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1. Introduction
The assessment of cloud-free (clear-sky) irradiance is of major importance for the study of radiative processes in 
the atmosphere, and it is yet a challenge. Such type of data is fundamental for screening out cloud effects in the 
radiative budget and visualizing the effects of gases and aerosols. This is key for understanding the role of cloud 
free radiative processes in climate. However, there is usually no procedure to store separately measurements 
taken under these conditions, and there is no universal method for deriving clear-sky irradiances from all-sky 
measurements.

Gueymard et al.  (2019) have highlighted and evaluated 21 different methods proposed by several authors for 
clear-sky identification. These methods are usually based mostly on synoptic cloud data and on sky clarity indices 
(Younes & Muneer, 2007). Previous studies such as Ododo et al. (1996) and Younes and Muneer (2006) have 
evaluated the quality aspects involved in the usage of synoptic cloud cover as a clear-sky indicator. The usage of 
sunshine duration was also evaluated by previous studies (e.g., Barbaro et al., 1981). These methods are proven 
to be reliable and have been used for several applications in the last few decades (e.g., Manara et  al.,  2016; 
Sanchez-Lorenzo et al., 2009; Stjern et al., 2009; Yamasoe et al., 2021). Other methods proposed the use of trans-
mittance, diffuse ratio and other indices for clear-sky identification (e.g., Perez et al., 1990; Renner et al., 2019; 
Thevenard & Brunger, 2001; Wild et al., 2021). These methods usually rely on the optical effects of clouds: 
having a high albedo, clouds play a major role in reflecting solar radiation. When this radiation is reflected back 
to space, the atmospheric transmittance is decreased, and when the radiation is scattered to the surface, the diffuse 
radiation increases. Thus, a cloud free scenario would be expected to have high transmittance and low diffuse 
ratio. However, there is not a clear agreement between authors on what would be the optimal thresholds for such 
indicators, nor on whether such universal optimal thresholds exist. In the context of sky clarity indices, the Long 
and Ackerman (2000) method may serve as a high quality reference. In this method the authors propose four tests 
to eliminate cloudy observations and extrapolate clear-sky data to fill these cloudy observations with clear-sky 
representative data. This method has been extensively used for clear-sky identification for its reliability, and has 
been used as a basis for the evaluation of different clear-sky methods (Renner et al., 2019; Reno & Hansen, 2016; 
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Younes & Muneer, 2007). The method relies on the availability of sub-daily observations, the typical time reso-
lution being a few minutes.

Even though these methods are proven to be reliable within their limitations, and are extensively used for vari-
ous applications in climate research, their applications still have two significant limitations: their temporal and 
spatial coverage. The existing clear-sky methods are usually dependent on additional and/or sub-daily station 
measurements. This implies that the clear-sky irradiances from any station can only be derived if the station 
has the additional measurements (diffuse radiation, synop cloud cover, etc.) necessary for such procedures or 
high temporal resolution (up to 30 min). The seasonal maximum transmittance method (Wild et al., 2021) is an 
excep tion to this dependence, and its use is compared to the use of the method proposed in this paper. In the case 
of the Long and Ackerman (2000) method the ideal temporal resolution is even higher, since this method requires 
minute data as input. This dependency is a limiting factor if one wants to achieve extensive global coverage and 
long term clear-sky data.

In this paper, we propose a new method for clear-sky identification, based on daily mean surface solar radiation 
observations. Additional data is only needed to calibrate the method once per site, when daily mean fractional 
cloud cover satellite data are used to define transmittance thresholds specific to calendar month and site. The 
method thus overcomes the necessity of additional and/or subdaily in situ observations for the derivation of a 
clear-sky time series. Consequently, it can be applied to any data base of existing long-term daily mean surface 
solar radiation measurement data from around the globe. Ultimately focusing on decadal clear-sky trends, some 
systematic bias of the method with respect to the absolute values of clear-sky irradiance is tolerable. In fact, based 
on validation results for 24 sites, we recommend to apply the method to study long-term variability of clear-sky 
irradiances rather than (daily) absolute values of clear-sky irradiances.

We define a clear-sky day as a day in which there is no significant influence of clouds on the total downward 
solar radiation at the surface. The identification of long term clear-sky trends, as aimed with this method, is 
fundamental for better understanding phenomena like Global Dimming and Brightening and its effects on the 
climate (Wild, 2009). The representation of inter annual variability is also discussed. A full description, valida-
tion and comparison to other methods, as well as the strengths and weaknesses of this method are presented in 
the following sections.

