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Abstract
We propose a frictionless contact formulation for isogeometric analysis, which combines a collocated formulation for the
contact surfaces with a standard Galerkin treatment of the bulk. We denote it as isogeometric Collocated Contact Surface
(CCS) formulation. The approach is based on a simple pointwise enforcement of the contact constraints, performed in this
study with the penalty method. Unlike pointwise (node-to-surface or point-to-surface) contact algorithms in the Galerkin
framework, the CCS formulation passes the contact patch test to machine precision by naturally exploiting the favorable
properties of isogeometric collocation. Compared with approaches where the discretization of both bulk and contact surfaces
is based on collocation, the CCS approach does not need enhancements to remove oscillations for highly non-uniformmeshes.
With respect to integral contact approaches, the CCS algorithm is less computationally expensive, due to the reduced amount
of contact evaluation points. In addition, the CCS approach is easy to code and can be added to a pre-existing isogeometric
analysis code with minimal effort. Numerical examples in both small and large deformations are investigated to compare the
CCS approach with some available contact formulations and to demonstrate its accuracy.

Keywords Isogeometric Analysis · Isogeometric Collocation · Frictionless Contact · Penalty Method

1 Introduction

The numerical simulation of contact problems is a challeng-
ing task due to the highly non-linear and non-smooth nature
of contact processes. With the finite element method (FEM),
the non-smooth contact surface discretization obtained with
C0 Lagrange basis functions leads to ill-defined normals at
the inter-element boundaries, which reduce the robustness
of the simulations and call for ad hoc remedies in contact
projection algorithms. To circumvent this problem, various
surface smoothing algorithms have been proposed [1,2], with
the main idea of replacing the surface representation by a
smoother approximation, e.g. based onHermite polynomials,
Bézier curves or non-uniform rational B-Splines (NURBS),
while leaving the bulk unchanged. These procedures lead
in general to a more robust contact behavior, however, the
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design of a smoothed master surface is far from trivial,
especially in the three-dimensional space, and additional
complications arise in implementation anddatamanagement.

In contrast to FEM, Isogeometric Analysis (IGA) is inher-
ently based on basis functions featuring higher order and
higher smoothness, such as B-Splines or NURBS. Thus
IGAnaturally suppresses discretization-induced contact pro-
jection issues, which makes it particularly appealing for
computational contact mechanics. As a result, isogeometric
contact attracted significant attention, see [2] for a review.
The same paper introduces the terminology that we adopt in
the present paper for the different considered types of contact
formulations.

Contact discretization schemes in either FEM or IGA can
be roughly classified into pointwise and integral approaches.
In the pointwise category, the integral representing the con-
tact contribution to the weak form is computed through point
collocation at a given set of points, typically slave nodes (in
FEM) or the physical maps of the knots on the slave surface
(in IGA). The classical example of this category is the “node-
to-surface” or (in two dimensions) “node-to-segment” (NTS)
algorithm, which in the isogeometric context is more appro-
priately denoted as “point-to-surface” or “point-to-segment”
(PTS) [3]. A modified version with weighted contributions
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was developed in [4] and denoted as PTS+, and this is the
pointwise approach that we consider in the present paper for
comparison. The main advantages of pointwise methods are
their simplicity and computational efficiency, whereas their
most evident drawback is their inability to pass the contact
patch test [5], which implies that the discretization error may
not decrease with decreasingmesh size. On the other hand, in
integral approaches the contact contribution to theweak form
is computed through different types of integration. These
approaches pass the patch test, either up to the integration
error or to machine precision, however their better accu-
racy goes at the expenses of computational efficiency and,
in some cases, of implementational simplicity. In this paper,
we adopt for comparison what we consider to be the simplest
available version of integral approaches, namely the “Gauss-
point-to-segment” (GPTS) formulation, first proposed in the
isogeometric context by [6–8] in conjunctionwith the penalty
method for constraint enforcement. We do not compare here
with the mortar method, which is the best performing, but
also most complex and computationally expensive integral
approach [6,7,9].

Typically, both pointwise and integral contact discretiza-
tions introduce a bias between slave and master surfaces.
Due to the use of a single loop over the slave mesh fea-
tures at which the contact constraints are enforced, these
formulations are also referred to as “one-pass”. With the pur-
pose of eliminating the bias, “two-pass” formulations have
been proposed, where the contact contribution to the weak
form is incorporated twice while switching the roles of slave
and master surfaces. Obviously, the number of constraints
increases, which in general leads to overconstraining (or
worsens possible pre-existing overconstraining of the one-
pass counterpart). For the NTS discretization, the two-pass
version in combination with the Lagrange multiplier method
passes the contact patch test [5], whereas the same version
with the penalty method still fails it. An alternative to one-
pass and two-pass formulationswas explored in [10] and later
recovered (with some differences) in [11] from a very gen-
eral framework based on surface potentials. In this approach,
two loops are performed treating each surface alternatively
as slave and master. In each loop (“half-pass”), the contact
tractions are computed only on the surface currently treated
as slave. Therefore, no transfer of tractions to the master side
is needed. Local equilibrium at the surfaces is not enforced
a priori but recovered with high accuracy. The approach,
denoted in [11,12] as “two-half-pass”, was applied in com-
binationwith theNTS [10] andGPTSdiscretizations [11,12].
As shown in [12], the GPTS formulation in conjunction with
the two-half-pass algorithm and the penalty method passes
the contact patch test to machine precision. Applications of
two-half-pass approaches within an isogeometric framework
can be found e.g. in [13–16]. Here overconstraining is still
an issue, unless special precautions such as node patterning

are taken [17]. Obviously, the issue is less severe with the
penalty method. In this paper, the two-half-pass approach is
combined with both the PTS+ and GPTS formulations.

