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Abstract—Miniaturizing an autonomous robot is a challenging
task — not only the mechanical but also the electrical compo-
nents have to operate within limited space, payload, and power.
Furthermore, the algorithms for autonomous navigation, such
as state-of-the-art (SoA) visual navigation deep neural networks
(DNNs), are becoming increasingly complex, striving for more
flexibility and agility. In this work, we present a sensor-rich,
modular, nano-sized Unmanned Aerial Vehicle (UAV), almost as
small as a five Swiss Franc coin - called Fiinfliber — with a
total weight of 18g and 7.2cm in diameter. We conceived our
UAV as an open-source hardware robotic platform, controlled by
a parallel ultra-low power (PULP) system-on-chip (SoC) with a
wide set of onboard sensors, including three cameras (i.e., infrared,
optical flow, and standard QVGA), multiple Time-of-Flight (ToF)
sensors, a barometer, and an inertial measurement unit. Our
system runs the tasks necessary for a flight controller (sensor
acquisition, state estimation, and low-level control), requiring only
10% of the computational resources available aboard, consuming
only 9mW - 13x less than an equivalent Cortex M4-based system.
Pushing our system at its limit, we can use the remaining onboard
computational power for sophisticated autonomous navigation
workloads, as we showcase with an SoA DNN running at up to
18Hz, with a total electronics’ power consumption of 271mW.

Index Terms—Autonomous UAV, CNNs, nano-UAYV, ultra-low-
power.

I. INTRODUCTION

In the last decade, autonomous Unmanned Aerial Vehicles
(UAVs) have reached enormous popularity and diffusion due
to their wide range of application, including aerial inspection
of industrial and hazardous areas [1], precise agriculture [2],
and entertainment [3], just to name a few. One of the major
trends in the evolution of UAVs is their miniaturization, with
commercially available pocket-size drones [4] and futuristic
insect-scale robots actively studied by pioneering research
groups [5], [6]. The vision of small-form-factor intelligent drones
can be a game-changing aspect in many real-life use cases. Such
robotic platforms would offer several advantages, as increased
flexibility for reaching otherwise inaccessible places, reduced
production cost, and enhanced safety, enabling novel human-
machine interactions usually infeasible with big-size drones.

However, the miniaturization of these helpful and versatile
robots comes at the price of reduced onboard intelligence and
lack of autonomous navigation capabilities due to their limited
power envelope. To date, the smallest class of UAVs available on
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Fig. 1: Our sensor-rich nano-sized drone prototype, compared
in size with a five Swiss Franc coin, called Fiinfliber.

the marketplace, namely nano-sized drones, is characterized by a
few centimeters in diameter, a few tens of grams in weight, and
a resource-constrained single-core microcontroller unit (MCU)
onboard. This class of devices cannot afford complex state
of the art (SoA) vision-based workloads that would enable
sophisticated autonomous navigation capabilities, as found in
their standard-size counterpart UAVs [3], [7].

The vast majority of commercial and academic SoA nano-
sized UAVs are severely constrained in their onboard computa-
tional power, including limited availability of floating-point units
(FPUs), memory capacity and latency, and sensing/perception
support. A common strategy to bypass these limitations is to
take advantage of several off-board aids, from ad-hoc expensive
localization infrastructure to offloaded computation to powerful
remote base-stations or servers [7]-[9]. However, streaming
of high-bandwidth data for vision-based navigation introduces
additional drawbacks: additional radio power consumption,
limited range of operation, unpredictable latency, cyber-security
vulnerabilities, and many more. Reliance on closed-source
hardware and software frameworks exacerbates these issues,
making research on alternative solutions extremely challenging.

To the best of our knowledge, there are only a few examples
that diverge from this scenario. The commercial off-the-shelf
(COTS) Crazyflie 2.0 nano-quadrotor! represents a valuable
open-source platform, but still offering limited onboard pro-
cessing power, i.e., a single-core Cortex-M4 MCU, and limited
sensing capabilities, e.g., no availability of cameras. A second
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TABLE I: Rotorcraft UAVs taxonomy by vehicle class-size.