2. Data
In this work we have used daily surface global solar irradiance data from the World Radiation Data Centre 
(WRDC, Voeikov Main Geophysical Observatory, 2022) and from the Baseline Surface Radiation Network 
(BSRN, Driemel et al., 2018; Ohmura et al., 1998). There was a total of 24 stations, 23 from BSRN and one from 
WRDC. The BSRN stations were chosen due to availability of enough data to thoroughly validate the method. 
That is, long enough overlap with satellite cloud cover data (see below) and high time resolution (minutes) 
allowing the application of the Long and Ackerman (2000) clear-sky algorithm. The temporal resolution of the 
WRDC stations is not sufficient for clear-sky derivation using the Long and Ackerman (2000) method, which 
was used as a reference in the validation. Thus, the choice of the WRDC station in Madrid, Spain, was motivated 
by its climatic features and availability of synop cloud cover data. This station is much less cloudy than the other 
stations at which the synop cloud cover was analyzed (see Table 1), and this contrast between stations allows one 
to discuss the role of the cloudiness to the quality of the results (see Section 4.1). Data from BSRN undergoes 
the quality control tests as recommended by Long and Dutton (2002). WRDC data already have quality flags 
associated upon download. An additional consistency verification was performed in both datasets to remove 
any remaining doubtful value or inhomogeneous data. Any doubtful data have been removed (i.e., inhomogene-
ous data, physically impossible values). Global daily solar irradiance data was converted into transmittance via 
division by the incoming daily mean Top of Atmosphere (TOA) irradiance. TOA irradiance was calculated for 
each station with a simple model, in which we calculated the cosine of the solar zenith angle at every second 
from  sunrise until sunset, combined it with the Sun-Earth distance (dependent on the day of the year), length 
of the day and the solar constant (1361 W/m 2) and finally integrated to obtain the daily incoming radiation at 
the TOA for a given day and location. Twenty nine years (1990–2018) of daily mean (daytime) satellite-derived 
cloud fraction data from CLARA-A2 (Cloud, Albedo and Radiation from AVHRR, Karlsson et al., 2017, 2020), 
version 2.0 (1990–2015) and version 2.1 (2016–2018), was also used. This product is gridded, has a global 0.25° 
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resolution and is available since 1982. We did not use the first few years to avoid missing and/or problematic 
data reported in the documentation. The measurements are taken on board of polar orbiting satellites, meaning 
that the cloud product is derived from, usually, two samples per day (one in the morning, one in the afternoon) 
in lower and middle latitudes. Even though this might look as a limited sample, it should be enough for a good 
representation of mesoscale to large-scale meteorological events, due to their time scales of hours to a day (in 
the case of mesoscale) or longer (in the case of synoptic to global scales). Smaller scale phenomena, such as 
turbulence, could be misrepresented. However, due to their scales, these processes should, in general, not have 
major effects on the observed daily cloud cover. The CLARA-A2 product documentation reports a hit rate (over-
all global frequency of correct cloudy and cloud free estimations) of 79.7% when using CALIPSO-CALIOP 
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) measurements as a reference. Our compari-
son of the satellite cloud fraction with the daily mean synop cloud fraction in four sites (Madrid, Payerne, Linden-
berg, and Saentis) led to correlation coefficients ranging from 0.796 (Saentis) to 0.853 (Lindenberg). Mean daily 
cloud cover derived from synop observations, also used in this study, was downloaded from the European Climate 
Assessment and Data set (Klein Tank et al., 2002).

Station Coordinates Data set T Sat cc CS days RMSE (W/m2) Bias (W/m2)

Lauder, New Zealand 45.04°S 169.69°E BSRN 0.5202 56.7% 17.1% 6.4 −3.9

Alice Springs, Australia 23.80°S 133.89°E BSRN 0.6650 31.5% 52.0% 4.9 −2.3

Darwin, Australia 12.42°S 130.89°E BSRN 0.5842 42.1% 44.1% 15.9 −12.6

Momote, Papua New Guinea 2.06°S 147.42°E BSRN 0.4843 72.7% 4.7% 11.4 −9.3

Kwajalein, Marshall Islands 8.72°N 167.73°E BSRN 0.5583 65.1% 13.9% 11.3 −10.2

Tamanrasset, Algeria 22.79°N 5.52°E BSRN 0.6876 32.2% 48.8% 11.6 −6.9

Goodwin Creek, Mississippi, USA 34.25°N 89.87°W BSRN 0.5058 50.0% 34.0% 14.5 −9.2

Tateno, Japan 36.06°N 140.13°W BSRN 0.4796 59.0% 26.0% 14.9 −10.2

Billings, Oklahoma, USA 36.60°N 97.52°W BSRN 0.5464 48.1% 32.1% 6.8 −4.4

Southern Great Plains, Oklahoma, USA 36.60°N 97.48°W BSRN 0.5654 48.4% 31.8% 6.9 −4.6

Desert Rock, Nevada, USA 36.63°N 116.02°W BSRN 0.6751 31.7% 53.9% 4.3 −1.9

Chesapeake Light, North Atlantic Ocean, USA 36.90°N 75.71°W BSRN 0.5456 53.1% 29.0% 9.8 −6.4

Bondville, Illinois, USA 40.06°N 88.36°W BSRN 0.5159 60.4% 23.2% 11.1 −8.0

Boulder, Colorado, USA 40.12°N 105.24°W BSRN 0.5791 51.8% 28.4% 12.5 −7.8

Madrid, Spain 40.45°N 3.73°W WRDC 0.5743 47.6% 34.5%  a  a

Rock Springs, Pensylvannia, USA 40.72°N 77.93°W BSRN 0.4559 63.1% 21.2% 15.0 −11.2

Carpentras, France 44.08°N 5.06°E BSRN 0.5413 44.1% 39.9% 6.7 −4.4

Payerne, Switzerland 46.81°N 6.94°E BSRN 0.4318 63.5% 20.4% 11.8 −9.0

Fort Peck, Montana, USA 48.32°N 105.10°W BSRN 0.5429 57.4% 22.1% 7.3 −4.8

Regina, Canada 50.20°N 104.71°W BSRN 0.5203 67.2% 24.9% 7.3 −5.2

Camborne, UK 50.22°N 5.32°W BSRN 0.4049 68.3% 13.8% 14.3 −9.2

Lindenberg, Germany 52.21°N 14.12°E BSRN 0.4093 66.0% 16.6% 12.0 −8.2

Toravere, Estonia 58.25°N 26.46°E BSRN 0.3901 65.2% 14.5% 14.5 −10.2

Lerwick, UK 60.14°N 1.18°W BSRN 0.3469 75.6% 6.1% 15.5 −11.1

Note. BSRN, Baseline Surface Radiation Network; WRDC, World Radiation Data Centre. Site average b transmittance (T); Site average b satellite cloud cover (Sat cc); 
Percentage of days flagged as clear-sky with our method (CS days); root-mean-square error when comparing daily mean clear-sky irradiance [in W/m^2] using Long 
and Ackerman's (2000) algorithm and daily mean clear-sky irradiance [in W/m^2] using our method b (RMSE); and mean bias, defined as the mean difference between 
daily mean clear-sky irradiance [in W/m^2] using the Long and Ackerman's  (2000) algorithm and daily mean clear-sky irradiance [in W/m^2] using our method 
[method - reference] (Bias).
 anot possible to apply Long and Ackerman's (2000) algorithm to the data due to its temporal resolution.  ball values calculated from daily means.