The contact formulations that we briefly summarized
above are all based on the computation of the contact contri-
bution to theweak form, i.e. they are rooted inGalerkin-based
FEM or IGA. Unlike IGA, isogeometric collocation starts
directly from the strong form of the governing equations,
which is enforced at a set of evaluation points equal in
number to control points and denoted as collocation points
[18–20]. Thus there is no need for numerical quadrature of
integral equations and the cost of assembly is minimized,
leading to a high computational efficiency especially for
higher-order discretizations [21]. Contact formulations for
isogeometric collocation were developed for linear elasticity
without friction [22], hyperelasticity with friction [23] and
Cosserat rods with friction [24,25] in combination with the
penalty method. The contact treatment in [22,23] is based
on the strong enforcement of the contact constraints at the
collocation points located on the contact surfaces, hence it
is a pointwise approach; nevertheless, it passes the contact
patch test to machine precision. The reason is that in the
framework of isogeometric collocation the governing equa-
tions naturally involve contact pressures, as opposed to the
concentrated nodal forces of Galerkin-based formulations.
Moreover, the contact formulation in [22,23] is based on the
two-half-pass approach, which naturally fits the framework
of isogeometric collocation.

The contact formulation in [22,23] was developed for a
framework where both bulk and contact are treated with
isogeometric collocation. As a result, while enjoying compu-
tational efficiency and inherent contact patch test satisfaction,
it also suffered from the known drawbacks of isogeometric
collocation, i.e. stress oscillations at the Neumann (and at
the contact) boundary for highly non-uniformmeshes, which
were solved using the enhanced collocation approach [22].
Moreover, isogeometric collocation as a bulk discretization
method requires sufficient regularity of the material behavior
if a primal formulation is to be used, e.g. its application to
J2 plasticity requires mixed formulations [26], and may need
special attention to achieve good robustness in certain cases
[26,27].

In this work we propose a novel approach, in which the
standard IGA formulation for the bulk is combined with
a contact formulation based on isogeometric collocation.
We denote it as isogeometric Collocated Contact Surface
(CCS) approach. It is based on a simple pointwise enforce-
ment of the contact constraints, performed in this study with
the penalty method. Unlike pointwise contact algorithms in
the Galerkin framework, the CCS formulation passes the
contact patch test to machine precision by naturally exploit-
ing the favorable properties of isogeometric collocation.
Compared with approaches where the discretization of both
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bulk and contact surfaces is based on collocation, the CCS
approach does not need enhancements to remove oscillations
for highly non-uniformmeshes. Moreover, it enjoys the flex-
ibility and robustness of the Galerkin framework in the bulk
discretization. With respect to integral contact approaches,
the CCS algorithm is less computationally expensive, due
to the reduced amount of contact evaluation points. In this
paper, we focus on the two-dimensional frictionless setting.

The paper is structured as follows. In Sect. 2, we formulate
the elastostatic boundaryvalueproblemwith frictionless con-
tact in strong andweak form in the continuumsetting. Section
3 reviews isogeometric Galerkin and collocation methods
for bulk and contact discretization, including some available
contact formulations. Section 4 introduces the newly pro-
posed isogeometric CCS approach. The performance of CCS
and available formulations is compared by means of numer-
ical examples in Sect. 5. Conclusions are drawn in Sect. 6.

2 Elastostatic problemwith frictionless
contact

Contact processes are typically associated with large defor-
mations of the considered continua. As follows, we outline
the fundamental continuum equations of elastostatics with
contact in the finite strain setting.

2.1 Strain and stress measures, constitutive laws

Let us start by considering a single continuum body B
undergoing finite deformations. The undeformed configura-
tion is parameterized with the reference coordinates X and
the deformed configuration with the current coordinates x,
with the deformation defined by the mapping x = ϕϕϕ (X, t).
Accordingly the displacements are defined as u = x − X .
The domains occupied by B in the reference and the current
configuration are denoted as �,ω ⊂ R

d , respectively, with
d as the number of space dimensions (d = 2 in this paper).

The deformation gradient is defined as F = I + ∇u,
where ∇ is the gradient operator with respect to X and I is
the second-order identity tensor. The Jacobian J = detF is a
measure for the transformation of volume elements between
the two considered configurations. We adopt as strain mea-
sure the Green-Lagrange strain tensor E = 1

2 (C − I), with
C = FT F known as the right Cauchy-Green deformation
tensor.

For numerical examples exhibiting large deformations,we
consider a hyperelastic neo-Hookeanmaterial model [28] for
which the elastic strain energy density ψ(C) reads

ψ = μ

2
(I1 − 3) − μlnJ + λ

2
(lnJ )2, (1)

whereλ andμ are the Lamé parameters and I1 = trC = C : I
is the first invariant of C.

The secondPiola-Kirchhoff stress tensor S canbeobtained
as

S = ∂ψ(C)

∂E
= 2

∂ψ(C)

∂C
= μ(I − C−1) + λlnJC−1. (2)

The first Piola-Kirchhoff stress tensor P follows through the
relation P = FS. The Piola traction vector T can be cal-
culated as T = PN with the outward unit normal N to a
surface element in the reference configuration. The relation
to the traction vector t in the current configuration, which is
an important quantity in contact formulations, is given by

t(x, n)da = T (X, N)d A (3)

with the infinitesimal surface elements da and d A in the
current and in the reference configuration, respectively, and
with n as the outward unit normal to a surface element in the
current configuration.

In the special case of small deformations, a distinction
between the reference and the current configuration is not
necessary and the linearized strain tensor εlin = 1

2 (∇u +
(∇u)T ) can be used as strain measure. For linearly elastic
isotropic materials, the Cauchy stress tensor σ lin and the
linearized strain tensor εlin are related by Hooke’s law as
σ lin = (λI ⊗ I + 2μ�) : εlin , where � is the fourth-order
symmetric identity tensor.

2.2 Contact formulation in the continuum setting

Let us now consider two elastic bodies B(k) (k = 1, 2) that
come into contact under the assumption of large deforma-
tions. For both bodies x(k) = X(k) + u(k) holds.

