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A real-time GP based MPC for quadcopters with unknown disturbances

Niklas Schmid1, Jonas Gruner2, Hossam S. Abbas2 and Philipp Rostalski2.

Abstract— Gaussian Process (GP) regressions have proven
to be a valuable tool to predict disturbances and model
mismatches and incorporate this information into a Model
Predictive Control (MPC) prediction. Unfortunately, the com-
putational complexity of inference and learning on classical GPs
scales cubically, which is intractable for real-time applications.
Thus GPs are commonly trained offline, which is not suited for
learning disturbances as their dynamics may vary with time.
Recently, state-space formulation of GPs has been introduced,
allowing inference and learning with linear computational com-
plexity. This paper presents a framework that enables online
learning of disturbance dynamics on quadcopters, which can be
executed within milliseconds using a state-space formulation of
GPs. The obtained disturbance predictions are combined with
MPC leading to a significant performance increase in simula-
tions with jMAVSim. The computational burden is evaluated
on a Raspberry Pi 4 B to prove the real-time applicability.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
increased in popularity due to their various possible appli-
cations, low cost, and variability. A common challenge in
many UAV applications includes limitations in flight time
due to a constrained battery capacity. A tethering system is
a possible means to overcome this issue. However, such a
tether creates an additional load and makes the UAV more
susceptible to disturbances due to wind.

The commonly used quadcopter setup for a UAV has 6
degrees of freedom (DoF). With four rotors, it is, therefore,
an underactuated system, making it a good test platform for
modern control approaches. A quadcopter is often controlled
by a cascaded PID; the use of MPC for quadcopters is also
well established (cf. [1]). However, most of these approaches
cannot cope efficiently with exogenous disturbances due
to the wind or a tether. There are different approaches to
include disturbances in the control loop, such as disturbance
rejection and backstepping (cf. [2]). This work proposes a
more general approach by modeling disturbances as latent
forces and moments acting on the quadcopter, which can be
predicted using advanced machine learning techniques.

In recent years, Gaussian process (GP) regression models,
which are nonparametric kernel-based probabilistic models
[3], have demonstrated significant potential for learning
control-oriented models, [4], with the ability to incorporate
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prior knowledge about the data through the choice of a
kernel. As a Bayesian framework, the strength of a GP
regression is its ability to estimate the prediction uncertainty,
which can be used for robustifying the control systems.

In the context of MPC, it has been demonstrated in,
e.g., [5], [6], [7], that GPs can approximate disturbances,
nonlinearities, and model mismatches, where their infor-
mation provided by the GPs can be exploited to enhance
the MPC performance. Moreover, the GPs probabilistic de-
scriptions have been leveraged to propagate uncertainties of
the estimates over the MPC prediction horizon, yielding a
low conservative mechanism for robustification in terms of
chance constraints, which casts the problem in a stochastic
MPC framework [5].

This paper’s contributions can be summarized as follows:
We prove the feasibility and instruct the implementation of
a real-time capable GP-based MPC for a quadcopter under
disturbances using simulation. It is therefore assumed that the
disturbances underlie some unknown dynamics. The idea is
that if one uses GPs to mimic the underlying disturbance
dynamics, then present and anticipated future disturbances
can be inferred based on recorded past data. The predictions
can then be used by MPC to counteract these unknown
disturbances. Furthermore, a cautious control is achieved by
formulating a chance-constrained MPC problem using the
uncertainties provided by the GP model, as proposed in [5].

II. BACKGROUND
This section covers the required basics needed for this

work. These include Model Predictive Control (cf. [1]),
Gaussian processes (cf. [3]) as well as the LTI representation
of GPs with stationary kernels (cf. [8]).