Vehicle Class @: Weight [em:Kg] Power [W]  Onboard Device
std-size [7] ~50:>1 > 100 Desktop
micro-size [15] ~25:~05 ~ 50 Embedded
nano-size [16] ~ 10 : ~ 0.01 ~5 MCU
pico-size [13] ~2:<0.001 ~ 0.1 ULP

example is given by the open-source work introduced in [10],
[11], where a Crazyflie 2.0 has been extended with a companion
electronic board featuring an additional parallel ultra-low-power
(ULP) MCU, a low-resolution camera, and off-chip RAM,
enabling the real-time execution of a complex deep learning
algorithm for autonomous driving.

In this work, we introduce the smallest (to the best of our
knowledge) open-software and open-hardware nano-sized UAV
with onboard real-time capability for computationally intensive
SoA autonomous navigation algorithms, in a form factor ~ 2x
smaller than a Crazyflie 2.0 and featuring a unique set of
integrated sensors. Our nano-drone, comparable in size to a five
Swiss Franc coin (called Fiinfliber), is conceived to be a modular
and flexible platform with a plethora of pluggable sensors for
an 18-gram nano-sized UAV. Its rich set of sensors consists
of three different cameras, i.e., a QVGA CMOS, an infrared
(IR), and an optical flow (OF) camera, six time-of-flight (ToF)
sensors (one per each direction), a barometer, and an inertial
measurement unit (IMU), significantly improving the sensory
capabilities over the SoA for this class of robots. The brain
of our platform is embodied by a second-generation parallel
ultra-low power system on a chip (SoC) called Mr.Wolf [12],
and by 8 MB of off-chip RAM. The Mr.Wolf SoC is a powerful
(up to 8 GOPS) octa-core general-purpose digital processing
architecture with floating-point hardware support.

Our results show that the proposed robotic system can scale
its operation from a basic Flight Controller (FL-Ctrl), with
essential inertial sensors, consuming ~30 mW for all electronics
up to computationally autonomous, deep-learning driven visual
navigation running at 18 Hz and consuming 271 mW for all
electronics, less than 10% of the overall UAV power. Since
18 Hz is more than 2x the real-time constraint of the visual
navigation pipeline [10], this result leaves space for even more
complex tasks to be offloaded to the robot, paving the way for
multi-task autonomous navigation on sub-20 grams nano-drones.

II. RELATED WORK

To enable autonomous navigation capabilities aboard nano-
UAVs, two major constraints must be addressed: i) sub-Watt
computational power envelope and ii) limited payload, i.e., a
few grams. Wood et al. [13] estimate that only up to 5% of
the total power consumption of a UAV is available for onboard
computation, while the allotted payload for electronics is < 25%
of the total mass. Table I shows an overview of weight, power
envelope, and affordable onboard devices for four main class-
size of vehicles, as introduced in [14]. Achieving a level of
autonomy comparable to desktop CPUs/GPUs is challenging
for nano/pico-UAVs, relying on MCU-class computing.

Focusing on nano-size vehicles, one group of solutions
bypasses the onboard limitations using off-board computation.

Offloading computation to remote base-stations can enable
complex algorithms fed with abundant streams of sensory
data, such as in vision-based workloads [8], [9]. In [8], visual-
inertial simultaneous localization and mapping (SLAM) and
external pose-estimation are computed on a remote base-station,
demonstrating precise autonomous flight. The authors of [9]
focus on DNN-based collision avoidance, demonstrating it on
a Crazyflie with off-board inference on a computer connected
wirelessly. The need for high-frequency data streaming limits
these systems their operating range and control latency, causing
low reliability. Pushing off-board computation to the extreme,
some UAVs rely on external computation for sensing and low-
level control as well [4], [6], limiting their applicability to
research labs with special infrastructure.

An alternative trend to overcome the limited computational
power of MCU-based nano-UAVs is given by the advent of
onboard visual navigation accelerators [17], [18]. Dedicated
ASICs are used to accelerate computationally intensive tasks,
such as visual odometry [17] or SLAM [18], within the stringent
power envelope of a nano-UAV. However, this approach does
not simplify the platform’s design as it still needs a MCU-like
processor for interfacing with sensors and low-level control tasks.
By contrast, our modular platform features an onboard SoC that
unifies these needs, offering enough computational power and
sensor interfaces to run both low-level flight controllers and
complex SoA visual navigation workloads in real-time.

