

Benchmark of active learning methods for structural reliability analysis

Other Conference Item

Author(s): Moustapha, Maliki (b; Marelli, Stefano (b; Sudret, Bruno (b)

Publication date: 2022-07-20

Permanent link: https://doi.org/10.3929/ethz-b-000559274

Rights / license: In Copyright - Non-Commercial Use Permitted

ETH zürich

Benchmark of active learning methods for structural reliability analysis

15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC), Linz, July 17-22, 2022

Maliki Moustapha, Stefano Marelli and Bruno Sudret

Chair of Risk, Safety and Uncertainty Quantification | ETH Zürich

How to cite?

This presentation is a talk given at the 15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC) on July 20, 2022.

How to cite

Moustapha, M., Marelli, S. and Sudret, B., *Benchmark of active learning methods for structural reliability analysis*, 15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC), Linz (Austria), July 17-22, 2022.

Structural reliability analysis

· Estimate the probability of occurrence of an adverse event

$$P_{f}=\int_{\mathcal{D}_{f}}f_{oldsymbol{X}}\left(x
ight)\mathrm{d}x$$

 $egin{aligned} & f_{oldsymbol{X}}\left(oldsymbol{x}
ight) \colon & \mathsf{Jo} \ & \mathcal{D}_{f} = \{oldsymbol{x} \in \mathcal{D}_{oldsymbol{X}}: g\left(oldsymbol{x}, \mathcal{M}\left(oldsymbol{x}
ight) \leq 0
ight)\} \colon & \mathsf{Fa} \end{aligned}$

Joint distribution of the random vector \boldsymbol{X} Failure domain

- Failure is assessed by a limit-state function $g: x \in \mathcal{D}_X \mapsto \mathbb{R}$, based on a computational model \mathcal{M}
- Multi-dimensional integral ($d = 10 100^+$), implicit domain of integration
- Failures are (usually) rare events: sought probability in the range $10^{-2}~{\rm to}~10^{-8}$

ETHzürich

Classical methods

Approximation methods

Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

- First-/Second- order reliability method (FORM/SORM)
 - Relatively inexpensive semi-analytical methods
 - Convergence is not guaranteed (*e.g.* in presence of multiple failure regions)

Simulation methods

Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

- Monte Carlo simulation
 - Unbiased but slow convergence rate
- Variance-reduction methods
 - e.g. importance sampling, subset simulation, line sampling, etc.
 - Their computational costs remain high (i.e. $\mathcal{O}(10^{3-4})$ model runs)

Surrogate models can be used to leverage the computational cost of simulation methods

ETHzürich

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ x^{(i)}, i = 1, \dots, N \right\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
	$R \begin{pmatrix} \alpha \in \mathcal{A} \\ M \end{pmatrix}$	
Low-rank tensor approximations	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{l=1}^{l} b_l \left(\prod_{i=1}^{l} v_l^{(i)}(x_i)\right)$	$b_l, z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$\tilde{\mathcal{M}}(\boldsymbol{x}) = \boldsymbol{\beta}^{T} \cdot \boldsymbol{f}(\boldsymbol{x}) + Z(\boldsymbol{x}, \omega)$	$\boldsymbol{\beta},\sigma_Z^2,\boldsymbol{\theta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum^m a_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$oldsymbol{a}$, b
	i=1	

Outline

Introduction

Active learning reliability

Benchmark set-up

Results

Conclusion

Active learning reliability framework

Bichon et al. (2009), Echard et al. (2011)

Principle: A surrogate model, built by adaptively enriching an experimental design $\mathcal{E} = \{\mathcal{X}, g(\mathcal{X})\}$ so as to be accurate in the vicinity of the limit-state surface, is used within a reliability analysis

Active learning reliability illustration

Active Kriging - Monte Carlo simulation (AK-MCS)

- Gaussian process model to emulate the limit-state
- ED locally enriched using the deviation number U

Echard et al. (2011)

- Probability of failure estimated using Monte Carlo simulation
- Convergence assumed when U is sufficiently large

Numerous papers on active learning called AK-XXX-YYY in the last few years!