Table 1 
Stations Used in the Validation Procedures
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3. Methods
The method developed in this study takes daily mean surface solar radiation 
measurement data as input. Its objective is to identify days with little to no 
effects of clouds on the irradiances, and then flag them as clear-sky. It relies 
on all-sky daily mean atmospheric transmittance (also referred to as clear-
ness index by some authors). It is obtained by taking the ratio between daily 
mean (measured) surface solar radiation and daily mean (computed) top of 
atmosphere irradiance, which is then compared with (to be defined) clear-sky 
transmittance thresholds.

While the threshold definition requires the use of satellite-based cloud cover 
data, the method can subsequently be applied to the entire time series of daily 
surface solar radiation measurements of that station, even if it extends outside 
the period covered by satellite data. This then allows also the identification of 
clear-sky days in the long-term historic surface solar radiation records.

To avoid ambiguity, we start by introducing some important concepts used in 
the following sections, and associate them with letters for clarity:

•  Individual month (mi): refers to a single month in the time series (i.e., 
January of 2003, October of 2007, etc.).

•  Calendar month (mc): refers to every calendar month of the time series 
(i.e., all January months in a time series).

•  Individual transmittance threshold (thi): refers to the transmittance 
threshold calculated for each of the individual months (mi).

•  Transmittance threshold (thmc): refers to the transmittance thresholds 
defined for each calendar month.

In the following sections, we discuss how to define a thi, and how they are used to define a thmc for each calendar 
month at each station, to derive a clear-sky time series.

3.1. Definition of Individual Transmittance Thresholds (thi) and Transmittance Thresholds (thmc)

The method implementation starts by finding a thi for every individual month (mi) within the overlapping period 
of in situ and satellite data. At the end of the process, every station will have 12 thmc, one for each calendar month. 
To start, we associate each station to its closest pixel from the grid of the CLARA-A2 daily cloud fraction prod-
uct, making the station to be a point within the 0.25 × 0.25° grid from the satellite. In situ data will be compared 
to satellite data, thus, it is necessary that the irradiance time series cover at least part of the satellite data period. 
Whereas one needs surface and satellite time series overlapping in order to apply this method, all stations were 
selected to accommodate a minimum overlapping between surface and satellite products of 8 years. This choice 
and its implications are discussed in Section 3.2.

Daily transmittance and daily cloud fraction data are sorted by individual months (mi) and then evaluated within 
each mi. The number of low cloud fraction days of each mi will be used as a proxy to indicate the probability of 
occurrence of clear-sky days at the station in that calendar month. However, defining “low cloud fraction days” 
based on satellite cloud cover data involves considering the uncertainties of representativity of the satellite grid 
for the station (Hakuba et al., 2013, 2014; Schwarz et al., 2017). One has to consider that the station is just a point 
within the satellite grid, thus, the satellite cloud fraction can be visualized as a probability of clear-sky occur-
rence at the station. For this reason, selecting just the days with satellite cloud fraction equal zero would result in 
a very low probability of cloud occurrence at the station, but with a high probability of missing many clear-sky 
days. Meanwhile, a 20% cloud cover at the scale of the satellite data grid may still be compatible with no clouds 
at the station itself. This creates a trade-off, where lower grid scale cloud fraction values imply missing many 
of clear-sky days at the station, while higher cloud fraction values mean including many cloudy days. Figure 1 
illustrates the choice of different cloud cover percentages for the application of the proposed clear-sky method at 
two selected observation stations from BSRN.

Figure 1. Annual clear-sky irradiances using different satellite cloud 
fraction thresholds compared to a reference clear-sky time series, based 
on Long and Ackerman's (2000) algorithm, for Carpentras—France, and 
Payerne—Switzerland.
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Even though 5% would reduce the bias (the absolute values would be closer 
to the reference, here generated using the Long and Ackerman (2000) algo-
rithm), it would drastically reduce the availability of data, especially in a 
cloudier site, which is the case for the BSRN site Payerne (Switzerland), 
shown in this example. The use of 15% cloud fraction allows for more data, 
however, it still restricts significantly the representation of trends (potentially 
due to removal of too many clear-sky days). Finally, the use of 25% increases 
the absolute bias when compared to lower percentages, however it optimizes 
the representation of trends, still showing reasonable filtering of cloudy days, 
as discussed in Sections 4 to 4.2. For that reason we empirically chose 25% 
as the upper limit to define “low cloud fraction days.”

Once we have the percentage of “low cloud fraction days” in a mi (i.e., 
percentage of days with cloud cover lower than 25%), we apply this percent-
age to the daily transmittance distribution of that mi to define a thi. For exam-
ple, if 10% of a mi days are flagged as “low cloud fraction,” then the 10% 
highest daily transmittances in that month are flagged as “very likely” to be 
clear-sky, and the lowest value of this group is set as the thi for that mi. Note 
that the days behind thi are not necessarily the same days identified via the 
cloud fraction criterium. The reason is again related to the representativity 
of the satellite data: days with low cloud fraction (less than 25%) in gridded 
satellite data do not necessarily coincide with the days with highest station 
specific transmittance. Figure 2 illustrates this process for January of 1991 
in Madrid, Spain.