A last group of solutions tries to squeeze as many operations
as possible in the available MCU aboard nano-UAVs [6], [16].
These approaches pay the price of simplified algorithms and
limited functionality. The system proposed in [6] requires only
an 8-bit PIC MCU, but its application is limited to indoor
environments where all walls show specific visual patterns. A
40-grams pocket drone introduced in [16] performs obstacle
avoidance and velocity control but is limited to low speed,
i.e.,, 0.3m/s. A similar approach is proposed in [10], where
the Cortex-M4 MCU of a Crazyflie nano-drone was extended
with a custom companion board featuring a ULP camera and a
commercial ULP parallel SoC called GAP-8 [19]. Such a system
was able to run a complex DNN for autonomous navigation,
called PULP-DroNet, in real-time, without any external aids.
However, the MCU was still in charge of all low-level tasks (e.g.,
FL-Ctrl, state estimation, etc.), and the DNN was optimized to
comply with fixed-point arithmetic, due to the lack of FPUs on
the SoC. In this work, we improve upon the SoA of [10] in
terms of both integration and sensing/compute capabilities. The
open-source robotic platform we propose is 2x smaller than a
Crazyflie, features significantly improved sensing capabilities to
a Crazyflie, and uses a single SoC, called Mr.Wolf [12]. Mr.Wolf
delivers enough performance to run low-level control tasks and
high-level intelligence, such as the PULP-DroNet DNN, on the
same SoC, at 2.4x higher energy efficiency than GAP-8 [19]
and with support for floating-point operations.

IT1I. FONFLIBER-DRONE DESIGN

Any autonomous robot needs to follow a life cycle based
on three main functional blocks, as shown in Figure 2. The
state estimation computes the system’s current state A, then the



Control
(from A to B)
e.g., PIDs

State estimation
(current state? : A)
e.g., eKF

Intelligence
(next state? : B)
e.g., PULP-DroNet

Fig. 2: Main functional blocks of any autonomous robot.
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Fig. 3: Hardware overview of the Fiinfliber-drone.

intelligence task determines in which state B the system should
go to fulfil its mission, and finally the control block derives a
control law that brings the system from state A to B. Among
these three blocks, the one making a robot autonomous is the
onboard intelligence (e.g., PULP-DroNet), as the state estimation
(e.g., an extended Kalman filter — eKF) and control (e.g., PID
controller) are required also by non-autonomous robots. This
section first explains the proposed system’s hardware design
and the required software optimizations to fit all three main
functional blocks in a small, lightweight, and energy-efficient
nano-UAV. In the second part, we describe our state estimator,
control tasks, and all the mechanisms required to orchestrate
and synchronize the execution of such a complex multi-task
system. Finally, we show the possibilities of our open-source
robotic platform with a sample SoA DNN application.

A. Hardware architecture

The heart of our system is Mr.Wolf [12], a second-generation
parallel ultra low-power processor (PULP) SoC featuring various
interfaces and nine cores. Mr.Wolf is based on the PULP open-
source architecture and the RISC-V open ISA. The Mr.Wolf
SoC includes two power domains - the Fabric Controller (FC)
and the cluster (CL) domain. The FC domain consists of a low-
power single-core MCU featuring a wide range of peripherals
such as Quad SPI, I12C, a parallel camera interface (CPI),
UART, PWM, GPIOs, and JTAG for debugging. The FC is
built around a tiny zero-RISCY RV32IMC processor, designed
for lightweight integer-only control purposes [20]. The CL
domain, on the other hand, is designed for heavy-duty integer
and floating-point calculations. It contains eight RISCY cores
with RV32IMFCXpulp ISA. The xPULP extensions include
common signal processing instructions such as hardware loops,
automatic pointer increment, and SIMD arithmetics on low-
bitwidth integer data. The 8 RISCY cores share one FPU and
two fused multiply-add (FMA) units, fostering floating-point
signal processing algorithms.

