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ARTICLE

Eco-evolutionary model on spatial graphs reveals
how habitat structure affects phenotypic
differentiation
Victor Boussange1,2✉ & Loïc Pellissier 1,2✉

Differentiation mechanisms are influenced by the properties of the landscape over which

individuals interact, disperse and evolve. Here, we investigate how habitat connectivity

and habitat heterogeneity affect phenotypic differentiation by formulating a stochastic eco-

evolutionary model where individuals are structured over a spatial graph. We combine

analytical insights into the eco-evolutionary dynamics with numerical simulations to under-

stand how the graph topology and the spatial distribution of habitat types affect differ-

entiation. We show that not only low connectivity but also heterogeneity in connectivity

promotes neutral differentiation, due to increased competition in highly connected vertices.

Habitat assortativity, a measure of habitat spatial auto-correlation in graphs, additionally

drives differentiation under habitat-dependent selection. While assortative graphs system-

atically amplify adaptive differentiation, they can foster or depress neutral differentiation

depending on the migration regime. By formalising the eco-evolutionary and spatial dynamics

of biological populations on graphs, our study establishes fundamental links between land-

scape features and phenotypic differentiation.
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B iodiversity results from differentiation processes influenced
by the features of the landscape over which populations are
distributed1. The documentation of high levels of species

diversity in mountain regions and riverine systems suggests that
complex connectivity patterns and habitat heterogeneity foster
differentiation2–5. However, hypotheses formulated based on
empirical evidence should be complemented by mechanistic
models to crystallise a causal understanding between processes
and patterns6. While the number of simulation studies is growing
steadily7, such studies often lack a mathematical formalism to
facilitate the interpretation of the model outcomes by providing
an analytical underpinning to the simulation results8.

Phenotypic differentiation processes emerge as a result of
mutation, selection, and migration and can be classified as neutral
or adaptive9. Neutral differentiation is initiated by the stochastic
drift of local phenotypes when spatial isolation and limited dispersal
create barriers to gene flow, allowing distinct phenotypes to emerge
in spatially structured populations10. In contrast, adaptive differ-
entiation results from heterogeneous selection, which promotes
distinct, locally well-adapted phenotypes in populations occupying
patches with different habitat conditions11. The evolution of neutral
phenotypes and of adaptive phenotypes are not independent, as
selective forces can indirectly select for those neutral phenotypes
that happen to be linked to the fittest adaptive phenotypes, a
mechanism called the “hitchhiking effect”12. Moreover, selection
can generate barriers to gene flow between populations in hetero-
geneous habitat landscapes13,14, a phenomenon coined “isolation by
environment”, which can amplify neutral differentiation. How
neutral processes, adaptive processes, and their interplay are affec-
ted by landscape features is difficult to comprehend without a
formalised mechanistic model15.

Models link patterns to processes6, and the explicit repre-
sentation of the landscape within an eco-evolutionary model can
lead to a causal understanding of how landscape features shape
differentiation. Spatial graphs provide a convenient mathematical
representation of landscapes, where vertices represent suitable
habitats hosting populations, and edges capture the connectivity
between habitats16. Under ecological dynamics, metapopulation
models have been used to study the role of graph topology in the
persistence and stability of metapopulation17–20 and community
diversity21–23. Evolutionary mechanisms are nevertheless funda-
mental drivers of diversity, and should therefore be explicitly
integrated into models24. Evolutionary game theory explores how
graph topology impacts the fixation probability and the fixation
time of a mutated phenotype25. However, the framework does not
consider the continuous accumulation of mutations, and is
therefore not suited to addressing the emergence of phenotypic
differentiation. By combining a metapopulation model with a
model of neutral evolution,26,27 investigated how graph topology
affects neutral diversity. Their approach demonstrated the key
role of topological properties in shaping diversity, and its pre-
dictions could be matched with empirical data from e.g., river
basins28. Nonetheless, diversity results from the combination of
neutral and adaptive processes developing at the population level.
A first-principles modelling approach considering spatial graphs,
but also building upon the elementary processes of ecological
interactions, reproduction, mutation, and migration may there-
fore be promising to investigate the emergence of diversity.

Stochastic models for structured populations, rooted in the
microscopic description of individuals, offer a generic framework
for modelling eco-evolutionary dynamics29,30. In particular, these
models can capture the interplay between population dynamics,
spatial dynamics and phenotypic evolution, while providing a rig-
orous set-up for analytical investigation. By anchoring this model-
ling paradigm in a mathematical framework, the work of
Champagnat et al.29 generalises models of population genetics31

(investigating the evolution of the frequencies of alleles) and
quantitative genetics32–34 (investigating the evolution of phenotypic
traits), which stimulated research into the link between spatial
population structure and neutral differentiation. The framework
embraces density-dependent selection, which could explain the
emergence of phenotypic differentiation from competition
processes11, and how spatial segregation can emerge as a byproduct
of these adaptive processes along environmental gradients35. Rela-
ted models have addressed the effects of landscape dynamics and
habitat heterogeneity on adaptive differentiation, providing math-
ematical insights into the dynamics36–41. Because it accounts for
finite population size, the baseline model of Champagnat et al.29 can
also capture neutral differentiation dynamics and therefore the
coupling between neutral and adaptive processes42,43. Nonetheless,
the aforementioned studies were not spatially explicit42,43 or they
assumed regular spatial structures (regular graphs36–38,41 or con-
tinuous space35,39,40), therefore not addressing the role of the spatial
complexity of landscapes. A stochastic individual-based model
using spatial graphs as a representation of the landscape could help
formalise fundamental links between landscape features and phe-
notypic differentiation.

A key challenge is to understand how individual dynamics result
in the emergence of differentiation in complex landscapes44. Here,
we investigate how complex connectivity patterns and habitat het-
erogeneity affect both neutral and adaptive phenotypic differentia-
tion by constructing an individual-basedmodel (IBM) that accounts
for eco-evolutionary dynamics on spatial graphs. The individuals
disperse between habitat patches and possess co-evolving neutral
and adaptive traits. The finite size of local populations generates
neutral differentiation by inducing a stochastic drift in the neutral
trait evolution, while heterogeneous selection gives rise to adaptive
differentiation. Macroscopic properties of the model are analytically
tractable, and we obtain a deterministic approximation of popula-
tion size and adaptive trait dynamics which connects the emerging
patterns to the graph properties that generate them. However,
neutral differentiation is stochastic by nature, which complicates its
analytical underpinning. We therefore rely on numerical simula-
tions of the IBM to measure the effect of graph topology on neutral
differentiation. In the case where heterogeneous selection is absent,
we investigate how graph topology affects neutral differentiation. In
the case of heterogeneous selection, we investigate how the graph
topology, in combination with the spatial distribution of habitat
types, affects levels of (i) adaptive and (ii) neutral differentiation. By
combining analytical methods with numerical simulations, we
expect to identify graph properties that determine the level of dif-
ferentiation. Overall, our study establishes causal links between
landscape properties and population differentiation and contributes
to a fundamental understanding of how landscape features promote
biodiversity.

Results
Eco-evolutionary model on spatial graphs. We establish an
individual-based model (IBM) where individuals are structured
over a trait space and a graph representing a landscape. For the
sake of simplicity, we consider the case of asexual reproduction
and haploid genetics29. Individuals die, reproduce, mutate and
migrate in a stochastic fashion, which together results in mac-
roscopic properties. The formulation of the stochastic IBM allows
an analytical description of the dynamics at the population level,
which links emergent properties to the elementary processes that
generate them.