In January of 1991, 8 (25.8%) of the 31 days of the month had less than 25% of cloud cover in the pixel where 
the Madrid station is located. Consequently, the 74th percentile of the distribution of daily transmittances was set 
to be the transmittance threshold for that month, resulting in thi = 0.6040. With this approach, the cloudier the 
month is (according to satellite cloud fraction), the higher the transmittance threshold will be in terms of percen-
tile (with respect to the distribution of values). The procedure is repeated for every month for which both in-situ 
and satellite data are available, leading to between 8 (minimum years we require) and 29 (maximum number of 
years of satellite data available) individual transmittance thresholds (thi) for each calendar month (mc) at each 
station, depending on the number of overlapping years between the station and the satellite data. In the case of no 
days with less than 25% of cloud cover, the value is kept as undefined (NaN).

Finally, we chose the 50th percentile of the thi distribution of each calendar month (mc) to define the Transmit-
tance Threshold (thmc) of that month, resulting in one thmc per mc. Days whose transmittance is higher than thmc 
for the respective calendar month will be flagged as clear-sky by our method. The choice of the 50th percentile 
is intuitive but somewhat arbitrary, and reveals another trade-off. A choice of lower percentiles to define the 
thresholds, being less restrictive, might allow more contamination by cloudy days being mistakenly flagged as 
clear-sky, while higher percentiles might be too restrictive, removing more clear-sky days from the clear-sky time 
series. A discussion about this trade-off can be found in Section 4.1.

3.2. Minimum Number of Overlapping Years

One important aspect when constructing the method is choosing a minimum number of overlapping years (period 
with both satellite and in situ data) required to calibrate the method for a specific station. Fewer overlapping years 
mean fewer individual transmittance thresholds (thi), which in turn implies that their distribution for each calen-
dar month mc is constructed by fewer values, ultimately impacting the robustness of the transmittance thresholds 
thmc. The issue is illustrated on Figure 3. We assume the thi to be normally distributed with a mean value of 0.65 
and a standard deviation of 0.04 (or, alternatively, 0.02). The values are inspired by actual data. Around 60% 
of the total months at the stations used in this study have a standard deviation of the thi distribution within this 
range. From this normal distribution, we randomly draw a set of values and calculate their 50th percentile. We 
vary the size of the set drawn (between 1 and 100 values) and for each set size we repeat the drawing 1,000 times. 
We thus obtain 1,000 estimates of the 50th percentile for each set size, as illustrated in Figure 3. The illustrated 

Figure 2. Daily transmittance in January of 1991 in Madrid, Spain. The black 
line marks the individual transmittance threshold set for this month based on 
the information of the percentage of cloud-free days from satellite information.
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uncertainty represents the percentage difference between the highest and the lowest value of the 50th percentile 
(y-axis) for each data set size (x-axis). The curves are given as moving means (five values) for each number of 
elements in a set.

We observe that a higher standard deviation (0.04 instead of 0.02) results in larger uncertainties. The actual distri-
bution of individual transmittance thresholds (thi) varies significantly by month and station, thus, the normal 
distribution of random numbers will not always mimic the behavior of this distribution. However, the distribu-
tions of thi are not random, they reflect the inter annual behavior of transmittance and satellite cloud cover at the 
station. To visualize what happens in real-world cases, we performed a similar analysis as shown in Figure 3, 
but in this case with real-world measurements. We calculated the uncertainty (difference between maximum and 
minimum 50th percentile) for 1,000 possible sets of 8 and 15 years of data (randomly generated) at four selected 
stations. The result is shown in Figure 4. The stations were chosen for having the longest records (up to 24 years 
of data).

The first obvious aspect, already highlighted in the previous Figure 4, is that the sets of 15 years of data (blue 
error bars) have lower uncertainties than the sets of 8 years of data (black error bars). This reinforces the impor-
tance of more overlapping years for more consistent results. The uncertainties with 8 years of data range mostly 
below 10%, consistent with the 0.02 standard deviation random normal distributions (shown in Figure 3). The 
highest uncertainty for these sites is for January in Payerne, when it becomes as high as 19% for the sets of 8 years 
of data. High uncertainties also occur in other months in Payerne, but never higher than 16%, also consistent with 
the 0.04 standard deviation random normal distributions. The higher uncertainty of less overlapping years affects 
three major aspects of the clear-sky detection and trend assessments which are discussed later in the text. With a 
higher uncertainty, the number of false positives (cloudy days mistakenly flagged as clear-sky) is increased, the 
correlation between the results of our method and the reference method is reduced and the confidence bounds of 
the bias correction are widened. Each of these aspects is discussed in more detail in Section 4.

Considering the uncertainties found both in the observations and in the simulations, the slopes on Figure 3 then 
are used as a reference to select the minimum number of overlapping years to allow use of our method for 
clear-sky derivation. We suggest at least between 8 and 10 years of overlapping data for the use of our method. 
Less overlapping years would result in a less accurate climatological (if the overlapping years are not repre-
sentative for the station) and statistical (since any anomalous year would significantly affect the distribution) 
representation. More years and a lower thi standard deviation then obviously yield more robust results.

Within the stations used in this study, the one with the least overlapping years is Darwin, which has 13 years, but 
a thi standard deviation of ∼0.02 for all months, except February (∼0.05).