Driver
Circuit
Brushed

Brushless

(a) Top view (b) Bottom view

Fig. 4: PCB layout of the proposed PULP-based nano-UAV

Around this highly capable computational unit, we build our
sensor-rich system, whose key building blocks are shown in
Fig. 3. 16 MB of quadSPI Flash (at up to 80 MB/s) and 8 MB
of DRAM (at up to 40 MB/s) are available to the SoC. A
BMIO088 IMU (16-bit, triaxial accelerometer and gyroscope, up
to 2kHz), a BMP380 barometer (£0.50 hPa absolute accuracy,
up to 200 Hz), as well as six VL53L1X ToF sensors facing
all directions (up to 4m distance measurement at 50 Hz)
provide sensing of the UAV’s environment. A downward-facing
PMW3901 OF sensor (minimum distance 80 mm), a front-facing
HMOI1BO camera (QVGA, greyscale, up to 60fps), and a front-
facing IR camera provide the system with vision. Finally, an
nRF51822 radio IC enables off-board communication.

Fig. 4 shows the PCB layout of our PULP-based UAV,
highlighting its main components. Fig. 4a shows the top view,
featuring mainly sensors, memory, and a plug for the IR camera.
Fig. 4b shows the bottom view, featuring the remaining sensors,
the Mr.Wolf SoC, and the radio IC. The four remaining ToF
sensors on the sides and the IR camera are on separate PCBs
to be assembled orthogonally to the body frame.

B. Software architecture

Our Flight Controller (FL-Ctrl) is inspired by Crazyflie’s
software architecture and features sensor acquisition, state
estimation, control loops, and motor conversion tasks. In
Table II, we provide a hardware/software comparison between
our Fiinfliber-drone and the Crazyflie platform. The first key
difference is represented by the SoC’s computational power,
hosting nine general-purpose cores running at higher frequencies
compared to the single-core STM32F405 MCU. Also, the
memory availability marks a considerable difference increasing
both the on-chip low-latency memories and the off-chip ones.
Both MCUs have hardware FPUs, but it is accessible only from
the cluster domain on Mr. Wolf. From an operating system
(OS) point of view, the main difference is the absence of any
preemption mechanism on the Mr.Wolf SoC OS, called pulpOS.
This limitation forces the programmer to optimize the tasks’
scheduling carefully and set a lower-bound on the minimum
SoC’s frequency for which the system can operate without
mapping every task in a dedicated interrupt service routine.

In Fig. 5, we show an overview of the software pipeline, where
we highlight the tasks running on both FC and CL domains. The
first stage is the IMU sensor data acquisition at 1 kHz, averaged



TABLE II: Comparison between STM32F405 and Mr.Wolf SoC.

STM32F405 Mr.Wolf
Cores 1 ARM Cortex-M4F  1x RV32IMC + 8x RV32IMFCXpulp
Flash 1MB (16 MB ext.)
RAM  192kB L1: 64kB, L2: 512kB, (L3: 8 MB ext.)
Freq. 168 MHz up to FC@450 MHz/CL@350 MHz
FPU Yes FC: No; CL:Yes

oS FreeRTOS pulpOS (no preemption)

'Cluster (CL)! PIDs Cascade

Position
@ 100Hz

Intelligence
DNN

Attitude
@ 500Hz

Motors
PWM @ 500Hz

Il State Estimation s
i cKF @ 100Hz M

Fig. 5: Diagram of the software pipeline (FL-Ctrl + intelligence).

at 100 Hz, and fed to the state estimation task: an extended
Kalman filter (eKF) [21]. The eKF runs partially on the FC, but
mostly on the cluster at 100 Hz enabling efficient use of both
FPUs and all eight cores. The control part is implemented as
a soft-float PID cascade running on the FC to leave sufficient
“computational space” on the CL for additional heavy workloads
(e.g., intelligence in the form of a deep neural network (DNN)).
The PID cascade is implemented with two stages running at
different frequencies: the position PID runs at 100 Hz, while
the attitude PID runs at 500 Hz, stabilizing the drone.

The scheduling scheme for the FL-Ctrl tasks is reported in
Fig. 6, where the main loop runs as fast as the sensor acquisition
task IMU), i.e., 1 kHz. All other tasks are periodically scheduled
according to their predefined frequencies, leaving sufficient
execution time, on both the FC and the CL, to schedule
additional tasks, such as DNN-based autonomous navigation.