The contact surface of body B(k) in the current configu-
ration, γ (k)

C , is parameterized via the convective coordinates
ξα(k),α ∈ 1, .., d − 1, that define the covariant (tangent) vec-
tors τ k

α = x(k)
,α . Based on the tangent vectors we can further

define n(k) as the outward normal unit vector.
The closest-point (normal) projection of a given point x(1)

of surface γ
(1)
C onto the matching surface γ

(2)
C = γ

(1)
C = γC

identifies the projection point x̄(2). Thus the normal gap g(2)
N

can be computed as

g(2)
N = (x(1) − x̄(2)) · n̄(2) (4)

where n̄(2) denotes the normal to γ
(2)
C at the projection point.

Indicating as t(2) the contact traction vector acting on surface
γ

(2)
C , and with t(2)N its component in the direction of n̄(2), it
is for frictionless contact

t(2) = t(2)N = t (2)N n̄(2) (5)
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Fig. 1 Schematic representation of contact kinematics between two
bodies

with t (2)N as the normal component of the traction vector. If
the two bodies are in contact at the considered point, it is
g(2)
N = 0 and t (2)N ≤ 0. If the contact is open, it is g(2)

N ≥ 0

and t (2)N = 0. Thus the contact constraints can be formulated
as the following Karush-Kuhn-Tucker (or Hertz-Signorini-
Moreau) conditions

g(2)
N ≥ 0, t (2)N ≤ 0, g(2)

N t (2)N = 0. (6)

The computation of the contact traction depends on the
solution method chosen for the enforcement of the contact
constraints. Here we adopt the penalty method. The penalty
regularized contact constraints read

t (2)N = εN 〈g(2)
N 〉− 〈g(2)

N 〉−=
{
g(2)
N if g(2)

N ≤ 0,

0 otherwise,
(7)

where εN > 0 is the so-called penalty parameter and 〈•〉−
denotes the Macaulay brackets. Thus the penalty approach
regularizes the contact constraints in (6) by allowing for a
small penetration of the contacting bodies.

In one-pass approaches, body B(1) is treated as slave and
body B(2) as master, the contact traction on the master body
is computed from (5) and (7), whereas the contact traction
on the slave body follows from the action-reaction principle
as

t(1) = −t(2). (8)

Instead, in two-half-pass formulations, two loops are per-
formed treating each surface alternatively as slave andmaster.
In each loop, the contact tractions are computed only on the
surface currently treated as slave. Thus, in addition to the ones
introduced previously, the following symmetric relationships
are used

g(1)
N = (x(2) − x̄(1)) · n̄(1) (9)

t(1) = t(1)N = t (1)N n̄(1) (10)

t (1)N = εN 〈g(1)
N 〉− 〈g(1)

N 〉−=
{
g(1)
N if g(1)

N ≤ 0,

0 otherwise,
(11)

where the contact constraints are given directly after penalty
regularization. Notice that now (8) is no longer needed. Thus,
equilibrium at the contact surfaces is no longer explicitly
enforced but recovered a posteriori with high accuracy [11,
12].

2.3 Boundary value problem in strong form

The elastostatic boundary value problem with contact for the
two bodies B(k) occupying the domains �(k) in the refer-
ence configuration is formulated in the following in strong
form. Each boundary �(k) can be subdivided into a por-
tion �

(k)
D with Dirichlet boundary conditions, a portion �

(k)
N

with Neumann boundary conditions, and the remaining por-
tion �

(k)
C on which contact constraints hold, with �(k) =

�
(k)
D

⋃
�

(k)
N

⋃
�

(k)
C and �

(k)
D

⋂
�

(k)
N = �

(k)
N

⋂
�

(k)
C =

�
(k)
C

⋂
�

(k)
D = ∅.

The balance of linear momentum reads

∇ · P (k) + B(k) = 0 in �(k) (12)

with the first Piola-Kirchhoff stress tensors P (k) and the body
forces B(k). On the Dirichlet boundaries �

(k)
D displacements

ū(k) are prescribed

u(k) = ū(k) on �
(k)
D (13)

whereas tractions T̄
(k)

are applied to the Neumann bound-
aries �

(k)
N

P (k)N(k) = T̄
(k)

on �
(k)
N (14)

with N(k) as the outward normal unit vector to �
(k)
N in the

reference configuration. On the contact surfaces it is

P (k)N(k) = T (k) on �
(k)
C . (15)

Here T (k) denotes the contact Piola traction vectors, which
are computed from the contact Cauchy traction vectors t(k)

of Sect. 2.2 by accounting through (3) for the mapping from
the current to the reference configuration.

2.4 Variational formulation

Based on the principle of virtual work, the finite deforma-
tion elasticity problem in variational form, expressed in the
reference configuration, consists of finding u(k) ∈ U (k) such

123



Computational Mechanics (2022) 70:785–802 789

that for all δu(k) ∈ V (k)

2∑
k=1

⎡
⎢⎢⎢⎢⎣

∫
�(k)

P (k) : ∇δu(k) d�︸ ︷︷ ︸
δW (k)

int

−
∫

�(k)
B(k) · δu(k) d� −

∫
�

(k)
N

T̄
(k) · δu(k) d�

︸ ︷︷ ︸
δW (k)

ext

−
∫

�
(k)
C

T (k) · δu(k) d�

︸ ︷︷ ︸
δW (k)

C

⎤
⎥⎥⎥⎥⎥⎦ = 0

(16)

with the following definition for the approximation spaces

U (k) = {u(k)|u(k) suff. regular, u(k)|
�

(k)
D

= ū(k)},
V (k) = {δu|δu(k) suff. regular, δu(k)|

�
(k)
D

= 0}. (17)

where we do not further specify the regularity requirements
here. Let us now focus on the contact contribution to theweak
form,

δWC =
2∑

k=1

δW (k)
C = −

2∑
k=1

∫
�

(k)
C

T(k) · δu(k)d� (18)

In alternative than in the reference configuration, where in
general�(1)

C �= �
(2)
C , δWC can also be expressed in the current

configuration as follows

δWC = −
∫

γC

t(2) · δ x̄(2)dγ −
∫

γC

t(1) · δx(1)dγ (19)

which exploits the coincidence of the contact surfaces in the
current configuration noted earlier, γ

(1)
C = γ

(2)
C = γC , and

their pairing through closest-point projection.
Considering a conventional master-slave treatment of the

contact surface, this expression can be further simplified
using Eqs. (8), (5), (4) and the variation of the gap function
δg(2)

N = (δx1 − δ x̄2) · n̄(2), resulting in

δWC =
∫

γC

tN δgNdγ = εN

∫
γC

gN δgNdγ. (20)

where we have used (7), defined tN = t (2)N and gN = g(2)
N ,

and removed the Macauley brackets under the assumption to
have identified the (active) contact surface using a suitable
active set strategy. Instead, with a two-half-pass treatment,

the contact virtual work reads

δWC = −εN

∫
γC

g(1)
N n(1) · δx(1)dγ − εN

∫
γC

g(2)
N n(2) · δx(2)dγ.

