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Abstract
We consider a special variant of a pursuit-evasion game called lions and contamination. In a graph
whose vertices are originally contaminated, a set of lions walk around the graph and clear the
contamination from every vertex they visit. The contamination, however, simultaneously spreads to
any adjacent vertex not occupied by a lion. We study the relationship between different types of
clearings of graphs, such as clearings which do not allow recontamination, clearings where at most
one lion moves at each time step and clearings where lions are forbidden to be stacked on the same
vertex. We answer several questions raised by Adams et al. [2].
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1 Introduction

Pursuit-evasion problems have a long and rich history going back more than 50 years [11, 14].
Countless similar problems have been studied under very different names in the past. What
they all have in common is that there is a group of pursuers that try to catch an evader.
The typical question asked in a pursuit-evasion problem is whether the evader can escape
the pursuers, and if so, for how long. Naturally, the more pursuers there are, the harder
it is for the evader to escape. Some objectives of the pursuers can be to catch the evader
fast (minimize the time taken) or with minimal effort (minimize the distance traveled); the
different objectives all have their origins in numerous applications such as robot motion
planning, collision avoidance, and intruder detection in networks [1, 8, 13].

There are different variations of the problem depending on the exact rules. For detailed
definitions of the various problems, see the surveys [4, 5, 7, 10] and the references therein. In
this paper, we study the problem of lions and contamination [9]. Traditionally, a group of
lions tries to eradicate contamination from a graph while the contamination spreads to all
adjacent vertices that are not occupied by lions. A scenario that is relevant to current day is
where a set of doctors tries to get rid of a disease; people can get tested and quarantined to
stop the spread of the disease, whereas the contamination spreads to people that had contact
with infected people.

1 The second author’s full last name consists of two words and is Mallik Reddy. However, she consistently
refers to herself with the first word of her last name being abbreviated.
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17:2 Lions and Contamination: Monotone Clearings

Formally, suppose there is a graph G = (V, E). At the very beginning, every vertex
occupied by a lion is considered cleared of contamination, whereas the remaining vertices are
considered to be contaminated. Time is viewed as discrete; and in each step, the lions and the
contamination both move simultaneously. Every lion is allowed to move along an edge that
is incident to its current position. Contamination, on the other hand, spreads along every
incident edge to every adjacent vertex, unless the edge is used by a lion or a lion occupies
the adjacent vertex. Figure 1 illustrates an example. Note that the sequential variant of this
problem, where the lions and contamination move one after the other in alternating time
steps, results in a setting where the lions are more powerful and hence is a very different
problem compared to the one we study.

Figure 1 A graph and two lions (indicated by blue crosses), every vertex that is not occupied
by a lion is contaminated initially (indicated by red disks). One lion moves in the first time step,
however, contamination moves simultaneously and the vertex gets recontaminated. After the second
step, a vertex that is not occupied by a lion is cleared of contamination (indicated by green squares).

Note that for some graphs, it is easy to see whether k lions can clear the graph of
contamination. However, finding the minimum number of lions required to clear a graph is a
hard question. For example, the minimum number of lions required to clear the n × n-grid
is not known. Nevertheless, it is known that at least ⌊ n

2 ⌋ + 1 lions are needed [6]. Since n

lions can simply sweep the graph from left to right and clear the grid of contamination, n is
an upper bound on the number of lions needed for clearing the n × n-grid, and this is the
best upper bound currently known. Further, it is believed that n − 1 lions are not sufficient.
For higher-dimensional grids, that is for the nd-grid, it is known that Θ(nd−1/

√
d) lions are

necessary and sufficient [3].

In this paper, we study different types of clearings that were defined by Adams et al. [2]
and answer several questions raised in their paper. A clearing of a graph using k lions is
denoted as a k-clearing and the graph itself is referred to as k-clearable. We say a clearing is
monotone if no vertex ever gets recontaminated. The lions and the clearing are said to be
polite if at most one lion moves in each time step and non-stacked if no two lions occupy the
same vertex at any point in time.