Figure 3. Difference between the minimum and the maximum 50th percentile when generating random normal distributions 
with 1–100 elements 1,000 times. Slopes show the moving mean of 5 values.
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3.3. From Daily to Monthly Data

After the derivation of daily clear-sky time series, the amount of remaining data may vary from higher than 
30% (i.e., Carpentras, France) to as low as 4.7% (i.e., Momote, Papua New Guinea). For several applications, 
one might want to convert those time series into monthly means. This was done in the current study in order to 
validate the method. Only months with more than one clear-sky day had the monthly values calculated. All daily 
values in a month were normalized by the monthly mean incoming TOA radiation. Monthly mean incoming TOA 
radiation was divided by incoming TOA radiation of the day flagged as clear-sky, and the resulting value was 
multiplied by the incoming surface solar radiation of the day flagged as clear-sky. With this procedure, we expect 
to avoid significant biases in the monthly values due to sun geometry. After this procedure, a simple mean of all 
normalized daily clear-sky values is calculated to generate monthly mean clear-sky values.

4. Validation
To validate this clear-sky method we compared it with the reference clear-sky time series, based on the Long and 
Ackerman (2000) algorithm, and to synop cloud cover data. Data from 24 stations, in five continents, 23 from 
BSRN and one from WRDC, were used in the validation procedures. The BSRN stations were chosen for their 
availability of data within the minimum overlapping period between satellite and in situ data. The stations from 
WRDC did not have enough temporal resolution to apply Long and Ackerman's (2000) algorithm. The individual 
WRDC station (Madrid, Spain) was selected as it matches with available synop cloud cover data used for the 
comparison, and because this station's cloudiness features contrasts with the other stations where synop cloud 
cover was analyzed, raising one of the aspects to be discussed. Table 1 shows the annual mean transmittance and 
satellite cloud cover at each of these sites, the percentage of clear-sky days as flagged by our method, the RSME 
obtained when comparing daily irradiances from our method to Long and Ackerman's (2000) and the bias in the 
clear-sky time series derived by our method. It should be noted that some stations have similar transmittance 

Figure 4. Transmittance thresholds thmc (marker) and uncertainties (difference between maximum and minimum 50th percentile) for 1,000 possible sets of 15 years of 
overlapping data (blue error bars) and 8 years of data (black error bars) in selected stations. Transmittance thresholds were calculated with the whole time series. All 
stations have between 21 and 24 years of data and are from the Baseline Surface Radiation Network data set.
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and fairly different satellite cloud cover (or vice versa), since cloud cover does not directly relate to cloud optical 
depth. Plus, clouds are not the only components affecting the transmittance (aerosols and water vapor also play 
a major role).

The number of clear-sky days and the RMSE vary significantly from site to site. The RMSE is very likely to 
be associated with the occurrence of partly cloudy days erroneously flagged as clear-sky by our method. This 
inserts something that we refer to as “cloud noise.” Its implications are discussed in more details in the following 
sections.

4.1. Synop Cloud Cover on Days Flagged as Clear-Sky

The clear-sky days identified by our method were compared to synop cloud cover data from their respective 
sites. Synop cloud clover is the most traditional cloudiness measurement and has been used for more than a 
century for various applications. Several studies compared synop cloud cover with satellite cloud cover (e.g., 
Bojanowski et al., 2014; Kotarba, 2017), and even though they highlight inconsistencies when comparing the 
two methods, they also highlight their capability of addressing real-world cloudiness. Thus, even though both 
synop and satellite data have their limitations, a good agreement between clear-sky days identified by our method 
and clear-sky days identified using synop measurements would definitely be an indication on the ability of the 
method to filter cloudy days. Figure 5 shows the occurrence of each of the oktas from synop cloud cover and their 
respective classification according to our method for a few sites. The sites were chosen due to the availability of 
synop  cloud  cover data from the European Climate Assessment and Data Set (Klein Tank et al., 2002).

Figure 5. Occurrence of daily mean (rounded to the nearest integer) oktas of synop cloud cover (red + blue bars). Red part refers to the occurrence of days flagged as 
clear-sky by the method proposed in the present paper.



Earth and Space Science

CORREA ET AL.

10.1029/2021EA002197

9 of 15

We observe that at all stations our method was able to identify most of the low cloud cover days (according to 
synop data) as clear-sky. One should highlight, however, that a significant amount of the days with 0 or 1 oktas 
of cloud cover in Madrid where flagged as cloudy by our method. This is the result of a trade-off. Slightly lower 
thresholds (i.e., using a percentile lower than the 50th when getting the thmc from the thi distributions) would flag 
most of these days as clear-sky, nevertheless, it would increase the number of days with high synop cloud cover, 
flagged as clear-sky. This trade-off does not have a strong impact on the results for a relatively sunny site such 
as Madrid, since the proportion of low to high synop cloud cover days flagged as clear-sky is much bigger than 
one. However, for relatively cloudy sites, such as Camborne, this proportion is close to one, thus the increase in 
high synop cloud cover days flagged as clear-sky would have a much more significant impact. Another way of 
visualizing this is by the analysis of true/false positives/negatives. For the means of this analysis, we define days 
with 2 or less oktas of cloud cover as clear-sky, and if our method also flags these days as clear-sky, we have a 
true positive. If our method flags these days as cloudy, we have a false negative. On the other hand, if the day 
has more than 2 oktas of cloud cover, and our method flags it as clear-sky, that is a false positive. Finally, a true 
negative occurs when both methods agree on a cloudy day. Table 2 shows the occurrence of true/false positives/
negatives in these four stations. We observe that a slight increase in false positives would affect more the results 
in Camborne than in Madrid.

If we change the classification in the table to 4 or less oktas, we see an increase in the percentage of true positive 
values from 83.5% in Camborne, to 97.1% in Madrid. The remaining 2.9%–16.5% are very likely to be “false 
positives” (cloudy days flagged as clear-sky by the method), since they have more than 50% cloud cover as 
reported from synop data. This indicates a reasonable agreement between clear-sky identification by our method 
and by synop cloud cover, but it also highlights the potential contamination with false positives. Due to the daily 
temporal resolution, it is virtually impossible to completely avoid all the cloud signals, however, through reducing 
the occurrence of false positives, we then minimize the uncertainty it brings to the clear-sky time series we are 
constructing.