A. Model Predictive Control
Assume a discrete-time nonlinear system given by

xk+1 = f(xk, uk) (1)

where xk ∈ Rnx is the state and uk ∈ Rnu the input of the
system at time step k. Model Predictive Control builds upon
a model f̂(xk, uk) of the system dynamics (1). Based on this
model, the trajectory of the systems’ state can be predicted
in terms of the input and initial state. Thus, the goal is to
find

u∗(xt|t) = argmin
u0,··· ,uN−1

lf (xt+N |t) +

N−1∑
k=0

l(xt+k|t, ut+k|t)

s.t. xt+k+1|t = f̂(xt+k|t, ut+k|t)

xt+k|t ∈ X ,∀k = 1, · · · , N (2)
ut+k|t ∈ U ,∀k = 0, 1, · · · , N − 1



where xt+k+1|t is the prediction of xt+k+1 at time t,
l(xt+k|t, ut+k|t) a stage cost function penalizing the state
and input over the prediction horizon N , lf (xt+N |t) approx-
imates the cost of regulating the state xt+N |t from time step
N to infinity and

X :={x ∈ Rnx |Hxx ≤ lx}, U :={u ∈ Rnu |Huu ≤ lu} (3)

are lower and upper bounds for the state and input, respec-
tively, where Hx ∈ Rnxc×nx , lx ∈ Rnxc , Hu ∈ Rnuc×nu ,
lu ∈ Rnuc for nxc state and nuc input constraints.

B. Gaussian Processes

Assume an unknown continuous-time function g(ti) with
inputs ti and noisy outputs yi where vi denotes white
Gaussian measurement noise such that

yi = g(ti) + vi, vi ∼ N (0, σ2
n),

where t in this work will denote time. Gaussian Process
Regression is concerned with the task of learning the
function g(ti) such that predictions of the output yn+1

can be made based on an input tn+1 and a training set
(t1, y1), . . . , (tn, yn).

Therefore it is assumed that the output data y1:n+1

forms a multivariate normal distribution such that
y1:n+1 ∼ N (µ,K), where µ ∈ Rn+1 and the entries
of K ∈ Rn+1,n+1 at any element Ki,j are given by the
kernel function k(ti, tj); the sequence y1:n+1 here denotes
a column vector of length n + 1. Thus the correlation
of any two yi and yj is given by the kernel function
and the input data ti, tj . A prediction of the unknown
output yn+1 is obtained from the multivariate normal
distribution by marginalizing over y1:n. Since normally
distributed predictions yn+1 are obtained for arbitrary input
values tn+1 this procedure yields a distributed function
yn+1 = ĝ(tn+1) called a Gaussian Process. The mean µ
defines a bias and is often assumed zero.

The kernel which determines the data points’ correlation
is usually parameterized by a set of hyperparameters. These
hyperparameters are fitted to the data such that the kernel
function yields a most likely description of the data points
true correlation. More formally, the optimal hyperparameters
are determined by

max
θ
p(θ|t1:n, y1:n), (4)

where θ is a vector of the sought hyperparameters. In
practice, one may use gradient descent methods to maximise
the (log) likelihood of the optimization problem (4) and
update the GP hyperparameters iteratively as

θn+1 = θn + η
dp(θ|t1:n, y1:n)

dθ
(5)

where η denotes a learning rate.
The most widely used kernel, the squared exponential

kernel k(t, t′) = σ2
m exp(−(t − t′)2/l2) with hyperparam-

eters l and σ2
m, assumes a high correlation when the data

points t and t′ are close, thus, the corresponding output data
points are likely to be similar. Therefore, it is often used

for learning smooth functions. By varying the width of the
squared exponential kernel, i.e., l, one can adjust the input
range over which the output data is assumed to be similar.

The inference, or more precisely, marginalization in GPs,
can be done in closed form as well as the calculation of
the gradient in (5). However, both require the inversion of
the covariance matrix K, which yields a computational com-
plexity of O(n3). Thus, with increasing data, GPs become
intractable for real-time applications.

A solution to this problem was proposed in [8] by reformu-
lating various GPs with stationary kernels k(tj , ti) = k(τ),
where τ = tj − ti, as LTI-systems on which inference and
learning are carried out using Kalman-Filtering and Rauch-
Tung-Striebel-Smoothing with a computational complexity
of O(n).

