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H I G H L I G H T S  

• Reviewing flexibility and robustness in local, integrated energy system models. 
• Flexibility is introduced by storage and sector coupling, DSM is rare. 
• Transport integration and the flexibility potential of EVs receive little attention. 
• Reporting metrics beyond cost and emissions provides additional decision-support. 
• Uncertainty assessments are overwhelmingly deterministic, mainly using scenarios.  
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A B S T R A C T   

The electrification of heating, cooling, and transportation to reach decarbonization targets calls for a rapid 
expansion of renewable technologies. Due to their decentral and intermittent nature, these technologies require 
robust planning that considers non-technical constraints and flexibility options to be integrated effectively. 
Energy system models (ESMs) are frequently used to support decision-makers in this planning process. In this 
study, 116 case studies of local, integrated ESMs are systematically reviewed to identify best-practice approaches 
to model flexibility and address non-technical constraints. Within the sample, storage systems and sector 
coupling are the most common types of flexibility. Sector coupling with the transportation sector is rarely 
considered, specifically with electric vehicles even though they could be used for smart charging or vehicle-to- 
grid operation. Social aspects are generally either completely neglected or modeled exogenously. Lacking actor 
heterogeneity, which can lead to unstable results in optimization models, can be addressed through building- 
level information. A strong emphasis on cost is found and while emissions are also frequently reported, addi-
tional metrics such as imports or the share of renewable generation are nearly entirely absent. To guide future 
modeling, the paper concludes with a roadmap highlighting flexibility and robustness options that either 
represent low-hanging fruit or have a large impact on results.   

1. Introduction 

There is wide consensus about the need to mitigate the effects of 
climate change by decarbonizing the energy system. Fossil-fuel depen-
dent sectors such as transportation or heating require alternative energy 
carriers and a promising candidate for this shift is electrification [1]. 
This implies a massive expansion in renewable generation capacities and 

introduces a need for flexibility options due to the decentral and inter-
mittent nature of renewable technologies such as solar photovoltaics 
(PV) or wind power as electricity demand has to be met instantaneously 
[2]. 

Energy system models (ESMs) have been developed to support 
decision-makers in planning energy transitions. Since their inception, it 
has been argued that ESMs should be used for “insights, not numbers” 
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[3]. To ensure robust insights, models must provide an accurate repre-
sentation of the real-world system, including the techno-economic 
dimension, but also social, environmental or political constraints [4]. 
Uncertainties are another critical element to consider as decision-maker 
priorities shift over time and ESMs cannot reproduce all real-world 
processes and interactions [5]. 

A key trend of the energy transition is the emergence of an increas-
ingly decentralized energy system as renewable energy sources exhibit 
lower energy densities. This shift can provide benefits to communities, 
from increased resilience and flexibility of their energy supply to direct 
involvement in the decision-making process [6]. Taking advantage of 
these opportunities requires planning on a local level and with local 
flexibility provision in mind [4,7]. 

The main challenges of local ESMs can largely be separated into two 
areas, as discussed in Section 2. Firstly, the increasingly intermittent 
energy supply requires not only a high temporal and spatial resolution to 
identify the challenges resulting from this shift, but also an appropriate 
representation of technical flexibility to discover how to effectively 
overcome these challenges [8]. Second, to ensure robust planning of an 
increasingly complex energy system, it is essential to tackle un-
certainties, but also non-technical constraints such as actor heteroge-
neity, behavior or social acceptance [9]. 

The aim of this paper is to describe the state-of-the-art modeling of 
different options for technical flexibility and robustness in local, inte-
grated energy system models. To this end, a systematic literature 
research was performed, followed by a manual filtering of the resulting 
studies. In the latter step, studies were selected based on the use of a 
systemic view and the consideration of at least the power and thermal 
sectors to guarantee comprehensive and integrated energy system 
planning. Furthermore, real-world application and investment planning 
were additional conditions to ensure that the sample provides insight 
into decision-making. 

The final selection of 116 articles was analyzed using an attribute 
catalog that considers technical flexibility and robustness aspects in 
addition to more general information on the model structure. Technical 
flexibility was divided into five dimensions: supply- and demand-side 
options, storage, networks and sector coupling, and robustness into 
the assessment of uncertainty and non-technical constraints. With this 
approach, best practices were identified and unresolved challenges were 
highlighted. This study thereby represents the first systematic review of 
local, integrated ESMs focusing on the implementation of technical 
flexibility and robustness. 

The rest of the article is structured as follows: Section 2 provides a 
literature review, discussing the modeling of flexibility and robustness 
before delving into the challenges with local energy systems modeling. 
The review methodology is presented in Section 3, separated into the 
article selection process and the study evaluation. Section 4 presents the 
results of the analysis, focusing on the implementation of technical 
flexibility and robustness options and Section 5 discusses these results 
before Section 6 provides a summary and a research roadmap based on 
the results of the review. 

2. Literature review 

Sections 2.1 and 2.2 show why flexibility and robustness, respec-
tively, are important components of ESMs and discuss prior work 
addressing these dimensions, before Section 2.3 highlights our contri-
bution relative to the previous work. 

2.1. Flexibility modeling 

Flexibility is an essential aspect of energy systems and especially of 
power systems, where demand has to be met instantaneously [2]. With 
the emergence of intermittent renewables, power supply is becoming 
more volatile, so that methods to address mismatches between genera-
tion and supply gained importance [10]. Options for flexibility include 

supply- and demand-side measures to shift the timing or amount of 
generation or consumption, storage to address temporal mismatches or 
distribution networks for spatial disparities [11]. In addition, sector 
coupling of the power sector with heating, cooling or transportation can 
be used to obtain flexibility through any one of the first three dimensions 
and non-technical options such as markets or policy measures can 
incentivize power generation to match the load [8]. 

Flexibility options have already been reviewed in the real world 
[2,8] as well as in models [11,12], but none have yet focused on the local 
level. At this scope, the spatial and temporal resolution have been 
highlighted as important factors to consider, particularly with regards to 
modeling distribution networks and storage, respectively [13,14]. 