The remainder of this paper is organized in the following way. In Section 2, we show that
there exist k-clearable graphs which require more than k lions for any monotone clearing.
This implies that monotone clearings are harder to achieve than non-monotone clearings
and stands in contrast to a result in the graph searching setting [12], where monotonicity
does not matter. In Section 3, we show that any monotone clearing can be paused at any
time and no recontamination occurs. This allows us to show in an algorithmic way that any
monotone clearing can be converted into a monotone and polite clearing. We then show that
polite clearings can be transformed into non-stacked clearings (see Theorem 3.6). Finally, in
Section 4, we tackle the subgraph question raised in [2]: given a k-clearable graph G and
some subgraph H ⊆ G, is H k-clearable as well? We answer this question in some settings.
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2 Monotone Clearings

2.1 The n × n Grid
Let us consider the n × n grid. As already mentioned, at least ⌊ n

2 ⌋ + 1 lions are needed,
while n lions are sufficient to clear the grid. When restricted to monotone clearings, we can
improve the lower bound and close the gap between the bounds.

Let V (t) be the set of cleared vertices at time t. We define a boundary vertex as a vertex
of V (t) that has a neighbor in V \ V (t). Before we state and prove our result, we first make
two simple observations and recall a lemma proved by Berger et al. [3].

▶ Observation 2.1. The number of cleared vertices in a k-clearing cannot increase by more
than k in one time step.

▶ Observation 2.2. If there are more than k boundary vertices at time t, then at least one
vertex gets recontaminated in the next time step.

▶ Lemma 2.3 (Lemma 5 of [3]). Any vertex set S that is a subset of the n × n grid and
satisfies n2

2 − n
2 ≤ |S| ≤ n2

2 + n
2 has at least n boundary vertices.

▶ Theorem 2.4. A monotone clearing of the n × n grid needs at least n lions.

Proof. Assume that the n × n grid has a monotone clearing with n − 1 lions. Initially, the
lions start with at most n − 1 < n2

2 + n
2 cleared vertices and eventually have to clear all n2

vertices. Further, Observation 2.1 implies that at most n − 1 vertices are cleared in each
time step. Thus, at some time t, the set of cleared vertices V (t) must satisfy the condition
n2

2 − n
2 ≤ |V (t)| ≤ n2

2 + n
2 . The number of boundary vertices at such a time t will be at

least n due to Lemma 2.3, and Observation 2.2 then implies that at least one vertex will
get recontaminated at time t + 1. Hence, no monotone (n − 1)-clearing of the n × n grid
exists. ◀

In hindsight, this might not be a very surprising result. However, this does not necessarily
improve the lower bound for non-monotone clearings as we will see in the next subsection.

2.2 Graphs with no Monotone Clearing
Unfortunately, not every graph with a k-clearing admits a monotone k-clearing. Indeed, we
can show that the set of monotone k-clearable graphs is a proper subset of the set of all
k-clearable graphs, which implies that monotonicity is a strong assumption on clearings.
Theorem 2.4 does not improve the general lower bound for grids due to this reason.

▶ Theorem 2.5. For any k ≥ 2 there exist k-clearable graphs with no monotone k-clearing.

We first describe the construction of one set of such graphs for any k ≥ 2. We start with
three distinct k × k-grids connected by (k − 1)-grid-like paths from row 2 through row n.
The center grid additionally has two vertices of degree one each attached to its leftmost
and rightmost vertices of row 1 respectively, let these vertices be denoted by uℓ and ur. For
simplicity let us denote graphs constructed in this form as Gk, the graph G3 is illustrated in
Figure 2.

▶ Lemma 2.6. The graph Gk is k-clearable for any k ≥ 2, but admits no monotone k-clearing.

