
DISS. ETH Nr. 20323

Conflict-free Vehicle Routing

with an Application to

Personal Rapid Transit

Abhandlung zur Erlangung des Titels

DOKTOR DER WISSENSCHAFTEN

der

ETH Zürich

vorgelegt von

KASPAR SCHÜPBACH

MSc RW, ETH Zürich

geboren am 22. Juni 1981

aus Landiswil, BE

Angenommen auf Antrag von

Prof. Dr. Hans-Jakob Lüthi

Prof. Dr. Martin Skutella

Dr. Rico Zenklusen

2012

Acknowledgments

My time at IFOR started with my Master’s project, after which I received the
opportunity to continue with doctoral studies. It was the combination of the-
oretical work (puzzle solving) and industry collaboration which I found most
fascinating, together with the often enriching student assistance duties. The
first year at IFOR I was mainly working on projects related to timetabling in
railways. It was then, through an industry collaboration, that I got in contact
with the routing of automated staplers in a logistics center. Theoretical ques-
tions on this problem led to the results in the first part of this dissertation.
The idea for the case study in the second part came up remembering a project
I once wrote about Personal Rapid Transit in high school.

For the opportunity to experience all this I would like to express my heart-
felt gratitude towards my doctoral advisor, Professor Hans-Jakob Lüthi. I
owe him many thanks for the possibility to bring in my own research ideas
and for his support, which I could experience also in difficult times. He has
my admiration for his expertise in building bridges between theoretical work
and applications. I hope that he will soon find more time to fully enjoy his
retirement.

Many many thanks also go to Rico Zenklusen, for kick-starting my theoretical
work, for the papers I could write with him, for his support as a referee of this
dissertation and for the hospitality of Rico and his wife Sarah during my stay
in Boston. I wish all the best to Rico for the continuation of his rocketing
academic career.

Further I am very grateful to Martin Skutella for accepting the referee role
and for having me in Berlin in November 2010. The stay was definitely a
highlight of my doctoral studies. I would also like to thank the crowd from
COGA at TU Berlin for the good discussions and for hosting me and showing
me around the city.

Further, I would like to express my thanks for the support coming from indus-
try partners, in particular to John Lees-Miller from Ultra, who gave me very
interesting insights on the current developments in Personal Rapid Transit.

During the years at IFOR, I enjoyed very much the good vibe among the
companions, and the common leisure activities such as skiing days, barbecues,

ii ACKNOWLEDGMENTS

Friday beers, half marathon challenges and more. I feel that I have made many
friends and hope these contacts will persist. Many thanks go to everyone for
making the time at the institute so enjoyable. The following names I would
like to mention in particular: Michael Guarisco and David Adjiashvili as my
office mates in the IFOR outpost. With each of you I had a splendid time
and I thank you for sharing many delights and sorrows. Gabrio Caimi, Marco
Laumanns and Martin Fuchsberger for the close and fruitful collaborations
on the railway project in the beginning of my time at IFOR.

Special thanks go to all persons who have been around outside the institute.
There are the sports guys, who always are a great source of distraction and
motivation for me. In particular, I would like to mention the frequent lunch
joggers Markus and Stefan. Then there are the party people from ESN with
whom I could organize and experience many fun activities. A particular
thank goes to Lars who checked the comprehensibility of a part of this thesis
for persons from outside the research field.

A big big hug goes to my girlfriend Arnika for her patience, for her under-
standing and for cheering me up many times. Thank you so much for sharing
this journey with me, and for being there for me.

Finally, I would like to thank my family for their enduring support along all
the way.

Abstract

This thesis investigates the conflict-free routing of vehicles through a track
network, a problem frequently encountered in many applications in trans-
portation and logistics. The most common routing approach for conflict-
free routing problems in various settings is a sequential one, where requests
are greedily served one after the other in a quickest way without interfering
with previously routed vehicles. There is a need for a better theoretical un-
derstanding as guarantees on the quality of the routings are often missing.
Conflict-free vehicle routing also is of inherent interest as a sister problem of
the well-studied packet routing problem.

In the first part, we present new theoretical results for the case of bidirec-
tional networks. We consider a natural basic model for conflict-free routing
of a set of k vehicles. Previously, no efficient algorithm is known with a sub-
linear (in k) approximation guarantee and without restrictions on the graph
topology. We show that the conflict-free vehicle routing problem is hard to
solve to optimality even on paths. Building on a sequential routing scheme,
we present an algorithm for trees with makespan bounded by O(OPT) + k.
Combining this result with ideas known from packet routing, we obtain a
first efficient algorithm with sublinear approximation guarantee, namely an
O(
√
k)-approximation. Additionally, a randomized algorithm leading to a

makespan of O(polylog(k)) ·OPT + k is presented that relies on tree embed-
ding techniques applied to a compacted version of the graph to obtain an
approximation guarantee independent of the graph size.

The second part is about routing in the Personal Rapid Transit (PRT) appli-
cation. PRT is a public transportation mode in which small automated vehi-
cles transport passengers on demand. Central control of the vehicles leads to
interesting possibilities for optimized routings. Routing in PRT is an online
problem where transit requests appear over time and where routing decisions
need to be taken without knowledge of future requests. Further, the network
in PRT is directed. The complexity of the routing problems together with
the fact that routing algorithms for PRT essentially have to run in real-time
often leads to the choice of a fast sequential scheme. The simplicity of such
schemes stems from the property that a chosen route is never changed later.
This is as well the main drawback of it, potentially leading to large detours.

iv ABSTRACT

It is natural to ask how much one could gain by using a more adaptive routing
strategy. This question is one of the core motivations of this second part.

We first suggest a variation to the routing model used in the first part which
is suitable for PRT. We show that the routing problem remains hard in the
directed setting. Further, we introduce a capacity notion for PRT networks
and derive a bound for it. Computational results show that the capacity
bound is close to the achievable throughput. It therefore is a useful quantity
for estimating network capacity in PRT system design. We then introduce a
new adaptive routing algorithm that repeatedly uses solutions to an LP as
a guide to route vehicles. New requests are integrated into the LP as soon
as they appear and the routing is reoptimized over all vehicles concurrently.
We provide computational results that give evidence of the potential gains
of an adaptive routing strategy. For this we compare the presented adaptive
strategy to sequential routing and to a simple distributed routing strategy in
a number of scenarios.

Zusammenfassung

Diese Dissertationsarbeit untersucht das konfliktfreie Befördern von Fahrzeu-
gen durch Schienennetzwerke - eine Herausforderung, wie sie oft in verschieden-
sten Anwendungen in den Transport- und Logistikbranchen vorkommt. Der
bekannteste Ansatz für die konfliktfreie Fahrplanung ist ein sequentieller, in
dem eine Anfrage nach der anderen mit einer möglichst kurzen Reisezeit einge-
plant wird, ohne mit den früheren Anfragen in Konflikt zu geraten. Solche
Ansätze haben oft keine Qualitätsgarantien für den resultierenden Fahrplan,
und es besteht ein Bedarf für ein besseres theoretisches Verständnis. Das
Problem der konfliktfreien Fahrzeugbeförderung ist auch von Interesse durch
die enge Verwandtschaft mit dem besser bekannten und untersuchten Problem
der Datenbeförderung durch Kommunikationskanäle.

Im ersten Teil der Dissertation präsentieren wir neue theoretische Resultate
für den Fall von ungerichteten (in beiden Richtungen befahrbaren) Schienen-
netzwerken. Wir betrachten ein natürliches Modell für die konfliktfreie Beför-
derung eines Sets von k Fahrzeugen. Zuvor war kein effizienter Algorithmus
mit einer sublinearen (in k) Approximationsgarantie für allgemeine Netzw-
erktopologien bekannt. Wir zeigen, dass es NP-schwer ist, eine optimale
Lösung zu finden, sogar wenn das Netzwerk nur aus einem Pfad besteht.
Wir präsentieren einen Algorithmus für Baum-Netzwerke, der auf dem se-
quentiellen Ansatz aufbaut und zu einem Fahrplan führt, der alle Fahrzeuge
in Zeit O(OPT) + k ans Ziel befördert. Indem wir dieses Resultat mit Meth-
oden aus dem Bereich der Datenbeförderung kombinieren, erhalten wir den
ersten effizienten Algorithmus mit sublinearer Approximationsgarantie von
O(
√
k). Zusätzlich präsentieren wir einen randomisierten Algorithmus der zu

Lösungen der Länge O(polylog(k)) · OPT + k führt. Der Ansatz generiert
Baumgraphen, die in eine komprimierte Version des Netzwerks eingebettet
werden, womit eine Approximationsgarantie erreicht werden kann die un-
abhängig von der Graphgrösse ist.

Der zweite Teil der Dissertation handelt von der Beförderungen von Fahrzeu-
gen in Personal Rapid Transit (PRT). PRT ist ein öffentliches Verkehrsmittel
in welchem Passagiere auf Verlangen durch kleine automatisierte Fahrzeuge
befördert werden. Zentrale Steuerung der Fahrzeuge führt zu interessan-
ten Möglichkeiten für die optimierte Nutzung der Schienenressourcen. Die

vi ZUSAMMENFASSUNG

Fahrplanerstellung für PRT ist ein Online-Problem in dem die Transportauf-
träge über die Zeit eintreffen. Entscheidungen müssen ebenfalls über die Zeit
getroffen werden, ohne Kenntnis der zukünftigen Aufträge. Ein weiterer Un-
terschied zum ersten Teil der Dissertation ist, dass die Schienen in PRT nur
in eine Richtung befahren werden. Die Komplexität des PRT Beförderungs-
Problems und die Anforderung, dass die Fahrpläne in Echtzeit berechnet wer-
den müssen, führt oft zur Wahl von schnellen sequentiellen Algorithmen. Die
Einfachheit dieser Ansätze ist bedingt durch die Eigenschaft, dass ein ge-
planter Fahrplan nicht mehr geändert wird sobald er einmal berechnet wurde.
Diese Eigenschaft ist gleichzeitig der grösste Nachteil eines solchen Ansatzes,
da sie zu grossen Umwegen oder Verzögerungen führen kann. Eine natürliche
Frage ist, wie viel man gewinnen kann wenn man adaptive Strategien verwen-
det. Diese Frage steht im Zentrum dieses zweiten Dissertationsteils.

Zuerst stellen wir eine auf PRT zugeschnittene Variation des mathematis-
chen Modells aus dem ersten Dissertationsteils vor. Wir zeigen, dass das
Beförderungs-Problem auch in dieser Variante NP-schwer bleibt. Weiter führen
wir einen Kapazitätsbegriff für PRT Netzwerke ein und beweisen eine obere
Schranke für diese. Mit Hilfe von Simulationen können wir zeigen, dass die
Kapazitätsschranke nicht weit vom erreichbaren Netzwerk-Durchsatz entfernt
ist. Sie kann deshalb eine nützliche Grösse zur Abschätzung der Netzwerkka-
pazität in der Designphase von neuen PRT Systemen sein. Dann präsentieren
wir einen neuen adaptiven Algorithmus, der den Fahrplan auf der Grundlage
von LP Lösungen erstellt. Neue Aufträge werden gleich beim Eintreffen in
das LP integriert und der Fahrplan wird neu berechnet, für alle Fahrzeuge gle-
ichzeitig. Wir zeigen mit Hilfe von Simulationsresultaten das Potential solch
adaptiver Strategien. Wir vergleichen den neuen adaptiven Ansatz mit dem
sequentiellen Ansatz und mit einem einfachen dezentralisierten Algorithmus
in einer Anzahl von Szenarien.

Preface

In this dissertation we present results on the conflict-free vehicle routing
problem from two different perspectives. The results are presented in two
self-contained parts, each with a separate introduction and conclusion. The
first view is a mainly theoretical view on routing on bidirectional networks
(two-way traffic). The second view looks into routing strategies for Personal
Rapid Transit (PRT), on directed networks (one-way traffic), and reveals a
compilation of theoretical results and observations obtained in a computa-
tional study. Readers interested mainly in the results on PRT are referred
directly to the second part.

In the first part, we investigate the routing problem on bidirectional networks.
The main challenge here is to avoid delays from opposing traffic. If, for
example, two vehicles use the same route but in opposite direction, one of
the two needs to wait until the other has finished the trip. We present a
simple and natural model for this setting which is similar to the models in
earlier related work and which also has a strong connection to the standard
model for packet routing. We consider here an offline setting in which all
vehicles are ready to depart at the same time and in which the goal is to
find a routing moving all vehicles to their destinations in minimal time. This
objective, for which only the time span between earliest departure and latest
arrival is relevant, is known as makespan optimization. Most of the results
from this first part are published in [SZ11].

The second part studies routing in PRT. This part is written in a language
more accessible also for persons from the application side. It starts with an
introduction to PRT for readers not familiar with the concept and is followed
by a detailed discussion of the model used for routing in PRT. The model used
here is adapted from the one used in the first part such to fit the application
while keeping the focus on routing questions. The first important adaptation
is that the vehicles (resp. transportation requests) now appear over time
and that routing decisions need to be taken online. When a new request
is released, the routing algorithm includes it into the routing plan without
knowledge of the requests to appear in the future. A second adaptation is
the change of the objective function towards minimization of the total travel
time. The third adaptation is that all tracks now have a designated driving

viii PREFACE

direction, as it is standard in PRT designs.

For this setting, we present a new routing scheme and compare it to two al-
gorithms which are known from the literature. We evaluate the performance
of each by computational comparison in several scenarios. The main question
addressed is whether it is beneficial to use adaptive algorithms, i.e. algorithms
which can change the routing plans for earlier requests when new requests ap-
pear. On the theoretical side, we present a method for bounding the capacity
of a PRT network. Additionally, we could show that also the PRT routing
problem is NP-hard to solve to optimality. A preliminary version of the results
from the second part of the thesis are published in [SZ12].

Contents

Acknowledgments i

Abstract iii

Zusammenfassung v

Preface vii

I Approximation Algorithms for Conflict-free
Vehicle Routing on Bidirectional Networks 1

1 Introduction 3

1.1 Problem Formulation . 4

1.2 Related Work . 5

1.3 Outline . 7

2 Hardness Results 9

2.1 On Paths . 9

2.2 On Directed Trees . 14

3 Approximation Algorithms 19

3.1 Tree Approximation . 19

3.2 Hot Spot Routing . 23

3.3 Low-Stretch Routing . 25

4 Conclusion 31

x CONTENTS

II Conflict-free Vehicle Routing
in Personal Rapid Transit 33

5 Introduction 35

5.1 Personal Rapid Transit . 35

5.2 Control Challenges in PRT . 39

5.3 Routing Literature . 41

5.4 Outline . 42

6 Routing Model 45

6.1 Network . 45

6.2 Requests and Pods . 46

6.3 Discrete Dynamics and Conflict Notion 47

6.4 Online Routing . 49

6.5 Objective Function . 50

6.6 Online Optimization . 52

6.7 Model Statement . 53

7 Network Capacity 55

7.1 Definition . 55

7.2 Relaxed Network Capacity . 57

8 Routing Preliminaries 59

8.1 Feasibility . 59

8.2 Time Expansion . 60

8.3 Flow Formulation . 62

8.3.1 Offline Formulation . 62

8.3.2 Online Formulation . 64

9 Computational Complexity 67

CONTENTS xi

10 Routing Algorithms 73

10.1 Sequential Routing . 74

10.2 Push Routing . 76

10.3 Flow Routing . 78

10.3.1 Solving the Flow Relaxation 79

10.3.2 Rounding . 84

10.3.3 Extensions . 87

11 Computational Analysis 89

11.1 Grid Scenario . 89

11.1.1 Comparison of Algorithms 90

11.1.2 Delay Types . 94

11.1.3 Computation Times . 96

11.1.4 Delay Horizon Trade-off in Flow Routing 97

11.1.5 Variants of Sequential Routing 98

11.1.6 Optimality Gap in the Offline Case 98

11.1.7 Variable Demand . 100

11.2 Case Study . 101

12 Conclusion 107

xii CONTENTS

Part I

Approximation Algorithms
for Conflict-free Vehicle
Routing on Bidirectional

Networks

Chapter 1

Introduction

In the first part of this thesis, we investigate the conflict-free routing of ve-
hicles through a network of bidirectional guideways. Conflicts are defined in
a natural way, i.e., vehicles cannot occupy the same resource at the same
time, hence forbidding crossing and overtaking. The task is to find a routing
consisting of a route selection and a schedule for each vehicle, in which they
arrive at their destinations as quickly as possible.

Such conflict-free routing algorithms are needed in various applications in lo-
gistics and transportation. A prominent example is the routing of Automated
Guided Vehicles (AGVs). AGVs are often employed to transport goods in
warehouses (for survey papers we recommend [GHS98, Vis06]), or to move
containers in large-scale industrial harbors [SV08]. The guideways can be
tracks or any sort of fixed connected and bidirectional lane system. Other
related application settings are the routing of ships in canal systems [PT88],
locomotives in shunting yards [FLKH05], or airplanes during ground move-
ment at airports [GBM+02, ABR10].

Conflict-free vehicle routing problems can be divided into online problems,
where new vehicles with origin-destination pairs are revealed over time, and
offline problems, where the vehicles to route are known in advance together
with their origin-destination pairs. Here, we concentrate on the offline prob-
lem, which is also often a useful building block for designing online algorithms.

Algorithms for conflict-free routings either follow a sequential or concurrent
routing paradigm. Sequential routing policies consider the vehicles in a given
order, and select a route and schedule for each vehicle such that no conflict
occurs with previously routed vehicles (see [KT91, MKGS05, KJR07] for se-
quential routing examples in the context of AGVs). Concurrent approaches
take into account multiple or all vehicles at the same time. Whereas the higher
flexibility of those approaches opens up possibilities to obtain stronger rout-
ings than the sequential paradigm, they usually lead to very hard optimiza-
tion problems. Furthermore, they are often difficult to implement in practice.

4 CHAPTER 1. INTRODUCTION

Typically, the routing problem is modeled as an Integer Program (IP) which
is tackled by IP solvers [Oel08], column generation methods [FLKH05] or
heuristics without optimality guarantee [PT88, GBM+02, KBK93].

Sequential algorithms are thus often more useful in practice due to their
computational efficiency but suffer from the difficulty of finding a good se-
quence to route the vehicles. Furthermore, the theoretical guarantees of these
approaches are often weak. The goal of this work is to address these short-
coming of sequential routing algorithms. Most of the results presented in the
following are also published in [SZ11].

1.1 Problem Formulation

We consider the following problem setting which captures common structures
of many conflict-free vehicle routing problems.

Conflict-Free Vehicle Routing Problem (CFVRP). Given is a undi-
rected connected graph G = (V,E), and a set of k vehicles Π with origin-
destination pairs (sπ, tπ) for all π ∈ Π. Origins and destinations are also
called terminals. A discretized time setting is considered with vehicles resid-
ing on vertices. At each timestep, every vehicle can either stay (wait) on its
current position or move to a neighboring vertex. Vehicles are forbidden to
traverse the same edge at the same timestep, also when driving in opposite
directions, and no two vehicles are allowed to be on the same node at the same
time. A routing not violating the above rules is called conflict-free. The goal
is to find a conflict-free routing minimizing the makespan, i.e. the number of
timesteps needed until all vehicles reach their destination.

The CFVRP is a natural first candidate for modelling and analyzing routing
problems in a variety of contexts. Clearly, it omits application-specific details
and makes further simplifying assumptions.

As a relaxation of the conflict definition above, we assume that vehicles can
only be conflicting while in transit, i.e., no conflict is possible before departure
and after arrival. The departure time of a vehicle is the last timestep that the
vehicle is still at its origin, and the arrival time is the earliest time when the
vehicle is at its destination. We call this relaxation the parking assumption.
The parking assumption is natural in many of the listed applications since
the terminal node occupations are often managed by separate procedures. In
AGV systems the dispatching (task assignment) is usually separated from
the routing process and takes care of terminal node occupations. In airport

1.2. RELATED WORK 5

ground movement problems, airplanes are assigned to runways and gates be-
fore airplane routing starts. When routing ships through a canal system,
the terminals represent harbors with usually enough space for conflict-free
parking of all arriving and departing vessels.

1.2 Related Work

The model setting investigated in [KBK93, Spe06, Ste08] is very similar to the
one used here. The differences lie mostly in the modelling of waiting vehicles,
which block edges in their setting. In [KBK93], only designated edges can
be used for waiting. However, these variations do not significantly change
the problem, and the results can easily be transferred. The main reason why
we use the CFVRP setting introduced above is that it leads to a simplified
presentation of the algorithms.

CFVRP has many similarities with packet routing [Sch98, PSW09], where the
goal is a conflict-free transmission of data packets through cable networks.
The crucial difference is that the conflict notion in packet routing is relaxed.
It allows for several packets to occupy a node at the same time, as nodes
represent network routers with large storage capacity. The concept of edge-
conflicts is essentially the same as in the present setting and models the limited
bandwidth of the transmission links. Hence, the CFVRP setting can as well
be seen as a packet routing problem with unit capacities on every node.1

Some sequential routing approaches. We briefly discuss some variants
of sequential routing schemes, emphasizing on approaches used later when
presenting the algorithms.

The presumably simplest approach is to serially send one vehicle after an-
other on a shortest route to the destination, such that a vehicle departs as
soon as the previous one has arrived. The obtained makespan is bounded
by k · L, where L is used as the maximum origin-destination distance over
all vehicles. Since L is a lower bound on the optimal makespan OPT, this
is a k-approximation. Interestingly, for general graph topologies, no efficient
algorithm was known to substantially beat this approach, i.e. with a o(k)
approximation guarantee.

1There are approximation results for packet routing with buffer size 1 in [adHS95].
However, contrary to the CFVRP, they consider bidirectional edges on which two packages
can be sent concurrently in opposite directions.

6 CHAPTER 1. INTRODUCTION

Still, several stronger routing paradigms are known and commonly used in
practice. An improved sequential routing policy, which we call simply se-
quential routing, is the following procedure as introduced in [KT91, MKGS05].
Vehicles are considered in a given order, and for each vehicle a route and a
schedule (timetable) is determined with earliest arrival time, avoiding con-
flicts with previously scheduled vehicles. For a fixed ordering of the vehicles,
a sequential routing can be obtained efficiently, e.g. by finding shortest paths
in a time-expanded graph. Sequential routing is often applied with given
origin-destination paths for all vehicles, in which case the task is only to
find a schedule for each vehicle that determines how to traverse its origin-
destination path over time.

For given origin-destination paths, the following restricted version of sequen-
tial routing algorithms, called direct routing, often shows to be useful. In
direct routing, see e.g. [BMIMS04] for the corresponding approach in packet
routing, vehicles are not allowed to wait while in transit, i.e., once a vehi-
cle leaves its origin, it has to move to its destination on the given origin-
destination path without waiting. An advantage of direct routing is that
vehicles only block a very limited number of vertex/time slot combinations.

Combining this concept with the sequential routing, the direct sequential al-
gorithm is obtained. Here an ordering of the vehicles is given, as well as a
source-destination path for each vehicle. Considering vehicles in the given or-
dering, the routing of a vehicle is determined by finding the earliest possible
departure that allows for advancing non-stop to its destination on the given
path, without creating conflicts with previously routed vehicles.

When fixing the origin-destination paths to be shortest paths, sequential rout-
ing and its direct variant perform at least as good as the trivial serial algo-
rithm. However, for unfortunate choices of the routing sequence, one can
observe that the resulting makespan of both approaches can still be a factor
of Θ(k) larger than the optimum (see [Ste08] for details).

Further related results. Spenke [Spe06] showed that the CFVRP is NP-
hard on grid graphs. The proof implies that finding the optimal priorities for
sequential routing is also NP-hard.

Polynomial routing policies with approximation quality sublinear in k are
known for grid graphs. Spenke introduces a method for choosing a routing
sequence with a makespan bounded by 4OPT + k. An online version of the
problem was investigated by Stenzel [Ste08], again for grid topologies.

Computational results published in [Ste08] indicate that sequential algorithms

1.3. OUTLINE 7

can have bad performance when the number of route choices of near-shortest-
path lengths are limited. For grid topologies, the above-mentioned algorithm
of Stenzel [Ste08] takes advantage of the fact that grid graphs contain at least
two disjoint routes of almost the same length for each pair of vertices.

1.3 Outline

On the negative side we present in Chapter 2 hardness results showing that
there is not much hope to obtain exact solutions even for seemingly simple
settings. The results give a theoretical explanation for the difficulties encoun-
tered in practice when looking for good orderings for sequential routings.

On the positive side, we consider in Section 3.1 the CFVRP problem on trees,
and present a priority ordering of the vehicles leading to a direct routing
algorithm with a makespan bounded by 4OPT + k. This is achieved by
dividing the vehicles into two groups, and showing that each group admits an
ordering which leads only to very small delays stemming from vehicles driving
in opposite directions.

