are no symmetry-equivalent reac-
tion pathways in either case.

The Lagrange parameter λ stems from the
constrained optimization of the MECP and
is defined as λ = κT/(κT − κS) in terms of
the signed norms of the mass-weighted gradi-
ents on the triplet and singlet states, κT/S =
±||∇VT/S||. The sign of these norms is chosen
such that their product κTκS is positive if the
gradients are parallel and negative if they are
antiparallel. Thus, one can equivalently write
λ = ±|κT|/(|κS| ± |κT|), where positive signs
are used in the normal regime, where the two
gradients at the MECP are antiparallel, and
negative signs in the inverted regime, where the
gradients at the MECP are parallel.12 Note that
we mass-weight each atomic coordinate vector
xa by the corresponding atomic mass ma in the
form

√
ma

m
xa, such that each nuclear degree of

freedom has the same reference mass m, which
can be chosen arbitrarily. The gradient opera-
tor,∇, is defined by the derivatives with respect
to these mass-weighted coordinates.

The Lagrange parameter can then be used
to define the effective mass-weighted Hessian
H̃ = (1− λ)HT + λHS in terms of the mass-
weighted Hessian matrices of the triplet and
singlet states, HT/S = ∇2VT/S, at the MECP.
After projecting out rotations, translations and
the reaction coordinate, one thus obtains the
effective frequencies at the MECP, ω̃k, as the
square root of the eigenvalues of H̃/m.25 There
are Nvib = 3Natom − 6 vibrational modes with
corresponding frequencies ωk of the reactant,
where Natom is the number of atoms in the
molecule. Compared to the reactant minimum,
the number of vibrations at the MECP is re-
duced by one (3Natom− 7) because the reaction
coordinate has been projected out. The vibra-
tional frequencies at the minima and MECPs
for the two reactions with 14N as well as their
isotopically substituted analogues with 15N are
collected in Tables SI.3 and SI.4.

The lowest frequency occurring at the mini-
mum and MECP geometry of the isomerization
reaction roughly corresponds to the rotation of
the CF3 group. In order to check whether this
low-frequency is adequately approximated by a
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Table SI.3: Vibrational frequencies in cm−1 for the reactant minimum and MECP (computed from
the eigenvalues of H̃) of the cyclization reaction with 14N and 15N.

Triplet minimum MECP

14N 88 160 199 224 284 321 − 139 203 227 268 322
408 492 497 520 609 612 464 488 498 537 608 618
708 725 812 835 914 1018 702 742 792 808 872 882
1024 1055 1091 1152 1183 1249 982 1003 1069 1086 1200 1266
1287 1323 1433 1435 1477 1588 1279 1341 1350 1400 1463 1540
1619 1772 2990 3208 3225 3232 1574 1633 3048 3200 3233 3236

15N 87 159 198 223 283 318 − 138 202 227 267 321
402 488 497 519 609 611 462 484 497 535 608 617
708 722 812 835 914 1018 702 737 792 799 870 882
1024 1051 1091 1149 1183 1248 982 1003 1066 1085 1200 1266
1281 1323 1433 1435 1477 1588 1278 1340 1349 1391 1463 1539
1618 1772 2990 3208 3225 3232 1574 1633 3048 3200 3233 3236

Table SI.4: Vibrational frequencies in cm−1 for the reactant minimum and MECP (computed from
the eigenvalues of H̃) of the isomerization reaction with 14N and 15N.

Triplet minimum MECP

14N 36 222 231 359 423 − 17 256 260 327
509 570 608 713 780 417 526 578 659 734
1082 1175 1220 1301 1692 882 1135 1227 1248 1642

15N 36 220 230 355 421 − 17 255 259 325
508 569 600 712 778 413 526 577 658 733
1074 1175 1220 1300 1692 872 1130 1227 1247 1642

harmonic oscillator as opposed to a hindered
rotor, we scanned the potential-energy profile
along the rotation around the C–C bond in the
reactant minimum (Fig. SI.2). Note that the
profile does not exhibit the three-fold symmetry
one might expect since the three C–F bonds do
not have exactly the same length as we perform
this rigid rotation. In principle, one could in-
stead perform a relaxed scan, but this is not ex-
pected to dramatically affect the barrier height.
Considering that the harmonic frequency of this
mode is only 36 cm−1 compared to the barrier
height of 258 cm−1, this confirms the validity
of the harmonic-oscillator approximation of the
mode, at least at the cryogenic temperatures at
which the experiments are conducted.