(21)

which coincides with (19) combined with penalty regular-
ization.

3 Isogeometric Galerkin and collocation
methods

In this section, we first review the basics of B-spline and
NURBS basis functions. Then we briefly illustrate isogeo-
metric Galerkin and collocationmethods including both bulk
and contact discretization.

3.1 B-Spline and NURBS basis functions, collocation
points

A B-spline basis of degree p is constructed based on a so-
called knot vector, i.e. a non-decreasing sequence of real
numbers � = {ξ1, ξ2, . . . , ξn+p+1}, where each ξi is a knot
and n denotes the number of basis functions of degree p.
Throughout this paper, the knot vector is assumed to be open,
which implies ξ1 = . . . = ξp+1 and ξn+1 = . . . = ξn+p+1. If
a knot has multiplicity k, the continuity of the B-spline basis
is C p−k at that knot. The continuity is C∞ in the interior of
a knot span.

A common choice for the location of collocation points
in isogeometric collocation are the Greville abscissae of the
knot vectors. For a B-Spline basis of degree p the Greville
abscissae are defined as

τ̂i = 1

p

i+p∑
j=i+1

ξ j , i = 1, . . . , n (22)

For multivariate discretizations, the Greville abscissae are
obtained via the tensor product of (22) in the various para-
metric directions.

The univariate p-th degree B-Spline basis functions
{Ni,p}i=1,...,n are defined bymeans of theCox-deBoor recur-
sion formula using the relations

Ni,0(ξ) =
{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(23a)

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (23b)
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and adopting the convention 0
0 = 0.

Bivariate NURBS basis functions Ri, j of degrees p and q
in the two parametric directions ξ and η with the correspond-
ing weights wi, j are defined by a product of the univariate
B-spline basis functions Ni,p(ξ), Mj,q(η) as

Ri, j (ξ, η) = Ni,p(ξ)Mj,q(η)wi, j∑n
î=1

∑m
ĵ=1

Nî,p(ξ)Mĵ,q(η)wî, ĵ

. (24)

ANURBS surface of degree p, q can be expressed as a linear
combination of control points P i, j with the corresponding
basis functions Ri, j as

S(ξ, η) =
n∑

i=1

m∑
j=1

Ri, j (ξ, η)P i, j . (25)

3.2 Galerkin formulation

IGA, like FEM, is based on the discretization of the weak
form (16). The unknown displacement fields u(k) are approx-
imated as follows

u(k) ≈ u(k)h =
N (k)∑
a=1

Ra û
(k)
a , (26)

where Ra are NURBS basis functions in IGA (as opposed to
the Lagrange basis functions used in FEM) and û(k)

a are the
N (k) = n(k)m(k) unknown displacement control variables of
body B(k). The symbol (•)h indicates discretized quantities.
Note that, for convenience, we have summarized the two
indices i, j of (25) in a single running index a, with a =
( j−1)n+i . According to theBubnov-Galerkin approach, the
test functions (or virtual displacements) δu(k) are discretized
with the same ansatz:

δu(k) ≈ δu(k)h =
N (k)∑
a=1

Raδû
(k)
a . (27)

Upon substitution of (26) and (27) in (16), we obtain the IGA
Galerkin formulation

2∑
k=1

[∫
�(k)h

P (k)h : ∇δu(k)h d� −
∫

�(k)h
B(k) · δu(k)h d�

−
∫

�
(k)h
N

T̄
(k) · δu(k)h d�

]
+ δWh

C = 0 (28)

with δWh
C as the contact contribution to the discretized weak

form. TheDirichlet boundary conditions on�
(k)
D are enforced

strongly in the final system of algebraic equations.

Let us now focus on δWh
C . The main difference between

GPTS and PTS strategies is the choice of the quadrature rule.
In GPTS, the integral(s) in Eq. (20) (for the standard master-
slave treatment) or (21) (within a two-half-pass treatment)
is/are computed with a standard Gaussian quadrature rule.
This makes the approach easy to implement, but leads to a
higher amount of evaluation points compared to collocation
(pointwise) strategies. The contact patch test is satisfied up
to the integration error for the standard master-slave, and to
machine precision for the two-half-pass treatment.

PTS can be seen as GPTS with a reduced quadrature strat-
egy. Instead of standard Gauss points, the quadrature points
are here the Greville, Demko or Botella abscissae, which are
equal in number to the control points. Hence, the amount
of contact evaluations is reduced significantly, especially for
higher-order discretizations. In the following we consider
the Greville abscissae, since they coincide with the locations
of the collocation points in the collocation-based contact
approaches (see Sect. 4).

In the original paper on PTS [3], the quadrature weights
were taken equal to the unity. An improved version based on
weighted contributions and denoted as PTS+ was introduced
in [4] and is adopted here (although we still refer to it as PTS
for simplicity). Quadrature weights are computed by solving
the following moment-fitting system of equations

⎡
⎢⎢⎢⎣

∫
�̂
N1(ξ)dξ∫

�̂
N2(ξ)dξ

...∫
�̂
Nn(ξ)dξ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Fs
C

=

⎡
⎢⎢⎢⎣
N1(τ̂1) N1(τ̂2) N1(τ̂3) . . . N1(τ̂n)

N2(τ̂1) N2(τ̂2) N2(τ̂3) . . . N2(τ̂n)
...

...
...

. . .
...