For general instances, without restrictions on the graph topologies, we show
how the tree algorithm can be leveraged to obtain a O(

√
k)-approximation,

thus leading to the first sublinear approximation guarantee for the CFVRP
problem. A crucial step of the algorithm is to discharge high-congestion
vertices by routing vehicles on a well-chosen set of trees. The purely mul-
tiplicative approximation guarantee is obtained despite the +k term in the
approximation guarantee for the tree algorithm by exploiting results from the
packet routing literature. More precisely, using an approach of Srinivasan and
Teo [ST97], we determine routes for the vehicles with a congestion C bounded
by C = O(OPT), and never route more than C vehicles over a given tree.
These results are presented in Section 3.2.

Additionally, an efficient randomized method with makespan O(log3 k)OPT+
k is presented for general graph topologies in Section 3.3. This approach relies
on obtaining strong tree embeddings in a compacted version of the graph,
therefore avoiding a dependency of the approximation guarantee on the size
of the graph, which would result by a straightforward application of tree
embeddings.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Hardness Results

In this chapter we present new hardness results for the CFVRP. Hardness
results are important in the sense that they allow to shift the focus towards
the development of approximation algorithms and heuristics, as they imply
that the optimal solution cannot be found in polynomial time unless P=NP.

Our first result shows hardness for the special case of path topologies. It
may be surprising that already this appearingly simple setting turns out to
be hard to solve. The optimal coordination of vehicles with opposing driving
directions corresponds to a difficult packing type problem, as we will show in
the first section.

The question arises whether it is due to the two-way traffic that the CFVRP
is hard. To answer this question, we consider in the second section of this
chapter a problem variant in which the graph is directed and opposing traffic
is hence not an issue. It turns out that this problem variant is still hard to
solve for tree topologies.

2.1 On Paths

Theorem 2.1. The CFVRP problem on paths is NP-hard.

Proof of Theorem 2.1. We reduce from the 3-Partition problem, where a
vector A = (a1, . . . , a3m) of 3m positive integers and a bound B ∈ Z+ are
given such that

∑
i∈{1,...,3m} ai = mB and B/4 < ai < B/2 for all i ∈

{1, . . . , 3m}. The Problem is to decide whether the coefficients of the vector
can be partitioned into m disjoint vectors A0, . . . , Am−1 each of length 3 and
with coefficients summing up to B. 3-Partition is known to be strongly
NP-hard [GJ79].

10 CHAPTER 2. HARDNESS RESULTS

Given an instance of 3-Partition, we construct an instance of the CFVRP on
a path, such that for some value T ∈ N, the constructed CFVRP instance has
an optimal makespan of at most T if and only if the underlying 3-Partition
instance is feasible.

We set β = 2B + 9 and T = (m+ 1)β. Without loss of generality, we assume
that ai to be even for all i ∈ {1, . . . , 3m}. The graph of the CFVRP instance is
a path of length 2T +β. The nodes are labeled with increasing numbers from
left to right starting with 0. The nodes with labels T to T + β, are referred
to as critical nodes. We introduce vehicles running in both directions of the
path, as listed in Table 2.1.

The general idea is to use the right-to-left (←) vehicles to generate sepa-
rated areas of unoccupied time-space slots, which we call time-space windows,
or simply windows. These can then be used to route the left-to-right (→)
vehicles. More precisely, between the vehicles of types I-III, there are m
time-space windows, forming stripes going diagonally down from top-right to
bottom-left. Each of these stripes has a width of β− 1 = 2B+ 8. We call the
width of such a stripe, the size of the window. Since the vehicles of type I-III
have a route length identical to the makespan threshold T , there is no flexi-
bility in scheduling, i.e., in any routing with makespan T , they must depart
immediately at time zero using direct routing (no waiting or driving back-
wards). There are two more ← vehicles passing the critical nodes between
every two consecutive vehicles of type III, one of type IV and one of type V.
They cut each of the m time-space windows into three smaller windows (see
Figure 2.1).

The sizes of those smaller windows is not fix, as vehicles of type IV have a
route length smaller than T which allows for a certain flexibility in scheduling.
Their departure time can be chosen within the range [0, B + 2]. We assume
here, without consequences for the result, that vehicles of type IV are also
routed directly. As we will see later, the only property we need is that vehicles
of type IV do not wait at critical nodes, and this property must be fulfilled to
obtain a makespan of T since for every critical node v, there are T +1 vehicles
whose paths contain v. Therefore, at each timestep, i.e. at start and the T
following timesteps, each of those T + 1 vehicles must occupy v for precisely
one time slot.

Let us denote the sizes of the resulting 3m time-space windows by α1, . . . , α3m,
in temporal order. By appropriate choice of the departure times for the
vehicles of types IV-V, the window sizes can attain any value between 1 and
B + 3, as long as α3i+1 + α3i+2 + α3i+3 = 2B + 6 for all i ∈ {0, . . . ,m− 1}.

2.1. ON PATHS 11
T

ab
le

2.
1:

E
ac

h
li

n
e

of
th

e
ta

b
le

co
rr

es
p

o
n
d

s
to

a
g
ro

u
p

o
f

ve
h

ic
le

s
to

b
e

ro
u

te
d

.
V

eh
ic

le
s

d
es

cr
ib

ed
in

th
e

sa
m

e
li

n
e

h
av

e
th

e
sa

m
e

d
ir

ec
ti

o
n

(i
n

d
ic

a
te

d
in

th
e

co
rr

es
p

o
n

d
in

g
co

lu
m

n
),

a
n

d
th

e
sa

m
e

le
n

g
th

,
i.

e.
,

d
is

ta
n

ce
b

et
w

ee
n

or
ig

in
an

d
d

es
ti

n
at

io
n

.
T

h
e

o
ri

g
in

s
o
f

a
g
ro

u
p

o
f

v
eh

ic
le

s
d

es
cr

ib
ed

b
y

o
n

e
li

n
e

a
re

g
iv

en
b
y

a
n

a
ri

th
m

et
ic

p
ro

gr
es

si
on

,
st

ar
ti

n
g

at
th

e
va

lu
e

F
ir

st
,

en
d

in
g

a
t

L
a
st

,
a
n

d
w

it
h

st
ep

si
ze

S
te

p
.

F
o
r

ex
a
m

p
le

,
th

e
th

ir
d

li
n

e
o
f

th
e

ta
b

le
co

n
ta

in
s

a
ve

h
ic

le
w

it
h

o
ri

g
in
T

+
β

,
o
n

e
w

it
h

o
ri

g
in
T

+
2
β

a
n

d
so

o
n
,

w
it

h
th

e
la

st
o
n

e
h

av
in

g
it

s
or

ig
in

at
n

o
d

e
T

+
(m

+
1)
β

=
2
T

.
T

h
e

la
st

co
lu

m
n

su
m

m
a
ri

ze
s

th
e

n
u

m
b

er
o
f

ve
h

ic
le

s
d

es
cr

ib
ed

b
y

ea
ch

li
n

e.
N

ot
e

th
at

th
e

ve
h

ic
le

s
of

ty
p

e
V

I
a
re

in
tr

o
d

u
ce

d
in

id
en

ti
ca

l
p

a
ir

s.

O
ri

g
in

T
y
p

e
D

ir
ec

ti
on

F
ir

st
S

te
p

L
a
st

L
en

g
th

N
u

m
b

er

I
←

T
1

T
+
β
−

1
T

β
II

←
2
T

+
1

1
2
T

+
β

T
β

II
I

←
T

+
β

β
T

+
(m

+
1
)β

T
m

+
1

IV
←

T
+
β

+
2

β
T

+
m
β

+
2

T
−

(B
+

2
)

m
V

←
T

+
β

+
B

+
6

β
T

+
m
β

+
B

+
6

T
−

(B
+

2
)

m

V
I

→
T
−
a

1
1

T
+
β

a
1

β
+
a

1
+

1
→

T
−
a

1
1

T
+
β

a
1

β
+
a

1
+

1
→

T
−
a

2
1

T
+
β

a
2

β
+
a

2
+

1
→

T
−
a

2
1

T
+
β

a
2

β
+
a

2
+

1
. . .

. . .
. . .

. . .
→

T
−
a

3
m

1
T

+
β

a
3
m

β
+
a

3
m

+
1

→
T
−
a

3
m

1
T

+
β

a
3
m

β
+
a

3
m

+
1

12 CHAPTER 2. HARDNESS RESULTS

path0 T T + β T + 2β 2T 2T + β

tim
e

0

T
critical nodes

Figure 2.1: Sketch of the time-space diagram for m = 2. The lines going from
top-right to bottom-left indicate schedules of vehicles of types I-V. The block
of adjacent parallel lines to the left corresponds to vehicles of type I and the
block to the right to vehicles of type II. The other parallel lines between these
blocks correspond to vehicles of types III-IV. The short lines from top-left to
bottom-right indicate schedules for the vehicles of type VI.

This is true because the three consecutive time-space windows result from the
subdivision of a larger window of size 2B+ 8, and two timesteps are occupied
by the two vehicles of types IV and V. Notice that all time-space windows
are non-empty: as vehicles of types III-V cannot be scheduled one right after
the other, there always must be a gap of at least one timestep in-between.

Vehicles of type VI run in opposite direction. They were introduced such that
for each critical node v, 6m vehicles have their origin at v, twice a set of 3m
vehicles with trip lengths {a1, . . . , a3m}.
We now show how to find a conflict-free direct routing plan with makespan
T from a feasible 3-Partition A0, . . . , Am−1. Vehicles of types I-III clearly
must depart at time zero. The departure times of vehicles of types IV-V
are chosen such that the window sizes fulfill α3i+j = 2(ai,j + 1) for every
i ∈ {0, . . . ,m − 1}, j ∈ {1, 2, 3} and ai,j corresponding to the jth element of
Ai. It is possible to choose such departure times, as ai,1 + ai,2 + ai,3 = B
leads to α3i+1 + α3i+2 + α3i+3 = 2B + 6, and B/4 < ai,j < B/2 leads to the
bounds B/2 + 2 < α3i+j < B + 2.

The vehicles of type VI can now be routed using these time-space windows.
A time-space window of size α, delimited by ← vehicles, can be used to send

2.1. ON PATHS 13

two→ vehicles of trip length α/2−1 from each critical node (see Figure 2.2).
By the choice of the window sizes above, all vehicles of types VI can be routed
in the respective windows, leading to a routing plan with makespan T .

α1

α2

α3

α4

path0 T T + β 2T + βv

tim
e

Figure 2.2: A closer view on the critical nodes, showing how the vehicles
corresponding to ai can be scheduled within a window of size αi = 2(ai + 1).
In a schedule with makespan T , each critical node is always occupied. For
the critical node v, the set of→ vehicles departing from v are marked in blue.
There are exactly two per window.

It remains to show the converse, that, if there is a solution to the CFVRP
instance with makespan T , there necessarily exists a feasible solution to the
underlying 3-Partition instance. Remember that the instance was con-
structed such that all critical nodes are on the route of exactly T +1 vehicles.
A routing with makespan T is therefore only possible if every such node is
occupied on each timestep, because there is no spare capacity. Also a routing
involving waiting or detours on the critical nodes can be excluded.

We now argue that any feasible routing with makespan T solves implicitly
the underlying 3-Partition problem. For this purpose, look at some critical
node v. We claim that a time-space window of size α must contain two
→ vehicles of trip length α/2 − 1 departing from v. This follows from the

14 CHAPTER 2. HARDNESS RESULTS

fact that v and all other critical nodes can never be unoccupied. Note that
α needs to be even as the lack of vehicles of odd trip length would lead
to unoccupied nodes otherwise. Scheduling less than two vehicles departing
from v into a time-space window also necessarily would lead to unoccupied
nodes. However, this as well implies that it is not possible to schedule more
than two vehicles departing from v into a time-space window, since there
are exactly 6m vehicles departing from v to be distributed over 3m windows.
Scheduling shorter vehicles than claimed would also lead to unoccupied nodes.
Combining several smaller vehicles is again not possible as there are no spare
vehicles.

One can hence only route all → vehicles if the time-space windows have sizes
2(a1 + 1), 2(a2 + 1), . . . , 2(a3m + 1). With the additional restriction that the
sizes of any three time-space windows α3i+1, α3i+2, α3i+3 for i ∈ {0, . . . ,m−1}
must sum up to 2B + 6. Hence, the window sizes correspond to a solution to
the 3-Partition problem.

The proof of Theorem 2.1 considers a problem instance where the optimal
routing can be chosen to be a sequential routing, thus implying the following
result.

Corollary 2.2. Choosing an optimal ordering of the vehicles for sequential
routing is NP-hard, even if the underlying graph is a path.

2.2 On Directed Trees

We have seen that the optimal routing of vehicles on a path with two-way
traffic is hard. We now ask the question whether there exist efficient algo-
rithms if we restrict the problem to instances without opposing traffic. For
this purpose we consider a variant of CFVRP on directed graphs and will
show that this variant is hard to solve also for the special case of trees.

Theorem 2.3. Conflict-free vehicle routing is NP-hard on directed trees.

Proof. We show this by reduction from 3-Bounded-3-SAT (3B3S), which is
known to be NP-complete [GJ79]. A SAT instance is a boolean formula
consisting of disjunctive (OR) clauses over a set of n variables. The following
small example consist of the variables x, y, z and two clauses containing three
literals each, where ȳ denotes the negation of variable y.

(x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z̄)

2.2. ON DIRECTED TREES 15

The objective is to find an assignment of true/false to the variables such that
each of the clauses in a SAT instance is satisfied. A clause is satisfied if one
of the variables occurring as unnegated (respectively negated) literal is set to
true (false).

3B3S is a variant of SAT in which each clause consists of at most three
variables and each variable occurs in at most three clauses. We can assume
that each variable occurs at least once as a negated and once as an unnegated
literal. Otherwise, one could simply set the variable such that all clauses
containing it are satisfied and the variable could be removed from the problem
together with the clauses containing it. Consequently, a variable appears at
least once and at most twice as negated or unnegated literal. Furthermore,
one can assume that each clause consists of at least two literals, as single-
literal clauses can also be removed easily. Let in the following c3 and c2 be
the numbers of clauses consisting of three respectively two literals in the 3B3S
instance.

In the following, we relate instances of 3B3S to instances of CFVRP on a
tree network such that the first has a satisfying assignment if and only if
there exists a routing plan with a certain makespan T for the second. The
tree network with its corresponding 3B3S instance is shown in Figure 2.3.
There are four vehicles per variable, labeled x, x′, x̄, x̄′ for a variable x, and
one additional for each appearance of a literal in a clause, labeled c1x for the
first appearance of x in a fixed ordering of clauses, respectively c2x for the
second. The tree topology for other 3B3S instances is generated accordingly.
The number of tree branches depends on the numbers of clauses and variables
in the 3B3S instance under consideration. The tree is directed in the obvious
way.

We introduce additional vehicles with the purpose of blocking certain edges
for certain timesteps. An edge e can be blocked for a time slot [t, t + 1] in
the following way. We merge the tree graph with a path of length T whose
nodes are labeled consecutively (v0, . . . , vT). The merge is done by fusion
of edge e from the tree with edge {vt, vt+1} from the path. By introducing
a vehicle with origin v0 and destination vT , we enforce that in any feasible
routing plan, for time slot [t, t+1], the edge e is occupied by this vehicle. Note
that the merged graph is also a tree. We will in the following not mention
explicitly the blocking vehicles and their paths but only indicate which edges
are blocked for which time slots. In particular, we introduce blockings on
the colored edges (blue, green, brown and red) of Figure 2.3. Note that the
colored edges do not share nodes and therefore no conflicts between blocking
vehicles occur.

16 CHAPTER 2. HARDNESS RESULTS

x
x̄

x̄′
x′

y
ȳ

ȳ′
y′

...

x , c1x
x̄′, c2x̄

x̄ , c1x̄
x′, c2x

y , c1y
ȳ′, c2ȳ

ȳ , c1ȳ
y′, c2y

...

c1x c1ȳ c1z c2x c1y c1z̄. . .

Clause 1︷ ︸︸ ︷
(x ∨ ȳ ∨ z) ∧ . . . ∧

Clause c3+c2︷ ︸︸ ︷
(x ∨ y ∨ z̄)

r

Figure 2.3: Illustration of the tree network used for the hardness reduction.
The origins and destinations of the vehicles are indicated by darts and squares,
along with the respective vehicle labels. The traffic direction is indicated by
arrows on some of the arcs. The colored edges represent the so-called gates
and are open only for certain timesteps.

For the ease of explication, we split the makespan into phases I - IV. Their
lengths and blockings are indicated in Table 2.2.

We will show in the following that for a 3B3S instance, there exists a feasible
routing plan with makespan T = 4n + 3c3 + 2c2 + 36 to the corresponding
CFVRP instance, if and only if the 3B3S instance has a satisfying assignment.

If direction: Consider a fixed satisfying assignment of the 3B3S instance. It
has at least one satisfied literal per clause. We call the corresponding clause
vehicle the satisfying vehicle (pick any in case there are several candidates).
For the variable vehicles, we call the vehicles x and x′ (resp. x̄ and x̄′) true
if the variable x is set true (false) in the satisfying assignment, the others we
call false vehicles.

We construct the following routing plan. In phase I, one non-satisfying vehicle
per clause is sent from origin to destination. More precisely, one vehicle per

2.2. ON DIRECTED TREES 17

Table 2.2: The table shows when the colored edges (blue, green, brown and
red) are blocked. The makespan is split into four phases I-IV, each of the
length indicated. In each phase, the edges of one color are either open, blocked
or blocked except for one particular time slot, called gate. Gate1 means that
the open slot is the time slot [1, 2] of the respective phase. Similarly, gate2

refers to slot [2n+5, 2n+6] and gate3 to slot [2n+c3 +c2 +8, 2n+c3 +c2 +9]
within the phase. Gate4 is open for slot [1, 2] only in case the blue edge
corresponds to a clause with three variables and closed otherwise.

edge color (according to Figure 2.3)
phase length blue green brown red
I c3 + c2 + 9 gate1 closed open open
II c3 + 9 gate4 closed open open
III 2n+ 9 closed gate1 gate2 open
IV 2n+ c3 + c2 + 9 open open open gate3

clause is sent directly to the pre-root node until time 3. Note that the blue gate
is open at the right timestep. Next, the vehicles cross the root node one after
another and proceed to their destinations (the brown and red edges are open
in phase I). For crossing the root node and proceeding to the destinations,
the c3 + c2 vehicles need another c3 + c2 + 6 timesteps.

Phase II is a repetition of phase I, except that the blue gate is only open for
the 3-literal-clause vehicles. In this phase, the remaining c3 non-satisfying
clause vehicles are sent to their destinations in c3 + 9 timesteps.

In phase III, the true variable vehicles are sent to their destinations. There
are 2n such vehicles, and their paths are independent except for the root
node. They pass the green gate, the root-node and the brown gate before
proceeding to their destinations in total time of 2n+ 9.

At this point, the satisfying clause vehicles (one per clause) and the false
variable vehicles (two per variable) remain to be routed. These vehicles all
have different destinations. If a satisfying clause vehicle had the same desti-
nation as a false variable vehicle that would be a contradiction. The green
and blue edges open at the beginning of phase IV. The 2n+ c3 + c2 vehicles
pass the root, wait two nodes away from their individual destinations before
passing the red gate to arrive simultaneously at time 2n+ c3 + c2 + 9 of phase
IV. Appending the phases I-IV results in a feasible routing plan with total
makespan T = 4n+ 3c3 + 2c2 + 36.

Only if direction: After completion of phases I-III, at least one vehicle per

18 CHAPTER 2. HARDNESS RESULTS

clause has not yet passed the blue gate. Similarly, for the variable vehicles,
at least two vehicles per variable remain to pass the brown gate, and the
remaining variables contain one of the pairs {x, x′} or {x̄, x̄′} (note that, for
example, if x passes the brown gate in phase III, it blocks the green gate for
x̄ and the brown gate for x̄′).

During phase IV, the red gate must in consequence be passed by at least one
clause vehicle per clause and by one pair of variable vehicles per variable. If
pair {x, x′} passes the red gate in phase IV, the gate slot is taken and c1x (and
c2x) cannot pass the gate in that phase. However, c1x̄ (and c2x̄) can pass as
they have different destinations than {x, x′}. On the other hand, {x̄, x̄′} can
pass together with c1x and c2x but not with c1x̄ and c2x̄. We can construct
a 3B3S solution out of a routing by setting the variable x to false in the first
case and to true in the latter. As stated before, at least one clause vehicle per
clause needs to pass the red gate. This corresponds to at least one satisfied
literal in the 3B3S instance.

We have presented two hardness results in this chapter, the first for the bidi-
rectional case, the standard setting of CFVRP, and the second for the directed
case. We learn that CFVRP cannot be solved to optimality in polynomial
time unless P=NP. While the first result shows that this remains true even
for instances without intersections, the second does the same for instances
without opposing traffic.

The combination of both restrictions is the CFVRP on directed paths. For
this, the computational complexity remains open. The greedy farthest-desti-
nation-first algorithm [Leu04], which is optimal for the directed path case in
packet routing, does not necessarily lead to optimal solutions in the CFVRP.
The case is interesting as a polynomial-time algorithm would directly lead to
a 2-approximation for the CFVRP on undirected paths.

Chapter 3

Approximation Algorithms

In this chapter, we present approximation algorithms with guarantees on the
quality of the solutions and with polynomial runtime bounds. The algorithms
are variants of sequential routing with particular priority sequences and route
choices. We start by presenting a routing algorithm for trees. Then we show
two ways of extending the tree algorithm to general graphs, resulting in the
first routing algorithms for CFVRP with approximation guarantees sublinear
in k.

3.1 Tree Approximation

Throughout this section, we assume that the given graph G = (V,E) is a tree
and we fix an arbitrary root node r ∈ V . The nodes are numbered as follows.
We perform a depth-first search (DFS) on G starting at r, and number the
nodes in the order in which they are first visited during the DFS.

The vehicles are partitioned into increasing vehicles and decreasing vehicles.
A vehicle is increasing if the label of its destination is larger than the one of
its origin, and decreasing otherwise. We use k+ and k− to denote the number
of increasing and decreasing vehicles, respectively.

Vehicles will be routed on the unique path from origin to destination. On this
path, the node which is closest to the root is called the bending node of the
vehicle. The labels of the last node before and the first node after the bending
node are referred to as in-label and out-label, respectively. Notice, that the
bending node can coincide with the origin or destination node. In this case
the in-label or out-label, respectively, is not defined. Increasing vehicles are
always guaranteed to have out-labels while decreasing vehicles certainly have
in-labels. See Figure 3.1 for an illustration.

The tree routing algorithm, TreeRouting, is a special case of sequential

20 CHAPTER 3. APPROXIMATION ALGORITHMS

1

2

3 4

5 6 7

8

9 10

11 12

13

14 15

Figure 3.1: Tree with nodes labeled in DFS order, starting at the root node
with label 1. The route for an increasing vehicle with origin at label 6 and
destination at label 9 is indicated. The bending node of the vehicle has label
2, the in-label is 4 and the out-label 8. Note that all increasing vehicles have
direction left-to-right or top-to-bottom in this illustration, and the decreasing
right-to-left or bottom-to-top, respectively.

routing, where vehicles are routed in order of decreasing priorities, for any
priority list satisfying the following rules:

i) increasing vehicles have priority over decreasing vehicles,
ii) among two increasing vehicles, the one with higher out-label has priority,
iii) among two decreasing vehicles, the one with lower in-label has priority,
iv) ties are broken using an arbitrary fixed vehicle ordering.

Theorem 3.1. The makespan obtained by TreeRouting is bounded by
4L+ k.

Recall that L is the maximum origin-destination distance over all vehicles.
For the proof of the theorem, we start by showing that a particular direct
routing exists with the desired makespan, and then deduce Theorem 3.1 from
this result. For the rest of this section, we assume that priorities satisfying
the priority rules of TreeRouting are assigned to the vehicles.

Lemma 3.2. There exists a direct routing along the unique origin-destination
paths with a makespan of at most 4L+k, and such that for every node v ∈ V ,
the vehicles that visit v, do this in order of decreasing priorities.

Proof. We will show how to construct a direct routing only containing the
increasing vehicles with a makespan of 2L+k+, such that vehicles visit nodes
in order of decreasing priorities. Analogously, a routing with a makespan of

3.1. TREE APPROXIMATION 21

Algorithm TreeRouting

Sort the vehicles in order of decreasing priorities.
Apply sequential routing along the unique paths using this ordering.

2L+ k− can be obtained for the decreasing vehicles.1 The result then follows
by serially applying those two routings.

Notice that direct routing along given paths is fully specified by fixing for each
vehicle the passage time at one node on its route. Consider the direct routing
that is obtained by fixing for each vehicle the passage time at its bending
node as follows: the passage time at the bending node of the highest priority
vehicle is set to L, the one with second-highest priority is L + 1, and so on,
hence leading to a passage time at the bending node of L + k+ − 1 for the
increasing vehicle with the lowest priority. Thus, if this routing is conflict-
free, then all (increasing) vehicles arrive latest at timestep 2L+ k+ − 1, thus
respecting the desired makespan.