The transformation is done as follows: According to
the Wiener–Khinchin theorem the spectral density S(iω)
of ĝ(t) can be obtained by the Fourier-Transform of the
stationary kernel function S(iω) = F{k(τ)}. Assuming a
finite spectrum of S(iω), a consecutive spectral factorization
F{k(τ)} = H(iω)qH(iω) yields a system with the transfer
function H(iω) driven by white Gaussian noise with spectral
density q which yields an output with the same spectral
density as ĝ(t). Thus, the system driven by the noise can
be written as a continuous LTI-system with a discrete output

ż(t) = Fz(t) + Lw(t), ŷ(ti) = Hz(ti) + v̂(ti) (6)

where z ∈ Rnz denotes the state vector of the GP state-space
model, w(t) ∼ N (0, q), v̂(ti) ∼ N (0, σ̂2

n) represents mea-
surement noise and the matrices F,L,H are of appropriate
dimension. The system yields a prediction ŷ(ti) for arbitrary
inputs ti based on the state z(ti).

For the inference, the system is discretized at a sam-
pling distance ∆T . Given a record of past outputs y1:n,
the state zn+1 ∼ (mz

n+1,Σ
z
n+1) can be inferred by

Kalman-Filtering, which yields a prediction of the output
yn+1 ∼ N (Cmz

n+1, CΣzn+1C
> + σ̂2

n). For the learning, the
gradient in (5) can be obtained efficiently by refactoring
results of the inference [8]. Finally, it is worth mentioning
that F{k(τ)} does not always yield the proposed rational
form for arbitrary kernels, e.g., the squared exponential
kernel. In such cases, it can be approximated to a desired
order using a Taylor series or a Padé approximation, see [4]
for more details.

III. MODELING

The quadcopter position is denoted as p ∈ R3 and velocity
ṗ ∈ R3 in an inertial frame which is spanned by unit
vectors ex̂, eŷ, eẑ ∈ R3. Furthermore, the attitude between
the inertial frame and the body frame, which is aligned with
the quadcopter axes along the unit vectors ex, ey, ez ∈ R3,
is given by the Euler angles Φ ∈ R3 and attitude rate
Φ̇ ∈ R3 in the roll, pitch and yaw directions. The matrix
Rrot ∈ R3×3 denotes the rotation matrix from the body
frame to the inertial frame.

The quadcopter system is modeled as a rigid body with
three rotational and three translational DoF and dynamics



p̈ = F/m, M = Jω̇+ω×Jω where m ∈ R is the quadcopter
mass, g = 9.81 m s−2, ω ∈ R3 denotes the angular rate of
the quadcopter in the body frame, F ∈ R3 the sum of all
forces and M ∈ R3 the sum of all moments which act on
the quadcopter body.

The force F is a summed effect of gravity, the propeller
actuation, and aerodynamics, which, for simplicity, are as-
sumed to scale linearly with the quadcopter velocity such that
F = Rrot

∑
i Fiez −mgeẑ − kDṗ, where Fi ∈ R denotes

the thrust generated by a single propeller i and kD ∈ R the
drag force coefficient.

The moment M =
(
τx τy τz

)
∈ R3 also stems from

the actuation of the quadcopter’s propellers and allows the
quadcopter to roll, pitch and yaw. Moments caused by blade
flapping (cf. [9]) are neglected in this model for simplicity.

In order to derive a linear model for the quadcopter a state
x =

(
p> ṗ> Φ> Φ̇>

)> ∈ R12 and normalized inputs

u =
(

T
Tmax

τx
τx,max

τx
τy,max

τx
τz,max

)>
∈ R4 are defined,

where T [N] is the thrust, τx[N m], τy[N m], τz[N m]
the longitudinal, lateral and vertical torques and
Tmax, τx,max, τy,max, τz,max the respective maximum
values, such that T

Tmax
∈ [0, 1], τx

τx,max
∈ [−1, 1],

τy
τy,max

∈
[−1, 1], τz

τz,max
∈ [−1, 1]. The state and input dimensionality

are denoted with nx = 12 and nu = 4, respectively.
Linearizing the nonlinear dynamics around the hovering

condition ẋs = 0 and us =
( mg
Tmax

0 0 0
)>

yields the
linear model

ẋ ≈


0 I 0 0

0 −kDm I A1 0
0 0 0 I
0 0 0 0

x+


0
B1

0
B2

 (u− us), (7)

where

A1 =

 0 g 0
−g 0 0
0 0 0

 , B1 =

 0 0 0 0
0 0 0 0

1
mTmax 0 0 0

 ,

B2 =

0 1
Ixx

τx,max 0 0

0 0 1
Iyy
τy,max 0

0 0 0 1
Izz
τz,max

 .