The trait space X � Rd is continuous and can be split into a
neutral trait space U and an adaptive trait space S. We refer to
neutral traits u 2 U as traits that are not under selection, in
contrast to adaptive traits s 2 S, which experience selection. The
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graph denoted by G is composed of a set of vertices {v1,v2,…,vM}
that correspond to habitat patches (suitable geographical areas),
and a set of edges that constrain the movement of individuals
between the habitat patches. We use the original measure of
genetic differentiation for quantitative traits QST (standing for Q-
statistics) in the case of haploid populations45,46. We denote the
neutral trait value of the kth individual on vi as u

ðiÞ
k , the number of

individuals on vi as N(i), the mean neutral trait on vi as uðiÞ, and
the mean neutral trait in the metapopulation as u. It follows that
we quantify neutral differentiation QST,u as

QST;u ¼ σ2B;u=ðσ2B;u þ σ2W;uÞ ð1Þ

where σ2B;u ¼ E½ 1M∑i u
ðiÞ � u

� �2� denotes the expected neutral

trait variance between the vertices and σ2W;u ¼

1
M∑M

i E 1
NðiÞ ∑k uðiÞk � uðiÞ

� �2
� �

denotes the average expected

neutral trait variance within vertices. We similarly quantify
adaptive differentiation QST,s.

Following the Gillespie update rule47, individuals with trait
xk 2 X on vertex vi are randomly selected to give birth at rate b(i)

(xk) and die at rate d(N(i))=N(i)/K, where K is the local carrying

capacity. The definition of d therefore captures competition,
which is proportional to the number of individuals on a vertex
and does not depend on the individuals’ traits (we relax this
assumption later on). The offspring resulting from a birth event
inherits the parental traits, which can independently be affected
by mutations with probability μ. A mutated trait differs from
the parental trait by a random change that follows a normal
distribution with variance σ2μ (corresponding to the continuum
of alleles model48). The offspring can further migrate to
neighbouring vertices by executing a simple random walk on
G with probability m. A schematic overview of the two different
settings considered is provided in Fig. 1. Under the setting with
no selection, individuals are only characterised by neutral traits
so that X ¼ U . For individuals on a vertex with trait xk ≡ uk we
define b(i)(xk) ≡ b, so that the birth rate is constant. This ensures
that neutral traits do not provide any selective advantage. Under
the setting with heterogeneous selection, each vertex of the
graph vi is labelled by a habitat type with environmental
condition Θi that specifies the optimal adaptive trait value on vi.
It follows that, for individuals with traits xk ¼ ðuk; skÞ 2 U ´S
on vi, we define

bðiÞðxkÞ � bðiÞðskÞ ¼ bð1� pðsk � ΘiÞ2Þ ð2Þ
where p is the selection strength41. This ensures that the
maximum birth rate on vi is attained for sk=Θi, which results
in a differential advantage that acts as an evolutionary
stabilising force. In the following we consider two habitat types
denoted by I and II with symmetric environmental conditions
θI and θII, so that Θi ∈ {θI, θII} and θII=− θI= θ, where θ can
be viewed as the habitat heterogeneity41.

Deterministic approximation of the population dynamics
under no selection. The model can be formulated as a measure-
valued point process (30 and Supplementary Note). Under
this formalism, we demonstrate in the Supplementary Note how
the population size and the trait dynamics show a deterministic
behaviour when a stabilising force dampens the stochastic
fluctuations. This makes it possible to express the dynamics
of the macroscopic properties with deterministic differential
equations, connecting emergent patterns to the processes that
generate them. In particular, in the setting of no selection,
competition stabilises the population size fluctuations, and the
dynamics can be considered deterministic and expressed as

∂tN
ðiÞ
t ¼ N ðiÞ

t bð1�mÞ � NðiÞ
t

K

" #
þmb∑

j≠i

ai;j
dj

NðjÞ
t ð3Þ

where A ¼ ðai;jÞ1≤ i;j≤M is the adjacency matrix of the graph G

and D= (d1,d2,…,dM) is a vector containing the degree of each
vertex (number of edges incident to the vertex). The first term
on the right-hand side corresponds to logistic growth, which
accounts for birth and death events of non-migrating indivi-
duals. The second term captures the gains due to migrations,
which depend on the graph topology. Assuming that all vertices
with the same degree have an equivalent position on the graph,
corresponding to a “mean field” approach (see Methods), one
can obtain a closed-form solution from Eq. (3) (see Eq. (12)),
which shows that the average population size N scales with

h
ffiffiffi
k

p
i2=hki, where 〈k〉 is the average vertex degree and h

ffiffiffi
k

p
i

is the average square-rooted vertex degree. The quantity

h
ffiffiffi
k

p
i2=hki, denoted as hd, relates to the homogeneity in vertex

degree of the graph and can therefore be viewed as a measure
negatively associated with heterogeneity in connectivity. Simu-
lations of the IBM illustrate that hd can explain differences in

Fig. 1 Graphical representation of the structure of individuals in the eco-
evolutionary model. a Setting with no selection, where individuals are
characterised by a set of neutral traits u 2 U . The scatter plots represent a
projection of the first two components of u for the individuals present on the
designated vertices at time t= 1000, obtained from one simulation of the IBM.
b Setting with heterogeneous selection. In this setting, individuals are
additionally characterised by adaptive traits s 2 S. Blue vertices favour the
optimal adaptive trait value θI, while red vertices favour θII. The scatter plots
represent a projection of the first component of u and s for the individuals
present on the designated vertices at time t= 1000, obtained from one
simulation. The majority of individuals are locally well-adapted and have an
adaptive trait close to the optimal value, but some maladaptive individuals
originating from neighbouring vertices are also present. m=0.05.
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population size for complex graph topologies with varying migra-
tion regimes (Fig. 2a for graphs with M= 7 vertices and Supple-
mentary Fig. 1a for M= 9). This analytical result is connected to
theoretical work on reaction-diffusion processes49 and highlights
that irregular graphs (graphs whose vertices do not have the same
degree) result in unbalanced migration fluxes that affect the eco-
logical balance between births and deaths. Highly connected

vertices present an oversaturated carrying capacity (N(i) > bK,
see Methods), increasing local competition and lowering total
population size compared with regular graphs (Fig. 2a). Because
populations with small sizes experience more drift (31 and Sup-
plementary Fig. 2), this result indicates that graph topology affects
neutral differentiation not only through population isolation, but
also by affecting population dynamics.

Fig. 2 Effect of <l> and hd on average population size N and neutral differentiation QST,u in the setting with no selection. a Response of N to
homogeneity in degree hd ¼ h

ffiffiffi
k

p
i2=hki for all undirected connected graphs withM= 7 vertices and m= 0.5. b Response of QST,u to average path length <l>

for similar simulations obtained with m= 0.01. c Response of QST,u to homogeneity in degree hd for the same data. In a, b, and c, each dot represents
average results from 5 replicate simulations of the IBM, the colour scale corresponds to the proportion of the graphs with similar x and y-axis values (graph
density), and the blue line corresponds to a linear fit. d Standardized effect of hd and <l> on QST,u, obtained from multivariate regression models
independently fitted on similar data obtained for m= 0.01 and m= 0.5. The contributions of <l> and hd to QST,u are alike for low migration regimes. Error
bars show 95% confidence intervals. Analogous results on graphs with M= 9 vertices are presented in Supplementary Fig. 1 and all regression details can
be found in Supplementary Table 2.
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Nonetheless, the stochasticity of the processes at the individual
level can propagate to the population level and substantially affect
the macroscopic properties. In particular, neutral differentiation
emerges from the stochastic fluctuations of the populations’
neutral trait distribution. These fluctuations complicate an
analytical underpinning of the dynamics, and in this case
simulations of IBM offer a straightforward approach to evaluate
the level of neutral differentiation.