The effect of the molecular rotations is in-
cluded within the rigid-rotor approximation,

where the rotational constants are given by A,
B and C.

The NA-TST rate constant is given by25–28

kNA-TST(β) =

√
2πm

β~2

∆2

~|κT − κS|
Z‡

ZT

e−βV
‡
,

(SI.1)

where ZT and Z‡ are the quantum-mechanical
partition functions of the reactant and MECP
in the usual rigid-rotor, harmonic-oscillator ap-
proximation, i.e. using

ZT,vib =

Nvib∏
k=1

1

2 sinh 1
2
β~ωk

, (SI.2a)

Z‡vib =

Nvib−1∏
k=1

1

2 sinh 1
2
β~ω̃k

, (SI.2b)
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Figure SI.2: Potential-energy profile along the
rigid rotation around the C–C bond, where the
origin corresponds to the geometry of the T1

minimum.

for the vibrational partition functions. Alter-
natively (but equivalently), one can define the
partition functions

Z̃T,vib =

Nvib∏
k=1

(
1− e−β~ωk

)−1
, (SI.3a)

Z̃‡vib =

Nvib−1∏
k=1

(
1− e−β~ω̃k

)−1
, (SI.3b)

which measure the energy from the ZPE and
are related to the formulation in Eqs. (SI.2)

by Z‡vib/ZT,vib = eβ∆ZPE Z̃‡vib/Z̃T,vib, where

∆ZPE = 1
2
~[
∑Nvib

k=1 ωk −
∑Nvib−1

k=1 ω̃k] is the
difference in zero-point energy between reac-
tant and MECP. The NA-TST formula in
terms of the alternative partition functions from
Eqs. (SI.3) is then given by

kNA-TST(β) =

√
2πm

β~2

∆2

~|κT − κS|
Z̃‡

Z̃T

e−βV
‡
ZPE ,

(SI.4)

where V ‡ZPE = V ‡−∆ZPE is the ZPE-corrected
barrier height.

In contrast to what was done in Ref. 24, we
do not explicitly divide our rate constants by
three to account for spin degeneracy. The fact
that there are three triplet states and only one
singlet state is already implicitly accounted for
in the “effective” spin–orbit coupling, ∆.29

The NA-TST rate of Eq. (SI.1) completely ne-
glects tunnelling, but includes zero-point en-
ergy effects and is therefore similar in spirit to
Eyring transition-state theory for adiabatic re-
actions. The fully classical rate constant, which
is also depicted in Fig. 2, is obtained by re-
placing the vibrational partition functions in
Eq. (SI.1) by their classical (β~→ 0) limits.

Building on NA-TST, the WC method ap-
proximates the tunnelling by effectively replac-
ing the PESs by linear functions around the
MECP along the singlet and triplet gradients.
It then employs the quantum-mechanical solu-
tion for a system of two intersecting linear po-
tentials leading to the WC transmission proba-
bility30–32

PWC(E) = 4π2
√

2mβ0
∆2

~|κS − κT|
× Ai2

(
β0(V ‡ZPE − E)

)
, (SI.5)

where β3
0 = 2m

~2 (κ−1
T −κ−1

S )2. The total WC rate
constant is then given by:29

kWC(β) =
1

2π~
Z̃‡

Z̃T

∫ ∞
0

PWC(E) e−βE dE.