We finish the proof by showing that if two vehicles visit the same node v,
then the one with lower priority occupies v strictly later than the one with
higher priority. This implies as well that the routing is conflict-free. Notice
that in particular no edge conflicts are then possible because having an edge
conflict between two vehicles would violate the priority ordering at one of its
endpoints. Hence, consider two vehicles π and ψ, and assume that ψ has a
higher priority than π. We distinguish four cases.

Case 1: π and ψ do not share any node. Here, the claim follows trivially.

Case 2: π and ψ share exactly one common node v. Note that v must be the
bending node of at least one of the two vehicles. Let τψv and τπv be the passage
times of ψ and π at node v, and let τψ and τπ be the bending times of ψ and
π. We show that the higher priority vehicle ψ passes first at v, i.e. τψv < τπv ,
by proving the following chain of inequalities.

τψv ≤ τψ < τπ ≤ τπv

To check the first inequality assume by sake of contradiction that τψv > τψ,
i.e., ψ reaches v after having bent. Hence, v must be the bending node of π,
and thus the bending node of π is a descendant of the out-node of ψ (i.e., the

1To reduce this case to the increasing case, one can for example swap for every decreasing
vehicle the origin and destination, thus turning them into increasing ones. A routing
obtained using the procedure for increasing vehicles can then be transformed into a legal
routing for the decreasing vehicles by reverting time.

22 CHAPTER 3. APPROXIMATION ALGORITHMS

out-node of ψ lies on the path between r and the bending node of π). This
contradicts that ψ has a higher priority than π. The second, strict inequality
holds because of the assignment of smaller bending node passage times to
higher priority vehicles. The third inequality holds by a reasoning analogous
to the one used for the first inequality.

It remains to discuss cases where π and ψ share more than one node. As G is
a tree and routes are paths, these common nodes necessarily form a connected
path. It remains to distinguish in which direction this common subpath is
traversed by the vehicles.

Case 3: π and ψ use a common subpath in the same direction. Let v denote
the common node with the smallest label. It corresponds to the one of the
two bending nodes which is closer to the root. The same analysis as in the
second case shows that ψ passes v first. As we apply direct routing and ψ
and π use the common subpath in the same direction, the lead of ψ over π is
the same on all common nodes, and the claim hence follows.

Case 4: π and ψ use a common subpath in opposite directions. The vehicles
cannot bend on the common subpath because that would contradict with
both vehicles being increasing. One vehicle hence approaches the root while
the other one goes away from it. Observe that the approaching vehicle has the
larger out-label, and hence must be the higher-priority vehicle ψ. Let v again
denote the common node with the smallest label. Using the same reasoning
as in the second case, we again obtain that ψ passes at node v first. It follows
that ψ leaves the common path before π enters it, proving the claim.

Theorem 3.1 can now be derived by showing that no vehicle occupies any
node later in the TreeRouting algorithm than in the routing suggested by
Lemma 3.2.

Proof of Theorem 3.1. Consider a fixed routing according to Lemma 3.2, us-
ing the same vehicle priorities as TreeRouting. We will prove the following
claim which implies the result: no vehicle occupies any node later in the rout-
ing obtained by TreeRouting than the routing according to Lemma 3.2.
Consider a step of TreeRouting, where some vehicle π is to be routed, and
assume that all vehicles with higher priorities than π are already routed by
TreeRouting such that the claim holds. We show that TreeRouting will
route π such that π also satisfies the claim.

Notice that π could be routed according to the same schedule as in Lemma 3.2,
because of the following. In the routing according to Lemma 3.2, there is no
vehicle with higher priority than π that passes any vertex v after π. By

3.2. HOT SPOT ROUTING 23

assumption, any vehicle ψ that passes through v and has higher priority than
π, occupies v in TreeRouting at the same time or earlier than in the routing
according to Lemma 3.2. Hence, no conflict at v between ψ and π is possible
when π is routed as in the routing according to Lemma 3.2. The arrival time
of π in TreeRouting is hence no later than in the routing according to
Lemma 3.2. The same is true for the passage times at all other nodes, as the
sequential schedule needs at least as much time to bring π to the destination
as the direct schedule of Lemma 3.2.

3.2 Hot Spot Routing

After having presented a routing algorithm for trees, we show now how it can
be extended to yield a sequential routing scheme with O(

√
k) approximation

guarantee for general graphs. It proceeds along the following three steps.

i) Selection of routes for the vehicles with guaranteed upper bounds on both
route length and node congestion.

ii) Identification of busy nodes (hot spots) and routing of the vehicles going
through hot spots with the tree approximation algorithm.

iii) Routing of the remaining vehicles by exploiting the fact that the conges-
tion and hence the conflict potential is limited (low congestion routing).

Selection of routes. We will determine for each vehicle π ∈ Π an sπ-tπ
path Pπ ⊂ E, satisfying the following properties, where we denote by Πv ⊆ Π
for v ∈ V , the vehicles whose paths contain v:

i) the congestion C = maxv∈V {|Πv|} is bounded by O(OPT),
ii) the dilation D of the chosen paths, which is the length of the longest

path Pπ, is bounded by O(OPT).

Notice that both, the congestion C and the dilation D are lower bounds on
the minimum makespan that can be achieved with the chosen paths. The
problem of finding routes with small congestion and dilation is well-known in
packet routing. Using an algorithm of Srinivasan and Teo [ST97] or a recently
improved version presented in [KPSW09], a collection of paths with the above
properties can be found in polynomial time. We use such an algorithm as a
subroutine in our routing approach.

The algorithm. We start by computing origin-destination paths {Pπ} with
short congestion and dilation as discussed above. In a first phase, the algo-

24 CHAPTER 3. APPROXIMATION ALGORITHMS

rithm goes through the vertices v ∈ V in any order and checks whether there
are more than

√
k vehicles not routed so far whose origin-destination paths

contain v. If this is the case, all those vehicles are routed on a shortest path
tree rooted at v using TreeRouting. Notice that these vehicles are hence
not necessarily routed along the paths {Pπ}. In a second phase, direct se-
quential routing (with an arbitrary order) is applied to all vehicles not routed
this far. The paths used here are the ones determined at the beginning, i.e.,
{Pπ}. The algorithm is summarized below.

Algorithm HotSpot

Generate origin-destination paths {Pπ} with low congestion and dilation
Initialize Π′ ← Π
while There exists a node v with |Πv ∩Π′| >

√
k do

Route the vehicles Πv ∩ Π′ on a shortest path tree with root v, using
TreeRouting
Π′ ← Π′ \Πv

end while
Route the remaining vehicles Π′ in an arbitrary order, applying direct se-
quential routing using the paths {Pπ}.

Theorem 3.3. HotSpot has an approximation quality of O(
√
k ·OPT).

For the proof, we need some more notation. For any graph H = (W,F) with
given edge lengths (variable edge lengths will be used later in Section 3.3) and
two vertices v, w ∈W , we denote by lH(v, w) the distance of a shortest path
between v and w in H. For U ⊆ F , we denote by H[U] the graph (W,U),
where U inherits the edge lengths from H. lH[U](v, w) therefore stands for
the shortest path length from v to w in the subgraph of H induced by edges
U .

Proof. The while-loop gets iterated at most
√
k times, since at each iteration

at least
√
k of the k vehicles are routed. Consider the routing of a group of at

least
√
k vehicles Πv∩Π′ during the while-loop. Since each vehicle π ∈ Πv∩Π′

is routed along a shortest path tree T rooted at r, and Pπ contains v, we have
lG[T](sπ, tπ) ≤ |Pπ| ≤ D. Furthermore, the number of vehicles in Πv ∩ Π′

is bounded by C. Thus, the algorithm TreeRouting routes all vehicles in
Πv ∩ Π′ in time O(C + D), and hence, all vehicles routed during the while
loop will reach their destination in O(

√
k(C+D)) = O(

√
k ·OPT) timesteps.

Let π be any of the remaining vehicles that are routed during the second
phase of the algorithm. Consider all potential departure times for π from its

3.3. LOW-STRETCH ROUTING 25

origin, starting after the last vehicle of the first phase has arrived. We want
to bound the total number of departure times for π that lead to conflicts due
to previously scheduled vehicles during the second phase. If some departure
time is not possible, then this must be due to either a node conflict or an
edge conflict with another vehicle previously scheduled during the second
phase. However, for every node v on the path Pπ, at most

√
k vehicles have

previously been routed over v during the second phase. Hence, the occupation
of these nodes by other vehicles blocks O(D

√
k) possible departure times.

Furthermore, if some departure time t for π is not possible due to some edge
conflict with another vehicle ψ routed during the second phase, then either
there is also a node conflict for the same departure time (if π and ψ traverse
the edge in the same direction), or the departure time t + 1 corresponds to
a node conflict between π and ψ (if π and ψ traverse the edge in opposite
directions). Hence, the total number of departure times that are blocked by
edge conflicts is bounded by the total number of departure times blocked by
node conflicts which is O(D

√
k). We conclude that π waits at most O(D

√
k)

timesteps at its origin before directly traveling to its destination in at most D
steps. Hence, this second phase is completed in at most O(D

√
k) timesteps,

thus leading to a total makespan bounded by O(
√
k(C+D)) and proving the

claim.

3.3 Low-Stretch Routing

In this section we present a second approach how to extend the tree routing
scheme from Section 3.1 to general graphs. It is an an efficient randomized
method with makespan guarantee O(log3 k)OPT + k. This guarantee is im-
proved in the multiplicative factor compared to HotSpot at the cost of the
additional additive term +k.

The approach uses tree embeddings to extend the routing algorithm designed
for tree topologies to arbitrary graph topologies. A direct application of
tree embedding would here only lead to an approximation guarantee that
is polylogarithmic in the number of vertices, whereas we are interested in
approximation guarantees independent of the size of the graph. To achieve
this goal we will determine a routing by applying tree embedding techniques
to a compacted version of the graph G with size of order O(k2).

The high level idea is to find a collection of O(polylog(k)) trees in G such
that for each vehicle π ∈ Π, there exists a tree T in the collection such that
the distance of the sπ-tπ path in T is at most an O(polylog(k))-factor larger

26 CHAPTER 3. APPROXIMATION ALGORITHMS

than the distance between sπ and tπ in G. Every vehicle π is then assigned
to a tree with a short sπ-tπ distance. We then go through the collection of
trees in any order and sequentially route first all vehicles assigned to the first
tree, then all that are assigned to the second tree and so on. Each group
of vehicles that is assigned to the same tree is routed using the tree routing
algorithm TreeRouting.

We will apply the following results about low-stretch trees of Abraham et
al. [ABN08] to a compacted version of G to find a good collection of spanning
trees.2 Recall that lH[U](v, w) denotes the shortest path length from v to w
in the subgraph of H induced by edge set U .

Theorem 3.4 ([ABN08]). For any edge-weighted graph H = (W,F), one can
draw in polynomial time a spanning tree T of H out of a distribution such
that for any v, w ∈W , the expected stretch is bounded by O(log2 |W |), i.e.,

E
[
lH[T](v, w)/lH(v, w)

]
= O

(
log2 |W |

)
.

We transform the unit length network G = (V,E) into a graph H = (W,F)
of size O(k2) with non-negative edge lengths, such that both graphs have
the same origin-destination distances for each vehicle. For this purpose, we
first compute for each vehicle π ∈ Π a shortest path Pπ ⊆ E. To do this,
we temporarily perturb the unit edge lengths slightly such that the shortest
paths are unique.3

Let W ⊆ V be the set of all vertices that are either terminals, or have at least
three adjacent edges in ∪π∈ΠPπ. The graph H = (W,F) is obtained from G
by applying the following operations. See Figure 3.2 for an illustration.

i) Delete all edges and nodes which are not part of any path Pπ.

ii) Every path P ⊆ G between two nodes v, w ∈W , without any other nodes
of W on the path, is replaced by an edge between v and w of length |P |.

Notice that H can be interpreted as a compact graph version of (V,∪π∈ΠPπ).
Every edge of H corresponds to a path in G (possibly of length one). More
generally, any subset of edges U ⊆ F can be mapped to corresponding edges
in G. H has the following properties.

2In [SZ11] we included a reference to the earlier result of Dhamdhere et al. in [DGR06].
This result, however, was withdrawn according to a footnote in [ABN08]. In the latter
paper, Abraham et al. subsequently presented an even stronger result.

3Such a perturbation can for example be performed by fixing an arbitrary ordering of
the edges E = {e1, . . . , em}, and assigning the lengths `(ei) = 1 + εi for i ∈ {1, . . . ,m}, for
any ε ≤ 1

2
. This perturbation can also be performed purely symbolically.

3.3. LOW-STRETCH ROUTING 27

s1

t1

s2

t2 s3

t3
s4

t4

s5

t5

s1

t1

s2

t2 s3

t3
s4

t4

s5

t5

Figure 3.2: Transformation of original graph G (above) into compact graph H
(below). The paths {Pπ}π∈Π are drawn as colored lines. The compact graph
is obtained by removal of all nodes which do not correspond to a terminal or
a junction of paths.

28 CHAPTER 3. APPROXIMATION ALGORITHMS

Lemma 3.5. The size of H = (W,F) is bounded by |W | = O(k2), and for
each vehicle, the origin-destination distance in H is the same as in G.

Proof. The claim about origin-destination distances holds since H contains a
compacted version of the path Pπ for every vehicle π ∈ Π.

To bound the size of H, consider the graph G′ = (V,∪π∈ΠPπ). Since H is
obtained from G′ by eliminating all degree two vertices that are not terminals,
each non-terminal vertex in H is a vertex of degree at least three in G′. To
prove the claim, it hence suffices to show that G′ has at most O(k2) vertices
of degree ≥ 3. If a non-terminal vertex v ∈ V is of degree at least three in G′,
then there exist at least two vehicles π, ψ ∈ Π such that |δG(v)∩(Pπ∪Pψ)| ≥ 3,
where δG(v) are the edges adjacent to v in G. We call such a node a junction
of the two vehicles π, ψ. Observe that for any two vehicles π, ψ ∈ Π, there are
at most two junctions of π and ψ: the paths Pπ and Pψ are unique shortest
paths in G w.r.t. the perturbed unit lengths; hence Pπ ∩ Pψ is a path in G,
implying that only the two endpoints of P can be junctions of π and ψ. Since
each of the

(
k
2

)
unordered pairs of vehicles leads to at most two junctions, the

total number of junctions is bounded by k(k − 1), which implies that G′ has
at most O(k2) vertices of degree ≥ 3.

The following lemma now follows by standard techniques.

Lemma 3.6. Let p = 2 log(k), and let U1, . . . , Up ⊆ F be random spanning
trees of H obtained by applying Theorem 3.4. Let T1, . . . , Tp be the spanning
trees in G that correspond to U1, . . . , Up. Then, with probability at least 1 −
1/k, we have that for every vehicle π ∈ Π, there exists a tree T ∈ {T1, . . . , Tp}
such that

lG[T](sπ, tπ)/lG(sπ, tπ) = O(log2 k).

Proof. By Theorem 3.4 and using that the size of H is bounded by O(k2)
(Lemma 3.5), we have that for any i ∈ {1, . . . , p} and π ∈ Π,

E

[
lH[Ui](sπ, tπ)

lH(sπ, tπ)

]
≤ c log2 k,

for some constant c > 0. By construction of H we have lH(sπ, tπ) = lG(sπ, tπ)
and lH[Ui](sπ, tπ) = lG[Ti](sπ, tπ). Using Markov’s inequality, we get

Pr

[
lG[Ti](sπ, tπ)

lG(sπ, tπ)
≥ ec log2 k

]
≤ 1

e
.

3.3. LOW-STRETCH ROUTING 29

Since the random trees T1, . . . , Tp are drawn independently, we obtain that
the probability that there is at least one tree Ti in the collection such that
lG[Ti]

(sπ,tπ)

lG(sπ,tπ) ≤ ec log2 k = O(log2 k), is at least 1 − (1
e)p ≥ 1 − 1

k2 . Using a

union bound over all vehicles, the result is obtained.

The algorithm. The algorithm works as follows. Using Lemma 3.6 (re-
peatedly if necessary), we obtain in expected polynomial time a collection of
spanning trees T1, . . . , Tp with p = O(log(k)) such that we can assign each
vehicle π to a tree Ti(π) satisfying lG[Ti(π)](sπ, tπ) = O(log2 k · lG(sπ, tπ)). Let
kj denote the number of vehicles assigned to Tj . For each tree Tj in the col-
lection, the TreeRouting algorithm can be used to route all vehicles that
are assigned to Tj in time bounded by

4 max{lG[Tj](sπ, tπ) | π ∈ Π, i(π) = j}+ kj = O(log2 k)L+ kj ,

which follows by the guarantee on the stretch provided by Lemma 3.6. Finally,
routing first all vehicles assigned to T1, then, as soon as all those vehicles
arrived at their destinations, route all vehicles assigned to T2 and so on, thus
leads to an algorithm with expected polynomial running time and the claimed
bound on the makespan given by

O(log2 k)pL+

p∑

i=1

kj = O(log3 k)L+ k.

30 CHAPTER 3. APPROXIMATION ALGORITHMS

Chapter 4

Conclusion

We have investigated conflict-free routing on bidirectional networks, a prob-
lem with relevance for various applications in the transportation sector.

It was observed earlier that the sequential routing scheme often performs well
when there is a number of alternative route choices of almost shortest-path-
length, such as it is the case for grid graphs [Ste08]. Large delays caused
by opposing traffic can often be avoided by choosing the route with least
delays out of the alternatives. More challenging are networks with a lack of
alternative routes. For the special case of tree networks, only a single path
exists between origin an destination and the delays can be influenced only
by the choice of the priority sequence. We now have presented a method for
choosing the sequence with a makespan guarantee of O(OPT) + k.

Combining this result with ideas from packet routing, we were able to extend
the tree algorithm to obtain an O(

√
k)-approximation for general graphs. It

is the first efficient algorithm with sublinear approximation guarantee in this
generality. Additionally, a randomized algorithm leading to a makespan of
O(polylog(k)) · OPT + k was presented that relies on tree embedding tech-
niques. Applied to a compacted version of the graph one obtains an approx-
imation guarantee independent of the graph size.

Further, we have presented new hardness results for the problem. We have
shown that the conflict-free vehicle routing with minimal makespan is hard
to find even on a path. For a problem variant with directed edges, we have
shown that the variant is hard to solve on tree networks.

Summarizing, we have presented a number of new theoretical results in a field
which has found only limited attention in the past from the combinatorial
optimization community. This is somewhat surprising in view of the large
application area that it relates to and also given the considerable attention
that the neighboring field of packet routing could attract. We hope that our
results contribute to an improved theoretical understanding of conflict-free

32 CHAPTER 4. CONCLUSION

vehicle routing.

There is potential for further improvement on the quality guarantees for
routing algorithms. A large gap remains between the approximation guar-
antees and the hardness results we could prove. For example, it remains
open whether a constant factor approximation exists, such as it is known for
packet routing [LMR94]. Also there remains a large gap between the theoret-
ical bounds and the performance desirable for applications. While the results
in this study make a statement on how approximation bounds and computa-
tion times of the algorithms scale with the size of the instances, it would be
interesting to understand how this quality versus computation trade-off looks
for concrete realistic-scale instances.

Part II

Conflict-free
Vehicle Routing

in Personal Rapid Transit

Chapter 5

Introduction

5.1 Personal Rapid Transit

Personal Rapid Transit (PRT) is a rather novel mode of public transportation,
where small automated vehicles, called pods, transport passengers on demand
on a unidirectional track network. Passengers can choose the destination of
the ride when entering the pod at a station. Then a central automatic system
guides the pod through the network to the desired destination. See Figure 5.1
for visualizations of the PRT concept.

Figure 5.1: Visualizations of Personal Rapid Transit. Left: Track junction
with pods. Right: PRT station. Both renderings are reproduced here by
courtesy of Ultra [ULT11].

The expected benefit from a PRT system for passengers is convenient non-
stop mobility that is predictable and without some of the drawbacks of mass
transportation. A passenger can travel alone if desired, can use the time of
the ride for working, does not depend on a timetable and does not need to
change lines to reach his destination. PRT is intended to complement public

36 CHAPTER 5. INTRODUCTION

transportation systems, such as subways and trains, by offering a quick means
of transportation for short distances and for accessing the mass transportation
hubs, thus addressing the well-known last mile problem. PRT reduces the time
spent for walking, waiting and transfers which are often high when using
conventional public transit systems for short trips [ATR03, Low03]. The goal
of PRT is hence to improve public transportation and increase its share, also
by providing an alternative to the automobile.

In addition, PRT is expected to provide considerable benefits to the public.
The electricity powered system is claimed to be highly energy-efficient as it
runs on demand, is light-weight and can profit from the high efficiency factor
of electric propulsion [ULT11]. It has the potential to reduce greenhouse gas
emissions, depending on the source of the electric energy. Citizens with access
to PRT do not only profit from fast and on-demand transportation, they also
enjoy a high quality of life as PRT operation emits little noise and pollutants.
A PRT system can contribute to the vision of a walkable city with a high
comfort of living, by reducing or banning car traffic from the city and thereby
gaining space for pedestrians and green parks [KKH08]. Besides, a non-
congested and hence predictable transportation system can be an important
economic factor and increase accessibility and the prosperity of certain areas.
PRT has been found to be cost-effective in a number of case studies [BT05,
TA03]. An important factor here is that the tracks are light-weight (compared
to railway or subway tracks) and cause low installation and infrastructure
costs [CH07]. Track layout is adaptive to existing infrastructure, can be built
at ground level or elevated, and stations can be integrated into buildings to
guarantee direct access.

Even though the general idea of PRT is several decades old, only recently
first projects were deployed and many more entered planning and decision
stages. For early sources on PRT, we refer to the books of Fichter [Fic64]
and Irving et al. [IBOB77]. Already at the time, governmental institutions
have shown interest in PRT. In 1968, PRT appears in a study of the United
States Department of Housing and Urban Development as a fast, safe and
non-polluting alternative for city transportation [HUD68].

PRT has then disappeared from most agendas for several decades. Since re-
cently, alternative transportation modes have been reevaluated in view of the
increasing challenges of congested roads, greenhouse gas (GHG) emissions and
the limited supply of oil. To emphasize the size of the challenge, we quote the
White Paper of the European Commission for Mobility and Transport [EU11].

Commission analysis shows that while deeper cuts can be achieved
in other sectors of the economy, a reduction of at least 60% of

5.1. PERSONAL RAPID TRANSIT 37

GHGs by 2050 with respect to 1990 is required from the transport
sector, which is a significant and still growing source of GHGs. By
2030, the goal for transport will be to reduce GHG emissions to
around 20% below their 2008 level.

A second recent study commissioned by the European Commission Direc-
torate [WH10] lists PRT as an energy-efficient mode for local transportation,
particularly well suited as a local circulator at airports, shopping malls, uni-
versity campuses, tourist attractions and business parks. The Swedish Min-
istry of Enterprise Energy and Communications has commissioned a study
on the potential of introducing PRT in Swedish cities. The following quote is
from their 2009 report [SWE09].

Podcars are a possible solution to certain transport problems that
are difficult to manage with existing traffic solutions. They can be
a sustainable alternative to private car transport. However, pod-
cars have only been tested on a small scale and there are no com-
mercial systems currently in operation. Studies do show, however,
that this type of transport system can be profitable both from a
societal and firm perspective. An appropriate way of determining
how well podcars could function would be to test one or several
pioneer systems under real-life operation. Full-scale pioneer tracks
would give decision makers, planners and suppliers the necessary
experience to further develop podcar technology.

It accounts for the frequent opinion that PRT is on one hand a promising
transportation alternative for solving the increasingly urgent congestion and
pollution issues. On the other hand, decision makers are cautious as PRT
has not yet shown whether it will be able to keep its promises in terms of
attractivity, performance, reliability and cost-effectiveness. The first larger
PRT systems will have to prove that they can fulfill the high expectations
that have been raised. The further development of the transportation mode
will depend heavily on the experiences made with pioneering systems.

A comprehensive report [CH07] commissioned by the state of New Jersey,
United States, lists the following potential applications of PRT.

• Areas with high demand for local circulation
• Areas with the potential to extend the reach of nearby conventional

public transportation
• Areas with congested local circulation and constrained parking

38 CHAPTER 5. INTRODUCTION

Furthermore, they see the opportunity for PRT networks to grow. We cite
from [CH07].

Initial PRT system implementations could potentially be viable
in the areas previously described such as regional centers, cam-
puses, congested locations and as extensions to conventional pub-
lic transportation system station. PRT could also be expected
to be viable as a connector of these initial systems, providing an
integrated public transportation network across a region, elimi-
nating the need to transfer between modes or within the mode.
As a scalable network system, PRT could initially be deployed to
support the locations with the highest need and then expand to
connect these initial deployments as demand and economic condi-
tions allow.

Currently, as of the end of year 2011, there are two PRT systems in operation,
both of small size albeit with option for future expansion. One is located
in the zero-emission city of Masdar, United Arab Emirates, connecting two
stations [2ge11]. The second is built at London’s Heathrow Airport, replacing
a bus line between Terminal 5 and a car parking. It currently consists of 3
stations and 21 pods on 3.8 kilometers of track [ULT11].