Effect of graph topology on neutral differentiation under no
selection. We study a setting with no selection and investigate the
effect of the graph topology on neutral differentiation. When
migration is limited, individuals’ traits are coherent on each
vertex but stochastic drift at the population level generates neutral
differentiation between the vertices. Migration attenuates neutral
differentiation because it has a correlative effect on local trait
distributions. Following21,22,26, we expect that the intensity of the
correlative effect depends on the average path length of the graph
〈l〉, defined as the average shortest path between all pairs
of vertices50. For a constant number of vertices, 〈l〉 is strictly
related to the mean betweenness centrality and quantifies the
graph connectivity50. High 〈l〉 implies low connectivity and
greater isolation of populations, and hence we expect that graphs
with high〈l〉 are associated with high differentiation levels. We
consider various graphs with an identical number of vertices and
run simulations of the IBM to obtain the neutral differentiation
level QST,u attained after a time long enough to discard transient
dynamics (see Methods). We then interpret the discrepancies in
QST,u across the simulations by relating them to the underlying
graph topologies.

We observe strong differences in QST,u across graphs for
varying m, and find that 〈l〉 explains at least 55% of the
variation in QST,u across all graphs with M= 7 vertices for
(Fig. 2b). Nonetheless, some specific graphs, such as the star
graph, present higher levels of QST,u than expected by their
average path length. To explain this discrepancy, we explore the
effect of homogeneity in vertex degree hd, as we showed in Eq.
(12) that it decreases population size, which should in turn
increase QST,u by intensifying stochastic drift. We find that hd
explains 57% of the variation for low m (Fig. 2c). However, the fit
remains similar after correcting for differences in population size
(see Supplementary Table 1), indicating that irregular graphs
structurally amplify the isolation of populations. Unbalanced
migration fluxes lead central vertices to host more individuals
than allowed by their carrying capacity. This causes increased
competition that results in a higher death rate, so that migrants
have a lower probability of further spreading their trait. Highly
connected vertices therefore behave as bottlenecks, increasing the
isolation of peripheral vertices and consequently amplifying
QST,u.

We then evaluate the concurrent effect of 〈l〉 and hd on
QST,u with a multivariate regression model that we fit indepen-
dently for low and high migration regimes (Fig. 2d). The
multivariate regression model explains at least 70% of the
variation in QST,u for the migration regimes considered and for
graphs with M= 7 vertices (see Supplementary Table 2 for
details). Moreover, we find that 〈l〉 and hd have akin
contributions to neutral differentiation for low m, but the effect
of 〈l〉 increases for higher migration regimes while the effect of
hd decreases. To ensure that these conclusions can be generalised
to larger graphs, we conduct the same analysis on a subset of
graphs with M= 9 vertices and find congruent results (Supple-
mentary Fig. 1). In the absence of selection and with competitive
interactions, graphs with a high average path length 〈l〉 and
low homogeneity in vertex degree hd, or similarly graphs with low

connectivity and high heterogeneity in connectivity, show high
levels of neutral differentiation.

Deterministic approximation of the population dynamics and
adaptation under heterogeneous selection. We next consider
heterogeneous selection and investigate the response of adaptive
differentiation to the spatial distribution of habitat types, denoted as
the Θ-spatial distribution. Adaptive differentiation emerges from
local adaptation, but migration destabilises adaptation as a result of
the influx of maladaptive migrants. We expect that higher con-
nectivity between vertices of similar habitat type increases the level
of adaptive differentiation, because it increases the proportion of
well-adapted migrants. Local adaptation can be investigated by
approximating the stochastic dynamics of the trait distribution with
a deterministic partial differential equation (PDE). We demonstrate
under mean-field assumption how the deterministic approximation
can be reduced to an equivalent two-habitat model. We analyse the
reduced model with the theory of adaptive dynamics36,41 and find a
critical migration threshold m⋆ that determines local adaptation.
m⋆ depends on a quantity coined the habitat assortativity rΘ, and
we demonstrate with numerical simulations that rΘ determines the
overall adaptive differentiation level QST,s reached at steady state in
the deterministic approximation.

Heterogeneous selection, captured by the dependence of the
birth rate on Θi, generates a stabilising force that dampens the
stochastic fluctuations of the adaptive trait distribution. The
dynamics of the adaptive trait distribution consequently shows a
deterministic behavior and we demonstrate in the Supplementary
Note and Supplementary Figs. 3 and 4 that the number of
individuals on vi with traits s 2 Ω � S can be approximated by
the quantity ∫Ωn(i)(s)ds, where n(i) is a continuous function
solution of the PDE

∂tn
ðiÞ
t ðsÞ ¼ nðiÞt ðsÞ bðiÞðsÞð1�mÞ � 1

K

Z
S
nðiÞt ðsÞds

� �

þm∑
j≠i
bjðsÞ

ai;j
dj

nðjÞt ðsÞ þ
1
2
μσ2μΔs bðiÞðsÞnðiÞt ðsÞ

h i ð4Þ

Equation (4) is similar to Eq. (3), except that it incorporates an
additional term corresponding to mutation processes and that the
birth rate is trait-dependent. We show how Eq. (4) can be reduced
to an equivalent two-habitat model under mean-field assumption.
The mean-field approach differs slightly from the setting with no
selection because vertices are labelled with Θi. Here we assume
that vertices with similar habitat types have an equivalent position
on the graph (see Supplementary Fig. 5 for a graphical
representation), so that all vertices with habitat type I are
characterised by the identical adaptive trait distribution that we
denote by nI, and are associated with the birth rate
bIðsÞ ¼ bð1� pðs� θIÞ2Þ. Let P(I, II) denote the proportion of
edges connecting a vertex vi of type II to a vertex vj of type I, and
let P(I) denote the proportion of vertices vi of type I. By further
assuming that habitats are homogeneously distributed on the
graph so that PðIÞ ¼ PðIIÞ ¼ 1

2, Eq. (4) transforms into

∂tn
I
t ðsÞ ¼ nIt ðsÞ bIðsÞð1�mÞ � 1

K

Z
S
nIt ðsÞds

� �
þ 1

2
μσ2μðΔsb

InIt ÞðsÞ

þm
2
½ð1� rΘÞbIIðsÞnIIt ðsÞ þ ð1þ rΘÞbIðsÞnIt ðtÞ�

ð5Þ
(see Methods), where we define

rΘ ¼ 2 PðI; IÞ � PðI; IIÞð Þ ð6Þ
as the habitat assortativity of the graph, which ranges from −1 to
1. When rΘ=− 1, all edges connect dissimilar habitat types
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(disassortative graph), while as rΘ tends towards 1 the graph is
composed of two clusters of vertices with identical habitat types
(assortative graph). Eq. (5) can be analysed with the theory of
adaptive dynamics36,38,41, a mathematical framework that
provides analytical insights by assuming a “trait substitution
process”. Following this assumption, the mutation term in Eq. (5)
is omitted and the phenotypic distribution results in a collection
of discrete individual types that are gradually replaced by others
until evolutionary stability is reached (see Methods and36,38,41 for
details). By applying the theory of adaptive dynamics, we find a
critical migration rate m⋆

m? ¼ 1
ð1� rΘÞ

4pθ2

ð1þ 3pθ2Þ ð7Þ

so that when m >m⋆, a single type of individual exists with
adaptive trait s� ¼ θII þ θI