The wind and the tether will act as latent forces and
moments on the quadcopter body. Assuming the tether is
attached to the center of mass, we will only focus on
latent forces. However, the proposed procedure can easily
be extended to include latent moments.

IV. CONTROLLER DESIGN

GPs are used here to predict the latent forces caused by the
disturbances over the prediction horizon of the MPC. This
information is then used to improve the MPC performance
and guarantee constraint satisfaction up to probability levels
px and pu for the state and input, respectively. The control
policy is thus to find an input sequence u1:N for the

stochastic optimization problem

min
u0,··· ,uN−1

E

[
‖xN |t‖P +

N−1∑
k=0

‖xt+k|t‖Q + ‖ut+k|t‖R

]
s.t. xt+k+1|t = f̂(xt+k|t, ut+k|t, dt+k|t)

Pr(xt+k|t ∈ X ) ≤ px,∀k = 1, . . . , N (8)
Pr(ut+k|t ∈ U) ≤ pu,∀k = 0, . . . , N − 1

where E denotes the expected value, Q = Q> � 0, P =
P> � 0 and R = R> � 0, the norm ‖x‖A = x>Ax denotes
the matrix norm and dt+k|t represents a prediction at time
t of the disturbance at time step t + k. While Q and R are
used for tuning the MPC behavior, the matrix P weights
the terminal cost. Note that computing the above problem is
intractable, therefore, simplifications will be introduced.

A. Disturbance extraction

The latent forces in all DoFs produce accelerations in the
different directions of the quadcopter body. In order to train
GPs to learn the dynamics of these accelerations, it is first
necessary to extract and record data of past accelerations due
to the disturbances. This can be performed by comparing
measured velocities ṗt|t of the quadcopter with simulated
velocities ˙̂pt|t based on the proposed nonlinear quadcopter
dynamics. Therefore, the accelerations in the different direc-
tions can be estimated by

p̈d,i,t−1|t =
ṗi,t|t − ˙̂pi,t|t

∆T

where i ∈ {x̂, ŷ, ẑ} denotes the direction of the acceleration
and ∆T the discretization length of the state prediction. The
recorded accelerations p̈d,i,0|t, . . . , p̈d,i,t−1|t in all DoFs are
assumed to be uncorrelated since they stem from unknown
disturbance dynamics and since the translational dynamics
of the quadcopter can be separated into the single DoFs.
Thus, the inference and learning in each DoF can be handled
independently by a single one-dimensional GP such that
three GPs are assigned to predict the accelerations associated
with the disturbances.

The three GPs to learn and predict p̈d,i(t) = gi(t) with
i ∈ {x̂, ŷ, ẑ} will be used in their continuous-time state-space
representation with the deterministic formulation

żi(t) = Fizi(t), ŷi(t) = Hizi(t). (9)

B. Predictor

To define the predictor of the MPC, we combine the model
of the quadcopter system and the deterministic state-space
models of the GPs (9), which results in the augment model
ẋ
żx̂
żŷ
żẑ

 =


A Cx̂Hx̂ CŷHŷ CẑHẑ

0 Fx̂ 0 0
0 0 Fŷ 0
0 0 0 Fẑ



ẋ
żx̂
żŷ
żẑ

+


B
0
0
0

u

(10)

where A,B are obtained from the quadcopter model in
(7) and the matrices Cx̂, Cŷ, Cẑ ∈ Rnx are column vec-
tors mapping the predicted accelerations by the three GPs



into the respective dimension of the quadcopter’s state.
Then, discretizing the augmented model above yields the
predictor model of the MPC, which directly incorporates
the GP’s disturbance predictions during state propagation.
In this work, we adopt the exact discretization approach
[6]. Note that the discrete-time form of (10) represents
f̂(xt+k|t, ut+k|t, dt+k|t) in (8).