SWAT 2022



17:4 Lions and Contamination: Monotone Clearings

G3×3 G3×3G3×3

uru`

Figure 2 Illustration of Gk when k = 3. The center grid has two additional vertices of degree
one attached at distinct corners of the first row. The colors indicate one possible clearing state.

Proof. To see that Gk is k-clearable we describe a clearing. Each lion is assigned to clear
one row of the graph. The lions start on the leftmost vertices of the graph and start sweeping
the graph from left to right. After the lions have cleared the left grid, the lions on rows
2, . . . , n move to the vertices on the (k − 1)-path between the left and center grids and wait
for the lion from row 1 to move to uℓ. Observe that this can be achieved without stacking
lions, by moving the lion of row 1 to the position of the lion of row 2, and moving the lion
of row 2 to uℓ. All the lions then together sweep further until the center grid and ur are
cleared; and similarly wait on the (k − 1)-path between the center and right grids before
finally clearing the right grid.

It remains to show that this graph cannot be cleared in a monotone fashion by k lions.
To clear the graph monotonically, the lions must all either start on the left or the right grids.
All or any subset of the k lions starting in the center grid will always lead to recontamination
of some vertex (in the center) since the left and right grids are contaminated. Without loss
of generality, assume the lions start in the left grid. Irrespective of the strategy followed
by the lions, the lions always end up in a situation where either there is a lion each on uℓ

and its neighbor, or there are k − 1 lions that stop the movement of contamination from the
center grid to the left grid. In the first case, the remaining k − 2 lions are not sufficient to
stop contamination from recontaminating the left grid, and in the second, the neighbor of
uℓ gets recontaminated when the last lion moves to uℓ to clear the vertex. Hence, we can
conclude that no monotone clearing exists for Gk. ◀

We give another construction for graphs that have clearings with k lions but do not
admit monotone k-clearings. It gives further insights into how such graphs can look like.
Interestingly, the following construction has four cut-vertices; which should ideally make it
easy to isolate contamination to one section of the graph.

We denote the second type of graph as Hk. The graph Hk consist of several parts. The
main building block is a (k + 1)-clique Kk+1, to which we add four arms at different vertices.
Each of the arms consists of a long k-grid (length of 3k is enough), where the farthest
vertices form a clique themselves; see Figure 3 for an example with k = 5. The graph Hk is
(k + 1)-clearable, but has no monotone (k + 1)-clearing.

Theorem 2.5 shows that monotonicity is a very restrictive assumption on clearings. This
result however raises the following question for further research.

▶ Open Question 1. Given a k-clearable graph G = (V, E), is it always monotonically
clearable with k + 1 lions? More formally, is there a non-trivial upper bound on the number
of lions required for a monotone clearing?
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Figure 3 The graph Hk consisting of a (k + 1)-clique in the middle and four attached arms, each
consisting of a long k-grid with a k-clique at the far end.

3 Transforming between Different Types of Clearings

3.1 Monotone Clearings
We now analyse some properties of monotone clearings. These will then allow us to show
that monotone clearings can always be adapted to monotone clearings with polite lions. We
start with an important observation.

▶ Proposition 3.1. Let C be any clearing of a graph G. Assume that all the lions are paused
indefinitely at time t, that is, no lion moves after time t. If no vertex gets recontaminated at
time t + 1, then no vertex gets recontaminated at a later time either.

Proof. Recall that contamination spreads along every incident edge at each time step. If no
vertex gets recontaminated at time t + 1, it implies that every cleared vertex neighboring
a contaminated vertex is occupied by a lion that blocks the contamination from spreading.
Then, no vertex can get recontaminated after time t + 1 either, since the lions continue to
block the contamination from spreading. ◀

With this result, we are now able to argue about stopping lions in monotone clearings.

▶ Lemma 3.2. A monotone clearing can be paused at any time and no vertex gets recontam-
inated.

Proof. Assume that every lion is paused at time t in a monotone clearing. For contradiction,
assume v is one of the first vertices to get recontaminated. Then no lion occupies vertex v at
time t, vertex v is not contaminated at time t and v gets recontaminated earliest at time
t + 1 due to Proposition 3.1.