� �
=2 ¼ 0 in the steady-state (see

Methods for the derivation of Eq. (7)). In this case, adaptive
differentiation QST,s is nil and the average population size is given
by N ¼ bKð1� pθÞ2. In contrast, when m= 0 and/or rΘ= 1, all
individuals are locally well-adapted with trait Θi on vi, and it
follows that the average population size is higher and equal to
N ¼ bK , while adaptive differentiation is maximal and equal to
QST;s ¼ VarðΘÞ= VarðΘÞ þ 0ð Þ ¼ 1. When 0 <m <m⋆, the coex-
istence of two types of individuals on each vertex vi is predicted
but the calculation of the trait values is more subtle. To
understand the effect of m and rΘ on the local trait distributions
and on QST,s, we therefore leave behind the adaptive dynamics
framework and numerically solve Eq. (5) by including the
mutation term. When 0 <m <m⋆, the local trait distributions are
bimodal with peaks corresponding to the two types of individuals
predicted by the adaptive dynamics. The highest peak corre-
sponds to the well-adapted individuals, whose adaptation is
destabilised by the influx of maladaptive migrants (Fig. 3a). This
phenomenon is dampened as rΘ increases, since the proportion of

maladaptive migrants is reduced in assortative graphs (Fig. 3b).
As a consequence, the habitat assortativity rΘ increases the
differentiation QST,s when 0 <m <m⋆ (Fig. 3c). The simulations
further confirm that the adaptive dynamics prediction given by
Eq. (7) is still valid when the continuous accumulation of
mutations is considered, so that for m >m⋆ the local trait
distributions obtained from Eq. (5) are unimodal and QST,s

vanishes (Fig. 3a,c). Our analysis of the mean-field deterministic
approximation Eq. (5) therefore demonstrates that assortative
graphs present high levels of adaptive differentiation QST,s. On the
other hand, the analysis shows that QST,s rapidly declines with
increasing m on disassortative graphs, until QST,s vanishes when
m >m⋆.

Effect of graph topology on adaptive differentiation under
heterogeneous selection. To generalise the conclusions drawn
from the mean-field deterministic approximation Eq. (5), we
generate different Θ-spatial distributions for varying graph
topology, and compare outputs of the IBM simulations with those
of Eq. (5) (see Methods for the details of the simulations). For
each combination of Θ-spatial distribution and graph, we com-
pute the habitat assortativity rΘ, since rΘ can be generalised from
Eq. (6) to any graph topology following the original definition
of51 as

rΘ ¼ CovðΘ ´ ;Θ^Þ
σΘ ´

σΘ^
ð8Þ

whereΘ× andΘ∧ denote the sets of habitats found at the toe and tip
of each directed vertex of graph V, and 〈Θ×〉, 〈Θ∧〉 and
σΘ ´

; σΘ^
denote their respective means and standard deviations

(see Supplementary Note). The mean-field deterministic approx-
imation Eq. (5) is in very good agreement with the IBM simulations
for general graph ensembles at low migration regimes, and captures
the response of N and QST,s to rΘ (Fig. 4). Nonetheless, under high

Fig. 3 Effect of habitat assortativity rΘ and migration m on the local adaptive trait distribution nI and on the adaptive differentiation level QST,s under
the mean field, deterministic approximation Eq. (5). a Effect of m and rΘ on nI . Migration induces the apparition of maladaptive individuals (centred
around θII= 0.5), which destabilise local adaptation by displacing the mean value of the well-adapted individuals (centred around θI=− 0.5). Together
with the decrease in local adaptation, migration causes a displacement of the mean value of the local trait distribution (represented by the vertical dashed
lines), which decreases local population size and adaptive differentiation QST,s. b Similar data for higher rΘ. Increasing rΘ increases population size and QST,s.
c Effect of rΘ on QST,s. The red line indicates the critical migration threshold m⋆ predicted by Eq. (7); QST,s vanishes when m >m⋆.
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migration regimes, higher levels of QST,s are observed in the sto-
chastic simulations compared with the mean field deterministic
approximation (Supplementary Fig. 6). We hypothesize that this
reinforcement is generated by stochastic drift, which must become
the main driver of differentiation when local adaptation is lost for
m >m⋆, and perform a multivariate regression analysis to investi-
gate the additional effect of〈l〉 and hd on QST,s. As expected, the
analysis highlights that the effect of〈l〉 and hd are substantial and
complement the effect of rθ for high m (Fig. 5c for graphs with
M= 7 vertices and Supplementary Fig. 7a for M= 9), further
explaining the discrepancies observed (see Supplementary Table 3).

We extend our analyses to realistic landscapes with a
continuum of habitat types by running simulations on graphs
obtained from real spatial habitat datasets and by considering
mean annual temperature as a proxy for habitat type (see
Supplementary Fig. 8 and Supplementary Table 4). We also
consider simulations accounting for trait-dependent competi-
tion to test whether our results hold under more complex
ecological processes (see Supplementary Note for the imple-
mentation details and Supplementary Table 5 for the results).
The simulations are congruent and show that the effects of rΘ,
hd, and 〈l〉 are similar under these alternative settings,
underlining the robustness of these metrics and the generality of
our conclusions. Taken together, these results indicate that
under sufficiently strong selection and sufficiently high habitat
heterogeneity, adaptive differentiation QST,s is mainly driven by
habitat assortativity rΘ. Nonetheless, local adaptation is lost in
disassortative graphs when m >m⋆, such that 〈l〉 and hd
become complementary determinants of QST,s for high migra-
tion regimes.

Effect of habitat assortativity on neutral differentiation under
heterogeneous selection. We finally consider a setting with het-
erogeneous selection where individuals carry both neutral and
adaptive traits. With distinct habitat types, selection promotes
neutral differentiation by reducing the birth rate of maladaptive
migrants, reinforcing the isolation of local populations. We have
shown above that adaptive differentiation QST,s is driven by
habitat assortativity rΘ, so we expect rΘ, together with the

topological metrics found in the setting with no selection, to
influence the level of neutral differentiation QST,u. We first
investigate how the response of QST,u to migration compares
between the setting with no selection and the setting with het-
erogeneous selection for graphs with an identical topology. We
then examine how the response compares between graphs with
an identical topology but different rΘ. We finally consider
simulations on different graphs with varying rΘ to assess the
concurrent effect of 〈l〉, hd, and rΘ on QST,u.

Migration has a fitness cost because maladaptive migrants
present lower fitness. Under an equivalent migration regime,
migrants therefore have a lower probability of reproduction,
increasing the populations’ isolation compared with a setting
without selection. Simulations with varying m on the complete
graph confirm that selection in heterogeneous habitats reinforces
QST,u compared with a setting without selection (Fig. 5a).
Nonetheless, previous results show that adaptive differentiation
QST,s vanishes on a disassortative graph when m >m⋆, implying
that individuals become equally fit in all habitats. In this case, the
isolation effect of heterogeneous selection is lost and QST,u reaches
a similar level as in the setting with no selection for m >m⋆

(Fig. 5a), although QST,u is slightly higher in the setting with
heterogeneous selection due to lower population size
(N ¼ bKð1� pθÞ vs. N ¼ bK , see section above and Methods).
This suggests that rΘ reinforces QST,u, as assortative graphs
sustain higher levels of adaptive differentiation (Figs. 3 and 4).
Simulations on the path graph with varying Θ-spatial distribution
support this conclusion for high migration regimes, but show the
opposite relationship under low migration regimes, where the
habitat assortativity rΘ decreases QST,u (Fig. 5b). Assortative
graphs are composed of large clusters of vertices with similar
habitats, within which migrants can circulate without fitness
losses. Local neutral trait distributions become more correlated
within these clusters, resulting in a decline in QST,u for assortative
graphs compared with disassortative graphs. Figure 5b therefore
highlights the ambivalent effect of rΘ on QST,u. rΘ reinforces QST,u

by favouring adaptive differentiation, but also decreases QST,u by
decreasing population isolation within clusters of vertices with the
same habitat type.