4.2. Comparison With Long and Ackerman's Algorithm

The comparison with clear-sky time series derived using the Long and Ackerman (2000) algorithm explores the 
ability of our method to identify clear-sky days, to reproduce clear-sky trends, and to reproduce month to annual 
variability. Figure 6 shows parts of two time series of daily irradiance before and after clear-sky filtering with our 
method, compared to Long and Ackerman's clear-sky time series.

Figure 6 illustrates that our method was able to screen out cloudy days, and keep only days that had a good fit with 
the clear-sky time series from Long and Ackerman's algorithm. In fact, we see that the difference in daily mean 
irradiances between the two clear-sky time series was lower than 5% of the absolute values in 68% of the days 
in Payerne, and in 85% of the days in Carpentras. This difference was within 10% in 90% of the days in Payerne 
and in 98% of the days in Carpentras. And the difference was within 15% in 99% of the days for both sites. This 
reinforces the ability of our method to identify clear-sky days and also highlights a slightly better agreement at 
the sunnier site (i.e., Carpentras) between the two.

True positive False positive True negative False negative
% of accuracy on 

positives
% of true 
positives

Camborne 308 494 4,945 54 85.1 38.4

Lindenberg 687 419 5,335 223 75.5 62.1

Madrid 3,682 820 7,410 1,601 69.7 82.2

Payerne 876 515 5,261 164 84.2 63.0

Note. % of Accuracy on Positives Refer to the Number of True Positives Compared to the Total Clear-Sky Days According to 
Synop Cloud Cover (True Positive + False Negative); % of True Positives Refer to the Number of True Positives Compared 
to the Total Number of Clear-Sky Days by the Method (True Positives + False Positives).

Table 2 
Occurrence of True/False Positives/Negatives When Comparing Days Flagged as Clear-Sky by Our Method With Days 
With 2 or Less Oktas of Cloud Cover According to Synop Data
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To visualize the method's ability to represent clear-sky inter-annual variability as well as trends, we compared 
clear-sky irradiance anomalies time series from different sites. Figure 7 shows the time series of annual anomalies 
at eight of the BSRN sites used in this study. They were chosen to represent different conditions: both cloudier 
stations (such as Momote) and sunnier stations (such as Desert Rock).

With respect to the inter-annual variability of clear-sky irradiance anomalies, we observe a reasonable agreement 
in most cases, especially at sites with high mean transmittance (and less clouds), like in Desert Rock, for example, 
at cloudier sites, such as Lindenberg, Tateno and Toravere, even though the trends are still well represented, the 
quality of the inter-annual variability representation is low. In the extreme case of Momote, located in the equa-
torial region, under the influence of the Intertropical Convergence Zone, where few cloud-free days occur, thus 
most of the monthly, and therefore annual, values obtained by our method are missing. This indicates that the 
cloud-free processes have minor effects at that site, and it is reinforced by the flat line of the clear-sky time series 
obtained from the Long and Ackerman (2000) algorithm. The range of anomaly values is also similar between 
our method and the reference time series, however, it should be noted that the absolute values in our method are 
usually around 5%–10% lower than the reference clear-sky values. This happens because, using daily time steps, 
we cannot filter only purely clear-sky scenes, like it is done in the reference algorithm using minute screening of 
clouds. This allows some remaining background cloud noise with our method, which is evident in the RMSE and 
Bias values in Table 1, and which might be a limiting factor for an accurate representation of higher frequency 
components of the time series (i.e., anomalies).

The correlation coefficients between the daily clear-sky anomalies time series from our method and from Long 
and Ackerman's  (2000) method seem to be inversely proportional to the average satellite cloud cover at the 
station. The two highest correlations coefficients are at Desert Rock and Alice Springs, which have the lowest 
average satellite cloud cover. The lowest correlation coefficients are at Momote and Lerwick, which are also 
the stations with highest average satellite cloud cover. This is in line with the obvious hypothesis that cloudier 
stations have higher “cloud noise,” thus will have a worse representation of the anomalies in the time series.

While the analysis of the variability of the anomalies shows some potential limitations of the method, the trend 
analysis shows its major strength: the ability to reproduce decadal trends. The decadal trends were calculated for 
21 of the 23 BSRN sites (Lerwick, UK, and Momote, Papua New Guinea, were not included because of too much 
missing data due to lack of clear-sky days, as seen from Figure 7 for Momote's case) using clear-sky days deter-
mined by our method and by Long and Ackerman's algorithm. Figure 8 shows the comparison between the two.