C. Uncertainty propagation and constraints tightening

To incorporate the uncertainty of the GP predictions in
the MPC formulation, we make use of some formulations
presented in [5]. We consider the discrete-time representation
of (6) as

zi,t+k|t = F̄izi,t+k−1|t + L̄iwi,t+k−1|t

ŷi,t+k|t = H̄izi,t+k|t + v̂i,t+k|t,

where the variables F̄i, H̄i, L̄i, wi,t+k|t ∼ N (0, Qi),
v̂i,t+k|t ∼ N (0, σ̂2

n,i) are the discrete time representatives
of the continuous time variables in (6) and i ∈ {x̂, ŷ, ẑ}.
Therefore, the mean value and the covariance of the state of
the GPs can be propagated as follows:

z̄i,t+k|t = F̄iz̄i,t+k−1|t

Σzi,t+k|t = F̄iΣ
z
i,t+k−1|tF̄

>
i + L̄iQiL̄

>
i

(11)

and for the output of the GPs, they are

ȳi,t+k|t = H̄iz̄i,t+k|t

Σdi,t+k|t = H̄iΣ
z
i,t+k|tH̄

>
i + σ̂2

n,i,
(12)

with i ∈ {x̂, ŷ, ẑ}.
The normal distribution of the GP predictions

yields the quadcopter state stochastic such that
xt+k|t ∼ N (x̄t+k|t,Σ

x
t+k|t), where the quadcopter state

evolves according to the nominal system in (7) plus the
additive disturbances Σdi,t+k|t. Therefore, using (11) and
(12), the covariance of the quadcopter state propagates as

Σxt+k+1|t = AΣxt+k|tA
> +

∑
i∈{x̂,ŷ,ẑ}

CiΣ
d
i,t+k|tC

>
i . (13)

Since the quadcopter system is unstable and the MPC only
stabilizes the nominal system based on its deterministic
predictor model, the evolution of the covariance of the
quadcopter state may diverge over the prediction horizon
according to (13). To account for this effect, an LQR
controller K∞ is used. The input then reads as

ut+k|t = ūt+k|t +K∞(x̄t+k|t − xt+k|t). (14)

where ūt+k|t is computed by the MPC. Then, the growth of
the uncertainty will be restricted as

Σxt+k+1|t = (A−BK)Σxt+k|t(A−BK)>

+
∑

i∈{x̂,ŷ,ẑ}

CiΣ
d
i,t+k|tC

>
i .

The feedback of the stochastic state in (14) yields the control
input stochastic with the distribution

ut+k|t ∼ N (ūt+k|t,KΣxt+k|tK
>).

The stochastic nature of the state and input at any time
step can be described by defining uncertainty regions Sxt+k|t
and Sut+k|t, respectively, around their expected values within
which their uncertain values lie up to some probability
level. These regions can then be subtracted from the original
constraint sets X and U to obtain tightened sets X̃t+k|t =

X 	 Sxt+k|t and Ũt+k|t = U 	 Sut+k|t, where 	 denotes
the Pontryagin set difference, which are used to define
guarantees on the satisfaction of the chance constraints in
(8) [5]. If the state/input lies within these tightened sets,
then, up to the probability level, the quadcopter state/input
will not exceed the original constraints despite the unknown
disturbances. For the applied half-space constraints (3), the
tightened constraint sets can be computed as [5]

X̃t+k|t=
{
xt+k|t|Hxxt+k|t≤ lx

−|Hx|Φ−1(p̄)
√

diag(Σxt+k|t)
}

Ũt+k|t =
{
ut+k|t|Huut+k|t ≤ lu

−|Hu|Φ−1 (p̄)
√

diag(Σut+k|t)
} (15)

where diag indicates a vector of the matrix diagonal ele-
ments, Φ−1 is the quantile function of a standard normal
distribution, p̄ = 1 −

(
1
nx
− px+1

2nx

)
where 0 ≤ px ≤ 1 is

some probability level and Σut+k|t = KΣxt+k|tK
>, see [5]

for more details. Finally, the MPC optimization problem is
given as follows:

min
ū0,··· ,ūN−1

‖x̄N |t‖P +

N−1∑
k=0

‖x̄t+k|t‖Q + ‖ūt+k|t‖R

s.t. x̄t+k+1|t = Ãx̄t+k|t + B̃ūt+k|t

x̄t+k|t ∈ X̃t+k|t,∀k = 1, . . . , N (16)

ūt+k|t ∈ Ũt+k|t,∀k = 0, . . . , N − 1

where the predictor model with Ã, B̃ is obtained from
discretizing (10).