Then there must exist w ∈ N(v) that is contaminated at time t, which contaminates v

at time t + 1. Since the clearing is monotone until time t, vertex w must have never been
cleared of contamination. Therefore, the contamination was present at w at t − 1 and must
have spread to v at time t (recall that no lion occupies v at time t). This contradicts the
fact that no vertex gets recontaminated in a monotone clearing, and our clearing remains
monotone until and including time t. ◀

SWAT 2022



17:6 Lions and Contamination: Monotone Clearings

With a more careful analysis of pausing monotone clearings, we can prove a much stronger
result.

▶ Theorem 3.3. Let G be a graph and C be a monotone clearing of G with k lions. Then,
there exists another monotone clearing which uses k polite lions.

Before being able to prove Theorem 3.3, we need some observations. Let us reconsider
a monotone clearing, denoted by C. Let us once again pause all the lions at time t. By
Lemma 3.2 we know that no recontamination occurs. Consider a lion ℓ1 and assume that
this lion moved from v to w at time t + 1 in the clearing C. We define a new strategy for a
clearing, denoted by C′, where we move all lions according to C up to time t and at time
t + 1, we move lion ℓ1 from v to w. No other lion moves at time t + 1 or after.

It is now important to note that this strategy might not be a clearing and it can happen
that vertices get recontaminated, see Figure 4. However, we certainly know which vertex
gets recontaminated first. More specifically, we can prove vertex v is the only vertex that
can get recontaminated at t + 1.

Figure 4 A lion moving from the left vertex to one of the vertices on the right. The left vertex
gets recontaminated at the same time.

▶ Lemma 3.4. Let C be a monotone clearing. Let C′ be a new strategy that mirrors C until
time t, and moves one lion from v to w at time t + 1, and no other lion is moved from
t + 1 onwards. If recontamination occurs in C′, the first vertex that gets recontaminated must
be v and it gets recontaminated at time t + 1. Further, no other vertex except v can get
recontaminated at time t + 1.

Proof. We know that if C′ is paused at t, no recontamination occurs due to Lemma 3.2. The
only difference between C and C′ at t + 1 is that the lion ℓ1 moved away from v in C′. Thus,
at time t + 1, no vertex other than v can get recontaminated. If v is not recontaminated
at time t + 1, then by Proposition 3.1, we know that no vertex ever gets recontaminated.
Hence, v is the only vertex that might get recontaminated at time t + 1. ◀

Unfortunately, we may not be able to avoid this recontamination when moving lion ℓ1 in
C′. Nonetheless, we use the fact that vertex v does not get recontaminated in C and analyse
the situation closely. Let us assume that v gets recontaminated in C′ at time t + 1.

Let us take a closer look at this vertex v. Since v is recontaminated at time t + 1 in C′,
there must exist x ∈ N(v) that was contaminated at t in C′, which spread the contamination
to v at t + 1. Observe that x must be contaminated at time t in the original clearing C as
well and v is not recontaminated at time t + 1 in C. Therefore some lion must occupy v at
time t + 1 in C (otherwise v would also get recontaminated in the monotone clearing C at
time t + 1). Let this lion be ℓj . Note that ℓj ≠ ℓ1 as ℓ1 moved away from v at time t + 1
in C. If we move ℓj before moving ℓ1, then the recontamination of vertex v can be avoided
at time t + 1. Hence, we say that ℓ1 depends on ℓ2 at time t + 1.

We construct a graph on the set of lions, where a directed edge from ℓj to ℓi is added if
and only if lion ℓj moves to vertex u at time t + 1 in C, and the lion ℓi moves away from u at
time t + 1 in C. In this way, we capture all dependencies of the lions and we refer to this
graph as the dependency graph of lions at time t + 1. Note that the dependency graph can
contain cycles.
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▶ Observation 3.5. By renaming lions, we can avoid any cycle in the dependency graph.