Representing flexibility in models is critical as the unavoidable 
simplifications made in ESMs lead to an underestimation of flexibility 
requirements [15]. Technical flexibility in particular has been high-
lighted as one of the main gaps for models to be better able to answer 
policy questions [9]. Five main options exist to integrate technical 
flexibility into models: supply-side options, demand-side management 
(DSM), storage, networks, and sector coupling. Among these, particu-
larly DSM and storage are frequently implemented, with sector coupling 
gaining traction [11,12]. Indeed, (residential) DSM and the flexibility 
provided through sector coupling with electric vehicles (EVs) have the 
strongest impact amongst different flexibility options in ESMs [16,17]. 
Nonetheless, explicit supply-side options and distribution networks can 
also affect results, albeit to a lesser extent [16,18]. 

Whereas supply-side options inside of a model tend to reduce the 
degrees of freedom to better approximate the real-world operation of 
plants, DSM increases them by allowing for either load shifting, whereby 
the total demand remains the same but the time during which it is met 
changes, or load shedding, where some share of the demand is not 
satisfied but curtailed [19]. Important parameters when modeling DSM 
include how much load can be shifted or curtailed and over what 
duration [20]. 

Furthermore, storage is another essential dimension of technical 
flexibility. Both short-term storage and long-term electricity storage as 
well as thermal storage are projected to be key components of the dec-
arbonized European energy system [21]. In ESMs, storage technologies 
are often represented using the simple storage model (SSM), which ig-
nores the physical characteristics of storage technologies [22]. The SSM 
describes storage modeling using a generic approach that uses different 
parameters for different storage technologies but otherwise an identical 
mathematical formulation. Thus, only an energy balance is modeled that 
is constrained by any combination of a maximum storage capacity, (dis-) 
charge rate limits, self-discharge, and charging efficiencies. 

An important aspect of meaningful storage modeling is temporal 
resolution [13]. A temporal resolution of typical periods, as frequently 
used in ESMs, makes it challenging to model long-term storage and 
could lead to incorrect insights by overestimating the potential of re-
newables [23–26]. 

2.2. Robustness modeling 

Robust insights and decision-support from modeling depend on 
many aspects, but two main elements are focused on here as these 
represent two of the most frequently mentioned research gaps in ESMs: 
the representation of the social dimension and uncertainty assessments 
[1,27,28]. 

Krumm et al. [29] reviewed the modeling of the social dimension in 
ESMs, identifying social acceptance, behavior, actor heterogeneity, 
public participation and transformation dynamics as the five main as-
pects that should be included in models. Particularly social acceptance 
and public participation relate to stakeholder engagement, which is an 
essential consideration for local ESMs and has frequently been high-
lighted as one of the most important research gaps on a local level 
[13,30–32]. Stakeholder engagement also includes the clarity of tools as 
stakeholders were found to be less likely to use more complex tools 
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[33,34]. Recent research also considers additional options to integrate 
social acceptance in ESMs such as scenicness ratings of landscapes for 
onshore wind installations [35] or an enforced equitable distribution of 
renewable generation capacity [36]. In optimization models, it is further 
important to add heterogeneity in the representation of actors to avoid 
the so-called “bang-bang effect”, whereby a small change in model as-
sumptions results in an outsized impact on the model outputs [37]. 

A review of uncertainty assessment methods in energy system opti-
mization models by Yue et al. [38] discusses scenario and sensitivity 
analyses as by far the most frequently used approaches to evaluate un-
certainties. These allow to investigate uncertainties regarding the model 
data and assumptions, but four other approaches are highlighted as they 
allow to tackle uncertainties more thoroughly: Stochastic Programming, 
Monte Carlo Analysis, Robust Optimization and Modeling to Generate 
Alternatives (MGA). Only the last of these allows to confront structural 
uncertainties, which arise because a model never accurately represents 
the real-world system [39]. 

Such approaches are important because minimizing cost, a frequent 
objective of optimization models, has been demonstrated to be an 
insufficient proxy to predict real-world energy transitions as decision- 
makers value other factors beyond cost [40]. Having a broader range 
of reported metrics and objectives is important to enable informed 
decision-making that takes into account trade-offs and differing prior-
ities, which is especially important in the context of local planning with 
a large number of stakeholders [13]. An explicit trade-off assessment is 
possible through methods such as multi-objective optimization or multi- 
criteria decision analysis but reporting a larger number of metrics that 
might prove relevant to different stakeholders can already facilitate an 
implicit valuation of different alternatives [41]. 

2.3. Study contribution 

A number of reviews have looked at the modeling of flexibility 
[11,12], social aspects [29] or uncertainty assessments [38] or even 
both of the latter [9]. However, none of these provide a local scope, a 
comprehensive overview of all of these dimensions or an identification 
of best practices. 

Meanwhile, reviews of local ESMs are numerous [4,13,14,30–33], 
but none of these focus on any of the above areas. This is the case even 
though multiple studies highlight the importance of stakeholder 
engagement [4,13,32,33] and uncertainty assessments [14,30]. Sector 
coupling has been suggested for a more efficient implementation of re-
newables in local ESMs [30,31], echoing Savvidis et al. [9] who find that 
the representation of technical flexibility in ESMs is lacking relative to 
the need for effective decision-support, particularly given a high pene-
tration of intermittent renewables. To the best of the knowledge of the 
authors, this paper reviews the modeling of both flexibility and 
robustness in local, integrated ESMs for the first time. 

3. Methodology 

The review process consists of two main steps: the article selection 
process and the evaluation of the final sample. First, relevant articles 
were identified using a Scopus search. To this end, different search terms 
were tested iteratively based on the number and relevance of retrieved 
articles. The finalized expression includes the local dimension as the 
scope would have been too extensive otherwise, while anything relating 
to flexibility or robustness was excluded because several studies that 
were deemed relevant were not identified in those configurations. It was 
employed on August 11th, 2021 to identify 962 results and is as follows: 

TITLE (“energ*” AND (“simulat*” OR “model*” OR “optim*” OR 
“analy*” OR “assess*” OR “system”) AND (“region” OR “municip*” OR 
“communit*” OR “district” OR “cit*” OR “urban*” OR “local” OR 
“neighb*rhood”)) AND TITLE-ABS-KEY (“energ*” AND (“simulat*” OR 
“model*” OR “optim*” OR “analy*” OR “assess*” OR “system”) AND 
(“region” OR “municip*” OR “communit*” OR “district” OR “cit*” OR 

“urban*” OR “local” OR “neighb*rhood”) AND (“energy system*”)) AND 
(LIMIT-TO (DOCTYPE,“ar”)) AND (LIMIT-TO (LANGUAGE,“English”)). 