D. Algorithm

The proposed GP-based MPC for quadcopters is finally
implemented as follows and sketched in Algorithm 1. The
quadcopter first flies based on a nominal MPC while the
disturbance data are collected for the GPs as described in sec-
tion IV-A. The MPC is updated at intervals of T = 100 ms;
between the MPC updates, the GP hyperparameters are
trained based on the available data as described in section
II-B. At the end of each time interval, it is not guaranteed
that the GP hyperparameters will converge to local optima.
However, assuming that the disturbance dynamics do not
change arbitrarily fast, they likely converge after certain
number of iterations as was demonstrated in [10].

Once the GPs experienced ”sufficient” training, the al-
gorithm switches from the nominal MPC to the GP-based
MPC, thus including the respective disturbance predictions.
The term ”sufficient” is still an open research question. In the
current implementation, the switching simply happens after
the GP hyperparameters have been updated at least 50 times



using (5). In our experience, the hyperparameters typically
converged in simulation flights at this point.

Algorithm 1: GP-based MPC with online disturbance
prediction.

1 Input: P ,Q,R,X ,U ,px,pu,N ,∆T
2 t = 0
3 Perform a takeoff
4 while true do
5 xt|t ← Telemetry
6 if GP hyperparameters updated 50 times then
7 X̃t+1:N |t, Ũt+1:N |t ← eq. 15
8 u∗t:(t+N)|t ← eq. 16

9 else
10 u∗t:(t+N)|t ← eq. 2

11 Quadcopter ← u∗t|t +
(
uhover 0 0 0

)>
12 if t > 0 then
13 x̂t|t−1 ← f̂(xt−1, ut−1)

14 dt−1|t ←
xt−x̂t|t−1

∆T

15 while Within MPC update interval ∆T do
16 Update GPs with collected d0:t

17 t← t+ 1

V. IMPLEMENTATION AND RESULTS

In this section, we discuss the implementation of Algo-
rithm 1 and we demonstrate the results. The algorithm has
been implemented in C++ on a Raspberry Pi 4 B in order
to evaluate the computation times. The same implementation
has then been tested in simulation as an offboard controller
for the PX4 autopilot using the jMAVSim simulation envi-
ronment. The used quadcopter parameters are depicted in
table II, the thrust-input necessary during hovering uhover =
0.3 and the MPC parameters are given in Table I.

The LQR in (14) uses the same matrices Q,R for its cost
function as the MPC. The MPC’s predictor model has been
discretized at 10 Hz while it has been recomputed with a
rate of 30 Hz, which rendered a better flight performance
during the simulation. The optimization problem has been
solved using the C++-OSQP library [11] and the osqp-

TABLE I
MPC PARAMETERS

N 25
Q diag(6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1)
R 103 · diag(5, 40, 40, 40)
Gx

(
I12 −I12

)
hx

(
hx1 hx2 hx1 hx2

)>
hx1

(
15 15 6 10 10 10

)
hx2

(π
3

π
3

π
5

2π 2π 2π
)

Gu
(
I4 −I4

)>
hu

(
1− uhover 1 1 1 uhover 1 1 1

)

eigen interface1. In order to connect to the PX4 Autopilot
firmware and send offboard commands from the C++ script,
the MAVSDK-library2 has been used.

The squared exponential kernel has been considered for
all the GPs, which are computed as LTI systems. Therefore,
Fourier-Transform of the squared exponential function has
been brought into rational form via a sixth-order Taylor
approximation as proposed in [8]. The GP hyperparameters
are continuously updated as described in section IV-D based
on the last 50 recorded data samples and a learning rate of
η =

(
0.03 0.01 0.005

)>
, see (5).

Next, the implementation has been tested on a potent
host machine in order to control a quadcopter within the
jMAVSim simulation environment [12] while the respective
computation times that a Raspberry Pi 4 B would have re-
quired to compute the algorithm have been imitated via sleep
commands. The goal was to track the reference trajectory
depicted in Fig. 1. The resulting trajectories of the simulated
flights under heavy wind conditions using a nominal and
the GP-based MPC are depicted in Fig. 1. The jMavSim
environment models wind by filtering white gaussian noise
(variance set to set to 24 m s−1) and adding a mean wind
speed vector (length set to to 22 m s−1) on top. However,
various wind speed settings have been tested with similar
results.