- AK-MCS is a cornerstone for the development of active learning reliability strategies
- Most methods in the literature are built by modifying:
 - the surrogate model
 - the learning function
 - the algorithm for reliability estimation
 - the stopping criterion

A module-oriented survey

Moustapha et al. (2022)

	Monte Carlo simulation	Subset simulation	Importance sampling	Other
Kriging				
	Bichon et. al (2008) Echard et. al (2011)	Huang et al. (2016) Tong et al. (2015)	Dubourg et al. (2012) Balesdent et al.	Lv et al. (2015) Bo &
	Hu & Mahadevan (2016) Wen et al. (2016	Ling et al. (2019) Zhang et al. (2019)	(2013) Echard et al. (2013) Cadini et	HuiFeng (2018) Guo et al.
) Fauriat & Gayton (2017) Jian et. al		al. (2014) Liu et al. (2015) Zhao et al.	(2020)
	(2017) Peijuan et al. (2017) Sun et al.		(2015) Gaspar et al. (2017) Razaaly et	
	(2017) Lelievre et al. (2018) Xiao et		al. (2018) Yang et al. (2018) Zhang &	
	al. (2018) Jiang et al. (2019) Tong et		Tafianidis (2018) Pan et al. (2020) Zhang	
	Al. (2019) Wang & Shafleezaden (2019)		et al. (2020)	
	Zhang Wang et al. (2010)			
DOE	Zhang, Wang et al. (2013)			
PCE	Chang & Lu (2020) Marelli & Sudret			
	(2018) Pan et al. (2020)			
SVM	() = = = = = = = = = = = = = = = = =	Bourinet et al. (2011) Bourinet (2017)		
04141	Basudhar & Missoum (2013) Lacaze &	Doumer et al. (2011) Doumer (2017)		
	Missoum (2014) Pan et al. (2017)			
RSM/RBF				Rajakeshir (1993) Rous-
	Li et al. (2018) Shi et al. (2019)			souly et al. (2013)
Neural networks	Chojazyck et al. (2015) Gomes et al.		Chojazyck et al. (2015)	
	(2019) Li & Wang (2020) [Deep NN]	Sundar & Shields (2016)		
Other				
	Schoebi & Sudret (2016) Sadoughi et al.			
	(2017) Wagner et al. (2021)			

- U - EFF - Other variance-based - Distance-based - Bootstrap-based - Sensitivity-based - Cross-validation/Ensemble-based - ad-hoc/other

General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model	Reliability estimation	Learning function	Stopping criterion
Kriging	Monte Carlo	U	LF-based
PCE	Subset simulation	EFF	Stability of β
SVR	Importance sampling	FBR	Stability of P_f
PC-Kriging	Line sampling	СММ	Bounds on eta
Neural networks	Directional sampling	SUR	Bounds on P_f

Outline

Introduction

Active learning reliability

Benchmark set-up

Results

Conclusion

Extensive benchmark: set-up

Reliability method	Surrogate model	Learning function	Stopping criterion		
Monte Carlo simulation	Kriging PC-Kriging	(riging L)	Beta bounds		
Subset simulation		Ringing DC Kristing		Beta stability	$3 \cdot 2 \cdot 2 \cdot 3 = 36$ strategies
Importance sampling		EFF	Combined		
Monte Carlo simulation					
Subset simulation	PCE	FBR	Beta stability	3 strategies	
Importance sampling					
Subset simulation, Importance sampling w/o metamodel				2 strategies	

In total 39 + 2 = 41 strategies are tested

Moustapha, M., Marelli, S. & Sudret, B. Active learning reliability: survey, general framework and benchmark (2022), Struct. Saf., 96