Nn(τ̂1) Nn(τ̂2) Nn(τ̂3) . . . Nn(τ̂n)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Gs

mat

⎡
⎢⎢⎢⎣

ω̂1

ω̂2
...

ω̂n

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ω̂

(29)

with the univariate B-Spline basis functions Ni (of the slave
contact surface) and the corresponding collocation points
τ̂i . The left-hand side contains the moments Fs

C , which are
computed exactly using full Gauss quadrature, and the right-
hand side the unknown weights ω̂ and the basis function
evaluations (at the corresponding collocation points) stored
in Gs

mat . The quadrature weights are computed once at the
beginning of the simulation by solving the linear system of
equations for the unknown weights ω̂.

In the original PTS / PTS+ approaches, the non-penetra-
tion condition in normal direction was enforced by the
Lagrange multiplier method. Here, we combine the PTS+
approach with the penalty method to allow for a better com-
parison with the other contact formulations.
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3.3 Isogeometric collocation

Unlike Galerkin formulations, isogeometric collocation
approaches are based on solving the strong form of the
boundary value problem, which is enforced at the chosen
collocation points. As shown in [19,20], isogeometric collo-
cation can alternatively be introducedbasedon thevariational
formulation (16) upon integration by parts and discretization
(assuming sufficient regularity, which can be achieved with
isogeometric basis functions)

2∑
k=1

[∫
�(k)

[
∇ · P (k) + B(k)

]
· δu(k) d�

−
∫

�
(k)
N

[
P (k)N(k) − T̄

(k)
]

· δu(k) d�

−
∫

�
(k)
C

[
P (k)N(k) − T (k)

]
· δu(k) d�

]
= 0.

(30)

which leads to the so-called weighted residual formulation
(note that here and in the following we omit the superscript
h for notational simplicity). The next step is to choose for
the test functions δu(k) no longer (27) but the Dirac delta
distribution δD , which can be formally constructed as the
limit of a sequence of smooth functionswith compact support
that converge to a distribution [19,20], andwhich satisfies the
so-called sifting property, i.e.,

∫
�

f�(X)δD(X − X i ) d� = f�(X i ),∫
�

f�(X)δD(X − X i ) d� = f�(X i ) (31)

for every function f� continuous about the point X i ∈ �

and for every function f� continuous about the point X i ∈
� [18–20]. In the following, the Dirac delta is indicated as
Dirac delta “function” following conventional terminology.
The collocation points in parametric coordinates are denoted
as τ̂ i j , i = {1, . . . , n}, j = {1, . . . ,m} with i = 1, n or
j = 1,m corresponding to the boundary �. Once again we
substitute the two indices i, j with the single running index a
and, for the collocation points τ̂ a in parametric coordinates,
we denote the corresponding physical maps in the reference
configuration as τ a .

In isogeometric collocation, all test functions are chosen
as Dirac delta functions centered at the interior and at the
boundary collocation points. Applying the sifting properties
of Eq. (31) to the weighted residual form (30) results in

[
∇ · P (k) + B(k)

] (
τ (k)
a

)
= 0

τ (k)
a ⊂ �(k), (32a)

[
P (k)N(k) − T̄

(k)
] (

τ (k)
a

)
= 0

τ (k)
a ⊂ edge(k) ⊂ �

(k)
N , (32b)[

P (k)
(
N

′(k) + N
′′(k)

)
−

(
T̄

′(k) + T̄
′′(k))] (

τ (k)
a

)
= 0

τ (k)
a ≡ corner(k) ⊂ �

(k)
N , (32c)[

P (k)N(k) − T (k)
] (

τ (k)
a

)
= 0

τ (k)
a ⊂ edge(k) ⊂ �

(k)
C , (32d)[

P (k)
(
N

′(k) + N
′′(k)

)
−

(
T

′(k) + T
′′(k)

)] (
τ (k)
a

)
= 0

τ (k)
a ≡ corner(k) ⊂ �

(k)
C . (32e)

where the symbols (•)′ and (•)′′ refer to the two adjacent
edges meeting at a corner point. The different treatment for
collocation points on edges and at corners is taken from [19,
20,22,23].

Thus, at the interior collocation pointswe obtain the strong
form of the governing equations in the interior of the domain,
whereas we recover the strong form of the Neumann bound-
ary conditions and of the contact conditions at the collocation
points located at the Neumann and at the contact bound-
ary, respectively [23]. The Dirichlet boundary conditions are
enforced strongly.

As shown in [22], the strong imposition of Neumann
boundary conditions may lead to oscillations and thus to a
loss of accuracy, in particular when non-uniform meshes are
used. One possible remedy was introduced in [22] with the
so-called enhanced collocation (EC) approach. The idea is
to consider a combination of area and edge terms for the
Neumann boundary conditions as follows

[
∇ · P (k) + B(k)

] (
τ (k)
a

)
τ (k)
a ⊂ edge(k) ⊂ �

(k)
N ,

− C∗

h(k)

[
P (k)N(k) − T̄

(k)
] (

τ (k)
a

)
= 0 (33a)[

∇ · P (k) + B(k)
] (

τ (k)
a

)
τ (k)
a ≡ corner(k) ⊂ �

(k)
N ,

− C∗

h ′(k)

[
P (k)N

′(k) − T̄
′(k)] (

τ (k)
a

)
− C∗

h ′′(k)

[
P (k)N

′′(k) − T̄
′′(k)] (

τ (k)
a

)
= 0 (33b)

where h is the mesh size in the direction perpendicular to
the edge. This approach requires a suitable choice for the
constant C∗ in Eq. (33). In [22], C∗ was calibrated through
numerical experiments and an optimal value of C∗ = 4 was
found, which will also be used here. The EC approach is
analogously applicable to the contact boundary, as already
tested in [23].
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4 Isogeometric collocated contact surface
approach

The idea of the CCS approach is to combine a contact for-
mulation based on isogeometric collocation with a Galerkin
treatment of the bulk, as sketched in Fig. 2. From the sketch it
can be inferred that the proposed approach leads to a number
of contact evaluation points significantly reduced compared
to an integral contact formulation based e.g. on a standard
Gaussian quadrature rule (like the GPTS approach), and
equal to the number of evaluation points of pointwise contact
formulations (like the PTS approach).