(SI.6)

Because of the fundamental inconsistency be-
tween the linear approximation of the potentials
around the MECP and the harmonic approxi-
mation around the reactant minimum there is
no rigorous way to define the lower integration
boundary in Eq. (SI.6) and hence several vari-
ations of the WC method have been used in
the literature.24,29,33 To enable comparison with
previous work, here we use the WC method as
originally applied to the cyclization reaction in
Ref. 24. As we have shown elsewhere, none of
the other choices can fix the fundamental prob-
lems of WC either.12,34

The one-dimensional WKB approximation to
Fermi’s golden rule, which assumes tunnelling
takes place along the mass-weighted MEPs, is
evaluated using

kWKB(β) =

∑
n kWKB(En) e−βEn∑

n e−βEn
, (SI.7)
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where En = (n+ 1
2
)~ωrxc and the microcanoni-

cal WKB rate constants are given below. Here
ωrxc is the frequency of the reactive mode, which
determines the curvature of the MEP near the
reactant well in Fig. 1. For the cyclization this
is found to be the lowest vibrational frequency
(as is typically the case),35 whereas in the iso-
merization reaction the lowest vibrational mode
corresponds to a rotation of the CF3 group
around the C–C bond and does not partici-
pate significantly in the reaction. The appropri-
ate ωrxc thus corresponds to the second-lowest
vibrational frequency. In the WKB⊥ method,
which has also been used in Fig. 2, we also in-
clude the partition functions in the orthogonal
modes giving:

kWKB⊥(β) =
Z‡

ZT

∑
n

kWKB(En) e−βEn , (SI.8)

where we used the vibrational partition func-
tions from Eqs. (SI.2) to account for the ZPE.

At energies above the MECP, the micro-
canonical WKB golden-rule rate constant is36

kWKB(E) = 4ωrxcγ sin2

( |W (E)|
2~

+
π

4

)
,

≈ 2ωrxcγ, (SI.9)

and below the MECP is given by30,37–39

kWKB(E) = ωrxcγ e−W (E)/~. (SI.10)

For this one-dimensional problem, the total ab-
breviated action is W (E) = WT(E) + WS(E)

and WT/S(E) = 2
∫ b
a

√
2m(VT/S(q)− E) dq,

where
√
mq is the mass-weighted distance along

the MEP. For the path on the triplet, the in-
tegral is from the turning point to the crossing
point, while the integral for the path on the
singlet surface is from the crossing point to the
turning point. Finally, the Landau–Zener fac-
tor in the golden-rule limit is given by

γ =
∆2

~|κT − κS|v
, (SI.11)

where the (absolute value of the) velocity is v =√
2|V ‡ − E|/m.

3 Ring-polymer instanton

results

In ring-polymer instanton theory, just as in
other discretized path-integral based meth-
ods,40 the results need to be converged with
respect to the number of discretization points,
or beads, of the path. A measure for how fine
a chosen discretization is at a certain tempera-
ture is given by β/N , where N is the number
of beads. This is due to the Trotter splitting
used in the derivation of the methods, which
introduces an error on the order of (β/N)2.41

The number of beads necessary for converging
the results thus grows with decreasing temper-
ature, i.e. if one wants to compute an instan-
ton at half the temperature, one needs roughly
twice as many beads to obtain the same quality
of convergence. Note however that the required
number of beads for convergence at a given tem-
perature is system-dependent.

The convergence behaviour of the rate con-
stant at various temperatures can be seen in
Tables SI.5 and SI.6. We start our analysis
with the simpler isomerization reaction (Ta-
ble SI.6), for which it can be seen that the re-
sults at 30 K and higher temperatures are al-
ready well-converged with 256 beads, because
the change in the rate constant upon dou-
bling the number of beads is lower than 5%.
However, as indicated by the results at 15 K,
one requires at least 512 beads at lower tem-
peratures to converge the result to the same
quality. Furthermore, the low-temperature
plateau has already been reached, since the re-
sults at the lowest temperatures are practically
temperature-independent (within the numeri-
cal errors). It is therefore unnecessary to ex-
plicitly compute rate constants at even lower
temperatures, which would require more beads
just to obtain the same result.

In the cyclization reaction (Table SI.5), it be-
comes evident that the rate constants change
more strongly with the number of beads. It is
clear that the prefactor is responsible for this
behaviour, as the actions are well behaved even
when the overall result is far from its converged
value. Nevertheless, it can be seen that the

6



Table SI.5: Convergence of the instanton actions and rate constants with respect to the number of
beads for the cyclization reaction. Rate constants given in bold are considered converged to within
15% with respect to the number of beads.