Benchmark of active learning reliability methods

Risk, Safety &

Gaussian process modelling or Kriging

Rasmussen & Williams (2006)

• Kriging assumes that $\mathcal{M}\left(x
ight)$ is a trajectory of an underlying Gaussian process

$$\mathcal{M}\left(\boldsymbol{x}\right)=\boldsymbol{\beta}^{T}\boldsymbol{f}\left(\boldsymbol{x}\right)+\sigma^{2}Z\left(\boldsymbol{x}\right)$$

 $m{eta}^{T}m{f}(m{x})$: trend - $Z(m{x})$: zero-mean, unit variance Gaussian process - σ^{2} process variance

- The experimental design response ${\cal Y}$ and the response at new point $\widehat{Y}(x)$ are jointly Gaussian

$$\begin{cases} \widehat{Y}(\boldsymbol{x}) \\ \mathcal{Y} \end{cases} \sim \mathcal{N}_{N+1} \left(\begin{cases} \mathbf{f}(\boldsymbol{x})^T \boldsymbol{\beta} \\ \mathbf{F} \boldsymbol{\beta} \end{cases}, \quad \sigma^2 \begin{cases} 1 & \mathbf{r}^T(\boldsymbol{x}) \\ \mathbf{r}(\boldsymbol{x}) & \mathbf{R} \end{cases} \right)$$

• The prediction is given by the conditional mean (and variance)

$$\begin{split} \mu_{\widehat{Y}(\boldsymbol{x})} &= \mathbf{f}^{T}(\boldsymbol{x})\hat{\boldsymbol{\beta}} + \mathbf{r}^{T}(\boldsymbol{x})\mathbf{R}^{-1}\left(\boldsymbol{\mathcal{Y}} - \mathbf{F}\hat{\boldsymbol{\beta}}\right) \\ \sigma_{\widehat{Y}(\boldsymbol{x})}^{2} &= \widehat{\sigma}^{2}\left(1 - \mathbf{r}^{T}(\boldsymbol{x})\mathbf{R}^{-1}\mathbf{r}(\boldsymbol{x}) + \mathbf{u}^{T}(\boldsymbol{x})(\mathbf{F}^{T}\mathbf{R}^{-1}\mathbf{F})^{-1}\mathbf{u}(\boldsymbol{x})\right) \\ R_{ij} &= R\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}; \widehat{\boldsymbol{\gamma}}\right) \cdot \boldsymbol{r}\left(\boldsymbol{x}\right) = R\left(\boldsymbol{x}, \boldsymbol{x}^{(i)}; \widehat{\boldsymbol{\gamma}}\right) \cdot \boldsymbol{F} = F_{ij} = f_{j}\left(\boldsymbol{x}^{(i)}\right) \end{split}$$

• $\left\{\widehat{eta},\widehat{\sigma}^2,\widehat{m{ heta}}
ight\}$ are estimated by maximum likelihood

Polynomial chaos expansions

• The random variable $Y = \mathcal{M}(X)$ can be cast as a polynomial expansion in the form

$$Y = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^M} y_{\boldsymbol{\alpha}} \, \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

 $\Psi_{\alpha}(X)$: Basis functions - y_{α} : Coefficients to be computed (coordinates)

- The PCE basis $\left\{\Psi_{m{lpha}}(m{X}),\,m{lpha}\in\mathbb{N}^M
 ight\}$ is made of multivariate orthonormal polynomials
- Approximation obtained by truncating the infinite series

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P}$$

- · Coefficients can computed by ordinary least square
- Sparsity enforced here using advanced truncation scheme and least angle regression
- Analytical approximation of the leave-one-out error speeds up calibration

Xiu & Karniadakis (2002)

Blatman & Sudret (2011)

Polynomial-Chaos Kriging

· Universal Kriging with a sparse PCE model as trend

Schöebi et al. (2015,2016)

$$\mathcal{M}\left(oldsymbol{x}
ight) = \sum_{oldsymbol{lpha} \in \mathcal{A}} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{X}) + \sigma^2 Z\left(oldsymbol{x}
ight),$$