The hybrid discretization of the CCS approach is obtained
by adopting as test functions:

• NURBS functions for the degrees of freedom corre-
sponding to control points at the interior of the domain
or at the Neumann boundaries;

• Dirac delta functions centered at the appropriate colloca-
tion points for the degrees of freedom corresponding to
control points at the contact boundaries.

The resulting expression of the test functions reads

δu(k) (X) ≈
g(k)∑
a=1

Ra (X) δû(k)
a +

N (k)∑
a=g(k)+1

δD (X − τ a) δû(k)
a

(34)

For notational simplicity and without loss of generality, we
renumbered the control point variables in such a way that the
first g(k) are related to the interior and the Neumann bound-
ary, whereas the last N (k) − g(k) are related to the contact
boundary. Substitution in the weighted residual formulation

(30) yields

2∑
k=1

⎧⎨
⎩

g(k)∑
a=1

[
δû(k)

a ·
∫
�(k)

(
∇ · P(k) + B(k)

)
RadΩ

−δû(k)
a ·

∫
�

(k)
N

(
P(k)N(k) − T̄(k)

)
Rad�

−δû(k)
a ·

∫
�

(k)
C

(
P(k)N(k) − T(k)

)
Rad�

]

+
N (k)∑

a=g(k)+1

[
δû(k)

a ·
∫
�(k)

(
∇ · P(k) + B(k)

)
δD (X − τa) dΩ

−δû(k)
a ·

∫
�

(k)
N

(
P(k)N(k) − T̄(k)

)
δD (X − τa) d�

−δû(k)
a ·

∫
�

(k)
C

(
P(k)N(k) − T(k)

)
δD (X − τa) d�

]}
= 0

(35)

Since Ra for a = 1, . . . , g(k) + 1 vanish on �
(k)
C and since

τ a for a = g(k) + 1, . . . , N (k) are located on �
(k)
C , the above

discretized weighted residual form reduces to

2∑
k=1

⎧⎨
⎩

g(k)∑
a=1

[
δû(k)

a ·
∫

�(k)

(
∇ · P (k) + B(k)

)
RadΩ

−δû(k)
a ·

∫
�

(k)
N

(
P (k)N(k) − T̄(k)

)
Rad�

]

−
N (k)∑

a=g(k)+1

δû(k)
a

·
∫

�
(k)
C

(
P (k)N(k) − T(k)

)
δD (X − τ a) d�

}
= 0 (36)

Fig. 2 Schematic representation
of the isogeometric CCS
approach. Discretization of each
body with 10 × 5 elements of
polynomial degree p = 3
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Fig. 3 Schematic representation of the implementation procedure of
the CCS approach

In Eq. (36), the integrals in the first row can be integrated
by parts, delivering the “usual” Galerkin contributions to the
residual vector (and, upon linearization, to the tangent stiff-
ness matrix), whereas the integral in the second row, due
to the sifting property in Eq. (31)2, delivers the collocated
contact contributions. With this approach, which is reminis-
cent of (but different from) the hybrid collocation-Galerkin
treatment in [22], a Galerkin formulation for the interior and
the Neumann boundaries and a collocated formulation for
the contact boundaries are naturally obtained. It was shown
in [22,23] that in the framework of isogeometric colloca-
tion a simple pointwise contact treatment combined with the
two-half-pass algorithm and the penalty method passes the
patch test to machine precision and delivers accurate results.
Hence, the CCS approach is expected to inherit these perfor-
mance features, while keeping the flexibility and accuracy of
Galerkin for the bulk behavior.

The implementation strategy to endow a standard IGA
Galerkin formulation with the CCS approach is illustrated
in Fig. 3. From an operational standpoint, the incorporation
into a pre-existing IGAGalerkin code is straightforward.This
code is first used to calculate the global stiffness matrix and
residual vector for both bodies with the standard Galerkin
formulation, not taking into account the contact boundaries.
Afterwards all test functions having support on the contact
boundaries �

(k)
C and their global indices have to be iden-

tified. Subsequently the rows of the stiffness matrix and
residual vector corresponding to these indices are completely
substituted by the collocation based contact contributions
computed as in (32)d,e. This substitution is easily carried
out directly in the final system of linear equations, with no
need for manipulations at the element level of the Galerkin
code.

It is evident that the incorporation of the collocation con-
tact formulation is very similar and equivalently simple as the
treatment of Dirichlet boundary conditions. For frictionless
contact, a drawback of the approach is the loss of symmetry
of the tangent stiffness matrix. However, this is no longer an
issue in the more realistic situation of frictional contact, in
which the tangent stiffness matrix is asymmetric in all cases.
In case of inactive contact, the collocation-based contact
formulation automatically enforces homogeneous Neumann
boundary conditions, hence there is no need for segmentation
of the contact surfaces.

5 Numerical examples

In the previous sections, several contact approaches were
introduced. For ease of reference, their main features are
summarized in Table 1, where the proposed CCS approach
is also included. In this section we consider four differ-
ent numerical examples to investigate the performance of
the proposed CCS approach in comparison with that of the
other approaches. We consider here two-dimensional prob-
lems under plane strain conditions.

5.1 Contact patch test

The first numerical example consists of the so-called con-
tact patch test, proposed by Taylor and Papadopoulos in [5].
The main objective of this setup is to test the capability of
a contact formulation to transfer a constant contact pres-
sure across the interface between two bodies discretized with
non-conformingmeshes. The geometry, boundary conditions
and simulation parameters are depicted in Fig. 4. The two
blocks are pressed onto each other with a uniform pressure
p̄ = 0.01, which is applied within one loadstep. Symmetry
boundary conditions are applied on the left vertical edges of
both blocks. The bottom boundary of the lower block is fixed
in vertical direction and homogeneous Neumann bound-
ary conditions are applied in horizontal direction. Since
the considered deformations are comparatively small, linear
elasticity is assumed for this example.