T [K]
S/~ kSCI [ 10−3 s−1]

256 512 1024 256 512 1024

500 − 8.8466 − − 5.91 · 109 −
300 − 13.7416 − − 5.63 · 107 −
200 − 18.6392 − − 4.97 · 105 −
100 26.5139 26.5118 − 206 177 −
50 29.3900 29.3802 29.3783 68.3 11.6 10.3
40 29.5340 29.5121 29.5138 535 9.6 8.8
30 − 29.5410 29.5530 − 8.0 8.4
25 − 29.5356 29.5497 − 9.8 8.8
20 − 29.5260 29.5397 − 7.4 9.3
15 − 29.5147 29.5249 − 4.4 8.3
10 − 29.4821 29.4930 − 86.5 7.0

rate constants between 25 K and 50 K computed
with 512 beads are converged to within 15%
of the results with 1024 beads. We can thus
safely assume that calculations at higher tem-
peratures will also be well-converged with the
same number of beads (as they have an even
lower β/N ratio). In order to find out when the
low-temperature plateau is reached, one should
compare rate constants with identical values of
the β/N ratio (i.e. with the same quality of con-
vergence) and see whether they are the same.
This is analogous to the “diagonal convergence
pattern” seen in instanton calculations of tun-
nelling splittings, as described in Ref. 42. In
Table SI.5 we can therefore compare rate con-
stants at 50 K and 25 K, 40 K and 20 K, 30 K
and 15 K and 20 K and 10 K computed with 512
and 1024 beads respectively. While the values
at 50 K and 25 K still differ significantly, the
other pairs are almost identical, from which we
can deduce that the low-temperature plateau
has been reached at 40 K.43 This is confirmed
by the instanton energy in Table SI.7, which at
40 K drops to almost 0.44 It is therefore the sen-
sible choice to use the result with 1024 beads at
40 K also for lower temperatures, because it is
expected to be the most accurate estimate of
the low-temperature plateau as it has the low-
est β/N ratio.

In Tables SI.7–SI.10 we present impor-
tant quantities available from the instan-
tons computed at various temperatures (ob-
tained with the highest number of beads avail-
able). The Landau–Zener factor is evaluated
from Eq. (SI.11), where the gradients and the
barrier height are computed at the instan-
ton hopping points and the instanton energy
EI = ∂SS/∂τ = −∂ST/∂τ is taken to com-
pute the imaginary velocity. In all cases, γ is
seen to be much smaller than 1. Following the
standard prescription,35 this indicates that the
two rates are very well approximated by their
golden-rule limit. If this were not the case, it
would, in principle, also be possible to compute
higher orders in the perturbation series.45

Note also how at high temperatures the ratio
τ/β~ converges to λ computed at the MECP,
while at low temperatures the value of τ it-
self becomes constant indicating that the low-
temperature plateau has been reached. This
characteristic can be used to get an idea about
whether the WC method will give reliable re-
sults for a system at a certain temperature.
Thus, if instanton theory predicts a τ/β~ which
is constant with temperature and close to λ
from the MECP optimization, the WC approx-
imation is likely to be valid. If, however, τ itself
is constant, the WC results will be qualitatively

7



Table SI.6: Convergence of the instanton actions and rate constants with respect to the number
of beads for the isomerization reaction. Rate constants given in bold are considered converged to
within 5% with respect to the number of beads.

T [K]
S/~ kSCI [ 10−3 s−1]

256 512 1024 256 512 1024

500 14.1115 14.1113 − 8.622 · 107 8.526 · 107 −
300 21.0512 21.0506 − 1.109 · 105 1.130 · 105 −
200 26.3628 26.3613 − 699.4 701.9 −
100 30.4190 30.4139 − 15.42 15.54 −
50 30.7305 30.7208 − 11.81 11.96 −
30 30.7718 30.7361 30.7291 11.39 11.29 11.59
23 − 30.7470 30.7336 − 11.28 11.49
19 − 30.7672 30.7403 − 11.54 11.60
15 30.8760 30.7996 30.7524 12.81 12.15 11.55
11 − 30.8343 30.7869 − 11.38 11.79

Table SI.7: Data obtained from the instanton optimizations for the cyclization reaction. The action
and instanton energy EI are given with respect to the potential of the reactant minimum V min

T . In
addition to the rate constants based purely on the double-hybrid DFT calculations, we also give
results corrected by the MRMP2//DFT barrier as described in the main text. Here, we defined

A =
√

2π β
~
Z‡
vib

ZT,vib
, which includes the prefactor from Eq. (1) of the main text.