To ensure the relevance and comparability of the final sample, five 
selection criteria were applied as shown in Table 1. The aim of these 
criteria is to have a final sample that allows to describe the state-of-the- 
art modeling of flexibility and robustness in local, integrated ESMs. To 
this end, the first criterion guarantees that the spatial scope is respected. 
The next two criteria are used to ensure that the studies are compre-
hensive in their representation of the energy system and the final two 
criteria make sure that the studies apply the developed models for 
insight. 

In a first step, only the abstracts and keywords were screened using 
the selection criteria, which allowed to reduce the number of articles to 
305. The remaining articles were then analyzed individually and any 
that did not meet one of the five criteria above during the study evalu-
ation step were further excluded, leading to a final number of 116 ar-
ticles. The supplementary information (SI) contains a list of articles that 
were discarded during the second step, flagged with a numerical code 
classifying the reason for their exclusion. 

To systematically assess the selected articles, an attribute catalog was 
used. Based on Weinand et al. [42], it identifies general information on 
the model formulation, the implementation of spatial and temporal 
details and the coverage of different technologies. The specific genera-
tion sources that were considered include solar, wind, biomass, 
geothermal, hydro and fossil power plants. This catalog was then 
augmented to capture information on flexibility and robustness 
modeling based on criteria found in the literature and refined by testing 
the initial catalog on a random subsample of 15 articles. 

The five aspects of technical flexibility introduced in Section 2.1 
were kept to characterize this dimension in the final attribute catalog, 
while factors such as markets or regulations were considered outside of 
the scope of this review due to their diversity. To assess robustness, the 
criteria from Krumm et al. [29] and Yue et al. [38] discussed in Section 
2.2 were complemented with criteria on the number and type of ob-
jectives and broader metrics which are a pre-requisite for informed 
decision-making. The concrete criteria that were chosen for these two 
dimensions are shown in Table 2. 

The results of the final article evaluation can be found in the SI. 
During the analysis, studies providing details on the implementation of 
any of the multiple dimensions of flexibility or robustness were flagged. 
In this way, more detailed information could be collected post-hoc to 
describe the state-of-the-art modeling of different dimensions of tech-
nical flexibility and robustness in local, integrated ESMs. As such, 
existing solutions to integrate technical flexibility and robustness in 
models could be described where they are present and research gaps 
pointed out where solutions are either completely absent or rarely 
modeled. 

4. Results 

This section presents the results of the analysis. The final selection of 
116 studies is first described in Section 4.1 to provide context for the 
consequent Sections 4.2 and 4.3, which describe the modeling of 

Table 1 
Selection criteria for the article selection process.  

Selection 
criterion 

Definition 

Local Spatial scope between a group of buildings and a city 
Integrated Consideration of at least the thermal and power sectors 
Systemic view Scoping the entire energy system rather than single 

technologies/plants or individual actors (e.g., utilities) within a 
larger context 

Investment 
planning 

System design; studies that only look at dispatch are excluded 

Case study Real-world application as part of the study  
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Table 2 
Criteria in the attribute catalog to assess technical flexibility and robustness. The individual criteria are binary with the exception of informed decision-making, which 
is quantitative and uncertainty assessment, which is categorical.  

Technical flexibility Robustness 

Dimension Criteria Dimension Criteria 

Sector coupling Combined Heat-and-Power, Heat pumps, Electric 
Vehicles 

Actor heterogeneity Grouping of customers, households or buildings 

Storage Battery, Pumped hydro storage, Thermal storage, 
Hydrogen 

Social acceptance Trade-off analysis (e.g., MCDA, multi-objective 
optimization) 

Distribution networks Heat grid, power grid, gas grid Behavior Retrofit options, endogenous changes 
Demand-side 

management 
EV modeling, load shifting, load shedding Informed decision- 

making 
Number and type of solutions and reported metrics 

Supply-side measures Operational constraints, Power-to-X Uncertainty assessment Deterministic, stochastic, or near-optimal methods  

Fig. 1. Overview of the model structure of the reviewed sample of local, integrated ESMs. The panels show the share of studies with respect to (a) the coverage of 
demand sectors, (b) the coverage of consumption sectors., (c) the modeling approach and (d) the temporal resolution. 
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flexibility and robustness options, respectively. The entire analysis in 
this section is based on examples from the study sample and the infor-
mation retrieved using the attribute catalog. 

4.1. Sample characterization 

As Fig. 1a shows, more than half of all studies consider not only 
power demand, but also that for both heating and cooling. When only 
one thermal sector is considered, this is generally heating demand while 
just four studies consider cooling without heating, all of them looking at 
tropical areas [43–46]. The residential sector is most frequently 
considered as Fig. 1b demonstrates. While the commercial sector also 
has a good representation in the study sample and industry is included in 
40% of all studies despite its heterogeneity, transportation in particular 
is comparatively lacking. A large majority of studies use optimization 
models to plan the energy systems as Fig. 1c illustrates, most frequently 
with mixed-integer programming (45%) followed by meta-heuristic ap-
proaches (24%), linear programming (15%) and various other methods 
(16%). A significant minority uses simulation models with just one study 
not fitting in either box, this one using a life-cycle assessment (LCA) 
methodology [47]. 

All studies in this sample aim to model at least one year and a quarter 
even use a multi-year horizon, i.e. model more than one year explicitly. 
As Fig. 1d shows, an hourly resolution is most frequent, followed by a 
typified seasonal resolution, defined to be anything with less than 72 
time slices per year. Such studies can range from just three time slices, 
usually representing winter, summer and mid-season [48] over multiple 
time slices per season [49] to 24 time slices to represent each hour of a 
typical day [45]. The cut-off to a typified hourly resolution was defined 
to be at 72 time slices as that makes it possible to account for three 
seasons with an hourly resolution and thus for both seasonal and diurnal 
variations [50]. This is important to consider variations in the load 
profile or the generation profile of intermittent renewables such as solar 
PV or wind. 