Fig. 4 Effect of habitat heterogeneity rΘ on QST,s and average population size N for general graph ensembles. a Effect of rΘ on QST,s for all undirected
connected graphs with M= 7 vertices and varying rΘ, for m= 0.1. b Effect of rΘ on average population size N for the same simulations. In a and b, each dot
represents average results from 5 replicate simulations of the IBM, the colour scale corresponds to the proportion of the graphs with similar x and y axis
values (graph density), and the blue lines correspond to results obtained from the mean-field approximation Eq. (5). Insights from Eq. (5) are congruent
with the IBM simulations for complex habitat connectivity patterns at low m. Similar results with m= 0.5 are presented in Supplementary Fig. 6.
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We compare the effect of rΘ on QST,u to the effect of the
topology metrics 〈l〉 and hd found in the setting with no
selection using multivariate regression analysis on simulation
results obtained for different graphs with varying Θ-spatial

distribution (Fig. 5d for graphs with M= 7 vertices and
Supplementary Fig. 7b for M= 9). The multivariate model
explains the discrepancies in QST,u across the simulations for low
and high migration regimes (see Supplementary Table 3 for

Fig. 5 Effect of rΘ, 〈l〉, and hd on QST,s and QST,u in the setting with heterogeneous selection. a Comparison of the response of QST,u to migration with
the response of QST,u in the setting with no selection for the complete graph. The dashed vertical blue line corresponds to the critical migration regime m⋆

predicted by Eq. (7). Heterogeneous selection increases QST,u when m <m⋆, but local adaptation is lost when m >m⋆, and in this case QST,u reaches similar
levels as QST,u in the setting with no selection. b Response of QST,u to rΘ and migration for the path graph. rΘ correlates positively with QST,u for high m, but
correlates negatively for low m. In a, b, each plain dot represents average results from 5 replicate simulations, the bars represent one standard deviation,
and each fade dot represents a single replicate value. c, d Standardized effect of hd, 〈l〉, and rΘ on QST,s, and QST,u obtained from a multivariate regression
model independently fitted for low and high migration regimes on average results from 5 replicate simulations of the IBM on all undirected connected
graphs with M= 7 vertices and varying rΘ (see Methods). The ambivalence of the effect of rΘ on QST,u found for the path graph holds for general graph
ensembles and adds up to that of 〈l〉 and hd. Error bars show 95% confidence intervals. Analogous results on graphs with M= 9 vertices are presented
in Supplementary Fig. 7 and all regression details can be found in Supplementary Table 3.
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details), and we find that rΘ, 〈l〉, and hd contribute similarly to
neutral differentiation. Hence, the effects of rΘ and the topology
metrics 〈l〉 and hd add up under heterogeneous selection. A
change in sign of the standardized effect of rΘ on QST,s for low
and high migration regimes verifies that the ambivalent effect of
rΘ on QST,u found on the path graph holds for general graph
ensembles. Simulations with trait-dependent competition and
simulations on realistic graphs with a continuum of habitat types
equally confirm the ambivalent effect of rΘ and further support
the complementary effect of 〈l〉 and hd on QST,u (see
Supplementary Fig. 8). 〈l〉 and hd therefore drive neutral
differentiation with and without heterogeneous selection. rΘ
becomes an additional determinant of neutral differentiation
under heterogeneous selection. In contrast to the non-ambivalent,
positive effect of habitat assortativity on adaptive differentiation,
rΘ can amplify or depress neutral differentiation depending on
the migration regime considered.

Discussion
Using analytical tools and simulations, we have built upon a
graph representation of landscapes and a stochastic individual-
based model to investigate how landscape features drive pheno-
typic differentiation. Our study is based on a first-principles
modelling approach29 describing the stochastic dynamics of
individuals and capturing the interplay between population
dynamics, phenotypic evolution, and spatial dynamics in het-
erogeneous habitats. In contrast to metacommunity models17–23

and evolutionary metacommunity models26,27, we have focused
on differentiation at the population level. Quantitative genetics
and population genetics studies have investigated the effect of
topology on differentiation under the assumption of non-
overlapping generations, constant population sizes, and regular
spatial structures31,33,34,48,52. Generalising beyond these
assumptions, our modelling framework accounts for population
dynamics and includes competition and frequency-dependent
selection. The systematic investigation of the effect of topology on
differentiation over general graph ensembles and under different
ecological settings shows that average path length 〈l〉, homo-
geneity in vertex degree hd, and habitat assortativity rΘ contribute
equally to differentiation. These results support correlative studies
that have associated population differentiation44,53 and species
richness4,5,54–59 with a variety of metrics used as surrogates for
connectivity, connectivity heterogeneity, and habitat hetero-
geneity. To further our understanding of the origin of spatial
biodiversity patterns, the contribution of landscape properties to
discrepancies in population differentiation could be investigated
at large scales by (i) using techniques to project real landscapes on
graphs (see Supplementary Fig. 8a, b); (ii) characterising the
landscape features with 〈l〉, hd and rΘ; and (iii) relating the
obtained metrics maps to observation data. More generally, the
proposed eco-evolutionary model on spatial graphs could be
combined with inference methods to estimate ecological, spatial,
and evolutionary processes of real populations from observation
data, similarly to60. This approach might improve current infer-
ential techniques based on models that do not account for
competition nor heterogeneous selection (see e.g.61). Overall, our
results point to topology metrics that can connect spatial biodi-
versity patterns to the generating eco-evolutionary and spatial
processes.

In the absence of selection, neutral differentiation is more pro-
nounced on graphs with a high average path length 〈l〉, but is
also negatively associated with homogeneity in degree hd (Fig. 2c,
d).〈l〉 generalises the concept of dimensionality in33,34,48, where
it is shown that differentiation is lower for two-dimensional grid
graphs compared with path graphs.〈l〉 also closely relates to the

concept of resistance distance shown theoretically and empirically
to drive genetic differentiation53,62. At the species level, a similar
effect of 〈l〉 on β-diversity (pairwise differences in species
composition) has been reported with the graph metacommunity
model of21 and with the graph eco-evolutionary metacommunity
model of26. Accounting for population dynamics and specifically
including competition processes, we have shown that not only
〈l〉 but also hd affects neutral phenotypic differentiation (Fig. 2c,
d). Our model realistically assumes that population growth is
limited by the local carrying capacity. The latter becomes saturated
on highly connected vertices in irregular graphs, an effect that has
been experimentally documented in microcosm experiments63. As
a consequence, central vertices behave as bottlenecks and amplify
the isolation of peripheral vertices13. The role of hd cannot be
captured with classical metapopulation and quantitative genetics
models or with models of evolutionary dynamics in graphs, as they
assume constant population size. This behaviour should be pre-
valent in patchy landscapes where interspecific competition is high
because of limiting resources. Our study highlights that hetero-
geneity in connectivity can reinforce differentiation patterns
through the creation of unbalanced migration fluxes which affect
ecological equilibrium.