A number of projects are in planning or decision phases. Amritsar, India,
has approved a PRT system for transferring visitors between bus and railway
terminals and the Golden Temple. The planned network consists of 3.3 km
track and 200 pods transferring up to 100’000 passengers a day [ULT11]. In
San Jose, USA, the plan is to connect the airport to a light rail station, office
parks, a university and sports facilities [SAN09]. In Ithaca, USA, a feasibility
study for a PRT network connecting downtown with the college campuses has
been commissioned [ITH10]. The latter proposed system includes 26 stations,
9 miles of track and 350 pods. In Daventry, UK, PRT is the leading candi-
date technology for a new transportation system enabling the cities planned
expansion [SKM08]. Notable is also a project for the city of Gurgaon, India,
where a city-wide PRT system consisting of 143 stations, 105 kilometers of
track and 3000 pods is being discussed [Suk11, Cha11].

PRT systems are promoted and produced by a number of distributors, each
having its unique features. A consensus of properties common to all PRT sys-
tems was established by the Advanced Transit Association (ATRA) [ATR89].
We reproduce the recently republished definition from [ATR11]:

1. Direct origin-to-destination service with no need to transfer or stop at
intermediate stations.

5.2. CONTROL CHALLENGES IN PRT 39

2. Small vehicles available for the exclusive use of an individual or small
group traveling together by choice.

3. Service available on demand by the user rather than on fixed schedules.
4. Fully automated vehicles (no human drivers) which can be available for

use 24 hours a day, 7 days a week.
5. Vehicles captive to a guideway that is reserved for their exclusive use.
6. Small (narrow and light) guideways are usually elevated but also can

be at or near ground level or underground.
7. Vehicles able to use all guideways and stations on a fully connected PRT

network.

5.2 Control Challenges in PRT

In the prospect of larger PRT systems, the question naturally arises on how
much capacity such a system can have, how the available capacity is best
utilized, and finally, how a system needs to be designed such that capacity is
sufficient for making PRT an efficient and attractive transportation scheme.

The fact that all operations are controlled centrally is a major advantage,
e.g. compared to road traffic, and opens up exciting possibilities for opti-
mized resource utilization. However, optimized central control comes with
two major challenges. First, it involves combinatorial optimization problems
that are often computationally hard. Second, control decisions for PRT must
be taken in real-time, to avoid that the system stands idle while waiting for
instructions.

We list in the following a number of control tasks in PRT together with
references to research publications for each. Each of the tasks also represents
a potential capacity bottleneck of a PRT system, that can lead to waiting
passengers and hence a decreased level of service in case the system layout
does not contain enough resources and/or the available resources are not used
to full potential.

Routing Central control guides the pods through the track network to the
respective destinations. As throughput of each line segment and junc-
tion is limited, the challenge is to find routes and schedules for each of
the pods such that the network resources are used efficiently and passen-
gers reach their destinations as early as possible. There may be several
alternative routes leading to the destination. The best route choice is
dependent on the traffic on the network. In particular, the shortest

40 CHAPTER 5. INTRODUCTION

route may not always be the optimal choice, e.g., when a longer route
is less congested and hence available at an earlier time. For a review on
PRT routing literature we refer the reader to the next section.

Empty vehicle redistribution As transit demand between stations is usu-
ally not balanced, idle pods need to be redistributed. The objective is
to minimize the time passengers spend waiting for pods. Empty vehicle
redistribution can be done in a reactive way (idle pods are moved only
on request) or in a proactive way (idle pods are moved in anticipation
of future requests). Depending on the transit demand, additional pods
need to be taken out of the vehicle depot or excess pods need to be
placed into storage. For literature on empty vehicle redistribution, we
refer to [LMHW10, LM11, And03, ZJM09].

Station handling PRT stations consist of several berths for boarding and
unboarding of passengers. A parking queue with idle pods allows to re-
spond quickly to new transit requests. A challenge is to manage station
capacity such that arriving pods have space for docking but also enough
empty pods are ready for new demand.

Ride sharing Some sources suggest systems for grouping passengers with
the same destination and to promote ride sharing (comparable to ad-
vanced elevator systems), and thereby increasing the overall passenger
throughput of the system [Joh05, LMHD09, And09].

Battery recharging and maintenance Maintenance of the pods and re-
charging the batteries (for battery-driven systems) is done at a special
maintenance station. Periodical stops need to be planned for each of
the pods, after a number of kilometers traveled or when a certain bat-
tery level is reached. Maintenance management ensures that enough
functional vehicles are ready at every point in time. For a discussion of
maintenance topics, we refer to [MS11].

While each of the mentioned problems is in itself challenging, an additional
difficulty arises from the fact that demand is not known in advance and that
all decisions need to be made in real-time. Furthermore, the solutions of each
of the problems has effect on the others. A number of simulation studies
([MS11, CG11, THA+07] and references therein) have been performed to
investigate PRT systems as a whole.

Other research focuses on one of the challenges in particular. Such research
helps to understand one of the components in depth by developing specialized

5.3. ROUTING LITERATURE 41

algorithms and by deriving theoretical capacity limits. Such research, even
if making simplifying assumptions about the interaction with the remaining
system, can in the end contribute to improved overall PRT solutions. Such an
approach was followed by Lees-Miller [LM11] who investigated empty vehicle
redistribution in depth. Also the present work focuses on one of the mentioned
challenges in particular, which is the congestion-free routing in a PRT system.

5.3 Routing Literature

PRT routing literature differentiates between synchronous and asynchronous
routing approaches. In synchronous approaches, the entire route is planned
ahead before pods leave the origin station. After a routing for a pod is
planned, the necessary track resources get reserved, thereby guaranteeing a
conflict-free operation. Such approaches are sometimes also called clear-path
control. The routings are computed in a central unit which also maintains
the reservation tables for the track resources.

On the other hand, asynchronous approaches take their routing decisions
based on local information. The name stems from the idea that the pods
do not need to have a synchronized clock. There is no coordinated plan and
each pod takes its own routing decisions. Pods only communicate with a local
controller responsible for a junction or a track region. Routing decisions hence
need to be taken based on local information such as the distance to the vehicle
ahead. Such approaches have been promoted in [KM75, IBOB77, And98].

The synchronous routing algorithms suggested within the PRT community
range back to Wade [Wad73]. Their approach finds the earliest conflict-free
departure time using a shortest-path algorithm, assuming that the pods travel
at nominal speed along some (shortest) route. Somewhat later, Rubin [Rub75]
suggested an algorithm also taking alternative routes into account. Irving
et al. [IBOB77] introduced a load balancing algorithm which chooses routes
according to shortest paths with a penalty for congested roads. After these
early papers, little has been published on synchronous PRT routing, as it
was considered inflexible, suboptimal and computationally demanding. The
reservations against synchronous control could be refuted in the meantime,
see e.g. [Xit08]. In particular, the data transfer is manageable with current
communication technology. The provider of the pioneering PRT system at
Heathrow airport uses synchronous routing with a central controller [ULT09].
The advantage of synchronous control is that global information can be used
to employ sophisticated algorithms for coordinated routing.

42 CHAPTER 5. INTRODUCTION

Related routing literature also comes from neighboring research fields such as
Automated Guided Vehicle (AGV) routing or packet routing. The arguably
most common routing paradigm for online routing problems of similar flavors
is a sequential scheme, which we call sequential routing. Here, whenever a new
request appears, a quickest way to fulfill this request is determined, without
creating conflicts with already fixed routes for earlier requests. Once a routing
for a particular request is fixed, it will not be changed later. All synchronous
routing schemes for PRT discussed above are of this type. Sequential routing
schemes proposed for AGV systems can be found in [KT91, MKGS05]. They
allow for waiting in transit, which means that vehicles can be delayed (slowed
down from the nominal speed) in case this leads to earlier arrival time. Also,
they allow for non-shortest routes, again if the detour delay can be compen-
sated by less departure and/or transit delays. Finding the best route and
schedule for a pod in these schemes corresponds to performing a variant of
a shortest-path algorithm. Sequential routings can hence be computed effi-
ciently and perform well in a variety of settings [Ste08, RVVN90].

There has been some work on AGV routing approaches deciding on all re-
quests concurrently. This is in contrast to the sequential schemes, where one
request is routed after the other. Stenzel [Ste08] suggests a concurrent ap-
proach for finding routes such that the congestion is balanced. Oellrich [Oel08]
uses an integer multicommodity flow formulation on a time-expanded graph
to compute concurrent routes and schedules. In the latter work, it is assumed
that all requests are known from the beginning.

5.4 Outline

In this thesis, we focus on comparing and improving routing approaches as
well as on understanding the capacity of a PRT track network. We look
at routing in PRT from a viewpoint in combinatorial optimization and in-
vestigate the benefit that can be obtained by applying methods from that
field. Central to this analysis will be the trade-off of performance gain ver-
sus computational effort. The question is whether more sophisticated routing
schemes can outperform the known schemes significantly. Furthermore, we
investigate what capacity limitations PRT systems can have with respect to
the throughput of the track network.

We introduce an adaptive routing approach that reoptimizes the routing for all
open requests at each timestep. This is in contrast to the known approaches
where the routing for the pods is fixed at time of appearance. The policy

5.4. OUTLINE 43

of never changing a fixed route in the future is a restriction that has its
price. Pods routed later might have to take large detours, even though the
slight rerouting of previously routed pods could free the desired tracks for new
requests. In this thesis, we are interested in understanding and addressing this
potential drawback. The presented adaptive approach is based on a fractional
multicommodity flow formulation and takes all open requests into account
concurrently. It assigns routes and priorities with the objective of minimizing
the average delay. This is in contrast to the sequential approaches in which
each request chooses its routing in a greedy way. As the focus is on advanced
coordination of the pods, we assume the existence of a central dispatching
unit with knowledge of and influence to all pods on the system.

In Chapter 6 of this thesis we introduce the model framework. It specifies
and explains the view on PRT systems underlying the following chapters. The
focus will be clearly on the routing aspects of PRT while simplifying other
aspects thereby keeping the model concise.

In Chapter 7 we discuss a measure for network capacity, the maximal through-
put that can be achieved on a given track network. This capacity depends
on a number of parameters such as the travel velocity and the safety dis-
tance between pods. However, these parameters are system-specific and their
discussion is outside the scope of this thesis. We will therefore suggest a
parameter-independent measure for network capacity which is relative to the
capacity of a single track line.

Chapter 8 introduces a number of tools and preliminary observations helpful
for the further discussions of routing algorithms. In Section 8.1, routing
feasibility and deadlocks are discussed. In Section 8.2, time-expanded graphs
are introduced as a way to account for the time dimension in routing. A path
in the time-expanded graph contains at the same time information about
route choice as well as about the schedule followed along the route. On
the basis of the time expansions, PRT routing is reformulated as an integer
multicommodity flow over time problem in Section 8.3.

The natural question arises why one does not solve the integer multicommod-
ity flow problem from Section 8.3, which is a standard problem in combinato-
rial optimization, to optimality? The answer is given in Chapter 9, where it
is shown that the optimal solution of the routing problem is NP-hard to find.

In Chapter 10 we discuss the algorithms which will be compared in the com-
putational analysis chapter. The first algorithm (Section 10.1) is the standard
sequential algorithm as it is common in AGV routing. To our knowledge, this
algorithm or a variant thereof is also implemented by PRT providers and
several of the available PRT system simulators. The second algorithm (Sec-

44 CHAPTER 5. INTRODUCTION

tion 10.2) is a representative of the class of asynchronous schemes. It uses
no planning ahead and coordination between pods is reduced to a minimum.
In Section 10.3 we then present the new concurrent and adaptive algorithm,
which is based on rounding of the multicommodity flow relaxation.

Chapter 11 presents the computational analysis. We use two base scenarios,
one artificial and one received from a PRT system provider. The chapter
contains a series of computational experiments which help to understand the
strengths and weaknesses of each of the routing schemes.

In Chapter 12 we will conclude with a summary and with lessons that can be
learned from this project for the design of new PRT systems.

Chapter 6

Routing Model

We derive in this chapter the formal model framework which will be the basis
for the considerations on PRT systems in the following chapters. Aspect by
aspect, we discuss the modelling of the PRT network (Section 6.1) and the
pods and travel requests (6.2), the time discretization in our model (6.3) and
finally the modelling aspects related to the online nature of PRT (Sections 6.4
- 6.6). At the end of the chapter, we give a compact version of the problem
formulation in Section 6.7.

6.1 Network

A PRT track network typically consists of a number of interconnected directed
loops. Directed means that the tracks are one-way, each having a designated
driving direction. The pods run on the track network with a certain nominal
speed corresponding to the maximum allowed velocity. This velocity can vary
for different sections of the track. For safety, the pods need to keep a minimal
temporal separation, the headway time, such that breaking is possible even in
unexpected emergency situations. We assume the headway time to be given
and is the same everywhere on the network. The minimal safety distance, the
headway distance, then depends on the respective speed.

We use a discretized representation of the track network. For this purpose, the
tracks are divided into segments where the length of one segment corresponds
to the headway distance. The partitioning is done such that the speed limit
is constant inside each segment and such that junctions are located on the
border between segments. We assume that a partitioning of the tracks with
the above properties, which is a good enough approximation to the reality,
can be found. Note that, in such a partitioning, the time needed to traverse
one segment at nominal speed equals one headway time.

The discretized network can be represented by a directed graph G = (V,A)

46 CHAPTER 6. ROUTING MODEL

with node set V and arc set A. The nodes represent track segments and the
arcs define their neighboring relations. The orientation of the arcs defines the
traffic direction. We assume that G is strongly connected, i.e. that any node
can be reached from any other by a directed path. Furthermore, we require
that G is simple, i.e. there is at most one arc between any pair of nodes (no
parallel arcs and no cycles of length two). We use n = |V | and m = |A| to
refer to the sizes of the node and arc sets in the network graph.

Stations are located along the tracks, allowing passengers to access the tran-
sit system. PRT stations are designed such that parked pods do not disturb
the pods in transit. Pods which are in the station for loading or unloading
passengers, or waiting for new demand, are located on parking spaces in-
side the station. Pods in transit pass the station on a bypass track. Nodes
corresponding to track segments with a station are called terminal nodes.

6.2 Requests and Pods

PRT requests are of one of the following two types.

Passenger requests are initiated by passengers arriving at a station with
the intention of using PRT for transit. They choose a destination before
boarding.

Redistribution requests These requests are initiated by the vehicle redis-
tribution unit, which sends empty pods to stations with a (expected)
shortage.

As soon as a request is received, a central automated routing controller inte-
grates the request into the routing plan. Such a request can be issued either
by a passenger or by the vehicle redistribution unit. For the routing, we do
not make a difference of which of the two types the request is. Furthermore,
it is assumed that all pods are identical and that no pod-specific information
is needed for planning the trips. Pods are identified by the request they are
executing and requests correspond to the pods they are served by. We will
therefore use the notions of pods and requests interchangeably.

We make a rather strong assumption about the availability of empty pods.
Whenever a new request appears, we assume that there is an empty pod imme-
diately available. Differently stated, we assume that the vehicle redistribution
unit manages to avoid shortages. The main reason for this assumption is that

6.3. DISCRETE DYNAMICS AND CONFLICT NOTION 47

we are primarily interested in the problem of finding routes between origin-
destination pairs. The above assumption allows us to isolate this question
from other challenges interesting in their own right, such as the handling of
a possible shortage of pods, or the navigation of spare pods to places with
excess demand.

The necessary information for the controller are the origin and destination of
the requests. This is cast in the following notation. Let us denote the set
of all requests by Π. Each request π ∈ Π has an origin node sπ ∈ V and a
destination node tπ ∈ V \ {sπ}.

6.3 Discrete Dynamics and Conflict Notion

Let time be subdivided into discrete time units, such that each time unit has
the length of the given headway time. This choice is convenient as one time
unit is needed to cross one track segment or, stated in terms of the graph
representation of the network, to jump from one node to the next one. Each
pod is located on a node at each timestep. Between the timesteps, the pods
either move along an arc (in arc direction) to a neighboring node or wait at
the current node.

We introduce the following notions. A route for a pod π is a directed path
through G from sπ to tπ. Routes can be non-simple paths (in case of driv-
ing loops). A schedule defines the timetable by which a pod proceeds along
its route. We will later introduce dynamic paths to encode both route and
schedule simultaneously by specifying paths through a time-expanded net-
work. The notion of a routing is used for the assignment of both route and
schedule to one or several requests in Π.

A routing is said to be conflict-free if no two requests are in conflict. A
conflict occurs if two pods occupy the same node at the same time. For
directed graphs this implies that the simultaneous passage through an arc is
also forbidden. As a relaxation of the conflict definition at terminal nodes, we
assume that pods can only be conflicting while in transit, i.e., a pod cannot
cause a conflict before its departure time and after its arrival time. We call this
the parking assumption. The motivation for the parking assumption stems
from the fact that in typical PRT settings, the stations are on separate side
tracks, and thus do not interfere with the remaining network. As mentioned
before, we consider capacity handling inside each station to be a separate
traffic management problem.

48 CHAPTER 6. ROUTING MODEL

We would like to emphasize that the model for the dynamics is not restrictive
despite its discretisation and its simplicity. For this purpose, we remark that
vehicle trajectories stemming from a model with continuous time and space,
under reasonable assumptions, can be converted into a routing corresponding
to our model. To underline this, we sketch the conversion in Figure 6.1.

path

tim
e

headway distance

headway time

Figure 6.1: The figure shows how continuous trajectories can be transformed
into a discrete routing. The colored lines represent continuous trajectories
in time-space along a track line. They are separated horizontally by at least
the required headway distance. The grid represents the discretisation of both
space and time. For each cell row, the first cell touched by a trajectory is
colored with the respective color. The sequence of cells with the same color
now corresponds to a discrete and conflict-free routing according to our model.

In the other direction, a routing resulting from the discretized model can
in principle also be converted into trajectories in continuous time and space
with the same travel time. An important issue here is to find smooth tra-
jectories with accelerations adequate for the transport of persons. When a
pod is scheduled to wait for a number of time units, this preferably trans-
lates into a reduced velocity over several track segments rather than into a full
stop. The concrete choice of trajectories, however, depends on system-specific
parameters.

6.4. ONLINE ROUTING 49

6.4 Online Routing

Routing in PRT is an online optimization problem. Decisions need to be
taken in real-time and without knowledge of future events. We describe in
this section what routing decision need to be taken at which time, and what
information is available.

In order to capture the different time points in which passengers would like to
use PRT, we attribute a release time τπ ∈ {0, 1, . . . } to each request π ∈ Π.
It reflects the time when the pod is loaded with passengers and ready to start
the journey through the network. Pod π can leave its origin node only after
timestep τπ. This is also the time when the existence of pod π gets revealed to
the controller, together with the information about its origin and destination.

Whenever new requests get released, the controller needs to integrate the new
demand into the routing plan and hence take new routing decisions. When
doing this, the online algorithm has the following information available.

Network graph. The network topology is available in the form of graph
G = (V,A).

Current positions and destinations of all open requests. A request is
open if it has been released but has not yet arrived at the destination.
The current positions and destinations are necessary information for
routing. In addition, for pods that are currently located at the origin,
the information is needed whether the pod is still parked or in transit.
The status is technically relevant as only pods in transit are relevant
for conflict-avoidance because of the parking assumption.

(Optional) Last computed routing. This is an optional input and will be
useful for some of the algorithms. In case a (partial) routing has already
been computed at an earlier execution of the algorithm, it can be used
as a warm start, reducing the computation load for current execution.

A second optional input which can in principle be useful to enhance routing
algorithms is information on expected future traffic. In case a probability
distribution of the expected future request occurrences is available, this fore-
cast information can be used to take into account expected future effects of
current decisions. The routing algorithms presented in this work do not make
use of such information. Nonetheless will we discuss an extension for forecast
information to one of the algorithms (see Section 10.3.3).

50 CHAPTER 6. ROUTING MODEL

The output of the online algorithm are routing decisions for the next timestep
for all open requests: the decision can be to either wait on the current node
or to move to a neighboring node. This is the minimal information needed
by the pods to continue their journeys. It is assumed in this setting that
the algorithms are real-time, i.e. that the computations can be performed
almost instantaneously. We will discuss the validity of this assumption in
Section 11.1.3 of the computational analysis.

Optional additional output is useful if the routing algorithm plans the routing
for more than one timestep into the future. The additional information can
then be used at the next round by using the old solution as a starting point
and hence reducing the workload. Our model allows for routing plans to be
adapted until they are implemented. In other words, only the part of the
routing in the past is fixed.

PRT operation is intended to be non-stop, 24 hours a day and throughout the
year. This corresponds in principle to an infinite horizon problem, with in-
finitely many requests and infinitely many executions of the online algorithm.
Here, we restrict the time horizon in order to keep things finite. A natural
choice is a horizon corresponding to an operation time of 24 hours. Setting
start and end of the operation period into the late night hours, when one
expects little traffic in the system and the effects introduced by the horizon
boundaries are small, is a natural choice.

Technically, two different time horizons are needed. T is called the release
horizon. It is distinguished from the operation horizon T ′. New requests are
accepted up to the release horizon. The operation horizon T ′ > T needs to
be large enough such that all requests released within [0, T] can be finished
until time T ′ (The shortcut notation [α, β] represents the integer interval
{α, α+ 1, . . . , β} and will be used throughout the thesis).

6.5 Objective Function

In order to optimize routings and to compare the performance of routing
algorithms, we need to evaluate the quality of a solution. We first introduce
appropriate quality measures before discussing the online optimization in the
next section. For this purpose, let Π be the set of all requests that are released
at timesteps [0, T] .

Arrival time The arrival time arrπ naturally refers to the timestep in which
request π reaches its destination node.

6.5. OBJECTIVE FUNCTION 51

Travel time The travel time traπ denotes the length of the time span be-
tween release and arrival time, i.e.

traπ = arrπ − τπ.

The travel time hence includes driving times and waiting both at the
origin and during transit.

Delay Finally, the delay delπ refers to the difference between the arrival
time in the given routing and the arrival time in the best case, i.e. when
request π departs immediately at τπ and can travel the shortest path
of length lπ without any waiting. The delay is derived by the following
formula.

delπ = arrπ − (τπ + lπ) = traπ − lπ
Delays can be divided into the three categories departure delay, transit
delay and detour delay. Departure delays occur when a pod cannot
depart from the origin immediately at the release time. Transit delays
occur when a pod needs to wait on its route between origin and des-
tination. Detour delays are caused by driving a route which is longer
than the shortest possible route.

The quantities above clearly depend on the routing decisions on which they
are evaluated. For readability, we refrain from adding an additional index and
will make sure that the underlying routing solution is clear from the context.

In principle, the goal is to find a routing in which the passengers experience as
little delay as possible. However, there exist trade-offs between the delays of
the pods; prioritizing one can lead to extra delays for others. In order to define
a system optimum, we measure the overall quality of a routing by simply
averaging over the delays of all requests. The objective reads as min 1/|Π| ·∑
π∈Π delπ where the minimization is over the set of all routings fulfilling the

requests in Π. An equivalent objective, up to the non-influenceable factor |Π|,
is to minimize the sum of the delays.

min
∑

π∈Π

delπ (6.1)

Again equivalent, up to an additive constant, is to minimize the sum of the
arrival times. This is shown in the following formula, where the last two terms
cannot be influenced by routing decisions.

52 CHAPTER 6. ROUTING MODEL

∑

π∈Π

arrπ =
∑

π∈Π

delπ +
∑

π∈Π

τπ +
∑

π∈Π

lπ

The average-delay objective has the drawback that it returns solutions that
are good in average but may be unfortunate for some requests which might
have particularly long delays even in the optimal solution. We use the average-
delay objective as the primary objective for this thesis as a natural and simple
choice.

6.6 Online Optimization

How can the objective 6.1 be used by the online controller in order to make
good routing decision? It can certainly be used at the end of the day (or
operation horizon) to measure the performance of the routing solution in
retrospective. It can also be used to compute an a-posteriori optimal solution
in retrospective, when all requests are known. It is certainly a lower bound
to any solution achievable by online algorithms, as it represents the system
optimum in case all demands were known from the beginning.

However, at the time the online controller takes the routing decisions, the
requests to appear in the future are yet unknown. As it is not clear what
other requests will later interfere with the currently known requests, there
is no means of deciding at any time before the end of the release horizon
which routing is optimal. The terms of objective function 6.1 are only partly
revealed and the routing with minimal average delay is at that time not
well defined. This problem can be overcome by replacing the original offline
objective function with alternative online objectives.

One choice for an online objective is to use objective 6.1 without the unknown
terms. We refer to this approach as snapshot optimization, as it uses the
information available at the current moment and makes no assumptions about
the future. Decomposing the sum in objective 6.1 into sums for the past
requests already arrived at the destination Πp, the open requests Πo and the
future requests Πf yields

∑

π∈Π

delπ =
∑

π∈Πp

delπ +
∑

π∈Πo

delπ +
∑

π∈Πf

delπ .