To analyze the system operation in addition to investment planning, 
an even higher temporal resolution is favorable, ideally sub-hourly. 
Such an approach is used by only three studies in the entire sample. 
While Wills et al. [51] use a simulation-based approach that enables a 5- 
min resolution and Wilke et al. [52] a genetic algorithm that allows the 

process of quarter-hourly inputs, another method is employed by 
Scheller et al. [53], who recursively solve 48 h-sized sub-problems with 
a quarter-hourly resolution to reduce the computational complexity. 

Pivoting from the temporal to the spatial scope, the sample remains 
heterogeneous despite the restriction to a local scope and ranges from 
energy system planning for a single-digit number of buildings [54,55] to 
multi-million cities such as Beijing or Shenzhen [56,57]. The spatial 
resolution can also vary, from single-node municipalities [58] to those 
considering multiple districts within a municipality [59] and from 
single-node districts [60] to those where each building is represented 
individually [61]. 

The variance in spatial resolution can also provide information on 
the level of technical detail as Fig. 2 illustrates. A trade-off is found 
between the number of technologies and the number of nodes. The latter 
includes not only the spatial resolution itself but also heterogeneity 
within the smallest spatial unit, e.g., the number of building types 
considered per district. Three notable outliers can be found that seem to 
evade this trade-off. Kuriyan & Shah [62] consider 500 individual nodes 
in a spatially explicit manner, but only allow for power generation from 
biomass, simplifying that part of the model to reduce complexity. While 
McKenna et al. [63] are able to consider four districts with 100 building 
types each since they only consider 72 time slices per year, Fonseca et al. 
[64] use a combination of mixed-integer non-linear programming with 
evolutionary algorithms to overcome the additional complexity from 
modeling 85 buildings individually. 

No trend by publication year toward either a greater number of 
technologies considered or greater spatial detail was identified. While 
there are also no obvious differences in the number of technologies that 
are considered between optimization and simulation studies, the latter 
overwhelmingly use single-node approaches. Over 70% of all simulation 
studies use a single node while this is the case for less than 50% of 
optimization studies and just 35% of studies using mixed-integer 
programming. 

Notably, the only study considering all six possible power generation 
technologies uses a simulation model and does not consider all tech-
nologies simultaneously [65]. With the exception of Väisänen et al. [47], 
who use LCA, and Orehounig et al. [66], who use a multi-node approach 
instead, all of the studies that consider five different electricity gener-
ating technologies use a multi-year horizon. All the remaining 

Fig. 2. Trade-off between the number of electricity generating technologies, the number of nodes, and the temporal resolution. The reader is directed to the online 
version of the article for references to color in this figure. 
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optimization models also consider large areas as a single node, four 
times Beijing and once Waterloo [56,67–70] with only Trutnevyte et al. 
[71] considering a smaller area using a simulation model. Geothermal is 
the least frequently considered technology for electricity generation and 
has only been considered in four studies, thrice for cogeneration 
[72–74]. Instead, it is mainly modeled exclusively as a source of 
renewable heat [69,70,75–79]. 

4.2. Flexibility modeling 

Five different dimensions of flexibility provision in ESMs were 
analyzed using the flexibility criteria shown in Table 2. All aspects of 
technical flexibility with the exception of network modeling have been 
more frequently considered in more recent studies as Fig. 3 shows with 
the most notable increase found for storage modeling. Still, this does not 
say anything about the level of detail with which these dimensions are 
represented. Based on the order of their popularity in current modeling 
practice, this section discusses ways in which the different flexibility 
dimensions are modeled. Table 3 concludes this section by highlighting 
best practices to model each dimension of technical flexibility within the 
reviewed sample based on the modeling complexity and observed out-
comes. In addition to the best practice to address a modeling challenge 
and a brief description thereof, the table also provides an indication of 
how frequently this practice is adopted, exemplary implementations and 
the model type as well as temporal and spatial ranges for these reference 
studies. 

The fact that sector coupling is the most common way in which 
flexibility potential is tapped in the study sample is unsurprising as it 
was also a selection criterion. Indeed, more than 90% of studies consider 
either heat pumps (HP, present in 71% of all studies), Combined Heat 
and Power (CHP, 67%), or thermal storage (54%), which are the third, 
fourth and sixth most common technologies among all considered 
behind solar PV and boilers. There are still a few studies that consider 
both the thermal and power demand separately, adding complexity to 
the problem they model but not taking advantage of the potential ben-
efits that could be identified from their combination [80–84]. 

Storage is the second most frequently modeled aspect of technical 
flexibility in the sample. Despite this, one-third of all studies do not 
mention the inclusion of any type of storage technology and even of 
those that do include it, an additional third do not provide sufficient 
information to describe how storage modeling is implemented. In a 
small number of studies, a physical storage model is used, which can 
represent the physical characteristics of batteries [85], of hydrogen 
[86], or most frequently of storage tanks used for thermal storage 
[64,73,87,88]. 

The remaining half of all studies that do consider storage but not 

through physical storage modeling can be described using the SSM. As it 
is technology-agnostic, this approach can be used to model electric 
(battery) storage, heat or cold storage or even hydrogen 
[52,66,86,89–91]. Whereas charging efficiencies are included in 80% of 
all studies and a self-discharge in 60%, rate limits on the (dis-)charge are 
only included in 30% of these studies and less than 20% enforce 
balancing over some time horizon. 

Long-term storage can straightforwardly be modeled using the SSM 
when an hourly model resolution is used [92]. However, models with a 
typified temporal resolution frequently force daily balancing of storage 
by adding a constraint to match the storage level at the end of the day to 
that at its beginning, which does not allow for long-term storage 
modeling [89,93–96]. Murray et al. [86] tackle this issue with a higher 
self-discharge and annual balancing and Suciu et al. [97] overcome it by 
linking the typical days to real-time slices according to their length. 

