
ETH Library

Benchmark of active learning
methods for structural reliability
analysis

Other Conference Item

Author(s):
Moustapha, Maliki ; Marelli, Stefano ; Sudret, Bruno 

Publication date:
2022-07-20

Permanent link:
https://doi.org/10.3929/ethz-b-000559274

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1138-4666
https://orcid.org/0000-0002-9268-9014
https://orcid.org/0000-0002-9501-7395
https://doi.org/10.3929/ethz-b-000559274
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Benchmark of active learning methods for structural reliability analysis
15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
(MCQMC), Linz, July 17-22, 2022

Maliki Moustapha, Stefano Marelli and Bruno Sudret

Chair of Risk, Safety and Uncertainty Quantification | ETH Zürich

MCQMC 2022 - Linz, July 20, 2022



How to cite?

This presentation is a talk given at the 15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing (MCQMC) on July 20, 2022.

How to cite
Moustapha, M., Marelli, S. and Sudret, B., Benchmark of active learning methods for structural reliability analysis,
15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC),
Linz (Austria), July 17-22, 2022.

Benchmark of active learning reliability methods Linz, 20/07/22 M. Moustapha 1 / 26



Structural reliability analysis

• Estimate the probability of occurrence of an adverse event

Pf =
∫

Df
fX (x) dx

fX (x): Joint distribution of the random vector X

Df = {x ∈ DX : g (x, M (x) ≤ 0)}: Failure domain

• Failure is assessed by a limit-state function g : x ∈ DX 7→ R,
based on a computational model M

• Multi-dimensional integral (d = 10 − 100+), implicit domain of
integration

• Failures are (usually) rare events: sought probability in the range
10−2 to 10−8

Benchmark of active learning reliability methods Linz, 20/07/22 M. Moustapha 2 / 26



Classical methods

Approximation methods Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

• First-/Second- order reliability method (FORM/SORM)

– Relatively inexpensive semi-analytical methods
– Convergence is not guaranteed (e.g. in presence of multiple failure regions)

Simulation methods Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

• Monte Carlo simulation

– Unbiased but slow convergence rate

• Variance-reduction methods

– e.g. importance sampling, subset simulation, line sampling, etc.
– Their computational costs remain high (i.e. O(103−4) model runs)

Surrogate models can be used to leverage the computational cost of simulation methods
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M with the following features:

• It is built from a limited set of runs of the original model M called the experimental design
X =

{
x(i), i = 1, . . . , N

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = β
T · f(x) + Z(x, ω) β , σ2

Z , θ

Support vector machines M̃(x) =
m∑

i=1

ai K(xi, x) + b a , b
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Active learning reliability framework Bichon et al. (2009), Echard et al. (2011)

Principle: A surrogate model, built by adaptively enriching an experimental design E = {X , g (X )} so
as to be accurate in the vicinity of the limit-state surface, is used within a reliability analysis

Build an initial experimental design E(0)

i = 0

Build a surrogate model ĝ(i) using E(i)

Estimate the failure probability P̂f using ĝ(i)

Estimate the accuracy of P̂f

Converged?

Enrich the experimental design
E(i+1) = E(i) ∪ {X enr, g(X enr)}

End

i = i+ 1

no

yes

Benchmark of active learning reliability methods Linz, 20/07/22 M. Moustapha 5 / 26



Active learning reliability illustration

Active Kriging - Monte Carlo simulation (AK-MCS) Echard et al. (2011)

• Gaussian process model to emulate the limit-state

• ED locally enriched using the deviation number U

• Probability of failure estimated using Monte Carlo
simulation

• Convergence assumed when U is sufficiently large
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Active learning reliability methods Teixeira et al. (2021), Moustapha et al. (2022)

Numerous papers on active learning called AK-XXX-YYY in the last few years!

• AK-MCS is a cornerstone for the development of active
learning reliability strategies

• Most methods in the literature are built by modifying:

– the surrogate model

– the learning function

– the algorithm for reliability estimation

– the stopping criterion
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A module-oriented survey Moustapha et al. (2022)

Monte Carlo simulation Subset simulation Importance sampling Other

Kriging
Bichon et. al (2008) Echard et. al (2011)
Hu & Mahadevan (2016) Wen et al. (2016
) Fauriat & Gayton (2017) Jian et. al
(2017) Peijuan et al. (2017) Sun et al.
(2017) Lelievre et al. (2018) Xiao et
al. (2018) Jiang et al. (2019) Tong et
al. (2019) Wang & Shafieezadeh (2019)
Wang & Shafieezadeh (SAMO, 2019)
Zhang, Wang et al. (2019)

Huang et al. (2016) Tong et al. (2015)
Ling et al. (2019) Zhang et al. (2019)

Dubourg et al. (2012) Balesdent et al.
(2013) Echard et al. (2013) Cadini et
al. (2014) Liu et al. (2015) Zhao et al.
(2015) Gaspar et al. (2017) Razaaly et
al. (2018) Yang et al. (2018) Zhang &
Taflanidis (2018) Pan et al. (2020) Zhang
et al. (2020)