Figure 6. Time series of daily mean irradiance at the surface in Payerne, Switzerland (July 2006–May 2011), and in Carpentras, France (July 2006–June 2011). 
Red lines represent clear-sky identified by the Long and Ackerman (2000) algorithm. Black dots in upper graphs show daily irradiances for all days over the periods 
considered. Black dots in lower graphs show only irradiances from days flagged as clear-sky by our method.
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We see a strong correlation (R 2 = 0.92) between decadal trends determined by both methods, and, most impor-
tantly, the methods agree in the sign of the trends at all of the 21 sites. That is, any brightening/dimming sign 
shown in Long and Ackerman's clear-sky time series, was also reproduced in the time series based on our method. 
The results also show a systematic bias in the trends obtained by our method (trends are usually lower, in absolute 
values), potentially associated to the previously mentioned cloud noise. The average absolute trend over these 
stations is 1.69 for the reference method, against 1.09 for our method, and the slope of the regression is 1.50. The 
observed linear relationship allows the use of the slope to correct the bias. We have an average correction factor of 
1.50 (with 95% confidence bounds of 1.27 and 1.71, thus a ± 0.23 uncertainty), when considering all the stations. 
However, when considering the cloudiness of the stations, we observe slightly different values. When doing the 
same regression analysis only using the 10 stations with mean satellite cloud cover of 55% or more (see Table 1), 
we get a R 2 of 0.94, and a correction factor of 1.86 (with 95% confidence bounds of 1.48 and 2.24). On the other 
hand, when doing the same analysis using the eight stations with 50% or less mean satellite cloud cover (see 
Table 1), we again obtain a strong R 2 of 0.95, but a correction factor of 1.30 (with 95% confidence bounds of 0.99 
and 1.613). This result indicates that cloudier stations (in this case, stations with mean satellite cloud cover equal 
to or higher than 55%) require a bias correction up to 25% higher than the average, while sunnier stations (in this 
case, stations with mean satellite cloud cover equal or lower than 50%) require a bias correction up to 15% lower 

Figure 7. Time series of annual anomalies of clear-sky irradiance at several sites from Baseline Surface Radiation Network. Blue lines show the output from our 
method, green lines show the output from Long and Ackerman's (2000) algorithm. Trends (in W/m 2 per decade): Fort Peck: 1.75 reference, 0.69 method; Momote: not 
enough data to calculate*; Lindenberg: 0.62 reference, 0.51 method; Carpentras: 2.15 reference, 1.08 method; Tateno: 1.15 reference, 1.09 method; Toravere: −0.80 
reference, −0.41 method; Desert Rock: 1.59 reference, 1.31 method; Darwin: −2.38 reference, −1.73 method. *Later discussed in this section.
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than the average. This difference is very likely to be associated with the cloud noise, which imposes a higher bias 
to cloudier stations. The bias correction of 1.50 ± 0.23 should be applied to any clear-sky decadal trend calculated 
using our method in order to find the estimated real world clear-sky trend.

4.3. Comparison to the Seasonal Maximal Transmittance Method

The seasonal maximum transmittance method is another alternative for long-term clear-sky trend analysis without 
the necessity of additional measurements. It has been used by Wild et al. (2021) to analyze decadal SSR trends 
in Central Europe. This method relies on the maximum daily transmittance per season (thus four transmittances 
per year) to derive annual means and then long term clear-skies time series (Wild et al., 2021). We applied  this 
method to the stations used in this study in order to compare the clear-sky trends those obtained by our method. 
We kept the time series in transmittance units in order to avoid any biases associated with the conversion to 
irradiances. A similar comparison as in the previous sections using the same 21 stations in shown in Figure 9.

We see a small decrease in the R 2 of the fit from our method using transmittance time series (0.85) when 
compared to the trends using irradiance values (0.92). However, it has a significantly better fit when compared 
to the clear-sky trends from seasonal maximum transmittance method (0.59), which has higher uncertainties. 
The results indicate that, even though both methods show a good qualitative representation of clear-sky trends, 
our method brings a significant improvement in the quantitative representation of such trends, when correcting 
the bias. The slope of the regression line is 1.42 for our method, indicating that we underestimate the absolute 
trend magnitude as compared to Long and Ackerman (2000). By contrast, the slope of the regression line is 0.52 
if seasonal maximum transmittances are used. This seems plausible as using the maximum value per season is 
likely to result in a bias toward an overall too transparent atmosphere (too high transmittance).

5. Discussion
The whole validation process highlights most of the strengths and weaknesses of our method. A first aspect to be 
highlighted is its applicability. The combination of satellite and in situ data for calibration of the method allows it 
to be applied to any station around the globe, depending only on the overlap of satellite and in situ data necessary 
for the threshold definitions.

The results in Section 4.1 show that the method is able to identify most of the days that are more likely to be 
clear-sky, when comparing to synop cloud cover. At sites where clouds are more frequent, such as in Camborne 

Figure 8. Comparison of decadal trends in clear-sky time series obtained using our method and using Long and Ackerman's 
algorithm for 21 Baseline Surface Radiation Network stations. Colors indicate the length (in years) of the time series. 
Prediction interval with a 95% confidence level.
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(UK), it is more likely for the transmittance thresholds to allow a day with the presence of clouds to be erro-
neously flagged as clear-sky (Figure 5). This should affect partly cloudy days, with presence of broken clouds. 
Overcast days, when transmittance is strongly affected by clouds, should not suffer from this problem for cloud 
identification.

The comparison with clear-sky time series derived from Long and Ackerman's algorithm allowed the verification 
of several aspects of the time series, especially the variability of the anomalies and trends. The representation 
of the anomalies in the clear-sky time series is probably the most important weakness to be highlighted. Even 
though some sites have shown a good representation of the anomalies (with a correlation coefficient >0.6), 
at other sites the ability of the method to reproduce short term variations was limited. The weak correlations 
between our method and the reference time series were found at cloudier sites. This might also indicate the 
presence of the background cloud noise caused by a few partly cloudy days mistakenly flagged as clear-sky. 
This background cloud noise represents an important limitation for the reproducibility of high frequency compo-
nents. On the other hand, the ability of our method to reproduce long term trends is an important strength to be 
highlighted. The lower frequency components of the time series are less affected by the cloud noise caused by 
a few days mistakenly flagged as clear-sky, thus, in this context our method appears to be a useful alternative. 
The clear-sky time series derived by our method were able to reproduce the sign of the trend as determined in 
the reference time series in all of the cases analyzed, and the comparison with the reference data set showed a 
good linear relationship of the decadal trends in surface solar radiation. This analysis also allowed us to verify the 
improvement of the quantitative representation of clear-sky decadal trends by our method when compared to the 
seasonal transmittance method. However, there is a systematic bias that has to be taken into account. According 
to the slope of the linear fit of this comparison, the reference trends are usually around 50% larger than the trends 
derived by our method's clear-sky time series. This implies that an average 1.5 ± 0.23 correction factor should 
be applied to the result in order to get the expected real world trends. For more accurate estimates, the cloudiness 
of the station should be taken into account. Cloudier stations (in this study, stations with mean satellite cloud 
cover equal to or higher than 55%) have higher biases, due to their higher cloud noise, requiring then a higher 
correction factor, which was found to be up to 25% higher than the average. On the other hand, sunnier stations 
(in this study, stations with mean satellite cloud cover equal or lower than 50%) require a correction factor up to 
15% lower than the average. One should take these aspects into consideration when using decadal trends derived 
using our method.