Distribution networks are the third-most common type of technical 
flexibility modeled in the sample. Still, the overwhelming majority of all 
studies that represent heating and power grids use exogenous grids and 
two-thirds of all studies do not consider any transmission constraints, 
marking a sharp drop-off in the level of modeling detail compared even 
to storage. When networks are present, this is often achieved by repre-
senting each building individually as a node that can export, import, 
relay or even store energy. Specific distances are defined between each 
node, which allows to assign costs for all type of grids and losses for 
thermal networks based on the distance while a unidirectionality 
constraint controls the flows [94,98,99]. Jalil-Vega et al. [100] use a 
similar approach with districts as nodes whereby the grid capacity is 
optimized for inter-node networks, which have a fixed distance, and the 
grid length for intra-node networks while costs are determined based 
both on the length and the diameter of the network. Fleischhacker et al. 
[101] plan power, heating and even gas grids using the tool “rivus” 
whereby the capacity of each pre-defined link is optimized using 
assigned costs per m2 and per kW. Further, more complex approaches 
with algorithms that use, e.g., heating densities exist as well [102–104]. 

Fourth are options for DSM, which generally work by separating load 
into one of three categories, either load that is fixed, load that can be 
shifted or load that can be shed [105]. Price signals are frequently used 
to constrain the use of DSM in models. Particularly load shedding is 
typically implemented as the option of last resort with significant pen-
alty costs [92,106,107]. Load shifting in contrast is more flexible. 
Capone et al. [108,109] allow to shift thermal load by half an hour 
without assigning any costs, determining the amount of shifted load 
with a genetic algorithm using an approach they describe as especially 
suitable to solve MINLP problems while avoiding local minima. Qiu 
et al. [110] separate demand into fixed load which cannot be modified at 
all (e.g., lighting), load where power is adjustable but not the time 

Fig. 3. Frequency with which aspects of technical flexibility have been considered over time in local, integrated ESMs. The reader is directed to the online version of 
the article for references to color in this figure. 
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during which it is delivered (e.g., air conditioning) and load that can be 
shifted in time but not in power (e.g., EVs). The authors enable shifting 
within a day but apply a user satisfaction constraint to the multi- 
objective function to limit deviations from the energy demand profile, 
finding cost and carbon emissions declines of 7.3% and 32.1%, respec-
tively. A similar separation of loads into a fixed share and a share of 
5–10% of the total load that can be shifted in time is performed by Chen 
et al. [111]. They assign a cost that depends not only on how much is 
shifted but also on the duration. Dominković et al. [44] apply a fre-
quency constraint and duration limits to load shifting in addition to a 
price signal, finding a reduction of primary energy supply by 20% 
compared to the reference scenario and of costs by 7.5% compared to the 
system without DSM. 

Electric vehicles represent a large source of additional energy de-
mand in decarbonized energy systems that can put a strain on it or 
provide a large degree of flexibility depending on their charging 
behavior [87,112]. Nonetheless, only about 20% of studies consider 
electric vehicles and of these, two-thirds apply a fixed charging profile 
which means that the potential advantages of vehicle electrification to 
the grid cannot be considered. Rather than simply charging according to 
a pre-defined load profile, EVs can be modeled to charge when it is 
optimal for the system (smart charging), in which case they represent an 
option for DSM, or even as a type of virtual storage (vehicle-to-grid or 
V2G), both with additional constraints to ensure that sufficient energy is 
available when the vehicle ought to be used for a trip [102,106,113]. 
Cao et al. [87] combine information on the use of EVs, the resulting 
electricity consumption and charging behavior to contrast the uncon-
trolled charging of EVs with smart charging while Heinisch et al. [112] 
compare both of these options with V2G using information on the 
vehicle availability and the number of vehicles. Both of them find ben-
efits from increasing sector coupling, the former economically, the latter 
in an increased integration of local solar PV in the energy system. 

Finally, the least frequently encountered option for technical flexi-
bility in the sample was the modeling of the supply-side, which falls into 
one of two categories. First, operational constraints can be used to 
approximate the real-world operation of plants, such as minimum up 
and downtimes [114], a minimum part-load [94], or ramp limits [87]. 
Switching frequency constraints for technologies such as CHP can also 
be applied based on the temporal structure [94] or by assigning costs to 
starting and stopping [114,115]. Secondly, explicit peaking technolo-
gies [116,117] or the conversion of excess renewable generation to 
other energy carriers (power-to-x) that can more easily be used 
[104,118–120] allow to add a degree of flexibility to the model. The 
latter application is most frequent with hydrogen and can be for sector 
coupling, e.g., to meet mobility demands [121] or even as the 

foundation for an entire energy system [122], but also just to deal with 
excess generation, e.g., by providing another input to CHP [123] or 
using hydrogen as long-term storage [117]. 

4.3. Robustness modeling 

Modeling of robustness is separated into two main areas in this 
article, the social dimension and uncertainty assessment. The former 
category includes concepts such as heterogeneity, behavior or social 
acceptance whereas the latter considers informed decision-making as 
well as the methods used for uncertainty assessment. These options to 
integrate non-technical constraints in local ESMs and to strengthen 
robustness are discussed in this section and best practices for each 
challenge based on the implementation effort and impact on results are 
presented in Table 4. In addition to the best practice to address a 
modeling challenge and a brief description thereof, the table also pro-
vides an indication of how frequently this practice is adopted, exemplary 
implementations and the model type as well as temporal and spatial 
ranges for these reference studies. 

To introduce heterogeneity in models and thereby reduce the “bang- 
bang effect”, clustered load profiles based on demographic information 
[96] or energy consumption data [118] have been used. More 
frequently, however, heterogeneity in energy demand is based on in-
formation with a better availability such as the building type, size or age 
[63,124–126]. If the analysis is sufficiently detailed and small enough in 
scope, it is also possible to model each building individually 
[54,84,110,116]. 