- Combines both advantages of PCE and Kriging:
 - PCE approximates the global behaviour of the model
 - Kriging captures local variations and provides an in-built error estimate
- · Both the coefficients of the expansion and the auto-correlation parameters are calibrated
 - Sequential PC-Kriging: LAR to detect basis then universal Kriging model calibration
 - Optimal PC-Kriging: Universal Kriging model calibration at each iteration of LAR

Reliability estimation algorithms

Melchers & A.T. Beck (2018), Au & Beck (2001)

Crude Monte Carlo simulation

$$P_{f,\mathsf{MC}} = rac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_f}(oldsymbol{x}^{(k)})$$

- Universal and easy to implement
- Unbiased but slow convergence
- Difficulty to sample in the failure domain for very small *P*_f

mportance sampling

$$P_{f,\mathsf{IS}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_{f}}(x^{(k)}) \frac{f_{\mathbf{X}}(x^{(k)})}{\Psi(x^{(k)})}$$

- Sample from an instrumental density with higher weight in the failure domain
- e.g., a Gaussian centered on the most probable failure point
- Other advanced techniques not considered here.

Subset simulation

$$P_{f,SuS} = \mathbb{P}(\mathcal{D}_1) \prod_{i=1}^{m-1} \mathbb{P}\left(\mathcal{D}_{i+1} | \mathcal{D}_i\right)$$

- Solve a series of problems with larger target probabilities
- Split the domain:

 $\mathcal{D}_1 \supset \mathcal{D}_2 \supset \cdots \supset \mathcal{D}_m = \mathcal{D}_f$

- Conditional samples are obtained using Markov Chain Monte Carlo (MCMC)
- The initial and conditional probabilities are estimated by Monte Carlo simulation

Reliability estimation algorithms

Crude Monte Carlo simulation

$$P_{f,\mathsf{MC}} = rac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_f}(\boldsymbol{x}^{(k)})$$

- Universal and easy to implement
- Unbiased but slow convergence
- Difficulty to sample in the failure domain for very small *P*_f

Importance sampling

$$P_{f,\mathsf{IS}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_f}(\boldsymbol{x}^{(k)}) \frac{f_{\boldsymbol{X}}(\boldsymbol{x}^{(k)})}{\Psi(\boldsymbol{x}^{(k)})}$$

- Sample from an instrumental density with higher weight in the failure domain
- e.g., a Gaussian centered on the most probable failure point
- Other advanced techniques not considered here.

Subset simulation

$$\mathcal{P}_{f,SuS} = \mathbb{P}(\mathcal{D}_1) \prod_{i=1}^{m-1} \mathbb{P}\left(\mathcal{D}_{i+1} | \mathcal{D}_i\right)$$

- Solve a series of problems with larger target probabilities
- Split the domain:

 $\mathcal{D}_1 \supset \mathcal{D}_2 \supset \cdots \supset \mathcal{D}_m = \mathcal{D}_f$

- Conditional samples are obtained using Markov Chain Monte Carlo (MCMC)
- The initial and conditional probabilities are estimated by Monte Carlo simulation

Reliability estimation algorithms

Crude Monte Carlo simulation

$$P_{f,\mathsf{MC}} = rac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_{f}}(\boldsymbol{x}^{(k)})$$

- Universal and easy to implement
- Unbiased but slow convergence
- Difficulty to sample in the failure domain for very small *P*_f

Importance sampling

$$P_{f,\mathsf{IS}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\mathcal{D}_{f}}(\boldsymbol{x}^{(k)}) \frac{f_{\boldsymbol{X}}(\boldsymbol{x}^{(k)})}{\Psi(\boldsymbol{x}^{(k)})}$$

- Sample from an instrumental density with higher weight in the failure domain
- e.g., a Gaussian centered on the most probable failure point
- Other advanced techniques not considered here.