Habitat assortativity rΘ is a useful indicator for assessing how
the spatial distribution of habitat types modulates local adapta-
tion and adaptive differentiation in complex landscapes64. While
adaptation has been extensively studied along environmental
gradients32,35,40,65–68, landscapes can be patchy and it is unrea-
listic to assume regularity16. Our model of heterogeneous selec-
tion on spatial graphs extends the two-habitat setting investigated
in36,38,41,52 and captures irregularity in connectivity between
distinct habitats16. Similarly to the aforementioned studies, we
have found a critical migration regime m⋆ that dictates the
possibility of adaptation. Equation (7) indicates that m⋆ increases
with increasing selection strength p and with increasing envir-
onmental heterogeneity θ, the latter playing a similar role as the
slope of the environmental gradient in32,40,65,67. Local adaptation
would consequently be sustained under higher migration regimes
following an increase in these parameters. Additionally, the cri-
tical migration regime m⋆ in Eq. (7) involves the habitat assor-
tativity rΘ, which must be regarded as a measure of habitat spatial
auto-correlation based on the dispersal range of a species64. Our
results indicate that for general habitat distributions, rΘ is the
main determinant of adaptive differentiation under sufficiently
strong selection p and high habitat heterogeneity θ, irrespective of
the graph topology (Fig. 5c, Supplementary Fig. 7a, and Supple-
mentary Fig. 8). As p decreases, however, the effect of stochastic
drift on QST,s should increase, and in this case, the topology
metrics 〈l〉 and hd should become the most important deter-
minants of QST,s. Our results predict that in landscapes with
heterogeneous habitats and where selection is strong, populations
structured over assortative habitats are larger, support higher
adaptive differentiation, and can be locally well-adapted even in
the case where migration rates are high.

Spatial eco-evolutionary feedbacks in heterogeneous habitats
can critically affect differentiation64. While most eco-evolutionary
studies have investigated diversification by considering a unique
adaptive trait35,40,66,67, distinguishing between neutral and
adaptive processes is crucial9 and our work underlines the distinct
responses of neutral and adaptive differentiation to landscape
features (Fig. 5c vs. d). Our study builds upon recent mathema-
tical models that consider the co-evolution of neutral and adap-
tive traits42,43 and extends those works to a spatial context. Our
work provides an analytical framework to the concept of isolation
by environment (IBE)13, which has been suggested to be one of
the most important mechanisms governing differentiation in
nature14. Heterogeneous selection leads to more isolation by
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modifying the fitness of migrants40, which further reduces gene
flow64 and therefore affects the level of neutral differentiation
(Fig. 5a)15. Our work proposes a mechanism by which habitat
assortativity, relative to the migration regime, controls the
direction of the effect of habitat heterogeneity on differentiation
(Fig. 5d). Patchy, heterogeneous habitats can promote neutral
differentiation as a result of selection that reduces effective
migration59. Nonetheless, adaptive differentiation decreases sub-
stantially when migration is high relative to the critical migration
regime m⋆. In this case, neutral differentiation should be higher
in landscapes with more aggregated habitats64. Our study sug-
gests that habitat assortativity must be considered for a complete
understanding of differentiation in complex environments59.

In conclusion, we have established how differentiation can
emerge at the population level from eco-evolutionary feedbacks in
complex landscapes by using an analytical description of micro-
evolutionary processes explicitly accounting for spatial dynamics
over graphs. Our study formalises how differentiation emerges
from the interplay between spatial dynamics, the co-evolution of
neutral and adaptive traits, and landscape properties. Con-
nectivity and habitat assortativity emerge as core determinants of
differentiation in spatial graphs. These results resonate with
empirical findings and previous theoretical works. Our study
further stresses that habitat assortativity can depress or foster
neutral differentiation depending on the migration regime.
Additionally, our work highlights that heterogeneity in con-
nectivity is an equally strong determinant of differentiation
because highly connected habitats behave as bottlenecks,
increasing the isolation of peripheral habitats. The present
approach offers a promising framework for studying complex
adaptive systems, as it can elucidate how macroscopic properties
emerge from microscopic processes acting upon agents structured
over complex spatio-evolutionary structures.

Methods
Mean-field approximation. In the setting with no selection, the mean-field
approach involves the assumption that all vertices having the same degree are
equivalent. For this, let Pðk; k0Þ denote the proportion of edges that map a vertex
with degree k to a vertex with degree k0 , and consider the average population size

N
ðkÞ
t in each vertex with degree k at time t. An individual has probability Pðk; k0Þ=k0

to migrate from a vertex with degree k0 to a vertex with degree k. Viewing ai,j/dj as
the probability that an individual on vi chosen for migration moves to vj, Eq. (3)
then transforms into

∂tN
ðkÞ
t ¼ N

ðkÞ
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ðkÞ
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Assuming uncorrelated graphs for which Pðk; k0Þ=k0 ¼ Pðk0Þk0=hki, where 〈k〉
denotes the average degree of the graph49, yields
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t : ð11Þ

When solving for the stationary state and setting m= 1, one obtains N
ðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bK k
hkiN

q
from Eq. (10). Combining this with Eq. (11) yields

N ¼ bKh
ffiffiffi
k

p
i2=hki ð12Þ

In the setting with heterogeneous selection, the mean-field approach involves
the assumption that all vertices with a similar habitat are equivalent. In this case, an
individual from a vertex of habitat type II has the probability P(I, II)/P(II) of
migrating to a vertex of type I, and therefore Eq. (4) transforms into
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Considering that PðIIÞ ¼ PðIÞ ¼ 1
2 (habitats are equally distributed),

P(I, I)+ P(I, II)= P(I) (sum of conditional expectations), and rΘ ¼
2 PðI; IÞ � PðI; IIÞð Þ (Eq. (6)), one obtains

PðI; IIÞ ¼ 1
4
ð1� rΘÞ and PðI; IÞ ¼ 1

4
ð1þ rΘÞ ð14Þ

Combining Eq. (14) with Eq. (13) yields Eq. (5). We show in the Supplementary
Note how one can derive Eq. (6) from the general definition of assortativity given
in Eq. (8) and initially introduced in51.

Adaptive dynamics on graphs. The adaptive dynamics theory considers a
monomorphic population that evolves following a “trait substitution process”36.
Accordingly, the trait s of the monomorphic metapopulation evolves gradually
along the direction given by its fitness gradient, until it reaches a singular strategy
s* for which the fitness gradient vanishes. By omitting the mutation term, Eq. (6)
can be written in the matrix form

∂tntðsÞ ¼ Mðs;NtÞntðsÞ ð15Þ

where nt ¼ ðnIt ; nIIt Þ and Nt ¼ ðNI
t ;N

II
t Þ are the vectors containing the population

densities and the population size on each habitat type, and

Mðs;NÞ ¼ rIðs;NIÞ m
2 ð1� rΘÞbIIðsÞ

m
2 ð1� rΘÞbIðsÞ rIIðs;NIIÞ

" #
ð16Þ

is the so-called projection matrix36, with rIðs;NIÞ ¼ bIðsÞð1þ m
2 ðrΘ � 1ÞÞ � N

I
=K .