As the requests Πf are unknown to the online controller and the requests Πp

6.7. MODEL STATEMENT 53

cannot be influenced anymore, the snapshot objective reduces to

min
∑

π∈Πo

delπ (6.2)

over the set of all routings which transport the open requests from the current
positions to the destinations.

A way of also taking future requests into account is to add a term for the
expected future delays. The additional term incorporates expected effects of
the current decisions onto future delays into the objective. It can be beneficial,
for example, to route an open request with some extra delay if it is expected
that several future requests will save delays in turn. In case the expected
future demand is known, one can add a term for the expected future delays
to the objective function. However, it is not straight-forward how to compute
the effects of current decisions onto delays of future requests. As an extension
to the flow routing algorithm, we will in Section 10.3.3 discuss one possibility
how the effects of expected future traffic can be taken into account.

6.7 Model Statement

The presented model for PRT routing will be the basis for all following sec-
tions. We refer to the problem as to the Personal Rapid Transit Routing Prob-
lem (PRTRP). It is summarized here in compact form. Recall that the short-
cut notation [α, β] is used to represent the integer interval {α, α+ 1, . . . , β}.

Personal Rapid Transit Routing Problem (PRTRP).

• Given is a directed graph G = (V,A) and a release horizon T .

• A set of requests (pods) Π needs to be routed, each request π ∈ Π having
an origin-destination pair (sπ, tπ) ∈

(
V
2

)
and a release time τπ ∈ [0, T].

In an online manner, the existence of the requests gets revealed at the
respective release time.

• A discretized time setting is considered with pods moving from vertex
to vertex. At each timestep, every pod can either stay on its current
position or move to a neighboring vertex (in arc direction).

• The departure time depπ is the time before the first move of pod π and
the arrival time arrπ is the time right after the last move. Pod π is said
to be in transit in the time span [depπ, arrπ]. A conflict occurs if two

54 CHAPTER 6. ROUTING MODEL

pods are located on the same node at the same time and both are in
transit.

• The goal is to find a conflict-free routing minimizing the sum of the
arrival times.

The PRTRP is closely connected to the CFVRP presented in Part I of the dis-
sertation. The main differences are the directed graph, the online nature and
the average-delay objective of the PRTRP. Also strongly related is the packet
routing problem, where nodes represent network routers, arcs are transmis-
sion channels and requests correspond to data communications. In contrast
to PRTRP and CFVRP, packet routing research defines edge conflicts, due to
limited transmission bandwidth, whereas nodes are often assumed to have in-
finite capacity. The packet routing setting is hence a relaxation of our setting
where node conflicts (and arc conflicts) are forbidden. Further, the PRTRP
can be interpreted as an integer variant of the multicommodity flow over time
problem with limited storage.

Chapter 7

Network Capacity

The track network is a potential bottleneck of a PRT system. In case transit
demand exceeds the amount of traffic that can be handled by the network,
some of the requests need to be backlogged and waiting times occur. There-
fore, the achievable throughput is an important quantity for the design of
PRT systems.

In the first section of this this chapter, we introduce a notion for the amount
of traffic that a network can cope with and call it the network capacity. In
the second section we introduce a relaxed network capacity, which can be
computed efficiently and which is a theoretical upper bound on the network
capacity. It will be useful for benchmarking the routing algorithms in the
computational study (Chapter 11).

7.1 Definition

The notion of a line capacity has been discussed in detail within the PRT
community. It refers to the maximum throughput over a track segment. It
is proportional to the inverse of the headway time and therefore dependent
on several design parameters such as safety policy, nominal speed and the
brake actuation time [SM07]. Typical PRT system proposals use nominal
speeds of 24–48 km/h with headway times of 1–5 seconds [And09, Con12].
The resulting line capacities vary between 720 and 3600 pods per hour. In
our model, these system-specific parameters are hidden in the length of one
timestep (which equals one headway time); line capacity always equals one
request per timestep, as at any node, the maximum throughput is one pod
per timestep.

We extend the notion of capacity from a single track line to a track net-
work. It now refers to the maximum throughput of an entire network topol-
ogy. For this, we assume to know how the traffic is distributed over the

56 CHAPTER 7. NETWORK CAPACITY

origin-destination combinations. We call such a distribution a demand pat-
tern. Then, the question is how much traffic, for the given demand pattern,
can be supported by the network?

More formally, we assume that the demand pattern is given in form of a
demand matrix D = {du,v}u,v∈V ′ , where V ′ ⊂ V is the set of terminal nodes.
The value of du,v ≥ 0 represents the demand from terminal node u to terminal
node v. The demand matrix is normalized in the sense that

∑
u,v∈V ′ du,v = 1,

the values du,v are hence relative to the total demand. We assume zero round
trip demands, dv,v = 0 for all v ∈ V ′. The demands contain all trips on the
network, including passenger transit and empty vehicle redistribution.

The network capacity depends on the demand pattern, as illustrated in Fig-
ure 7.1. It is measured in pods per timestep and the quantity can equivalently
be understood to be given in multiples of the line capacity.

A B C D

Figure 7.1: Maximum throughput on a line graph for two different demand
patterns given in blue and red. Blue: dA,B = dC,D = 0.5, other demands
are zero. In this case, two requests can be served per timestep, one from A to
B and one from C to D. The network capacity is 2, corresponding to double
line capacity. Red: dA,C = dB,D = 0.5, other demands are zero. There is a
bottleneck between B and C where only one pod can pass per timestep. The
network capacity is hence 1, corresponding to single line capacity.

The capacity is the largest demand the network can cope with. If this demand
is exceeded, more new requests enter the system than what it is able to
process. In such a case, the number of open requests increases over time. The
capacity hence corresponds to the largest release rate, for a given network
and a demand matrix, such that the arrival rate can match the release rate
and the number of open requests does not necessarily increase over time. We
now formally define the capacity notion.

Definition 7.1. Given is a graph G and a demand matrix D. Assume that an
inexhaustible reserve of requests is ready for each origin-destination pair. Let

7.2. RELAXED NETWORK CAPACITY 57

[0, T] be an arbitrarily large time span. For a conflict-free routing solution,
let au,v denote the average number of arrivals per timestep in the time span
[0, T] for pods traveling from u to v. The network capacity ϕmax(G,D) is the
largest ϕ for which there exists a routing with arrival rate au,v ≥ ϕ · du,v for
all u, v ∈ V ′ and for some horizon T .

For demands below capacity, there hence exists a routing such that the arrival
rate matches the release rate and the number of open requests is stable or
decreases. On the other hand, for demands above capacity, it is clear that a
part of the released requests needs to be backlogged. If the situation persists,
the number of such backlogged request increases together with the delays.

7.2 Relaxed Network Capacity

We discuss here a relaxation of the capacity ϕmax(G,D). The relaxation is a
theoretical upper bound to the network capacity and has the advantage that
it can be computed efficiently.

The relaxation is based on a network flow formulation. One aims to send
as much flow as possible through graph G, such that the flow is distributed
among origin-destination pairs as given by demand matrix D. The flows
thereby represent the average traffic rates in pods per timestep.

The flow formulation is given in (7.1). It is an LP of maximum concurrent
flow type. Let Pu,v denote the set of all directed paths from u to v and let
P be the union of all paths for all origin-destination pairs, P = ∪u,v∈V ′Pu,v.
Furthermore, let xp be the variables for the flow amount sent along path p ∈
P . Then, constraints 7.1b assert that the flows are distributed between the
origin-destination pairs such as given by demand matrix D. Constraints 7.1c
enforce that no more than a total of one unit of flow passes through a node.

Maximize ϕ, subject to (7.1a)

∑

p∈Pu,v

xp ≥ ϕ · du,v for all u, v ∈ V ′ (7.1b)

∑

p∈P :w∈p
xp ≤ 1 for all w ∈ V (7.1c)

xp ≥ 0 for all p ∈ P (7.1d)

58 CHAPTER 7. NETWORK CAPACITY

Theorem 7.2 proves that the optimal solution to LP 7.1 indeed provides an
upper bound on capacity.

Theorem 7.2. The optimal objective value ϕ(G,D) of LP 7.1 is an upper
bound on the capacity ϕmax(G,D).

Proof. If one assumed, for the sake of contradiction, that there existed a
routing with arrival rate au,v > ϕ(G,D) du,v for all u, v ∈ V ′ over some
time span [0, T], then one could construct a solution to LP 7.1 out of the
average traffic rates from the routing, with an objective value larger than
ϕ. The existence of such a routing would hence contradict the optimality of
ϕ(G,D).

The LP in formulation 7.1 contains a possibly exponentially large set of path-
flow variables. This problem can be overcome by transforming it into en
equivalent arc-flow formulation containing one variable per arc and origin-
destination pair. The transformed LP has polynomial size and can be solved
efficiently using LP algorithms. Alternatively, the use of a column generation
approach (see e.g. [AMO93]) or an approximate solution scheme (e.g. [GK98])
may be beneficial for large problems.

In the computational studies in Chapter 11 we will observe that the relaxed
capacity is rather close to the achievable throughput in all tested scenarios.
These observations give evidence that the relaxed capacity is a quantity which
is not only useful as an upper bound to the network capacity but also as an
estimate for the operational throughput.

Chapter 8

Routing Preliminaries

8.1 Feasibility

An important issue for transportation systems on guideways is deadlock avoid-
ance. A deadlock is a constellation of pods and corresponding requests such
that it is not anymore possible to route all pods to their destinations since
pods on the tracks block each other.

Due to the parking assumption there always exists a feasible strategy to route
the pods to their destinations: one could simply serve the requests one-by-one,
thus only having a single pod on the tracks at any time, while the pods for
all other open requests are waiting at the corresponding start points. How-
ever, the parking assumption (at the destinations) implies something much
stronger, namely that it is impossible to create deadlocks, no matter how one
routes the pods.

Theorem 8.1. No deadlocks are possible in the suggested PRT model, i.e.,
for any time τ , any set of open requests and position of pods serving the open
requests, it is possible to fulfill all requests.

Proof. To show that all current and future requests can be served, it is suf-
ficient to show that all requests in transit can be served, since one can wait
with serving non-started and future requests until the ones in transit are
completed, and then use e.g. a simple serial one-by-one routing strategy as
mentioned above. Hence, let Π′ be the set of requests in transit, and for
π ∈ Π′ let vπ ∈ V be the current position of pod π. We prove the theorem
by showing that during the next timestep, the pods can be routed such that
they reach positions v′π ∈ V for π ∈ Π′ satisfying

∑

π∈Π′

l(v′π, tπ) <
∑

π∈Π′

l(vπ, tπ), (8.1)

60 CHAPTER 8. ROUTING PRELIMINARIES

where l(va, vb) stands for the shortest path length from va to vb. In other
words, the inequality requires a strict decrease in the total distance of the
pods to their destinations to hold. For each π ∈ Π′ we fix an arbitrary arc aπ
outgoing of vπ that would bring pod π closer to its destination. Recall that
G is strongly connected by model assumption and that such an arc therefore
exists. Let A′ = {aπ | π ∈ Π′}. Consider the subgraph (V,A′) of G. In
(V,A′) each vertex has at most one outgoing arc, since each vertex contains
at most one pod. If A′ contains a directed cycle C, then we can move each
pod π located on a vertex of C along its arc aπ. All other pods stay on their
current positions. This clearly does not create a conflict and fulfills (8.1).
Otherwise, if (V,A′) does not contain any directed cycle, then there exists
at least one arc aπ ∈ A′ whose head vertex is not occupied by a pod. The
corresponding pod π can be moved along aπ without conflict, bringing it
closer to its destination.

This result strongly relies on the parking assumption. Without this assump-
tion, it is much more involved to decide whether it is possible to bring all vehi-
cles on the network to their destinations. For results on the feasibility problem
without the parking assumption, we refer to the work of Werren [Wer10].

8.2 Time Expansion

The time expanded graph is an inflated version of the network graph with
encoded time information. Such networks have been suggested already by
Ford and Fulkerson [FF58, FF62] to solve dynamic flow problems. We intro-
duce the time expansion largely following the notation in [FS06] with some
adaptations for our model.

The time expansion of G = (V,A) is denoted by G = (V ,A). The node set
V is obtained by creating T + 1 copies of V , where the ith copy is labeled
Vi for i ∈ [0, T]. The copy of node v in Vi is denoted by vi. Each such
node encodes a time-space combination. The arc set of the time expansion
is created by introducing arcs corresponding to the allowed transitions in
time-space. Waiting arcs correspond to the possibility of waiting on a node.
Waiting arcs (vi, vi+1) are introduced for each v ∈ G and i ∈ [0, T−1]. Transit
arcs correspond to driving through the network. For every arc (u, v) ∈ A and
every i ∈ [0, T−1] there is an arc (ui, vi+1) in A. As the time horizon T , we use
here the operation horizon needed to route all requests to their destinations.
The construction is illustrated in Figure 8.1.

8.2. TIME EXPANSION 61

Additionally, we introduce an origin and a destination node for each request.
These terminal nodes are needed to model the parking assumption. Before
leaving the origin station, pod π is parked on its origin node sπ and after
arrival it parks on the destination node tπ. The origin node is connected to
the expanded graph by departure arcs (sπ, sπ,i) for every π ∈ Π and i ∈ [τπ, T],
where sπ,i is the ith copy of the departure node of π. Similarly, the arrival
arcs (tπ,i, tπ) connect to the destination node.

time expansion

sπ

tπ

...

τ = 0

τ = 1

Figure 8.1: A small network piece and its time expansion. The transit arcs
(blue), waiting arcs (green), departure and arrival arcs (orange) are shown
together with the external node pair for a request π with release time 1.

Remark 8.2. Particularly for large horizons T , the expanded graph can be
very large. For practical implementations, we suggest the following improve-
ments.

• Trips with same origins or destinations can use the same terminal nodes.
For this purpose, introduce a terminal node pair per terminal node and
not per request. The separate terminal nodes for each request were cho-
sen here for simplicity of presentation.

• For online purposes, not the entire time expansion needs to be physically
stored. Usually only the near future is relevant for planning. The time
expansion can hence be replaced by a much smaller version with less
time layers. In a rolling horizon regime, at each timestep, the last past

62 CHAPTER 8. ROUTING PRELIMINARIES

time layer can be deleted and a new time layer is added at the end of
the expansion. This way the total size remains constant.

8.3 Flow Formulation

A routing for a request π corresponds to a path through the time expansion
from sπ to tπ. We call a such a path a dynamic path. It encodes at the same
time the chosen route and schedule. We can also identify conflicts on the
basis of dynamic paths.

Observation 8.3. Two routings are in conflict if and only if the correspond-
ing dynamic paths share a node.

Note that also the parking assumption is correctly represented in this conflict
notion. A dynamic path visits exactly two terminal nodes, its source and sink.
Other terminals cannot be part of the dynamic path, as they are dead ends.
As each request has its own pair of terminal nodes, there can consequently
be no conflicts on terminal nodes.

Based on Observation 8.3 we introduce formulations for the PRTRP, first for
the offline and then for the online problem.

8.3.1 Offline Formulation

Recall that the offline version of the PRTRP is the variation of the routing
problem where all requests are known from the beginning. It is equivalent to
optimizing the routing a-posteriori, at the end of the day when all requests
are known.

As a consequence of Observation 8.3, the offline version of the PRTRP can
be formulated as a node-disjoint path problem or equivalently as a binary
multicommodity flow problem (MCF) on the time expanded network. Both
are well studied problems in combinatorial optimization (see, e.g. [Sch03]).

The multicommodity flow consists of a number of k commodities where each
commodity is associated with a request. For each commodity, one unit of flow
needs to be sent through the time expansion from the origin to the destination
node of the associated request. The total flow capacity at each node is limited
to one unit. Let the flow of the commodity (associated with request) π on
arc a ∈ A be xπa . Requiring the flow variables to be 0 or 1 leads to the integer

8.3. FLOW FORMULATION 63

linear program (ILP) stated in (8.2). The short notations δ+
v (and δ−v) stand

for the sets of outgoing (resp. incoming) arcs of node v. The indicator variable
bπv has value 1 in case v = sπ, −1 in case v = tπ and 0 otherwise.

∑

a∈δ+v

xπa −
∑

a∈δ−v

xπa = bπv for all v ∈ V , π ∈ Π (8.2a)

∑

π∈Π

∑

a∈δ+v

xπa ≤ 1 for all v ∈ V (8.2b)

xπa ∈ {0, 1} for all a ∈ A, π ∈ Π (8.2c)

ILP 8.2 consists of flow conservation constraints 8.2a, node capacity con-
straints 8.2b and integrality constraints 8.2c. The capacity constraints are
slightly different than in standard MCF settings, as we set the capacity limit
on nodes instead of arcs. However, the formulation can in principle be trans-
formed into a MCF with arc capacities. One can interpret (8.2) as a mul-
ticommodity flow over time problem, such as it is studied in [FS02, FS06].
More precisely, it is a variant of flow over time which can be described as
integral min-cost multicommodity flow problem over time with limited node
storage.

A solution to ILP 8.2 is a set of node-disjoint dynamic paths, one for each
commodity. This leads to the following observation.

Observation 8.4. A solution to ILP 8.2 corresponds to a conflict-free routing
for the PRTRP and vice versa. As a consequence of the feasibility of the
PRTRP, ILP 8.2 is always feasible for a large enough time horizon.

To evaluate the travel time of a request from its dynamic path, one can
introduce weights wa for the arcs a ∈ A. The weights are chosen such that
the sum of the weights along a dynamic path corresponds to the travel time.

wa =

1 if a is a transit or waiting arc.
τ − τπ if a is a departure arc with a = (sπ, v), v ∈ Vτ .

0 if a is an arrival arc.

With this weight function, the ILP 8.2 can be turned from a feasibility prob-
lem into an optimization problem, by adding the following objective function.
It aims to minimize the total (resp. average) delay over all requests.

64 CHAPTER 8. ROUTING PRELIMINARIES

Minimize
∑

π∈Π

(
∑

a∈A

wax
π
a − lπ) (8.3)

A second helpful weight function is given by the following commodity-dependent
arc weights hπ(u,v). It is beneficial when computing shortest paths repeatedly,
such as we will discuss for the sequential routing schemes in Section 10.1.

hπ(u,v) = w(u,v) + lπv − lπu

In this relation, lπv = l(v, tπ) is a short notation for the shortest path distance
from node v to the destination of commodity π. All weights hπ(u,v) are non-
negative as w(u,v)+l

π
v ≥ lπu holds. The path length of a path P ∈ Pπ measured

with weights h differs from the path lengths with respect to weights w by lπ

∑

(u,v)∈P

hπ(u,v) =
∑

(u,v)∈P

(w(u,v) + lπv − lπu) =
∑

(u,v)∈P

w(u,v) − lπ

and objective 8.3 can be rewritten as follows.

Minimize
∑

π∈Π

∑

a∈A

hπax
π
a (8.4)

The weight function h assigns to each arc the delay that vehicle π experiences
when it uses this arc. The weights for arcs approaching the destination are
decreased compared to weights w. This type of weight function is known from
goal oriented search.

8.3.2 Online Formulation

Recall that the term snapshot optimization (defined in Section 6.6) refers to
the approach to online optimization in which the current situation (snapshot)
is optimized without taking into account the possible occurrences of future
events. Differently stated, one optimizes for the scenario in which no new
demand will interfere with the currently known demand. The goal is to find
the routing minimizing the sum of delays of all known open requests.

Only requests are known with release times no later than the current time τ .
Furthermore, the dynamic paths for open requests already in transit are fixed
up to time layer τ . In the flow formulation, one can take account of this fact

8.3. FLOW FORMULATION 65

by choosing the current position on the current time layer to be the origin of
the flow. The current positions vπ of the pods on the network graph can be
mapped to a position vπ on the time expansion. For a pod π still parked at
the origin node, vπ corresponds to the source terminal node sπ. For a pod
in transit vπ corresponds to node vπ,τ , which is the copy of node vπ on time
layer τ . Conflict-free routing corresponds to finding a dynamic path Pπ from
vπ to tπ such that the paths Pπ are node-disjoint for all open requests π ∈ Πo.

The formulation of the snapshot optimization problem reads as follows.

Minimize
∑

π∈Πo

∑

a∈A

hπax
π
a subject to (8.5a)

∑

a∈δ+v

xπa −
∑

a∈δ−v

xπa = bπv for all v ∈ V , π ∈ Πo (8.5b)

∑

π∈Πo

∑

a∈δ+v

xπa ≤ 1 for all v ∈ V (8.5c)

xπa ∈ {0, 1} for all a ∈ A, π ∈ Πo (8.5d)

In this ILP, bπv now refers to the current sources.

bπv =

1 if v = vπ or v = vπ
−1 if v = tπ

0 otherwise

The existence of a solution is guaranteed by the feasibility result in Theo-
rem 8.1. The time layers relevant for snapshot optimization can be restricted
to [τ, τ + T ′], where T ′ is chosen large enough to accommodate the optimal
solution. We will give in Section 10.2 an algorithm for which there exists
a theoretical bound on the total delay of

∑
π∈Πo delπ ≤ k2n (see Observa-

tion 10.1), where k = |Πo|. This is clearly also true for the optimal snapshot
solution and the choice of T ′ = k2n is certainly sufficiently large.

The optimal solution to this ILP can in principle be computed using an ILP
solver. However, these problems can be large and will in most cases take far
too much time to solve to optimality. For exact approaches in general there
is little hope for fast algorithms as we will discuss in the next chapter.

66 CHAPTER 8. ROUTING PRELIMINARIES

Chapter 9

Computational Complexity

Applying methods from algorithmic complexity theory, we will show that
PRTRP is hard to solve to optimality by showing that it belongs to the
class of NP-hard problems, similarly as it was done in Chapter 2 for the
CFVRP. The result in this chapter implies that the existence of an efficient
algorithm for PRTRP would imply P=NP, which is widely believed to be
wrong. Furthermore the question of whether P equals NP is considered one
of the most important unsolved problems in mathematics (see Millennium
Problems of the Clay Institute of Mathematics, [Coo92]). There is hence little
hope for finding optimal solutions to general PRTRP instances in reasonable
computation time. Even if NP-hardness results are negative results, they give
incentive to shoot for a weaker goal than finding an optimal solution, like the
development of efficient approximation algorithms.

The hardness is proven by relating the PRTRP to a sumcoloring problem
(see [NSS99]), a problem with application in very large scale integrated (VLSI)
circuit design that was proven to be NP-hard by Szkaliczki [Szk99].

We consider the case where all requests have the same release time. It is a
special case of both the snapshot and the a-posteriori optimization problems.

Theorem 9.1. The PRTRP is NP-hard on paths.

Proof. We prove NP-hardness by reduction from the saturated interval sum-
coloring problem (SISP), stated in the following. Given is a set of q intervals
with integral endpoints S = {[a1, b1], . . . , [aq, bq]} and β ∈ N colors. The
task is to assign a color cs ∈ [0, β − 1] to every interval s ∈ S such that no
two intersecting intervals have the same color and such that the sum over the
assigned colors

∑
s∈S cs is minimized. We restrict the considerations to the

so-called saturated case, in which each interval is a subset of [0, α] for a given
α and every integer in [0, α] appears in exactly β intervals. Furthermore, we
assume without loss of generality that bi − ai ≥ 4 for all i ∈ [1, q].

68 CHAPTER 9. COMPUTATIONAL COMPLEXITY

The NP-hardness of the SISP follows directly from the NP-hardness of the
interval placement problem shown in [Szk99, Mar05]. The interval placement
problem is a continuous version of the SISP and the hardness proof is analo-
gous.

In order to prove NP-hardness of PRTRP, we will show that it is at least
as hard as SISP. For this purpose, we show how to create from any given
instance of SISP a corresponding instance of PRTRP, such that the optimal
value of the PRTRP instance allows for deducing the optimal value of the
SISP instance.

The instance of PRTRP consists of a directed path of length 2α and a set of
requests Π. The fixed velocity of the vehicles and the integral departure times
define time-space diagonals along which the vehicles can reach their destina-
tions (see Figure 9.1). If we neglect the possibility for the vehicles to wait dur-
ing transit for a moment (we will give a justification for this later in the proof),
the task corresponds to packing the request onto diagonals, without overlaps
and such that the sum of the delays is minimized. Let us label the diagonals
with increasing integers starting from −2α, such as shown in the figure. We
call the diagonals with negative labels partial diagonals. A request π ∈ Π that
gets assigned to the diagonal with label cπ experiences a waiting-at-origin de-
lay of aπ + cπ and has arrival time bπ + cπ. The minimization of the sum
of delays hence corresponds to minimizing

∑
π∈Π dπ =

∑
π∈Π aπ +

∑
π∈Π cπ.

As the first term depends on given data only, it can be dropped and the
minimization of

∑
π∈Π cπ is an equivalent objective.

69

path

tim
e

c = 0 −1 . . . −α . . . −2α

...

β − 1
...