T [K] A [a.u.] Z‡rot/ZT,rot S/~− βV min
T EI [cm−1] τ/β~ τ [a.u.] γ kSCI [s−1] k

MRMP2//DFT
SCI [s−1]

500 44.4851 0.9535 8.8466 2781.6 0.4221 266.6 3.5056 ·10−4 5.9065 · 106 1.9101 · 106

400 51.2908 0.9538 10.7865 2609.0 0.3995 420.5 2.9952 ·10−4 9.7907 · 105 2.5347 · 105

300 56.6109 0.9545 13.7416 2322.6 0.4143 327.1 2.4861 ·10−4 5.6311 · 104 1.0634 · 104

250 60.8204 0.9560 15.8606 2097.1 0.3865 488.1 2.2278 ·10−4 7.2805 · 103 1.1209 · 103

200 66.7003 0.9574 18.6392 1767.5 0.3655 577.0 1.9628 ·10−4 4.9675 · 102 6.0804 · 101

150 68.7144 0.9597 22.2630 1267.7 0.3290 692.5 1.6961 ·10−4 1.3688 · 101 1.3643 · 100

125 67.4242 0.9616 24.3679 937.5 0.3005 759.2 1.5690 ·10−4 1.6399 · 100 1.5563 ·10−1

100 61.8299 0.9644 26.5118 571.7 0.2618 826.6 1.4566 ·10−4 1.7676 ·10−1 1.7260 ·10−2

50 62.6471 0.9788 29.3783 34.2 0.1453 917.4 1.3271 ·10−4 1.0342 ·10−2 1.3600 ·10−3

40 60.7956 0.9829 29.5138 6.9 0.1168 922.0 1.3215 ·10−4 8.8012 ·10−3 1.2066 ·10−3

30 59.9865 0.9872 29.5530 0.0 0.0877 923.3 1.3200 ·10−4 8.3859 ·10−3 1.1686 ·10−3

25 62.8784 0.9886 29.5497 0.0 0.0731 923.4 1.3200 ·10−4 8.8327 ·10−3 1.2342 ·10−3

wrong.
In Tables SI.11 and SI.12, we show the con-

tributions to the squared mass-weighted tun-
nelling path length (SMWTPL) from different
atoms and atom groups at two different tem-
peratures. While the tunnelling pathways in
general become shorter at high temperatures,
it can be seen that the significant relative con-
tributions of the heavier nitrogen and oxygen
atoms at cryogenic temperatures decrease at
higher temperatures in favour of a larger rel-
ative contribution from the carbon atoms.

In Tables SI.13 and SI.14 we show KIEs cal-
culated from the ratio of the (uncorrected)
double-hybrid DFT rate constants, since the
MRMP2 correction makes almost no differ-
ence here. The Tables contain KIEs com-
puted based on independent instanton calcu-
lations with different masses and KIEs calcu-
lated from the change to the action upon iso-
topic substitution only, without reoptimization
of the pathway. From the tables it can
be seen that both approaches are in reason-
ably good agreement, which justifies the ap-
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Table SI.8: As Table SI.7 but for the isomerization reaction. Here, the MRMP2 correction is with
respect to the barrier obtained from the MRMP2 optimization of the MECP.

T [K] A [a.u.] Z‡rot/ZT,rot S/~− βV min
T EI [cm−1] τ/β~ τ [a.u.] γ kSCI [s−1] kMRMP2

SCI [s−1]

500 251.7654 0.9833 14.1113 4248.5 0.4586 289.6 8.8636 ·10−5 8.5264 · 104 1.7318 · 104

450 271.3257 0.9829 15.4382 4048.0 0.4570 320.7 8.0914 ·10−5 2.4371 · 104 4.3822 · 103

400 291.9869 0.9825 17.0041 3784.4 0.4545 358.8 7.3283 ·10−5 5.4766 · 103 8.6013 · 102