Behavior changes in local ESMs are typically limited to the choice of 
retrofits, which influence the energy efficiency and thus ultimately en-
ergy consumption while no examples were found for endogenous 
behavior changes. Nearly half of all simulation studies allow for exog-
enous retrofits, typically through scenarios [46,127–135]. While this is 
less common, a number of optimization models are also able to account 
for endogenous retrofits by assigning a cost per m2 or unit of energy that 
is conserved depending on the data availability [116,118,136–138]. 

Acceptance is either neglected or addressed exogenously using a 
multi-criteria decision analysis (MCDA) framework within the studied 
sample. Using this method, stakeholders evaluate different criteria, 
which can then be used as inputs for multi-objective optimization 
modeling, or rank solutions based on social, economic and environ-
mental indicators [47,63,71]. Trutnevyte et al. [71] simulate different 
energy scenarios and ask 29 local actors, including energy consumers, 
experts and industry representatives, to rank them based on a qualitative 
description of the scenarios, the respective technological portfolios and 
the weighted multi-criteria performance based on a set of weights 

Table 3 
Challenges and best practice examples related to the modeling of flexibility options at the local level. The share of studies that already use the described approach and 
references for exemplary implementation are also given together with the modeling attributes of the best practice reference studies.  

Flexibility 
challenge 

Best practice Description Adoption 
share 

Exemplary 
implementation 

Model type Temporal 
resolution 

Number 
of nodes 

Storage 
modeling 

Simple storage 
model 

Include (dis-)charge efficiencies, self-discharge, 
rate limits and maximum storage capacity 

40% [52,66,86,89,90] Optimization 
(EA/LP/MILP) 

Hourly 1–4 

Network Distribution 
network modeling 

Reflect the distance per node and the cost per 
distance per network type, a unidirectionality 
constraint and, for heat networks, distance- 
based losses 

9% [94,98–100] Optimization 
(MILP) 

Typified 
(seasonal) 

3–32 

Demand-side 
management 

Load separation 
into fixed and 
shiftable shares 

Identify shiftable loads and constrain the 
flexible share temporally while adding a penalty 
cost for the demand deviations based on the 
quantity and duration 

3% [110,111] Optimization 
(MILP) 

Typified 
(seasonal) 

3–7 

Sector coupling 
/ DSM 

Electric vehicles 
with V2G 

Use data on vehicle quantity and availability, 
V2G can be modeled as a virtual type of storage 
with an additional constraint to ensure sufficient 
availability to meet mobility demands 

8% [112] Optimization 
(LP) 

Hourly 1 

Supply-side 
measures 

Operational 
constraints 

Apply temporal or cost-based switching 
constraints and ramping limits based on the 
maximum capacity and minimum part load 

9% [87,94,114,115] Optimization 
(MILP) 

Typified 
(hourly) / 
Hourly 

1–12  
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obtained by pair-wise evaluation of indicators with the analytic hier-
archical process. Väisänen et al. [47] use the same approach with an 
electronic survey to evaluate the LCA performance of different sce-
narios. They mention that the response rate is below 40% due to the 
effort required for the stakeholders to rank the 22 indicators they use. A 
similar constraint is highlighted by McKenna et al. [63] on the re-
searcher’s side as they conduct a more involved MCDA where three 
stakeholder workshops are used to first identify relevant objectives prior 
to modeling, then to assign weights to these objectives based on the 
initial optimization results and refine their scenarios and finally to rank 
the resulting configurations. 

Informed decision-making depends on the number and type of ob-
jectives and metrics that are used and provided after the modeling 
process. A first way in which this was assessed is through the number of 
distinct solutions provided. Here, it was observed that 70% of the sample 
provides fewer than five distinct solutions, even though optimal solu-
tions are highly dependent on the chosen model assumptions. Looking at 
the information that is provided for each solution, 80% of all studies 
report the cost of each solution and 60% of the emissions. However, a 
large gap opens up thereafter as metrics such as imports (23%), the share 
of renewable generation (14%) or other sources of emissions (7%) are 
significantly less common. The most comprehensive picture is provided 
by Arabzadeh et al. [139], who provide 13 resilience indicators, 
including the ones described above while Samsatli & Samsatli [140] at 
the other extreme do not provide any information beyond technical 
parameters on the system configuration. 

Not only the reported metrics are of importance in optimization 
models but especially also the objective that is chosen. As Fig. 4 shows, 

cost minimization is the most frequent objective and is considered for 
more than 90% of studies while even the second most common objec-
tive, CO2 emissions, is only present in less than a third of all studies. 
Other objectives such as a minimization of primary energy consumption 
[126,128] or non-renewable energy consumption [141] or a maximi-
zation of self-generation [142] are only encountered in individual 
examples. 

Multi-objective optimization is a method to directly assess trade-offs 
between at least two different objectives, most frequently cost and CO2 
emissions as Fig. 4 illustrates [143–146]. Notable exceptions also 
consider aspects such as primary energy consumption [90], self- 
generation [147,148] or fuel consumption [149,150]. However, some 
studies also use multi-objective optimization as a substitute for uncer-
tainty assessments, even as these tackle different dimensions of robust-
ness [61,151,152]. 

The most common type of uncertainty assessment in the study 
sample is scenario analysis, which was included in over 80% of all 
studies. Sensitivity analyses were the second most common option, used 
by a quarter of studies and applied to cost assumptions 
[48,79,90,143,153], technology availability [117,122,139,154,155], or 
both [58,93,103,132,156]. Beyond these, more sophisticated mathe-
matical formulations such as interval linear programming or chance- 
constrained programming can also be used to generate more resilient 
solutions [56,68–70,80,83], but are significantly rarer due to the 
required effort. 

The stochastic sampling of input data, for example generation pro-
files for solar and wind [106,157] or load and EV profiles [106,114] 
represents an alternative approach to consider uncertainty regarding 
parameter values. Input profiles can be sampled directly from a discrete 
set of options [158] or from a probability distribution as is done by Guo 
et al. [106] in a Monte Carlo analysis that is followed by a reduction of 
the resulting set that eliminates similar input scenarios. Monte Carlo 
analysis has also been used to analyze the failure of system components 
to obtain a resilient, self-sufficient energy system [150]. While these 
methods address parametric uncertainties, approaches based on 
Modeling to Generate Alternatives (MGA) allow to confront structural 
uncertainties that arise due to the limited validity of specific solutions. 
Jing et al. [158] use portfolio constraints to identify such near-optimal 
solutions. Under this approach, an initial model run is complemented 
by new iterations where an additional constraint is introduced that 
either directly excludes technologies or limits them based on the refer-
ence solution. 