We already discussed our method's limitation to reproduce high frequency components of the clear-sky time 
series in cloudy regions, but we should also discuss its ability to generate a clear-sky time series at all. While 
at sites like Madrid, more than 30% of the days are flagged as clear-sky, at other sites this value could be much 
lower, such as 6.1% in the case of Lerwick or even 4.7% in the case of Momote, Papua New Guinea. Such low 

Figure 9. Comparison of decadal trends in clear-sky time series obtained using our method (left graph) and using the seasonal maximum transmittance method 
(right graph) with the clear-sky decadal trends from Long and Ackerman's algorithm for 21 Baseline Surface Radiation Network stations. Decadal trends in units of 
transmittance per decade. Colors indicate the length (in years) of the time series. Prediction interval with a 95% confidence level.
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availability of cloud-free days may represent a limitation for the analysis of cloud-free time series. However, 
it should also be seen as an indication of the radiative balance being controlled by cloud-mediated processes. 
Our method aims at visualizing what happens on days when clouds are not a significant aspect. If there are no 
cloud-free days at a specific site, then the cloud-free processes possibly have only minor direct effects on the 
radiative balance on time scales larger than a day.

Finally, as described in the methods section, we set thresholds for satellite cloud fraction and for thi distribution. 
These are the values proposed in this study, for allowing a reasonable trend representation as well as minimizing 
the occurrence of false positives. The results presented here highlight the strengths and weaknesses of the method 
using these values and indicate the trade-off that was considered when selecting them. These aspects should be 
considered when potentially using different values.

6. Conclusions
We presented a new method for the identification of clear-sky trends based on daily solar irradiance data at the 
surface. For the site specific method calibration only, daily satellite derived cloud cover data are also required. 
The method uses optimal transmittance thresholds to derive daily clear-sky time series. The use of satellite data 
upon method calibration allows the method to be applicable to any station on the globe, given that a part of 
the station irradiance time series overlaps with the satellite period. In our validation procedure, we compared 
our results to a reference clear-sky time series, derived using the algorithm by Long and Ackerman  (2000). 
This verified our method's ability to reproduce high frequency (i.e., anomalies) and low frequency (i.e., decadal 
trends) components of the time series in comparison to the reference method. We also compared the clear-sky 
identification of our method with synop cloud cover data. The full validation procedure allowed us to identify 
both the strengths and the limitations of the method. The most important limitation is the remaining “cloud 
noise” in the clear-sky time series, resulting from partially cloudy days erroneously flagged as clear-sky. This 
issue is obviously more frequent in cloudier sites, affecting particularly the high frequency reproducibility of 
the clear-sky time series and producing higher biases in the decadal trends calculated for cloudier locations. On 
the other hand, the reproducibility of the low frequency components of the time series (i.e., decadal trends) has 
shown a strong correlation when compared to the reference data set. This leads to the conclusion that this method 
is adequate for long-term clear-sky time series (i.e., decadal trends), and not ideal for short term variability (i.e., 
anomalies). We found an average bias correction factor of 1.5 ± 0.23 for the long term trends, meaning that any 
trend obtained using our method should be multiplied by 1.5 in order to find the expected real world trend for 
the respective site. When considering the cloudiness of the station for the bias correction, we found that cloudier 
stations (here defined as stations with mean satellite cloud cover equal to or higher than 55%) might require a 
correction factor up to 25% higher than the average (1.86), while sunnier stations (here defined as stations with 
mean satellite cloud cover equal to or lower than 50%) might require a correction factor up to 15% lower than the 
average (1.30). We understand that, just like any other clear-sky identification method, the proposed one is not 
perfect, but by presenting it we expect to allow a broader assessment (in time and space) of clear-sky time series, 
to better understand changes in the radiative processes in the cloud-free atmosphere.

Data Availability Statement
The Baseline Surface Radiation Network (BSRN) data used to apply and validate the method presented in this 
study is available at the BSRN website (https://bsrn.awi.de/). For this study, it was retrieved via the ftp server ftp://
ftp.bsrn.awi.de/. The World Radiation Data Centre station data used to apply and evaluate the method is available 
for registered users at http://wrdc.mgo.rssi.ru/. The satellite cloud fraction data from CLARA, used to apply the 
method described in the paper, can be found in the CM SAF website (https://www.cmsaf.eu/) and downloaded 
using the Web User Interface at https://wui.cmsaf.eu/.The synop cloud cover data, used to evaluate the method in 
this study, can be downloaded from the European Climate Assessment & Dataset website (http://www.ecad.eu).

https://bsrn.awi.de/
ftp://ftp.bsrn.awi.de/
ftp://ftp.bsrn.awi.de/
http://wrdc.mgo.rssi.ru/
https://www.cmsaf.eu/
https://wui.cmsaf.eu/
http://www.ecad.eu/
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