To see this, we consider one cycle in the dependency graph. Note that this cycle
corresponds to a set of vertices in the underlying graph that are occupied by a set of lions;
and occupied by the same set of lions at time t + 1 in C. Each lion moved to a different
vertex in the same set. Thus, the state of the corresponding vertices in the underlying graph
G is the same at time t and at time t + 1; and in particular this does not change if the lions
are not moved but are only renamed. Once the lions belonging to one cycle are renamed, the
dependency graph clearly changes. In particular, the number of edges (and cycles) strictly
decreases by renaming the lions and hence we eventually get an acyclic dependency graph.

With this we can now prove Theorem 3.3.

Proof of Theorem 3.3. We prove the theorem by showing how the number of time steps
that use polite lions can be iteratively increased by modifying a monotone clearing. Given
a monotone k-clearing C that is polite up to some time t, we define a new clearing C′ that
is identical to C up to time t and is polite up to some time t′ > t. In particular, let Lt+1
be the set of lions that move at time t + 1 in C. Consider the dependency graph of Lt+1
at time t + 1 obtained after all the cycles have been removed (and thus some lions might
have been renamed). Since this graph is acyclic, a topological ordering τ of the lions can be
obtained such that any lion ℓi that depends on ℓj only comes after ℓj in τ . After time t, the
new clearing C′ moves lions one by one according to the order τ up to time t′ ≤ t + k (the
lions not in τ do not move). Note that the state of C′ at time t′ is identical to the state of C
at time t + 1. Finally, C′ follows the same strategy as C did from time t + 2 until the graph
is completely cleared.

It is easy to see that C′ is monotone up to time t and since there is no recontamination
between time t and t + k, we indeed have a clearing. Furthermore, C′ is polite up to time
t′ > t, while C was polite only until time t. Following this procedure iteratively, we are
guaranteed to eventually get a monotone k-clearing that uses only polite lions from any
monotone k-clearing. ◀

Note that this proof is algorithmic, in particular, given a monotone clearing, we can
compute another monotone clearing that uses polite lions without increasing the number of
lions.

3.2 Polite and Non-Stacked Clearings
In this subsection, we study clearings which need not be monotone and consider other
restrictions on clearings. In particular, we study the relationship between clearings that use
polite lions and clearings that do not stack lions. We can show the following relation.

▶ Theorem 3.6. Let G be a graph on n vertices and C be a polite clearing of G with k ≤ n

lions. Then, there exists another k-clearing that does not stack lions.

Proof. For each time step in C, we describe how to move the corresponding lion (and
probably some additional lions) in C′ by avoiding stacking while ensuring that the new
strategy developed is a valid clearing of G. Let VC(t) and VC′(t) denote the set of cleared
vertices at time t in C and C′ respectively. We show that VC(t) ⊆ VC′(t) at any time t.

Every lion in C begins at its starting vertex, follows a walk in the graph, and finally ends
at its end vertex, and remains there for the rest of the clearing. In the process of adapting C
to C′, some lions are labelled as retired. These are lions that are stacked on their end vertices
in C, and thus their position in C′ is irrelevant since they do not help in clearing any more
vertices.