Lv et al. (2015) Bo &
HuiFeng (2018) Guo et al.
(2020)

PCE
Chang & Lu (2020) Marelli & Sudret
(2018) Pan et al. (2020)

SVM
Basudhar & Missoum (2013) Lacaze &
Missoum (2014) Pan et al. (2017)

Bourinet et al. (2011) Bourinet (2017)

RSM/RBF
Li et al. (2018) Shi et al. (2019)

Rajakeshir (1993) Rous-
souly et al. (2013)

Neural networks Chojazyck et al. (2015) Gomes et al.
(2019) Li & Wang (2020) [Deep NN] Sundar & Shields (2016)

Chojazyck et al. (2015)

Other
Schoebi & Sudret (2016) Sadoughi et al.
(2017) Wagner et al. (2021)

− U − EFF − Other variance-based − Distance-based − Bootstrap-based − Sensitivity-based − Cross-validation/Ensemble-based − ad-hoc/other
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General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...
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Extensive benchmark: set-up

Reliability method Surrogate model Learning function Stopping criterion

Monte Carlo simulation
Kriging U

Beta bounds

Subset simulation Beta stability 3 · 2 · 2 · 3 = 36 strategies

Importance sampling
PC-Kriging EFF

Combined

Monte Carlo simulation
PCE FBR Beta stability 3 strategiesSubset simulation

Importance sampling

Subset simulation, Importance sampling w/o metamodel 2 strategies

In total 39 + 2 = 41 strategies are tested

Moustapha, M., Marelli, S. & Sudret, B. Active learning reliability: survey, general framework and benchmark (2022), Struct. Saf., 96
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Gaussian process modelling or Kriging Rasmussen & Williams (2006)

• Kriging assumes that M (x) is a trajectory of an underlying Gaussian process

M (x) = βT f (x) + σ2Z (x)

βT f (x): trend - Z (x): zero-mean, unit variance Gaussian process - σ2 process variance

• The experimental design response Y and the response at new point Ŷ (x) are jointly Gaussian{
Ŷ (x)

Y

}
∼ NN+1

({
f(x)T β

Fβ

}
, σ2

{
1 rT (x)

r(x) R

})
• The prediction is given by the conditional mean (and variance)

µ
Ŷ (x)

=fT (x)β̂ + rT (x)R−1
(

Y − Fβ̂
)

σ2
Ŷ (x)

=σ̂2
(

1 − rT (x)R−1r(x) + uT (x)(FT R−1F)−1u(x)
)

Rij = R
(

x(i), x(j); γ̂
)

- r (x) = R
(

x, x(i); γ̂
)

- F = Fij = fj

(
x(i)
)

•
{

β̂, σ̂2, θ̂
}

are estimated by maximum likelihood
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Polynomial chaos expansions

• The random variable Y = M (X) can be cast as a polynomial expansion in the form Xiu & Karniadakis (2002)

Y =
∑

α∈NM

yα Ψα(X)

Ψα(X): Basis functions - yα : Coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal polynomials

• Approximation obtained by truncating the infinite series

Y = M(X) =
∑
α∈A

yαΨα(X) + εP

• Coefficients can computed by ordinary least square

• Sparsity enforced here using advanced truncation scheme and least angle regression Blatman & Sudret (2011)

• Analytical approximation of the leave-one-out error speeds up calibration
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Polynomial-Chaos Kriging

• Universal Kriging with a sparse PCE model as trend Schöebi et al. (2015,2016)

M (x) =
∑
α∈A

yαΨα(X) + σ2Z (x) ,

• Combines both advantages of PCE and Kriging:

– PCE approximates the global behaviour of the model
– Kriging captures local variations and provides an in-built error estimate

• Both the coefficients of the expansion and the auto-correlation parameters are calibrated

– Sequential PC-Kriging: LAR to detect basis then universal Kriging model calibration
– Optimal PC-Kriging: Universal Kriging model calibration at each iteration of LAR
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Reliability estimation algorithms Melchers & A.T. Beck (2018), Au & Beck (2001)

Crude Monte Carlo simulation

Pf,MC =
1
N

N∑
k=1

1Df
(x

(k))

• Universal and easy to implement

• Unbiased but slow convergence

• Difficulty to sample in the failure
domain for very small Pf

Importance sampling

Pf,IS =
1
N

N∑
k=1

1Df
(x

(k))
fX (x(k))

Ψ(x(k))

• Sample from an instrumental
density with higher weight in the
failure domain

• e.g., a Gaussian centered on the
most probable failure point

• Other advanced techniques not
considered here.

Subset simulation

Pf,SuS = P (D1)

m−1∏
i=1

P
(

Di+1|Di

)
• Solve a series of problems with

larger target probabilities

• Split the domain:

D1 ⊃ D2 ⊃ · · · ⊃ Dm = Df

• Conditional samples are obtained
using Markov Chain Monte Carlo
(MCMC)

• The initial and conditional
probabilities are estimated by
Monte Carlo simulation
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Extensive benchmark: options for the various methods

Kriging

� Trend: Constant

� Kernel: Gaussian

� Calibration: MLE

Monte Carlo simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

PCE

� Degree: 1− 20

� q-norm : 0.8

� Calibration: LAR

Importance sampling

� Max. sample size: 104

� Target C.o.V: 2.5%

� Instrumental density:
Standard Gaussian
centered on the MPFP

PC-Kriging

� Same as Kriging

� same as PCE but...