β + γ − 1

α α

β

γ

Figure 9.1: The figure schematically shows a PRTRP instance illustrated by
the time-space diagram with the optimal PRTRP solution. The interval re-
quests (red), 2α-requests (black), α-requests (blue), (α−1)-requests (orange)
and the 1-requests (green) are distinguished by color.

70 CHAPTER 9. COMPUTATIONAL COMPLEXITY

We complete the instance description by listing the requests in Π with the
help of Figure 9.1. All requests have release time zero.

• Interval requests are introduced according to the intervals in the SISP
instance. There are q such requests with route lengths between 4 and
α. Because of the saturation of the SISP instance, we know that these
requests fit onto β full diagonals. We denote the set of interval requests
by Πinterval.

• More requests are introduced as in Figure 9.1. We refer to the requests
by the length of their routes.

2α-requests. These requests travel the entire path. The number of
such requests is denoted by γ and will be specified later in the
proof.

α-requests. α requests of length α are introduced such as shown in
the figure.

(α− 1)-requests. β requests of length α−1 are introduced, again such
as shown in the figure.

1-requests. We introduce requests of length 1 in order to fill up the
capacity of the partial diagonals, except for some time-space nodes
which remain unoccupied at the end of the path. The number of
1-requests is not larger than α2/2.

A reference solution to the PRTRP instance is shown in Figure 9.1. The
interval and the (α− 1)-requests are assigned to diagonals [0, β − 1], the 2α-
requests to diagonals [β, β + γ − 1], the α-requests to diagonals [−α,−1] and
the 1-requests fill up the partial diagonals [−2β,−1]. Apart from the interval
requests, this assignment is unique up to swaps of identical requests. Such
swaps are without effect on the objective. However, the placement of the
interval requests to diagonals [0, β − 1] is not trivial and has effect on the
objective function.

The claim is that the reference solution is optimal if and only if the assignment
of the interval requests to diagonals [0, β − 1] minimizes

∑
π∈Πinterval

cπ. This
corresponds to solving the underlying SISP instance to optimality which will
complete the reduction.

How can we guarantee that there is no better solution to the PRTRP instance
than in the reference solution? And why is it not beneficial to use waiting
in transit? We start by showing that there exists an optimal solution in

71

which the 2α-requests have lower priority than all other requests (are at the
bottom of Figure 9.1) and do not wait during transit. For this, we introduce
a swapping operation that allows us to generate from an arbitrary optimal
solution one which fulfills the above property. Let π be a 2α-request which
has some shorter request underneath it.

1. Removing π creates an empty slot in the schedule.
2. Shift up everything below the empty slot by one diagonal.
3. Insert π at the bottom, assigning the earliest conflict-free schedule with-

out waiting in transit.

Applying this operation repeatedly moves the 2α-requests to the bottom and
removes waiting of 2α-requests without increasing the objective value. If
one swapping operation increases the delay of π by ψ (moving π down by ψ
diagonals), the consequence is that the delay of at least ψ requests (at least
one per diagonal, as there cannot be empty diagonals in the optimal solution)
gets in turn reduced by one each.

We proceed by showing that, in an optimal solution, all requests are assigned
to diagonals with labels [(−2α), (β+γ−1)]. It follows that waiting in transit is
suboptimal, as waiting requests would occupy extra time-space nodes which
are not available. Only at the path end there is some spare capacity, but
waiting there is not beneficial. Let us assume, for the sake of contradiction,
that there is a request which occupies (parts of) diagonal β + γ (or higher).
We know from before that there exists an optimal schedule in which the 2α-
requests are at the bottom of the schedule. They will hence occupy diagonals
[(β + 1), (β + γ)] instead of [β, (β + γ − 1)] as in the reference solution. The
contribution to the objective function of the 2α-requests hence increases by
at least γ. This needs to be compensated by a better allocation of the shorter
requests. There are in total not more than q + α + α2/2 + β such requests.
Their maximum delay is bounded by 2α+ β. We choose γ to be larger than
(q+α+α2/2+β)(2α+β) such that it is impossible that a solution scheduling
requests outside [(−2α), (β + γ − 1)] could be optimal.

It remains to show that the assignment of the requests to the diagonals in
the reference solution is optimal. The optimality of the assignment of the
2α-requests to diagonals [β, β + γ − 1] has already been proven. Diagonals
[−2α,−(α+ 1)] can only be filled by 1-requests. Diagonals [−α,−1] are each
filled by one α-request plus a number of 1-requests, while diagonals [0, β − 1]
are each filled by interval requests plus one (α− 1)-request. This must be the
case in an optimal solution because of the following. Suppose for the sake of
contradiction that some interval request π was located on a partial diagonal
with label ψ < 0. Consequently, the α-request π′ which is located on ψ in

72 CHAPTER 9. COMPUTATIONAL COMPLEXITY

the reference solution must now be located on some other diagonal φ with
larger label number. One can, in this case, generate an improved solution by
exchanging the requests on ψ with the corresponding requests on φ, i.e. π′

and the ones allocated on the same diagonal on the lower right. The interval
request π moves to φ together with an (α−1)-request and possibly some more
interval requests. The α-request π′ moves to ψ together with a number of 1-
requests. At least two 1-requests are needed to replace each interval request.
The exchange operation is improving, as more requests move up (reduction
of delay by φ − ψ) than down (increase by the same amount). A solution
with an interval request on a partial diagonal can therefore not be optimal
and the interval requests must hence be assigned to diagonals [0, β − 1]. The
assignment of the remaining request categories follows directly.

We have seen that even the simple setting of a directed path is NP-hard for
the objective of minimizing the average delay. This is different for the case
of makespan optimization, for which the case of a directed path is open, as it
was pointed out in Chapter 2 of the first part of this dissertation.

Chapter 10

Routing Algorithms

This chapter includes the description of three algorithms, as we will use them
for the computational study.

The first is the well-established sequential routing. Its characteristic is that
it routes the requests sequentially, one after the other, and that the routes
will not be changed later. Routings are planned into the future and a pod
only leaves the origin station after a dynamic path is reserved all the way
to the destination. Such approaches are greedy in the sense that routes and
schedules are chosen without taking into account the effect the choice has on
other requests. It belongs to the class of synchronous routings, as network-
wide coordination and data-transfer is necessary. Sequential routing has been
studied in depth in the AGV routing literature, we refer to [KT91, MKGS05,
Ste08, SZ11] for further reference.

The second is what we call a push algorithm, as the pods simply push forward
towards their destination. No planning into the future is made. This approach
is greedy timestep-wise, as pods push forward in each timestep, without taking
into account the future. Push routing is a representative of asynchronous
routing, as it can be implemented using local communication only.

As a third approach we present a new concurrent and adaptive flow routing
algorithm. It is based on a multicommodity flow formulation on the time-
expanded graph, where the commodities represent requests. The formulation
is solved for all open requests simultaneously with the objective of minimizing
the average delay. The algorithm plans ahead into the future, however only
fixes the routing for the next upcoming timestep. All further plans can later
be adapted if it turns out to be beneficial.

74 CHAPTER 10. ROUTING ALGORITHMS

10.1 Sequential Routing

In sequential routing, once a request π appears, a routing is fixed for π that
will not be changed later, no matter what other requests are revealed in the
future. If at timestep τ a set of new requests Πτ appears, we determine
routings for those requests as follows. We go through the requests Πτ in any
order, determining routings one-by-one. The routing of a pod π is chosen
to be the quickest possible without creating conflicts with previously fixed
routings, i.e., this includes requests with reveal time earlier than τ and those
considered before π at timestep τ .

Such a quickest route can be obtained by computing a shortest vπ – tπ path
in G with respect to weights wa and over all nodes not used by any previously
fixed route. Here, Πo is the set of open requests at current time τ and vπ
denotes the current position of a pod π ∈ Πo on the time expansion. Further,
the arc weights wa for all a ∈ A represent the travel times such as introduced
in 8.3.1. The procedure is illustrated in Figure 10.1.

space
sπ tπ

tim
e

τπ

Figure 10.1: Sequential routing on a path network. The dynamic paths of
previously routed requests are given in red. A new request with origin sπ and
destination tπ is released at time τπ. Sequential routing assigns the dynamic
path indicated in green to the new request, as it leads to the earliest arrival
time.

The relevant time horizon for the search is bounded theoretically by τ +∑
π∈Πo(lπ + 1). The (very conservative) bound stems from comparing se-

quential routing to the serial strategy of scheduling the departure of the next
request only after the last pod in transit has reached its destination. This
yields a schedule with latest arrival time τ +

∑
π∈Πo(lπ + 1), in the worst

10.1. SEQUENTIAL ROUTING 75

case scenario when all requests in Πo are released at the same time τ . As
the sequential scheme chooses dynamic paths with shortest travel time, the
resulting arrival times will be no later than in the serial strategy. The size of
the relevant part of the time expansion is hence bounded by a polynomial in
|Πo| and the network graph size n.

In consequence, the sequential routing can be computed in polynomial time
using Dijkstra’s shortest path algorithm. In practice, the computation times
can be improved when using delays hπa instead of travel times wa as arc
weights for the search, while the result is the same (as discussed already
in Section 8.3.1). This improvement is known as goal-oriented search (the
goal-oriented version of Dijkstra is sometimes called A∗ algorithm), and is
illustrated in Figure 10.2. Note that the number of nodes to be checked is
smaller when using goal-oriented search. For examples with larger networks
and travel distances, the effect is even larger.

path
sπ tπ

tim
e

τπ

path
sπ tπ

tim
e

τπ

Figure 10.2: Sequential routing of a request (sπ, tπ) with release time τπ.
The nodes occupied by earlier requests are marked in red and a routing with
earliest arrival time is given in green. Left: Dijkstra algorithm, using arc
travel times wa as weights, proceeds by checking all reachable nodes time
layer by time layer until the destination is reached. The boxes indicate the
nodes that need to be checked in each time layer. Right: Applying Dijkstra
to the delays hπa yields that the nodes are checked with increasing delays. The
top box contains the nodes reachable with delay 0, the second box with delay
1 and so on.

Two notable variants to sequential routing are the direct sequential and
shortest-path sequential routings. In direct sequential, no waiting in transit is
allowed. Finding such a routing corresponds to a shortest path search through

76 CHAPTER 10. ROUTING ALGORITHMS

a time expansion without waiting arcs. The second variant, shortest-path se-
quential, only allows routing along shortest paths and prohibits detours. The
idea behind both versions is that both waiting and detours lead to increased
resource occupation and can therefore reduce the system throughput. This ef-
fect will discussed in Section 11.1.5 of the computational analysis considering
concrete instances.

In terms of approximation guarantees, Stenzel shows in [Ste08] that sequential
routing can be a factor Θ(k) worse than the offline optimum on directed
graphs. They also give an example on a path network where this bound is
tight. Additionally, they show that for directed paths the delay for a request
π is bounded by delπ ≤ |Π′|, where Π′ is the set of open requests routed
before π. The same is true for arbitrary directed graphs when the combined
variant of direct and shortest-path sequential routing is employed. For direct
routes along shortest routes, a request π can only get delayed by at most one
timestep from each pod in |Π′|.
One could think of an adaptive version of sequential routing in which routings
are recomputed when new requests appear. Such an approach could, for
example, compute sequential routings using several priority sequences and
choose the best routing out of these. However, for situations in which a
part of the pods is already in transit, it can happen that some of the priority
sequences will not lead to feasible routings. This is as the parking assumption
does not hold on the current positions. It is not even clear whether there
always exists a feasible priority sequence when starting from an arbitrary
online situation.

10.2 Push Routing

In push routing, each pod simply moves forward whenever possible. In every
timestep, the pods push forward along a given shortest path if the next po-
sition is either free or if the vehicle at the next position can also be pushed
forward along its path. The procedure is simple, needs little coordination and
no planning into the future.

We formalize the procedure by using a notation similar to the one in the proof
of Theorem 8.1. At a time τ , let the open requests in transit be Π′ ⊂ Πo and
let their current positions be vπ for each π ∈ Π′. We assume further that for
each π a shortest path Pπ is given. Let aπ be the arc outgoing of vπ ∈ V
which is part of Pπ. Let A′ = {aπ | π ∈ Π′} and let us consider the subgraph
(V,A′) of G. In (V,A′) each vertex has at most one outgoing arc, since each

10.2. PUSH ROUTING 77

vertex contains at most one pod. In case (V,A′) is not connected, each of its
connected components can be treated separately. We can therefore assume in
the following that (V,A′) is connected.

We distinguish two cases (illustrated in Figure 10.3). Note that there can
be at most one cycle in a connected component, because each node has at
most one outgoing arc. In case A′ contains no cycle then the component is
an in-tree. Only the requests belonging to one path in the tree can be moved,
all other pods need to wait. The path is chosen using some priority rule, such
as giving priority to the longest path or to the path containing the request
with the earliest release time. Otherwise, in case A′ contains a cycle C, then
we can move each pod π located on a vertex of C along its arc aπ. The pods
corresponding to arcs in A′ \C must stay at their current positions. Requests
that are still parked at the origin get departed whenever their departure node
is currently not occupied. Pods departing are inserted into the set Π′ for
the next timestep, whereas pods that have arrived at their destination get
removed from Π′.

Figure 10.3: Distinction of cases. The pod locations are drawn as rectangles,
each with an arrow pointing to the next location along its route. Unoccupied
locations are drawn as circles. Upper Left: In case (V,A′) (resp. a connected
component in (V,A′)) is a path, all pods can move forward simultaneously.
Upper Right: In case of a tree, one path is chosen along which pods can move
(green), all other pods wait (red). Lower Left: In case of a cycle, all pods
can move forward simultaneously. Lower Right: If the graph contains a cycle
plus incoming arcs, only the pods along the cycle can move.

As it was already argued in Theorem 8.1, at least one pod can move forward
in each timestep. A pathological example in which only exactly one pod

78 CHAPTER 10. ROUTING ALGORITHMS

can move forward is when all pods want to move into the same node. The
sum of the remaining route lengths

∑
π∈Πo l(vπ, tπ) decreases by at least one

in each timestep. If no new requests appear, the sum will after at most∑
π∈Πo l(vπ, tπ) timesteps reach zero and all pods will have arrived.

Observation 10.1. The push algorithm routes the open requests Πo to their
destinations in at most

∑
π∈Πo l(vπ, tπ) ≤ kn timesteps, where k = |Πo|. The

total delay is hence bounded by
∑
π∈Πo delπ ≤ k2n.

Push routing requires coordination only for detecting whether a pod belongs
to a path, tree or cycle structure. This minimal amount of coordination is
necessary to decide who can move and who needs to wait (e.g. in a situation
as shown on the lower right in Figure 10.3). The case detection can occur
by communication between neighboring pods and does not require a central
computer. The Push algorithm is therefore a representative of the class of
asynchronous routing strategies.

10.3 Flow Routing

The equivalence between the PRTRP and a network flow problem has been
established already in Section 8.3. Now we want to take advantage of this
close relationship by designing algorithms that compute flows and transform
these into routings. For this purpose we solve the fractional relaxation of the
snapshot multicommodity flow formulation 8.5. Even if the resulting frac-
tional solution does not directly correspond to a routing, it can be the basis
for creating such. We will explain how to solve the relaxation quickly (Sec-
tion 10.3.1) and how to create a routing from this solution (Section 10.3.2).

This approach, which we call flow routing, has the properties that it plans
into the future and takes into account all requests simultaneously. Only the
first timestep of the routing plan is really implemented, the further steps
are computed to estimate the future effects of current actions. The proce-
dure is repeated each timestep, always including the latest requests into the
computations adaptively.

This scheme is only possible in case one has a fast algorithm at hand for find-
ing good solutions to the snapshot problem in real-time. The direct way of
solving formulation 8.5 is not promising because of the computational effort
involved. We therefore compute the fractional solution and use it as a basis
for generating an integral solution by rounding. The integral optimum is often
much more difficult to find than the optimum of the continuous relaxation.

10.3. FLOW ROUTING 79

This is also the case here, where the integral problem is NP-hard while the
fractional relaxation can be solved in polynomial time. However, the lower
computation times come with the drawback of loosing the optimality guar-
antee. Flow routing will have to prove its performance for concrete problem
instances in the computational analysis.

Using flow models is common in transportation planning. The static traf-
fic assignment problem (STAP) aims to route traffic through a road network
without creating congestion and such that the overall travel times are mini-
mized. For an account on the related literature of STAP and for fast solution
methods, we refer to [DSE09]. One important difference between the PRTRP
and the STAP is that the latter routes traffic rates rather than particular
vehicles. Traffic rates in the STAP can be fractional, while a routing in the
PRTRP requires an integral flow solution. A second important difference
is that there is no time dimension in STAP. It is assumed that the traffic
rates are stationary over time. Therefore, the routing problem can be solved
directly on the network graph without using a time expansion.

10.3.1 Solving the Flow Relaxation

We state the continuous relaxation of the snapshot optimization problem. It
corresponds to formulation 8.5 without the integrality constraints. Again,
bπv refers to the sources on the time expansion corresponding to the current
positions vτ of the pods at current time τ .

Minimize
∑

π∈Πo

∑

a∈A

hπax
π
a subject to (10.1a)

∑

a∈δ+v

xπa −
∑

a∈δ−v

xπa = bπv for all v ∈ V , π ∈ Πo (10.1b)

∑

π∈Πo

∑

a∈δ+v

xπa ≤ 1 for all v ∈ V (10.1c)

xπa ≥ 0 for all a ∈ A, π ∈ Πo (10.1d)

The existence of a solution is guaranteed by the feasibility result in Theo-
rem 8.1. As already observed in Section 8.3.2, it is sufficient to use the time
expansion with time layers [τ, τ + k2 · n], where k = |Πo| corresponds to the
number of commodities. The LP formulation is therefore of polynomial size

80 CHAPTER 10. ROUTING ALGORITHMS

in k and in the graph size n. It can be solved to optimality in polynomial time
using standard LP solution techniques. Due to the potentially large problem
size and the need for real-time implementation, we review in the following two
approaches which are particularly suitable for the fast solution of large-scale
MCF.

Formulation 10.1 is closely related to the multicommodity flow over time prob-
lem, such as studied by Fleischer and Skutella [FS02, FS06]. The differences
are that they minimize the makespan and allow for unlimited storage of flow in
nodes. Furthermore, they allow for arbitrary arc travel times. A consequence
of the latter difference is that a time expansion of exponential (pseudopoly-
nomial) size may become necessary. Simply solving the LP over the time
expansion as we suggest it here does therefore not lead to a polynomial-time
algorithm. It is in general not possible to solve the multicommodity flow over
time problem in polynomial time, unless P=NP, as was shown by Hall et al.
[HHS07].

In the following, we discuss two approaches suitable for solving formulation
10.1.

Column Generation

As column generation is a standard approach for solving MCF problems, we
give only a short account of the method here. We refer to [AMO93] for more
information.

In order to discuss column generation, we introduce a second formulation of
LP 10.1 which changes from arc flow to path flow variables. Let Pπ denote
for each π ∈ Πo the set of the potential dynamic paths for request π and let P
be the union of these path sets for all open requests, P = ∪π∈ΠoPπ. Further,
let hP =

∑
a∈P h

π
a be the total delay that commodity π experiences along

dynamic path P ∈ Pπ. The variable xP then denotes the amount of flow of
commodity π along a path P ∈ Pπ. Note that the formulation can contain
exponentially many variables, one for each path which may potentially carry
flow.

10.3. FLOW ROUTING 81

Minimize
∑

π∈Πo

hPxP subject to (10.2a)

∑

P∈Pπ
xP = 1 for all π ∈ Πo (10.2b)

∑

P∈P:v∈P
xP ≤ 1 for all v ∈ V (10.2c)

xP ≥ 0 for all P ∈ P (10.2d)

The dual of LP 10.2 is given below. It contains a dual variable zπ for each
commodity and a dual variable yv for each node.

Maximize
∑

π∈Πo

zπ −
∑

v∈V

yv subject to (10.3a)

∑

v∈P
yv + hP ≥ zπ for all P ∈ Pπ, π ∈ Πo (10.3b)

yv ≥ 0 for all v ∈ V (10.3c)

The concept behind column generation is to solve LP 10.2 introducing vari-
ables only for a subset of the paths P ′ ⊂ P. Starting with few candidate
paths, one can augment the set P ′ with new paths until it contains all rele-
vant path variables and an optimal solution is found. The number of required
paths is typically much smaller than |P|.
Solving the LP with the path variables from P ′ returns primal and dual
solutions, optimal with respect to the current path set P ′.1 According to
constraints 10.3b, zπ attains the value of the shortest path for commodity
π in P ′, measured in travel time plus the sum of the dual node costs along
the path. One can check whether the dual solution fulfills the inequality for
all paths in P by computing the shortest path length between vπ and tπ
and comparing its length to zπ. If zπ exceeds the shortest path length of
commodity π, one adds the shortest path to P ′ and solves the LP again. This
process is repeated until no shorter paths than zπ can be found for any of
the commodities. At that point, one has a guaranteed optimal solution to
LP 10.2 at hand.

1In order to have a feasible initial set P ′ for the column generation procedure, we
introduce additional arcs from origin to destination of each commodity and use these arcs
as initial start set P ′. With these paths we associate very high delays, such that they are
not interesting for the optimal solution.

82 CHAPTER 10. ROUTING ALGORITHMS

Primal-dual Approximation Schemes

We also give a short account of an approximation scheme for MCF. It is
based on work by Garg and Könemann [GK98], Fleischer [Fle00] and Al-
brecht [Alb01]. Such schemes are particularly fast and well-suited, also for
large-scale problems. They yield approximate solutions with objective value
guaranteed to be not larger than 1 + ε · OPT, where the precision ε > 0 can
be chosen arbitrarily. The convergence rate is O(ε−2) in all of the mentioned
approaches. The Excessive Gap method, as discussed in [DSE09], has a even
better convergence rate of O(ε−1) but appears to be impractical because of
the costly subproblems that need to be solved.

The algorithm approximates the following LP 10.4, which is slightly different
from the relaxation stated above. A delay budget H is introduced as an
additional problem parameter. Constraints 10.4c and 10.4d bound the node
congestions to λ and the sum of the delays to λH. The objective is to find a
flow which fulfills the delay budget and the node congestion constraints with
the minimal possible λ. A solution with λ ≤ 1 corresponds to a solution
to (10.1) with total delay of at most H. The solution with minimal total
delay can be determined by finding the minimal H for which a solution with
λ ≤ 1 exists, e.g. by using binary search.

Minimize λ subject to (10.4a)

∑

P∈Pπ
xP = 1 for all π ∈ Π (10.4b)

∑

P∈P:v∈P
xP ≤ λ for all v ∈ V (10.4c)

∑

P∈P
hPxP ≤ λH (10.4d)

xP ≥ 0 for all P ∈ P (10.4e)

The corresponding dual LP reads as follows. The dual variables are zπ for
the demand constraints 10.4b, yv for the node congestion constraints 10.4c
and yH for the delay budget constraint 10.4d.

10.3. FLOW ROUTING 83

Maximize
∑

π∈Πo

zπ subject to (10.5a)

∑

v∈V

yv +H yH = 1 (10.5b)

∑

v∈P
yv + hP yH ≥ zπ for all P ∈ P (10.5c)

yv ≥ 0 for all v ∈ V (10.5d)

yH ≥ 0 (10.5e)

The following primal-dual algorithm approximates the LP formulation (Algo-
rithm PrimalDual). It maintains primal and dual solutions and improves
these in rounds. The algorithm can be interpreted as a repeated game be-
tween a primal and a dual player. The primal player has the objective of
sending flow as cheaply as possible. In each round, he sends one unit of flow
for one commodity after another. The dual player can charge tolls for each
unit of flow going through a node and also for the total delay incurred by the
flows. He has a total budget of tolls he can raise and aims at making the task
of the primal player as costly as possible. His strategy is to increase the tolls
on the nodes where the opponent sends the flows.

Algorithm PrimalDual

Input: Time expansion with commodities with sources and sinks
Output: Flow (xP)P∈P and dual costs (yv)v∈V , yH

set xP = 0 for all P ∈ P
set h = 0, cv = 0 for all v ∈ V
set yH = 1, yv = 1 for all v ∈ V
while (termination criterion) do

for π ∈ Πo do
find shortest path P ∗ ∈ Pπ with respect to cost

∑
v∈P yv + hP · yH

send one flow unit along P ∗, xP∗ = xP∗ + 1
update cv = cv + 1 for all v ∈ P ∗
update h = h+ hP∗

update yv = eεcv and yH = eεh

end for
end while

The algorithms in [GK98, Fle00, Alb01] differ in termination criterion and
dual cost update. Also, Fleischer [Fle00] and Albrecht [Alb01] suggest modi-

84 CHAPTER 10. ROUTING ALGORITHMS

fications such that the shortest paths do not need to be recomputed in every
round, thereby saving computational effort. The output of the algorithm can
be transformed into primal and dual solutions to the LP as follows.

Primal solution A primal feasible solution can be obtained dividing the
flow resulting from the algorithm by the number of rounds performed.
This solution satisfies constraint 10.4b. For λ one chooses the smallest
value such that 10.4c and 10.4d are satisfied.