The resulting errors of the stress componentσyy are shown
in Figs. 5 and 6. Figure 5 contains the error plots for the
newly proposed CCS and ECCS approaches. For compari-
son, results of the corresponding full collocation (C and EC)
approaches are also shown. As expected, all four methods
fulfil the contact patch test to machine precision, i.e. the col-
located contact formulation in CCS and ECCS preserves the
properties of the same formulation in a fully collocated con-
text [2]. For this case featuring nearly homogeneous meshes,
EC and ECCS perform nearly identically to C and CCS.

Figure 6 displays the error plots for the GPTS and PTS
approaches. It is known from the literature (see e.g. [2]), that
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Table 1 Overview of the considered contact algorithms

Type Name Abbr. Features

Galerkin-based Gauss-point-to-segment / with two-
half-pass

GPTS / GPTS-2hp Weak contact enforcement at Gauss
quadrature points on slave surface /
on both contact surfaces

Point-to segment / with two-half-
pass

PTS / PTS-2hp Weak contact enforcement at collo-
cation points on slave surface / on
both contact surfaces

Collocation-based Collocation / Enhanced collocation C / EC Strong /enhanced contact enforce-
ment at collocation points on both
contact surfaces, collocation treat-
ment of the bulk

Collocated contact surface /
Enhanced collocated contact sur-
face

CCS / ECCS Strong /enhanced contact enforce-
ment at collocation points on both
contact surfaces,Galerkin treatment
of the bulk

(a) (b)

Fig. 4 Contact patch test: Geometry, boundary conditions and simulation setup

the GPTS approach is only able to fulfil the contact patch test
up to the integration error. This is confirmed by the results in
Fig. 6. The extension to a two-half-pass formulation brings
the error down to machine precision. The PTS formulation
leads to a higher error thanwith theGPTSapproach. The two-
half-pass extension significantly improves the results, but
does not reachmachine precision, as expected for a pointwise
approach (despite the enhancement of weight computation in
[4]).

5.2 Two deformable blocks

In the following numerical example, which was initially pre-
sented in [22], two deformable blocks are pressed against
each other. Geometry, boundary conditions and further sim-
ulation parameters are illustrated in Fig. 7. A uniform vertical
displacement v̄ = 0.2 and zero horizontal displacement are
enforced on the upper edge of the upper block. Although the
assumption of small deformations is clearly violated in this
example, we adopt a linearly elastic material model to adhere
to the original simulation setup [22].
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Fig. 5 Contact patch test: Error
of stress σyy for the proposed
collocated contact surface
approaches (CCS & ECCS),
collocation (C) and enhanced
collocation (EC)

(a) (b)

(c) (d)

Two different discretizations are tested in order to study
the effect of the element aspect ratio on the results. The first
discretization consists of 10×15 control points for each body.
Hence, the element size is larger in the horizontal direction,
i.e. in the direction perpendicular to the vertical edges of the
blocks where homogeneous Neumann boundary conditions
are applied. In [22] this element shape was found to lead to
oscillations with the pure collocation scheme.

The resulting plots of the stress component σyy for this
discretization are given in Figs. 8 and 9. Figure 8 contains
the results for the C, EC and the proposed CCS and ECCS
approaches. Strong oscillations appear with pure collocation
(C). The EC approach successfully suppresses these oscilla-
tions, which it was intended for. Interestingly, the proposed
CCS approach is also free of oscillations, probably due to
its Galerkin treatment of the Neumann boundary conditions.
Thus its enhancement as in ECCS - although performingwell
- is not required.

The plots of the stress component σyy for the GPTS and
PTS approaches are given in Fig. 9. As expected, for these
approaches no oscillations are obtained. The stress plots of

all the different approaches (except for pure collocation) look
similar, despite the coarse discretization.

In Figs. 10 and 11 the stress component σyy is plotted for
a finer discretization (25 × 10 control points per body) and
an aspect ratio of the elements closer to the unity than in
the previous discretization. Here, also the pure collocation
approach does not lead to oscillations. Interestingly, a mild
checkerboard pattern appears in the contact region for the
PTS approach. This effect vanishes for the corresponding
two-half-pass formulation. With this exception, the obtained
results are nearly identical for all methods.

5.3 Hertzian contact

As a further example, the classical Hertz frictionless contact
problem between a cylinder and a rigid plane is investigated.
The geometry, boundary conditions and further simulation
parameters are given in Fig. 12. Due to the tensor product
structure of the NURBS basis functions, it is necessary to
model the cylinder with a small inner radius as depicted in
Fig. 12. The cylinder is loaded with a vertical force P = 0.002
applied as a uniformly distributed load p̄ on the upper surface
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Fig. 6 Contact patch test: Error
of stress σyy for the
Gauss-point-to-segment (GPTS)
and Point-to-segment (PTS)
approaches and the
corresponding two-half-pass
(2hp) formulations

(a) (b)

(c) (d)

(a) (b)

Fig. 7 Two deformable blocks: Geometry, boundary conditions and simulation setup
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(a) (b)

(c) (d)

Fig. 8 Two deformable blocks: Stress σyy for the proposed collocated contact surface approaches (CCS & ECCS), collocation (C) and enhanced
collocation (EC). Discretization of each body with 10 × 15 control points

(a) (b)

(c) (d)

Fig. 9 Two deformable blocks: Stress σyy for the Gauss-point-to-segment (GPTS) and Point-to-segment (PTS) approaches and the corresponding
two-half-pass (2hp) formulations. Discretization of each body with 10 × 15 control points

of the cylinder and symmetry conditions are applied to the
left edge. The discretization of the cylinder is refined close
to the contact region by using non-uniform knot vectors such
that 80% of the elements are located within 10% of the total
length of the knot vector in both parametric directions.

A coarse and a fine mesh are tested for four different poly-
nomial orders to study the effect of the discretization on the
results. The load is applied within one loadstep. To ensure
validity of the Hertz theory, linear elasticity is assumed.