SWAT 2022



17:8 Lions and Contamination: Monotone Clearings

Before we describe the overall strategy (or algorithm), we describe the procedure of
finding the next location for a lion ℓi in C′. Assume ℓi has to be placed at v at time t ≥ 0
because ℓi starts at v or moves to v from a neighboring vertex. Note that since C is a polite
clearing, this is the only lion that needs to be moved in this time step. If there is no lion at v,
ℓi is placed on v (or moved to v). For the other case, let us assume that there is another lion
ℓj on v at time t. If ℓj is a retired lion, then ℓi is placed at v, and ℓj is moved to the closest
vertex with no lion. We do not really care where ℓj is placed since the position of a retired
lion is irrelevant in the rest of the clearing. If ℓj is not retired, the situation is a bit more
delicate. If ℓi leaves v before ℓj in C, then we instead place ℓj at the next vertex in the path
of ℓi in C (which must be a neighbor of v). Then we place ℓi at v and switch the naming of
the lions. This ensures that we do not stack the lions in this time step, while keeping them
on their path. In the other case, namely if ℓj leaves v before ℓi in C, we place ℓi at v, and
place ℓj at the next vertex in its path in C. Finally, in the case when v is the end vertex of
both ℓi and ℓj , we label the lion ℓi as retired and place ℓi on the closest vertex which has
no lion. It could happen that all the neighboring vertices of v are occupied by lions, or the
vertex that we intend to move ℓi or ℓj to is occupied by a lion, in which case we have to
follow this procedure recursively and move multiple lions. Note that even though multiple
lions might have to be moved through this procedure to simulate one time step of the polite
clearing, every step will eventually terminate as we reach retired lions (since k ≤ n).

To find the starting positions of the lions in C′ we use the procedure just described. The
overall strategy follows the procedure as well. We consider one lion movement at a time
(since C is polite) and move lions according to the description above. As already mentioned,
this might move more than one lion for an individual movement in C, but most importantly,
this ends for sure. As each movement of a single lion individually terminates, the recursive
procedure eventually terminates as well.

It remains to show that C′ is indeed a clearing. For this, observe that whenever the last
lion ℓ leaves a vertex u in C at time t, it also holds that ℓ leaves u in C′ at the same time t.
This is because the last lion to leave u is the lion that is positioned at u in C′ by construction.
Thus, every vertex that has a lion in C at some time t also has a lion in C′ at t. Thus, it
follows that at every time step t, VC(t) ⊆ VC′(t) and hence, C′ is a clearing. ◀

Note that this result implies that the set of graphs that are clearable with polite lions
is a subset of the set of graphs that admit non-stacked clearings. Though we were unable
to prove it, we believe that the converse of Theorem 3.6 is false, because the time taken by
polite lions might be much higher when compared to clearings where multiple lions can be
moved simultaneously, even when stacking is not allowed.

▶ Open Question 2. Is the converse of Theorem 3.6 also true or are there graphs with a
non-stacked clearing but no polite clearing?

When the clearing C is monotone, the converse is indeed true (follows from Theorem 3.3).

4 Clearable Subgraphs

In the final section of this paper, we study clearings of subgraphs of a k-clearable graph.
More formally, let G = (V, E) be a k-clearable graph, and let H be a subgraph of G. It is
natural to ask if H also admits a k-clearing (see Question 6.1 in [2]). On one hand, the
contamination is restricted due to some missing edges; on the other hand, some edges or
paths in G \ H might be crucial for the lions to clear the graph.
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We show that this question can be answered in the affirmative if the clearing on G is
monotone, and that surprisingly, this need not be possible in some other restricted settings.

▶ Theorem 4.1. Let G be a graph with a monotone k-clearing. Then any connected
subgraph H ⊂ G also admits a (polite) k-clearing.

Proof. Consider a monotone clearing C of G using k polite lions (which exists by Theorem 3.3).
The idea is to use the same clearing in H with some modifications. In C, if all lions use edges
(and vertices) that are present in H, then the clearing C restricted to H is a clearing of H

and the theorem is proved.
Otherwise, assume for now that VG = VH . Let t be the first time step such that a lion