Dual solution A dual feasible solution is generated by normalization of the
values of (yv)v∈V and yH according to constraint 10.5b. For each com-
modity, the corresponding zπ then corresponds to the shortest path
length with respect to

∑
v∈P yv + hP · yH .

The dual solution can be used to compute a lower bound to the optimal λ
which in turn can be used as a termination criterion.

10.3.2 Rounding

The fractional solution obtained from solving relaxation 10.1 now is to be
turned into a routing. Figure 10.4 gives an example of a fractional solution
which does not yet correspond to a conflict-free routing. The task is to round
the fractional flow values such that a consistent routing results.

We use a rounding scheme proceeding timestep by timestep. At time τ , the
flows between time layers τ and τ + 1 get rounded. Rounding of further
timesteps is not necessary, as the online scheme only requires to know the
routing decisions for the current time. Rounding further into the future also
is not helpful as the underlying flow solution will change due to the new
positions the pods will have one timestep later.

Let vτπ be the node in the time expansion occupied by request π ∈ Πo at
current time τ and let V τ = {vτπ | π ∈ Πo}. It contains nodes in time layer τ
as well as source terminal nodes of requests that are still located at the origin.
Similarly, let V τ+1 be the set of nodes in the time expansion where the pods
can be at time τ+1. It includes nodes on time layer τ+1 plus terminal nodes
for requests that will still be parked at the origin or will have arrived at the
destination. For π ∈ Πo and v ∈ V τ+1\{sπ | π ∈ Πo}, let xπ(v) ∈ [0, 1] be the
flow value of commodity π through arc (vτπ, v) in the fractional solution 10.1.
As a special case, xπ(sπ) = 1−∑v∈V τ+1 xπ(v) represents the part of the flow
going to later time layers for pods parked at the origin.

10.3. FLOW ROUTING 85

path

tim
e

Figure 10.4: This example shows what fractional solutions to (10.1) can do
more than integral ones. The flows are given for two commodities (red and
green), where the thick lines correspond to flows of 1 and the dashed lines to
flows of 1/2. Using fractionality, commodities can overtake on a path without
violating the node capacity constraints.

Let xπ ∈ [0, 1]V
τ+1

for a π ∈ Πo be the vector containing the scalars xπ(v) for
all v ∈ V τ+1. Note that the entries of each such vector are in [0, 1] and sum to
one. We interpret the vectors as probability distributions over the positions
of the pods at the next timestep. Concretely, we look for a method routing
pod π to node v with probability xπ(v). Further, the routing decisions need
to be coordinated such that conflicts are avoided.

More precisely, we want to determine to which vertex vτ+1
π ∈ V pod π will

be sent in timestep τ + 1, such that vτ+1
π 6= vτ+1

π′ for any π, π′ ∈ Πo with
π 6= π′ and such that the marginal probabilities are preserved, i.e., Pr[vτ+1

π =
v] = xπ(v) for all v ∈ V τ+1. The problem can easily be translated into
the well-known problem of rounding fractional matchings in bipartite graphs.
More precisely, the vectors xπ for π ∈ Πo can be represented as a fractional
matching in a (complete) bipartite graph (V τ , V τ+1), where the weight of the
edge {vτπ, vτ+1

π } is equal to xπ(vτ+1
π). See Figure 10.5 for an example. This

well-studied setting is discussed e.g. in [GKPS06, CVZ10].

We use the specialized technique as presented in [GKPS06], since it provides
an efficient way for rounding the fractional matching by doing local rounding
steps on fractional cycles. The procedure performs a depth-first search along

86 CHAPTER 10. ROUTING ALGORITHMS

V τ

V τ+1

0.5 0.5

0.3 0.3
0.4

0.2 0.6 0.2 1

Figure 10.5: The fractional flows between V τ (the positions of the requests at
time τ) and V τ+1 (the positions of the requests at time τ + 1) corresponds to
a fractional matching in a bipartite graph. The task is to round this matching
to integrality without introducing conflicts.

V τ

V τ+1

+γ −γ
+γ −γ

+γ −γ

V τ

V τ+1

+γ

−γ
+γ

−γ

Figure 10.6: The rounding procedure detects maximal paths (left) or cycles
(right) consisting of edges with fractional flow values. The edge flows alter-
natingly are increased respectively decreased by the same amount γ such that
the outflows at the nodes in V τ remain unchanged. The inflows at the nodes
in V τ+1 can change only at the two end nodes in the case of the maximal
path (left). Note that these end nodes necessarily are in V τ+1 and have slack
capacity.

edges with fractional flow until a cycle or a maximal path is found (illustrated
in Figure 10.6). These edges get alternatingly assigned to one of the two
sets E1 and E2. Then, one determines the maximal interval [−α, β] such
that adding a flow amount of γ ∈ [−α, β] to the edges in E1 and reducing
the same flow amount γ from the edges in E2 does not violate the node
capacity constraints

∑
π∈Πo x

′
π(v) ≤ 1 for all v ∈ V τ+1 and the non-negativity

constraints x′π(v) ≥ 0 for all π ∈ Πo and v ∈ V τ+1. With probability pα =
β/(α+β), one then decreases the flows for edges in E1 and increases the flows
for edges in E2 by an amount α. With the remaining probability pβ = 1−pα,
the flows in E1 get increased by β and the flows in E2 get decreased by β.
Such a local rounding step has the following properties.

i) The resulting vector x′π again corresponds to a fractional matching.
ii) Vector x′π has at least one integral entry more than xπ.
iii) The marginal probabilities are preserved as

E[x′π(v)] = xπ(v) + pαα− pββ = xπ(v) .

10.3. FLOW ROUTING 87

Repeating the procedure yields an integral solution after at most |V τ ||V τ+1|
rounding steps.

After having obtained an integral assignment through the rounding, we send
pod π from its current position vτπ to the new position vτ+1

π with xπ(vτ+1
π) =

1. Next timestep, the new MCF problem is again solved and the rounding
procedure is repeated to determine how to send the pods between τ + 1 and
τ + 2, and so on.

The preservation of the marginal probabilities has the consequence that also
expected values dependent on probabilities xπ(v) are preserved. One can,
for example, compute the expected number of pods moving closer to their
destination between timestep τ and τ + 1. Let Λ(π) the set of nodes which
are closer to the destination of π than its current position. Then the desired
quantity reads as follows, by the linearity of expectations.

E[
∑

π∈Πo

∑

v∈Λ(π)

x′π(v)] =
∑

π∈Πo

∑

v∈Λ(π)

xπ(v)

10.3.3 Extensions

We discuss two variations of the presented flow routing. The first has the
purpose of reducing the computation effort by limiting the planning horizon.
The second is an extension for taking into account forecasts on future demand.

Limited Delay Horizon

The running time of the column generation method (and also the primal-dual
scheme) for solving LP 10.2 heavily depends on the congestion on the network,
as we will see in the computational analysis chapter. This is because heavy
traffic results in large delays which in turn translates into a large number of
paths which need to be integrated into the formulation. As only one new
path per commodity is added per column generation step, this also means
that many column generation iterations may be necessary. Furthermore, the
solution time of solving the LP in each iteration increases.

If the LP cannot be solved in the available time, one has the option of reducing
the planning horizon. One simple way of doing this is to restrict the path set
to dynamic paths with a delay of at most a given threshold, here called delay
horizon. A limited delay horizon is particularly helpful when more requests
are open than the network is able to cope with. Instead of solving the MCF

88 CHAPTER 10. ROUTING ALGORITHMS

relaxation with paths far into the future, the delay horizon gives an option of
backlogging demands which can not be served in the near future. Spending
much effort for planning into the future is also not desirable as the situation
probably changes before the plans can be implemented.

Integrating Future Demand Forecasts

In case a forecast for future demands is available, it can potentially be helpful
for estimating and taking into account the effect of current decisions on future
demand. Corresponding to the interpretation of fractional flows as probabil-
ities used in section 10.3.2, one can introduce the uncertain future requests
with a demand corresponding to their occurrence probability.

Let pu,v,τ ′ ∈ [0, 1] be the probability for a release of a request from u to v
at future time τ ′ > τ . One can introduce an additional commodity ψu,v,τ ′

for each non-zero pu,v,τ ′ that is known. Let the set of these commodities
be represented by Ψ. Each such commodity can be inserted into the MCF
formulation 10.1 with a demand pu,v,τ ′ and with the restriction that its flows
are prohibited for all departure arcs corresponding to departure times prior
to the release time. Otherwise, the additional commodities Ψ are treated the
same way as the ones corresponding actually known open requests. The ob-
jective turns into minimizing

∑
π∈Πo

∑
a∈A h

π
ax

π
a +
∑
ψ∈Ψ

∑
a∈A h

ψ
ax

ψ
a , where

the second term relates to minimizing the expectation of the delays for future
requests. Note that this extension may heavily increase the number of com-
modities in the MCF which may result in large computation times. Further
ideas for approximating such large systems, in particular for the effects of the
commodities in Ψ, may be required.

Chapter 11

Computational Analysis

This chapter contains a computational study in which we compare the per-
formance of the presented routing algorithms experimentally. We use two
scenarios for this purpose, the first is an artificial test network while the
second is a scenario we received by courtesy of the PRT provider Ultra.

We will in this chapter analyze the presented algorithms with respect to a
series of criteria. Delay is the main quality criterion used in this thesis. We
use average delay as the core measure but also look at the delay distribution
and at different types of delay. Closely related is the routing throughput. We
will see that each of the algorithms has a maximal throughput above which
the system gets overloaded and the number of open requests increases rapidly
together with the delays. A third important measure will be the computation
time as a measure for the applicability of the approaches in real-time settings.

11.1 Grid Scenario

As a first network for the computational study we use a simple grid topology.
More precisely, we consider a grid of size 8 × 8, where each edge is subdi-
vided by introducing three additional vertices. The edges are oriented in an
alternating way as shown in Figure 11.1. We call the original 64 vertices of
the grid the grid nodes, and the other ones subdivision nodes. The network
consists of a total of 400 nodes and 448 arcs. Only the grid nodes are terminal
nodes, and hence used as origins and destinations for requests.

Requests are randomly generated as follows. Over 1000 timesteps, the number
of new requests at each timestep is an independent Poisson random variable
with some parameter λ, which we call release rate. Hence, a release rate of
e.g. λ = 3 means that three new requests appear at each of the first 1000
timesteps in average. For each request, origin and destination are chosen
uniformly at random among all pairs of two different terminal nodes.

90 CHAPTER 11. COMPUTATIONAL ANALYSIS

Figure 11.1: Left: Topology of the grid instance used for the computational
study. The blue squares indicate terminal nodes (stations). Right: Zoom into
the lower left corner.

11.1.1 Comparison of Algorithms

The plot in Figure 11.2 shows the average delay for sequential routing (Seq),
push routing (Push) and the adaptive flow routing approach (Flow), in de-
pendence of the release rate.

0 2 4 6
0

2

4

6

8

release rate

av
er
ag

e
d
el
ay

Seq

Push
Flow

Seq

Push
Flow

Figure 11.2: Average delay per request for different release rates for sequential
routing (Seq), push routing (Push) and the adaptive flow routing approach
(Flow).

11.1. GRID SCENARIO 91

For flow routing we use here a delay horizon (such as introduced in 10.3.3) of
5 (we will argue in Section 11.1.4 why this choice is reasonable). The under-
lying multicommodity flow problem is optimized using the column generation
technique until an optimality gap of 5% is reached. We call CPLEX 12.3 for
solving the LP formulation in each column generation iteration.

As one would expect, the three approaches perform similarly for low release
rates. Due to low congestion, the potential for optimization is limited. With
increasing traffic intensity, the performance differences of the three approaches
become evident.

We first compare the sequential and the push routing schemes. The sequential
algorithm outperforms push routing with its ability to plan resource occupa-
tions ahead into the future. Recall that Push routing sends pods that are in
transit forward along a shortest path to the destination whenever there is a
empty slot ahead. Similarly for departing pods, which leave the origin sta-
tion whenever the first node of the route is not occupied. The push approach
sends more and more pods onto the network, even in case of congestion. This
increases congestion even more, and many of the pods experience large delays
while queuing up for passing the next intersection ahead, similar to traffic
jams in road traffic. As a consequence, large demand leads to a decrease
in system throughput for the push algorithm. This is in contrast to the se-
quential scheme, which plans trips to the end and makes reservations for all
required resources prior to departure. When Seq faces high demand, it will
leave the excess pods at the origin station until a slot can be found. This way
they do not occupy network resources, further congestion is avoided and no
traffic jams can occur.

Comparing Seq and the adaptive Flow approaches, we observe that Flow
leads to less delays in average. Again, for low release rates, the differences
are small, as there are many good routes to handle new requests, even if
the previously routed pods keep their reservations fixed. However, for higher
release rates, adaptivity turns out to be valuable and the adaptive approach
reduces average delays by roughly one third.

These observations are confirmed by Figure 11.3 where the arrival rate, i.e. the
average number of pods arriving at their destinations over time, is compared
to the release rate. The arrival rate is computed after cutting off the start-
up (first 100 timesteps) and cool-down phases (after the release of the last
request). A system is stable when the arrival rate equals the release rate.
Otherwise, if the arrival rate does not match the release rate over a long time
span, the number of open requests increases over time and also the delays
increase rapidly. We call a release rate stable with respect to a network,

92 CHAPTER 11. COMPUTATIONAL ANALYSIS

a demand pattern and a routing algorithm if the arrival rate matches the
release rate over a large number of timesteps. We call the largest stable
release rate the critical release rate. Recall that in Chapter 7, we have derived
the relaxed capacity ϕ dependent on network and demand pattern and have
argued that release rates above ϕ cannot be stable, independent of which
routing algorithm is applied.

release rate

a
rr

iv
a
l

ra
te

0 2 4 6 8 10
0

2

4

6

8

10

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

release rate

ar
ri

va
l

ra
te

6 7 8
6

7

8

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

Figure 11.3: Left: Arrival rate against release rate for the three approaches.
The system is stable if the arrival rate matches the release rate and the data
points lie on the dotted diagonal line. The critical rate, where the stable
operation ends, is indicated for each approach by an arrow. The horizontal
and vertical dashed lines indicate the relaxed capacity ϕ. Right: Zoom into
the critical rates for Seq and Flow.

While Seq and Flow have roughly the same critical release rate, Push can
handle one third less traffic demand. The arrival rate of Push even reduces
with additional demand for the reasons mentioned before. Sequential routing
reaches roughly 85% of the relaxed capacity while Flow reaches 89%. Above
the critical rates, Seq keeps its arrival rate roughly constant while Flow can
further increase its output. This can be explained with the ability of the latter
to choose which part of demand it serves and which demand is backlogged.
In case of excess demand, flow routing will try to serve as many requests as
possible with the available resources. This results in a slower increase of the
number of open requests, as can be observed in Figure 11.4.

The flow algorithm (respectively the underlying flow formulation) aims at

11.1. GRID SCENARIO 93

simulated time

n
u
m
b
er

of
op

en
re
q
u
es
ts

0 200 400 600 800 1000
0

200

400

600

800

1000

Seq

Push
Flow

Seq

Push
Flow

Figure 11.4: Number of open requests over simulation time. In the plotted
instance, 7695 requests (λ = 7.8) are released over 1000 timesteps. The release
rate is slightly above critical for Seq and Flow, and clearly above for Push.
Flow uses the available network capacity more efficiently and the number
of open request grows only slowly. For Push, the number of open requests
increases rapidly and leave the plotted area.

routing as many requests as quickly as possible also in case of stable opera-
tion. This can be observed in the histogram of Figure 11.5. Comparing the
distributions of Seq and Flow, one observes that Flow routes considerably
more requests with low delays but also has a longer tail distribution and a
maximum delay which is a multiple of Seq. While Seq routes the requests
with priority according to the release order, Flow does not know such a priori-
tization. It chooses the next requests to depart such to optimize the objective
of minimizing the sum of delays, resulting in a 45% decrease of the average
delay for this instance compared to Seq. However, this scheme has the danger
of large delays for a small part of the requests, as they might repeatedly not
be part of the set of departing requests. This is in particular the case for long
trips crossing highly demanded network regions.

94 CHAPTER 11. COMPUTATIONAL ANALYSIS

0 5 10 15 20 25 30
0

200

400

600

800

1000

Seq

Push
Flow

Seq

Push
Flow

delay

n
u
m
b
er

of
tr
ip
s

Figure 11.5: Distribution of delays for an instance with 5971 requests released
over 1000 timesteps (λ = 6.0). The release rate of 6.0 is stable for Seq and
Flow but unstable for Push. All request with delays ≥ 30 are cumulated in
the rightmost bar. The vertical dashed lines indicate the average delays. The
maximum delays are 31 for Seq, 68 for Flow and 519 for Push.

11.1.2 Delay Types

Further insights can be gained by comparing the different kinds of delays. We
distinguish the three delay types departure delay, waiting delays and detour
delays. The first refers to delays stemming from late departure, the second
to delays through waiting while in transit and the third category to delays
from driving a route which is not shortest. The delays split into the three
categories are shown in Figure 11.6. For the departure delay, the picture
is basically the same as for total delay, except that Push can roughly keep
up with Seq in this category until the curve for Push explodes at its critical
release rate. Flow produces less departure delays.

For the waiting delays, one observes that Seq and Flow stabilize after their
critical rates. If additional delays cannot be avoided, they get assigned to
pods which have not departed yet. This has the advantage that the network
does not get further congested. Flow routing can again use its ability for
concurrent and adaptive planning to keep the delays lower than Seq. Also
push routing has a plateau in the waiting delays, as can be seen in the zoom-

11.1. GRID SCENARIO 95

0 2 4 6 8 10
0

1

2

3

4

5

6

Seq

Push
Flow

Seq

Push
Flow

release rate

av
er
ag

e
d
ep

ar
tu
re

d
el
ay

0 2 4 6 8 10
0

1

2

3

4

5

6

Seq

Push
Flow

Seq

Push
Flow

release rate
av
er
ag

e
w
ai
ti
n
g
d
el
ay

0 2 4 6 8 10
0

1

2

3

4

5

6

Seq

Push
Flow

Seq

Push
Flow

release rate

av
er
ag

e
d
et
ou

r
d
el
ay

0 2 4 6 8 10
0

10

20

30

40

50

Seq

Push
Flow

Seq

Push
Flow

release rate

av
er
ag

e
w
ai
ti
n
g
d
el
ay

Figure 11.6: Average delays split up into the three categories departure delays
(upper left), waiting delays (upper right) and detour delays (lower left). The
vertical lines indicate the critical release rates for the three algorithms. Lower
right: Zoom-out of the waiting delay plot, to capture the plateau of the Push
curve.

out of Figure 11.6 (lower right). Here, the plateau stems from the fact that
at some point the maximum congestion level of the network is reached.

Detour delays here only occur for Seq. Push has none as it uses shortest
routes by design. Flow in principle can choose routes which are not shortest.
However, for the present parameter choice and network topology, no detours

96 CHAPTER 11. COMPUTATIONAL ANALYSIS

are possible within the delay horizon. Note that the route choice is still free
among all routes of shortest path length (whereof many can exist in grid
networks) and that flow routing makes the assignment of pods to these in
a coordinated way. Different choices for the delay horizon parameter are
discussed in the next section.

11.1.3 Computation Times

The plot in Figure 11.7 shows the time needed to compute the routings.
The simulations were performed by a standard laptop computer with Intel
Core i7 2.7GHz dual-core processor and 4GB RAM. The computation times
are to be considered with reservations, as there is potential for more efficient
implementation of the algorithms, more extensive parameter tuning and more
powerful hardware. Nonetheless, Figure 11.7 gives an indication of the orders
of magnitude and of the dependency between traffic demand and computation
time.

0 2 4 6 8 10
0.01

0.1

1

10

100

Seq

Push
Flow

Seq

Push
Flow

release rate

co
m
p
u
ta
ti
on

ti
m
e

Figure 11.7: Computation time in seconds per simulated timestep for the
three approaches (logarithmic scale).

Computation time of the flow algorithm increases rapidly with increasing re-
lease rate. This is due to the underlying multicommodity flow LP, which
grows with increasing number of commodities (open requests) and the in-
creasing number of paths that need to be taken into account when conges-
tion increases. Nonetheless, the computation time for stable release rates are

11.1. GRID SCENARIO 97

promising for a real-time capable implementation. For release rates outside
the stability region, the computation times for Flow increase quickly.

11.1.4 Delay Horizon Trade-off in Flow Routing

Recall that the delay horizon decides in the flow routing approach on how
many path alternatives are generated for each request. For pods at the origin,
path alternatives which induce a larger delay than the delay horizon are not
taken into account. Pods which cannot be assigned to such a path remain at
the origin and are backlogged.

3 4 5 6 7 8
0

2

4

6

8

10

∞
10
5
2
1

∞
10
5
2
1

release rate

av
er
a
ge

d
el
ay

3 4 5 6 7 8
0

2

4

6

8

10

∞
10
5
2
1

∞
10
5
2
1

release rate

co
m
p
u
ta
ti
on

ti
m
e

Figure 11.8: Left: Average delay for flow routing with different delay horizons
1, 2, 5, 10 and ∞. Right: Corresponding computation times, in seconds per
simulated timestep.

The delay horizon importantly influences the number of path alternatives in
the multicommodity flow problem which in turn dominates the computation
time. Furthermore, one can argue that planning too far into the future is
not relevant, as the situation will change due to new request releases. On the
other hand, a short delay horizon can diminish the coordination potential and
restrict from taking into account alternative routes. The trade-off between
accuracy and computation time is shown in Figure 11.8. For this, we again
use column generation with a termination gap of 5%.

One observes that a delay horizon of 5 is a good compromise to the trade-
off, as it provides almost the same results as delay horizon ∞ but using

98 CHAPTER 11. COMPUTATIONAL ANALYSIS

average number of average number of
delay horizon CG iterations per timestep variables in MCF LP

∞ 5.28 1828.6
10 4.93 1687.2
5 3.51 1254.3
2 2.52 919.4
1 2.42 785.8

Table 11.1: Numbers of column generation (CG) iterations and numbers of
path variables in the MCF problem for different delay horizons. The numbers
are given for an instance with 5971 requests released over 1000 timesteps.

significantly less computation effort. The effect of the delay horizon on the
computation effort is emphasized by the numbers in Table 11.1. It shows that
both the numbers of column generation iterations per timestep and the path
variables decrease when restricting the delay horizon. Both effects bring a
reduction in solution time for the MCF relaxation.

11.1.5 Variants of Sequential Routing

In Section 10.1 we discussed the following versions of sequential routing. Di-
rect sequential routing is the variant of Seq where no waiting is allowed for
pods after departure. Shortest-path sequential in turn does not allow driv-
ing detours. A third variant results if both restrictions are combined. In
Figure 11.9 we compare the average delays for Seq and its variants.

The data shows that the unrestricted sequential routing achieves the lowest
delays, together with shortest-path sequential. The variants with prohibited
waiting in transit loose as their set of routing alternatives is restricted. On
the other hand, one can also observe that for high release rates, the variant
with prohibited waiting yields the best throughput. It appears that reduced
resource occupation pays off for high transit demands.

11.1.6 Optimality Gap in the Offline Case

The performance of the routing algorithms and in particular the potential for
further improvement can also be studied by comparing the resulting delays to
a theoretical lower bound. As a lower bound, we use here the optimal average

11.1. GRID SCENARIO 99

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Seq

no detours
no waiting

no detours
and no waiting

Seq

no detours
no waiting

no detours
and no waiting

release rate

av
er
a
ge

d
el
ay

6 7 8 9 10 11
6

6.5

7

7.5

Seq

no detours
no waiting

no detours
and no waiting

Seq

no detours
no waiting

no detours
and no waiting

release rate

a
rr
iv
a
l
ra
te

Figure 11.9: Average delays (left) and arrival rates (right) for sequential
routing variants. In the second picture, the dotted line corresponds to stable
arrival rates.

50 100 150 200 250
0

0.5

1

1.5

2

Seq

Push
Flow

Seq

Push
Flow

number of requests

re
la
ti
ve

ga
p

Figure 11.10: Relative gap between total delay for the three routing ap-
proaches and the lower bound from the fractional optimal MCF solution.

delay that a router could find if it knew all requests from the beginning and
if it were allowed to split requests into fractions. This quantity certainly is
a lower bound to what a router without these privileges can achieve and can

100 CHAPTER 11. COMPUTATIONAL ANALYSIS

be computed efficiently by solving the corresponding multicommodity LP.

In order to give the hypothetical router not too much of an unfair advantage
we use instances in which all requests have release time zero. In this offline
case all requests are known from the beginning. The scenario parameter is
now the total number of requests. Except this, we use the same network and
demand distribution as before. The delay horizon for Flow is again set to 5
and column generation is used until an optimality gap of 5% is reached.

The relative gap of a routing is defined as follows, where LB corresponds to
the value of the lower bound.