For the considered discretizations, the dimensionless con-
tact pressure p/p0 is plotted versus the dimensionless

coordinate x/a in Figs. 13 and 14, with a and p0 being
the half-width of the contact area and the maximum normal
pressure, respectively. Although the chosen setup does not
exactly correspond to the original Hertz model, the resulting
error is negligible provided that the applied load is relatively
small. The half-width of the contact area is calculated by the

expression a =
√

4P
πE ′ with E ′ = E

1−ν
and the maximum

normal pressure p0 is estimated by the formula p0 = 2P
πa .

For the given setup this leads to values of a = 0.0481 and
p0 = 0.0264. There exist procedures for the reconstruction
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(a) (b)

(c) (d)

Fig. 10 Two deformable blocks: Stress σyy for the proposed collocated contact surface approaches (CCS & ECCS), collocation (C) and enhanced
collocation (EC). Discretization of each body with 25 × 10 control points

(a) (b)

(c) (d)

Fig. 11 Two deformable blocks: Stress σyy for the Gauss-point-to-segment (GPTS) and Point-to-segment (PTS) approaches and the corresponding
two-half-pass (2hp) formulations. Discretization of each body with 25 × 10 control points

of the contact pressures, which are able to reduce occurring
oscillations in a post-processing step. Since we are mainly
interested in the comparison of the different contact formula-
tions, we reconstruct the contact pressures directly from the
tractions to give an unaltered account of the performance of
the tested approaches.

The results for the coarse discretization are given in Fig.
13 along with the reference solution. Already for the coarse
discretization, all obtained results are in good agreementwith
the reference solution. For the lowest polynomial degree, the
results of the C and EC approaches show slight deviations. In

the case of EC, these slight deviations vanish for the higher
polynomial degrees, but they persist for the pure collocation
approach. The newly proposed CCS approach is not affected
by these deviations, which suggests that they may be an arte-
fact of the incorporation of the boundary conditions and not
induced by the contact formulation.

Figure 14 shows the results for the fine discretization,
which are now nearly indistinguishable and extremely close
to the analytical solution. The non-physical negative contact
pressures which appear for all tested approaches close to the
boundary of the contact region could be removed by a suit-
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Fig. 12 Hertzian contact:
Geometry, boundary conditions
and simulation setup

(a) (b)

Fig. 13 Hertzian contact:
Contact pressure for
discretization with 25 × 25
Bézier elements and polynomial
degree p = 2, 3, 4, 5

able post-processing scheme and are not related to a specific
contact formulation. They are rather inherent to the use of
higher-order basis functions and are a known phenomenon
for both finite element and isogeometric discretizations [2].

5.4 Ironing

Finally, a frictionless ironing problem is studied. The setup is
similar to the one described in [29]. A half-cylinder is pressed
into an elastic block (vertical downward displacement v̄ =

2
3 of upper face of the cylinder) and subsequently moved
horizontally across the block (horizontal displacement ū =
6). As for the Hertz problem, the half-cylinder is modeled
with a small inner radius. The block is fixed on the bottom
side and periodic boundary conditions are applied on the left
and right sides. Both bodies are modeled as Neo-Hookean
solids with the strain energy density function given in Sect.
2.1.

In this example, in very rare cases the Newton-Raphson
method was not converging, due to the residual alternating
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Fig. 14 Hertzian contact:
Contact stress distribution for
discretization with 50 × 50
Bézier elements and polynomial
degree p = 2, 3, 4, 5

(a) (b)

Fig. 15 Ironing: Geometry, boundary conditions and simulation setup

between two values in consecutive iterations (a phenomenon
known as “jamming” or “zig-zagging” in the literature). In
order to avoid non-converged solutions, a bisection con-
trol for the load increments was applied, so that in case of
non-convergence the load increment was bisected within the
corresponding loadstep.

In Fig. 16 the vertical reaction forces are plotted. Despite
the relatively coarse discretization, the curves obtained with
the different algorithms are nearly indistinguishable. This
test shows that the CCS approach also works well in the
large deformation setting.

Figure 17 shows the trace of the Cauchy stress tr(σ ) for
CCS and ECCS along with those for GPTS and the cor-
responding two-half-pass formulation. There are no visible
differences between the plots, which further confirms the
good performance of the proposed approach.

6 Conclusions

We proposed a novel hybrid discretization approach for
computational contact mechanics, denoted as isogeometric
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Fig. 16 Ironing: Vertical reaction forces for discretization with 80×20
Bézier elements and polynomial degree p = 3

(a)

(b)

(c)

(d)

Fig. 17 Ironing: Plots of the trace of the Cauchy stress tr(σ ) at the end
of the vertical loading phase for the proposed collocated contact surface
approaches (CCS & ECCS), Gauss-point-to-segment (GPTS) and the
corresponding two-half-pass (2hp) formulation. Discretization of each
body with 80 × 20 Bézier elements and polynomial degree p = 3

Collocated Contact Surface (CCS) approach. The basic idea
is to deploy the standard IGA Galerkin formulation for the
bulk of deformable bodies, and to combine it with a contact
formulation based on isogeometric collocation. The formu-
lation was tested for the frictionless two-dimensionless case
in both small and large deformations. Its main features, in

comparison with available contact formulations, can be sum-
marized as follows:

• The CCS approach is based on a simple pointwise
enforcement of the contact constraints. Unlike pointwise
contact algorithms in the Galerkin framework, it passes
the contact patch test to machine precision by naturally
exploiting the favorable properties of isogeometric col-
location;

• Compared with approaches where the discretization of
both bulk and contact surfaces is based on collocation,
theCCSapproach does not need enhancements to remove
oscillations for highly non-uniform meshes. Moreover,
it enjoys the flexibility and robustness of the Galerkin
framework in the bulk discretization;

• Compared with integral contact approaches such as
Gauss-point-to-segment or mortar methods, the CCS
algorithm is less expensive, due to the reduced amount
of contact evaluation points;

• The CCS approach is easy to code, and can be added to
a pre-existing isogeometric analysis code with minimal
effort;

• For frictionless contact, a drawback of the approach is
the lack of symmetry of the contact contribution to the
tangent stiffness matrix. However, this is no longer an
issue in the more realistic situation of frictional contact,
in which the tangent stiffness matrix is asymmetric in all
cases.
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