TABLE II
PARAMETERS OF THE QUADCOPTER.

m[kg] Ixx[kgm2] Iyy [kgm2] Izz [kgm2]

1.862 0.0429 0.0437 0.0753

kD[Ns2

m
] Tmax[N] τx,max = τy,max[Nm] τz,max[Nm]

0.1735 62.06 4.6548 1.7
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Fig. 1. Trajectory of a quadcopter using a conventional MPC (red,
dashed) and GP-based MPC (blue, solid) under strong wind disturbances in
jMAVSim. The black, dotted line represents the reference trajectory.

The takeoff is performed by an automated sequence of the
PX4 autopilot. The nominal and GP-based MPC take over
midflight and try to track the depicted trajectory. Finally,
the quadcopter lands, again using an automated sequence

1https://github.com/robotology/osqp-eigen, http://
eigen.tuxfamily.org

2https://mavsdk.mavlink.io/main/en/index.html



of the PX4 autopilot. Notably, the GP-based MPC performs
significantly better in this task with a root-mean-square
(RMS) euclidean distance of 0.82 m to the reference trajec-
tory compared to the nominal MPC with an RMS euclidean
distance of 2.83 m to the reference trajectory.

Furthermore, it can be seen that the GPs tend to introduce
oscillations, especially in the z-coordinate. Interestingly,
oscillations occur in the z-coordinate when the quadcopter
changes its y-position. This is likely the cause of a mismatch
between the nonlinear model and the true system dynamics,
which overlies the disturbance estimates and may lead to
undesired feedback dynamics between the GPs and the MPC.
This indicates, that the proposed method relies on precise
model predictions.

0.27
0.3

0.33

u
T

Conventional MPC

0.27
0.3

0.33

u
T

GP-based MPC

−0.02
0

0.02

u
τ
,x

−0.02
0

0.02

u
τ
,x

−0.02
0

0.02

u
τ
,y

−0.02
0

0.02

u
τ
,y

0 10 20 30 40

−0.006
0

0.006

time (s)

u
τ
,z

0 10 20 30 40

−0.006
0

0.006

time (s)

u
τ
,z

Fig. 2. Normalized inputs during the manoeuvre in Fig. 1. Left plots:
conventional MPC, right plots: GP-based MPC.

These oscillations, as well as a more aggressive behaviour
of the GP-based MPC compared to a conventional MPC can
also be seen when analyzing the computed input signals.
During the flight, the GP-based MPC computed oscillating
actuation signals with a higher amplitude (see Fig. 2).

The C++ implementation in this work proved the feasibil-
ity of the proposed control approach for real-time applica-
tions: On a Raspberry Pi 4 Model B, computing the nominal
MPC took about 10 ms while the computation of the MPC
with GPs took about 20 ms. Updating the hyperparameters
of a single GP with a batch size of 50 input-output data pairs
required up to 2 ms.

VI. CONCLUSIONS
In this paper, the applicability of a GP-based MPC for

predicting disturbances acting on a quadcopter and reducing
their effects has been demonstrated in simulation and a
practical implementation framework has been presented. It
has been shown that this approach yields superior perfor-
mance over a conventional MPC when disturbances affect
the system and that the algorithm scheme is computable in
real-time.

In order to verify the potentials that this approach shows
in simulation and to prove its robustness, its algorithm will
be evaluated on indoor flight tests with a focus on repro-
ducibility. As future research directions: the computational

complexity of the GP-based MPC could be further reduced
by applying Infinite Horizon Gaussian Processes [10], which
may also remove artefacts introduced by the truncation of
the batch data. An interesting research issue is to define
an appropriate classifier that allows to determine when one
should switch from the nominal to the GP-based MPC.
Moreover, to deal with model mismatch effects, the proposed
GP-based MPC could be combined with a preceding learning
of such mismatches as shown in [13]. A more complex
quadcopter model for the MPC and disturbance estimation
will be used in future investigations.
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