ℓi uses edge e = (v, w) to move from v to w in C, where e ∈ G \ H. Since H is connected,
there exists a path pv,w from v to w. We construct a new strategy C′ for H, which mirrors
C until time t − 1, then moves lion ℓi along the path pv,w instead of moving it along the
edge e at time t, and no other lion moves until ℓi reaches w. Let t′ > t be the time when ℓi

reaches w in C′. Let VC(t) and VC′(t′) denote the set of cleared vertices in C at time t and C′

at time t′ respectively. We claim that VC(t) ⊆ VC′(t′). Note that in C′, v is the only vertex
that might get recontaminated at time t due to Lemma 3.4. However, v gets recontaminated
in C′ at time t if and only if v gets recontaminated at time t in C, and we know that v is
not recontaminated in C since C is monotone. We further claim that no vertex u ∈ VC(t)
is recontaminated in C′ after time t while ℓi is moving along the path pv,w. Assume some
vertex u ∈ VC(t) is recontaminated in C′ at time t′′ > t. Since the only vertex that contains
a lion in C at time t but contains no lion in C′ is w, the contamination must have spread
to u from w through a path w, u1, u2, . . . , u which contains no lion. However, the vertex u1
must have been contaminated at time t in C as well since no lion is present on u1 and C uses
polite lions. The contamination would have then spread to u if the lions were paused at time
t in C, which is a contradiction to Lemma 3.2. This proves that VC(t) ⊆ VC′(t′).

Now, consider the case where VH ⊊ VG. In C, if a lion moves along an edge (v, w) in C
where v, w ∈ VH , but (v, w) ̸∈ EH , we follow the same strategy as discussed above. Now,
let t be the first time when a lion ℓi uses edge e = (v, w) to move from v to w in C, where
v ∈ VH , but w ̸∈ VH . Let the path of ℓi in C be . . . , v, w, w1, w2, . . . , wk, . . . and let wi be
the first vertex in this path after v such that wi ∈ VH . We proceed similar to the previous
case, and construct a new strategy C′ which mirrors C until time t − 1, and then moves lion
ℓi to wi while keeping the other lions stationary. Let ℓi reach wi at time t′. By the same
argument as above, we can prove that VC(t) ⊆ VC′(t′). Observe that with this strategy, no
lion ever ends up in a vertex of G \ H, except for the start vertex. However, if the start
vertex of a lion lies in G \ H, we instead move it to the first vertex on its path lying in H.

Thus, we can follow the described strategy and adapt C to H to construct a new strategy
C′ that is a valid clearing of H. Furthermore, note that we only moved one lion at each time
step and thus the resulting clearing of the subgraph is polite. ◀

Note that the strategy given in this proof may not be monotone since the vertices that
were cleared on a detour might get recontaminated later on. In general, clearings of a
subgraph need not be monotone. Figure 5 illustrates a graph G∗ that admits a monotone
2-clearing (sweeping from left to right). However, recall graph G2 described in Section 2.2
(for reference, graph G3 is illustrated in Figure 2), which is a subgraph of G∗ that has no
monotone 2-clearing. Note that this recontamination cannot be avoided with the strategy
given, not even for induced subgraphs.

Finally, we illustrate a graph where one of its subgraphs does not admit a 2-clearing with
polite and non-stacked lions.
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G∗

Figure 5 A supergraph of G2 (graph G3 is illustrated in Figure 2). G∗ is monotone 2-clearable
even in the restricted setting of polite and non-stacked lions.

▶ Observation 4.2. The graph G illustrated in Figure 6 is monotone 2-clearable with polite
non-stacked lions. However, its subgraph H is not 2-clearable with polite non-stacked lions.

Note that H is not only a subgraph but also an induced subgraph of G.

G H

Figure 6 Graph G is 2-clearable with polite and non-stacked lions, whereas subgraph H is not.

5 Conclusion

In the first part of the paper, we studied different types of clearings, namely monotone, polite
and non-stacked clearings and we showed some of the relations between them. This gives a
good overview over the different restrictions, though a few questions remain open.

In the second part, we focused on the subgraph question raised by Adams et al. [2]. We
were able to answer the question in some restricted settings. In the general setting, we
believe that there exist graphs with subgraphs that admit no k-clearing. Such a graph might
be rather large. A next step in this direction would be to design an algorithm that checks
whether a given graph is k-clearable. Such an algorithm, however, may not be easy to find.
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