350 313.4728 0.9821 18.8583 3435.2 0.4507 406.6 6.5849 ·10−5 9.2024 · 102 1.2528 · 102

300 344.8766 0.9818 21.0506 2967.1 0.4442 467.5 5.8691 ·10−5 1.1093 · 102 1.3362 · 101

250 376.9534 0.9817 23.5929 2341.8 0.4322 545.9 5.1978 ·10−5 9.7016 · 100 1.0311 · 100

200 433.4205 0.9826 26.3613 1543.4 0.4078 643.9 4.6054 ·10−5 6.9941 ·10−1 7.2720 ·10−2

150 487.8484 0.9850 28.9135 679.6 0.3561 749.7 4.1537 ·10−5 6.1708 ·10−2 7.2278 ·10−3

125 522.6874 0.9874 29.8418 330.0 0.3138 792.8 4.0097 ·10−5 2.6192 ·10−2 3.4247 ·10−3

100 548.1312 0.9897 30.4139 109.1 0.2598 820.4 3.9287 ·10−5 1.5536 ·10−2 2.2427 ·10−3

50 569.9121 0.9950 30.7208 1.2 0.1321 834.3 3.8941 ·10−5 1.1949 ·10−2 1.8574 ·10−3

40 556.9260 0.9960 30.7263 0.3 0.1057 834.5 3.8940 ·10−5 1.1624 ·10−2 1.8082 ·10−3

30 556.2522 0.9971 30.7291 0.2 0.0793 834.5 3.8938 ·10−5 1.1159 ·10−2 1.8031 ·10−3

23 553.5830 0.9976 30.7336 0.2 0.0608 834.5 3.8939 ·10−5 1.1489 ·10−2 1.7863 ·10−3

19 562.7572 0.9979 30.7403 0.2 0.0502 834.5 3.8941 ·10−5 1.1604 ·10−2 1.8025 ·10−3

15 566.6550 0.9982 30.7524 0.2 0.0396 834.5 3.8941 ·10−5 1.1548 ·10−2 1.7910 ·10−3

11 598.4587 0.9988 30.7869 0.3 0.0291 834.8 3.8941 ·10−5 1.1790 ·10−2 1.8210 ·10−3

10 606.9628 0.9989 30.7865 0.2 0.0264 834.8 3.8942 ·10−5 1.1964 ·10−2 1.8475 ·10−3

Table SI.9: As Table SI.7 but with 15N.

T [K] A [a.u.] Z‡rot/ZT,rot S/~− βV min
T EI [cm−1] τ/β~ τ [a.u.] γ kSCI [s−1] k

MRMP2//DFT
SCI [s−1]

30 59.1615 0.9868 29.8971 0.0 0.0888 934.8 1.3288 ·10−4 5.8607 ·10−3 7.9853 ·10−4

25 64.3420 0.9887 29.9068 0.0 0.0740 934.8 1.3285 ·10−4 6.3245 ·10−3 8.6285 ·10−4

proximate calculation. This method is simi-
lar to the one employed in Ref. 46 and can be
seen as a perturbative approach in the follow-
ing sense. We define the action along a sta-
tionary path x(α0) with imaginary-time split
τ(α0) as S(x(α0), τ(α0);α0), where α0 is a

vector of reference values of a parameter (e.g.
the atomic masses or the potential energy). If
α is the vector of the new parameter values
(e.g. the masses after isotopic substitution or
the potentials after correction by a higher-level
electronic-structure method) then the new ac-
tion is:

S(x(α), τ(α);α) = S(x(α0), τ(α0);α0) + (α−α0) ·
[
∂S

∂x

∂x

∂α
+
∂S

∂τ

∂τ

∂α
+
∂S

∂α

]
α=α0

+O(α−α0)2,

= S(x(α0), τ(α0);α0) + (α−α0) ·
[
∂S

∂α

]
α=α0

+O(α−α0)2,

= S(x(α0), τ(α0);α) +O(α−α0)2, (SI.12)

where we used ∂S
∂x
|α=α0 = 0 and ∂S

∂τ
|α=α0 = 0.