The overall fitness of individuals with trait s is the leading eigenvalue of M, which
we denote with λðs;NÞ. We obtain the singular strategy s* by setting the fitness
gradient ∂λ

∂s ðs;NÞ ¼ 0, from which we further obtain the demographic equilibrium

N
s�
. Because of symmetries, we must have N

I;s� ¼ N
II;s�

and s� ¼ θIþθII
2 ¼ 0, such

that N
I;s� ¼ N

II;s� ¼ bKð1� pθ2Þ. s* is said to be evolutionary stable if no mutants
can invade, i.e., if s* locally maximises the fitness of a mutant with trait y in the

resident population with trait s*, given by λðy;Ns� Þ (see36 for details). One can

show that ∂λ
∂y ðy;N

s� Þ
h i

y¼s�
¼ 0 and the condition for evolutionary stability becomes

∂2λ
∂y2 ðy;N

s� Þ
h i

y¼s�
<0. We compute and simplify this inequality through computer

algebra (see Mathematica notebook provided in the simulation code), which leads
to Eq. (7).

Numerical simulations. The model was implemented in a multi-purpose Julia
package called EvoId.jl, available at https://github.com/vboussange/EvoId.jl. For
each result presented, b= 1, local carrying capacity K= 150, selection strength
p= 1, mutation rate μ= 0.1, mutation range σμ= 5⋅10−2, and total time span
t= 1000. This parameter choice made it possible to discard transient dynamics
while obtaining results in a reasonable computational time (see Supplementary
Fig. 9). For both the setting with no selection and the setting with heterogeneous
selection, we ran simulations on all of the 853 undirected connected graphs with
M= 7 vertices and on 1126 of the 261,080 undirected connected graphs with
M= 9 vertices, listed at http://oeis.org/A001349. Graphs with M= 9 vertices were
selected with a stratified sampling method: we randomly sampled without repla-
cement a maximum of 50 graphs for each class of graphs with an equal number of
vertices. For the setting with heterogeneous selection, we generated the labeled
graphs by randomly generating Θ-spatial distributions, and by using a stratified
sampling strategy to select without replacement at most 3 and 2 Θ-spatial dis-
tributions corresponding to the quartiles of the rθ values obtained, respectively for
graphs with M= 7 and M= 9 vertices. This sampling strategy allowed to obtain a
uniform distribution of the topology metrics investigated in the study, and
therefore permitted to correctly represent the population of graphs to investigate
their effect on differentiation. We then computed QST,u and QST,s, which we further
averaged over the last time steps and across the replicates. Since the dynamics of
QST,u is characterised by large quadratic variations, we simulated individuals with
d= 300 neutral traits, where each trait can independently be affected by mutations.
QST,u values presented were then obtained from the average QST,u for each trait.
This reduced the variance of the numerical simulations and is also biologically
meaningful because populations are characterised by many traits, most of which
are neutral9. As initial conditions, MK individuals were homogeneously distributed
over all of the vertices, with traits centred on 0 and with standard deviation σμ.
Graph metrics used for the meta-analysis were calculated using the LightGraphs.jl
library69. We numerically solved the PDEs with a finite difference scheme using
DifferentialEquations.jl70, ensuring that the domain was large enough to avoid
border effects.

Statistics and reproducibility. Statistical anyalses were conducted in Julia using
StatsKit.jl. All simulations can be exactly reproduced from the code available at
https://github.com/vboussange/differentiation-in-spatial-graphs.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data underlying our figures is available at https://github.com/vboussange/
differentiation-in-spatial-graphs.

Code availability
The simulation code is available at https://github.com/vboussange/differentiation-in-
spatial-graphs.

Received: 29 August 2021; Accepted: 16 June 2022;

References
1. Hubbell, S. P. The unified neutral theory of biodiversity and biogeography.

Monographs in Population Biology 32 (Princeton University Press, Princeton
etc, 2001).

2. Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary
processes. Science 365, 1114–1119 (2019).

3. Ding, W.-N., Ree, R. H., Spicer, R. A. & Xing, Y.-W. Ancient orogenic and
monsoon-driven assembly of the world’s richest temperate alpine flora. Science
369, 578–581 (2020).

4. Dias, M. S. et al. Global imprint of historical connectivity on freshwater fish
biodiversity. Ecol. Lett. 17, 1130–1140 (2014).

5. Guégan, J.-F., Lek, S. & Oberdorff, T. Energy availability and habitat
heterogeneity predict global riverine fish diversity. Nature 391, 382–384
(1998).

6. Levin, S. A. Complex adaptive systems: Exploring the known, the unknown
and the unknowable. Bull. Am. Math. Soc. 40, 3–20 (2002).

7. Cabral, J. S., Valente, L. & Hartig, F. Mechanistic simulation models in
macroecology and biogeography: state-of-art and prospects. Ecography 40,
267–280 (2017).

8. Lion, S. Moment equations in spatial evolutionary ecology. J. Theor. Biol. 405,
46–57 (2016).

9. Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity:
implications for landscape genetics. Landsc. Ecol. 21, 797–807 (2006).

10. Slatkin, M. Isolation by distance in equilibrium and non-equilibrium
populations. Evolution 47, 264–279 (1993).

11. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric
speciation. Nature 400, 354–357 (1999).

12. Kaplan, N. L., Hudson, R. & Langley, C. H. The “hitchhiking effect” revisited.
Genetics 123, 887–899 (1989).

13. Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of
population genetic differentiation in the wild: Isolation by dispersal limitation,
isolation by adaptation and isolation by colonization. Mol. Ecol. 22,
5983–5999 (2013).

14. Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23,
5649–5662 (2014).

15. Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal
and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).

16. Dale, M. R. & Fortin, M. From graphs to spatial graphs. Annu. Rev. Ecol. Evol.
Syst. 41, 21–38 (2010).

17. Holland, M. D. & Hastings, A. Strong effect of dispersal network structure on
ecological dynamics. Nature 456, 792–794 (2008).

18. Gilarranz, L. J. & Bascompte, J. Spatial network structure and metapopulation
persistence. J. Theor. Biol. 297, 11–16 (2012).

19. Mari, L., Casagrandi, R., Bertuzzo, E., Rinaldo, A. & Gatto, M. Metapopulation
persistence and species spread in river networks. Ecol. Lett. 17, 426–434
(2014).

20. Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model
meta-ecosystems. Nat. Commun. 7, 12457 (2016).

21. Carrara, F., Altermatt, F., Rodriguez-Iturbe, I. & Rinaldo, A. Dendritic
connectivity controls biodiversity patterns in experimental metacommunities.
Proc. Natl Acad. Sci. USA 109, 5761–5766 (2012).

22. Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity
erodes species diversity, ecosystem functioning, and stability in
metacommunity networks. Ecography 40, 98–108 (2017).

23. Suzuki, Y. & Economo, E. P. From species sorting to mass effects: spatial
network structure mediates the shift between metacommunity archetypes.
Ecography 05453. https://doi.org/10.1111/ecog.05453. (2021)

24. Pelletier, F., Garant, D. & Hendry, A. Eco-evolutionary dynamics. Philos.
Trans. R. Soc. Lond. Ser. B, Biol. Sci. 364, 1483–1489 (2009).

25. Tkadlec, J., Pavlogiannis, A., Chatterjee, K. & Nowak, M. A. Population
structure determines the tradeoff between fixation probability and fixation
time. Commun. Biol. 2, 138 (2019).

26. Economo, E. P. & Keitt, T. H. Species diversity in neutral metacommunities: a
network approach. Ecol. Lett. 11, 52–62 https://doi.org/10.1111/j.1461-0248.
2007.01126.x (2008).

27. Economo, E. P. & Keitt, T. H. Network isolation and local diversity in neutral
metacommunities. Oikos 119, 1355–1363 (2010).

28. Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity
patterns in Mississippi-Missouri basin. Nature 453, 220–222 (2008).