� Degree 1− 3

Subset simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

� Conditional probability:
p0 = 0.25

Overkill setting in reliability estimation algorithms
• Reduce the stochastic error due to the reliability estimation algorithm
• Increase the likelihood of finding enrichment points in the remote failure domains
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Extensive benchmark: selected problems

• 20 problems selected from the literature

• 11 come from the TNO benchmark
(https://rprepo.readthedocs.io/en/latest/)

• Wide spectrum of problems in terms of

– Dimensionality
– Reliability index β = −Φ−1(Pf )

~
~

Problem M Pf,ref Reference

01 (TNO RP14) 5 7.69 · 10−4 Rozsas & Slobbe 2019

02 (TNO RP24) 2 2.90 · 10−3 Rozsas & Slobbe 2019

03 (TNO RP28) 2 1.31 · 10−7 Rozsas & Slobbe 2019

04 (TNO RP31) 2 3.20 · 10−3 Rozsas & Slobbe 2019

05 (TNO RP38) 7 8.20 · 10−3 Rozsas & Slobbe 2019

06 (TNO RP53) 2 3.14 · 10−2 Rozsas & Slobbe 2019

07 (TNO RP54) 20 9.79 · 10−4 Rozsas & Slobbe 2019

08 (TNO RP63) 100 3.77 · 10−4 Rozsas & Slobbe 2019

09 (TNO RP7) 2 9.80 · 10−3 Rozsas & Slobbe 2019

10 (TNO RP107) 10 2.85 · 10−7 Rozsas & Slobbe 2019

11 (TNO RP111) 2 7.83 · 10−7 Rozsas & Slobbe 2019

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schoebi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011,2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3 Sadoughi et al. (2017)

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008)

19 (Transmission tower 1) 11 5.76 · 10−4 FEM (172 bars, 51 nodes)

20 (Transmission tower 2) 9 6.27 · 10−4 FEM (172 bars, 51 nodes)
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Ranking of the strategies: accuracy of β

Percentage of runs

How many times a method ranks best in terms of
smallest error on beta (resp. within 5, 10 or 20 times
this relative error)?

ε = |β − βref| /βref

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Kriging + IS + EFF + BS
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Ranking of the strategies: number of model evaluations

Percentage of runs

How many times a method ranks best (resp. within
2, 3, 5 times the lowest cost denoted N∗

eval) ?
• Best approach: PC-Kriging + SuS + EFF + BS

• Worst approaches: Direct SuS and Direct IS
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Ranking of the strategies: efficiency

Percentage of runs

How many times a method ranks best according to
efficiency ∆ (resp. within 5, 10, 20 times the best)?

∆ = εβ
Neval

Neval

where Neval is the median number of model evaluations
for a particular problem (over all methods and replications)

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Direct SuS and Direct IS
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Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. ∆ (regardless of the strategy)

• Surrogates: PC-Kriging dominates by far

• Reliability: Slight advantage to subset simulation

• Learning function: U dominates both EF F and F BR

• Stopping criterion: Slight advantage to the stability criterion
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Performance w.r.t. problem feature: dimension

Results split in dimension: M < 20 vs. M ≥ 20
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Performance w.r.t. problem feature: Pf range

Results split in reliability index: β < 3.5 vs. β ≥ 3.5
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Summary of the results

Recommendations w.r.t. the problem feature

Module Dimensionality Magnitude of the reliability index

M < 20 20 ≤ M ≤ 100 β < 3.5 β ≥ 3.5
Surrogate model PCK PCE PCE/PCK PCK

Reliability method SuS SuS SuS SuS

Learning function U FBR U/FBR U

Stopping criterion βbo,βco βbo / βco βbo,βco βbo

Main take-away
• The active learning method inherits the pros and cons of the reliability method

• Surrogate allows reducing the stochastic error due to the reliability estimation algorithm

There is no drawback in using surrogates compared to a direct solution
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

• Truly black-box benchmark with 27 problems

• Limit state functions not known to the participants and only accessible through an anonymous server

• Our solution: the “best approach” previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)
• Reference solution: black line

• Zero, one or more points per participant

• X: number of runs (log scale)

• Y: obtained β index

best approach: “on the line / to the left”
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability

System reliability
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability System reliability
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Conclusions

• Extensive survey and identification of an underlying recurring scheme

• Global framework for active learning reliability considering four components or modules

• Extensive benchmark running approximately 12, 000 reliability analyses

• Best performance from our benchmark: combination of PC-Kriging and subset simulation

• The flexibility of the proposed framework allows building strategies on-the-fly considering the features of the problem

• Surrogates should be used to harness the benefits of the most sophisticated reliability estimation algorithms
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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