C. Floating-Point Support

Many algorithms running on a drone require or benefit from
floating-point operations. For example, the eKF used for state
estimation is significantly more robust when executed natively
in floating-point instead of using fixed-point computation with
a predetermined dynamic range. Floating-point code is also
easier to write, maintain, and port to different architectures.
To take advantage of Mr.Wolf’s architecture, we choose to
deploy low compute intensity floating-point code (such as the
update of a PID controller) on the single-core FC, using a soft-
float implementation. This avoids cluttering the cluster with

B ekF

[ Attitude PID

6 7 8 9 10 1

M Position PID

»
»
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Fig. 6: Scheduling scheme of the basic tasks composing our
FL-Ctrl — both FC and CL @100 MHz.

operations not requiring high performance, keeping it free for
heavier calculations such as those required by the eKF for
state estimation. Taking advantage of the cluster’s multi-core
architecture, heavy-duty workloads can be executed at high
speed enabling fast and adaptive control of the nano-drone.

D. Deep Neural Network on PULP

The chips’ architecture with one FC and an eight-core cluster
allows the execution of DNNSs in a small power envelope. Palossi
et al. [10] introduced a visual navigation engine called PULP-
DroNet for a commercial PULP SoC called GAPS. DroNet [7]
originally learned how to fly from an autonomous driving
dataset, predicting steering angles for following roads (or what it
generalizes as roads, e.g. a corridor) and a collision probability
to scale the speed and avoid obstacles. As Mr.Wolf features
the same eight cluster cores as GAP8 and achieves 2x higher
performance at 2.4x higher energy-efficiency, we can expect
even better results for running DroNet on Mr.Wolf.

IV. RESULTS

In this section, we evaluate our Fiinfliber-drone experi-
mentally, focusing on i) its physical properties and power
consumption; ii) a functional evaluation comparing the FL-Ctrl
accuracy with the reference Crazyflie implementation.

A. System Evaluation

1) System Weight: In its default configuration, our drone
weighs 18 g; the breakdown is shown in Fig. 8-A. Motors,
battery, and the drone frame make up 78% of the system’s
weight, with electronics only contributing 22%. Thanks to the
modularity of our design, many components can be replaced
with alternatives: e.g., a battery pack with a different capacity, or
any PWM-driven motors producing sufficient thrust. If unused,
the IR camera can be unplugged to save weight.

2) Flight Controller Performance: The FC of our SoC
is capable of running up to 450 MHz, while the multi-core
cluster reaches 350 MHz. The FL-Ctrl software runs on the FC,
offloading only the intensive floating-point part of the eKF task
to the cluster. The software pipeline on the FC consists of data
acquisition, part of the eKF state estimation, control loops (i.e.,
position/attitude PIDs), and the motor distribution tasks. Fig. 8-B
shows the computational load in active cycles per second of each
task running on the FC, requiring a minimum clock speed of
46 MHz to complete all periodic tasks with the desired frequency.
Even if the sensor acquisition runs at a higher frequency (1 kHz),
the attitude PID task constitutes the most significant part of
active cycles per second (17.5MCycle/s). By increasing the FC
clock frequency, we can gain additional computation resources
on the FC while paying for it in increased power consumption.
Up to 404 Mcycle/s, corresponding to 89.8% of the available
FC load at maximum frequency are free for additional tasks
for under 40 mW total power consumption of the FC. On the
cluster, execution of the eKF requires 31 kcycle/s, representing
a cluster load of merely 9% at its maximum frequency of
350 MHz. The remaining available 91% of compute resources
can be leveraged for intelligent applications such as DNN-based
visual navigation. Thanks to our higher clock speeds, we are
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Fig. 7: Power breakdown of the Fiinfliber-drone in three different configurations. From top to bottom, (i) only the FL-Ctrl and its
sensors, (if) the PULP-DroNet sample application, and (iii) all electronics in their active state (worst-case).
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Fig. 8: Weight (A) and FC’s active cycles (B) breakdown of
the Fiinfliber-drone.

able to run the SoA DNN used in [10] alongside the flight
controller workload, achieving the same 18 Hz throughput.