29. Champagnat, N., Ferrière, R. & Méléard, S. Unifying evolutionary dynamics:
From individual stochastic processes to macroscopic models. Theor. Popul.
Biol. 69, 297–321 (2006).

30. Bansaye, V. & Méléard, S. Some stochastic models for structured populations:
scaling limits and long time behavior. Stochastic Models for Structured
Populations: Scaling Limits and Long Time Behavior 1–107 (2015). http://
arxiv.org/abs/1506.04165.

31. Bürger, R. The mathematical theory of selection, recombination, and
mutation. Wiley series in mathematical and computational biology (J. Wiley,
Chichester etc, 2000).

32. Slatkin, M. Spatial patterns in the distributions of polygenic characters. J.
Theor. Biol. 70, 213–228 (1978).

33. Lande, R. Isolation by distance in a quantitative trait. Genetics 128, 443–452
(1991).

34. Nagylaki, T. Geographical variation in a quantitative character. Genetics 136,
361–81 (1994).

35. Doebeli, M. & Dieckmann, U. Speciation along environmental gradients.
Nature 421, 259–264 (2003).

36. Meszéna, G., Czibula, I. & Geritz, S. Adaptive dynamics in a 2-patch
environment: A toy model for allopatric and parapatric speciation. J. Biol. Syst.
05, 265–284 (1997).

37. Aguilée, R., Claessen, D. & Lambert, A. Adaptive radiation driven by the interplay
of eco-evolutionary and landscape dynamics. Evolution 67, no–no (2012).

38. Débarre, F., Ronce, O. & Gandon, S. Quantifying the effects of migration and
mutation on adaptation and demography in spatially heterogeneous
environments. J. Evolut. Biol. 26, 1185–1202 (2013).

39. Wickman, J. et al. Determining selection across heterogeneous landscapes: A
perturbation-based method and its application to modeling evolution in space.
Am. Naturalist 189, 381–395 (2017).

40. Polechová, J. Is the sky the limit? On the expansion threshold of a species’
range. PLoS Biol. 16, 1–18 (2018).

41. Mirrahimi, S. & Gandon, S. Evolution of specialization in heterogeneous
environments: equilibrium between selection, mutation and migration.
Genetics 214, 479–491 (2020).

42. Billiard, S., Ferrière, R., Méléard, S. & Tran, V. C. Stochastic dynamics of
adaptive trait and neutral marker driven by eco-evolutionary feedbacks. J.
Math. Biol. 71, 1211–1242 (2015).

43. Anceschi, N. et al. Neutral and niche forces as drivers of species selection. J.
Theor. Biol. 483, 109969 (2019).

44. Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics:
combining landscape ecology and population genetics. Trends Ecol. Evol. 18,
189–197 (2003).

45. Lande, R. Neutral theory of quantitative genetic variance in an island model
with local extinction and colonization. Evolution 46, 381–389 (1992).

46. Whitlock, M. C. Evolutionary inference from Q ST. Mol. Ecol. 17, 1885–1896
(2008).

47. Gillespie, D. T. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

48. Kimura, M. & Weiss, G. H. The stepping stone model of population structure
and the decrease of genetic correlation with distance. Genetics 49, 561–76
(1964).

49. Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction-diffusion processes
and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282
(2007).

50. Bounova, G. & de Weck, O. Overview of metrics and their correlation patterns
for multiple-metric topology analysis on heterogeneous graph ensembles.
Phys. Rev. E 85, 016117 (2012).

51. Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 026126
(2003).

52. Yeaman, S. & Otto, S. P. Establishment and maintenance of adaptive genetic
divergence under migration, selection, and drift. Evolution 65, 2123–2129 (2011).

53. McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal
populations. Proc. Natl Acad. Sci. 104, 19885–19890 (2007).

54. Liu, C., Dudley, K. L., Xu, Z.-H. & Economo, E. P. Mountain
metacommunities: climate and spatial connectivity shape ant diversity in a
complex landscape. Ecography 41, 101–112 (2018).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03595-3 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:668 | https://doi.org/10.1038/s42003-022-03595-3 | www.nature.com/commsbio 11

https://github.com/vboussange/differentiation-in-spatial-graphs
https://github.com/vboussange/differentiation-in-spatial-graphs
https://github.com/vboussange/differentiation-in-spatial-graphs
https://github.com/vboussange/differentiation-in-spatial-graphs
https://doi.org/10.1111/ecog.05453
https://doi.org/10.1111/j.1461-0248.2007.01126.x
https://doi.org/10.1111/j.1461-0248.2007.01126.x
http://arxiv.org/abs/1506.04165
http://arxiv.org/abs/1506.04165
www.nature.com/commsbio
www.nature.com/commsbio


55. Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species
richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

56. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant
diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

57. Davies, R. G. et al. Topography, energy and the global distribution of bird
species richness. Proc. R. Soc. B: Biol. Sci. 274, 1189–1197 (2007).

58. Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta-
diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr.
16, 650–656 (2007).

59. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal
driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17,
866–880 (2014).

60. Lepers, C., Billiard, S., Porte, M., Méléard, S. & Tran, V. C. Inference with
selection, varying population size, and evolving population structure:
application of ABC to a forward-backward coalescent process with
interactions. Heredity 126, 335–350 (2021).

61. Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population
structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100
(2015).

62. McRae, B. H. Isolation by resistance. Evolution 60, 1551 (2006).
63. Altermatt, F. & Fronhofer, E. A. Dispersal in dendritic networks: Ecological

consequences on the spatial distribution of population densities. Freshw. Biol.
63, 22–32 (2018).

64. Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic
adaptation and the spatial scale of evolution. Trends Ecol. Evolution 29,
165–176 (2014).

65. Slatkin, M. Gene flow and selection in a cline. Genetics 75, 733–756 (1973).
66. Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Naturalist

150, 1–23 (1997).
67. Polechová, J. & Barton, N. H. Limits to adaptation along environmental

gradients. Proc. Natl Acad. Sci. USA 112, 6401–6406 (2015).
68. Andrade-Restrepo, M., Champagnat, N. & Ferrière, R. Local adaptation,

dispersal evolution, and the spatial eco-evolutionary dynamics of invasion.
Ecol. Lett. 22, 767–777 (2019).

69. Bromberger, S. & other Contributors. JuliaGraphs/LightGraphs.jl. https://zenodo.
org/record/1412141. (2017)

70. Rackauckas, C. & Nie, Q. DifferentialEquations.jl - a performant and feature-
rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5
(2017).

Acknowledgements
We thank Thomas Poulet, Sylvian Billiard, Sepideh Mirrahimi, Heike Lischke, Joshua
Payne, Conor Waldock, Yaquan Chang, Flora Desmet, Benjamin Flück and Alexander

Skeels for helpful discussions and comments on the manuscript. L.P. was supported by
the Swiss National Science Foundation grant (N∘ 310030_188550). We thank two
anonymous reviewers for constructive comments and valuable suggestions on a previous
version of this article.

Author contributions
V.B. and L.P. designed research; V.B. performed research; V.B. and L.P. wrote the paper.

Competing interests
The authors declare no competing interest.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03595-3.

Correspondence and requests for materials should be addressed to Victor Boussange or
Loïc Pellissier.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editors: Quan-Xing
Liu and Caitlin Karniski.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03595-3

12 COMMUNICATIONS BIOLOGY |           (2022) 5:668 | https://doi.org/10.1038/s42003-022-03595-3 | www.nature.com/commsbio

https://zenodo.org/record/1412141
https://zenodo.org/record/1412141
https://doi.org/10.1038/s42003-022-03595-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