This demonstrates that our simple approxima-
tion (which involves recomputing the action
with the new parameters along the reference
pathway) is correct to first order in (α−α0)
at least. This provides formal justification for

the approach used for estimating the KIE as
well as correcting the barrier height with the
MRMP2 energy.
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Table SI.10: As Table SI.8 but with 15N.

T [K] A [a.u.] Z‡rot/ZT,rot S/~− βV min
T EI [cm−1] τ/β~ τ [a.u.] γ kSCI [s−1] kMRMP2

SCI [s−1]

500 255.3337 0.9813 14.1285 4264.0 0.4589 289.8 9.0227 ·10−5 8.4830 · 104 1.7194 · 104

300 347.7550 0.9799 21.1107 2995.7 0.4449 468.3 5.9659 ·10−5 1.0709 · 102 1.2535 · 101

200 442.1199 0.9808 26.5015 1578.8 0.4094 646.4 4.6743 ·10−5 6.2118 ·10−1 6.2938 ·10−2

100 569.7159 0.9884 30.7221 118.6 0.2628 829.8 3.9726 ·10−5 1.1851 ·10−2 1.6673 ·10−3

50 595.4370 0.9944 31.0636 1.3 0.1339 845.5 3.9348 ·10−5 8.8553 ·10−3 1.3501 ·10−3

40 597.7469 0.9955 31.0740 0.1 0.1071 845.8 3.9346 ·10−5 8.8085 ·10−3 1.3436 ·10−3

30 584.4757 0.9967 31.0707 0.2 0.0803 845.7 3.9347 ·10−5 8.6512 ·10−3 1.3208 ·10−3

23 589.1382 0.9973 31.0788 0.2 0.0616 845.8 3.9348 ·10−5 8.6550 ·10−3 1.3200 ·10−3

19 599.0141 0.9976 31.0861 0.2 0.0509 845.8 3.9346 ·10−5 8.7389 ·10−3 1.3315 ·10−3

15 594.4640 0.9984 31.0998 0.2 0.0402 846.0 3.9347 ·10−5 8.5605 ·10−3 1.3024 ·10−3

11 602.2554 0.9987 31.1221 0.2 0.0291 846.0 3.9347 ·10−5 8.4849 ·10−3 1.2870 ·10−3

10 602.1899 0.9989 31.1343 0.2 0.0268 846.3 3.9344 ·10−5 8.3828 ·10−3 1.2700 ·10−3

Table SI.11: Relative contributions in % to
the SMWTPL per atom or atom group for the
cyclization reaction at different temperatures.
The contributions of the hydrogen atoms have
been combined. The carbon atoms have been
labelled as either α or β; the latter set includes
the three carbons in the six-membered ring con-
nected to hydrogen atoms, and the former set
contains the remainder.

T [K]
Atoms

N O Cα Cβ F H

300 32 31 32 4 0 1
25 35 48 11 3 1 2

Table SI.12: As Table SI.11 but for the isomer-
ization reaction. The α carbon corresponds to
the one in the NCO group, while the β carbon
is part of the CF3 group. The contributions of
the fluorine atoms have been combined.

T [K]
Atoms

N O Cα Cβ F

300 26 4 55 12 3
15 34 9 43 7 7

Table SI.13: KIEs for the cyclization reaction
calculated from the full rate expression, after
reoptimization of the instanton, and from the
approximation based on the change to the ac-
tion only, without explicit reoptimization of the
instanton pathway.

T [K]
14N/15N 16O/18O

full approx. approx.

500 − 1.0 1.0
300 − 1.0 1.1
200 − 1.1 1.1
100 − 1.3 1.7
50 − 1.4 2.3
40 − 1.4 2.4
30 1.4 1.4 2.4
25 1.4 1.4 2.4
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Table SI.14: As Table SI.13 but for the iso-
merization reaction. For the calculation of the
12C/13C KIE, only the α carbon in the NCO
group has been isotopically substituted.

T [K]
14N/15N 12C/13C

full approx. approx.

500 1.00 1.02 1.04
300 1.04 1.06 1.17
200 1.13 1.15 1.41
100 1.31 1.36 1.74
50 1.35 1.41 1.77
40 1.32 1.42 1.77
30 1.29 1.41 1.77
23 1.33 1.41 1.77
19 1.33 1.41 1.77
15 1.35 1.42 1.77

4 Collected results

The rate constants based purely on double-
hybrid DFT computed with the various rate
theories introduced before are depicted in
Fig. SI.3. This differs from Fig. 2 of the main
text, in which the MRMP2 correction is used.