3) Power Consumption: We evaluate our system’s power
consumption in three different configurations, as shown in Fig. 7.
In addition to processor measurements, we estimate the power
consumption of additional components from their respective data
sheets and assume a conservative voltage converter efficiency
of 87%. The top row of Fig. 7 shows only the flight controller
running on PULP at S0MHz (FC) and 35MHz (cluster), with
only the IMU and barometer active, consuming a total of 30 mW.
In the middle row, the system executes PULP-DroNet [10]
application, a visual-based navigation engine at 18MHz. PULP is
operating at its maximum speed and the IMU, barometer, camera,
optical flow sensor, and one ToF sensor are active, requiring
only 271 mW. Finally, the bottom row shows PULP running at
its maximum speed and all sensors on and measuring, which
consumes 1666 mW of system power. This is a theoretical worst-
case scenario, as continuous measurements using all sensors
concurrently is neither supported nor required for operation.
The upper right corner of Fig. 7 highlights the dominating
power consumption of the motors (measured at 50% duty-cycle),
requiring 73% of system power while the processor under full
load only accounts for 2.5%.

B. Functional Evaluation

To confirm our system’s proper functionality, we recorded
sensor data from a Crazyflie drone, replayed them on our drone’s
flight controller, and compare eKF and PID outputs.

1) eKF: For the eKF test, we recorded sensor data and
filter outputs of a short flight on the CF at 100Hz. We
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Fig. 9: IMU input data and eKF output comparison between
Crazyflie (CF) and PULP-drone.

show the IMU (3-axis accelerometer and 3-axis gyroscope)
measurements, originally sampled at 1kHz but averaged at
100Hz, and the comparison between the output, position, and
velocity estimations, in Fig. 9. The values drift slightly apart
over time due to the different logging mechanisms used: On
the Crazyflie, the already implemented SD-card logging which
captures the current values of the tracked variables at 100Hz
was used, while on the PULP-drone, we log the results after
each execution of the eKF, leading to accumulating small time
differences. After 8 seconds, the position and velocity states
are still inside 1.2m and 0.75m/s of the baseline, respectively.

2) PIDs: For the PIDs test, we recorded state estimation and
gyroscope values as well as PID output values with a constant
setpoint (turning on the yaw-axis with 0.1Hz at Im over the
ground) on the Crazyflie at 1kHz. We show the comparison
between the rate PID outputs, split in proportional (P), integral
(I), and derivative (D) parts, in Fig. 10. Due to the high logging
frequency on the Crazyflie (1kHz), we miss some data points,
leading to jumps in the gyroscope values and with this to spikes
on the derivative parts of the rate PIDs. The mean average error
of the PID outputs, in % of the maximum amplitude of the
baseline (Crazyflie) values, is shown in Table III.
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TABLE III: Mean average error of PID outputs, in % of
maximum amplitude of the baseline (Crazyflie) values.

Attitude Rate
Roll | Pitch | Yaw Roll Pitch | Yaw
P | 507e-1% | 7.59e-5% | 2.15e-1% 1.76% 1.56% | 0.76%
| 7.29% 6.87% 10.35% 6.82% | 4.03% | 9.45%
D - - 1.39% 6.88% | 3.39% -

V. CONCLUSION

We present a sensor-rich, modular, nano-size UAV with a
total weight of 18g and 7.2cm in diameter — 2x smaller than
the SoA, but enriched with significantly improved sensing and
onboard computing capabilities. We conceived our UAV as
a fully open-source hardware robotic platform, controlled by
a PULP SoC with a wide set of onboard sensors, including
three cameras (i.e., infrared, optical flow, and standard QVGA),
multiple time-of-flight (ToF) sensors, a barometer, and an inertial
measurement unit. For basic flight control (sensor acquisition,
state estimation, and low-level control), the proposed robotic
system needs only 10% of the computational resources available
in its lowest power operating point, consuming just 9 mW —
13 x less than an equivalent Cortex M4-based system. Pushing
our system to its limits, we show that we can run a sophisticated
autonomous navigation pipeline, the SoA DroNet DNN, on top
of the flight controller. It can run at up to 18 Hz, with a total
electronics’ power consumption of 271mW - below 6% of the
total power consumed by the drone. This initial result paves the
way for the deployment of advanced navigation and environment
sensing tasks on top of sub-20g nano-drones; to foster academic
research in this field, we release our system’s design as open-
source at https.//github.com/pulp-platform/fuenfliber.
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