Subset simulation

$$P_{f,\text{SuS}} = \mathbb{P}\left(\mathcal{D}_{1}\right) \prod_{i=1}^{m-1} \mathbb{P}\left(\mathcal{D}_{i+1} | \mathcal{D}_{i}\right)$$

- Solve a series of problems with larger target probabilities
- Split the domain:

 $\mathcal{D}_1 \supset \mathcal{D}_2 \supset \cdots \supset \mathcal{D}_m = \mathcal{D}_f$

- Conditional samples are obtained using Markov Chain Monte Carlo (MCMC)
- The initial and conditional probabilities are estimated by Monte Carlo simulation

Extensive benchmark: options for the various methods

Kriging	PCE	PC-Kriging
 Trend: Constant Kernel: Gaussian Calibration: MLE 	 Degree: 1 – 20 <i>q</i>-norm : 0.8 Calibration: LAR 	 Same as Kriging same as PCE but Degree 1 – 3
Monte Carlo simulation	Importance sampling	Subset simulation
Mar. 107		

Overkill setting in reliability estimation algorithms

- Reduce the stochastic error due to the reliability estimation algorithm
- Increase the likelihood of finding enrichment points in the remote failure domains

Extensive benchmark: selected problems

- 20 problems selected from the literature
- 11 come from the TNO benchmark (https://rprepo.readthedocs.io/en/latest/)
- Wide spectrum of problems in terms of
 - Dimensionality
 - Reliability index $\beta = -\Phi^{-1}(P_f)$

Problem	M	$P_{f,\mathrm{ref}}$	Reference
01 (TNO RP14)	5	$7.69 \cdot 10^{-4}$	Rozsas & Slobbe 2019
02 (TNO RP24)	2	$2.90 \cdot 10^{-3}$	Rozsas & Slobbe 2019
03 (TNO RP28)	2	$1.31 \cdot 10^{-7}$	Rozsas & Slobbe 2019
04 (TNO RP31)	2	$3.20 \cdot 10^{-3}$	Rozsas & Slobbe 2019
05 (TNO RP38)	7	$8.20 \cdot 10^{-3}$	Rozsas & Slobbe 2019
06 (TNO RP53)	2	$3.14 \cdot 10^{-2}$	Rozsas & Slobbe 2019
07 (TNO RP54)	20	$9.79 \cdot 10^{-4}$	Rozsas & Slobbe 2019
08 (TNO RP63)	100	$3.77 \cdot 10^{-4}$	Rozsas & Slobbe 2019
09 (TNO RP7)	2	$9.80 \cdot 10^{-3}$	Rozsas & Slobbe 2019
10 (TNO RP107)	10	$2.85 \cdot 10^{-7}$	Rozsas & Slobbe 2019
11 (TNO RP111)	2	$7.83 \cdot 10^{-7}$	Rozsas & Slobbe 2019
12 (4-branch series)	2	$3.85 \cdot 10^{-4}$	Echard et al. (2011)
13 (Hat function)	2	$4.40 \cdot 10^{-3}$	Schoebi et al. (2016)
14 (Damped oscillator)	8	$4.80 \cdot 10^{-3}$	Der Kiureghian (1990)
15 (Non-linear oscillator)	6	$3.47 \cdot 10^{-7}$	Echard et al. (2011,2013)
16 (Frame)	21	$2.25 \cdot 10^{-4}$	Echard et al. (2013)
17 (HD function)	40	$2.00 \cdot 10^{-3}$	Sadoughi et al. (2017)
18 (VNL function)	40	$1.40 \cdot 10^{-3}$	Bichon et al. (2008)
19 (Transmission tower 1)	11	$5.76 \cdot 10^{-4}$	FEM (172 bars, 51 nodes)
20 (Transmission tower 2)	9	$6.27 \cdot 10^{-4}$	FEM (172 bars, 51 nodes)