To enable closer comparison, rate constants
and KIEs computed with the various meth-
ods along with the experimental values for the
two reactions are presented in Tables SI.15 and
SI.16.

In the cyclization reaction, the WC method
predicts no kinetic isotope effect (i.e. a KIE of
1.0). This is due to a coincidental cancellation
between the effects of a slight increase in the
mass-weighted barrier width and a slight de-
crease in the ZPE-corrected barrier height. The
more reliable instanton results, however, pre-
dict that there is no such cancellation. In the
isomerization reaction, the ZPE-corrected bar-
rier height increases on isotopic substitution,
such that there is no possibility of cancellation.
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Figure SI.3: Uncorrected rate constants, us-
ing only data from double-hybrid DFT calcu-
lations, for the cyclization (top) and isomeriza-
tion reaction (bottom) computed with various
methods compared to experiment.24,47 The in-
sets show the molecular structure at the MECP
of the respective reaction.
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Table SI.15: Reaction rate constants (in 10−3 s−1) and predicted 14N/15N KIEs for the cyclization
reaction. We give NA-TST, WC and instanton results based on the double-hybrid DFT calculations
and the values corrected by the MRMP2//DFT barrier as described in the text. At temperatures
for which the rate constant is deemed to have plateaued, instantons are not explicitly calculated
and instead the plateau values are indicated by parentheses.

T [K] kNA-TST k
MRMP2//DFT
NA-TST kWC k

MRMP2//DFT
WC kSCI k

MRMP2//DFT
SCI kexp KIEWC KIESCI

30 6.5 · 10−48 5.4 · 10−57 5.9 · 106 3.8 · 105 8.4 1.2 − 1.0 1.4
25 5.7 · 10−60 5.9 · 10−71 4.8 · 106 3.1 · 105 8.8 1.2 − 1.0 1.4
20 2.9 · 10−78 7.0 · 10−92 3.8 · 106 2.4 · 105 (8.8) (1.2) 1.5 1.0 (1.4)
15 1.4 · 10−108 9.5 · 10−127 2.8 · 106 1.8 · 105 (8.8) (1.2) 1.3 1.0 (1.4)
10 3.3 · 10−169 1.9 · 10−196 1.8 · 106 1.1 · 105 (8.8) (1.2) 1.4 1.0 (1.4)

Table SI.16: Reaction rate constants (in 10−3 s−1) and 14N/15N KIE for the isomerization reaction.
We give NA-TST, WC and instanton results based on the double-hybrid DFT calculations and the
values corrected by the MRMP2 barrier as described in the text. A range for the experimental
results is given, where multiple measurements have been carried out. At temperatures for which
the rate constant is deemed to have plateaued, instantons are not explicitly calculated and instead
the plateau values are indicated by parentheses.

T [K] kNA-TST kMRMP2
NA-TST kWC kMRMP2

WC kSCI kMRMP2
SCI kexp KIEWC KIESCI KIEexp

23 2.82·10−118 9.98·10−136 1020 18.8 11.5 1.79 1.22− 1.78 1.21 1.33 −
19 7.92·10−146 5.94·10−167 779 14.4 11.6 1.80 1.21− 1.30 1.21 1.33 −
15 4.71·10−188 8.21·10−215 564 10.4 11.6 1.79 1.31 1.21 1.35 −
11 5.97·10−261 1.94·10−297 376 6.95 (11.6) (1.79) 1.18 1.21 (1.35) −
7 4.53·10−417 2.07·10−474 219 4.04 (11.6) (1.79) 1.24 1.21 (1.35) 1.32/1.18
2.8 9.62·10−1061 4.31·10−1204 83.7 1.54 (11.6) (1.79) 1.19 1.22 (1.35) 1.24− 1.44
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Kinetic isotope effects calculated with
the instanton method. J. Comput. Chem.
2011, 32, 3456–3463.

(47) Wu, Z.; Feng, R.; Li, H.; Xu, J.; Deng, G.;
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