Table 4 
Challenges and best practice examples related to the modeling of robustness options at the local level. The share of studies that already use the described approach and 
references for exemplary implementation are also given together with the modeling attributes of the best practice reference studies.  

Robustness 
challenge 

Best practice Description Adoption 
share 

Exemplary 
implementation 

Model type Temporal 
resolution 

Number 
of nodes 

Actor 
heterogeneity 

Building 
typologies 

Differentiate demand profiles for electric 
and thermal load based on building type, 
size and age 

27% [63,125,126] Optimization (LP/ 
NLP/MILP) 

Typified 
(seasonal) / 
Hourly 

5–400 

Social 
acceptance 

Multi-criteria 
decision analysis 
(MCDA) 

Using a diverse set of stakeholders, 
identify relevant objectives pre-modeling, 
assign objective weights during modeling 
and rank results post-modeling 

3% [47,63,71] Optimization 
(MILP), 
Simulation, Other 

Typified 
(seasonal) / 
Hourly / Annual 

1 – 400 

Informed 
decision- 
making 

Reporting 
additional metrics 

Beyond cost and emissions, report (net) 
imports or the share of renewable 
generation 

32% [139] Optimization 
(MILP) 

Hourly 5 

Parametric 
uncertainty 

Stochastic 
methods 

Sample input profiles for load or 
renewable generation from probability 
distributions or discrete sets 

7% [106,157] Optimization 
(MILP) 

Typified 
(seasonal) 

1 

Structural 
uncertainty 

Modeling to 
Generate 
Alternatives 
(MGA) 

Add scenarios that not only exclude 
technologies but also constrain them 
based on their use in a reference scenario 

1% [158] Optimization 
(MILP) 

Typified 
(seasonal) 

9  

Fig. 4. Objectives used in local, integrated energy system optimization models.  
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5. Discussion 

The key insights that can be drawn regarding the state-of-the-art 
modeling of technical flexibility and robustness in local, integrated 
ESMs as well as the main gaps that were not adequately addressed in the 
study sample are discussed in Section 5.1, followed by a discussion of the 
review methodology in Section 5.2. 

5.1. Key findings 

The average study in this review considers residential and com-
mercial demand for electricity, heating and cooling using an optimiza-
tion model with an hourly resolution. While it considers sector coupling 
and storage, it does not consider explicit technology-level flexibility, 
neither on the supply- nor on the demand-side. These results are similar 
to the survey-based review of Heider et al. [11], who find the best 
representation for sector coupling despite the relative recency of the 
field. However, both supply- and demand-side flexibility are signifi-
cantly less frequent in our sample, possibly because the description 
provided within a single study is less exhaustive than what can be 
collected using a survey. 

Even though sector coupling is common, it is primarily found be-
tween the electricity and thermal sector while integration of the trans-
portation sector is infrequent within the reviewed sample. This 
weakness of local ESMs has previously been highlighted by Keirstead 
et al. [30] and has become more important since due to the emerging 
trend of vehicle electrification. Detailed modeling of the vehicle fleet 
and of V2G can become intricate [159], but methods for complexity 
reduction [160] or soft-linking of ESMs with other models can help [27]. 
Network planning studies could similarly be used to generate inputs for 
local ESMs, which is especially relevant for thermal grids [161]. Here, it 
is important to note that the share of single-node studies increased from 
50% to 70% from pre-2010 to 2020–2021 in Fig. 3, which accounts for 
the reduction in studies that model networks. 

A final point relating to technical flexibility is storage modeling, 
which is completely absent for a third of the sample. Using the SSM 
represents a low-hanging fruit, but balancing of storage levels has to be 
handled carefully when long-term storage is modeled in an ESM using a 
typified temporal resolution [162]. Beyond the choice of the temporal 
resolution, the technologies that are represented also matter. Kotzur 
et al. [25] find cost share errors of up to 50% when modeling seasonal 
storage with typical days, which can be reduced to below 10% when 
these days are linked. Kannengiesser et al. [163] on the other hand find 
much smaller effects, a discrepancy that can be explained by the 
respective shares of solar PV. It is also important to note that both of 
these studies use at least 120 time slices per year. A significant share of 
the reviewed studies uses a lower temporal resolution and might thus 
face more substantial limitations, either because they do not allow for 
seasonal storage or because they cannot adequately assess it. 

Many findings of this study are mostly comparable to those by 
Krumm et al. [29] as social aspects are mainly accounted for exoge-
nously through clustering prior to modeling, retrofit options and MCDA. 
A big difference between these two reviews is found in the assessment of 
heterogeneity. While our results show that it is the best-represented 
aspect of the social dimension in local ESMs, Krumm et al. [29] found 
that only agent-based models appropriately accounted for it. This dif-
ference can be traced back to different definitions as we only require the 
presence of different actor groups and they also look for the possibility of 
interactions between each group. Heterogeneity according to our 
broader definition is frequently included using building-level informa-
tion, such as the type, age, or size in our sample. More strictly defined 
heterogeneity can be modeled through model-linking, but even the 
broader heterogeneity already represents a big advance as it allows to 
limit the “bang-bang effect”, whereby a small change in model as-
sumptions can have an outsized impact on the modeling results since all 
actors are assumed to be identical [37]. 

The way in which uncertainty was assessed in this sample, over-
whelmingly using deterministic scenario (80%) or sensitivity (25%) 
analyses, matches the findings of Yue et al. [38], who found that 75% of 
all optimization studies used deterministic approaches. More explicit 
options for trade-off analyses were also explored in MCDA and multi- 
objective optimization. However, the former is very resource-intensive 
and the latter forces trade-offs between a limited number of objectives 
chosen by the modeler. Unmodeled objectives represent a key source of 
structural uncertainty and while multi-objective optimization allows the 
modeler to explore the Pareto-optimal frontier, it does not say anything 
about alternative solutions within the feasible region [164]. MGA is an 
emerging approach that allows an exploration of the near-optimal space 
in optimization models systematically to contribute to decision-making 
beyond providing least-cost solutions and to identify the robustness of 
solutions [165–168]. 