Outline

Introduction

Active learning reliability

Benchmark set-up

Results

Conclusion

Ranking of the strategies: accuracy of β

How many times a method ranks best in terms of smallest error on beta (resp. within 5, 10 or 20 times this relative error)?

$$\varepsilon = \left|\beta - \beta_{\mathrm{ref}}\right| / \beta_{\mathrm{ref}}$$

- Best approach: PC-Kriging + SuS + U + Combined stopping criterion
- Worst approaches: Kriging + IS + EFF + BS

ETHzürich

Ranking of the strategies: number of model evaluations

How many times a method ranks best (resp. within 2, 3, 5 times the lowest cost denoted $N_{\rm eval}^{\rm *})$?

- Best approach: PC-Kriging + SuS + EFF + BS
- Worst approaches: Direct SuS and Direct IS

Ranking of the strategies: efficiency

How many times a method ranks best according to efficiency Δ (resp. within 5, 10, 20 times the best)?

$$\Delta = \varepsilon_{\beta} \frac{N_{\text{eval}}}{\overline{N}_{\text{eval}}}$$

where \overline{N}_{eval} is the median number of model evaluations for a particular problem (over all methods and replications)

- Best approach: PC-Kriging + SuS + U + Combined stopping criterion
- Worst approaches: Direct SuS and Direct IS

Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. Δ (regardless of the strategy)

- Surrogates: PC-Kriging dominates by far
- Reliability: Slight advantage to subset simulation
- Learning function: U dominates both EFF and FBR
- Stopping criterion: Slight advantage to the stability criterion

Performance w.r.t. problem feature: dimension

Results split in dimension: M < 20 vs. $M \ge 20$

21/26

Performance w.r.t. problem feature: P_f range

Results split in reliability index: $\beta < 3.5$ vs. $\beta > 3.5$

Summary of the results

Recommendations w.r.t. the problem feature

Module	Dimensionality		Magnitude of the reliability index	
	M < 20	$20 \leq M \leq 100$	$\beta < 3.5$	$\beta \ge 3.5$
Surrogate model	PCK	PCE	PCE/PCK	PCK
Reliability method	SuS	SuS	SuS	SuS
Learning function	U	FBR	U/FBR	U
Stopping criterion	β_{bo}, β_{co}	eta_{bo} / eta_{co}	β_{bo}, β_{co}	β_{bo}

Main take-away

- The active learning method inherits the pros and cons of the reliability method
- Surrogate allows reducing the stochastic error due to the reliability estimation algorithm

There is no drawback in using surrogates compared to a direct solution

TNO Benchmark: performance of UQLab "ALR" module

Rozsas & Slobbe (2019)

- Truly black-box benchmark with 27 problems
- · Limit state functions not known to the participants and only accessible through an anonymous server
- Our solution: the "best approach" previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)

- Reference solution: black line
- · Zero, one or more points per participant
- X: number of runs (log scale)
- Y: obtained β index

best approach: "on the line / to the left"

TNO Benchmark: performance of UQLab "ALR" module

Rozsas & Slobbe (2019)

Risk, Safety & Uncertainty Quantification

Risk, Safety 6 Uncertainty Quantification

Benchmark of active learning reliability methods

Conclusions

- Extensive survey and identification of an underlying recurring scheme
- · Global framework for active learning reliability considering four components or modules
- Extensive benchmark running approximately 12,000 reliability analyses
- Best performance from our benchmark: combination of PC-Kriging and subset simulation
- The flexibility of the proposed framework allows building strategies on-the-fly considering the features of the problem
- Surrogates should be used to harness the benefits of the most sophisticated reliability estimation algorithms

Questions ?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

Thank you very much for your attention !

www.uqlab.com

www.uqpylab.uq-cloud.io

UQ[py]Lab

The Uncertainty Quantification Community

www.uqworld.org

Benchmark of active learning reliability methods