∑
π∈Π delπ − LB

LB

The results are shown in Figure 11.10. The gap of the flow routing stems from
the rounding procedure. Additionally, a part of the gap is contributed by
inaccuracies from column generation termination criterion and delay horizon.
One observes that the coordinated planning in Flow manages to close a large
part of the optimality gap compared to sequential routing.

11.1.7 Variable Demand

This far, we have assumed that demand is stationary over time. In this section
we compare the properties of routing paradigms under demand changes.

For this we introduce a peak traffic phase with double demand. We run
simulations over three phases of 400 timesteps each, where the phase has
release rate 3.5, the second has release rate of 7.0 and the third is again back
to 3.5. Figure 11.11 shows the evolution of the number of open requests over
the three phases. In the first phase, all three algorithms are stable and the
number of open requests is similar at this low demand intensity. In the second
phase, the number of open requests increases. For Push, the demand level is
clearly instable, whereas the open requests settle at constant levels for Seq
and Flow. This is expected, as the peak release rate of 7.0 is stable for Seq
and Flow but not for Push, according to the observations from Figure 11.3.

The third phase is again at low intensity. Seq and Flow both recover quickly
from the high demand and achieve the same low level of open requests as in
the first phase. Push in contrast recovers only slowly, which is a result of the
decreased throughput in congested operation observed in Figure 11.3.

11.2. CASE STUDY 101

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

release rate 3.5 release rate 7.0 release rate 3.5

Seq

Push
Flow

Seq

Push
Flow

simulated time

n
u
m
b
er

of
op

en
re
q
u
es
ts

Figure 11.11: Number of open requests over time. The simulation of 1200
timesteps is split into three parts, where the second represents a peak phase
with double release rate.

11.2 Case Study

The second network considered is from a case study for a new PRT system. We
received the data by courtesy of Ultra, the company which developed and now
operates the Heathrow PRT system. The network is shown in Figure 11.12,
it consist of 60 stations and a total track length of 39.4 km. The nominal
speed on the track segments is 10 m/s (7.5 m/s for track segments with high
slope or curvature). Such to make the network fit into the model, we have
subdivided the tracks into segments of headway length. For this, we have
assumed a headway time of 5 seconds. The resulting graph consists of 702
nodes and 819 arcs.

We compare simulation results for two demand patterns, visualized in Fig-
ure 11.13. The first is part of the Ultra test scenario and represents a peak
load case.

We can use the relaxed capacity derived in Chapter 7 to verify the suitability
of the system layout for the given demand. The demand scenario consists of
4170 passenger trips per hour. Assuming a pod sharing rate of 1.5 passengers
per pod, this corresponds to 2780 pods per hour. On the other hand, the

102 CHAPTER 11. COMPUTATIONAL ANALYSIS

Figure 11.12: Second network topology used for the computational study.
The black dots represent nodes, stations are shown in blue.

11.2. CASE STUDY 103

relaxed capacity for the given network and demand pattern results to be
ϕ̄ = 3.16 requests per timestep. The achievable throughput for the given
network and demand pattern is hence at most 3.16 times the capacity of a
single line. With a headway of 5 seconds (single line capacity of 720 pods
per hour), a capacity limit of 2275 pods per hour results for the network. It
turns out that this capacity is not enough to match the required demand of
2780 pods per hour. A line capacity of at least 880 pods per hour is required,
corresponding to a headway of less than 4.1 seconds. This example emphasizes
the usefulness of the relaxed capacity for the design of PRT systems.

Figure 11.13: Congestion distribution. Arcs are highlighted according to the
amount of flow they carry in the optimal solution of the concurrent flow
problem 7.1. Left: For the peak demand scenario. Right: For uniformly
distributed demands.

Figure 11.14 shows the simulation results for this scenario. Here, the per-
formances of Seq, Push and Flow are very comparable. The reason is that
the demand is concentrated in the scenario and that alternative routes are
rare. The scenario contains two independent capacity bottlenecks. The best
throughput is achieved by pushing pods with the highest possible rate through
this bottleneck. All three investigated algorithms do this, and all are stable
basically up to the theoretical capacity bound.

As a second demand pattern, we use as earlier the uniformly distributed
demands with parametrized intensity. For this demand pattern the congestion
is shown in Figure 11.13, right side, and the relaxed capacity is at 2.95 requests
per timestep.

104 CHAPTER 11. COMPUTATIONAL ANALYSIS

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

release rate

av
er

a
ge

d
el

ay

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

release rate

ar
ri

va
l

ra
te

1 2 3 4
0.01

0.1

1

10

100

Seq

Push
Flow

Seq

Push
Flow

release rate

co
m
p
u
ta
ti
on

ti
m
e

Figure 11.14: Results for the test scenario comparing Seq, Push and Flow
in dependency of the release rate. Upper left: Average delay. Upper right:
Arrival rate. Below: Computation time in seconds per timestep (logarithmic
scale).

The analysis for this case is shown in Figure 11.15. Here, the differences
between the algorithms are more pronounced. At release rates of about 80
to 90 percent of the theoretical capacity bound, flow routing achieves average
delays which are up to one third better than for the other two algorithms.
At release rates above the capacity bound, we observe the same effects as for

11.2. CASE STUDY 105

the grid scenarios. Seq keeps the arrival rate constant, Flow routes as many
requests as possible and Push gets congested and the arrival rate decreases.
Also in this case we would like to emphasize that the relaxed capacity seems
to predict the achievable performance well.

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

release rate

av
er

a
ge

d
el

ay

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

ϕ̄

Seq

Push
Flow

Seq

Push
Flow

release rate

ar
ri

va
l

ra
te

1 2 3 4
0.01

0.1

1

10

100
Seq

Push
Flow

Seq

Push
Flow

release rate

co
m
p
u
ta
ti
on

ti
m
e

Figure 11.15: Results for the test scenario with uniform demand pattern.
Upper left: Average delay. Upper right: Arrival rate. Below: Computation
time in seconds per timestep (logarithmic scale).

106 CHAPTER 11. COMPUTATIONAL ANALYSIS

Chapter 12

Conclusion

In this part of the thesis, we have presented a model suitable for the investiga-
tion of online routing algorithms. The model has been designed in particular
for routing in Personal Rapid Transit. We have in this research also tried to
establish the link between the research fields of PRT routing, AGV routing
and combinatorial optimization in general.

The first contribution of this project is a better understanding of the capacity
of a PRT network. Much literature is available on the capacity of a single
track line. Our contribution is to suggest a method for computing the relaxed
capacity as an upper bound on the capacity of a track network. The relaxed
capacity is measured in multiples of the line capacity and is independent
of design and system-specific parameters. We have for this purpose used
a standard flow formulation. The results show that the relaxed capacity is
close to the achievable throughput; in the test scenarios we observed a gap
of around 10% or smaller. We therefore believe that this quantity is helpful
for estimating network capacity in the design stage of new PRT systems. For
the case study received from Ultra, for example, we could conclude that a
headway time of less than 4.1 seconds is necessary in order for the network
to cope with the demand.

The second main contribution is the evaluation of routing schemes and in
particular of the benefit of adaptivity and coordination in routing algorithms.
For this purpose, we have introduced a new adaptive algorithm based on a
flow formulation through a time-expanded network. Also, we have reviewed
the well-known sequential routing scheme and the push routing algorithm as
a representative of the asynchronous routing schemes. With respect to the
computational complexity of PRT routing, we could show that it is NP-hard
to find the optimal solution. There is hence little hope for finding methods
computing an exact solution in useful time and the focus needs to be shifted
to approximation algorithms and heuristics.

The computational results allow several conclusions.

108 CHAPTER 12. CONCLUSION

i) Sequential routing is a comparably simple and fast scheme, and its results
are solid. It performed well in all computations and has almost no limits
in the problem size it can handle. Its maximum throughput is close to
the achievable capacity and remains so in case of excess demand.

ii) The flow routing scheme is able to outcompete sequential routing in some
cases. The adaptive and concurrent planning leads to considerably less
delays. Also the throughput is higher in situations with excess demand.
In other cases we have observed that the benefit of concurrent planning
is limited and that the results of flow and sequential routing are com-
parable. Flow routing is a relatively heavy approach as it requires a
large amount of computations for taking concurrent routing decisions
repeatedly. With advanced multicommodity flow solvers and more rig-
orous tuning, we expect that the computational efficiency can be further
increased.

iii) The advantage of push routing is that it is conceptually simple, very fast
and can be implemented in a distributed way such that no central control
is necessary. However, the results show that push routing is not compet-
itive with the two other approaches as it quickly gets overcongested and
real traffic jams can build up. We believe that this is an inherent problem
of asynchronous (distributed) schemes, as the lack of a central controller
makes planning and efficient use of the available resources difficult.

In summary, one can conclude that both the adaptive flow algorithm and se-
quential routing have their strengths and a choice between them needs careful
analysis of the requirements.

This project has shown that adaptivity can lead to considerable reductions
in passenger delays. We have presented an adaptive algorithm exploiting this
potential and yielding results close to theoretical bounds. This result can
be the incentive for developing other, possibly simpler and faster, adaptive
algorithms. An idea into this direction would be to combine sequential routing
with adaptivity and to benefit from the advantages of both.

Another direction for future improvements is the choice of the objective func-
tion. A concurrent approach requires a measure for the concurrent quality of
a solution. It needs to be able to trade-off additional delays for some pods
against the earlier arrival of others. We have used here the unweighted sum
of delays as a measure treating each request with equal priority. However, it
turns out that some requests can experience very large delays in this setting.
Requests which are for some reason difficult to route may get deferred more
and more into the future. Even if consistent with the objective function, this

109

behavior is not desirable. There is need for more investigation in this area,
ideas go towards penalizing large delays in the objective or measuring delays
relatively to the trip length. In the end, there is also an almost ethical ques-
tion that one needs to answer: how much delay may be charged to one group
of passengers if a second group can benefit in turn?

Concluding, we hope that this dissertation can support the current excit-
ing developments towards large-scale implementations of PRT with advanced
methods from operations research. Our focus in this work was clearly limited
to the routing aspects in PRT. More work is necessary to integrate other
aspects such as empty vehicle routing, station handling and maintenance
management. All these challenges have in common that the possibility for
central control allows for coordinated and optimized operation. The success
of larger-scale systems will depend on the question whether system design
and operation lead to a level of service which is able to keep the promises and
is competitive with other transportation modes.

110 CHAPTER 12. CONCLUSION

Bibliography

[2ge11] 2getthere. Personal Rapid Transit. URL: http://www.

2getthere.eu/?page_id=58, accessed December 11, 2011.

[ABN08] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch
spanning trees. In Foundations of Computer Science, FOCS ’08,
pages 781–790, 2008.

[ABR10] J.A.D. Atkin, E.K. Burke, and S. Ravizza. The airport ground
movement problem: Past and current research and future di-
rections. In 4th International Conference on Research in Air
Transportation, ICRAT, 2010.

[adHS95] F. Meyer auf der Heide and C. Scheideler. Routing with bounded
buffers and hot-potato routing in vertex-symmetric networks. In
Proceedings of the Third Annual European Symposium on Algo-
rithms, ESA, pages 341–354, 1995.

[Alb01] C. Albrecht. Global routing by new approximation algorithms for
multicommodity flow. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20:622 –632, 2001.

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows.
Prentice Hall, 1993.

[And98] J.E. Anderson. Control of Personal Rapid Transit systems. Jour-
nal of Advanced Transportation, 32:57–74, 1998.

[And03] I.J. Andréasson. Reallocation of empty Personal Rapid Transit
vehicles en route. Transportation Research Record, 1838:36–41,
2003.

[And09] I.J. Andréasson. Extending PRT capabilities. In Proceedings of
the 12th APM conference ASCE, 2009.

[ATR89] Personal Rapid Transit (PRT); Another option for urban transit?
Technical report, Advanced Transit Association Inc. (ATRA),
1989.

112 BIBLIOGRAPHY

[ATR03] Status and potential of Personal Rapid Transit, ridership anal-
ysis. Technical report, Advanced Transit Association Inc.
(ATRA), 2003.

[ATR11] Personal Rapid Transit definition. Available online: http://

www.prtconsulting.com/definition.html, accessed Decem-
ber 11, 2011.

[BMIMS04] C. Busch, M. Magdon-Ismail, M. Mavronicolas, and P. Spirakis.
Direct routing: Algorithms and complexity. In Proceedings of the
12th Annual European Symposium on Algorithms, ESA, pages
134–145, 2004.

[BT05] P.H. Bly and P. Teychenne. Three financial and socio-economic
assessments of a Personal Rapid Transit system. In Proceed-
ings of the Tenth International Conference on Automated People
Movers, pages 39+, 2005.

[CG11] M. Castangia and L. Guala. Modelling and simulation of a PRT
network. 17th International Conference on Urban Transport and
the Environment, pages 459–472, 2011.

[CH07] J.A. Carnegie and P.S. Hoffman. Viability of Personal Rapid
Transit in New Jersey. Technical report, presented to New Jersey
State Legislature, 2007.

[Cha11] S. Chaturvedi. PRT promises to improve city
commutation in Gurgaon, Amritsar. URL: http:

//www.governancenow.com/news/regular-story/

prt-promises-improve-city-commutation-gurgaon-amritsar,
Accessed Dec 08, 2011.

[Con12] PRT Consulting. Personal Rapid Transit capacity. Avail-
able online: http://www.prtconsulting.com/docs/

MullerPersonalRapidTransitCapacity.pdf, accessed January
04, 2012.

[Coo92] S. Cook. The P versus NP problem. Available online: www.

claymath.org/prizeproblems/pvsnp.htm, 1992.

[CVZ10] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent random-
ized rounding via exchange properties of combinatorial struc-
tures. In Proceedings of the 51st IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 575–584, 2010.

BIBLIOGRAPHY 113

[DGR06] K. Dhamdhere, A. Gupta, and H. Räcke. Improved embeddings
of graph metrics into random trees. In Proceedings of the seven-
teenth annual symposium on discrete algorithms, SODA, pages
61–69, 2006.

[DSE09] V.L. Dos Santos Eleutério. Finding Approximate Solutions for
Large Scale Linear Programs. PhD thesis, ETH Zurich, 2009.

[EU11] White paper - roadmap to a single european transport area -
towards a competitive and resource efficient transport system.
Technical report, European Commission, 2011.

[FF58] L.R. Ford, Jr. and D.R. Fulkerson. Constructing maximal dy-
namic flows from static flows. Operations Research, 6:419–433,
1958.

[FF62] L.R. Ford, Jr. and D.R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[Fic64] D. Fichter. Individualized automatic transit and the city. pub-
lished by B.H. Sikes, 1964.

[Fle00] L.K. Fleischer. Approximating fractional multicommodity flow
independent of the number of commodities. SIAM Journal on
Discrete Mathematics, 13:505–520, 2000.

[FLKH05] R. Freling, R.M. Lentink, L.G. Kroon, and D. Huisman. Shunt-
ing of passenger train units in a railway station. Transportation
Science, 39:261–272, 2005.

[FS02] L.K. Fleischer and M. Skutella. The quickest multicommodity
flow problem. In 6th Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 36–53, 2002.

[FS06] L.K. Fleischer and M. Skutella. The quickest multicommodity
flow problem. In Integer Programming and Combinatorial Op-
timization, volume 2337 of Lecture Notes in Computer Science,
pages 36–53. Springer-Verlag, 2006.

[GBM+02] J. Garcia, A. Berlanga, J.M. Molina, J.A. Besada, and J.R.
Casar. Planning techniques for airport ground operations. In
Proceedings of 21st Digital Avionics Systems Conference, 2002.

114 BIBLIOGRAPHY

[GHS98] T. Ganesharajah, N.G. Hall, and C. Sriskandarajah. Design and
operational issues in AGV-served manufacturing systems. Annals
of Operations Research, 76:109–154, 1998.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability, A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

[GK98] N. Garg and J. Könemann. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems. In
Proceedings of the 39th Symposium on Foundations of Computer
Science (FOCS), pages 300–309, 1998.

[GKPS06] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. De-
pendent rounding and its applications to approximation algo-
rithms. ACM, 53:324–360, 2006.

[HHS07] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over
time: Efficient algorithms and complexity. Theoretical Computer
Science, 379:387 – 404, 2007.

[HUD68] Tomorrow’s transportation; new systems for the urban future.
Technical report, Ministry of Housing and Urban Development
(HUD) and Urban Mass Transit Association (UMTA), 1968.

[IBOB77] J.H. Irving, H. Bernstein, C.L. Olson, and J. Buyan. Fundamen-
tals of Personal Rapid Transit. Lexington Books, 1977.

[ITH10] Feasibility of PRT in Ithaca, New York - executive summary.
Technical report, New York State Department of Transporta-
tion, 2010.

[Joh05] R.E. Johnson. Doubling Personal Rapid Transit capacity with
ridesharing. Transportation Research Record: Journal of the
Transportation Research Board, pages 107–112, 2005.

[KBK93] N.N. Krishnamurthy, R. Batta, and M.H. Karwan. Developing
conflict-free routes for automated guided vehicles. Operations
Research, 41:1077–1090, 1993.

[KJR07] K. Kim, S. Jeon, and K. Ryu. Deadlock prevention for automated
guided vehicles in automated container terminals. In Container
Terminals and Cargo Systems, pages 243–263. Springer Berlin
Heidelberg, 2007.

BIBLIOGRAPHY 115

[KKH08] Beyond oil: Shanghai. Technical report, School of Architecture,
Royal University College of Fine Arts, Stockholm, 2008.

[KM75] A.L. Kornhauser and P. McEvaddy. A quantitative analysis
of synchronous vs. quasi-synchronous network operations of au-
tomated transit systems. Transportation Research, 9:241–248,
1975.

[KPSW09] R. Koch, B. Peis, M. Skutella, and A. Wiese. Real-time message
routing and scheduling. In APPROX-RANDOM, pages 217–230,
2009.

[KT91] Chang W. Kim and J.M.A. Tanchoco. Conflict-free shortest-time
bidirectional AGV routeing. International Journal of Production
Research, 1991.

[Leu04] J.Y-T. Leung. Handbook of scheduling: algorithms, models, and
performance analysis. Chapman Hall, 2004.

[LM11] J.D. Lees-Miller. Empty Vehicle Redistribution for Personal
Rapid Transit. PhD thesis, University of Bristol, 2011.

[LMHD09] J.D. Lees-Miller, J.C. Hammersley, and N. Davenport. Ride shar-
ing in Personal Rapid Transit capacity planning. In Automated
People Movers 2009, pages 321–332, 2009.

[LMHW10] J.D. Lees-Miller, J.C. Hammersley, and R.E. Wilson. Theoretical
maximum capacity as benchmark for empty vehicle redistribu-
tion in Personal Rapid Transit. Transportation Research Record,
2010.

[LMR94] T. Leighton, B. Maggs, and S. Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. In Combinatorica,
volume 14, pages 167–180, 1994.

[Low03] M. Lowson. Service effectiveness of PRT vs collective-corridor
transport. Journal of Advanced Transportation, 37:231–241,
2003.

[Mar05] D. Marx. A short proof of the NP-completeness of minimum sum
interval coloring. Operations Research Letters, 33:382–384, 2005.

[MKGS05] R.H. Möhring, E. Köhler, E. Gawrilow, and B. Stenzel. Conflict-
free real-time AGV routing. In Proceedings of Operations Re-
search, pages 18–24, 2005.

116 BIBLIOGRAPHY

[MS11] K. Müller and S.P. Sgouridis. Simulation-based analysis of Per-
sonal Rapid Transit systems: service and energy performance
assessment of the Masdar City PRT case. Journal of Advanced
Transportation, 45:252–270, 2011.

[NSS99] S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring
problem on interval graphs. Algorithmica, 23:109–126, 1999.

[Oel08] M. Oellrich. Minimum-Cost Disjoint Paths Under Arc Depen-
dences - Algorithms for Practice. PhD thesis, Technische Uni-
versität Berlin, 2008.

[PSW09] B. Peis, M. Skutella, and A. Wiese. Packet routing: Complexity
and algorithms. In Proceedings of the 7th Workshop on Approx-
imation and Online Algorithms, WAOA, 2009.

[PT88] E.R. Petersen and A.J. Taylor. An optimal scheduling system
for the Welland canal. Transportation Science, 22:173, 1988.

[Rub75] F. Rubin. Routing algorithms for urban rapid transit. Trans-
portation Research, 9:215–223, 1975.

[RVVN90] P.I. Rivera-Vega, R. Varadarajan, and S.B. Navathe. Scheduling
data redistribution in distributed databases. In Proceedings of
the Sixth International Conference on Data Engineering, pages
166–173, 1990.

[SAN09] Request for proposal for San José automated transit network
FFRDC development services. Technical report, Department of
Transportation of the City of San José, 2009.

[Sch98] C. Scheideler. Universal Routing Strategies for Interconnection
Networks. Springer-Verlag, 1998.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Effi-
ciency. Springer-Verlag, 2003.

[SKM08] Daventry PRT scoping study, phase 2 report. Technical report,
Sinclair Knight Merz Pty Ltd., 2008.

[SM07] J. Schweizer and L. Mantecchini. Performance analysis of large
scale PRT networks: Theoretical capacity and microsimulations.
Technical report, Bologna University, 2007.

BIBLIOGRAPHY 117

[Spe06] I. Spenke. Complexity and Approximation of Static k-splittable
Flows and Dynamic Grid Flows. PhD thesis, Technische Univer-
sität Berlin, 2006.

[ST97] A. Srinivasan and C. Teo. A constant-factor approximation algo-
rithm for packet routing, and balancing local vs. global criteria.
In Proceedings of the ACM Symposium on the Theory of Com-
puting, STOC, pages 636–643, 1997.

[Ste08] B. Stenzel. Online Disjoint Vehicle Routing with Application to
AGV Routing. PhD thesis, Technische Universität Berlin, 2008.

[Suk11] S. Sukayna. Gurgaon eyes elevated pods. Times of India, 2011.

[SV08] R. Stahlbock and S. Voß. Operations research at container ter-
minals: a literature update. OR Spectrum, 30:1–52, 2008.

[SWE09] Podcars - new travel on track. Technical report, Swedish Ministry
of Enterprise, Energy and Communications and Svensk Informa-
tion, 2009.

[SZ11] K. Schüpbach and R. Zenklusen. Approximation algorithms
for conflict-free vehicle routing. In Proceedings of the 18th An-
nual European Symposium on Algorithms (ESA), pages 640–651,
2011.

[SZ12] K. Schüpbach and R. Zenklusen. An adaptive routing approach
for personal rapid transit. Technical report, ETH Zürich, 2012.

[Szk99] T. Szkaliczki. Routing with minimum wire length in the dogleg-
free manhattan model is NP-complete. SIAM Journal on Com-
puting, 29:274–287, 1999.

[TA03] G. Tegnér and I.J. Andréasson. Personal automated transit for
Kungens Kurva, Sweden - a PRT system evaluation within the
EDICT project. In 9th APM Conference, 2003.

[THA+07] G. Tegnér, M. Hunhammar, I.J. Andréasson, J.E. Nowack, and
K. Dahlström. PRT in Sweden: From feasibility studies to public
awareness. In Proceedings of 11th International Conference on
Automated People Movers, 2007.

[ULT09] Advanced Transport Systems ultra PRT. Available on-
line: http://www.ultraprt.com/uploads/Documents/

ULTraDescriptionOct09.pdf, accessed May 1st, 2009.

118 BIBLIOGRAPHY

[ULT11] Ultra PRT. ULT: http://www.ultraglobalprt.com, accessed
December 11, 2011.

[Vis06] I.F.A. Vis. Survey of research in the design and control of auto-
mated guided vehicle systems. European Journal of Operational
Research, 170:677–709, 2006.

[Wad73] R.M. Wade. The Manhattan project: a cost oriented control
system for a large Personal Rapid Transit network. IBM Corp.,
Technical Report, 1973.

[Wer10] S. Werren. Feasibility of the conflict-free routing problem. Tech-
nical report, Semester thesis at ETH Zürich, 2010.

[WH10] D. Wynn and N. Hill. EU Transport GHG: Routes to 2050
- review of potential radical future transport technologies and
concepts. Technical report, prepared under a contract between
the European Commission and AEA Thechnology, 2010.

[Xit08] C. Xithalis. Synchronous control method for Personal Rapid
Transit systems. In 10th International Conference on Application
of Advanced Technologies in Transportation, 2008.

[ZJM09] P. Zheng, D. Jeffery, and M. McDonald. Development and evalu-
ation of traffic management strategies for Personal Rapid Transit.
In Industrial Simulation Conference, 2009.

Short Curriculum Vitae

Kaspar Schüpbach

born on June 22, 1981

from Landiswil BE, Switzerland

since 05/2008 Doctoral studies
ETH Zurich
Doctoral student and teaching assistant
at the Institute for Operations Research

2006 – 2007 Master Studies
ETH Zurich
MSc in Computational Science and Engineering

2001 – 2005 Bachelor Studies
ETH Zurich
BSc in Computational Science and Engineering

1996 – 2001 High School
Kantonsschule Büelrain, Winterthur