5.2. Limitations 

The methodology was chosen to allow for a reproducible and 
transparent systematic review that is application-oriented so that the 
aims of the review can be addressed. More restrictive search terms 
would have risked missing relevant articles but the chosen expression 
resulted in the need for filtering to ensure that the studies could be 
meaningfully assessed on their modeling of technical flexibility and 
robustness. Since the filtering process was performed manually, no 
claim is made on the exhaustiveness of the sample. 

The attribute catalog was refined multiple times, both before starting 
the analysis but also during the process. For this reason, but more 
importantly also because a given paper rarely provides the complete 
model documentation, misclassifications or oversights are possible, 
particularly on aspects that do not directly relate to the novelty of a 
given study. This could have been overcome by surveying the authors of 
the reviewed studies as for example Heider et al. [11] have done. Still, 
the chosen approach permits to identify how comprehensible modeling 
results are based solely on the reported information in the article. 

Some results also have to be interpreted cautiously. The temporal 
resolution distinguishes between typified seasonal and typified hourly 
resolutions but did not cover the number of periods per year separately 
from the number of hours per day, which would have been necessary to 
identify whether diurnal or seasonal variations are captured in a given 
study when it uses a typified (seasonal) resolution. The modeling attri-
butes presented in Tables 3 and 4 are indicative of the requirements for 
the selected best-practice implementations but should not be general-
ized as the specific prerequisites depend on the problem statement. 
Finally, robustness to non-technical constraints is mainly assessed along 
the social dimension, whereas the integration of market or regulatory 
constraints into ESMs should be explored in further work. 

6. Summary and conclusions 

A total of 116 studies with real-world applications were analyzed in- 
depth to assess the representation of technical flexibility and robustness 
in local, integrated ESMs. This review thereby describes state-of-the-art 
modeling practice and identifies future research needs. 

The coverage of different options to provide technical flexibility has 
increased within the sample that was analyzed. Sector coupling and 
storage in particular are considered in virtually all of the most recent 
studies, while DSM and supply-side options for flexibility are lacking 
coverage. Still, even though sector coupling is frequent, it is mainly 
found between the electricity and thermal sector while the integration of 
transportation, specifically through modeling electric vehicles with 
smart charging for DSM or even with V2G as an option for storage, is not 
considered in models. Even though DSM was found to have large im-
pacts on outcomes in the few studies that considered such options, it was 
only considered in a small, but increasing, number of studies. There are 
also few constraints on the modeling of storage and networks, which 
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represents another area where improvements in the modeling practice 
are required. 

The robustness of results from ESMs depends on how well they are 
able to capture socio-political constraints and assess uncertainty. On the 
former dimension, heterogeneity can be introduced based on de-
mographic information or more frequently building-level data. The 
provision of more stakeholder-relevant information and the engagement 
with that information in systematic processes such as MCDA contribute 
to stakeholder engagement by promoting acceptance and public 
participation, which is especially critical on a local level. However, 
approaches to endogenously consider social factors in models are absent 
besides theoretical options such as model-linking with agent-based 
models, which constitutes an important research gap. The same can be 
said about more systematic uncertainty assessments as these are over-
whelmingly performed using scenario or sensitivity analyses. Stochastic 
approaches, for example based on sampling load or generation profiles 
from probability distributions or from a set of values for different years, 
can be used to address parametric uncertainties and portfolio constraint 
approaches, which not only exclude but also constrain technologies in 
different iterations based on the reference solution, to tackle structural 
uncertainties. 

Based on the reviewed sample, we suggest the adoption of the 
following best practices in local ESMs.  

1. Explicitly model electric vehicles. The shift to electric mobility is a 
major component of the energy transition and can either massively 
hamper or increase the flexibility of the energy system, depending on 
the EV charging behavior. Despite this, models lack considerations of 
the EV flexibility potential, which they can investigate under 
different charging strategies such as V2G or smart charging.  

2. Introduce explicit loads for demand-side management. In the 
absence of supply-side flexibility from intermittent renewable energy 
sources, demand-side options such as load shifting or even load 
shedding have to contribute. Shiftable loads ought to be identified 
depending on the problem formulation and modeled with temporal 
constraints and a penalty cost based on the amount of shifted load 
and its duration.  

3. Adopt the SSM when modeling storage systems. Constraints on 
the modeling of storage are essential to not underestimate the overall 
need for flexibility. The SSM allows to apply those in a technology- 
neutral way well suited to ESMs using (dis-)charge efficiencies and 
rate limits as well as a self-discharge. 

4. Introduce actor heterogeneity in modeling. The use of homoge-
neous populations leads to unstable modeling results which are 
highly dependent on the chosen model assumptions, particularly in 
optimization models. Local ESMs can take advantage of frequently 
available building information to differentiate load profiles based on 
building size and type.  

5. Report a broader range of metrics. Different decision-makers 
might not agree on their priorities, which is especially relevant for 
local planning where a large number of stakeholders are involved. 
Information beyond cost and emissions on system characteristics 
such as the share of renewable energy or imports is straightforwardly 
obtainable in ESMs. 

The five best practices are derived based on the expected value of 
their modeling for a better representation of technical flexibility and 
more robust contributions to decision-making. These aspects are 
essential to ensure that the modeling outputs can address the relevant 
questions arising from a transition to a decarbonized energy system that 
is more reliant on intermittent energy supply. The recommended best 
practices also consider the trade-off between model complexity and 
computational effort, selecting examples that are shown to have a high 
impact on results relative to the modeling effort required to implement 
them. Open questions remain about the impact of stakeholder prefer-
ences and the importance of supply-side constraints as the available 

sample does not allow to make conclusive statements on their impor-
tance due to their under-representation. In future work, surveys or 
model comparisons could be used to more explicitly assess the impor-
tance of these dimensions compared to that of other modeling choices. 
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